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Abstract

Background: Arabidopsis thaliana is the model species of current plant genomic research with a genome size of

125Mb and approximately 28,000 genes. The function of half of these genes is currently unknown. The purpose

of this study is to infer gene function in Arabidopsis using machine-learning algorithms applied to large-scale

gene expression data sets, with the goal of identifying genes that are potentially involved in plant response to

abiotic stress.

Results: Using in house and publicly available data, we assembled a large set of gene expression measurements

for A. thaliana. Using those genes of known function, we first evaluated and compared the ability of basic

machine-learning algorithms to predict which genes respond to stress. Predictive accuracy was measured using

ROC50 and precision curves derived through cross validation. To improve accuracy, we developed a method for

combining these classifiers using a weighted-voting scheme. The combined classifier was then trained on genes

of known function and applied to genes of unknown function, identifying genes that potentially respond to

stress. Visual evidence corroborating the predictions was obtained using electronic Northern analysis. Three of

the predicted genes were chosen for biological validation. Gene knockout experiments confirmed that all three

are involved in a variety of stress responses. The biological analysis of one of these genes (At1g16850) is

presented here, where it is shown to be necessary for the normal response to temperature and NaCl.

Conclusions: Supervised learning methods applied to large-scale gene expression measurements can be used to

predict gene function. However, the ability of basic learning methods to predict stress response varies widely and

depends heavily on how much dimensionality reduction is used. Our method of combining classifiers can

improve the accuracy of such predictions—in this case, predictions of genes involved in stress response in

plants—and it effectively chooses the appropriate amount of dimensionality reduction automatically. The

method provides a useful means of identifying genes in A. thaliana that potentially respond to stress, and we

expect it would be useful in other organisms and for other gene functions.
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Background

Assigning functions to unannotated genes, identified by genome sequencing and other methods, is the goal

of functional genomics. Many approaches have been proposed for large-scale prediction of gene

function [1–6]. These approaches are largely based on physical association, genetic interaction, sequence

relationships and patterns of gene expression. Predicting gene functions based on large-scale gene

expression measurements is an attractive strategy since many pathways display coordinated transcriptional

regulation [2, 7]. Although previous studies show that supervised learning methods can be used to predict

gene function based on gene expression in microorganisms such as the yeast Saccharomyces cerevisiae and

in mammals such as mice [1, 8–16], it remains unknown to what extent this is true in plants.

With the A. thaliana genome completely sequenced [17], functional annotation of the genes remains a key

challenge for biologists. Currently, approximately 50% of the 28,000 genes have not been assigned any

function [18]. Thus, the extent to which supervised learning methods can be used to infer gene function in

A. thaliana is a timely and important question. Little work has been done in this area, two exceptions

being [19,20].

In [19], a method is developed to infer gene function from microarray data and predicted protein-protein

interactions. The method is similar to Nearest Neighbor algorithms [21] in that the predicted function(s) of

a gene are based on the function(s) of nearby genes. Here, the “nearness” of one gene to another is based

on a normalized Pearson correlation of their expression profiles and on putative interactions of their

protein products. In addition, the method is extended to the discovery of biological pathways, and is

applied to predicting the signaling pathway of phosphatidic acid as a second messenger in A. thaliana.

In [20], a decision tree algorithm is applied to the problem of predicting the function of protein sequences

in A. thaliana. Six sources of data were used: sequence, expression, SCOP, secondary structure, InterPro

and sequence similarity. One conclusion of the study is that the decision tree algorithm was unable to

extract much information from the expression data. The authors suggest that this is because the

expression data came from unrelated and highly-specific experiments with just a few readings per gene

each. They also suggest that because many more expression data sets are now available for A. thaliana,

results may improve when using this type of data in the future.

The present study aims to identify unannotated genes in A. thaliana that are potentially involved in plant

response to stress. In the context of plants, a stress (biotic or abiotic) causes a decrease in plant growth or

yield. We investigated the prediction of gene function in A. thaliana based solely on gene expression data

using a variety of basic supervised learning methods, namely Logistic Regression (LR), Linear Discriminant
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Analysis (LDA), Quadratic Discriminant Analysis (QDA), Naive Bayes (NB) and K-Nearest Neighbors

(KNN). We also investigated the effect on the learning methods of preprocessing the expression data using

Principle Component Analysis (PCA). Finally, we improved the performance of the basic learning methods

by combining them using a weighted voting (WV) scheme. This work has enabled our collaborators,

biologists in the Department of Cell and Systems Biology at the University of Toronto, to carry out

directed biological experiments for determining gene function. In addition to these biological results, the

paper illustrates how various machine-learning methods have had to be adapted to fit this bioinformatics

application.

Results
Microarray data and the Gene Ontology

In this study, we used two microarray data sets: one from the Botany Array Resource at the University of

Toronto [22], and the other from the AtGenExpress Consortium [23], archived at NASCArrays [24]

(http://arabidopsis.info/). These data sets include over 1000 expression-level experiments for

Arabidopsis, and using all of them would give a data set with dimensionality over 1000. Since the

performance of statistical and machine-learning methods tends to decrease with dimensionality, we chose

only those experiments that are specifically stress-related. Even so, the covariance matrix of the resulting

data set is singular, which is a problem for many of the machine-learning methods. The singularity is

probably due to dependencies between the expression levels under control conditions, since removing the

controls from the data sets solved the problem. To compensate, we tried applying the learning algorithms

to expression-level ratios (i.e., ratios of experimental to control conditions). However, we found that the

results were better when ratios were not used (data not shown). This is probably because the classifiers

look for genes that respond similarly to the known stress-associated genes, so it is not so important to

include the controls. In addition, since many of the features are time-courses, there is still a "time zero"

control included for the values, providing a baseline measurement. The results reported in this article are

therefore based on absolute expression levels without controls.

From the Toronto data set, we selected 54 features corresponding to experiments conducted primarily to

study plant environmental and stress physiology, plant physiology, plant-microbe and plant-insect

interactions. From the AtGenExpress data set, we selected 236 features, including various abiotic stresses

(e.g., osmotic stress, heat stress, cold stress, salt stress, drought stress, UV-B stress, wounding stress,

water-deprivation stress and oxidative stress). We combined the selected features into a single data set.
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The resulting data set consists of gene expression levels for 22,746 genes under 54 + 236 = 290 different

experimental conditions.

We used terms from the Gene Ontology for Biological Processes (GOBP) to represent gene function. For

example, the GOBP term GO:0006950[response to stress] refers to genes that respond to stress. In general,

the Gene Ontology (GO) provides a dynamic controlled vocabulary for describing genes and gene products

in any organism [25]. “Biological Process” is one of three broad GO categories (the other two being

“Molecular Function” and “Cellular Component”). GOBP terms are organized into a directed acyclic graph

(DAG) to reflect the hierarchical relationships between the terms. Parent GOBP terms are subdivided into

increasingly specific child GOBP terms.

Since our study focussed on stress, we were concerned with gene functions at or below the term

GO:0006950[response to stress] in the GOBP hierarchy. This GOBP term has 19 child terms, such as

GO:0009409[response to cold], GO:0009408[response to heat], and GO:0009414[response to water

deprivation]. Since gene function becomes more and more specific as we move down the GOBP hierarchy,

fewer and fewer genes have any given annotation. The result is that for specific types of stress, our data set

contains many negatives and few positives. In the best case, for the term GO:0009613[response to pest,

pathogen or parasite] , over 97% of the training data consists of negatives. The typical case is even worse.

In fact, looking at all 19 types of stress, 5 types have no positives at all, and of the remaining 14 types, the

median number of negatives is 99.2% of the training data. This highly unbalanced data made accurate

prediction of gene function difficult. For this reason, we narrowed our study to the top stress term,

GO:0006950[response to stress]. To get positive training samples for this term, we propagated all genes in

its offspring upward to it in the hierarchy. After up-propagation, the top stress term has 1,031 genes, or

almost 9% of the total genes in the training data. The training data therefore contains 9% positives and

91% negatives.

Using GOBP terms to annotate all genes in A. thaliana is an ongoing project started in 2002 by TAIR

(http://www.arabidopsis.org/) [26]. The gene annotations (updated weekly) can be downloaded from

TAIR. The predictions reported in this paper are based on the version for March 10, 2007. Using these

annotations, we categorized the genes into annotated genes and unannotated genes. The annotated genes

are those which have at least one GOBP annotation; the unannotated genes are those which have no

GOBP annotations. In addition, a gene was treated as unannotated if its only annotation is the top GOBP

category, GO:0008150[biological process], since the function of such a gene is unknown. The result was

11,553 annotated genes and 11,193 unannotated genes in our data set.

5



The annotated genes formed the training data, in which a gene was called positive if it is annotated as a

stress gene, and negative otherwise. The unannotated genes formed the prediction data. It should be noted

that this approach probably introduces some false negatives into the training data, because genes not

known to have a particular function are considered to be negative, even though future experiments could

reveal them to have that function. That is to say, “unknown” is treated as “negative”. However, the number

of such false negatives should be small, since only a small number of genes participate in any given

biological process. That is, most negatives are true negatives.

Predicting gene function using basic learning methods

Using a variety of basic learning methods, we trained a number of classifiers to distinguish between genes

that do and do not respond to stress, based on their patterns of gene expression in the training data. We

then applied each classifier to the prediction data to estimate the function of the unannotated genes. In

addition, we used cross validation to evaluate the performance of each classifier and to estimate the

precision of each prediction.

We used five supervised learning methods: Logistic Regression (LR), Linear Discriminant Analysis (LDA),

Quadratic Discriminant Analysis (QDA), Naive Bayes (NB) and K-Nearest Neighbors (KNN) [21] (see

Materials and Methods). These methods were chosen because they are representative of the most basic

supervised learning methods, the goal being to explore simple methods first. These methods are widely

understood, take little computation time, and the results provide a benchmark against which more

sophisticated methods can be compared. Moreover, as we show below, the results provided by these

methods are good enough to enable biologists to conduct targeted laboratory experiments.

Each of the five methods is discriminative. That is, the classifiers learned by the methods assign a real

number (called a discriminant value) to each gene, reflecting the classifier’s certainty that the gene

responds to stress. Formally, a discriminative classifier is a function, f̂ , from genes to discriminant values.

In our case, each gene is represented as a 290-dimensional vector, x, whose components are the expression

levels of the gene under the 290 experimental conditions. Thus, if x is a vector representing a gene, then

dv = f̂(x) is the discriminant value assigned to the gene by the classifier. Finally, a decision threshold, τ , is

chosen, and the gene is predicted to respond to stress if and only if dv > τ .
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Unsupervised, semi-supervised and transductive learning

In addition to these supervised learning methods, we preprocessed the gene expression data using Principle

Components Analysis (PCA), a form of unsupervised learning, to reduce the dimensionality of the data

(see Materials and Methods). For this purpose, we combined the expression-level measurements for all

genes (both annotated and unannotated) into one large data set, and applied PCA to the entire set. We

are therefore doing a form of semi-supervised learning [27, 28], in which unsupervised learning uses the

entire data set (ignoring annotations), and then supervised learning uses the annotated data. This

increases the effectiveness of learning by increasing the amount of training data used in the unsupervised

phase [27,28]. In our case, the unannotated data is also the prediction data, which means that information

about the prediction data is used during (unsupervised) training. This is possible because we know all the

prediction data in advance. That is, we know the expression levels for all the genes in Arabidopsis whether

they are annotated or not. We are therefore doing a form of transductive learning [27,29], in which the

entire prediction set is known during training and is exploited to predict its annotations. This has an

added computational advantage of simplifying the way PCA is done during cross validation (see Materials

and Methods).

Estimating classifier performance

To evaluate the performance of discriminative classifiers, it is common to use receiver operating

characteristic (ROC ) curves [30]. A ROC curve plots the true positive rate (TP) of a classifier against the

false positive rate (FP) for various decision thresholds. It therefore shows the quality of a classifier not at

one threshold, but at many, and provides more information than a simple miss-classification rate (as in [31]

for example). In practice, however, biologists are not usually interested in having more than a few dozen

false positives, especially in unbalanced data such as ours, in which the number of false positives can

rapidly overwhelm the number of true positives. We therefore use so-called ROC50 curves [32], a variant of

ROC curves in which the horizonal axis only goes up to 50 false positives. The area under a ROC50 curve

is the ROC50 score [32], and is a measure of the overall usefulness of a classifier.

To estimate ROC50 curves for our classifiers, we used 20-fold cross-validation (see Materials and Methods).

Because cross-validation relies on a random split of the training data into folds (20 folds in our case), there

is a certain randomness to the estimated ROC50 curve. To provide more accurate results, we performed

cross-validation ten times, each time with a different (randomly selected) 20-fold split of the data (see

Materials and Methods). Each 20-fold split results in a slightly different ROC50 curve. In some cases, we
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plot all ten of these curves, to give an idea of the uncertainty in classifier performance (Figure 7). In cases

where this would result in overly cluttered graphs, we simply present the average of the ten ROC50 curves

(Figures 1 to 6).

We generated ROC50 curves for each supervised learning method combined with various amounts of

dimensionality reduction. Using PCA, we reduced the original 290 dimensions to 5, 10, 15, 20, 40 and 100

dimensions, respectively. In this way, the original data set was transformed into six separate data sets of

various dimensions. Each basic learning method (except KNN) was applied to the original data set and to

each of the six reduced data sets. Thus, for each basic learning method (except KNN), we trained and

tested seven different classifiers. In the case of KNN, we used only the original, unreduced data, but with

five different values of K. Altogether, we trained and tested a total of 4 × 7 + 5 = 33 different classifiers.

Figures 1 to 5 show the estimated performance of these basic classifiers. Each figure shows a number of

ROC50 curves, each derived using cross-validation averaged over a number of random splits of the data, as

described above. Unlike traditional ROC curves, the axes of these curves give the number of true and false

positives, instead of the proportion. The red dash-dot line near the bottom of each figure shows the

expected performance of a random classifier (i.e., a classifier that ignores the expression data and guesses

whether or not a gene responds to stress by essentially flipping a coin). The ROC50 scores for the curves

are shown in the legend of each figure.

As the figures show, in some cases the classifiers perform not much better than random, but in most cases

they perform significantly better. The figures also show that the performance of each classification method

depends heavily of the amount of dimensionality reduction used. Notice in particular that in some cases,

the classifier trained on the reduced data has a much higher ROC50 score than the classifier trained on the

original, unreduced data. This is especially true for NB and QDA. For instance, the classifiers trained on

the original data have low ROC50 scores of 182.3 for NB and 115.2 for QDA. This is comparable to the

random classifier, whose ROC50 score is 122.5. However, reducing the dimensionality of the data to 15

increases their ROC50 scores to 1373.1 and 1651.0, respectively. This shows the importance of

dimensionality reduction. In contrast, KNN performs well for all the values of K that we used.

Figure 6 compares the basic classification methods by plotting the best performance of each. That is, for

each of the basic classification methods, the ROC50 curve with the highest ROC50 score is reproduced in

Figure 6. In addition, the figure shows the performance of a classification method that uses a weighted

voting scheme (WV) to combine the 33 basic classifiers into a single, composite classifier. Notice that this

composite classifier performs best of all. The next section describes how this composite classifier is
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constructed.

Improving prediction accuracy by combining classifiers

Combining different classifiers in prediction can be thought of as combining different opinions in decision

making. The advantage is that a group opinion is better than a single opinion if the single opinions are

correctly weighted and combined. In machine-learning systems, classifiers are often combined by weighted

voting, in which the discriminant value of the combined classifier is a linear combination of the

discriminant values of the individual classifiers. Formally, given a set of basic classifiers, f̂1, · · · , f̂M , and a

set of weights, w1, · · · , wM , the combined classifier, f̂ , is defined by the equation f̂(x) = Σmwmf̂m(x).

In our case, M = 33, as described above.

By judiciously choosing the weights, w1, · · · , wM , the performance of the combined classifier can be

maximized. Various methods are available for doing this, such as model averaging and stacking [21]. Using

these methods on our data sets, we found that the ROC curve of the combined classifier was usually better

than the ROC curves of the basic classifiers, as expected. Unfortunately, we also found that the

ROC50 curve of the combined classifier was usually worse (data not shown). We hypothesized that this is

because our data sets are highly unbalanced. Intuitively, model averaging and stacking try to choose

weights so as to correctly classify as much data as possible. In our case, this means trying to correctly

classify the vast number of negative samples in our data sets, even if this means misclassifying the small

number of positives. In other words, these methods try to minimize the total number of false positives,

even though we only care about the first fifty.

To choose appropriate weights for our combined classifier, we used the heuristic that classifiers that

perform well should be given more weight than classifiers that perform poorly. In our case, since we want

to maximize the ROC50 score of the combined classifier, we want to give high weight to classifiers with

high ROC50 scores. There are many ways to do this, but we found that it was sufficient to estimate and

normalize the ROC50 score of each basic classifier, and use this as its weight. That is, we used

wm = ŝm/Σmŝm, where ŝm is an estimate of the ROC50 score of classifier fm. Note that with these

weights, if each f̂m(x) is a number between 0 and 1 (as with our classifiers), then so is f̂(x). Also, this

method automatically gives low weight to classifiers that use an inappropriate amount of dimensionality

reduction, since such classifiers have low ROC50 scores. In this way, the combined classifier incorporates

not only the best combination of supervised learning methods, but also the best amounts of dimensionality

reduction for each method.
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To train and evaluate the combined classifier, we used two sets of validation data. After the basic classifiers

were trained, one validation set was used to estimate their ROC50 scores. The combined classifier was then

constructed using these scores, and the second validation set was used to estimate its ROC50 curve. Thus,

the validation data for the basic classifiers is part of the training data for the combined classifier. To do

this in a cross-validation setting, we used what amounts to nested cross-validation (see Material and

Methods). As shown in Figure 6, the resulting combined classifier has a higher ROC50 score than any of

the basic classifiers from which it is made.

Figure 7 gives another view of the performance of the combined classifier. Here, the thin dashed lines are a

superposition of ten different curves, where each one is a different estimate of the combined classifier’s true

ROC50 curve. As described earlier, each estimate of a classifier’s ROC50 curve includes some randomness,

due to the random choice of folds during cross-validation. The ten dashed curves in Figure 7 are derived

from ten different cross-validations, each one using a different set of folds. The thick solid line in the figure

is the mean of the other ten curves. Because taking means reduces variance, the mean curve is a more

accurate estimate of the true ROC50 curve (i.e., has lower variance) than any of the other ten curves. The

diagonal dash-dot line near the bottom of the plot shows the expected performance of a random classifier.

ROC and ROC50 curves plot the number of true positives against the number of false positives. However,

in applications such as ours, the precision is also of interest. Precision is the proportion of true positives

(TP) among the predicted positives (PP). (It is also the complementary false discovery rate, 1-FDR [33].)

Precision is important since each prediction is a potential experiment, and as a matter of economics, a

biologist needs an estimate of how many of the experiments will succeed. This is especially important in

situations, such as ours, where the number of real negatives is much greater than the number of real

positives, and so there is a real possibility of having a huge number of failed experiments.

Figure 8 plots estimated precision against the number of predictions for the first hundred predictions.

Notice that as the number of predictions increases (i.e., as the classifier’s decision threshold is lowered), the

precision decreases, meaning that fewer of the predictions are expected to be true. As in Figure 7, the thin

dashed lines are a superposition of ten different curves, each one an estimate of the true precision curve,

and the thick solid line is their mean. Also, the horizontal dash-dot line near the bottom of the plot is the

expected precision of a random classifier, and its height is equal to the ratio of the number of positives

(i.e., stress genes) to the total number of samples (i.e., genes) in the training data. Since all the estimated

precision curves are well above the horizontal dash-dot line, the performance of the combined classifier for

the first hundred predictions is significantly better than random. Also, since Figures 7 and 8 show small
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variance, and since the variance of the mean curves will be even less, the combined classifier should have

stable prediction performance.

Stress-response predictions

We trained the combined classifier on our Arabidopsis data set, using all 22,746 genes for Principle

Components Analysis, and the 11,553 annotated genes for supervised learning, as described above. We

then applied the classifier to the 11,193 unannotated genes, to get a set of 11,193 predictions (see Materials

and Methods). Table 1 shows the top fifty predictions. Each row in the table is a prediction: the first

(leftmost) entry is the rank of the prediction (1 being the top prediction); the second entry identifies a

gene; the third entry is a discriminant value (measuring the likelihood that the gene responds to stress);

and the fourth entry is the estimated precision of the prediction and all predictions above it (i.e., the

fraction of these predictions expected to be true). As an example, consider the 23rd row of the table, the

row for gene At1g09950. Since the estimated precision in this row is given as 0.7044, we expect that about

70% of the top 23 genes respond to stress, i.e., 16 genes.

Figures 9 and 10 provide visual evidence supporting these predictions. Each figure shows a heat map.

These maps, known as “electronic Northerns” (or e-Northerns), were generated using the Expression

Browser tool of the Botany Array Resource (BAR) and the AtGenExpress Tissue (shoot) data set. The

program contains expression data for more than 22,000 genes across more than 1000 samples collected from

NASCArrays, AtGenExpress Consortium, and the Department of Botany at the University of

Toronto [22,24,34]. Each row in an e-Northern is a gene, and each column is an experiment. The colour at

a point represents the relative expression level of the gene during the experiment. More specifically, the

colour represents the log2 of the ratio of the average of replicate treatments relative to the average of

corresponding controls. Yellow means that under the experimental conditions, the gene had the same

expression level as the control. (The wide, yellow vertical stripes are the controls.) Red means that the

gene had a higher expression level than the control (up-regulation), and blue means it had a lower

expression level (down-regulation). A gene that shows significant up-regulation (or down-regulation) under

stress conditions is likely to be involved in response to stress. Thus, unlike cross validation, electronic

Northerns provide a means of evaluating the quality of predictions based on the prediction data, not just

the training data. The e-Northerns of Figures 9 and 10, for instance, are based entirely on prediction data.

In these e-Northerns, the experiments exposed the plant to various stress conditions, such as heat, cold,

drought, UV-B radiation, etc. Figure 9 is the e-Northern for the top-50 predictions of our combined
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classifier, i.e., for the 50 genes predicted to most likely to respond to stress. For comparison, Figure 10 is

the e-Northern for 50 genes chosen at random from the prediction set. Note that there is much more colour

in Figure 9 than in Figure 10, especially red. This suggests that our combined classifier has indeed

extracted meaningful gene expression patterns for genes that respond to stress.

Gene knockout experiments

From the predictions of the combined classifier, three genes were chosen for biological analysis using gene

knockout experiments. Here, we present the results for one of these genes, At1g16850, which show it to be

necessary for the normal response to temperature and NaCl. Our results also confirm that the other two

genes, At1g11210 and At4g39675, are involved in a variety of stress responses (data not shown).

The criteria used to choose candidate genes for subsequent biological analysis were: 1) the gene must be

expressed in either root or shoot, 2) gene expression should be strongly increased in response to abiotic

stress, such as cold, drought, osmotic and salt stresses, 3) T-DNA knockout lines—in which a given gene’s

expression has been eliminated—should available from the Salk Institute [35], and 4) the gene should not

have an annotated function nor be present in any patent database. Further bioinformatics analysis was

performed using Athena for promoter motif prediction [36], Expression Angler for co-expressed gene

analysis [22] and eFP browser for electronic representation of gene expression patterns [37].

Stress Response

The increased presence of anthocyanin levels in plants lacking a functional copy of the At1g16850 gene

during cold stress of 4℃ indicates that this gene is involved in cold stress response (Figure 11). The same

effect is seen at 30℃, indicating that this gene is also associated with response to heat stress (Figure 11).

Interestingly, At1g16850 is normally expressed during the later stages of seed maturation, towards seed

dessication, and hence may play a role in seed dormancy. This sort of bifunctionality is seen with other

stress response genes, which have documented roles in the cold, heat and salt stress pathways, e.g. RD29A

(Response to Desiccation) and LEA (Late Embryogensis Abundant) protein [38,39]. These proteins have

also been found to accumulate during seed maturation [38,39] and are in fact co-expressed with At1g16850

under stress conditions and during seed maturation, as determined using the Expression Angler

algorithm [22].

In addition to modulating a response to temperature, plants lacking a functional At1g16850 exhibit a

defective root growth phenotype under increasing salt concentrations (Figure 12). This phenotype,
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combined with previous microarray studies [40], which found At1g16850 induction at 250mM NaCl, gives

clear indication that At1g16850 is also part of the salt stress response pathway.

Discussion and conclusions

In this study, we evaluated and compared five basic supervised learning methods (LR, LDA, QDA, NB and

KNN) for gene function prediction in A. thaliana based solely on gene expression data. The major

advantage of supervised methods over unsupervised methods is that by including prior knowledge of class

information, supervised methods can ignore uninformative features and select informative features that are

useful for separating classes. In this study, we focussed on finding genes that respond to stress, as

represented by the term GO:0006950[response to stress] in the GOBP hierarchy. Using a training set of

genes of known function, we used the basic learning methods to predict the stress response of genes of

unknown function. We estimated the accuracy of the predictions using ROC50 scores derived through cross

validation. We found, for instance, that KNN performs well for various values of K. For the other learning

methods, the performance depends greatly on whether the data is preprocessed using PCA, and on how

much its dimensionality is reduced. Using various values of K and various amounts of dimensionality

reduction, we trained and tested a total of 33 basic classifiers.

We also investigated combining the basic classifiers using weighted voting. Our method of constructing the

combined classifier chooses not only the best combination of supervised learning methods, but also the best

amount of dimensionality reduction for each method. Our results show that the combined classifier

outperforms all the basic classifiers in predicting whether a gene responds to stress. This can be attributed

to the relative robustness of methods for combining classifiers. Intuitively, any single learning method

represents a single view of the data, while a combination method represents multiple views strategically

combined. The proper choice of combining method is important to the success of a combined classifier. For

example, model averaging and stacking are well-known methods for combining classifiers [21]; however, we

found that while they did improve on the overall ROC curves of the basic classifiers, the ROC50 curve was

often worse (data not shown). In contrast, our weighted voting method using ROC50 scores as weights is

simple, provides improved accuracy in predicting stress response in A. thaliana, and we would expect it to

provide improved accuracy in other organisms and for other gene functions.

Using electronic Northern analysis, we observed significant up-regulation and down-regulation of many of

our predictions. The strong up- and down-regulation are also present among the stress-response genes in

the training data (data not shown). In contrast, randomly selected genes show much less up- and
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down-regulation. This visually confirms that the combined classifier is able to distinguish between stress

and non-stress genes. Moreover, unlike cross-validation, this confirmation is based on the prediction data,

not the training data.

Using gene knockout experiments—in which a given gene’s expression is eliminated—we tested three of our

predictions. We presented the results for one of these genes, At1g16850, which show it to be involved in the

stress response pathways to cold (4℃), chill(14℃) and NaCl. We have also confirmed the biological stress

responsive roles of the other two genes, At1g11210 and At4g39675 (data not shown). Further biological

studies will determine the pattern of expression in specific cell and tissues types of the plant and the exact

physiological role of these genes.

Materials and methods
Preprocessing of raw gene expression data

The gene expression data from the Botany Array Resource at the University of Toronto contain detection

calls: P (present), M (marginal) and A (absent). The detection call determines whether a transcript is

reliably detected (present), partially detected (marginal), or not detected (absent). The following is an

example for the gene At3g24440 under three selected conditions:

AT3G24440 243.10 P 120.90 A 109.40 M

We simply removed these detection calls (P, A, and M) in this study. In addition, gene expression levels

were log transformed. The transformed data have approximately normal distributions while the raw data

have approximately exponential distributions (data not shown). Many of the learning methods used in this

study were designed with normal data in mind.

Basic supervised learning methods

Each of the learning methods described below trains a discriminative classifier. We used the methods to

train binary classifiers in which the two classes correspond to genes that respond to stress (Class 1) and

genes that do not (Class 0). Given a vector, x, of gene expression measurements, each classifier returns a

discriminant value, dv(x), reflecting the classifier’s confidence that the gene belongs to Class 1. The gene is

assigned to Class 1 if and only if dv(x) > τ , where τ is a decision threshold. For the classifiers LR, LDA,

QDA and NB, the discriminate value is an estimate of p(k = 1|x), the posterior probability that the gene

is in Class 1. For KNN, the discriminant value is simply a number between 0 and 1.
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LR (Logistic Regression)

Given a set of classes, LR models the log likelihood ratio for any pair of classes as a linear function of the

test vector, x, and thus defines linear decision boundaries between the classes. In the case of just two

classes, the model has the simple form

log
p(k = 1|x)

p(k = 0|x)
= β0 + βT

1 x (1)

and hence,

p(k = 1|x) =
eβ0+βT

1
x

1 + eβ0+βT

1
x

(2)

p(k = 0|x) =
1

1 + eβ0+β1x
(3)

and p(k = 1|x) + p(k = 0|x) = 1. The parameters β0 and β1 are fitted to the training data using

maximum likelihood [21].

LDA (Linear Discriminant Analysis)

LDA models the classes as multivariate Gaussians, where each class is assumed to have the same

covariance matrix. The density function for class k is therefore given by

gk(x) =
1

(2π)p/2|Σ|1/2
e−(x−µk)T Σ−1(x−µk)/2 (4)

where µk is the mean vector for class k, Σ is the common covariance matrix, and p is the dimensionality of

x. It can be shown [21] that the discriminant function for class k is equivalent to the following function:

δk(x) = x
T Σ−1µk −

1

2
µk

T Σ−1µk + log πk (5)

where πk is the prior probability of class k. The decision boundaries and therefore linear. The parameters

πk, µk and Σ are estimated by applying maximum likelihood to the training data [21], giving

πk =
nk

n
(6)

µk =
∑

i

xi

nk
(7)

Σ =
∑

k

∑

gi∈k

(xi − µk)(xi − µk)T

(n − K)
(8)

where n is the total number of training samples, nk is the number of training samples in class k, and K is

the number of classes. In this study, K = 2.
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QDA (Quadratic Discriminant Analysis)

QDA is a generalization of LDA in which each class has its own covariance matrix, Σk. In this case, it can

be shown [21] that the discriminant function for class k is equivalent to the following function:

δk(x) = −
1

2
log(|Σk|) −

1

2
(x − µk)T Σ−1

k (x − µk) + log πk (9)

The decision boundaries are therefore quadratic. Again, the parameters are estimated by applying

maximum likelihood to the training data [21].

NB (Naive Bayes)

NB is based on the independent variable assumption: for each class, the variables in the feature vector x

are assumed to be independent. This assumption allows the class conditional density p(xi|k) to be

estimated separately for each variable, xi. In essence, NB reduces the problem of multi-dimensional density

estimation to that of one-dimensional density estimation. Given a class, k, each variable in the feature

vector x = (x1, x2, ..., xp)
T is independent; so

p(x|k) =

p
∏

i

p(xi|k) (10)

Using Bayes Rule, we obtain

p(k|x) ∝ p(k)

p
∏

i

p(xi|k) (11)

where p(k) is the prior probability of class k, estimated as the ratio of the number of the training samples

in class k to the total number of training samples. In this paper, we model each variable as a univariate

Gaussian, so p(xi|k) = N(µk
i , σk

i ), where the parameters µk
i and σk

i are estimated by applying maximum

likelihood to the training data [21]. Note that NB has far fewer parameters to estimate than either LDA or

QDA, and for this reason, it often performs surprisingly well in practise, despite the unrealistic assumption

of independent variables [21].

KNN (K-Nearest Neighbors)

KNN is a nonparametric method, since it does not require the estimation of any parameters. Instead, to

classify a test vector, KNN finds the vector’s K nearest neighbors in the training data. If K1 is the number

of these neighbors in Class 1, then K1/K is returned as the discriminant value. The test vector is therefore

assigned to Class 1 if and only if K1/K > τ , where τ is the decision threshold.
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A variety of different distance measures can be used with KNN to measure the nearness of one vector to

another. In this paper, we use 1 − ρ, where ρ is the Pearson correlation coefficient of the two vectors. That

is, if the two vectors are x and y, then

ρ =
(x − x̄)T (y − ȳ)

√

(x − x̄)T (x − x̄)(y − ȳ)T (y − ȳ)

In terms of gene expression measurements, two genes are highly correlated if their expression levels tend to

rise and fall together (even though their absolute expression levels may be quite different). For this reason,

Pearson correlation is often used to detect coregulation among genes [2].

Principle components analysis

Hidden dependencies and noise among experiments may confound the classification problem. In particular,

experiments that are biologically different may actually be similar in terms of gene expression. Principle

components analysis (PCA) helps to identify independent information in the data by transforming it to a

data set of reduced dimension. The attributes of the reduced data set, called principle components, explain

most of the variance in the original data and are mutually uncorrelated and orthogonal [21]. In addition,

by reducing the dimension of the data, PCA reduces the number of parameters that must be estimated

during supervised learning, thus permitting more efficient use of the data.

One can think of PCA as having a learning phase and a prediction phase. During learning, PCA is given a

data set, from which it generates (learns) a linear transformation. This transformation maps

high-dimensional vectors to low-dimensional vectors, and is applied to the given data set to reduce its

dimensionality. During prediction, the transformation is applied to other data.

We used PCA to reduce the dimensionality of the gene expression data from its original 290 dimensions to

p dimensions, for p = 5, 10, 15, 20, 40, 100. During learning, we gave PCA our entire data set of 22,746

genes, i.e., the 11,533 annotated genes and the 11,193 unannotated genes. This is possible because PCA

uses only the gene expression measurements (which are known), and not the gene annotations (which are

to be learned). This increases the effectiveness of PCA by doubling the amount of data that it uses during

learning. That is, using a larger data set decreases the variance of the linear transformation learned by

PCA.
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PCA and classifier evaluation

After PCA is performed on the entire data set, supervised learning is performed on the annotated portion

of the dimensionally-reduced data. (As described earlier, this is a form of semi-supervised learning [27,28]).

The result is a set of classifiers, one for each supervised learning method. The classifiers are then applied to

the unannotated portion of the dimensionally-reduced data to predict the missing annotations. Cross

validation was used to estimate the accuracy of these predictions. However, before discussing cross

validation, we consider the simpler method of evaluation in which the annotated data is divided into two

parts, training data and validation data [21]. This will clarify our handling of PCA during validation.

In many machine-learning applications, the prediction data is not known in advance. In this case, the

entire learning procedure (including PCA) is applied to the training data to produce a classifier, which is

then tested on the validation data [21]. Note that the validation data is not used during learning, and in

particular, is not used by PCA. In this way, the validation data is treated as if it were prediction data.

The situation changes when the prediction data is known in advance, since knowledge of the prediction

data can then be exploited during learning (as in transductive inference [27,29]). In our bioinformatics

application, we know all the genes in Arabidopsis and their expression levels. This includes the genes in the

prediction set. PCA can therefore use both the prediction data and the training data during learning, as

described above. However, this means that PCA should also use the validation data, since validation data

must be treated as if it were prediction data.

Classifier evaluation thus proceeds as follows. First, PCA uses the entire data set (training, validation and

prediction data) to produce a dimensionally-reduced data set. Then, a supervised learner uses the

(dimensionally-reduced) training data to produce a classifier. Finally, the classifier is tested on the

(dimensionally-reduced) validation data. Note that this process treats the validation and prediction data

equally. That is, they are both used during unsupervised learning, and neither is used during supervised

learning. Also note that PCA is now effectively a preprocessing phase prior to supervised learning.

This idea is easily extended to cross validation. First, the entire data set is preprocessed by PCA. Then, a

supervised learner uses the annotated portion of the dimensionally-reduced data to produce a classifier.

This classifier is evaluated by cross validation in the normal way, as described below. Note that this

approach has the added computational advantage that PCA is applied only once, to the entire data set,

and not over-and-over again during the many training phases of cross validation. The discussions below

assume that the entire data set has been preprocessed using PCA, so that all references to data refer to the

dimensionally-reduced data.
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Cross Validation

We used 20-fold cross-validation to assess the generalization performance of each classifier as well as to

estimate the precision of its predictions. We randomly divided the annotated data into 20 non-overlapping,

equal-sized parts, called folds. The classifier was trained on 19 of these folds, and tested on the remaining

fold; i.e., the trained classifier was used to generate a discriminant value for each gene in the remaining

fold. This was done in all 20 possible ways, using a different testing fold each time. In this way, a

discriminant value, dv, was generated for every gene in the training set. Each gene in the training set was

then predicted to be positive (i.e., to respond to stress) if and only if dv > τ , where τ is a decision

threshold. From these predictions, true and false positives were computed, from which a point on the

ROC50 curve was plotted. Using a large number of different decision thresholds, we plotted a large number

of points on the ROC50 curve, effectively generating the entire curve. The area under this curve is the

ROC50 score. To get an idea of how stable the estimated performance of the classifier is, we repeated the

entire cross-validation and curve-generation procedure 10 times, each time using a different, random,

20-fold split of the training data.

The above procedure was applied to all the basic classifiers, but assessing the combined classifier involved

an additional subtlety. Recall that the combined classifier is a linear combination of the basic classifiers,

where the weight given to a basic classifier is proportional to its estimated ROC50 score. The subtlety is in

computing that score. A naive approach would be to simply use the above procedure to compute a

ROC50 score for each basic classifier. However, this would mean that during cross validation, 19 of the 20

folds are used to train the basic classifiers, while the 20th fold is used to compute the ROC50 scores. The

result is that all 20 folds are involved in computing the weights. Thus, all 20 folds are involved in

constructing (i.e., training) the combined classifier, so no folds are left for testing it. If cross validation

were used anyway to assess the combined classifier, it would amount to using training data as testing data,

and the results would tend to overestimate the classifier’s performance.

As described earlier, we surmount this problem by using two sets of validation data. Loosely speaking, 18

of the 20 folds are used to train the basic classifiers, a 19th fold is used to compute their ROC50 scores, and

the 20th fold is used to test the combined classifier. This results in what might be called nested cross

validation. To start, the training data are divided randomly into 20 folds. Picking one of these as a testing

fold, the other 19 are used to train the combined classifier. This in turn involves 19-fold cross validation to

train and test the basic classifiers (and compute their ROC50 scores). Thus, each time the combined

classifier is trained once, the basic classifiers are trained 19 times. Since the combined classifier is trained
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20 times, each basic classifier is trained a total of 20 × 19 = 380 times. A similar form of nested cross

validation is involved in Stacking [21].

Predicting gene function and estimating precision

To predict which genes respond to stress, we first train a combined classifier using the 11,553 annotated

genes in the training data. The classifier is then applied to the 11,193 unannotated genes in the prediction

data. After this step, each annotated gene has a discriminant value, dv. The unannotated genes are then

sorted in descending order by discriminant value, as illustrated in Table 1. To make actual predictions, a

gene in the sorted list is chosen as a decision point. This gene and every gene above it in the sorted list are

then predicted to respond to stress. In other words, suppose dv is the discriminant value of the chosen

gene. An unannotated gene is then predicted to respond to stress if and only if its discriminant value is at

least dv. The fraction of these predictions that are true is the precision of the predictions. We estimate

this precision using the training data. Recall that each gene in the training set has a discriminant value

assigned to it during cross validation. We also know which of these genes respond to stress. To estimate

the precision of our predictions, we look at those genes in the training set whose discriminant value is at

least dv. The fraction of them that respond to stress is an estimate of precision.

Using this idea we actually get ten precision estimates, not one. This is because we do cross validation ten

times, using ten different random splits of the data. The result is that each gene in the training set receives

ten discriminant values, and for each one we get a different precision estimate. We could simply use the

average of these ten precision estimates; however, to reduce the variance of the estimate, we use a weighted

average. Specifically, let us number the cross validation runs from i = 1, · · · , 10. Then, given a

discriminant value, dv, let PPi be the number of genes in the training set whose discriminant values is at

least dv in the ith run of cross validation. (These are the predicted positives.) Let TPi be the number of

these genes that respond to stress (the true positives). Using only this cross validation run, the estimated

precision would be TPi/PPi. One problem with this estimate is that if dv is high, then PPi (and hence

TPi) could be 0, so the precision estimate would be undefined, something we observed frequently in

practice. More generally, if PPi (and hence TPi) is low, then the precision estimate will have high

variance, since it is supported by very little data. To circumvent these problems, we estimate the precision

using the formula

precision =

∑

i TPi
∑

i PPi
=

∑

i

wi ×
TPi

PPi
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where wi = PPi/
∑N

j PPj . The right-hand formula is a weighted average of individual precision estimates,

TPi/PPi. It gives more weight to precision estimates that are based on more data, i.e., for which PPi is

higher. In addition, by using the left-hand formula, we rarely end up dividing by zero, since the

denominator is a sum of (random) non-negative numbers; i.e., ΣiPPi is much less likely to be zero than is

any individual PPi.

Biological experiments

Wild type and homozygous mutant seeds were plated on 0.5X MS media. They were stratified for 3 days

and then germinated at 25℃ for 7 days. The abiotic temperature stresses consisted of 7 days exposure to

either 30℃, 14℃ or 4℃. Anthocyanin levels were quantified as a measure of plant stress response.

Anthocyanin was extracted using methanol-HCl [41]. In order to measure response to salt stress, plants

were germinated for 3 days on 0.5X MS media and then transferred to medium containing 50mM NaCl or

to control plates. New root growth was measured 7 days after the transfer.
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Figures
Figure 1 - Logistic Regression (LR)

Seven ROC50 curves for Logistic Regression with varying amounts of dimensionality reduction using PCA.

In the legend, p is the PCA-reduced dimension, and s is the ROC50 score.

Figure 2 - Linear Discriminant Analysis (LDA)

Seven ROC50 curves for Linear Discriminant Analysis with varying amounts of dimensionality reduction

using PCA. In the legend, p is the PCA-reduced dimension, and s is the ROC50 score.

Figure 3 - Quadratic Discriminant Analysis (QDA)

Seven ROC50 curves for Quadratic Discriminant Analysis with varying amounts of dimensionality

reduction using PCA. In the legend, p is the PCA-reduced dimension, and s is the ROC50 score.

Figure 4 - Naive Bayes (NB)

Seven ROC50 curves for Naive Bayes with varying amounts of dimensionality reduction using PCA. In the

legend, p is the PCA-reduced dimension, and s is the ROC50 score.

Figure 5 - K-Nearest Neighbours (KNN)

Five ROC50 curves for K-Nearest Neighbours for various values of K. The legend gives the ROC50 score, s,

for each value of K.

Figure 6 - Comparison of methods

The ROC50 curve (purple) for the combined classifier using weighted voting (WV) and the best

ROC50 curves for each of the basic learning methods. In the legend, p is the PCA-reduced dimension of

the data, and s is the ROC50 score.

Figure 7 - ROC50 curves

Estimated ROC50 curves of the combined classifier (WV), showing ten different estimates (dashed curves)

and their mean (solid curve).
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Figure 8 - Precision curves

Estimated precision curves of the combined classifier (WV), showing ten different estimates (dashed

curves) and their mean (solid curve).

Figure 9 - Electronic Northern analysis

E-Northern of the top 50 predictions.

Figure 10 - Electronic Northern analysis

E-Northern of 50 randomly selected genes.

Figure 11 - Gene knockout experiments

10 day old wild-type and mutant plants after exposure for 7 days at 14℃. (a) The mutant cotyledons

appear darker than wild-type due to increased anthocyanin levels. (b) mutant and wild-type seeds 24h

after sowing on agar plates. Mutant seeds have the appearance of lighter colour compared to wild-type. (c)

Quantification of anthocyanin levels measuring A535. Bars indicate standard error of 5 replicate

measurements. * indicates significantly different at p < 0.05

Figure 12 - Gene knockout experiments

Root growth on 50mM NaCl, relative to growth on 0mM NaCl, on 10 day old wild-type and mutant plants

transferred to 50mM NaCl medium. Error bars indicate the standard error of 5 replicates. n = 25

measurements per treatment and genotype. * indicates significantly different at p < 0.001
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Tables
Table 1 - Predictions

The top 50 predictions of the combined classifier ordered by discriminant value. M is mean precision and

dv is discriminant value.

no. gene name dv M

1 At1g61340 0.7879 0.8491
2 At1g72660 0.7315 0.8423
3 At5g04340 0.7269 0.8405
4 At1g19180 0.7219 0.8448
5 At2g01520 0.7017 0.8311
6 At2g36220 0.6987 0.8293
7 At5g10695 0.6912 0.8138
8 At3g10020 0.6850 0.8030
9 At3g16050 0.6778 0.8000
10 At4g18280 0.6673 0.7945
11 At1g11210 0.6636 0.7955
12 At5g64510 0.6514 0.7900
13 At3g09350 0.6412 0.7807
14 At5g42380 0.6357 0.7718
15 At3g44860 0.6278 0.7623
16 At1g73260 0.6252 0.7583
17 At1g16850 0.6186 0.7452
18 At1g78070 0.6185 0.7439
19 At3g01830 0.6098 0.7398
20 At5g19875 0.6094 0.7402
21 At3g62260 0.6040 0.7213
22 At1g03070 0.5961 0.7106
23 At1g09950 0.5942 0.7044
24 At1g19020 0.5867 0.6928
25 At1g07430 0.5866 0.6919

no. gene name dv M

26 At1g76960 0.5860 0.6901
27 At1g30070 0.5838 0.6819
28 At2g05510 0.5799 0.6726
29 At3g50930 0.5796 0.6726
30 At1g67360 0.5767 0.6691
31 At5g09530 0.5758 0.6703
32 At3g53230 0.5737 0.6663
33 At3g55970 0.5694 0.6586
34 At4g27657 0.5676 0.6549
35 At4g38080 0.5658 0.6458
36 At1g17380 0.5651 0.6448
37 At4g27652 0.5647 0.6445
38 At1g68500 0.5588 0.6204
39 At1g76650 0.5573 0.6146
40 At2g15960 0.5549 0.6074
41 At1g14870 0.5520 0.6017
42 At1g49450 0.5497 0.5991
43 At1g13930 0.5467 0.5942
44 At2g32190 0.5453 0.5914
45 At4g23493 0.5429 0.5879
46 At2g28400 0.5418 0.5842
47 At1g48720 0.5399 0.5780
48 At3g02480 0.5384 0.5721
49 At2g43620 0.5376 0.5677
50 At4g14270 0.5373 0.5676
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K =  5,  s = 2130.2
K = 10, s = 2221.2
K = 15, s = 2194.9
K = 20, s = 2254.8
K = 25, s = 2199.0
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