
Statistical Learning of Gene Annotations in Saccharomyces

Cerevisiae

by

Miles Trochesset

A thesis submitted in conformity with the requirements

for the degree of Master of Science

Department of Computer Science

University of Toronto

Copyright c 2004 by Miles Trochesset

Abstract

Statistical Learning of Gene Annotations in Saccharomyces Cerevisiae

Miles Trochesset

Master of Science

Department of Computer Science

University of Toronto

2004

This work presents an investigation of machine learning techniques which can be

applied to quantitative data obtained from experiments on yeast. Our goal is to predict

the function of genes, more speci�cally for those which currently have no known function.

We investigate data-preprocessing methods, and develop two algorithms for �lling

missing values in the datasets. This is a necessary step before some statistical methods

can be used to predict gene function.

We present two standard machine learning algorithms, one used in a non-standard

way, for predicting the biological functions of genes in a systematic and comprehensive

manner. Determining gene function is simpli�ed to a series of binary classi�cations

and one of the challenges of this learning task lies in the extremely small number of

positives, compared with large amounts of negatives samples. We develop a method

based on hierarchical clustering used with labeled data to search for regions of high

positive concentrations and make predictions for the unlabeled genes. We investigate

logistic regression as a baseline for comparing to our technique. Both of these methods

are based on di�erent views of the data and we found that depending on the biological

processes, one or the other of these approaches performs better, although our method

makes more con�dent predictions for more biological processes.

The outcomes of the research are threefold: �rst we present two algorithms for missing

value estimation. Second we build a new biological data mining method based on existing

ii

machine learning tools that are readily accepted in the biological community. Third we

make biological predictions of gene functions, each associated with a level of con�dence

and all above 50% precision.

iii

This thesis is dedicated to my mom and my grandpa.

iv

Acknowledgements

I would like to thank several people that have helped me with this work. Pr. Anthony

Bonner for supervising my research, for meeting with me often, and for introducing me

to Pr. Timothy Hughes. Pr. Sam Roweis for teaching the machine learning class which

made me want to work in the �eld, and for meeting with me a few times. Dr. Quaid

Morris for helping me with machine learning issues, sending me papers related to my

work, telling me matlab tricks and giving me scripts. Hughes Lab for providing the data

necessary for this research. Pr. Timothy Hughes for giving me a position in his lab

and projects, for making me realize the importance of �gures, and most importantly for

teaching me the basics about genomics and biology. Dr. Laurent Mignet for making

me switch to emacs and fvwm, and helping me with various UNIX related problems I've

encountered. Pr. Marc Grynpas for helping me making decisions.

v

Contents

1 Introduction 1

1.1 Determining gene function as a classi�cation task 2

1.2 Unbalanced classes . 3

1.3 Two models for the structure of the data 4

1.4 Types of data used . 5

1.5 Outline . 6

2 An overview of the data 9

2.1 Analysis of essential genes through promoter-shuto� strains 10

2.2 Phenotypic data . 11

2.2.1 Cell size distributions . 11

2.2.2 Drug Sensitivity . 11

2.2.3 Cell morphologies . 11

2.3 Gene expression data from cDNA microarrays 12

2.4 Labels . 14

2.4.1 Gene ontologies . 14

2.4.2 Gene annotations . 15

2.4.3 Some statistics about the current knowledge on yeast 16

3 Data Preprocessing 19

3.1 Imputing missing values . 19

vi

3.1.1 Removing incomplete samples . 20

3.1.2 Replacing missing values by a constant 20

3.1.3 Using the average . 21

3.1.4 Computing Pearson's correlation when values are missing 21

3.1.5 K-nearest neighbors for imputing missing data 23

3.1.6 Least squares regression, the complete case 24

3.1.7 HLS: heuristic least squares regression 24

3.1.8 ILS: iterative least square regressions 25

3.2 Measuring performance . 26

3.2.1 Error estimation . 26

3.2.2 Results on simulated data . 27

4 Logistic Regression for predicting gene function 29

4.1 Introduction . 29

4.2 Logistic regression . 30

4.2.1 The model . 30

4.2.2 Fitting the parameters to the data 31

4.3 Cross validation for customized decision rules 32

4.4 Predicting functions for the unlabeled genes 37

4.5 The challenge of having few positive samples 38

4.6 Results . 39

5 Hierarchical clustering with labels for predicting gene function 41

5.1 Introduction . 41

5.2 Hierarchical clustering . 45

5.3 Details of our algorithm . 47

5.4 Results . 49

6 Conclusions and future work 54

vii

Bibliography 56

viii

Chapter 1

Introduction

The research in this thesis focuses on the area of computational biology, and more speci�-

cally computational tools applied to functional genomics. Functional genomics is the part

of biology that tries to obtain higher meaning and possibly determine function for pieces

of a genome. In the traditional approach, the �rst step in this process is to cut the entire

genome of an organism into small pieces, sequence them all and map the pieces to the

chromosomes to get their respective locations. Once the full sequence is assembled, the

following step is to apply computational methods such as GenScan [BK97] for predicting

the number and positions of genes on the chromosomes as well as their exon and intron

structures. Finally with the sequence of the predicted genes, we can try to determine

their function, either by experimenting on mutant cells for example, often by knocking

out the gene of interest and studying the e�ects under di�erent environmental conditions

(this is actually the de�nition of a gene function), or by studying the protein encoded

by the gene (in the case of protein coding genes, which are the majority). At the end,

we hope to have an understanding of what role the gene product has on the cell activ-

ity and give biologically meaningful names to the putative genes generally referenced by

systematic names. For example YOR143C (a systematic name referring to chromosome

position) is a gene involved in thiamin biosynthesis whose product is the enzyme thiamin

1

Chapter 1. Introduction 2

pyrophosphokinase and it was therefore named THI80 which is more easily remembered

by biologists.

One of this thesis' goals is to investigate data mining techniques for predicting, in a

systematic and comprehensive manner, the possible functions of all putative and known

genes (a gene may have several biological functions) in a yeast organism called Saccha-

romyces cerevisiae. Data mining is a discipline which aims at the discovery of patterns

in large volumes of data. It came to life in response to the challenges and opportunities

provided by the increasing number of very large high-dimensional databases covering

important areas of human activity, such as those existing in the �eld of biology, but

it is also used extensively in industrial, social and economical activities. Data mining

borrows from several long-established disciplines, among them, database technology, ma-

chine learning and statistics. Here we tried to integrate machine learning tools and adapt

or develop new ones for the purpose of predicting gene function using measurements made

on mutant cells.

We focused more intensely on making predictions for genes for which no biological

function had yet been determined, and decided to analyze in the future the predictions for

genes which had at least one known function. Systematic approaches for identifying the

biological functions of genes are needed to ensure rapid progress from genome sequence

to directed experimentation and applications such as drug discovery.

1.1 Determining gene function as a classi�cation task

The problem of determining gene functions is simpli�ed to a binary classi�cation task.

For each function of interest, we ask whether the gene product has that function or not.

Positive examples are genes for which we know the product has the function, and vice-

versa for the negative examples. This transformation allows us to use algorithms from

the machine learning world to solve this task; binary classi�cation is thoroughly studied

Chapter 1. Introduction 3

in that �eld. There are two drawbacks of using this simpli�cation. First we are now

faced with many classi�cation tasks, one for each function of interest. Last but not least,

functions are now learned independently, and therefore we will lose all the information

contained in the correlation between functions. Nonetheless, this is an obvious �rst step.

There are several sorts of gene functions available in the biology community. We used

the ontologies de�ned by the Gene Ontology Consortium [GO04], which are molecular

function, biological process and cellular component. Biological processes are reasonably

well correlated with gene expression pro�les, and they reect the general nature of gene

function, therefore these were the labels we used for learning function. We will refer

to the genes whose products are known to belong to a particular biological process as

positives, and to the remaining genes as negatives.

Much of the classi�cation work using machine learning in biology has been done

in cancer classi�cation [AED+00, ABN+99, FCD+00, KWR+01, LL03, NR02, RTR+01,

WBD+01] rather than predicting ontologies. This task is investigated in [BGL+00] but

only for 6 classes (which were not de�ned by the Gene Ontology). Our approach is

designed for making prediction for any of the classes in the Gene Ontology, on the order

of a thousand classes.

1.2 Unbalanced classes

Since relatively few genes are involved in a typical biological process, there are far more

negatives than positives, as little as a single positive gene and approximately 6,300 neg-

atives (size of the yeast genome) for some biological processes (although other processes

involve up to 60% of the genes in the genome). The learning task is even harder since

the samples we have comprise only about 10% of the genes in the genome (but required

tremendous amounts of biological work to obtain nonetheless, more than two years of

lab work), 15% of which were unlabeled. As a result the number of positives available

Chapter 1. Introduction 4

in our samples can be extremely small for some biological processes and this constitutes

the main diÆculty in this study. Most algorithms available in machine learning cannot

function or would be expected to lead to poor results in these circumstances.

1.3 Two models for the structure of the data

In order to predict gene function, we examined two di�erent methods based on two views

of the data. The �rst view is that the positives and negatives can be separated by a

hyperplane, which we �t using logistic regression. In the second view, the data constitutes

a sea of negatives with some small islands of positives of unknown size and number. We

identify these concentrations of positives using hierarchical clustering on labeled data,

which is not the standard unsupervised way of using this algorithm. We found that

for some biological processes, one or the other method performs better, although our

hierarchical method produces more con�dent predictions for more biological processes.

Also, the method we develop allows the analysis of biological processes for which we

have as few as 5 positive samples, unlike logistic regression which was unable to make

predictions when the number of positives fell below 20.

We had little choice but to use leave-one-out cross validation for evaluating the learn-

ing procedures because, having so few positives in our samples, we could not a�ord to

waste labeled data by separating it into training and test sets. Moreover, in this appli-

cation, the cost associated with experimentally testing predictions justi�es leave-one-out

cross-validation, not only to measure how well the classi�ers were behaving, but to build

decision rules for classifying the unlabeled samples. This is a main point in our method-

ology and we will explain it in detail later.

Chapter 1. Introduction 5

1.4 Types of data used

Our analysis used two types of data, gene expression from cDNA microarrays and growth

phenotype data. Whole-genome expression pro�ling, facilitated by the development of

DNA microarrays [SSDB95, HMJ+01], represents a major advance in genome-wide func-

tional analysis. A single assay can measure the transcriptional response of thousands of

genes, and often a full genome, to a change in cellular state such as disease, cell-cycle,

cell division, response to stress and chemical compounds, or genetic perturbation and

mutations. Global transcriptional response of all the genes in the genome constitutes a

detailed molecular phenotype and predicting whether a sample is cancerous is a possible

application [AED+00, ABN+99, KWR+01, WBD+01]. However gene expression alone

does not give a full picture of the cell state. Transcripts are predominantly mRNAs

(messenger RNAs) which need to be translated into proteins which sometimes need to

be activated and each of these steps can be regulated by the cell. Therefore more data

types are needed to analyze regulation at a �ner level of granularity which is one of the

reasons why we chose to include several sources of phenotype data in this study.

In general, when the cellular state of two cells a�ect the same biological process,

similar gene expression pro�les are observed [HMJ+00]. For example, mutants a�ecting

the same cellular process often display related transcript pro�les, even if the mutations

a�ect di�erent gene products. In most cases, the global pro�le similarity is suÆcient to

cause association in a clustering analysis. As a result, clustering has been used extensively

in functional genomics to analyze gene expression data [ABN+99, BDSY99, ESBB98,

HMJ+00, SS00] and is what biologists use most for exploratory analysis of microarray

data. This is why we have investigated clustering for making automatic predictions of

gene function in chapter 5.

Chapter 1. Introduction 6

1.5 Outline

The outcomes of this research are threefold. First we study techniques that can be

applied to preprocess the datasets, reduce noise, �ll in missing values and reduce the di-

mensionality. Second we adapt and develop learning algorithms for mining our biological

datasets with the intent to produce a set of predictions of gene function. This set should

be easily understandable and all predictions should be testable and have some measure

of con�dence. It is important whenever possible to explain why the algorithms made

these predictions, which helps in �nding new biological insights and may improve the

performance of future biological assays for discovering gene functions. We want to deter-

mine which experiments and which measurements or combination of measurements were

most informative for the purpose of predicting gene function. Last we make predictions

of gene function, each associated with a level of con�dence and all above 50% precision,

on the basis of cross-validation results.

The area of functional genomics is a challenging environment for computational meth-

ods and speci�c challenges are :

� to use more of the full range of biological data available, many new techniques are

providing data on a genome-wide scale, from high-throughput experiments includ-

ing microarray experiments, phenotypic growth experiments, protein-protein inter-

actions, protein secondary structure predictions and sequence similarity searches.

This data is noisy and techniques for dealing with that are needed; we will describe

the methods we used and developed for denoising our datasets in chapter 3.

� Genes can have multiple functions and not much research has be done on machine

learning algorithms for handling multiple labels for each sample.

� As we will see in Chapter 2, the biological functions we try to predict are organized

in a directed acyclic graph, therefore use of hierarchical class information will be

important for improving the accuracy of prediction making algorithms.

Chapter 1. Introduction 7

� Some genes are known to be involved in a particular biological process, but it is

not often the case that we know which genes are not involved in that biological

process. In fact it should be considered that only positive labels are known for

certain, all negatives are possible positives and were labeled as negative only be-

cause no annotation in the biological process was available for these samples in the

Saccharomyces Genome Database. We are faced with learning in the context of

positive samples only.

� The volume of quantitative biological data now available imposes a need for scalable

solutions; complexity analysis of algorithms is also very important.

� It happens that the number of features measured for each sample is orders of mag-

nitude greater than the number of samples (e.g. in gene expression from DNA

microarrays there can be up to tens of thousands of probes on each array, each

corresponding to a measurement, but the number of samples rarely exceeds a hun-

dred). This is a special case of high dimensional data and it requires dimensionality

reduction techniques.

� Running experiments is costly. Therefore biologists are not interested in the global

accuracy of a prediction set, but are in fact more interested in prediction sets

where predicted positives are indeed true positives. Predicted negatives have almost

no utility since experiments cannot con�rm them. Moreover, since relatively few

predictions can be veri�ed experimentally, it is important for the prediction sets to

be ordered, with the proportion of true positives being very high in the top of the

list. It is not so important that the classi�ers are accurate at the bottom of the list

since the corresponding predictions will not be tested.

The organization of this thesis is as follows:

� An overview of the datasets used in this research is given in Chapter 2.

Chapter 1. Introduction 8

� Chapter 3 describes the data pre-processing steps applied to these datasets, includ-

ing cDNA microarray normalization, imputing missing values and dimensionality

reduction.

� In Chapter 4 we use logistic regression to make some predictions of gene func-

tion. We investigate the challenge of having very few positive samples, and based

upon the cost of making wrong predictions, we use cross validation for designing

customized decision rules.

� Chapter 5 introduces a novel algorithm based on hierarchical clustering for making

predictions of gene functions.

� Finally we draw conclusions about this work and present ideas for future work.

Chapter 2

An overview of the data

The data used in this thesis was gathered at Hughes Lab at the Banting and Best De-

partment of Medical Research in the University of Toronto. Nearly 20% (1,105) of the

approximate 5,800 protein-coding genes of the budding yeast Saccharomyces cerevisiae

are required for viability (under standard laboratory conditions, growth at 30 degrees in

rich medium with glucose as the carbon source), hindering genetic analysis with knock-

outs. The precise molecular and genetic functions of many essential yeast proteins have

not been studied in detail, because it is diÆcult to study essential genes using deletion

mutants.

Transcription, splicing, ribosome biosynthesis, translation, cell wall and membrane

biogenesis, DNA replication, nuclear transport, and basic cytoskeletal functions are all

required for cell proliferation, and genes involved in these processes tend to be essential

[MDH+04]. Speci�c aspects of other cellular functions are also required for viability.

Essential genes are generally more highly conserved in humans; 38% of essential yeast

proteins have counterparts in humans, versus 20% for nonessential genes (with a Blastp

E value of E-50) [Hug02].

In order to investigate the functions of these genes, the Hughes Lab constructed

promoter-shuto� strains for over two thirds of the essential genes and subjected them

9

Chapter 2. An overview of the data 10

to size pro�ling, morphological analysis, drug sensitivity screening and gene expression

pro�ling. These data were used to ask which phenotypic features characterized di�erent

functional classes and also to infer potential functions for uncharacterized genes. In this

thesis, we focus on inferring potential functions. The analysis of how phenotypic features

characterized di�erent functions can be found in [MDH+04].

2.1 Analysis of essential genes through promoter-

shuto� strains

Several techniques can be used to perform genetic analysis on essential genes. The Hughes

Lab used tetracycline-regulatable promoters (TET) [GPAH97] to create mutant alleles

of essential genes. The promoter region of a gene is upstream of the protein coding

region, and therefore a major advantage of the promoter replacement technique is that

the native open reading frame (ORF) is conserved. With the TET system, expression of

a mutant gene is controlled by adding the drug doxycycline to the growth medium, which

has little e�ect on the yeast physiology. The concentration of doxycycline a�ects the rate

of transcription of genes whose promoters have been replaced with the TET version.

Hughes Lab has created TET-mutants for two thirds of the essential genes (602)

which allows direct experimentation on these genes. Each constructed strain is mutated

for exactly one essential gene, so there is a one-to-one correspondence between strains and

genes. Next we briey describe the individual datasets used in this thesis, all available

from [MNA].

Chapter 2. An overview of the data 11

2.2 Phenotypic data

2.2.1 Cell size distributions

When growing a colony of a particular mutant, all cells in the colony are not the same

size, but the distribution of sizes is informative. This dataset consists of the distributions

of cell sizes for 591 of the 602 mutant strains (sampled at 256 sizes). Strains were grown

by batches. Normalization is necessary as there are variations in the size of cells grown on

di�erent batches (due to the amount of time cells where allowed to grow in each batch, or

the media used for growth etc. . .). We normalized the batches by equalizing the median

(over all mutants in a speci�c batch) of the distristributions' medians (median of the

distribution of a speci�c mutant colony). Validation of this normalization was done by

verifying that the distribution of control wild-type strains grown in all batches coincided.

The dimensionality was reduced from 256 to 8 by PCA.

2.2.2 Drug Sensitivity

The sensitivity of the mutant strains to di�erent chemical compounds in 27 experimental

conditions is measured. 685 samples, corresponding to 585 mutant strains with replicates,

were grown on plates with one drug and the size of the colonies were compared to wild-

type grown with the same drug. The value reported in the dataset is the log P-value

that a di�erence existed between the two groups.

2.2.3 Cell morphologies

These measurements represent the morphological features of the mutant cells which were

visually inspected for 17 di�erent characteristics such as elongated, budded or pointed

cells. This data is the only type which is categorical. A 1 indicates that the feature was

slightly observed for all mutant cells, a 0 indicates it was not. On rare occasion other types

appear, 0.5 means the feature was slightly observed but the phenotype was not penetrant,

Chapter 2. An overview of the data 12

2 moderately observed for all cells, 2.5 moderately observed but the phenotype was not

penetrant, 3 severely observed for all cells.

Figure 2.1: Example of cell morphologies

2.3 Gene expression data from cDNA microarrays

DNA microarrays is a recent technology which is used for providing an estimate of the

abundance of chosen RNA transcripts in a sample. It is often the case that a single

microarray tests for the expression of all the genes in the genome of an organism. Typ-

ically there are between 5,000 and 20,000 spots on a microarray, each one measuring

the abundance of a particular transcript. Most microarrays are designed to contain one

measurment per gene, but this is not necessarily the case.

There are two stages in using this technology, designing the microarray and then

hybridizing samples. The �rst stage consists of choosing which transcripts will be mea-

sured and for each one, designing a short oligonucleotide (typically of length 20 to 60 nu-

Chapter 2. An overview of the data 13

cleotides), or constructing long complementary DNA (cDNA) strands, and �nally printing

all spots on the array. The second stage consists of collecting the samples (e.g. collec-

tion of tissues, collection of mutant cells) then labeling the RNA in the samples with

dyes and hybridizing to the arrays. At this stage, the RNA in the samples will bind to

the corresponding oligonucleotides or cDNAs (depending on the technology used). The

abundance of hybridization to each spot can be measured by scanning (this is called

quanti�cation). The dyes in bound RNAs become uorescent when lit by a laser. We

then have an estimate of the abundance of all the RNA in each sample, which can be

used to infer the cellular state. Usually two samples are hybridized to each microarray,

each sample being marked with a di�erent dye. The expression of genes in one sample

are compared to the expressions in the other sample. These two-channel microarrays are

the most common type of gene expression measurements.

Here we used two-channel cDNA microarrays to measure the abundance of transcripts

of the mutant cells relative to the wild-type strain for the entire genome (approximately

6,300 spots on each array). Each experiment was done twice, with dye swapping in the

second experiment and then gene expression was averaged. The 292 samples, correspond-

ing to 218 essential genes with replicates for a couple of the genes. So out of the 602

constructed mutants, the Hughes Lab has gene expression measurements for 218 mu-

tants only. This dataset is publicly available on NCBI Gene Expression Omnibus (GEO)

[GEO] accessible through the identi�er GSE1404. After quanti�cation, hybridized sam-

ples were normalized using background subtraction, followed by a LOWESS smoother

to correct for dye discrepancies and by a high-pass �lter to remove any sorts of spatial

artifacts (scratches, dust, gradient across the array or red corners ...) After investigating

several techniques for imputing missing values, which we describe in chapter 3, we used

BPCA�ll [OST+03], which seemed to perform the best on simulated datasets with the

same proportion of missing data (approximately 13%). In the end the dimensionality

of the data was reduced from 6,307 to 20 using principal components analysis (PCA)

Chapter 2. An overview of the data 14

[HTF01, RSA00] by selecting the eigenvectors associated with the 20 largest eigenvalues

of the covariance matrix.

Each dataset covers a di�erent set of the 602 constructed mutants but these sets

intersect, therefore a simple solution was to use these datasets independently.

2.4 Labels

2.4.1 Gene ontologies

The GO consortium de�ned biological functions which are called ontologies. All bio-

logical functions are assembled into a hierarchy called the Gene Ontology [GO04]. In

this hierarchy, functions are organized in a directed acyclic graph (DAG), a function

can therefore have several parents and children. As we move down into the hierarchy,

functions become more speci�c and vice-versa, functions higher in the hierarchy are more

general. There are three types of gene ontologies: GO biological process, GO molecular

function and GO cellular component. Molecular functions describe very speci�c chemi-

cal properties of the gene product, such as binding to a speci�c compound. Biological

processes are more general, they constitute activities which can require several steps and

involve many compounds. Finally, cellular component describes where the gene product

is found in the organism, it can be a location in the cell (e.g. cytoplasm), or the type of

cell (e.g. germ cells).

Each of these types group together several thousands of functions. For example

the functions DNA replication initiation [GO:0006270], peptidyl-tryptophan bromination

[GO:0018080] are GO biological processes. The functions microtubule plus-end binding

[GO:0051010] and iron superoxyde dismutase activity [GO:0008382] are GO molecular

functions. Finally, rough endoplasmic reticulum membrane [GO:0030867] and female

germ cell nucleus [GO:001674] are GO cellular components.

The version of the Gene Ontology we used (which has since been updated) contained

Chapter 2. An overview of the data 15

1484 biological processes. Some were very broad and general such as protein metabolism

[GO:0019538] or cell organization and biogenesis [GO:0016043]. Top-level (high in the

GO hierarchy) categories are often not speci�c enough to verify experimentally. One

way to restrict this study to the more speci�c ones was to eliminate biological process

involving more than 600 genes (10% of all yeast genes). This number was manually

chosen so as to include the interesting categories and eliminate the general ones.

2.4.2 Gene annotations

Although the gene ontologies are independent of the organism and do not provide func-

tional information for any gene, they provide a basis for studying the functions of genes of

any organism. The actual knowledge comes in the form of gene annotations and, for a few

dozen organisms, there are public databases from which anyone can download the current

knowledge. We downloaded the yeast gene annotations from SGD, the Saccharomyces

Genome Database [CWB+04, DHD+02].

We call unlabeled, genes for which SGD did not provide any annotation and labeled,

genes for which there was at least one annotation. Labeled genes are therefore involved

in at least one biological process. Unlabeled genes represent almost 40% of the genome of

Saccharomyces Cerevisiae. We also call positives, the set of genes involved in a particular

biological process, and negatives, the set of labeled genes which are not involved in it.

Notice that the negatives do not intersect with the unlabeled genes.

One point to be noted here is that the annotations only provide knowledge of positives.

The negatives are not known for certain since they are de�ned in each biological process

as the genes which are neither positive nor unlabeled. The labels have some noise,

because some of these negatives are in fact positives. Nevertheless it is believed that these

mislabeled genes are rare. This is supported by the fact that most biological processes

involve very few genes, so most negatives are indeed real negatives. On the other hand

there should be extremely low noise in the positive labels since these are manually curated

Chapter 2. An overview of the data 16

by experts and a positive annotation is always the result of experimentation.

2.4.3 Some statistics about the current knowledge on yeast

Out of the 6271 open reading frames (ORF), 2326 were unlabeled in SGD (Saccharomyces

Genome Database), which represents 37% of the total. This proportion shows how little

we know about the cellular functions of the yeast genes. Much is still to be discovered.

Even for such a simple unicellular organism, we need to discover the functions of over a

third of the genome.

1 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative distribution of genes involved in GO biological processes

number of genes involved

pr
op

or
tio

n
of

 G
O

−
B

P
s

Figure 2.2: Cumulative distribution of the number of genes involved in biological pro-
cesses

From the 602 mutants constructed at the Hughes Lab, 90 were unlabeled, which repre-

sents 15%. These are the genes for which our research tries to determine one or more

potential functions. We are left with 512 labeled genes to be used as training samples

for the learning algorithms, some of which will be positives but most of which will be

negatives in most biological processes.

Chapter 2. An overview of the data 17

If we analyze the GO biological processes in detail, we notice that a quarter involve

fewer than three genes and half involve fewer than 5 genes. This reects the extremely

high abundance of negatives compared with very few positives. Recall that the genome

of the budding yeast has roughly 6,300 genes. On the other hand, a quarter of the

GO biological processes involve more than 20 genes so there are some relatively broad

categories in the gene ontology. The cumulative distribution of the number of genes

involved in biological processes is represented in �gure 2.2. The vertical axis represents

the proportion of biological processes involving more than x genes.

Investigating the genes in further detail, we notice that 1% (approximately 60 genes)

are involved in more than 40 GO biological processes, 10% in more than 24 GO biological

processes, half are involved in more than 11 biological processes. A histogram showing

the number of categories a gene is involved in is given in �gure 2.3. This illustrates how

a gene can have several cellular functions (actually the number of distinct functions is

smaller since the SGD annotations were propagated up the GO hierarchy), and why this

problem is not a straightforward machine learning classi�cation task.

1 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

1600

Number of categories gene is involved in

N
um

be
r

of
 g

en
es

median = 11

unlabelled genes not considered

Figure 2.3: Histogram of the number of biological processes genes are involved in

Chapter 2. An overview of the data 18

To summarize these statistics about the current knowledge available for Saccha-

romyces cerevisiae, more than a third of the genome, and 90 of our samples are unlabeled.

Roughly half of the biological processes involve fewer than �ve positives. This illustrates

how complicated functional genomics is and how little we know so far. It also reminds

us that making accurate predictions is a tough challenge, having so few positives in each

biological process to learn from, without mentioning the noise in the labels.

Chapter 3

Data Preprocessing

3.1 Imputing missing values

The presence of incomplete data is a commonplace occurrence in large real-world databases.

Missing values can occur for a variety of reasons, especially in gene expression data. When

scanning DNA arrays, dust, scratches or �ngerprints can blur the images and biologists

usually manually ag spots on their arrays when they detect anomalies [AED+00]. Dur-

ing normalization of the data in the arrays, background subtraction is often used, which

leads to missing values when the background intensity is greater than the foreground

intensity of a spot. This would typically happen if the gene in a spot is not expressed at

all. Missing values can happen as a result of several other factors such as printing of the

spots,poor or uneven hybridization, or poor dye labeling of the RNA, etc. . .

Many algorithms used for supervised or unsupervised learning, like classi�cation,

regression, or clustering, are not robust to the presence of even a few missing values. For

example algorithms like K-nearest neighbors, K-means or hierarchical clustering require

the computation of distances or similarities between pairs of elements or between cluster

centers and every element. These cannot be computed as soon as one the two elements

has a missing value in one of it's attributes. Therefore we need methods for completing

19

Chapter 3. Data Preprocessing 20

datasets with missing values.

In this chapter we will see which techniques we have tried for �lling the missing values

present in the Hughes gene expression data. We will also look at error estimation which

is needed for measuring the performance of the di�erent schemes.

3.1.1 Removing incomplete samples

Several approaches can be taken when one needs a complete dataset. The most obvious

one is to remove all samples that have missing values for one or more of their attributes. In

our context we can rule out this solution because of dimensionality reasons. As it is often

the case in high-throughput experiments such as cDNA arrays, the number of samples

is much lower than the number of features measured for each sample. For example the

TET Promoter yeast project at Hughes Lab has around 200 arrays with roughly 6300

spots. Learning algorithms need more samples as the dimensionality increases. A rule of

thumb is to try to have 10 samples per dimension to be learned. Therefore in our case,

we need to keep incomplete samples.

Our aim is to describe a collection of techniques that are more generally appropriate

than the complete-case analysis when missing entries in the data set mask underlying

values.

3.1.2 Replacing missing values by a constant

A widely used solution is to replace all missing entries by a constant. For gene expression

data this constant is often taken to be zero (i.e. no change) because it is generally assumed

that the expression of most genes is not changed in most experiments, therefore the log

transformed ratio of expressions is zero with high probability [AED+00].

Chapter 3. Data Preprocessing 21

3.1.3 Using the average

A simple solution that is more acceptable is to replace a missing attribute by the sample

mean for that attribute.

Gene sample mean

The most obvious way of applying this to expression data is to consider each array as

a sample in which the genes are attributes. Unfortunately gene average assumes the

expression of a gene in an experiment is similar to the expression of that gene in all the

experiments which is often not true.

Array sample mean

Another way of using the sample mean to �ll in missing values in the case of gene expres-

sion data is to consider each gene as a sample in which arrays are di�erent measurements

or attributes. This makes sense because for example, if most genes are up-regulated in an

array, there are reasons to believe the expression of one missing gene is also up regulated.

But in general the expression of a gene in an array is not similar to the expression of all

other genes in that array and this method performs poorly [TCS+01] and gene sample

mean is a better solution.

3.1.4 Computing Pearson's correlation when values are missing

Replacing missing values by a constant or by a sample mean is not optimal because these

methods do not take into consideration the correlation structure of the data.

Although little work has been done on estimating missing values for microarray data,

this problem has been widely studied in other �elds [TCS+01]. Most commonly applied

statistical techniques for dealing with missing data are model-based approaches. We

tried to focus on techniques that had minimal speci�c modeling assumptions. It would

be interesting to build a model for the generation of missing values in microarray data.

Chapter 3. Data Preprocessing 22

It is already known that dark spots are more likely to induce missing values, for example,

because of background subtraction or because a nearby bright spot might have a comet

and prevent a correct scanning of the dark spot.

Next we will try to use more of the correlation available in the data in order to impute

missing elements. The correlation of 2 random variables X and Y for which we have N

samples (Xi; Yi) is given by

r =

P
XiYi �

P
Xi

P
Yi

Nq
(
P

X2
i �

(
P

Xi)2

N
)(
P

Y 2
i �

(
P

Yi)2

N
)

(3.1)

r =

P
zXi

zYi
N

where

8>><
>>:
zXi

=
Xi � �X

�X

zYi =
Yi � �Y

�Y

(3.2)

� and � being the mean and standard deviation of the random variables. In the case

of complete data, we could approximate r by

r0 =

P
Xi� �X
SX

Yi� �Y
SY

N
(3.3)

where �X and �Y are the sample means and S2
X and S2

Y are the sample variance of the

random variables, i.e.

�X =

P
Xi

N
S2
X =

1

N � 1

X
(Xi � �X)2

�Y =

P
Yi

N
S2
Y =

1

N � 1

X
(Yi � �Y)2

In the case of incomplete datasets we approximated r0 by

r00 =

P
8i s.t(Xi;Yi)2XY

Xi� �X0

S0

X

Yi� �Y 0

S0

Y

jXYj
(3.4)

Chapter 3. Data Preprocessing 23

where �X 0 and �Y 0 are the approximations of the sample means and S 0X and S 0Y are

approximations of the standard deviations of the random variables, i.e.

�X 0 =

P
Xi2X

Xi

jXj
S 0X =

1

jXj � 1

X
(Xi � �X 0)2

�Y 0 =

P
Yi2Y

Yi

jYj
S 0Y =

1

jYj � 1

X
(Yi � �Y 0)2

and X (and Y) is the set of all available measurements Xi of X (resp. of Yi of Y) and

XY is the set of all available couples (Xi; Yi).

3.1.5 K-nearest neighbors for imputing missing data

In this setting we consider each sample to be a point in a D-dimensional space, D being

the number of attributes of the samples.

The idea behind k-NN is to �nd k samples that are close to the sample S which is

missing attribute A. The distances are evaluated considering only the available coordi-

nates. The estimate of the missing value of sample S is chosen as the average attribute A

of these k neighbors weighted by their similarity to the sample S. One problem is �nding

a distance metric that suits the type of data being analyzed. Another one is to �nd k.

The latter can be done by using cross validation. Several distance metrics can be used,

such as Pearson's correlation, Spearman's Rank Correlation, or the Euclidean Distance.

It is generally accepted that any of these measures can be appropriate in the case of gene

expression data, biologists often use them interchangeably on a case by case basis.

The algorithm just described is exactly the principle used in KNNimpute [TCS+01].

In this program, samples are the genes and attributes are their expressions in the avail-

able arrays. Doing the reverse, i.e. using the experiments as samples and the genes as

attributes measured for each sample, although this would seem natural, would not be

appropriate in this setting. This is because there are many more genes than experiments

Chapter 3. Data Preprocessing 24

and therefore k-NN would be done in a higher dimensional space with fewer samples,

which would not be statistically optimal. According to [TCS+01] Euclidean distance is

a suÆciently accurate norm and is used in KNNimpute.

This algorithm is in fact similar to a local linear regression, where local here is only

an estimation since distances are computed based on available coordinates only.

3.1.6 Least squares regression, the complete case

In the least squares regression setting, we assume the missing attribute Aj is a linear

combination of the other attributes AnAj. In the case of complete data, when a new

sample arrives with missing attribute Aj, the value yj of this attribute can be estimated by

yj =
X

xl2AnAj

�lxl (3.5)

where the coeÆcients �l have been �tted using least squares regression over the training

samples that are complete.

3.1.7 HLS: heuristic least squares regression

Least squares regression without modi�cations is not suitable for incomplete datasets

because if we need all other attributes to estimate one missing attribute, in general there

are not many samples left in the dataset to �t the coeÆcients �s, or no samples at all.

Therefore we have created a modi�ed version of this model called Heuristic Least Squares

regression (HLS).

In the case of a complete dataset, when a new sample arrives with missing attribute

Aj, instead of expressing Aj as a linear combination of all other attributes, we assume it

can be expressed reasonably well as a linear combination of K attributes which are well

correlated to Aj. This model has the advantage of requiring fewer parameters (the �s).

Chapter 3. Data Preprocessing 25

But it also necessitates the computation of correlation between attributes, and a choice

for K.

For an incomplete dataset, we �rst compute the correlation between all pairs of at-

tributes. For missing attribute Aj in sample i, we �nd the K attributes with highest

correlation to Aj. Then we subset the attributes of our dataset to keep only these K as

well as Aj. It is then generally possible to �nd a non-empty subset of complete samples

in this reduced dataset. We then do least squares regression of all K attributes against

Aj and �nally impute Aj in sample i.

For all pairs of attributes:

- compute correlation of attributes i and j in C(i,j)

- For all missing values:

* find K closely correlated attributes to the one missing

* find complete subset of samples on these K+1 attributes

* fit a regression model using least squares

* estimate the missing value

Figure 3.1: Details of the HLS algorithm

3.1.8 ILS: iterative least square regressions

After comparing HLS to third party algorithms, it became a challenge to try to out-

perform their performances or if not, improve our own. So we developed an iterative

algorithm to estimate missing values. The initialization step consists ofs replacing miss-

ing values with the sample mean (fast) or with HLS' output (slower). There are two

versions of the iterative step, an online version and a batch version, which are described

below. We need to de�ne a termination criterion. We choose to terminate when none of

the recomputed values di�er from the former by more than a user-de�ned ratio.

Chapter 3. Data Preprocessing 26

Online version

After the initialization step is complete, we keep track of the positions of the missing val-

ues and re-estimate each one individually using least squares regression on the completed

dataset, replacing the entries as they are computed.

Batch version

Another possibility for the iterative step is to keep track of the positions of the missing

values, and during the ith step of the iterative algorithm, recompute all of them using

the completed dataset obtained at the (i � 1)th step , store these values until the end

of the ith step, and replace them at the end of the ith step so they become available for

computation only at step i+1.

3.2 Measuring performance

3.2.1 Error estimation

To measure the accuracy of a missing value estimator, the classic approach is to randomly

remove some data from the incomplete dataset, estimate the missing values and measure

the predicting error. An inconvenience of this approach is that we are removing values

from a dataset which is already incomplete. Therefore our estimator is trained on a

dataset which is sparser than the original one, fewer values are available to compute the

estimations of the missing ones, and we expect the estimation accuracy to be lower than

if we had trained on the original dataset. Consequently the error will be an upper bound

on the error of the estimator applied to the original dataset.

Another approach is to remove values (usually at random) from a complete dataset

such that the proportion of missing values is similar to the proportion of missing values in

the original dataset, estimate the missing values and measure the estimation performance

Chapter 3. Data Preprocessing 27

on that dataset. A drawback of this approach is that we might not possess a complete

dataset with similar properties of the data, that is, with a similar joint probability dis-

tribution over all attributes. Another drawback of this approach is that the locations of

the missing values in the original dataset might not be random.

The error function we have used for this study is the normalized root mean squared

error:

NRMSE =

s
E[(ŷ � y)2]

var(y)
(3.6)

When the estimator is good, ŷ is close to the true value y and NRMSE is close to 0.

When the estimator ŷ is set to be the sample mean �y, the expected NRMSE is 1. This

measure gives an idea on the performance of an estimator and allows comparisons between

estimators.

3.2.2 Results on simulated data

Fifty datasets were generated, each consisting of 500 samples drawn from a ten dimen-

sional Gaussian distribution with 10%missing values uniformly located. For each dataset,

the covariance matrix of the Gaussian was changed. To test the performance of several

algorithms in estimating missing values in such conditions, we removed another 2% of

the data at random which we used to test the estimations by computing the normalized

root mean squared error (NRMSE).

The performance of six predictors were tested: a random guess with Gaussian distri-

bution with same mean and variance as the attribute being estimated, a constant guess

of zero (the mean of the Gaussian simulated data), predicting the sample mean, using the

heuristic least squares regression (HLS) estimates, replacing missing values by the BP-

CA�ll estimates and �nally using the iterative least squares (ILS) estimates (the online

Chapter 3. Data Preprocessing 28

version with sample mean initialization and a 2% stop criterion).

The normalized root mean squared error was computed for all �fty datasets and all

six estimators and the median, mean, minimum and maximum normalized root mean

squared errors (NRMSE) are reported in table 3.1.

Missing Value Estimates Median Mean Min Max
Random 2.2474 0.2632 1.7347 2.8564
Zero 1.4308 1.4341 0.8456 2.2045

Sample Mean 0.7259 0.7352 0.4745 1.0801
Heuristic Least Squares (HLS) 0.3455 0.3451 0.2095 0.4950

BPCA�ll 0.2180 0.2273 0.0733 0.3999
Iterated Least Squares (ILS) 0.2157 0.2201 0.1114 0.3964

Table 3.1: Normalized Root Mean Squared Error on Simulated Data

The results from table 3.1 show that our algorithm HLS performs almost as well as

BPCA�ll, which we found to be the best publicly available algorithm, although HLS is

much faster. Moreover, our algorithm ILS performs better (results shown in bold) in

terms of median and mean NRMSE, also it's maximum error over the �fty datasets was

smaller than the one of BPCA�ll.

It would now be interesting to simulate datasets of the same dimension as those found

in gene expression databases and see what the results are. We expect the time gain to be

extremely important in higher dimensions but we do not know if the performance would

still be as good.

Chapter 4

Logistic Regression for predicting

gene function

4.1 Introduction

The classes we learn here are the biological processes de�ned by the Gene Ontology Con-

sortium [GO04]. Each gene can be involved in several biological processes and therefore,

this is not the classical machine learning approach in which samples can belong to one

class only. And, as described in Chapter 2 several genes can be involved in a biological

process.

In this work we learn each biological process independently, using a supervised learn-

ing algorithm for classi�cation called logistic regression. In this setting, the problem

becomes a standard classi�cation exercise, in which we need to discriminate between two

classes for each biological process: either a gene is involved in a biological process, or it

is not.

The labels were downloaded from the Saccharomyces Genome Database [DHD+02,

CWB+04] for all the biological processes (GO-BP). We trained the classi�ers on 3 di�er-

ent datasets (cell size distributions, gene expression pro�les, drug sensitivity) using the

29

Chapter 4. Logistic Regression for predicting gene function 30

labeled genes for each GO biological process, and then made predictions for the unlabeled

genes.

In this chapter we examine the case where the two classes are separable by a hyper-

plane. This is a strict assumption about the data, but it leads to predictions with high

level of con�dence for some biological processes nonetheless and represents a baseline

for comparing the results obtained with the second view which we describe in the next

chapter. We choose to �t the hyperplane using logistic regression [HTF01] because of its

simplicity and also because it is well understood, and accepted in the biology community

[BCRC04]. In 4.3 we investigate a method by which we can easily build decision rules

customized to a particular biological process for classifying samples, precision being the

only user-de�ned parameter. We apply these decision rules to the unlabeled samples in

4.4.

4.2 Logistic regression

4.2.1 The model

In logistic regression for binary classi�cation, the class label Y is a Bernoulli random

variable and the input X is a p-dimensional random vector. The model arises from the

desire to write the log of the odds as a linear function in x, while ensuring that the

conditional probabilities p(yjx) of both classes sum to one and remain in [0; 1].

log
p(Y = 0jX = x)

p(Y = 1jX = x)
= �Tx (4.1)

Here � can include a constant (bias) term if we augment x to a (p + 1)-dimensional

vector by stacking a 1 to it. This leads to the following conditional probabilities:

Chapter 4. Logistic Regression for predicting gene function 31

p(Y = 0jX = x) =
e�

T x

1 + e�
T x

(4.2)

p(Y = 1jX = x) =
1

1 + e�
T x

(4.3)

By de�ning �(x) = P (Y = 1jX = x), we can write the Bernoulli conditional proba-

bility

p(yjx) = �(x)y(1� �(x))1�y (4.4)

See [HTF01] for further details on the logistic regression.

4.2.2 Fitting the parameters to the data

Based on a training set D = f(xn; yn); n 2 f1::Ngg, we �t the parameter � by maximum

likelihood. Assuming the samples are independent and identically distributed (iid), the

log likelihood is

l(�jD) =logp(y1; ::; yN jx1; ::; xN ; �) (4.5)

=log
NY
n=1

�(xn)
yn(1� �(xn))

1�yn (4.6)

=
NX
n=1

ynlog�(xn) + (1� yn)log(1� �(xn)) (4.7)

We set the derivative of the log likelihood to zero

Chapter 4. Logistic Regression for predicting gene function 32

@l

@�
=

@l

@�

@�

@�
(4.8)

@l

@�
=

NX
n=1

xn(yn � �(xn)) = 0 (4.9)

This is a set of p + 1 equations. We used Newton-Raphson's method to �nd an

approximate solution for �. This requires the computation of the second derivative of

the likelihood with respect to �. Another possibility is to do gradient descent to �nd the

minimum of the negative log likelihood.

@2l

@�@�T
= �

NX
n=1

xnx
T
n�(xn)(1� �(xn)) (4.10)

� is initialized to zero and then updated by the Newton-Raphson's step:

�new = �old �

�
@2l

@�@�T

��1
@l

@�
(4.11)

where the derivatives are evaluated at �old.

4.3 Cross validation for customized decision rules

We trained a logistic regression classi�er by leave-one-out cross-validation on the labeled

samples of each of the biological processes we chose to learn. Each time we computed the

posteriors P (Y = 1jX = x) where x was the sample set aside, Y denotes the class label

(which takes the value 1 if a gene is involved in the biological process, 0 otherwise). We

had little choice but to use leave-one-out cross-validation because, having so few positives

in our samples, we could not a�ord to waste labeled data by separating it into training

and test sets.

In order to classify a sample we need to build a decision rule. One very simple

Chapter 4. Logistic Regression for predicting gene function 33

rule could be to classify as positive any sample for which the posterior probability is

above 0.5. Here we are faced with a decision making problem which needs a little more

attention because of the cost associated with making false predictions. In molecular

biology, running experiments is very expensive and we want to be very con�dent about

the prediction being true before testing it in wet lab. All the cost of decisions is biased

toward false predicted positives in this application, and false negatives are not given as

much importance. In other words the cost of false positives is much bigger than the cost

of false negatives. As a result, to increase our con�dence on the predicted positives, we

computed conservative thresholds for discriminating between the classes, each depending

on the particular biological process. A sample will be classi�ed as positive if it's posterior

is above that threshold P (Y = 1jX = x) > t.

In the logistic regression setting, the classes are separated by the hyperplane de�ned

by the equation �Tx = 0. When the input x is on the hyperplane,

P (Y = 1jX = x) = P (Y = 0jX = x) = 0:5 (4.12)

Raising the threshold, corresponds to translating that hyperplane in the direction of � (or

��). Our procedure consists of translating the hyperplane toward the positive samples

until the ratio of true positives to false positives is suÆciently high. Therefore we use

cross validation, not only to measure how well the classi�ers are performing, but really

to build decision rules for classifying the unlabeled samples.

The measure of satisfaction we used for translating the hyperplane is precision, which

is the ratio of true positives with respect to the number of predicted positives, i.e.

precision =
true positives

predicted positives
=

TP

TP + FP
(4.13)

Predicted negatives cannot be con�rmed experimentally, at least at the Hughes Lab,

which is providing us with the data, so knowledge is gained only when predicted positives

Chapter 4. Logistic Regression for predicting gene function 34

are con�rmed, and it is indeed precision biologists are interested in and not overall

classi�cation performance.

For a particular biological process, one approach could be to choose the threshold

that leads to the maximum precision computed using all labeled samples, but we prefer

to take a more conservative approach by setting a user-de�ned precision. That way

predictions will only be made for biological processes for which the classi�er reaches

that precision at some threshold. For biological processes for which logistic regression

performed poorly, the classi�er is rejected and no predictions are made. Precision is not a

monotonic function in t (as t decreases, the number of predicted positive increases, these

can be either true or false positives), therefore we chose the lowest threshold leading to

the desired precision since this solution maximizes the recall (also known as sensitivity

in the signal processing and biological worlds), which is the percentage of positives which

are predicted as positives:

recall =
true positives

all positives
=

TP

TP + FN
(4.14)

We computed �ve thresholds for each GO biological process, corresponding to preci-

sion levels of 100%, 85%, 75%, 60% and 50% based on the labeled data. The precision

level used to classify a sample, along with the distance of that sample to the translated

hyperplane leads to di�erent con�dence levels.

We ought to be a bit careful about the computation of precision. Without restrictions,

there is no way to tell whether a classi�er made a few predictions at very high precision

by chance or not. It could be that by chance, the labeled gene with greatest discrim-

inant value, during the leave-one-out cross-validation, is a positive sample. Therefore,

if we pick that discriminant as the threshold, even if the next few highest discriminant

values all correspond to negative samples, we have a precision of 100% based on one

predicted positive on the labeled data. Likewise, although the precision would be 50%,

how signi�cant would be one true positive out of two predicted positives? To increase the

Chapter 4. Logistic Regression for predicting gene function 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R30 = 0.69697

R50 = 0.54545

1−Specificity

S
en

si
tiv

ity

AUC = 0.70534

#pos = 33

cell cycle [GO:0007049]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R30 = 0.7

R50 = 0.3

1−Specificity

S
en

si
tiv

ity

AUC = 0.75034

#pos = 20

DNA replication and chromosome cycle [GO:0000067]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R30 = 0.83333

R50 = 0.75

1−Specificity

S
en

si
tiv

ity

AUC = 0.82867

#pos = 24

ribosome biogenesis [GO:0007046]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R30 = 0.76471

R50 = 0.32353

1−Specificity

S
en

si
tiv

ity

AUC = 0.7218

#pos = 34

RNA metabolism [GO:0016070]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R30 = 0.92308

R50 = 0.15385

R75 = 0.025641

1−Specificity

S
en

si
tiv

ity

AUC = 0.62821

#pos = 39

transcription [GO:0006350]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R30 = 0.85

R50 = 0.5

1−Specificity

S
en

si
tiv

ity

AUC = 0.82755

#pos = 20

transcription from Pol I promoter [GO:0006360]

Figure 4.1: ROC curves for some of the classi�ers we used for making predictions

Chapter 4. Logistic Regression for predicting gene function 36

signi�cance of precision computed, we chose to report predictions only if their precision

was above 50% and was computed using 10 predicted positives or more. We call con�dent

prediction one that satis�es this constraint. Because of this constraint and since we are

only interested in precisions above 50%, we can never make any prediction for biological

processes for which we have fewer than 5 positive samples.

We have actually investigated several constraints for the minimum number of pre-

dicted positives for the computation of precisions and chose 10 as a compromise between

having suÆcient con�dence in the precision and not eliminating too many predictions by

having a severe constraint.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Specificity

S
en

si
tiv

ity

AUC = 0.34149

#pos = 11

lipid metabolism [GO:0006629]

Figure 4.2: ROC curve for one of the rejected classi�ers

We can verify in �gure 4.1 that this method leads to classi�ers having good ROC

curves, i:e: the curves reach a high true positive rate for a false positive rate which is still

very low. As a negative control, an example of the ROC curve of a rejected classi�er is

shown in �gure 4.2.

Chapter 4. Logistic Regression for predicting gene function 37

4.4 Predicting functions for the unlabeled genes

For classifying the unlabeled samples, we trained a logistic regression classi�er per GO

biological process using all the available labeled samples and then computed the posterior

probabilities P (Y = 1jX = x) where x were the unlabeled samples. Thresholds leading

to the di�erent precision levels were then computed and �nally unlabeled samples were

classi�ed as positives whenever their posterior were greater than a threshold, and pre-

dictions were reported.

GO biological process ORF threshold (mini-
mum precision)

discriminant value

RNA metabolism [GO:0016070] YHR040W 0.5 0.585
RNA metabolism [GO:0016070] YNL245C 0.5 0.540
RNA processing [GO:0006396] YHR040W 0.5 0.561
cell cycle [GO:0007049] YLR457C 0.6 0.625

Table 4.1: Example of predictions

Predictions are grouped by the precision level used and by biological process and are

separated into batches depending on which of Hughes' dataset was used. Each prediction

has four �elds: a GO biological process, a systematic gene name, the precision level used

for computing the threshold and �nally the posterior probability which characterizes the

con�dence we have in the prediction.

Predictions have the format shown in table 4.1 and are grouped by GO biological

process and sorted by decreasing discriminant values for each threshold level so that the

more con�dant predictions are at the top of the list in each GO biological process group,

once again this is because of the cost associated with experimentally validating these

predictions in wet lab. Biologists can therefore start by testing the most con�dent pre-

dictions �rst. The precisions reported are minimums, that is, the corresponding sample

passed the threshold test for that precision level, but it could also have passed a test at

Chapter 4. Logistic Regression for predicting gene function 38

a higher precision. All the predictions were assembled in tab delimited text �les and are

available as supplementary data.

Number of predictions for GO-BP: known in GOBP # pos in samples precision .6 precision .5

transcription [GO:0006350] 534 39 6

transcription, DNA-dependent [GO:0006351] 505 39 6

cell proliferation [GO:0008283] 571 37 5 8

RNA metabolism [GO:0016070] 336 34 10

cell cycle [GO:0007049] 494 33 4 6

RNA processing [GO:0006396] 297 33 4

mitotic cell cycle [GO:0000278] 288 30 5

ribosome biogenesis and assembly [GO:0042254] 186 26 18

ribosome biogenesis [GO:0007046] 151 24 17

macromolecule biosynthesis [GO:0009059] 449 21 1 1

protein biosynthesis [GO:0006412] 442 21 1 1

DNA replication and chromosome cycle [GO:0000067] 219 20 1

transcription from Pol I promoter [GO:0006360] 149 20 7 8

Table 4.2: Summary of con�dent predictions made by logistic regression on the gene
expression data

Several unlabeled genes can be predicted in the same GO biological process and respec-

tively, a gene can be predicted to be involved in several GO biological processes and we

have therefore complied with the non-classical classi�cation task we were trying to solve.

4.5 The challenge of having few positive samples

Since most genes are not involved in most biological processes, for a particular biological

process, there are far more negatives in the labeled samples than positives.

Numerical problems happen when the the classes are highly unbalanced. We observed

that the procedure of �tting a hyperplane using logistic regression converged only for

biological process involving more than 10 positives samples. This comes from the the

log likelihood underowing because the term P (Y = 1jX = x) is too close to zero in

these extreme situations. We later found out that adding a regularization term to the

Chapter 4. Logistic Regression for predicting gene function 39

likelihood would solve this problem, but we have not yet tried running our scripts again

for these biological processes.

Therefore we have restricted this study to learning GO biological processes for which

we had more than 10 positive samples. From 1484 categories in the Gene Ontology, 573

GO biological processes involve ten or more genes.

We reduced the number of classi�cation problems by not considering biological pro-

cesses which are too broad and general such as protein metabolism [GO:0019538] or

cell organization and biogenesis [GO:0016043]. These large, top-level (high in the gene

ontology hierarchy) involve hundreds of genes and are often not speci�c enough to ver-

ify experimentally. Therefore we have restricted this study by not including biological

processes that clearly involved too many genes to be interesting.

4.6 Results

Instead of reporting here a list of these predictions, which can be found in the supple-

mentary data, we report summaries of these predictions in tables 4.2 to 4.4. These tables

give the number of unlabeled genes predicted grouped by biological process and by preci-

sion level. We also indicate the number of genes known to be involved in each biological

process as well as the number of positive samples available in the dataset used.

We see that the expression data leads to many more predictions with precision 50% and

above than the size data. Nevertheless, it is still interesting to use the size data because

it leads to predictions for di�erent biological processes. For example, logistic regression

on the size data generates some predictions of genes involved in rRNA processing or in

organelle organization and biogenesis with precision above 50%. Logistic regression on

the expression data does not produce any predictions for these biological processes. A

similar argument could be raised for the use of logistic regression on the drug sensitivity

Chapter 4. Logistic Regression for predicting gene function 40

Number of predictions for GO-BP: known in GOBP # pos in samples precision .6 precision .5

transcription [GO:0006350] 534 142 4

transcription, DNA-dependent [GO:0006351] 505 141 4

RNA metabolism [GO:0016070] 336 128 4 15

RNA processing [GO:0006396] 297 127 17

cell proliferation [GO:0008283] 571 116 5

ribosome biogenesis and assembly [GO:0042254] 186 85 3 15

ribosome biogenesis [GO:0007046] 151 79 3 15

transcription from Pol I promoter [GO:0006360] 149 76 14

rRNA processing [GO:0006364] 121 65 12

organelle organization and biogenesis [GO:0006996] 550 61 2

Table 4.3: Summary of con�dent predictions made by logistic regression on the cell size
distributions

dataset.

Number of predictions for GO-BP: known in GOBP # pos in samples precision .6 precision .5

RNA metabolism [GO:0016070] 336 140 1

RNA processing [GO:0006396] 297 139 1

cell proliferation [GO:0008283] 571 127 3 5

ribosome biogenesis and assembly [GO:0042254] 186 93 5

ribosome biogenesis [GO:0007046] 151 86 6

rRNA processing [GO:0006364] 121 71 3

Table 4.4: Summary of con�dent predictions made by logistic regression on the drugs
dataset

It is worth emphasizing the fact that precision levels reported are minimums. A sample

being predicted positive at a precision level could very well have been predicted positive

at a higher precision level.

Chapter 5

Hierarchical clustering with labels

for predicting gene function

5.1 Introduction

In this chapter we investigate an unsupervised learning tool for making predictions for

the unlabeled genes. We tried to develop an algorithm that would solve several of the

problems raised by the logistic regression.

First, it should be able to learn biological processes for which our samples contain

fewer positives. We saw in the previous chapter that logistic regression did not make any

predictions for biological processes for which we had fewer than twenty positives. We

will see that our proposed algorithm is able to predict with high con�dence that genes

are involved in biological processes that only have �ve positives.

Second, one of the main limitations of the logistic regression is that it has linear

decision boundaries and works well in cases such as in the example represented in �gure

5.1, where the two classes are somewhat separable by a hyperplane. But logistic regression

has diÆculties discriminating between positives and negatives when the two classes are

not linearly separable as in �gure 5.2. For such biological processes, even if we translate

41

Chapter 5. Hierarchical clustering with labels for predicting gene function42

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

negatives
positives

Figure 5.1: Toy classi�cation problem solved by logistic regression

Chapter 5. Hierarchical clustering with labels for predicting gene function43

the decision boundary, by choosing a low threshold (cf. chapter 4.3), we can never reach a

satisfying precision. In this chapter we investigate a method based on a di�erent view of

the data. We consider here that positive samples represent small islands among a sea of

negatives, but we don't know how many islands there are nor their size. One possibility

would be to use k-nearest neighbors (kNN), but unfortunately we have no idea what to

expect for k, and a simple majority vote would not work because of the high number

of negatives almost everywhere (including regions of relatively high concentrations of

positives). We develop an algorithm based on hierarchical clustering that circumvents

these problems.

−3 −2 −1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

translated decision boundary

hyperplane obtained by logistic regression

Figure 5.2: Toy classi�cation problem not solved by logistic regression

Clustering has been used extensively in functional genomics [ABN+99, BDSY99,

ESBB98, HMJ+00, SS00] and is probably what biologists use and trust most. A number

Chapter 5. Hierarchical clustering with labels for predicting gene function44

of clustering algorithms have been applied to gene expression pro�les, such as K-means,

Kohonen self organizing maps and the graph-based algorithms Click [SS00] and CAST

[BDSY99]. These algorithms generate clusters which are all assumed to be on the same

level, thus they lack the ability to represent the relationships between genes and sub-

clusters on di�erent scales. This is important for our application because of the sparsity

of positive examples which has the consequence that most, probably all, clusters have a

very low proportion of positives.

Our method looks for regions in the data space of high concentrations of positives. All

that is required is some notion of \distance" between all pairs of elements. In contrast,

logistic regression does not work for the morphology dataset because, although the data

is technically real valued, it is still too categorical for the �t to converge.

We based our algorithm on hierarchical clustering which had the advantage of being

extensively used in the biology and bioinformatics worlds to �nd genes that share a

common function [ESBB98] [AED+00] or to group experimental conditions [ABN+99],

and therefore it will make results easy to interpret and to understand for biologists.

Hierarchical clustering is widely used on gene expression data. The resulting dendrogram

is usually displayed immediately beside the gene expression pro�les heatmap from which

it was derived. The leaves of the dendrogram are often labeled with gene names and/or

biological processes in which these genes are involved. The method we develop here is

based on this methodology, but extends it to an automated process. It also improves this

methodology by using all of the available annotations for each gene whereas the common

manual way only uses one annotation per leaf. Recall that a gene may be involved in

several biological processes.

The idea is to cluster the data and look for clusters with a high proportion of positives,

then label the unlabeled samples in such clusters if there are any. The hierarchical

tree produced by hierarchical algorithms will allow us to �nd such positively enriched

clusters, by concentrating on areas of the tree with a high density of positives. More

Chapter 5. Hierarchical clustering with labels for predicting gene function45

precisely, rather than label a sample, the algorithm should produce a con�dence level

that the sample is positive. We will use heuristics and cross validation for producing

such con�dence levels.

The advantage of hierarchical clustering over a supervised method such as k-nearest

neighbors, is that if we used k-NN in this situation with very few positive samples, most

neighbors would be negatives for almost any region of the space unless k is chosen very

small, which would lead to over�tting the data and also would not give us any con�dence

measure for the prediction, whereas as we shall see, using hierarchical clustering will

not only let us �nd positive enriched clusters but will also facilitate the production of a

con�dence level for each prediction.

This algorithm is not restricted to making predictions for the unlabeled genes but can

also be used to relabel negative samples, i:e: make some predictions for negative samples

that lie in positive enriched regions.

5.2 Hierarchical clustering

The hierarchical clustering algorithm requires a measure of dissimilarity between two

disjoint groups of observations. These group dissimilarity measures are based on pair-

wise dissimilarities between observations of the two groups. The algorithm can easily be

converted if one has a similarity measure for pairs of elements by transforming it into a

dissimilarity measure. For example if one is using Pearson's correlation ri;j as a measure

of similarity between elements i and j, a dissimilarity measure is di;j = 1 � ri;j. Other

common dissimilarities for pairs of observations are the euclidean distance, the Manhat-

tan or city block distance, the Mahalanobis distance and the Minkowski distance. There

are three common group dissimilarity measures: in the single linkage case, the distance

between two groups is taken to be the minimum distance between any two observations

Chapter 5. Hierarchical clustering with labels for predicting gene function46

of the two groups.

DG;H = min(dk;l j k 2 G ; l 2 H) (5.1)

In the complete linkage case, the distance between two groups is considered to be the

maximum distance between any two elements of the groups.

DG;H = max(dk;l j k 2 G ; l 2 H) (5.2)

The third most common group dissimilarity is the average linkage which as it's name

indicates is the average of the dissimilarities between all pairs of elements from the two

groups.

DG;H =
1

jGjjHj

X
k2G

X
j2H

dk;l (5.3)

where jGj and jHj denote the size of groups G and H.

The algorithm produces a hierarchical representation in which the clusters at each

level are obtained by merging two clusters at the next lower level. This representation

can be organized as a tree, the root being the entire dataset and the leaves being the

observations. For a dataset of N observations, the hierarchy will have N � 1 groups of 2

elements or more (nodes in the tree). Another advantage of this method over clustering

methods like k-means is that the user need not specify the number of clusters k a priori.

There are two types of hierarchical clustering algorithms. In the agglomerative case,

clusters at a lower level are grouped together to form one cluster at the next higher level.

The algorithm works bottom-up, �rst joining the most similar observations, and then

grouping the two most similar clusters, where a cluster can be a singleton or a group

of observations, until all observations are grouped into one cluster: the root of the tree.

In the divisive case, the algorithm works top-down, starting with all observations in one

group and dividing each group into two smaller disjoint groups at the next lower level,

until all groups are singletons. Each split is chosen so that the resulting two groups have

Chapter 5. Hierarchical clustering with labels for predicting gene function47

the greatest between-group dissimilarity.

Each level of the hierarchy represents a particular grouping of the data, it is then up

to the user to decide which level best represents a clustering. There are several techniques

for helping the user choose the appropriate level at which to cut the tree, see [HTF01] for

further details. This is a drawback of hierarchical clustering, although it will not matter

for our particular application.

5.3 Details of our algorithm

We �rst build a hierarchical tree on all available labeled and unlabeled samples using

hierarchical agglomerative clustering [HMS01] with average linkage and Pearson's corre-

lation for the distance metric since it was shown that it is best suited for gene expression

data. In constructing the tree, we ignore the labels on the data. In this way, we can in-

clude both labeled and unlabeled data in the tree, and more importantly, we can use the

same tree for each biological process, thus saving on computing time, since the tree need

only be built once. Thus, the construction of the tree can be viewed as a preprocessing

step whose cost is amortized over all the biological processes. However, after the tree is

constructed, it is not possible to add new unlabeled samples to the data.

We used the correlation coeÆcient between two samples as a measure of the distance

between them rather than Euclidean distance. This is because the actual level of response

of two gene probes is less important, and less trustworthy, than their pro�les being

correlated among a set of experiments. For example, the measured expression of a gene

might be twice that of another gene in the same pathway because of experimental factors

such as oligonucleotide probe quality (folding into a stable secondary structure, melting

temperature etc).

Following the construction of the tree, we use it to build a classi�er for each biological

process. Recall that each such process provides a di�erent set of labels for genes. Since the

Chapter 5. Hierarchical clustering with labels for predicting gene function48

leaves of our tree represent genes, each leaf is assigned the label of the gene it represents.

Leaves for unlabeled genes are labeled as negative, since it is likely that an unlabeled

gene is not involved in any particular biological process. (We also ag such leaves, so as

to remember that they are unlabeled). We can now look in the tree for regions of high

concentrations of positive leaves, after which we assign labels to all the unlabeled genes

that fall in such regions. These assignments represent our classi�ers predictions.

To make these assignments, the algorithm computes a score � for each internal node

in the tree, reecting the concentration of positives at the leaves under the node.

� =
of positives at leaves

of leaves
�
�
1� �e�# of positives

�
(5.4)

The �rst factor in this formula is the proportion of positive leaves under the node, it

reects the concentration of positives in the region of the data space in which the leaves

are. The second factor tends to one when the number of positives raises, and tends to

zero as the number of positives decreases. It gives more importance (higher score) to

nodes with more positive leaves, i:e:` to larger regions of positive concentration, since

we regard such regions to be more statistically signi�cant. (We have used � = 0:5 and

haven't investigated tweaking this parameter nor using other functions for the second

factor of this equation.) We then de�ne the score of a leaf to be the maximum score of

all it's ancestors (internal nodes). Since unlabeled samples are leaves in the tree, they

automatically receive a score, which we use to classify them.

Before building decision rules, we use a technique similar to the cross validation of the

previous section. At each iteration, we e�ectively remove a labeled sample by treating it

as unlabeled. The scoring process described above is repeated each time. This provides

a score for the labeled sample being treated as unlabeled. Each labeled leaf is scored in

this way.

It is now easy to build a decision rule. We simply set a threshold, and a leaf is

classi�ed as positive if its score is above the threshold. To evaluate the rule, we apply it

Chapter 5. Hierarchical clustering with labels for predicting gene function49

Build hierarchical tree on all labeled and unlabeled samples.

For each GO biological process GO-BP[i] do {

Label the leaves according to GO-BP[i].

Label unlabeled samples as negatives.

For each sample S[j] do {

Relabel S[j] as negative.

Compute the score of all internal nodes.

Compute the score of S[j] as maximum score of all it's ancestors.

}

Find lowest threshold that achieves user-specified precision.

Classify unlabeled samples using this threshold.

Report predicted positives.

}

Figure 5.3: Pseudo-code of the algorithm

to labeled leaves, and compare each leaf's true label to its predicted label. A threshold

that achieves a user-speci�ed precision is then chosen. Finally, using this threshold, we

use the decision rule to classify all the unlabeled data.

The pseudo-code for this algorithm is given in Figure 5.3. A toy example of how the

tree is reused for each biological process is given in Figure 5.4. Our method is very fast,

the whole process from building the tree to reporting predicted positives in all biological

processes took a few seconds for each dataset on a Pentium IV 2GHz. This should be

contrasted with the logistic regression methodology which required approximately a half

hour for each dataset.

5.4 Results

Predicted positives were reported for all four datasets and assembled in tab delimited

�les. A prediction has four �elds: a GO biological process, the gene systematic name,

the di�erence between the score of the unlabeled leaf and the threshold used, and the

Chapter 5. Hierarchical clustering with labels for predicting gene function50

1 10 0 0 0 0 01 ?0

1 11 0 0 0 0 0 0 0?

Figure 5.4: Toy hierarchical tree reused with labels from two biological processes

precision corresponding to that threshold. The precision and the di�erence between the

score and the threshold represent the con�dence we have in the prediction. Summaries

of these predictions (except for the morphology dataset) are shown in Table 5.1-5.3. The

summary for the morphology dataset is not shown, the number of con�dent predictions

made were approximately the same as in the size and drugs datasets.

Number of predictions for GO-BP: known in GOBP # pos in samples precision .5

transcription [GO:0006350] 534 142 5

transcription, DNA-dependent [GO:0006351] 505 141 5

cell proliferation [GO:0008283] 571 116 1

cell cycle [GO:0007049] 494 99 1

ribosome biogenesis and assembly [GO:0042254] 186 85 5

ribosome biogenesis [GO:0007046] 151 79 2

transcription from Pol I promoter [GO:0006360] 149 76 3

Table 5.1: Summary of con�dent predictions made by our clustering method on the cell
size distributions

Comparing the two methods for identical datasets (Table 4.2 vs. 5.3, Table 4.3 vs.

5.1 and Table 4.4 vs. 5.2), we observe that our method produces many more con�dent

predictions, at precision levels 50% and 60% (even 75% with the drugs dataset), and

for more biological processes, but not for the size data. In particular, our hierarchical

Chapter 5. Hierarchical clustering with labels for predicting gene function51

Number of predictions for GO-BP: known in GOBP # pos in samples precision .75 precision .6 precision .5

transcription [GO:0006350] 534 159 2 5 5

transcription, DNA-dependent [GO:0006351] 505 158 2 5 5

RNA metabolism [GO:0016070] 336 140 27

RNA processing [GO:0006396] 297 139 17

DNA metabolism [GO:0006259] 379 68 6

mRNA processing [GO:0006397] 124 60 4

nuclear organization and biogenesis [GO:0006997] 213 42 3 3

chromosome organization and biogenesis (sensu Eukarya)
[GO:0007001]

178 35 3 3

establishment and/or maintenance of chromatin architec-
ture [GO:0006325]

155 32 3 3

DNA packaging [GO:0006323] 155 32 3 3

Table 5.2: Summary of con�dent predictions made by our clustering method on the drugs
dataset

method made prediction for 18 biological processes involving fewer than 20 positives

in the samples whereas logistic regression produced none. Moreover our algorithm was

able to make con�dent predictions for biological processes that had as few as �ve posi-

tive samples, which is the lower bound achievable by design of this algorithm since we

constrained predictions to be based on ten positive samples and only report those with

precision above 50%.

In Figure 4.1 we show the ROC curves of a couple of the classi�ers used for making

predictions, obtained by the method we developed. We clearly see that our method per-

forms better than guessing the majority class, here it would mean to classify as negative

every time, and achieves very high true positive rates at thresholds for which the false

positive rates are still very low. For example, the classi�er used for predicting genes

involved in glycerophospholipid biosynthesis reaches a true positive rate of 100% for less

than 2% false positive rate. These ROC curves are also much better than those of �gure

4.1 obtained by logistic regression.

Chapter 5. Hierarchical clustering with labels for predicting gene function52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Specificity (FP rate)

S
en

si
tiv

ity
 (

T
P

 r
at

e)

glycerophospholipid biosynthesis [GO:0046474]

30 known genes in GO−BP
5 positives in samples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Specificity (FP rate)

S
en

si
tiv

ity
 (

T
P

 r
at

e)

ribosome biogenesis [GO:0007046]

151 known genes in GO−BP
24 positives in samples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Specificity (FP rate)

S
en

si
tiv

ity
 (

T
P

 r
at

e)

M−phase specific microtubule process [GO:0000072]

62 known genes in GO−BP
8 positives in samples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Specificity (FP rate)

S
en

si
tiv

ity
 (

T
P

 r
at

e)

lipid metabolism [GO:0006629]

190 known genes in GO−BP
11 positives in samples

Figure 5.5: ROC curves for some of the classi�ers we used for making predictions

Chapter 5. Hierarchical clustering with labels for predicting gene function53

Number of predictions for GO-BP: known in GOBP # pos in samples precision .6 precision .5

transcription [GO:0006350] 534 39 18

transcription, DNA-dependent [GO:0006351] 505 39 18

RNA metabolism [GO:0016070] 336 34 9 11

RNA processing [GO:0006396] 297 33 11 11

ribosome biogenesis and assembly [GO:0042254] 186 26 19 21

ribosome biogenesis [GO:0007046] 151 24 12 19

protein modi�cation [GO:0006464] 361 23 3

organelle organization and biogenesis [GO:0006996] 550 22 1

macromolecule biosynthesis [GO:0009059] 449 21 9

protein biosynthesis [GO:0006412] 442 21 9

transcription from Pol I promoter [GO:0006360] 149 20 11 11

rRNA processing [GO:0006364] 121 18 8 8

catabolism [GO:0009056] 276 16 2

cytoskeleton organization and biogenesis [GO:0007010] 255 14 2

mRNA processing [GO:0006397] 124 14 4

macromolecule catabolism [GO:0009057] 176 12 1

lipid metabolism [GO:0006629] 190 11 1

lipid biosynthesis [GO:0008610] 111 11 1

RNA splicing [GO:0008380] 112 10 4

mRNA splicing [GO:0006371] 92 10 4

microtubule-based process [GO:0007017] 94 8 1

microtubule cytoskeleton organization and biogenesis
[GO:0000226]

86 8 1

M-phase speci�c microtubule process [GO:0000072] 62 8 1

membrane lipid metabolism [GO:0006643] 85 6 1

membrane lipid biosynthesis [GO:0046467] 62 6 1

phospholipid metabolism [GO:0006644] 64 5 1

phospholipid biosynthesis [GO:0008654] 48 5 1

glycerophospholipid metabolism [GO:0006650] 34 5 1

glycerophospholipid biosynthesis [GO:0046474] 30 5 1

Table 5.3: Summary of con�dent predictions made by our clustering method on the gene
expression data

Chapter 6

Conclusions and future work

We investigated several techniques for �lling missing values in gene expression data,

trying to minimize the normalized root mean squared error of our estimators. We were

able to achieve good results, sometimes better than the current best public software, on

simulated data of low dimension with the HLS and ILS algorithms.

We developed a method based on hierarchical clustering for labeled data to �nd re-

gions in the data space of relatively high concentration of positives. This technique allows

the analysis of biological processes involving very few genes. With this method, we were

able to make con�dent predictions at precisions of 50% and above for biological processes

for which our samples contained as few as 5 positives. The methodology developed here

is not restricted to learning essential genes, but could be applied to any set of genes for

which there is quantitative data. We compared our algorithm with logistic regression and

found that either one can perform better depending on the biological process of interest,

but that our algorithm produces more con�dent predictions for more biological processes,

especially for those for which we have very few positive samples.

We used correlation as a measure of similarity between pairs of elements and average

linkage to build the hierarchical tree. It would be interesting to investigate di�erent

distance metrics and especially other linkage strategies such as single linkage, which

54

Chapter 6. Conclusions and future work 55

produces clusters that are typically less compact.

We focused on making predictions for unlabeled genes. However, it would be bio-

logically interesting to report cases in which a gene's true label is negative but whose

predicted label is a con�dent positive. This is because negative labels in our dataset are

sometimes wrong. A more challenging task would be to use datasets concurrently for the

intersecting samples and independently for disjoint sets of samples. Also �nding meth-

ods for learning biological processes concurrently rather than independently is one of our

future goals. We are thinking of using the Gene Ontology hierarchy to propagate up the

hierarchy predictions made lower down, because if a gene is involved in a biological pro-

cess, it is also involved processes above it in the hierarchy. This is not completely trivial

because the hierarchy is not a tree and a biological process can have several parents.

For examples vitamin biosynthesis is child of biosynthesis and vitamin metabolism. More

interestingly, if a prediction is made in a biological process having children, we would

like to �nd methods for making the prediction more speci�c by propagating it down the

hierarchy as far as possible.

Another area of this thesis which could be developed is the tweaking parameter � in

the second factor of equation 5.4. Other functions should also be tested in place of the

whole second factor.

Finally, the iterative least squares regression for �lling missing values should be ana-

lyzed in higher dimensions, and with a small number of samples to better simulate the

type of datasets encountered with gene expression pro�les.

Bibliography

[ABN+99] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J.

Levine. Broad patterns of gene expression revealed by clustering analysis of

tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings

of the National Academy of Science, 96(12):6745{6750, June 1999.

[AED+00] Ash A. Alizadeh, Michael B. Eisen, R. Eric Davis, Chi Ma, Izidore S. Lossos,

Andreas Rosenwald, Jennifer C. Boldrick, Hajeer Sabet, Truc Tran, Xin Yu,

John I. Powell, Liming Yang, Gerald E. Marti, Troy Moore, James Jr Hudson,

Lisheng Lu, David B. Lewis, Robert Tibshirani, Gavin Sherlock, Wing C.

Chan, Timothy C. Greiner, Dennis D. Weisenburger, James O. Armitage,

Roger Warnke, Ronald Levy, Wyndham Wilson, Michael R. Grever, John C.

Byrd, David Botstein, Patrick O. Brown, and Louis M. Staudt. Distinct

types of di�use large B-cell lymphoma identi�ed by gene expression pro�ling.

Nature, 403(6769):503{511, February 2000.

[BCRC04] Joel S Bader, Amitabha Chaudhuri, Jonathan M Rothberg, and John Chant.

Gaining con�dence in high-throughput protein interaction networks. Nature

Biotechnology, 22(1), January 2004.

[BDSY99] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns.

Journal Of Computational Biology, 6:281{297, 1999.

56

Bibliography 57

[BGL+00] Michael P S Brown, William Noble Grundy, David Lin, Nellon Cristianini,

Charles Walsh Sugnet, Terrence S Furey, Manuel Ares, and David Haus-

sler. Knowledge-based analysis of microarray gene expression data by using

support vector machines. Proceeding of the National Academy of Science,

97(1):262{7, January 2000.

[BK97] C Burge and S Karlin. Prediction of complete gene structures in human

genomic DNA. Journal of Molecular Biology, 268:78{94, 1997.

[CWB+04] K R Christie, S Weng, R Balakrishnan, M C Costanzo, K Dolinski, S S

Dwight, S R Engel, B Feierbach, D G Fisk, J E Hirschman, E L Hong,

L Issel-Tarver, R Nash, A Sethuraman, B Starr, C L Theesfeld, R Andrada,

G Binkley, Q Dong, C Lane, M Schroeder, D Botstein, and J M Cherry.

Saccharomyces genome database (sgd) provides tools to identify and analyze

sequences from saccharomyces cerevisiae and related sequences from other

organisms. Nucleic Acids Research, 32:D311{D314, 2004.

[DHD+02] Selina S. Dwight, Midori A. Harris, Kara Dolinski, Catherine A. Ball, Gail

Binkley, Karen R. Christie, Dianna G. Fisk, Laurie Issel-Tarver, Mark

Schroeder, Gavin Sherlock, Anand Sethuraman, Shuai Weng, David Bot-

stein, and J. Michael Cherry. Saccharomyces genome database (sgd) pro-

vides secondary gene annotation using the gene ontology (go). Nucleic Acids

Research, 30(1):69{72, 2002.

[ESBB98] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and

display of genome-wide expression patterns. Proceedings of the National

Academy of Science, 95(25):14863{14868, December 1998.

[FCD+00] T S Furey, N Cristianini, N Du�y, D W Bednarski, M Schummer, and

D Haussler. Support vector machine classi�cation and validation of cancer

Bibliography 58

tissue samples using microarray expression data. Bioinformatics, 16(10):906{

14, October 2000.

[GEO] http://www.ncbi.nlm.nih.gov/geo/.

[GPAH97] E. Gari, L. Piedra�ta, M. Aldea, and E. Herrero. A set of vectors with

a tetracycline-regulatable promoter system for modulated gene exression in

saccharomyces cerevisiae. Yeast, 13:837{848, 1997.

[HMJ+00] Timothy R. Hughes, Matthew J. Marton, Allan R. Jones, Christopher J.

Roberts, Roland Stoughton, Christopher D. Armour, Holly A. Bennett,

Ernest Co�ey, Hongyue Dai, Yudong D. He, Matthew J. Kidd, Amy M.

King, Michael R. Meyer, David Slade, Pek Y. Lum, Sergey B. Stepaniants,

Daniel D. Shoemaker, Daniel Gachotte, Kalpana Chakraburtty, Julian Si-

mon, Martin Bard, and Stephen H. Friend. Functional discovery via a com-

pendium of expression pro�les. Cell, 102:109{126, July 2000.

[HMJ+01] T R Hughes, M Mao, A R Jones, J Burchard, M J Marton, K W Shannon,

S M Lefkowitz, M Ziman, J M Schelter, M R Meyer, S Kobayashi, C Davis,

H Dai, Y D He, S B Stephaniants, G Cavet, W L Walker, A Westand,

E Co�ey, D D Shoemaker, R Stoughton, A P Blanchard, S H Friend, and

P S Linsley. Expression pro�ling using microarrays fabricated by an ink-jet

oligonucleotide synthesizer. Nature Biotechnology, 19(4):342{347, April 2001.

[HMS01] D Hand, H Mannila, and P Smyth. Principles of Datamining. MIT Press,

2001.

[HTF01] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-

ing. Springer, 2001.

[Hug02] T R Hughes. Yeast and drug discovery. Functional and Integrative Genomics,

2(4-5):199{211, September 2002.

Bibliography 59

[KWR+01] Javed Khan, Jun S. Wei, Markus Ringner, et. al, and Paul S. Meltzer. Clas-

si�cation and diagnostic prediction of cancers using gene expression pro�ling

and arti�cial neural networks. Nature Medicine, 7(6):673{679, 2001.

[LL03] Y Lee and C K Lee. Classi�cation of multiple cancer types by multicate-

gory support vector machines using gene expression data. Bioinformatics,

19(9):1132{9, June 2003.

[MDH+04] Sanie Mnaimneh, Armaity P. Davierwala, Jennifer Haynes, Jason Mo�at,

Wen-Tao Peng, Wen Zhang, Xueqi Yang1, Je� Pootoolal, Gordon Chua, An-

dres Lopez, Miles Trochesset, Darcy Morse, Nevan J. Krogan, Shawna L. Hi-

ley, Zhijian Li, Quaid Morris, Jrg Grigul, Nicholas Mitsakakis, Christopher J.

Roberts, Jack F. Greenblatt, Charles Boone, Chris A. Kaiser, Brenda J. An-

drews, and Timothy R. Hughes. Exploration of essential gene functions via

titratable promoter alleles. Cell, 118(1):31{44, July 9th 2004.

[MNA] http://hugheslab.med.utoronto.ca/Mnaimneh.

[NR02] D V Nguyen and D M Rocke. Tumor classi�cation by partial least squares

using microarray gene expression data. Bioinformatics, 18(1):39{50, Jan

2002.

[OST+03] Shigeyuki Oba, M. Sato, Ichiro Takemasa, Morito Monden, K. Matsubra, and

Shin Ishii. A Bayesian missing value estimation method for gene expression

pro�le data. Bioinformatics, 19(16):2088{2096, 2003.

[RSA00] S Raychaudhuri, J M Stuart, and R B Altman. Principal components analysis

to summarize microarray experiments: Application to sporulation time series.

Proceedings of the Paci�c Symposium on Biocomputing, 5:452{463, 2000.

[RTR+01] S Ramaswamy, P Tamayo, R Rifkin, S Mukherjee, C H Yeang, M An-

gelo, C Ladd, M Reich, E Latulippe, J P Mesirov, T Poggio, W Gerald,

Bibliography 60

M Loda, E S Lander, and T R Golub. Multiclass cancer diagnosis using tu-

mor gene expression signatures. Proceedings of National Academy of Science,

98(26):15149{54, December 2001.

[SS00] R. Sharan and R. Shamir. Click: A clustering algorithm for gene expression

analysis. In ISMB, 2000.

[SSDB95] Mark Schena, Dari Shalon, Ronald W. Davis, and Patrick O. Brown. Quan-

titative monitoring of gene expression patterns with a complementary DNA

microarray. Science, 270(5235):467{470, October 1995.

[TCS+01] Olga Troyanskaya, Michael Cantor, Gavin Serlock, Pat Brown, Trevor Hastie,

Robert Tibshirani, David Bostein, and Russ B. Altman. Missing value esti-

mation methods for DNA microarrays. Bioinformatics, 17(6):520{525, June

2001.

[GO04] Gene Ontology Consortium. The gene ontology (GO) database and infor-

matics resource. Nucleic Acids Research, 32:D258{D261, 2004.

[WBD+01] Mike West, Carrie Blanchette, Holly Dressman, Erich Huang, Seiichi Ishida,

Rainer Spang, Harry Zuzan, John A. Olson, Je�rey R. Marks, and Joseph R.

Nevins. Predicting the clinical status of human breast cancer by using

gene expression pro�les. Proceedings of the National Academy of Science,

98(20):11462{11467, September 2001.

