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Approximately 30,000 genes have been discovered by genome sequencing in Arabidopsis

thaliana completed in 2000. However, about half of these genes have not been assigned

any function yet. The goal of this study is to identify unknown genes that are potentially

involved in plant responses to stresses. We evaluated and compared five basic statis-

tical learning methods for gene function prediction on a genome-wide scale using gene

expression data. None of these methods was uniformly better than the others. In ad-

dition, we investigated combining these methods for prediction. The combined method

achieved better classification performance than the basic methods for the top “response

to stress” function. With precision above 50%, we identified a considerable number of

unknown genes that are potentially stress-associated, which are currently being validated

by biologists.

ii



Acknowledgements

I gratefully acknowledge the contribution of the following people to the completion of this

thesis. Professor Anthony Bonner, my supervisor, worked closely with me in this study.

His expertise has greatly influenced my thinking on bioinformatics. Professor Nicholas

Provart collaborated with us by providing data, discussing with us, and allowing me to

use the supercomputer in his lab. Kiana Toufighi and Rachel Carson helped me with

problems on biology. Xiaodan Zhu and Miles Trochesset discussed statistical learning

with me. Eric Hsu proofread the draft of this thesis. Finally, I would like to thank my

parents for instilling in me a love of knowledge.

iii



Contents

1 Introduction 1

1.1 Gene Function Prediction Using Unsupervised and Supervised Learning

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Unbalanced Data with Few Positives but Many Negatives . . . . . . . . . 5

1.4 Using Supervised Learning Methods to Learn Gene Function . . . . . . . 5

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Gene Expression Data, Gene Ontology and Gene Annotations 8

2.1 Gene Expression Data for A. thaliana . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Raw Gene Expression Data . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Gene Ontology and Gene Annotations in A. thaliana . . . . . . . . . . . 12

2.2.1 Gene Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Gene Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Comparison and Evaluation of Classifiers in Gene Function Prediction 16

3.1 Overview of Discrimination Classification Methods . . . . . . . . . . . . 17

3.1.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Quadratic Discriminant Analysis . . . . . . . . . . . . . . . . . . 18

iv



3.1.4 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.5 K-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Comparison and Evaluation of the Classification Methods . . . . . . . . . 20

3.2.1 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Precision vs. Classification Rate . . . . . . . . . . . . . . . . . . . 21

3.2.3 The Reasons Not to Use the ROC Curve for Evaluating Classifica-

tion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.4 The TP vs. PP Plot . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.5 Randomizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.6 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Gene Function Prediction for Unlabeled Genes and Precision Estimate . 27

4 Results of Evaluation, Comparison and Prediction 33

4.1 The TP vs. PP Plots and Precision vs. PP Plots for the Classifiers . . . 33

4.2 Prediction Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 The Mean TP vs. PP Plots and Mean Precision vs. PP Plots Comparing

the Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Combining Classifiers to Improve Classification Accuracy 43

5.1 Intersection and Union Based on PP (Predicted Positives) . . . . . . . . 43

5.2 Intersection and Union Based on Discriminant Values . . . . . . . . . . . 45

5.3 Model Averaging and Stacking . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Conclusions and Discussion 58

Appendices 60

A Plots 60

v



B Tables 65

B.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.2 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . 73

B.3 Quadratic Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . 80

B.4 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.5 K-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

C Pseudocode 94

C.1 The TP vs. PP Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

C.2 The Prediction Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

C.3 The Precision vs. PP Plot . . . . . . . . . . . . . . . . . . . . . . . . . . 98

C.4 C-AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

C.5 Model Averaging and Model Stacking . . . . . . . . . . . . . . . . . . . . 102

Bibliography 106

vi



Chapter 1

Introduction

Assigning functions to genes with unknown function, identified by genome sequencing and

other methods, is the goal of functional genomics. Many approaches have been proposed

for large-scale prediction of gene function [2, 5, 9, 11, 26, 31]. These approaches are mostly

based on physical association, genetic interaction, sequence relationships and patterns of

gene expression.

The research in this thesis focuses on gene function prediction in Arabidopsis thaliana

using statistical learning algorithms based on gene expression data. A. thaliana is a

small flowering plant that is widely used by biologists who study cellular and molecular

functions of flowering plants [22]. It is an ideal model organism for study since it has a

relatively small genome (125Mb) with a set of representative genes for controlling devel-

opmental processes, responses to environmental changes and disease resistance. Also, its

small size, short life cycle and prodigious seed production make it easy to cultivate in the

laboratory. Figure 1.1 shows a wild-type A. thaliana. Gene expression is the process by

which the information coded in a gene is transcribed into mRNA, which then is translated

into protein, the active manifestations of the genetic information. Biologists use microar-

rays to measure gene expression levels of tens of thousands of genes simultaneously. The

gene expression data reflect the gene activity levels during mRNA transcription: High

1



Chapter 1. Introduction 2

Figure 1.1: A picture of A. thaliana (http://www.mpimp-golm.mpg.de/

arabidopsis/thaliana-e.html)

gene expression level indicates high activity of the particular gene and vice versa.

With the A. thaliana genome completely sequenced [36], gene functional annotation

for all the genes in the genome remains a key challenge for biologists. Currently, approx-

imately 50% of the 28,000 genes have not been assigned any function. Predicting gene

functions based on gene expression data is an attractive strategy since many pathways

display coordinated transcriptional regulation [5, 12]. This research is a successor to the

finished genome sequencing of A. thaliana and is made possible by the gene expression

data from the Department of Botany at University of Toronto [34] and from the AtGen-

Expression Consortium, archived at NASCArrays (http://arabidopsis.info/), as well

as GO functional annotations from TAIR (http://www.arabidopsis.org/).
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1.1 Gene Function Prediction Using Unsupervised

and Supervised Learning Algorithms

Previously, most microarray classification work was on cancer classification [1, 6, 8, 14,

18, 20, 25, 28, 37]. The gene expression data of normal tissues and tumor tissues are

collected and a classifier is learned using these data. When the testing tissue appears,

the classifier determines if the tissue is normal or cancerous based on its gene expression.

In recent years, researchers have conducted experiments for predicting gene function

in various microorganisms using statistical learning algorithms based on microarray data.

These algorithms can be divided into two categories: unsupervised and supervised [10].

Unsupervised clustering methods group genes that have similar gene expressions.

The most widely used similarity metric is the Pearson correlation coefficient, whose value

ranges from -1 to +1. The genes in the same group are assumed to have similar functions.

Based on this assumption, the functions of unknown genes can be inferred from known

genes in the same group. Many studies have taken place in this way to identify functions

of unknown genes [5, 7, 12, 32, 33, 35, 38].

However, unsupervised clustering methods cannot take advantage of the gene function

information in the process of learning. A better approach of identifying gene functions of

unknown genes based on gene expression data is supervised learning. A few attempts have

been made. Hvidsten et al. modeled the relationships between gene expression of serum

response in serum-starved human fibroblasts as a function of time and the involvement

of a gene in a given biological process using Rough Set methods [13, 17]. The resulting

model was used to predict the biological process roles of unknown genes. Midelfart et

al. extended the above work by developing a method to learn an ontology by which

biological processes are organized [23]. For the yeast Saccharomyces cerevisiae, Support

Vector Machines (SVMs) have been extensively applied to functional classification and/or

function prediction [2, 16, 19, 24, 27]. In addition, other supervised learning methods
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such as Multilayer Perceptrons [21] and Logistic Regression [35] have been investigated

for similar purpose. Most recently, researchers have investigated gene function prediction

in more complex organisms such as mice [39]. The results show that gene expression for

mammals can also be used to predict gene function.

The above studies show gene expression data can be used to predict gene function in

microorganisms such as S. cerevisiae and mammals such as mice using unsupervised and

supervised learning methods. Nevertheless, it still remains unknown whether this is true

in plants. This study addresses this question.

1.2 Research Goals

Since many genes in A. thaliana still have no known function, the research goal is to pro-

vide hypotheses of stress gene functions for these unknown genes for biologists to test.

In the context of plants, a stress (biotic or abiotic) causes a decrease in plant growth or

yield. Our biological collaborators are particularly interested in genes that are potentially

involved in response to stresses, such as drought, cold, salinity, etc. Gene ontology (GO)

is proposed by Gene Ontology Consortium [3] and it provides a dynamic controlled vo-

cabulary for gene functions. It has three broad categories: molecular function, biological

process and cellular component. For convenience, we describe gene functions in terms

of Gene Ontology Biological Processes (GOBPs). For any particular GOBP, we call the

genes that belong to it positives and the others that do not belong to it negatives. For

economic reasons, we want a low false-positive rate (e.g., 50%) for the predictions: The

majority of the predicted positives should be true positives. On the other hand, a high

false-negative rate is acceptable since the cost of false negatives is much smaller than the

cost of false positives.
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1.3 Unbalanced Data with Few Positives but Many

Negatives

Unbalanced data constitute the main difficulty in this study. Each of the stress GOBPs of

interest typically contains lots of negatives and few positives. In fact, more than 92% of

the training data are composed of negatives for the stress GOBPs we have learned. The

unbalanced data made accurate predictions using most statistical learning algorithms

difficult.

1.4 Using Supervised Learning Methods to Learn

Gene Function

Supervised learning methods can take advantage of functional annotations of genes and

perform feature selection. Since genes can either be positives (belonging to a GOBP)

or negatives (not belonging to a GOBP), the gene function prediction problem can be

simplified to a binary classification problem by treating each gene function independently.

For each gene function, we learn a classifier f̂(x) using the training data. Cross-validation

is then used to assess the classifier as well as to measure the prediction precision. The

unknown genes in the prediction data are then classified as either positives or negatives

by the resulting classifier. Unknown genes with discriminant values greater than a certain

threshold are deemed positives and vice versa. However, a gene can belong to multiple

GOBPs; reducing a multi-class classification problem to a binary classification problem

cannot take advantage of the correlation and structure information among gene functions.

In this study, we used GOBP as the definition of gene function because we believe

that biological processes are well correlated with gene expression. We use GOBP to refer

to gene function in general and use a GOBP term to refer to a specific function. For

instance, GO:0009409 represents the “response to cold” function. GOBPs are organized
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in a Directed Acyclic Graph (DAG) as we will describe in Chapter 2. In this graph, parent

GOBP terms are subdivided into increasingly specific child GOBP terms. However, this

graph differs from the hierarchy in that a child GOBP term may have multiple parents.

The significance of this study is threefold. First, to our knowledge, this study for the

first time investigated gene function prediction in A. thaliana based solely on gene expres-

sions using supervised learning methods. Second, a thorough evaluation and comparison

for several well-known supervised statistical learning methods [10], Logistic Regression

(LR), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA),

Naive Bayes (NB) and K-Nearest Neighbors (KNN), was made; in addition, a combina-

tion of them using averaging and stacking was investigated. Third, this work enabled

biologists to carry out directed biological experiments for determining gene functions and

thus will contribute to the accomplishment of the goal to annotate the function of each

gene in the whole A. thaliana genome by 2010.

1.5 Outline

The organization of this thesis is as follows:

• Chapter 2 gives an overview of the microarray data for A. thaliana, gene ontology

and gene annotations. In addition, statistics about the microarray data and the

current knowledge of gene functions for A. thaliana will be presented.

• In Chapter 3, various supervised learning methods (LR, LDA, QDA, NB, KNN) will

be discussed. It follows the approaches of evaluation and comparison of these meth-

ods: Cross-validation, randomizations, and permutations are combined to picture

the performance of individual methods. Finally, we discuss how to make predictions

and how to measure the prediction precision.

• The evaluation and comparison of the above supervised learning methods as well
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as predictions are given in Chapter 4.

• In Chapter 5, we describe methods to combine the five learning methods discussed

in Chapter 3 and show the evaluation results as well as prediction results.

• We conclude and discuss in Chapter 6.



Chapter 2

Gene Expression Data, Gene

Ontology and Gene Annotations

As mentioned in the previous section, the goal in this study is to provide hypotheses on the

stress functions for unknown genes in A. thaliana. To achieve this goal, we need to have

access to two pieces of information: (1) features: the gene expression levels, and (2) labels:

0-1 arrays representing membership and nonmembership of each gene for a specific gene

function. Features are from microarray data and labels from gene annotations. Let P be

an H×K real-valued gene expression matrix, with H unknown genes and K experimental

conditions. Let T be an I×K real-valued gene expression matrix, each row representing a

known gene and each column representing an experimental condition. Let M be an I×J

0-1 membership matrix, each row representing a known gene and each column a GOBP.

mij = 1 if and only if the ith gene is involved in GOBPj; otherwise mij = 0. Thus, for

the particular GOBPj, we have a column vector GOBPj = (m1j,m2j,. . . ,mIj)
T , where I

equals the number of known genes. P formed the prediction data (with no label for any

GOBP); T and M formed the training data. Figure 2.4 shows the number of positives

of the individual GOBPs in the training data.

8



Chapter 2. Gene Expression Data, Gene Ontology and Gene Annotations9

The prediction data:

P =



p11 p12 · · · p1K

p21 p22 · · · p2K

...
...

. . .
...

pH1 pH2 · · · pHK


(2.1)

The training data:

T =



t11 t12 · · · t1K

t21 t22 · · · t2K
...

...
. . .

...

tI1 tI2 · · · tIK


, M =



m11 m12 · · · m1J

m21 m22 · · · m2J

...
...

. . .
...

mI1 mI2 · · · mIJ


(2.2)

2.1 Gene Expression Data for A. thaliana

In this section, we briefly describe the gene expression data used in this study. An

oligonucleotide microarray uses the sequence resources of a particular organism to answer

the question of what genes are expressed in specific tissues at particular developmental

stages or under various conditions [29, 30]. It is used to record the expression levels, i.e.,

transcriptional profiles, of tens of thousands of genes in A. thaliana simultaneously on a

genome-wide scale in a single assay.

2.1.1 Raw Gene Expression Data

In this study, we used two microarray datasets for A. thaliana: one from the Department

of Botany at University of Toronto and the other from the AtGenExpression Consortium.

The dataset from the Department of Botany at University of Toronto has 54 features, such

as plant physiology, plant microbe, environmental stress, and biotechnology. The dataset

from the AtGenExpression Consortium has 255 features, including various stresses ( e.g.,

osmotic stress, heat stress, cold stress, salt stress, drought stress, UV-B stress, wounding
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stress, water deprivation stress and oxidative stress). These two datasets were combined

into one. The resulting dataset contains the expression levels for 22,746 genes under 309

different conditions. Thus, the whole gene expression matrix

E =

 P

T


has 22,746 rows and 309 columns.

2.1.2 Data Preprocessing

The microarray data from the Department of Botany contain detection calls: P, M and

A. P = Present, M = Marginal, and A = Absent. The detection call determines whether

a transcript is reliably detected (present), partially detected (marginal), or not detected

(absent). Following is an example for the gene AT3G24440 under three selected condi-

tions:

AT3G24440 243.10 P 120.90 A 109.40 M

We simply removed these detection calls (P, A, and M) in this study. In addition,

as a common practice, gene expression levels were logarithmized. The log-transformed

gene expression data have approximately normal distributions while the raw data have

approximately exponential distributions, as shown in Figure 2.1. Figure 2.2 shows the

quantile test for normal distributions for two randomly selected features. A quantile-

quantile (q-q) plot is used to determine whether two samples come from a population

with a common distribution (normal distribution). The quantiles for one of the data

samples were replaced with the quantiles of a normal distribution. There is a reference

line (dashdot) with slope 1 in the plot. If two samples come from a population with a

same distribution, the points should lie approximately on the reference line.
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Figure 2.1: Histograms of raw gene expression levels (left panel) and log-transformed

gene expression levels (right panel) for the two randomly selected features
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Figure 2.2: The q-q plots for testing normality of the two randomly selected features

2.2 Gene Ontology and Gene Annotations in A. thaliana

Since A. thaliana was completely sequenced, biologists have attempted to provide func-

tional annotations to these newly discovered genes [4]. Assigning functions to these genes

is a key step towards understanding the genome of this species.

2.2.1 Gene Ontology

Gene ontology (GO) provides a dynamic controlled vocabulary for describing the role of

all genes in all organisms [3]. GO terms are organized in a DAG to reflect the hierarchical

relationships between them, as shown in Figure 2.3. A GO term can have several parents

and children. GO terms fall into three broad categories: molecular function, biological

process and cellular component, each of which groups several thousands of GO terms.

This structure allows us to describe a gene’s role at different levels of granularity based

on the amount of information that is known for the gene. Lower levels in the hierarchy

correspond to more specific functions and vice versa. The genes whose detailed functional

information is known are assigned to low levels in the hierarchy, whereas the genes whose
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functional information is limited are assigned to high levels in the hierarchy.

In this study, we focused on the stress GOBPs (see Figure 2.3), which are a small

part in the gene ontology. Specifically, we were concerned with the gene functions below

and including the GO term GO:0006950[response to stress] in the hierarchy, under which

there are 18 children such as GO:0009409[response to cold], GO:0009408[response to

heat], and GO:0009414[response to water deprivation]. We have more detailed functional

information on the genes annotated as GO:0009409[response to cold] than on those an-

notated as GO:0006950[response to stress]. The genes in GO:0009409[response to cold]

can be propagated up to GO:0006950[response to stress]. On the other hand, we can

move genes downward in the hierarchy when more knowledge of these genes is obtained.

2.2.2 Gene Annotations

Gene annotations using GO terms for all the A. thaliana genes is an ongoing project

started in 2002. The weekly updated gene annotations can be downloaded from TAIR.

The annotations we used are from the version for November 13, 2004.

Using these annotations, we categorized the genes into labeled genes and unlabeled

genes. The labeled genes are those which have at least one GOBP annotation; the

unlabeled genes are those which have no GOBP annotations. The unlabeled genes formed

the prediction data (P) and the labeled genes formed the training data (T and M). There

were 14,285 labeled genes and 8,461 unlabeled genes in our dataset.

We further divided the 14,285 labeled genes into positives and negatives for each

GOBP: Positives are the genes that belong to this GOBP; negatives are the genes that do

not belong to this GOBP. Positives are manually curated by experts and we treat them as

true. On the other hand, negatives may contain noise: Current annotations only provide

knowledge of postives and are incomplete; some negatives may be actually positives but

were regarded as negatives because of lack of annotations. However, the noise should

be negligible since most GOBPs involve very few positives but many more negatives;
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Figure 2.3: A part of the gene ontology
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most negatives are real negatives. Figure 2.4 summarizes the number of positives of the

up-propagated stress GOBPs of interest. The training data were unbalanced: The ratio

of the number of positives to the number of negatives was less than 1:10 for all these

GOBPs.
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Figure 2.4: Statistics about the number of positives of the up-propagated stress GOBPs.

After up-propagation, 42 GOBPs included at least one gene and 22 included at least 10

genes. Only those GOBPs with at least 10 genes were studied. The top stress GOBP

(GO:0006950[response to stress]) included 1,157 genes, which consisted of only 8% of the

genes in the training data. (a) From left to right, the number of positives for each stress

GOBP is plotted in increasing order; (b) Most of the stress GOBPs had a number of

positives less than 200.



Chapter 3

Comparison and Evaluation of

Classifiers in Gene Function

Prediction

We studied 22 stress GOBPs (up-propagated). For each of these GOBPs, all its offspring

propagated their genes upward to it in the hierarchy. These GOBPs were not selected

according to their suitability for learning; they were selected because they had at least

10 positives. As discussed in Chapter 2, the functional classes we learned were extremely

unbalanced: many negatives and few positives. We did not expect any classification

method to function well with less than 10 positives in a sea of more than ten thousand

negatives.

We will describe the discrimination classification methods in Section 3.1. In Sec-

tion 3.2, we will present our approaches to evaluate these methods. Prediction methods

as well as precision estimates will be discussed in Section 3.3.

16
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3.1 Overview of Discrimination Classification Meth-

ods

This section briefly describes the classification methods used in this study. All these

methods are discriminative. In binary classification, they produce a discriminant value

dv0, the probability that a test sample belongs to Class 0, and a discriminant value dv1,

the probability that a test sample belongs to Class 1. A test sample is assigned to Class

1 if and only if dv1/dv0 > t, for a chosen decision threshold, t. In our application,

Class 0 refers to not belonging to a specific GOBP; Class 1 refers to belonging to a

specific GOBP; a test sample is a gene represented by a p-dimensional feature vector

x = (x1, x2, ..., xp)
T whose values are from gene expression levels. Genes in Class 1 are

positives and genes in Class 0 are negatives.

3.1.1 Logistic Regression

Logistic Regression (LR) generates linear boundaries between classes: It models poste-

rior probabilities for K classes as linear functions of x, and thus defines linear decision

boundaries between the K classes. In the two-class classification problem, the model has

the simple form

log
p(k = 1|x)

p(k = 0|x)
= β0 + βT1 x (3.1)

Hence,

p(k = 1|x) =
eβ0+βT1 x

1 + eβ0+βT1 x
(3.2)

p(k = 0|x) =
1

1 + eβ0+β1x
(3.3)

and p(k = 1|x) + p(k = 0|x) = 1. Parameters β = {β0, β1} are fitted using maximum

likelihood [10].
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3.1.2 Linear Discriminant Analysis

In Linear Discriminant Analysis (LDA), feature vectors x are modeled as a multivariate

Gaussian:

fk(x) =
1

(2π)p/2|Σ|1/2
e−

(x−µk)TΣ−1(x−µk)

2 (3.4)

where µk is a p-dimensional vector denoting the mean for class k, and Σ, the covariance

matrix, is a p× p matrix. Each class is assumed to have a common covariance matrix Σ.

The linear discriminant function for class k is

δk = xTΣ−1µk −
1

2
µk

TΣ−1µk + log πk (3.5)

The parameters πk, µk and Σ can be estimated using maximum likelihood [10].

πk =
nk
n

(3.6)

µk =
∑
i

xi
nk

(3.7)

Σ =
∑
k

∑
gi∈k

(xi − µk)(xi − µk)T

(n−K)
(3.8)

where n is the number of total samples, nk is the number of samples in class k, and K is

the number of classes. In this study, K = 2.

3.1.3 Quadratic Discriminant Analysis

Without the common covariance matrix assumption in LDA, each class in Quadratic

Discriminant Analysis (QDA) has a separate covariance matrix Σk. Therefore, QDA can

be thought as a generalization of LDA. The discriminant function for class k is

δk = −1

2
log(|Σk|)−

1

2
(x− µk)TΣ−1

k (x− µk) + log πk (3.9)

3.1.4 Naive Bayes

Naive Bayes (NB) is based on the independent variable assumption. Variables in the

feature vector x are assumed to be independent. This assumption allows class conditional
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density p(xi|k) to be estimated separately for each variable. In essence, Naive Bayes

simplifies a multidimensional density estimation to a one-dimensional density estimation:

Given a class k, each variable in the p-dimensional feature vector x = (x1, x2, ..., xp)
T is

independent; so

p(x|k) =

p∏
i

p(xi|k) (3.10)

where p(xi|k) is the class conditional probability of xi in class k. For each class k, estimate

the distribution of the ith variable p(xi|k). Using Bayes Rule, we obtain

p(k|x) ∝ p(k)

p∏
i

p(xi|k) (3.11)

where p(k) is the ratio of the number of the samples in class k to the number of total

samples. To obtain p(xi|k), a typical way is to model the distribution of each variable

as a Gaussian, p(xi|k) = N(µi, σi). An alternative to estimating p(xi|k) is to discretize

the continuous variables. After discretization, any original quantitative value xi ∈ (li, ui]

is replaced by x′i. Hence estimating p(xi|k) converts into estimating p(x′i|k), which can

be properly estimated from corresponding frequencies. In our data, the variables are

continuous and are roughly Gaussian; hence, we assumed the Gaussian distribution for

each variable.

3.1.5 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a nonparametric model since it needs the entire training

set but requires few other parameters. The only parameter is K, the number of nearest

neighbors.

Given a sample represented by a feature vector x, KNN finds its K nearest neighbors

using a distance metric. We used the Pearson correlation coefficient as the distance metric

in this study. The distance dij of two sample vectors xi and xj is defined as follows:

dij = 1− (xi − x̄i)
T (xj − x̄j)√

(xi − x̄i)T (xi − x̄i)(xj − x̄j)T (xj − x̄j)
(3.12)
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To classify a test sample x, its nearest K neighbors are selected. Assume K0 neighbors

are in Class 0 and K1 neighbors in Class 1. K0 +K1 = K. A test sample is assigned to

Class 1 if and only if K1/K0 > t, where t is a decision threshold.

3.2 Comparison and Evaluation of the Classification

Methods

In this section we will describe the evaluation approaches of assessing all the classifica-

tion methods mentioned above when they were used for gene function prediction. The

three key methods of evaluation were cross-validation (Section 3.2.1), randomizations

(Section 3.2.5) and permutations (Section 3.2.6).

3.2.1 Cross-Validation

A 20-fold cross-validation was used to assess classification quality of the methods as well

as to estimate precision of predictions. We randomly divided the training data into 20

nonoverlapping equal-sized parts. One part was used for testing; the other 19 parts

were used to train a model. The discriminant value for each of the testing samples was

predicted using this model. This procedure was repeated 20 times so that we obtained

the discriminant values for all genes in the training data.

We then fitted a model using the whole training set and predicted on prediction data.

Each gene in the prediction data was assigned a discriminant value. These genes were

sorted in decreasing order according to their discriminant values. From top to bottom,

we picked up one gene as a prediction with discriminant value dv and estimated the

precision of the prediction using the cross-validation results in the training data. Let

PP be the number of predicted positives in the training data whose discriminant values

were greater than dv. Let TP be the number of true positives in the set of the predicted

positives. The precision of the prediction was TP/PP.
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3.2.2 Precision vs. Classification Rate

A confusion matrix represents the classifications predicted by a classification method

versus the correct classifications. For a two-class classification problem, Table 3.1 shows

the confusion matrix.

Table 3.1: A confusion matrix for the two-class classification problem. TP = the number

of true positives; FN = the number of false negatives; FP = the number of false positives;

TN = the number of true negatives.

Predicted

True 1 0

1 TP FN

0 FP TN

Precision is defined as the ratio of the number of true positives to the number of

predicted positives (TP+FP), i.e.,

precision =
TP

TP+FP
(3.13)

Classification rate is defined as the ratio of the number of correctly classified samples

(TP+TN) to the number of total samples, i.e.,

classification rate =
TP+TN

TP+FP+TN+FN
(3.14)

We were concerned with precision rather than classification rate. The classification

rate can be high while the precision is low, particularly when the number of positives

is far fewer than the number of negatives. For example, suppose there are 92 negatives

and 8 positives, and the confusion matrix is in Tabel 3.2, then precision = 40% and

classification rate = 90%.

Since running biological experiments in the wet lab is time-consuming and expensive,

a high precision for the predictions is much more desirable than the overall classification
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Table 3.2: An example of confusion matrix

Predicted

True 1 0

1 4 4

0 6 86

rate. Few predictions, but accurate ones, are important. Biologists are interested in

knowing the number of true and false positives; we tried to minimize false positives.

In addition, biologists are much more interested in positive predictions than negative

predictions, since negative predictions are hard to be confirmed in the laboratory.

3.2.3 The Reasons Not to Use the ROC Curve for Evaluating

Classification Methods

The receiver operating characteristic (ROC) curve is a plot commonly used to assess a

classifier by summarizing the tradeoffs between sensitivity (Sn) and specificity (Sp). The

terms sensitivity and specificity are defined as follows:

• Sensitivity: the probability of predicting 1 given true class is 1, i.e., Sn = TP
TP+FN

;

• Specificity: the probability of predicting 0 given true class is 0, i.e., Sp = TN
FP+TN

.

Despite its popularity, we decided not to use it because of two reasons. First, the

ROC curve does not show precision; precision cannot be readily interpreted from the

ROC curve. Second, we faced highly unbalanced classes having many more negatives

than positives (see Table 3.3). We only expected a small number of good predictions,

thus knowing how many were true positives among the predictions was more important

than knowing sensitivity and specificity. Therefore, we used the TP vs. PP plot to

evaluate the classification method, as shown in Figure 3.1, from which we can read off
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Table 3.3: The number of positives of the up-propagated stress GOBPs (#pos + #neg

= 14,285)

GO-BP #pos

GO:0006950[response to stress] 1157

GO:0009613[response to pest, pathogen or parasite] 460

GO:0042828[response to pathogen] 413

GO:0042829[defense response to pathogen] 334

GO:0006974[response to DNA damage stimulus] 286

GO:0006281[DNA repair] 284

GO:0009814[defense response to pathogen, incompatible interaction] 177

GO:0006979[response to oxidative stress] 131

GO:0009627[systemic acquired resistance] 77

GO:0009861[jasmonic acid and ethylene-dependent systemic resistance] 59

GO:0009618[response to pathogenic bacteria] 52

GO:0009409[response to cold] 51
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the precision by computing TP/PP. The TP vs. PP plot will be described in detail in

the next three sections.

3.2.4 The TP vs. PP Plot
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Figure 3.1: The simple TP vs. PP plot

Figure 3.1 shows an example of the TP vs. PP plot. The horizontal axis is the number

of predicted positives (PP) that are predicted to belong to the GOBP GO:0006950[response

to stress]; the vertical axis is the number true positives (TP). The upper diagonal line

(blue) is the performance of a perfect classifier, in which all the predicted positives are

true positives. The blue testing curve shows the testing performance of LR. It is com-
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parable to a ROC curve since it measures the performance of the classifier at different

thresholds. The dotted red curve is the training performance of LR. The lower diagonal

line (red) is the expected performance of a random classifier that makes random guesses.

The blue testing curve is much higher than the red diagonal line, which means LR is far

better than a random classifier.

This plot was generated based on the 20-fold cross-validation results in the training

data. As discussed in Section 3.1, for any classification method, we would have the

discriminant value for each gene after 20-fold cross-validation. We sorted these values

decreasingly, and then counted PP and TP as moving down the sorted list.

The TP vs. PP plot emphasizes the absolute number of positives and negatives but

not proportion. It is useful when the number of predictions is small. For a certain

number of predictions, the precision can be read readily from the plot by calculating

TP/PP. From this plot, it is also easy to judge if a classifier is better than a random

classifier; if it is not, then we have no confidence on the predictions and simply discard

all the predictions.

3.2.5 Randomizations

In Figure 3.1, the testing curve is based on only one randomization (one random split

of the training data into 20 folds) of the training data. One would expect that different

randomizations may result in different curves. That is true. Different randomizations

may produce different discriminant values for each sample in the training data because

the classifier used to compute the discriminant value for a particular testing sample varies

in different randomizations. One exception is leave-one-out cross-validation in which the

number of parts is equal to the number of samples.

To evaluate a classifier more thoroughly, we examined the distribution of these testing

curves. Thus we repeated the cross-validation procedure 100 times, each corresponding

to a different randomization of the training data (see Algorithm C.1.1 in Appendix C).
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Figure 3.2: The TP vs. PP plot with randomizations and permutations
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As shown in Figure 3.2, the upper green curve cloud represents the 100 randomizations

and the blue curve represents the mean of these randomizations. It can be seen that LR

is quite stable in classifying GO:0006950[response to stress] since the cloud band is quite

narrow.

3.2.6 Permutations

Another important issue is whether a classifier learned from the training data is good

just by chance. To answer this question, we permuted the GOBP label (the label was

randomized, but the number of positives as well as the number of negatives were un-

changed) 100 times, and learned random classifiers correspondingly using the permuted

data (see Algorithm C.1.2 in Appendix C).

What would the testing curves of the random classifiers look like? One would expect

that the random classifiers would perform poorly because their expected performance is

poor, as shown in Figure 3.1. The lower green curve cloud in Figure 3.2 shows the testing

curves for such 100 random classifiers. The lower blue curve is the mean of these curves.

In Figure 3.2, the testing curves using the original data are much higher than those using

the permuted data; hence, the classifier learned from the original data is not good just

by chance. In cases the two clouds of curves overlap, we simply discard the classifier.

3.3 Gene Function Prediction for Unlabeled Genes

and Precision Estimate

Thus far, we have discussed how to evaluate a classifier on the training data using 20-

fold cross-validation, randomizations and permutations. Our final goal is to make some

useful predictions of gene functions for biologists to validate. The general procedure was

as follows. First, for a particular GOBP of interest, a classifier was trained using the

training data. Second, the prediction data were predicted using this classifier. Each



Chapter 3. Comparison and Evaluation of Classifiers in Gene Function Prediction28

gene in the prediction data would have a discriminant value after this step. Third, these

genes were sorted by their discriminant values in decreasing order. From bottom to top,

the confidence level of the prediction increased. Top genes in the sorted list were more

confident predictions. The final step was to associate each of these gene with a mean

precision and a standard deviation of the precision. The precision associated with a gene

is the precision of all the predictions in the sorted list above and including the gene,

that is, the precision of all the predictions that are at least as confident as the gene in

question. We used the testing data to estimate these precisions.

Given a gene with discriminant value dv, we associated a precision with the gene

in three different ways: p1 was the unweighted mean precision over all randomizations;

p2 was the weighted mean precision; p3 regarded the mean precision estimation as a

regression problem.

p1 =
1

N

N∑
i

TPi

PPi

(3.15)

p2 =

∑N
i TPi∑N
i PPi

=
N∑
i

wi ×
TPi

PPi

(3.16)

p3 =

∑N
i TPiPPi∑N
i PPiPPi

(3.17)

where wi = PPi/
∑N

j PPj, N is the number of randomizations of the testing data, TPi

and PPi are the number of true positives and the number of predicted positives in the

ith randomization, respectively. More specifically, PPi is the number of genes in the

testing data whose discriminant values are greater than dv, and TPi is the number of

these predictions that are true.

Figure 3.3 shows the three mean precision estimates (p1, p2, and p3) of the top 100

predictions made by LR for GO:0006950[response to stress]. The mean precision these

estimates produced was almost the same (the three mean precision curves overlap); we
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Figure 3.3: The mean precision vs. the number of predictions (PP) plot generated using

the 100 randomizations
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chose p2 as our precision estimate.

The standard deviation of the precision for a prediction is calculated using the fol-

lowing formula:

sd =
std(TP)

mean(PP)
(3.18)

where TP = {TP1,TP2, . . . ,TPN}, PP = {PP1,PP2, . . . ,PPN}, and N is the number

of randomizations. N = 100 in this study. We chose not to use std(TPi/PPi) because

when both TPi and PPi are 0, TPi/PPi is not a number (NaN).

Table 3.4: The examples of predictions for GO:0006950[response to stress] made by LR

gene DV M SD

AT3G22240 0.8007 1.0000 0.3313

AT3G28290;AT3G28300 0.7357 0.8678 0.1566

AT4G39675 0.6691 0.8847 0.0936

AT3G14210 0.6229 0.8653 0.0698

AT1G16850 0.6052 0.8564 0.0478

Table 3.4 shows the top 5 predictions for GO:0006950[response to stress] made by LR

(see Algorithm C.2.1 in Appendix C). The columns, from left to right, are gene name,

discriminant value, mean precision, and standard deviation of the precision. Each gene,

g, in the table is a prediction. If a gene in the table has a mean precision of, for example,

0.75, then we expect that 75% of the genes in the table above and including g will be

correct predictions. More predictions can be added to this table; but as the number of

predictions increases, the mean precision tends to decrease, as shown in Figure 3.4 (the

precision vs. PP plot).

Figure 3.4 summarizes the precision of the top 100 predictions for GO:0006950[response

to stress] made by LR (see Algorithm C.3.1 in Appendix C). The cloudy, multi-coloured

curve represents the estimated precision in 100 randomizations. It shows the standard

deviation of the precision vividly. The blue curve is the mean precision. The precision
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Figure 3.4: The precision vs. the number of predictions (PP) plot
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that a random classifier could achieve is illustrated by the dashed horizontal line, which

is much lower than the cloudy curve. The height of the dashed horizontal line is equal

to the ratio of the number of positives to the number of total genes in the testing data.



Chapter 4

Results of Evaluation, Comparison

and Prediction

In this chapter, we will present our results from evaluation and comparison of all the

classification methods mentioned in Chapter 3 in predicting gene function in A. thaliana,

as well as from the predictions we made using these classification methods for stress

GOBPs. The evaluation approaches have been discussed in detail in Chapter 3. For

clarity, we just present the results for the top stress GOBP GO:0006950[response to

stress] but leave the results for other stress GOBPs to Appendix A and Appendix B.

4.1 The TP vs. PP Plots and Precision vs. PP Plots

for the Classifiers

As discussed in Chapter 3, the two main approaches we used to evaluate the performance

of classifiers in classification and prediction were the TP vs. PP plot and precision

vs. PP plot. The TP vs. PP plot is useful for evaluation when the training data are

highly unbalanced, and when we only expect a few accurate predictions. The precision

vs. PP plot summarizes the quality of the predictions we made in the prediction data.

33
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Figures 4.1, 4.2 and 4.3 show the evaluation results (the plots on the left panel) in the

training data as well as the summaries of prediction quality (the plots on the right panel)

for LR, LDA, QDA, NB and KNN.

In the TP vs. PP plots, it can be seen that each classifier is far better than the random

classifier, which demonstrates that each classifier can capture the correlation between

gene expressions and gene functions. In other words, these plots confirm that gene

expressions and gene functions correlate to some degree, but not completely, suggesting

how complex life could be, even for this simple plant.

The precision vs. PP plots summarize the precision of the top 100 predictions using

the five classifiers. At the rightmost (low precision) end of each curve cloud, no significant

difference can be observed among these classifiers, and the precision is roughly between

0.26 to 0.33. However, at the leftmost (high precision) end, LR almost always has lower

variance and higher mean precision than the other methods; KNN and LDA have the

highest variance.

4.2 Prediction Tables

Tables 4.1 to 4.5 show the top 10 predictions for the top stress GOBP GO:0006950[response

to stress] made by each of the classifiers. Each row is a prediction. From left to right,

the columns are gene name, discriminant value, mean precision, and standard deviation

of the precision.

Examining these tables closely, we find that the gene AT4G39675 appears in all of

the five tables; all the five classifiers predict it to be involved in response to stress. The

gene AT3G28290;AT3G28300 wins 4 votes. AT3G22240, AT2G05510, and AT5G10040

obtain three votes each. These genes are believed to be high confidence predictions since

not only they are among the top 10 predictions, but also they appear frequently in the

prediction tables.
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(a) The TP vs. PP plot, LR
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(b) The precision vs. PP plot, LR
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(c) The TP vs. PP plot, LDA
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(d) The precision vs. PP plot, LDA

Figure 4.1: The evaluation of classification performance (left panel) and prediction per-

formance (right panel) of the classifiers on the top stress GOBP GO:0006950[response to

stress]
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(a) The TP vs. PP plot, QDA
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(b) The precision vs. PP plot, QDA
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(c) The TP vs. PP plot, NB
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(d) The precision vs. PP plot, NB

Figure 4.2: The evaluation of classification performance (left panel) and prediction per-

formance (right panel) of the classifiers on the top stress GOBP GO:0006950[response to

stress] (continued)
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(a) The TP vs. PP plot, KNN
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Figure 4.3: The evaluation of classification performance (left panel) and prediction per-

formance (right panel) of the classifiers on the top stress GOBP GO:0006950[response to

stress] (continued)

Table 4.1: The top 10 predictions made by LR for GO:0006950[response to stress]

gene DV M SD

AT3G22240 0.8007 1.0000 0.3313

AT3G28290;AT3G28300 0.7357 0.8678 0.1566

AT4G39675 0.6691 0.8847 0.0936

AT3G14210 0.6229 0.8653 0.0698

AT1G16850 0.6052 0.8564 0.0478

AT4G38080 0.5697 0.8241 0.0242

AT5G66985 0.5685 0.8199 0.0246

AT2G05510 0.5540 0.7799 0.0320

AT5G10040 0.5252 0.6860 0.0378

AT5G09530 0.5196 0.6671 0.0397
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Table 4.2: The top 10 predictions made by LDA for GO:0006950[response to stress]

gene DV M SD

AT4G39675 0.5230 NaN NaN

AT3G22240 0.5138 NaN NaN

AT3G28290;AT3G28300 0.4121 0.7164 0.3034

AT2G05510 0.4071 0.7029 0.2725

AT5G66985 0.3872 0.6673 0.1349

AT4G38080 0.3852 0.6619 0.1346

AT5G09530 0.3628 0.6263 0.1246

AT2G36220 0.3256 0.6156 0.0682

AT2G01520 0.3085 0.6021 0.0615

AT3G14210 0.3062 0.6009 0.0587

Table 4.3: The top 10 predictions made by QDA for GO:0006950[response to stress]

gene DV M SD

AT4G39675 0.5798 0.7757 0.2149

AT3G28290;AT3G28300 0.5693 0.6694 0.0539

AT1G52070 0.5688 0.6693 0.0509

AT4G00680 0.5654 0.6716 0.0385

AT3G50480 0.5637 0.6831 0.0588

AT4G33560 0.5625 0.6911 0.0669

AT5G09530 0.5621 0.6891 0.0643

AT4G38080 0.5615 0.6856 0.0601

AT4G02270 0.5599 0.6611 0.0534

AT2G23540 0.5591 0.6404 0.0488
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Table 4.4: The top 10 predictions made by NB for GO:0006950[response to stress]

gene DV M SD

AT3G16430;AT3G16420 0.5309 0.7220 0.1184

AT4G38080 0.5284 0.8288 0.0949

AT4G23680 0.5284 0.8294 0.0932

AT2G33850 0.5280 0.8321 0.0725

AT4G39675 0.5278 0.8308 0.0757

AT2G05510 0.5277 0.8310 0.0738

AT2G42610 0.5273 0.8215 0.0646

AT5G03350 0.5269 0.7998 0.0582

AT2G01520 0.5267 0.7734 0.0542

AT3G22240 0.5266 0.7627 0.0535

Table 4.5: The top 10 predictions made by KNN for GO:0006950[response to stress]

gene DV M SD

AT5G38940;AT5G38930 0.4510 1.0000 1.4651

AT1G80960 0.4314 0.6446 0.5063

255181 at 0.3725 0.6164 0.0867

AT4G39675 0.3725 0.6164 0.0867

AT4G02270 0.3725 0.6164 0.0867

AT3G28290;AT3G28300 0.3725 0.6164 0.0867

AT2G39310 0.3725 0.6164 0.0867

AT3G44860 0.3529 0.5683 0.0466

AT5G05500 0.3529 0.5683 0.0466

AT3G50480 0.3529 0.5683 0.0466
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4.3 The Mean TP vs. PP Plots and Mean Precision

vs. PP Plots Comparing the Classifiers
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Figure 4.4: The mean TP vs. PP plot

Figure 4.4 and Figure 4.5 compare the mean performance of all the five classifiers in

classification and prediction, respectively. None of the classifiers is consistently better

than the others for all PP (the number of predicted positives).

In Figure 4.4, NB is comparable to the other methods when PP is less than 30, but

its performance degrades greatly beyond PP = 30. LR has the best performance when

PP is less than 23; however, it is outperformed gradually by QDA beyond PP = 23 and
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Figure 4.5: The mean precision vs. PP plot
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by KNN beyond PP = 30. The performance of LDA remains the lowest in the range

from PP = 7 to PP = 30, but starts to exceed NB after PP = 30, and gradually comes

close to the performance of the other methods. Given this nonuniform situation, one

cannot conclude that one classification method is better than the others in classification;

however, when PP is given, we can tell exactly which classifier performs best.

A similar conclusion can be drawn from Figure 4.5: No classification method is uni-

formly better than the others in prediction. At the right end of the plot, KNN and QDA

achieve higher precision than linear classifiers (LDA, LR) and NB do. At the left end of

the plot, LDA, LR and NB have comparable prediction performance as KNN and QDA.



Chapter 5

Combining Classifiers to Improve

Classification Accuracy

Combining basic classifiers is an effective way to improve the accuracy of classifica-

tion [10]. The basic idea is that an ensemble of experts tends to predict better than

a single expert does: The other classifiers are expected to correct the error that a single

classifier makes. In this chapter, we will investigate this strategy. In Section 5.1 and

Section 5.2, we will discuss two simple approaches to combine basic classifiers. More so-

phisticated approaches, model averaging and stacking [10], will be treated in Section 5.3.

We will present the results in Section 5.4. The combined classifiers were experimented

on the top stress GOBP GO:0006950[response to stress].

5.1 Intersection and Union Based on PP (Predicted

Positives)

In statistical learning, a classifier is often referred to as a model. Define M1〈a〉 to be Model

1 using threshold a. Define M2〈b〉 to be Model 2 using threshold b. Define a classifier

C-AND〈a, b〉 as the Intersection model. A data point is accepted by C-AND〈a, b〉 if and

43
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only if it is accepted by both M1〈a〉 and M2〈b〉. C-OR〈a, b〉, the Union model, can be

defined in the similar way except that a data point is accepted by C-OR〈a, b〉 if and

only if it is accepted by M1〈a〉 or M2〈b〉. The thresholds a and b are determined by

the number of predicted positives (PP) of each classifier. That is, for a given number

of predictions, n, a is the discriminant value of the nth best prediction of M1, and b

is the discriminant value of the nth best prediction of M2. In this way, C-AND takes

the intersection of the best n predictions of each classifier. (Likewise, C-OR takes the

union.) This is done for n = 1, 2, 3, ..., 100. The pseudocode of the Intersection model

can be found in Algorithm C.4.1 in Appendix C. The pseudocode for the Union model

is similar to that of the Intersection model.

We chose LR as M1 and LDA as M2. Figure 5.1 presents the model evaluation for

C-AND and C-OR (the TP vs. PP plots).
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Figure 5.1: The TP vs. PP plots for the Intersection and Union models based on PP

(predicted positives)
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5.2 Intersection and Union Based on Discriminant

Values

The intersection model described above is not discriminative in that it does not produce

a discriminant value for each gene. Although each gene has two discriminant values,

one from M1 and the other from M2, the model does not combine them into a single

discriminant value for C-AND. In contrast, this section describes an intersection model

that is discriminative.

Consider two models, M1 and M2. Each gene, i, is given two discriminant values, di1

and di2, by M1 and M2, respectively. In the Intersection model, the discriminant value

for gene i is defined as d
′
i = min(di1, di2); in the Union model, the discriminant value for

gene i is defined as d
′
i = max(di1, di2). With this definition, for given values of di1 and

di2, the predictions made by the intersection model are the intersection of the predictions

made by M1 and the predictions made by M2. Likewise, the union model produces the

union of predictions.

As before, we chose LR as M1 and LDA as M2. Figure 5.2 shows the TP vs. PP

plots as well as the precision vs. PP plots for the Intersection and Union models based

on discriminant values.

Curiously, the performance of the Intersection model is not better than that of in-

dividual classifiers (see Figure 4.1(a) and Figure 4.1(c)), as shown in Figure 5.2(a). A

possible explanation is given in Figure 5.3, which illustrates an intersection example.

With this distribution of true positives and negatives, the Intersection model is worse

than individual classifiers since the intersection set contains only false positives.
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(a) The TP vs. PP plot for Intersec-

tion(LDA, LR)
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(b) The precision vs. PP plot for Intersec-
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Figure 5.2: The TP vs. PP plots and precision vs. PP plots for the Intersection and

Union model based on discriminant values



Chapter 5. Combining Classifiers to Improve Classification Accuracy47

+
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Figure 5.3: An Intersection model intersects LR and LDA. True positives are in the red

areas with “+” signs. True negatives are in the blue areas with “-” signs. The green

solid line is the decision boundary of LR: Positives are on the right side of the boundary;

negatives are on the other side. Similarly, the red solid line is the decision boundary

of LDA: Positives are on the left side of the boundary; negatives are on the right side.

The top triangle area is classified as positives by the Intersection model. The Intersection

model wrongly classifies the top circle as positives, which are actually negatives, as shown

in the figure. The intersection model also wrongly classifies the two red areas as negatives.
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5.3 Model Averaging and Stacking

Model averaging (see Algorithm C.5.1 in Appendix C) and stacking (see Algorithm C.5.2

in Appendix C) seek the best linear combination of the outputs of basic classifiers to gen-

erate a weighted output f̂(x), which is expected to be more accurate than any individual

classifiers f̂m(x) [10],

f̂(x) =
∑
m

wmf̂m(x) (5.1)

f̂m(x) is the discriminant value of classifier f̂m applied to sample x.

Given M basic classifiers f̂1, f̂2, . . . , f̂M , model averaging and model stacking search

the best way to combine these basic classifiers. More specifically, the idea of model

averaging and model stacking is to assign each classifier a weight ŵm, m = 1, 2, . . . ,M

to obtain a combined classifier, which minimizes squared error.

The weights for model averaging can be obtained from the training data by applying

linear regression to the discriminant values of the basic classifiers,

ŵ = arg min
w

N∑
i

[yi −
M∑
m

wm f̂m(xi)]
2 (5.2)

where N is the number of samples, and M is the number of classifiers to be combined.

yi is +1 or −1 depending on whether xi is a true positive or a true negative. We obtain

f̂m(xi) by applying each classifier f̂m induced from the whole training data back to the

whole training data. ŵ can be computed using linear regression on y = (y1, y2, . . . , yN)T .

However, model averaging tends to put the most weight on the most complex classifier,

since it fits the training data best.

Model stacking circumvents this problem using leave-one-out cross-validation in the

training phase. The weights are set to minimize the average leave-one-out cross-validation

error:

ŵ = arg min
w

N∑
i

[yi −
M∑
m

wm f̂
−i
m (xi)]

2 (5.3)

Instead of just training a classifier using all the samples in the training data and

applying this classifier back to the whole training samples to obtain f̂m(xi) ∀i, stacking



Chapter 5. Combining Classifiers to Improve Classification Accuracy49

removes one sample xi at a time from the training data, and uses the remaining N − 1

samples as training data to train a classifier f̂−im , and then computes f̂−im (xi). ŵ can be

computed in the same way as model averaging.

Since we had more than ten thousand samples, leave-one-out cross-validation was

computationally costly. Instead, we used 20-fold cross-validation.

The combined classifier is never worse than individual classifiers because

EP [Y −
M∑
m=1

ŵm f̂m(x)]2 ≤ EP [Y − f̂m(x)]2 ∀m (5.4)

The combined classifier has smaller expected squared error than any single classifier.

The five basic classifiers were LR, LDA, QDA, NB and KNN, as described in Chap-

ter 3. We also expanded these five basic classifiers by three pairwise operations: max,

min, and products. For any two individual discriminant values of a sample x, f̂i(x)

and f̂j(x), the max operation adds 10 new discriminant values by using the maximum

value of f̂i(x) and f̂j(x). Likewise, each of the min and products operations adds 10 new

discriminant values by using the minimum value and products of f̂i(x) and f̂j(x), respec-

tively. The products operation adds another 5 new discriminant values by self-production

(f̂i(x) · f̂i(x), i = 1, 2, . . . , 5). Hence, the three operations add 35 new discriminant values

to the original 5 discriminant values generated by the five basic classifiers.

The above pairwise operations are non-linear. They combine the basic classifiers in a

way that stacking cannot, and thus they effectively create new classifiers for the stacking

process. In stacking, the discriminant values (f̂i(x)) output by the basic classifiers be-

come feature values for the combining classifier. One can use any classification method,

including LR, LDA and Least Squares (LS), as the combining classifier.

Figure 5.4 shows the comparison of combining the 5 basic classifiers and combining

the 40 classifiers (including 35 expanded classifiers) using LR, LDA and LS. In Fig-

ures 5.4(a), 5.4(c) and 5.4(e), the training curves are close to the testing curves. How-

ever, in Figures 5.4(b) and 5.4(d), the testing curves are much lower than the training

curves, which suggests overfitting . Interestingly, no overfitting occurred using LS (see
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Figure 5.4(f)). LS is best at combining the 40 classifiers. The weights for the stacked

classifier obtained by LS were much more constrained than the weights obtained by LDA

and LR. In stacking, constrained weights achieve better classification accuracy than less

constrained weights [10]. In addition, LR and LDA tended to more strictly fit to the

training data than LS dose, and when raising thresholds, they made more wrong classi-

fication than LS did in the testing data.

5.4 Results

In Figure 5.4(e) and Figure 5.4(f), both testing curves are similar at the right end.

However, at the left end (from PP = 0 to PP = 20), the testing curve in Figure 5.4(e) is

higher than that in Figure 5.4(f), i.e., the classification precision using the combination of

5 basic classifiers is greater than that using the combination of 40 classifiers. Thus, in our

subsequent tests, the combined classifiers were generated by linearly combining the 5 basic

classifiers using least squares. Figure 5.5(a) shows the TP vs. PP plot for the combined

classifier using model averaging. The pink curve (upper) and the dark curve (lower)

are the training performance in the original training data and the training performance

in the permuted data, respectively. The blue diagonal curve is the performance of a

perfect classifier, and the red diagonal curve represents the expected performance of a

theoretical random classifier. The upper bold curve is the mean performance of the

combined classifier in the 100 randomizations in the original data; the lower bold curve

is the mean performance of the combined classifer in the 100 permutations. The two

green curve clouds show the performance distribution for all the randomizations and

permutations, respectively. Figure 5.5(b) is the precision vs. PP plot for the same

combined classifier (recall that the TP vs. PP plots always refer to training data, while

the precision vs. PP plots refer to prediction data). Table 5.1 shows the predictions with

precision higher than 0.5 made by the combined classifier using model averaging.
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(c) LDA, 5 basic classifiers
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Figure 5.4: Stacking used to combine classifiers using different regression methods
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Table 5.1: The predictions with precision above 0.5 for GO:0006950[response to stress]

made by the combined classifier using model averaging

gene DV M SD

AT3G28290;AT3G28300 0.8764 0.8122 0.1232

AT3G22240 0.7618 0.8045 0.0426

AT3G50480 0.7412 0.7929 0.0420

AT4G39675 0.7044 0.7775 0.0530

AT1G16850 0.7021 0.7758 0.0521

AT3G44860 0.6784 0.7681 0.0578

AT3G14210 0.6192 0.6673 0.0381

AT5G44820 0.6060 0.6416 0.0331

AT1G80960 0.6052 0.6397 0.0337

AT5G38940;AT5G38930 0.5947 0.6202 0.0346

AT4G38080 0.5872 0.6083 0.0321

AT3G16440 0.5835 0.6008 0.0297

AT4G25790 0.5776 0.5884 0.0284

AT5G50670;AT5G50570 0.5749 0.5853 0.0289

AT4G02270 0.5742 0.5839 0.0283

AT1G70830;AT1G70850 0.5731 0.5818 0.0279

AT2G01530 0.5729 0.5820 0.0280

AT4G16960;AT4G16880;AT4G16940 0.5622 0.5515 0.0261

AT1G52070 0.5511 0.5248 0.0260

AT5G05500 0.5489 0.5201 0.0249

AT3G59930;AT5G33355 0.5474 0.5163 0.0244

AT3G11550 0.5463 0.5128 0.0249
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(b) The precision vs. PP plot

Figure 5.5: The performance evaluation of the combined classifier using model averaging

based on least squares

Figure 5.6 shows the evaluation results of the combined classifier using model stack-

ing. We can observe low variance of TP (left panel) and precision (right panel): The

combined classifier was quite stable both in classification and prediction. In the main

comparison based on the TP vs. PP plot, the combined classifier almost always has better

generalization performance than individual classifiers, as shown in Figure 5.7. Table 5.2

shows the predictions with precision greater than 0.5 made by the combined classifier

using stacking.

Figure 5.7 compares the mean performance of individual classifiers to the combined

classifier using model stacking. It can be seen that the combined classifier combined

the best aspects of the individual classifiers and therefore has the best performance in

classification for almost all PP. Figure 5.8 compares the mean precision of the predictions

made by all the classifiers in Figure 5.7.
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Table 5.2: The predictions with precision above 0.5 for GO:0006950[response to stress]

made by the combined classifier using model stacking

gene DV M SD

AT3G28290;AT3G28300 0.9150 0.8755 0.2290

AT3G22240 0.8875 0.8484 0.1590

AT4G39675 0.8267 0.8421 0.1459

AT1G16850 0.7103 0.7926 0.0641

AT3G14210 0.6687 0.7551 0.0485

AT4G38080 0.6661 0.7542 0.0471

AT3G50480 0.6590 0.7455 0.0476

AT2G05510 0.6268 0.7038 0.0698

AT3G44860 0.6002 0.6753 0.0540

AT5G09530 0.5940 0.6639 0.0506

AT2G01520 0.5750 0.6333 0.0378

AT5G66985 0.5587 0.6037 0.0317

AT5G10040 0.5451 0.5761 0.0315

AT5G44820 0.5374 0.5612 0.0318

AT1G70830;AT1G70850 0.5291 0.5471 0.0339

AT5G50670;AT5G50570 0.5234 0.5348 0.0322

AT1G27030 0.5155 0.5194 0.0311

AT4G33720 0.5150 0.5199 0.0305
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Figure 5.6: The performance evaluation of the combined classifier using model stacking
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Figure 5.7: The mean TP vs. PP plot comparing the performance of the classifiers in

classification
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Figure 5.8: The mean precision vs. PP plot comparing the performance of the classifiers

in prediction



Chapter 6

Conclusions and Discussion

In this study, we evaluated and compared five basic supervised learning methods (LR,

LDA, QDA, NB and KNN) for gene function prediction in A. thaliana based solely on gene

expression data. The major advantage of supervised methods over unsupervised methods

is that by including the prior knowledge of class information, supervised methods can

ignore uninformative features and select informative features that are useful to separate

classes. 20-fold cross-validation, 100 randomizations, and 100 permutations were the key

elements in evaluating as well as comparing these learning methods. 22 up-propagated

stress GOBPs were studied. The results show some of these GOBPs are learnable based

on gene expression data alone. For each of the GOBPs, we found that no method is

uniformly better than the other methods in either classification or prediction.

We also investigated combining these basic classifiers using model averaging and stack-

ing [10], as well as two simple combination strategies. The results show that the combined

classifier using stacking outperforms all the basic classifiers for the top stress GOBP.

However, establishing the optimal supervised classification method is not the goal of this

work; it is possible other supervised methods such as SVMs, or Neural Networks can

achieve comparable success.

Our results also show that the precision of predictions varied widely depending on

58
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the GOBPs we learned. For some GOBPs, the precision we could achieve was high; for

others, the precision was low. In the latter case, we believe that the data were simply

not informative: The genes involved in these GOBPs are not regulated at the level of

mRNA transcription which can be detected by microarray chips; hence, these GOBPs

are not learnable using microarray data alone. This observation suggests that developing

algorithms which could effectively incorporate additional types of data in the learning

process, for example, phenotype, sequence and homology data, might be useful. Also,

we found that the precision of predictions made by a classifier could be affected by class

homogeneity, class size, and variability of gene expression. Larger class size of positives

generally results in higher precision (see Figure 4.1, Figure 4.2, and Figure 4.3). However,

the opposite is not necessarily true (see Figure A.2(e) and Figure A.4(e)).

Using Electronic Northern analysis, our biological collaborators observed strong gene

expression of many of our predictions. The predictions that had consistent up-regulation

during stress were characterized for known protein motifs. These predictions are being

validated by the biologists in the Department of Botany at University of Toronto. With

more genes added to particular GOBPs of interest and more accurate gene functional

annotations available, the advantage of supervised learning methods would become more

evident.

This study suggests several avenues for future research. First, adding other types of

data to gene expression data could be tried. Second, since many genes have multiple

functions and these functions are organized in a hierarchy, we are considering methods

that could take advantage of the correlation and structure information existing among

GOBPs. The initial attempts in this direction were made by King et al. [15] and Midelfart

et al. [23]



Appendix A

Plots

In this Chapter, we present the evaluation results for LR and LDA in classifying various

stress GOBPs. The evaluation results for the other classifiers can be found in the supple-

mentary data (http://www.cs.toronto.edu/pub/lanhui/Supplementary data/). Fig-

ure A.1 and Figure A.2 show the TP vs. PP plots for LR; Figure A.3 and Figure A.4

show the TP vs. PP plots for LDA. It can be seen that GO:0009409[response to cold]

(Figure A.2(e) and Figure A.4(e)) is a GOBP that is easily learned by both LR and

LDA using the gene expression data alone. GO:0009618[response to pathogenic bacteria]

(Figure A.2(d) and Figure A.4(d)) is just unlearnable: LDA and LR have almost the

same performance as a random classifier.
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Figure A.1: The TP vs. PP plots of LR for various stress GOBPs
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Figure A.2: TP vs. PP plots of LR for various stress GOBPs (continued)
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Figure A.3: The TP vs. PP plots of LDA for various stress GOBPs
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Figure A.4: The TP vs. PP plots of LDA for various stress GOBPs (continued)
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Tables

This chapter shows the prediction results for various stress GOBPs using LR, LDA,

QDA, NB and KNN. The top 100 predictions made by each method for the top stress

GOBP (GO:0006950[response to stress]) are shown. In addition, for LR and LDA, the

predictions having rounded precision greater than or equal to 0.5 for various stress GOBPs

are shown. The predictions for the other stress GOBPs using the other classifiers (QDA,

NB and KNN) can be found in the supplementary data. The columns in the tables, from

left to right, are gene name, discriminant value, mean precision and standard deviation

of the precision.

B.1 Logistic Regression

Table B.1: GO:0006950[response to stress]

gene DV M SD

AT3G22240 0.8007 1.0000 0.3313

AT3G28290;AT3G28300 0.7357 0.8678 0.1566

AT4G39675 0.6691 0.8847 0.0936

AT3G14210 0.6229 0.8653 0.0698

65
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Table B.1: GO:0006950[response to stress]

gene DV M SD

AT1G16850 0.6052 0.8564 0.0478

AT4G38080 0.5697 0.8241 0.0242

AT5G66985 0.5685 0.8199 0.0246

AT2G05510 0.5540 0.7799 0.0320

AT5G10040 0.5252 0.6860 0.0378

AT5G09530 0.5196 0.6671 0.0397

AT5G07010 0.4812 0.5833 0.0352

AT2G01520 0.4723 0.5663 0.0364

AT5G62520 0.4406 0.5222 0.0301

AT4G33720 0.4400 0.5208 0.0301

AT2G41730 0.4395 0.5203 0.0309

AT1G27030 0.4294 0.5076 0.0299

AT4G21840;AT4G21830 0.4266 0.5036 0.0292

AT5G18470 0.4266 0.5033 0.0296

AT3G50480 0.4156 0.4890 0.0272

AT2G23540 0.4088 0.4815 0.0250

AT2G33850 0.4039 0.4745 0.0223

AT2G36220 0.4028 0.4739 0.0228

AT5G10695 0.3786 0.4455 0.0198

AT2G32160 0.3678 0.4379 0.0198

AT2G26400 0.3620 0.4359 0.0215

AT3G44860 0.3595 0.4339 0.0219

AT5G22530 0.3592 0.4341 0.0215

AT5G44820 0.3551 0.4332 0.0227
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Table B.1: GO:0006950[response to stress]

gene DV M SD

AT3G28220 0.3533 0.4326 0.0224

AT5G25260;AT5G25250 0.3505 0.4319 0.0211

AT3G28210 0.3463 0.4301 0.0201

AT1G76960 0.3444 0.4289 0.0211

AT5G09480 0.3430 0.4286 0.0195

AT1G19020 0.3371 0.4253 0.0176

AT5G50670;AT5G50570 0.3284 0.4217 0.0180

AT1G31680 0.3281 0.4213 0.0184

AT5G03350 0.3269 0.4207 0.0195

AT3G29970 0.3256 0.4201 0.0189

AT2G32210 0.3255 0.4200 0.0188

AT5G42860 0.3242 0.4187 0.0186

AT4G37710 0.3218 0.4163 0.0176

AT5G45500 0.3181 0.4127 0.0182

AT3G26470 0.3139 0.4098 0.0163

AT3G59930;AT5G33355 0.3054 0.4020 0.0142

AT4G37070;AT4G37060 0.3042 0.4005 0.0135

AT1G61340 0.3019 0.3975 0.0131

AT1G64370 0.3008 0.3963 0.0126

AT1G67870 0.3006 0.3958 0.0127

AT4G23670 0.3002 0.3955 0.0123

AT4G33560 0.2997 0.3946 0.0121

AT1G80240 0.2989 0.3932 0.0121

AT2G19970 0.2964 0.3885 0.0121
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Table B.1: GO:0006950[response to stress]

gene DV M SD

AT3G26450 0.2955 0.3871 0.0120

AT1G29670 0.2943 0.3854 0.0118

AT1G70830;AT1G70850 0.2906 0.3799 0.0109

AT5G64510 0.2869 0.3728 0.0114

AT1G52070 0.2869 0.3727 0.0113

AT3G06390 0.2862 0.3716 0.0118

AT4G16960;AT4G16880;AT4G16940 0.2859 0.3713 0.0118

AT5G19250 0.2848 0.3698 0.0117

AT2G42610 0.2839 0.3685 0.0118

AT4G24110 0.2830 0.3672 0.0118

AT2G19990 0.2823 0.3663 0.0115

AT1G19960 0.2804 0.3634 0.0113

AT1G10990 0.2799 0.3626 0.0116

AT3G09350 0.2762 0.3581 0.0114

AT1G14870 0.2737 0.3541 0.0111

AT1G07500 0.2734 0.3538 0.0110

AT5G23840 0.2728 0.3533 0.0111

257874 at 0.2678 0.3465 0.0115

AT5G63560 0.2673 0.3456 0.0114

AT1G09950 0.2650 0.3431 0.0107

AT5G64870 0.2638 0.3421 0.0102

AT1G66500;AT5G43620 0.2636 0.3420 0.0103

AT4G00080 0.2631 0.3418 0.0096

AT5G60950 0.2579 0.3355 0.0097
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Table B.1: GO:0006950[response to stress]

gene DV M SD

AT3G47250 0.2565 0.3337 0.0095

AT3G16440 0.2560 0.3331 0.0095

AT4G21850 0.2559 0.3329 0.0095

AT2G01530 0.2548 0.3318 0.0090

AT1G23960 0.2504 0.3272 0.0081

AT1G19180 0.2498 0.3267 0.0082

AT3G16800 0.2480 0.3243 0.0076

AT4G01870 0.2453 0.3210 0.0080

248621 at 0.2447 0.3203 0.0081

AT1G11850 0.2430 0.3182 0.0078

AT5G61660 0.2424 0.3174 0.0077

AT1G49650 0.2405 0.3147 0.0076

AT3G52870 0.2398 0.3137 0.0078

AT4G18280 0.2393 0.3129 0.0076

AT1G21680 0.2384 0.3112 0.0077

AT1G11210 0.2378 0.3103 0.0074

AT3G03520 0.2374 0.3096 0.0078

AT4G39190 0.2373 0.3094 0.0078

AT5G13200 0.2336 0.3036 0.0069

AT4G25790 0.2328 0.3020 0.0069

AT5G37990 0.2327 0.3020 0.0069

AT5G35940 0.2301 0.2976 0.0066

AT3G04320 0.2288 0.2958 0.0065

AT2G27080;AT2G27090 0.2277 0.2938 0.0064
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Table B.1: GO:0006950[response to stress]

gene DV M SD

Table B.2: GO:0009613[response to pest, pathogen or parasite]

gene DV M SD

AT3G14210 0.607 NaN NaN

AT3G28290;AT3G28300 0.5800 NaN NaN

AT3G50480 0.5469 1.0000 1.9400

AT2G42610 0.4525 0.7817 0.1475

AT1G76960 0.4205 0.6240 0.0887

AT5G03350 0.4145 0.5898 0.0880

AT3G44860 0.4012 0.4861 0.0754

AT1G19960 0.3980 0.4657 0.0739
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Table B.3: GO:0042828[response to pathogen].
∑100

i=1 TPi = 0 caused the estimated

mean precision for AT3G28290;AT3G28300 and AT3G50480 to be 0. See Section 3.3 in

Chapter 3 for more details.

gene DV M SD

AT3G14210 0.6122 NaN NaN

AT3G28290;AT3G28300 0.5716 0 0

AT3G50480 0.5677 0 0

AT2G42610 0.4203 0.5928 0.0342

AT1G76960 0.3991 0.5000 0.0167

AT5G03350 0.3948 0.4709 0.0157

AT1G19960 0.3939 0.4644 0.0220

Table B.4: GO:0042829[defense response to pathogen]

gene DV M SD

AT1G76960 0.8554 0.9545 2.0729

AT3G50480 0.8119 0.8790 0.4026

AT3G14210 0.7376 0.6387 0.0454

Table B.5: GO:0006974[response to DNA damage stimulus]

gene DV M SD

AT4G19240 0.7508 0.9286 2.4143

AT2G06005 0.6477 0.7544 0.3303

AT3G09040 0.5862 0.4725 0.1376
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Table B.6: GO:0006281[DNA repair]

gene DV M SD

AT2G06005 0.7162 NaN NaN

AT2G23470 0.5715 0.6183 0.4415

AT4G19240 0.4540 0.6819 0.1031

AT3G19670 0.4198 0.6095 0.0741

AT3G20810 0.4164 0.5992 0.0638

AT1G58025 0.4072 0.5725 0.0542

Table B.7: GO:0006979[response to oxidative stress]

gene DV M SD

AT2G01520 0.8565 0.8000 0

Table B.8: GO:0006972[hyperosmotic response]

gene DV M SD

AT5G11420 0.6809 0.5156 0.7384

Table B.9: GO:0009409[response to cold]

gene DV M SD

AT1G16850 0.9474 1.0000 0.1913

AT3G28290;AT3G28300 0.8881 0.9849 0.2452

AT3G22240 0.3311 0.6181 0.0551

AT5G45500 0.3287 0.6154 0.0555
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B.2 Linear Discriminant Analysis

Table B.10: GO:0006950[response to stress]

gene DV M SD

AT4G39675 0.5230 NaN NaN

AT3G22240 0.5138 NaN NaN

AT3G28290;AT3G28300 0.4121 0.7164 0.3034

AT2G05510 0.4071 0.7029 0.2725

AT5G66985 0.3872 0.6673 0.1349

AT4G38080 0.3852 0.6619 0.1346

AT5G09530 0.3628 0.6263 0.1246

AT2G36220 0.3256 0.6156 0.0682

AT2G01520 0.3085 0.6021 0.0615

AT3G14210 0.3062 0.6009 0.0587

AT5G10040 0.3055 0.6002 0.0575

AT2G23540 0.2898 0.5835 0.0403

AT1G76960 0.2860 0.5794 0.0366

AT5G03350 0.2796 0.5717 0.0307

AT1G16850 0.2777 0.5690 0.0290

AT5G62520 0.2723 0.5596 0.0260

AT5G09480 0.2707 0.5569 0.0280

AT1G27030 0.2668 0.5487 0.0236

AT2G33850 0.2659 0.5461 0.0228

AT1G66500;AT5G43620 0.2605 0.5330 0.0234

AT2G26400 0.2559 0.5198 0.0234

AT1G19020 0.2404 0.4551 0.0219
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Table B.10: GO:0006950[response to stress]

gene DV M SD

AT5G45500 0.2389 0.4481 0.0200

AT1G29670 0.2340 0.4332 0.0219

AT3G29970 0.2330 0.4300 0.0217

AT1G70830;AT1G70850 0.2318 0.4264 0.0213

AT5G10695 0.2309 0.4246 0.0220

AT2G19970 0.2265 0.4188 0.0199

AT4G33560 0.2252 0.4154 0.0192

AT2G41730 0.2235 0.4114 0.0179

AT2G32210 0.2210 0.4070 0.0180

AT2G42610 0.2205 0.4066 0.0182

AT1G14870 0.2199 0.4049 0.0179

AT1G61340 0.2187 0.4021 0.0171

AT4G21840;AT4G21830 0.2178 0.4004 0.0168

AT5G18470 0.2176 0.3998 0.0172

AT5G25260;AT5G25250 0.2161 0.3959 0.0175

AT3G26450 0.2151 0.3940 0.0159

AT2G05380 0.2150 0.3940 0.0159

AT1G07500 0.2129 0.3889 0.0152

AT4G24110 0.2120 0.3864 0.0152

AT4G33720 0.2110 0.3838 0.0143

AT5G07010 0.2109 0.3833 0.0144

AT4G23670 0.2079 0.3723 0.0140

AT1G19960 0.2051 0.3618 0.0135

AT5G60950 0.2042 0.3585 0.0136
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Table B.10: GO:0006950[response to stress]

gene DV M SD

AT1G67870 0.1988 0.3462 0.0145

AT5G50670;AT5G50570 0.1932 0.3378 0.0143

AT1G80240 0.1927 0.3376 0.0142

AT3G28210 0.1924 0.3370 0.0146

AT4G37070;AT4G37060 0.1918 0.3363 0.0151

AT3G44860 0.1918 0.3363 0.0151

AT3G50480 0.1911 0.3361 0.0150

AT2G32160 0.1908 0.3355 0.0148

AT1G09310 0.1876 0.3333 0.0149

AT5G42860 0.1873 0.3333 0.0146

AT5G63180 0.1828 0.3311 0.0125

AT4G01870 0.1817 0.3300 0.0114

AT3G09350 0.1807 0.3288 0.0114

AT1G52070 0.1805 0.3286 0.0111

AT1G09950 0.1795 0.3274 0.0108

AT2G41380 0.1795 0.3274 0.0108

AT3G02840;AT3G02850 0.1788 0.3260 0.0101

AT1G11210 0.1788 0.3259 0.0101

AT5G22530 0.1787 0.3257 0.0101

AT5G37990 0.1772 0.3229 0.0094

AT5G45110 0.1759 0.3195 0.0095

AT1G64370 0.1751 0.3179 0.0090

AT5G53830 0.1739 0.3145 0.0081

AT1G13340 0.1738 0.3139 0.0083
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Table B.10: GO:0006950[response to stress]

gene DV M SD

AT2G47950 0.1735 0.3134 0.0085

AT1G65690 0.1726 0.3113 0.0084

AT3G03520 0.1701 0.3048 0.0072

AT5G19250 0.1701 0.3047 0.0073

AT3G06390 0.1695 0.3029 0.0072

AT5G64510 0.1690 0.3015 0.0072

AT1G70840 0.1686 0.3002 0.0073

AT5G61660 0.1680 0.2983 0.0075

AT3G59930;AT5G33355 0.1678 0.2977 0.0071

AT2G01530 0.1666 0.2940 0.0070

AT3G57380 0.1665 0.2936 0.0070

AT5G64170 0.1664 0.2934 0.0069

AT3G52870 0.1662 0.2929 0.0070

AT4G22530 0.1652 0.2901 0.0074

AT2G45760 0.1650 0.2896 0.0074

AT1G21680 0.1648 0.2890 0.0073

AT5G23840 0.1645 0.2884 0.0074

AT4G33050 0.1634 0.2855 0.0066

AT1G13470 0.1627 0.2832 0.0069

AT1G17830 0.1620 0.2815 0.0074

AT5G64870 0.1619 0.2814 0.0074

AT1G23960 0.1619 0.2812 0.0074

AT5G44820 0.1616 0.2805 0.0075

AT2G44010 0.1615 0.2803 0.0075
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Table B.10: GO:0006950[response to stress]

gene DV M SD

AT2G19990 0.1608 0.2781 0.0070

AT4G16960;AT4G16880;AT4G16940 0.1607 0.2781 0.0068

AT2G27080;AT2G27090 0.1600 0.2762 0.0065

AT2G46790;AT2G46670 0.1596 0.2751 0.0063

AT5G16030 0.1589 0.2731 0.0061

AT1G18980 0.1589 0.2731 0.0063

Table B.11: GO:0009613[response to pest, pathogen or parasite]

gene DV M SD

AT3G50480 0.3509 1.0000 1.4321

AT3G15240 0.3509 1.0000 1.4321

AT3G28290;AT3G28300 0.3034 0.8115 0.2470

AT1G76960 0.2885 0.5955 0.2640

AT3G44860 0.2718 0.4937 0.1476

Table B.12: GO:0042828[response to pathogen]

gene DV M SD

AT3G50480 0.3666 1.0000 0.0000

AT3G14210 0.3555 1.0000 3.1958

AT3G28290;AT3G28300 0.2991 0.6937 0.3190

AT1G76960 0.2861 0.5956 0.2653

AT3G44860 0.2602 0.4505 0.1000
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Table B.13: GO:0042829[defense response to pathogen]

gene DV M SD

AT1G76960 0.9110 NaN NaN

AT3G50480 0.8323 NaN NaN

AT5G03350 0.7370 0.4865 0.4513

Table B.14: GO:0006974[response to DNA damage stimulus]

gene DV M SD

AT3G09040 0.2288 0.6138 0.2923

AT5G20460 0.2147 0.5158 0.1932

255186 at 0.2144 0.5112 0.1914

Table B.15: GO:0006281[DNA repair]

gene DV M SD

AT3G09040 0.2387 0.6829 0.3956

AT5G20460 0.2189 0.5872 0.2266

255186 at 0.2097 0.4823 0.1616

AT2G44420 0.2078 0.4704 0.1565
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Table B.16: GO:0006979[response to oxidative stress]

gene DV M SD

AT4G02270 0.9739 0.5262 0.0753

AT2G19970 0.9754 0.5233 0.0791

AT2G23540 0.9644 0.5090 0.0781

AT2G01520 0.9625 0.5082 0.0768

AT4G39675 0.9351 0.4778 0.0584

AT4G38080 0.9313 0.4829 0.0581

AT4G33720 0.8967 0.4736 0.0549

AT4G00680 0.8916 0.4619 0.0511

Table B.17: GO:0009409[response to cold]

gene DV M SD

AT1G16850 0.9978 1.0000 0.2479

AT3G28290;AT3G28300 0.9942 1.0000 0.1819

AT1G11210 0.8590 0.6624 0.0632

AT5G42900 0.7491 0.5571 0.0469

AT3G22240 0.7428 0.5509 0.0475

AT4G16146 0.7356 0.5457 0.0465

AT3G14210 0.6719 0.5191 0.0401

AT5G50360 0.5625 0.4513 0.0167
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B.3 Quadratic Discriminant Analysis

Table B.18: GO:0006950[response to stress]

gene DV M SD

AT4G39675 0.5798 0.7757 0.2149

AT3G28290;AT3G28300 0.5693 0.6694 0.0539

AT1G52070 0.5688 0.6693 0.0509

AT4G00680 0.5654 0.6716 0.0385

AT3G50480 0.5637 0.6831 0.0588

AT4G33560 0.5625 0.6911 0.0669

AT5G09530 0.5621 0.6891 0.0643

AT4G38080 0.5615 0.6856 0.0601

AT4G02270 0.5599 0.6611 0.0534

AT2G23540 0.5591 0.6404 0.0488

AT5G05500 0.5586 0.6301 0.0415

AT4G37070;AT4G37060 0.5581 0.6186 0.0381

AT5G03350 0.5571 0.5837 0.0326

AT3G47250 0.5557 0.5455 0.0336

AT2G19970 0.5548 0.5277 0.0333

255181 at 0.5545 0.5224 0.0318

AT3G29970 0.5539 0.5093 0.0275

AT1G18980 0.5535 0.5046 0.0270

AT1G16850 0.5532 0.5008 0.0248

AT1G70830;AT1G70850 0.5530 0.4992 0.0245

AT2G05510 0.5527 0.4960 0.0248

AT1G58025 0.5518 0.4852 0.0245



Appendix B. Tables 81

Table B.18: GO:0006950[response to stress]

gene DV M SD

AT5G60950 0.5517 0.4833 0.0242

AT1G33055 0.5509 0.4745 0.0250

AT3G14210 0.5507 0.4723 0.0230

AT2G42610 0.5505 0.4700 0.0244

AT3G48640 0.5502 0.4673 0.0241

AT5G23830 0.5484 0.4531 0.0220

AT1G80240 0.5481 0.4508 0.0203

AT5G26280;AT5G26260 0.5481 0.4505 0.0203

AT5G38940;AT5G38930 0.5477 0.4472 0.0183

AT1G23960 0.5471 0.4405 0.0194

AT1G76960 0.5471 0.4405 0.0191

AT2G01520 0.5470 0.4394 0.0190

AT1G13470 0.5467 0.4374 0.0185

AT3G16450 0.5466 0.4364 0.0179

AT2G39310 0.5463 0.4339 0.0181

AT5G15360 0.5463 0.4339 0.0181

AT5G10040 0.5459 0.4306 0.0174

AT2G14560 0.5458 0.4298 0.0180

AT5G37990 0.5457 0.4298 0.0178

AT2G40330 0.5455 0.4273 0.0181

AT2G32160 0.5455 0.4274 0.0179

AT1G66690 0.5450 0.4248 0.0174

AT2G33850 0.5445 0.4207 0.0176

AT2G36220 0.5445 0.4204 0.0172
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Table B.18: GO:0006950[response to stress]

gene DV M SD

AT5G26300;AT5G26280;AT5G26260 0.5444 0.4193 0.0170

252346 at 0.5437 0.4123 0.0141

AT4G25790 0.5436 0.4110 0.0135

AT2G36100 0.5435 0.4093 0.0140

AT2G01530 0.5431 0.4068 0.0134

AT3G10930 0.5428 0.4033 0.0141

AT3G18170 0.5427 0.4025 0.0140

AT5G09480 0.5425 0.4002 0.0150

AT1G01750 0.5423 0.3974 0.0157

AT1G27030 0.5420 0.3959 0.0150

258246 s at 0.5419 0.3945 0.0141

AT1G61340 0.5418 0.3934 0.0143

AT1G70890 0.5413 0.3870 0.0141

AT1G67865 0.5410 0.3835 0.0141

AT4G24110 0.5410 0.3834 0.0136

AT3G44860 0.5409 0.3825 0.0131

AT2G44010 0.5408 0.3808 0.0127

AT1G11210 0.5406 0.3789 0.0119

AT3G12540 0.5404 0.3768 0.0112

AT5G50670;AT5G50570 0.5402 0.3743 0.0107

AT1G23130 0.5401 0.3739 0.0105

AT3G14440 0.5398 0.3695 0.0102

AT1G66500;AT5G43620 0.5394 0.3648 0.0100

AT1G80960 0.5388 0.3579 0.0095
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Table B.18: GO:0006950[response to stress]

gene DV M SD

AT3G11550 0.5388 0.3577 0.0096

AT3G16440 0.5386 0.3570 0.0099

AT1G58270 0.5385 0.3560 0.0097

AT5G25260;AT5G25250 0.5383 0.3538 0.0101

AT4G16960;AT4G16880;AT4G16940 0.5379 0.3497 0.0098

AT1G25097;AT1G24822;AT1G24996;AT1G25170 0.5377 0.3483 0.0094

AT3G20370 0.5377 0.3479 0.0091

AT3G22240 0.5374 0.3442 0.0090

AT1G19960 0.5372 0.3427 0.0092

AT2G15560 0.5371 0.3421 0.0089

AT3G45160 0.5371 0.3418 0.0087

AT4G22510 0.5370 0.3409 0.0087

AT5G61660 0.5370 0.3403 0.0085

AT3G47480 0.5369 0.3395 0.0087

AT1G50060 0.5368 0.3387 0.0083

AT4G33730 0.5368 0.3386 0.0083

AT2G37750 0.5366 0.3370 0.0084

AT1G67870 0.5366 0.3368 0.0082

AT3G04320 0.5364 0.3356 0.0081

AT1G17830 0.5363 0.3348 0.0081

AT5G44580 0.5363 0.3348 0.0081

AT1G17380 0.5363 0.3346 0.0081

AT1G35140 0.5362 0.3336 0.0080

AT5G44820 0.5357 0.3301 0.0086
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Table B.18: GO:0006950[response to stress]

gene DV M SD

AT4G30140 0.5357 0.3300 0.0090

AT2G19990 0.5355 0.3291 0.0086

AT4G15390 0.5355 0.3283 0.0085

AT5G61160 0.5354 0.3279 0.0085

AT3G16430;AT3G16420 0.5351 0.3256 0.0086

AT4G16146 0.5350 0.3251 0.0087

B.4 Naive Bayes

Table B.19: GO:0006950[response to stress]

gene DV M SD

AT3G16430;AT3G16420 0.5309 0.7220 0.1184

AT4G38080 0.5284 0.8288 0.0949

AT4G23680 0.5284 0.8294 0.0932

AT2G33850 0.5280 0.8321 0.0725

AT4G39675 0.5278 0.8308 0.0757

AT2G05510 0.5277 0.8310 0.0738

AT2G42610 0.5273 0.8215 0.0646

AT5G03350 0.5269 0.7998 0.0582

AT2G01520 0.5267 0.7734 0.0542

AT3G22240 0.5266 0.7627 0.0535

AT5G09530 0.5259 0.6613 0.0391
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Table B.19: GO:0006950[response to stress]

gene DV M SD

AT1G76960 0.5254 0.6073 0.0314

AT2G19970 0.5252 0.5884 0.0290

AT1G13470 0.5248 0.5519 0.0311

AT5G05060 0.5246 0.5447 0.0322

AT5G42900 0.5246 0.5389 0.0335

AT1G23960 0.5243 0.5202 0.0292

AT3G30720 0.5243 0.5203 0.0286

AT5G62280 0.5241 0.5056 0.0254

AT1G66690 0.5240 0.4931 0.0249

AT4G33720 0.5235 0.4570 0.0149

AT5G26300;AT5G26280;AT5G26260 0.5235 0.4506 0.0134

AT1G24020 0.5232 0.4301 0.0124

AT5G61160 0.5231 0.4221 0.0122

AT1G73260 0.5230 0.4127 0.0103

AT2G23540 0.5230 0.4082 0.0095

AT4G15390 0.5228 0.3961 0.0091

AT5G66985 0.5228 0.3954 0.0091

AT3G28290;AT3G28300 0.5226 0.3889 0.0112

AT3G14210 0.5226 0.3878 0.0114

AT2G25625 0.5224 0.3736 0.0135

AT1G14120 0.5223 0.3705 0.0137

AT1G23130 0.5220 0.3582 0.0141

AT4G15620 0.5220 0.3577 0.0144

AT4G27860 0.5220 0.3577 0.0144
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Table B.19: GO:0006950[response to stress]

gene DV M SD

AT2G05380 0.5219 0.3521 0.0156

AT2G39310 0.5217 0.3446 0.0148

AT2G41230 0.5215 0.3384 0.0142

AT3G02480 0.5215 0.3378 0.0139

AT1G29670 0.5215 0.3360 0.0140

AT3G28220 0.5215 0.3360 0.0139

AT3G16390 0.5214 0.3337 0.0148

AT4G01390 0.5210 0.3256 0.0161

AT3G05730 0.5209 0.3249 0.0154

AT5G46960 0.5208 0.3243 0.0137

AT4G33560 0.5207 0.3232 0.0141

AT5G22460 0.5206 0.3216 0.0145

AT1G03940 0.5206 0.3209 0.0142

AT2G15560 0.5205 0.3206 0.0140

AT5G26280;AT5G26260 0.5203 0.3169 0.0127

AT5G10040 0.5202 0.3159 0.0122

AT3G10320 0.5201 0.3146 0.0106

AT5G64510 0.5200 0.3106 0.0101

AT1G16850 0.5199 0.3087 0.0100

AT2G41380 0.5199 0.3081 0.0100

AT2G41730 0.5198 0.3073 0.0100

AT3G55970 0.5198 0.3067 0.0095

AT3G16450 0.5197 0.3060 0.0092

AT2G19850 0.5197 0.3044 0.0094
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Table B.19: GO:0006950[response to stress]

gene DV M SD

AT1G53885 0.5196 0.3023 0.0092

AT1G80240 0.5196 0.3019 0.0089

AT4G23670 0.5195 0.3002 0.0091

AT3G59930;AT5G33355 0.5195 0.3003 0.0091

AT2G24762 0.5194 0.2993 0.0089

AT3G18250 0.5193 0.2971 0.0087

AT5G07010 0.5193 0.2963 0.0086

AT1G18980 0.5192 0.2940 0.0088

AT1G67870 0.5192 0.2938 0.0089

AT1G52070 0.5192 0.2937 0.0089

AT5G38940;AT5G38930 0.5192 0.2936 0.0089

AT5G37990 0.5192 0.2936 0.0088

AT1G11210 0.5192 0.2927 0.0085

AT3G16530 0.5191 0.2923 0.0083

AT4G30140 0.5191 0.2911 0.0080

AT2G32160 0.5190 0.2903 0.0078

AT5G09480 0.5190 0.2890 0.0082

AT5G45500 0.5190 0.2888 0.0082

AT3G10930 0.5189 0.2883 0.0089

AT5G25460 0.5189 0.2877 0.0090

AT3G45730 0.5189 0.2874 0.0087

AT1G19960 0.5188 0.2863 0.0087

AT5G20790 0.5188 0.2861 0.0087

AT1G80130 0.5187 0.2849 0.0090
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Table B.19: GO:0006950[response to stress]

gene DV M SD

AT3G48640 0.5187 0.2847 0.0089

AT1G33055 0.5187 0.2844 0.0086

AT2G14560 0.5186 0.2838 0.0085

AT1G25097;AT1G24822;AT1G24996;AT1G25170 0.5186 0.2835 0.0084

AT1G78450 0.5185 0.2829 0.0085

AT3G50480 0.5184 0.2813 0.0087

AT4G14060 0.5183 0.2794 0.0085

AT1G09310 0.5183 0.2794 0.0084

AT4G37070;AT4G37060 0.5182 0.2788 0.0090

AT5G37300 0.5181 0.2785 0.0090

AT5G23820 0.5180 0.2770 0.0090

AT2G46790;AT2G46670 0.5180 0.2768 0.0089

AT1G58270 0.5180 0.2767 0.0090

AT2G44240 0.5179 0.2762 0.0091

AT2G26400 0.5179 0.2765 0.0089

AT1G70830;AT1G70850 0.5178 0.2747 0.0079

AT5G02580 0.5177 0.2740 0.0075

B.5 K-Nearest Neighbors
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Table B.20: GO:0006950[response to stress]

gene DV M SD

AT5G38940;AT5G38930 0.4510 1.0000 1.4651

AT1G80960 0.4314 0.6446 0.5063

255181 at 0.3725 0.6164 0.0867

AT4G39675 0.3725 0.6164 0.0867

AT4G02270 0.3725 0.6164 0.0867

AT3G28290;AT3G28300 0.3725 0.6164 0.0867

AT2G39310 0.3725 0.6164 0.0867

AT3G44860 0.3529 0.5683 0.0466

AT5G05500 0.3529 0.5683 0.0466

AT3G50480 0.3529 0.5683 0.0466

AT4G30140 0.3529 0.5683 0.0466

AT4G00680 0.3529 0.5683 0.0466

AT1G21360 0.3529 0.5683 0.0466

AT1G01750 0.3529 0.5683 0.0466

AT1G70830;AT1G70850 0.3529 0.5683 0.0466

245079 at 0.3333 0.5137 0.0323

AT2G27370 0.3333 0.5137 0.0323

AT4G25790 0.3333 0.5137 0.0323

AT3G23190 0.3333 0.5137 0.0323

AT3G11550 0.3333 0.5137 0.0323

AT3G16460 0.3333 0.5137 0.0323

AT3G16440 0.3333 0.5137 0.0323

AT3G16450 0.3333 0.5137 0.0323

AT1G30750 0.3333 0.5137 0.0323
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Table B.20: GO:0006950[response to stress]

gene DV M SD

AT2G01530 0.3333 0.5137 0.0323

AT5G40730 0.3137 0.4529 0.0267

AT3G54040 0.3137 0.4529 0.0267

AT3G22240 0.3137 0.4529 0.0267

AT1G33700 0.3137 0.4529 0.0267

AT1G53870;AT1G53890 0.3137 0.4529 0.0267

AT2G36100 0.3137 0.4529 0.0267

AT1G12080 0.3137 0.4529 0.0267

258246 s at 0.2941 0.4179 0.0187

AT4G16960;AT4G16880;AT4G16940 0.2941 0.4179 0.0187

AT5G26300;AT5G26280;AT5G26260 0.2941 0.4179 0.0187

AT5G50670;AT5G50570 0.2941 0.4179 0.0187

AT5G23830 0.2941 0.4179 0.0187

AT4G30670 0.2941 0.4179 0.0187

AT4G30320 0.2941 0.4179 0.0187

AT2G07777;ATMG01090 0.2941 0.4179 0.0187

AT3G09350 0.2941 0.4179 0.0187

AT1G14120 0.2941 0.4179 0.0187

AT1G52070 0.2941 0.4179 0.0187

AT5G26280;AT5G26260 0.2745 0.4109 0.0138

AT3G59930;AT5G33355 0.2745 0.4109 0.0138

AT3G47250 0.2745 0.4109 0.0138

AT4G29270 0.2745 0.4109 0.0138

AT4G23680 0.2745 0.4109 0.0138
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Table B.20: GO:0006950[response to stress]

gene DV M SD

AT5G44820 0.2745 0.4109 0.0138

AT3G16430;AT3G16420 0.2745 0.4109 0.0138

AT1G18980 0.2745 0.4109 0.0138

AT1G80240 0.2745 0.4109 0.0138

AT2G44010 0.2745 0.4109 0.0138

AT1G30250 0.2549 0.3926 0.0123

AT4G36500 0.2549 0.3926 0.0123

AT5G60950 0.2549 0.3926 0.0123

AT5G51620 0.2549 0.3926 0.0123

AT5G50565;AT5G50665 0.2549 0.3926 0.0123

AT5G44610 0.2549 0.3926 0.0123

AT5G44820 0.2549 0.3926 0.0123

AT4G38080 0.2549 0.3926 0.0123

AT4G33730 0.2549 0.3926 0.0123

AT4G00080 0.2549 0.3926 0.0123

AT1G13750 0.2549 0.3926 0.0123

AT3G16800 0.2549 0.3926 0.0123

AT3G20370 0.2549 0.3926 0.0123

AT3G06500 0.2549 0.3926 0.0123

AT3G04320 0.2549 0.3926 0.0123

AT1G73260 0.2549 0.3926 0.0123

AT1G76960 0.2549 0.3926 0.0123

AT1G67330 0.2549 0.3926 0.0123

245449 at 0.2353 0.3606 0.0090
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Table B.20: GO:0006950[response to stress]

gene DV M SD

AT4G37070;AT4G37060 0.2353 0.3606 0.0090

AT5G25280 0.2353 0.3606 0.0090

AT5G46500 0.2353 0.3606 0.0090

AT5G44570 0.2353 0.3606 0.0090

AT5G39120;AT5G39150;AT5G39180;AT5G39110 0.2353 0.3606 0.0090

AT5G24313 0.2353 0.3606 0.0090

AT5G23840 0.2353 0.3606 0.0090

AT5G03350 0.2353 0.3606 0.0090

AT3G56410 0.2353 0.3606 0.0090

AT3G52470 0.2353 0.3606 0.0090

AT4G22080;AT4G22090 0.2353 0.3606 0.0090

AT1G19180 0.2353 0.3606 0.0090

AT1G16850 0.2353 0.3606 0.0090

AT3G12540 0.2353 0.3606 0.0090

AT3G20590 0.2353 0.3606 0.0090

AT3G29670 0.2353 0.3606 0.0090

AT1G72450 0.2353 0.3606 0.0090

AT1G07600;AT1G07590 0.2353 0.3606 0.0090

AT1G14870 0.2353 0.3606 0.0090

AT1G59930;AT1G59920 0.2353 0.3606 0.0090

AT2G31880;AT2G31890 0.2353 0.3606 0.0090

AT2G15890 0.2353 0.3606 0.0090

AT2G05510 0.2353 0.3606 0.0090

AT2G01520 0.2353 0.3606 0.0090
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Table B.20: GO:0006950[response to stress]

gene DV M SD

AT2G30930 0.2353 0.3606 0.0090

265974 at 0.2157 0.3307 0.0095

AT5G64870 0.2157 0.3307 0.0095

AT5G62280 0.2157 0.3307 0.0095
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Pseudocode

This chapter shows the pseudocode for generating the TP vs. PP plot (Section C.1),

generating the prediction table (Section C.2), generating the precision vs. PP plot (Sec-

tion C.3), model intersection based on discriminant values (Section C.4), model averaging

and model stacking (Section C.5).

C.1 The TP vs. PP Plot

Algorithm C.1.1 shows how to generate the cloudy and mean TP vs. PP plot for a

given classification method, M. With method M, cross-validation on the training data

is performed 100 times, yielding 100 discriminant values for each gene. As thresholds,

another top 100 discriminant values are generated by applying the classifier C (learned

from the training data using method M) back to the training data. For each of the top

100 discriminant values, 100 TP and 100 PP are computed using the cross-validation

results. Also, for each of the top 100 discriminant values, the mean of the 100 TP and

the mean of the 100 PP are computed for generating the mean TP vs. PP curve.

94
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Algorithm C.1.1: Plot TP VS PP(method : M)

Train a classifier, C, using method M.

Apply C to the training data to generate a discriminant value for each gene.

Let DV1, DV2, ..., DV100 be the top 100 such discriminant values.

Begin plot

1. Generate 100 randomizations, R, of the training data.

for each randomization ∈ R

do

Do 20-fold cross-validation using method M on the training data.

Store the cross-validation results (the discriminant value for each gene).

2.

for each DVi ∈ {DV1, DV2, ..., DV100}

do



for each randomization ∈ R

do



Compute TP and PP from the cross-validation results (i)

(PP is the number of predicted positives whose discriminant

values are greater than DVi, and TP is number of

the predicted positives that are true).

plot(PP,TP).

Compute the average TP (mean(TP)) and average PP (mean(PP))

over all the randomizations.

plot(mean(PP),mean(TP)).

End plot
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Algorithm C.1.2 shows how to generate the cloudy and mean TP vs. PP plot for the

permutation data, given a classification method, M. This procedure is similar to Algo-

rithm C.1.1 except that the GOBP data are permuted for each of the 100 randomizations.

Algorithm C.1.2: Plot TP VS PP Permuted(method : M)

Train a classifier, C, using method M.

Apply C to the training data (GOBP data permuted) to generate a discriminant

value for each gene.

Let DV1, DV2, ..., DV100 be the top 100 such discriminant values.

Begin plot

1. Generate 100 randomizations, R, of the training data.

for each randomization ∈ R

do


Permute the GOBP data.

Do 20-fold CV using method M on the training data.

Store the cross-validation results (the discriminant value for each gene).

2.

for each DVi ∈ {DV1, DV2, ..., DV100}

do



for each randomization ∈ R

do


Compute TP and PP from the cross-validation results (see (i)

in Algorithm C.1.1).

plot(PP,TP).

Compute the average TP (mean(TP)) and average PP (mean(PP))

over all the randomizations.

plot(mean(PP),mean(TP)).

End plot
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C.2 The Prediction Table

Algorithm C.2.1 shows how to generate the prediction table. A classifier, C, learned from

the training data, is applied to the prediction data to predict the discriminant value of

each gene. For each of the top 100 predictions (with the top 100 discriminant values),

the mean precision and the standard deviation of the precision are computed using the

cross-validation results on the training data.

Algorithm C.2.1: Generate Prediction Table(method : M)

% Obtain the cross-validation results and 100 randomizations, R (see Algorithm C.1.1).

Plot TP VS PP(M).

Train a classifier, C, using method M.

Apply classifier C to the prediction data to generate a discriminant value for

each gene.

Let DV1, DV2, ..., DV100 be the top 100 such discriminant values.

for each DVi ∈ {DV1, ..., DV100}

do



for each randomization ∈ R

do

Compute TP and PP from the cross-validation results (see

(i) in Algorithm C.1.1).

Compute average TP (mean(TP)) and average PP (mean(PP))

over all randomizations.

Let mean = mean(TP)/mean(PP).

Let sd = standard deviation of the precision (see Formula 3.18 in Chapter 3).

print(gene i, DVi, mean, sd).
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C.3 The Precision vs. PP Plot

Algorithm C.3.1 shows how to generate the (cloudy) precision vs. PP plot for a given

classification method, M. A classifier C is learned from the training data using method

M. The discriminant value of each gene in the prediction data is predicted using C. The

top 100 genes (with the top 100 discriminant values) are selected as predictions. For

each prediction, 100 precision estimates and the mean of them are computed using the

cross-validation results on the training data. Finally, a theoretical precision that the

random classifier could achieve is added.
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Algorithm C.3.1: Plot Precision VS PP(method : M)

% Obtain the cross-validation results and 100 randomizations, R (see Algorithm C.1.1).

Plot TP VS PP(M).

Train a classifier, C, using method M.

Apply classifier C to the prediction data to generate a discriminant value for

each gene.

Let DV1, ..., DV100 be the top 100 such discriminant values.

Begin plot

1.

for each DVi ∈ {DV1, DV2, ..., DV100}

do



for each randomization ∈ R

do



Compute TP and PP from the cross-validation results (see (i)

in Algorithm C.1.1).

Let ˆprec = TP/PP.

plot(PP, ˆprec).

Compute average TP (mean(TP)) and average PP (mean(PP))

over all randomizations.

Let mean = mean(TP)/mean(PP).

PP = i.

plot(PP, mean).

2. % Plot the theoretical worst-case curve.

RP = #positives in training data / #training samples.

Add a horizontal line with height RP for the random classifier.

End plot
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C.4 C-AND

Algorithm C.4.1 shows how we intersect two classification methods, M1 and M2, and how

we assess them. The basic idea is to compare the top n predictions of M1 with the top n

predictions of M2, and to keep only those predictions that are in both sets. This is done

for n from 1 to N .
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Algorithm C.4.1: C-AND(method : M1,M2)

1.

Generate 100 randomizations, R, of the training data.

for each randomization ∈ R

do


Using 20-fold cross-validation, estimate a discriminant value for

each training sample using M1.

Sort the training samples by discriminant values.

for each randomization ∈ R

do


Using 20-fold cross-validation, estimate a discriminant value for

each training sample using M2.

Sort the training samples by discriminant values.

2.

Let N = 100.

Apply method M1 to the training data to get a classifier, C1.

Let a1, ..., aN be the top N discriminant values of C1 on the training samples.

Likewise for b1, ..., bN . (Note: This is the training step.)

Let (a1, b1), (a2, b2), ..., (aN , bN) be the N pairs of discriminant values.

for each randomization ∈ R

do



for each (ai, bi)

do



Using the sorted training samples, compute PP and TP (PP is

the number predicted positives, and TP is number of true

positives predicted by both M1 and M2).

plot(PP,TP).
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C.5 Model Averaging and Model Stacking

Algorithm C.5.1 shows the code for model averaging. For each of the basic classification

method, Mj (j = 1, 2, ..., 5), a basic classifier, Cj, is learned from the training data. Cj is

applied back to the training data to generate a discriminant value for each gene. Thus,

each gene has a new feature vector consisting of the discriminant values from the five

basic classifiers. These feature vectors are input to a combining classification method,

C, to create an “averaged classifier.” The averaged classifier linearly combines the five

basic classifiers using five weights.
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Algorithm C.5.1: Model averaging(method : M1,M2,M3,M4,M5)

1. Training:

Let C be the combining classifier.

Train a basic classifier, Cj, using method Mj (j = 1, 2, ..., 5).

Apply Cj to all of the training data to generate a discriminant value for each

gene.

Let Dij be the discriminant value of sample xi using classifier Cj.

So, for each gene, i, we get a vector of discriminant values, (Di1, Di2, ...Di5).

Create an “averaged classifier” by performing C on these new feature vectors

(using same GOBP).

This averaged classifier produces a discriminant value for each gene.

2. Prediction:

for each gene in the prediction data

do


for each method Mj ∈ {M1, M2, M3, M4, M5}

do

{
Compute a “basic” discriminant value.

for each gene in the prediction data

do

Apply the averaged classifier to the gene’s basic discriminant values

to compute an averaged discriminant value.

3. Cross-validation:

Divide the training data into 20 folds.

for each fold, F

do


Train all the basic classifiers on the other 19 folds.

Train the averaged classifier on the other 19 folds using C.

Test the averaged classifier on fold F.
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Algorithm C.5.2 shows the code for model stacking. For each of the five basic classi-

fication methods, Mj (j = 1, 2, ..., 5), cross-validation is used to generate a discriminant

value for each gene in the training data. Thus, each gene has a new feature vector

consisting of the five discriminant values from the cross-validation results. These new

feature vectors are input to a combining classifier, C, to create a “stacked classifier,”

which linearly combines the five basic classifiers using five weights.



Appendix C. Pseudocode 105

Algorithm C.5.2: Model stacking(method : M1,M2,M3,M4,M5)

1. Training:

Divide the training data into 20 folds. for each fold, F

do



for each method Mi ∈ {M1, M2, M3, M4, M5}

do


Train a classifier on the other 19 folds.

Using the classifier, compute a discrim-

inant value for each gene in fold F.

% We now have a feature vector of five discriminant values for each gene.

Create a “stacked classifier” by training the combining classifier, C, on

these new feature vectors (using same GOBP).

This stacked classifier produces a discriminant value for each gene.

2. Prediction:

for each basic method, Mi ∈ {M1, M2, M3, M4, M5}

do

{
Train a basic classifier, Ci, on all the training data (for use in prediction).

for each gene in the prediction data

do


for each basic classifier, Ci

do

{
Compute a “basic” discriminant value.

for each gene in the prediction data

do

Apply the stacked classifier to the gene’s basic discriminant values

to compute a stacked discriminant value.

3. Cross-validation:

Divide the training data into 20 folds. for each fold F of the 20 folds

do



Train a stacked classifier on the other 19 folds (note that this involves

dividing the 19 folds into training and validation folds for training the

stacked classifier).

Test the stacked classifier on fold F.
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