
Query Languages for Sequence Databases:

Termination and Complexity�

Giansalvatore Mecca

Universit�a della Basilicata (Italy)

mecca@dia.uniroma3.it

Anthony J. Bonner

University of Toronto (Canada)

bonner@cs.toronto.edu

Abstract

This paper develops a query language for sequence databases, such as genome databases and text

databases. Unlike relational data, queries over sequential data can easily produce in�nite answer

sets, since the universe of sequences is in�nite, even for a �nite alphabet. The challenge is to develop

query languages that are both highly expressive and �nite. This paper develops such a language

as a subset of a logic for string databases called Sequence Datalog. The main idea is to use safe

recursion to control and limit unsafe recursion. The main results are the de�nition of a �nite form of

recursion, called domain{bounded recursion, and a characterization of its complexity and expressive

power. Although �nite, the resulting class of programs is highly expressive, since its data complexity

is complete for the elementary functions.

1 Introduction

It is widely accepted that relational databases do not provide enough support for many of today's advanced

applications. In some cases, object-oriented databases are the right solution. However, in other cases, such

as genome databases and text databases, there is still a need for more exibility in data representation

and manipulation. The problem of extending relational databases with string manipulation features has

recently motivated several research proposals [4, 8, 5, 6, 7]. In fact, sequences represent a particularly

interesting domain for query languages. In contrast to sets, computations over sequences can easily

become in�nite, even when the underlying alphabet is �nite. This is because repetitions of symbols are

allowed, so that the number of possible sequences over any �nite alphabet is in�nite. The researcher

thus faces an interesting challenge: on the one hand, the language should provide powerful primitives

for restructuring sequences; on the other hand, the expressive power of the language should be carefully

limited, to avoid in�nite computations.

In [3], we developed a logic called Sequence Datalog for querying sequence databases. A safe subset

of the logic was de�ned, based on a new computational model called Generalized Sequence Transducers.

These machines are a simple yet powerful device for computing sequence mappings. In [3], we showed how

networks of these machines could be expressed in Sequence Datalog. Moreover, any Sequence Datalog

program constructed in this way is guaranteed to be safe and �nite. In this paper, we take a di�erent

approach: instead of computational de�nitions, we develop syntactic restrictions that guarantee �niteness

and safety. This provides an alternate view of �nite computations in the logic. The main idea is to use

structural recursion (which is guaranteed to terminate) to limit the construction of new sequences. The

�Preliminaryportions of this paper appear in the Proceedings of the Fifth International Workshop on Database Program-
ming Languages (DBPL'95). The �rst author was partially supported by MURST and Consiglio Nazionale delle Ricerche
(CNR). The second author was partially supported by an operating grant from the Natural Sciences and Engineering
Research Council of Canada (NSERC).

1

�rst result is a syntactically de�ned class of Sequence Datalog programs that guarantees �niteness and

safety. We call these programs domain{bounded programs. The second result is a characterization of their

complexity and expressive power. We prove that domain{bounded programs can express any sequence

mapping with hyper-exponential time complexity. Thus, although �nite, these programs are still highly

expressive.

In the paper, we use bounded term-size to study complexity. Bounded terms have been extensively

studied in the framework of logic programming (see, for example, [11]). Our work di�ers from earlier

works in this �eld in several respects. First, we study complexity (upper and lower bounds), not just

termination. Second, we derive results on expressive completeness. Third, we are concerned with bottom-

up execution (in the deductive-database tradition), not top-down execution (in the logic-programming

tradition). This di�erence is signi�cant, since programs that terminate in a top-down execution model,

may not terminate in a bottom-up model; and vice-versa. For instance, one of our results shows that the

least �xpoint of a program is �nite, which is not at all the same thing as saying that top-down execution

terminates. Fourth, the syntax and semantics of our language is di�erent from that of classical logic

programs. Semantically, all function terms in Sequence Datalog are interpreted as sequences. Thus, a

program in our language can build sequences, but cannot build more complex structures, such as nested

lists. In addition, Sequence Datalog has a richer syntax than the [HeadjTail] list constructor of Prolog.

We show that this syntax leads naturally to methods for reasoning about sequence length, and to syntactic

restrictions for limiting program complexity.

Our results rely on the ability of Sequence Datalog to distinguish syntactically between two types of

recursion | safe and unsafe. In bottom-up execution, recursion through construction of new sequences is

inherently unsafe since it can create longer sequences, which can make the active domain grow inde�nitely.

On the other hand, structural recursion over existing sequences is inherently safe, since it only creates

shorter sequences, so that growth in the active domain is bounded. In Sequence Datalog, constructive

recursion is performed using constructive terms, of the form X �Y , and structural recursion is performed

using indexed terms, of the formX[n1:n2], as shown in the following sections. In this framework, bottom-

up evaluation is based on a novel active-domain semantics (which introduces the notion of extended active

domain of a sequences database). This semantics is crucial to our �niteness and complexity results.

The paper is organized as follows. We �rst give an overview of the syntax and semantics of Sequence

Datalog, in Section 2. Then, in Section 3 we informally introduce the notion of domain{bounded recursion

with the help of several examples. The rest of the paper is devoted to the formal de�nition of this form

of recursion, and to the study of its complexity and expressibility. Sections 4.1 and 4.2 develop a simple

form of reasoning on sequence terms that allows us to \compare" their lengths. These ideas are then

used in Section 4.3 as a basis for de�ning the notion of domain{bounded program. Finally, complexity

and expressibility results are given in Section 5.

2 Overview of Sequence Datalog

Sequence Datalog is an extension of Datalog for manipulating sequences. It uses a simple data model that

extends the relational model by allowing tuples of sequences in relations, instead of just tuples of constant

2

symbols. Let � be a countable set of symbols, called the alphabet. �� denotes the set of all possible

sequences over �, including the empty sequence, �. �1�2 denotes the concatenation of two sequences,

�1; �2 2 ��. len(�) denotes the length of sequence �, and �(i) denotes its i-th element. With an abuse

of notation, we blur the distinction between elements of the alphabet and 1-ary sequences. A relation

of arity k over � is a �nite subset of the k-fold cartesian product of �� with itself. A database over �

is a �nite set of relations over �. We assign a distinct predicate symbol, r, of appropriate arity to each

relation in a database.

This section provides an informal overview of the syntax and semantics of Sequence Datalog. A formal

development can be found in [3].

2.1 Syntax

To manipulate sequences, SequenceDatalog has two interpreted function symbols for constructing com-

plex terms, one for concatenating sequences and one for extracting subsequences. Intuitively, if X and Y

are sequences, and I and J are integers, then the term X �Y denotes the concatenation of X and Y , and

the term X[I : J] denotes the subsequence of X extending from position I to position J . For example,

the following rule extracts all pre�xes of sequences in relation R: prefix(X[1:N]) R(X): For

each sequence X in R, this rule says that a pre�x of X is any subsequence starting with the �rst element

and ending with the N -th element, so long as N is no longer than the length of X. The following rule

constructs all possible concatenations of sequences in relation R: answer(X � Y) R(X); R(Y):

This rule takes any pair of sequences, X and Y , in relation R, concatenates them, and stores the result

in answer.

To be more precise, the language of terms uses three countable, disjoint sets: a set of constant symbols,

a; b; c; :::, called the alphabet and denoted �; a set of variables, R;S; T; :::, called sequence variables and

denoted V� ; and another set of variables, I; J;K; :::, called index variables and denoted VI . A constant

sequence (or sequence, for short) is an element of ��. From these sets, we construct two kinds of terms

as follows:

� index terms are built from integers, index variables, and the special symbol end, by combining

them recursively using the binary connectives + and �. Thus, if N and M are index variables,

then 3, N + 3, N �M , end� 5 and end� 5 +M are all index terms.

� sequence terms are built from constant sequences, sequence variables and index terms, by combining

them recursively into indexed terms and constructive terms, as follows: (i) If s is a sequence variable

and n1; n2 are index terms, then s[n1:n2] is an indexed sequence term. n1 and n2 are called the

indexes of s. As a shorthand, each sequence term of the form s[ni:ni] is written s[ni]. (ii) If

s1; s2 are sequence terms, then s1 � s2 is a constructive sequence term. Thus, if S1 and S2 are

sequence variables, ccgt is a sequence and N is an index variable, then S1[4], S1[1:N], and

ccgt � S1[1:end� 1] � S2 are all sequence terms.

A substitution, �, is a mapping that associates a sequence with each sequence variable in V� , and

an integer with each index variable in VI . Substitutions can be extended to partial mappings on se-

quence and index terms in a straightforward way. Because these terms are interpreted, the result of

3

a substitution is either a sequence or an integer. For example, if n1 and n2 are index terms, then

�(n1 � n2) = �(n1) � �(n2). Similarly, if s[n1:n2] is a sequence term, then �(s[n1:n2]) is de�ned i�

1 � �(n1) � �(n2) + 1 � len(�(s)) + 1. In particular, �(s[n1:n2]) is the contiguous subsequence of

�(s) extending from position �(n1) to position �(n2). However, there are some subtleties when the index

terms take on \fringe" values, as shown in the following examples; note how terms such as s[n+ 1:n] are

conveniently interpreted as the empty sequence, �.

�(uvwx[3 : 5]) is unde�ned �(uvwx[3 : 4]) = wx �(uvwx[3 : 3]) = w

�(uvwx[3 : 2]) = � �(uvwx[3 : 1]) is unde�ned �(uvwx[3 : 0]) is unde�ned

If the special index term end appears in the sequence term s[n1:n2], then end is interpreted as the length

of �(s). Thus, �(s[n:end]) is a su�x of �(s). Finally, �(s1 � s2) is interpreted as the concatenation of

�(s1) and �(s2), e:g:, �(abc � def) = abcdef .

As in most logics, the language of formulas for SequenceDatalog includes a countable set of predicate

symbols, p; q; r; :::, where each predicate symbol has an associated arity. If p is a predicate symbol of arity

n, and s1; :::; sn are sequence terms, then p(s1; :::; sn) is an atom. Moreover, if s1 and s2 are sequence

terms, then s1 = s2 and s1 6= s2 are also atoms. From atoms, we build rules, facts and clauses in the

usual way [9]. The head and body of a clause, , are denoted head() and body(), respectively. A

clause that contains a constructive term in its head is called a constructive clause. A Sequence Datalog

program is a set of Sequence Datalog rules in which constructive terms may appear in rule heads, but not

in rule bodies.

We say that a variable, X, is guarded in a clause if X occurs in the body of the clause as an argument

of some predicate. Otherwise, we say that X is unguarded. For example,X is guarded in p(X[1]) q(X),

whereas it is unguarded in p(X) q(X[1]). A rule is guarded if all variables in the rule are guarded. A

program is guarded if all rules of the program are guarded.1

2.2 Semantics

The formal semantics of Sequence Datalog is developed in [3]. Here, we review the main ideas. As in

classical logic programming [9], each Sequence Datalog program, P , has an associated T-operator that

maps databases to databases. Each application of the T-operator may create new atoms, which may

contain new sequences. The T-operator is monotonic and continuous and has a least �xpoint [3]. If the

least �xpoint is �nite, we say that P has a �nite semantics.

The universe of sequences over the alphabet, �, is in�nite. Thus, to keep the semantics of programs

�nite, we do not evaluate rules over the entire universe, ��. Instead, we introduce a new active domain

for sequence databases, called the extended active domain. This domain contains all the sequences

occurring in the database, plus all their subsequences.2 Substitutions range over this domain when rules

are evaluated. Note that the size of the extended domain is at most quadratic in the size of the database

domain. In fact, the number of di�erent contiguous subsequences of a given sequence of length k is at

most
P2

i=0

�
k

i

�
, that is, k(k+1)

2 + 1.

1As it will become clear in the following, because of the active{domain semantics, variables in Sequence Datalog clauses
need not be guarded. However, in this paper we will mainly refer to guarded programs.

2In this paper, we always refer to contiguous subsequences, that is, subsequences speci�ed by a start and end position
in some other sequence. Thus, bcd is a contiguous subsequence of abcde, whereas bd is not.

4

The extended active domain is not �xed during query evaluation. Instead, whenever a new sequence

is created (by the concatenation operator, �), the new sequence|and its subsequences|are added to

the extended active domain. The �xpoint theory of Sequence Datalog provides a declarative semantics

for this apparently procedural notion [3]. In the �xpoint theory, the extended active domain of the least

�xpoint is larger than the extended active domain of the database. For the database, the domain consists

of the sequences in the database and all their subsequences. For the least �xpoint, the domain consists

of the sequences in the database and any new sequences created during rule evaluation, and all their

subsequences. The concatenated sequences (and their subsequences) form the extended active domain of

the least �xpoint.

To be more precise, we de�ne the �xpoint semantics of a program, P , over a database, db, as follows:

� The extended active domain of a database, db, with respect to a program, P , is denoted DextP;db. It

is the union of the following three sets: (i) the active domain of the database and the program, that

is, the set of sequences occurring in db and P ; (ii) all the contiguous subsequences of the sequences

in the active domain; and (iii) the set of integers f0; 1; 2; : : :; l0 + 1g, where l0 is the maximum

length of a sequence in the active domain.

� The operator TP;db associated with program P and database dbmaps interpretations | i.e., sets of

ground atomic formulas | to interpretations. In particular, if I is an interpretation, then TP;db (I)

is the following interpretation [3]:

f�(head()) j �(body()) � I for some clause 2 P [db

and some substitution � based on DextI and de�ned at g

The least �xpoint [9] of the operator TP;db is computed in a bottom-up fashion, by starting at the

database, db, and applying the operator repeatedly until a �xpoint is reached [9].

� At each step, if an inferred fact contains a new sequence (i:e:, a sequence not currently in the

extended active domain), then it is added to the active domain. Thus, as the bottom-up computation

proceeds, the extended active domain may expand. At each step of the computation, substitutions

range over the current value of the extended active domain.

Note that the least �xpoint can be an in�nite set. In this case, we say that the semantics of P over db

is in�nite; otherwise, it is �nite.

3 Domain Bounded Recursion by Examples

As discussed in the previous sections, computations over sequences may become in�nite even when the

underlying alphabet is �nite. We are interested in studying �nite programs, that is, programs that have

a �nite semantics (i:e: a �nite least �xpoint) over every input database.

As is typical with powerful logics, the �niteness property for Sequence Datalog programs is in general

undecidable [3]. Thus, one of our aims is to develop subsets of the logic that are �nite. We �rst note

that a necessary condition for in�niteness is the generation of sequences of unbounded length. To do this,

programs must use recursion through construction. That is, newly computed sequences must be used

recursively to construct more new sequences. This kind of computation is closely related to a particular

5

form of constructive rule, which we call recursive constructive rules. In such rules, the predicate in the

head depends on itself. To formalize this concept, we use the notion of a predicate dependency graph of

a Sequence Datalog program.3 This notion, and several others, are closely related:

� Predicate p is a constructive predicate in program P if P contains a constructive rule for p, that is,

a rule with a constructive term (a term containing �) in its head. Note that constructive predicates

cause new sequences to be added to the domain during query evaluation.

� Predicate p depends on predicate q in program P if P contains a rule in which p is the predicate

symbol in the head and q is a predicate symbol in the body. If the rule is constructive, then p

depends constructively on q.4

� The predicate dependency graph, pdgP , of program P is a directed graph representing the binary

relation \depends on" over the predicates of P . An edge (p; q) in this graph is a constructive edge

if p depends constructively on q.

� Predicate p is recursive with respect to construction in program P if the predicate dependency graph

for P contains a cycle passing through p with a constructive edge.

The simplest way to enforce �niteness in the presence of constructive rules is to disallow recursion

through construction. This means forbidding programs whose predicate dependency graph contains

cycles with constructive edges. However, we have shown [3] that the resulting language, called Strati�ed

Sequence Datalog, has rather limited expressive power, due to its limited ability to restructure sequences.

Many natural, simple and low-complexity restructurings|such as reversing a sequence or computing its

complement|require constructive recursion, and cannot be expressed in Strati�ed Sequence Datalog.

For these operations, the number of concatenations depends on the database. In contrast, in Strati�ed

Sequence Datalog, the number of concatenations is �xed for each program and is independent of the

database.

In this section we show how it is possible to increase expressiveness while preserving �niteness. The

examples develop the idea that constructive recursion (which is unsafe) can be limited and controlled

by structural recursion (which is always safe). This is the main idea of this paper, and the basis for

the syntactic restrictions developed in the next sections. Consider, for example, the next program. It

restructures the sequences in the database, producing new sequences longer than any in the database.

The �rst version of the program does it in a straightforward way, but has an in�nite semantics. The

second version solves the same problem, but with a �nite semantics.

Example 3.1 [In�nite Semantics] Suppose R is a unary relation containing a set of sequences. For

each sequence X in R, we want the sequence obtained by repeating each symbol in X twice. For example,

given the sequence abcd, we want the sequence aabbccdd. We call these sequences echo sequences. The

easiest way to de�ne echo sequences is with the following program:

3Our notion of predicate dependency graph is a variant of the one introduced in [1] for strati�ed negation.
4For clarity's sake, this paper supposes that only guarded variables occur in programs. With some added complexity,

the de�nitions can be adjusted to the more general case.

6

1 : answer(X;Y) R(X); echo(X;Y):

2 : echo(�; �) true.

3 : echo(X;X[1] �X[1] � Z) echo(X[2:end]; Z).

The �rst rule retrieves every sequence in relation R and its echo, by invoking the predicate echo(X;Y).

The last two rules specify what an echo sequence is. For every sequence, X, in the extended active

domain, these rules generate its echo sequence, Y . Starting with X = � and Y = �, they recursively

concatenate single characters onto X while concatenating two copies of the same character onto Y . As

new sequences are generated, they are added to the active domain, which expands inde�nitely.

This program has an in�nite semantics over every database that contains a non-empty sequence. This

is because the rules de�ning echo(X;Y) recursively generate longer and longer sequences without bound.

For example, suppose the input database contains only one tuple, fR(aa)g. Its extended active domain

consists of the sequences �; a; aa. During a bottom-up computation of the least �xpoint, whenever rule

3 is �red, the inferred facts and the extended domain both grow. The least �xpoint of the T operator is

therefore in�nite, and its extended active domain is the set of all sequences made of a's. Note that the

query answer consists of a single atom, answer(aa; aaaa). Thus, although the least �xpoint is in�nite,

the query answer is not. The next program expresses the query in such a way that both the answer and

the least �xpoint are �nite.

10 : answer(X;Y) R(X); echo0(X;Y):

20 : echo0(�; �) true.

30 : echo0(X[1:N + 1]; Z �X[N + 1] �X[N + 1]) R(X); echo0(X[1:N]; Z).

In this program, the sequences in relation R act as input for the third rule, which de�nes the predicate

echo0(X;Y). This rule recursively scans each input sequence, X, while constructing an output sequence,

Y . For each character in the input sequence, two copies of the character are appended to the output

sequence. The rule computes the echo of every pre�x of every sequence in R. The �rst rule then retrieves

the echoes of the sequences in R.

Like rules 1{3 above, the program made of rules 10{30 involves constructive recursion. However,

in the latter case, the least �xpoint is �nite. This is because constructive recursion does not go on

inde�nitely, but terminates as soon as the input sequences have been scanned. In essence, growing terms

of upwardly bounded length are used to guarantee termination: these terms \grow" at each recursive

evaluation of the rule, and recursion stops when the upper bound has been reached. In this way, structural

recursion over the �rst argument controls and limits constructive recursion over the second argument. }

As shown by Example 3.1, in some patterns of recursion the length of newly constructed sequences can

be bounded above by using structural recursion to control constructive recursion in such a way that the

recursive construction of new sequences proceeds up to a certain length and then stops. In these cases,

the length of constructed sequences is bounded above by the size of the active domain of the database,

that is, by the sum of the lengths of all sequences in the database. Recursion therefore stops after a �nite

amount of time, depending on the size of the domain. We call these forms of recursion domain{bounded

recursion.

The notion of domain{bounded recursion can also be used as a basis for optimizing rule-evaluation.

7

In fact, it suggests a rule-rewriting technique that in some cases may signi�cantly improve the evaluation

of programs, as shown in the following example.

Example 3.2 [Complement] Suppose R is a base relation storing a set of binary sequences, and

we wish to compute the complement of all the sequences in R. There are two ways of expressing this

transformation in Sequence Datalog; both are �nite, but the second has lower complexity.

The �rst solution uses a standard logic-programming approach involving tail recursion:

1 : answer(Y) R(X); complement(X;Y):

2 : complement(�; �) true.

3 : complement(X; Y � Z) compl(X[1]; Y); complement(X[2:end]; Z).

Here, we assume that the atoms compl(0; 1) and compl(1; 0) are in the database. In this case, predicate

complement constructs the complement of every sequence in the extended active domain of the database.

Recursion starts with the empty sequence, and proceeds until the complement of every sequence in the

extended active domain has been generated. Since sequences do not grow as a result of evaluating

predicate complement|the complementary sequence has the same length as the original one|the active

domain semantics prevents the generation of sequences of unbounded length, and recursion stops after a

�nite amount of time.

Although they have a �nite semantics, rules 1 to 3 are still highly ine�cient, since they compute the

complement of every sequence in the extended active domain of the database, not just the complement

of sequences in relation R. Since the extended active domain has polynomial (quadratic) size wrt the

database domain, a polynomial number of unnecessary complement sequences are computed. This ine�-

ciency can be avoided by expressing the query in another, more-e�cient way, again using domain{bounded

recursion:

10 : answer(Y) R(X); complement0(X;Y):

20 : complement0(�; �) true.

30 : complement0(X[1:N + 1]; Z � Y) R(X); compl(X[N + 1]; Y); complement0(X[1:N]; Z).

In these rules, each sequence in relation R is scanned from beginning to end, and in the process, the

complementary sequence is constructed one symbol at a time. Note that since the complement is generated

only for sequences in relation R, rule evaluation requires only a linear number of database accesses (linear

in the sum of the lengths of all sequences in R). }

The next sections formally de�ne the notion of domain{bounded recursion.

4 Domain Bounded Recursion: De�nition

4.1 Reasoning about Length

To determine if a program is �nite, we need to reason about the lengths of any new sequences created

by the program. If these lengths can be bounded, then the program is �nite. This section develops a

simple formalism for comparing the \lengths" of two sequence terms. As a �rst step, we develop the

notion of the symbolic length of a sequence term. This is an arithmetic expression in which symbols and

numbers can appear. For example, if X is a sequence variable, then its symbolic length is the symbol

8

LX . Likewise, if X � Y is a sequence term, then its symbolic length is LX + LY . The symbolic length of

a constant sequence (e:g:, actg) is its actual length (e:g:, 4). Such expressions allow us to reason about

the lengths of partially speci�ed sequences. The reasoning is tractable because we are dealing with just

a tiny subset of arithmetic.

To reason about sequence terms such as X[N : M], we need to reason about the index terms N and

M . We therefore introduce the notion of the symbolic value of an index term. Like symbolic lengths,

symbolic values are arithmetic expressions in which numbers and symbols can appear. For example, if

N is an index variable, then its symbolic value is the symbol VN . In general, the symbolic value of

an index term depends on the sequence term in which it is embedded. For example, in the sequence

term X[N : end], the index term end represents the last position in the sequence X. Thus, in the term

acgt[2 : end], the symbolic value of end is 4, while in the term actgactg[2 : end], its symbolic value is 8.

The following de�nition makes these ideas precise.

De�nition 1 (Symbolic Length and Value) The symbolic length of a sequence term, s, is an arith-

metic expression, denoted L(s). The symbolic value of an index term, n, in the context of s is also an

arithmetic expression, denoted V (n; s). These expressions are built from integers, two binary connectives

(+ and �), and a collection of symbols. They are constructed in a mutually recursive fashion as follows:

{ Symbolic Lengths:

� If s is a constant sequence in ��, then L(s) is the length of s. e:g:, L(acgt) = 4.

� If X is a sequence variable in V� , then L(X) is the symbol LX .

� L(s1 � s2) = L(s1) + L(s2). e:g:, L(X � atcg) = LX + 4.

� L(s[n1:n2]) = V (n2; s) � V (n1; s) + 1.

{ Symbolic Values:

� If n is an integer, then V (n; s) = n.

� If N is an index variable in VI , then V (N; s) is the symbol VN .

� V (end; s) = L(s). e:g:, V (end;X) = LX V (end; atcgatcg) = 8.

� V (n1 � n2; s) = V (n1; s)� V (n2; s). e:g:, V (N + 3; X) = VN + 3; V (end� N;X) = LX � VN .

Here are some sequence terms and their symbolic lengths:

L(X[3:N]) = VN � 3 + 1; L(atcgatcgatcg[3 + N :end�M]) = (12� VM)� (3 + VN) + 1

L(X[3:end]) = LX � 3 + 1; L(X[3:N] � Y [N :end]) = (VN � 3 + 1) + (LY � VN + 1)

Symbolic lengths can be manipulated in a variety of ways. For instance, we can add and subtract two

symbolic lengths to obtain another symbolic length. In some situations, we can also evaluate a symbolic

length to obtain an integer. For example, if a symbolic length contains only integers and no symbols,

then it can be evaluated in the normal way. Even if a symbolic length contains symbols, these symbols

may cancel out, so the expression can be evaluated; e:g:, the value of LX + 4� LX � 2 is 2. This gives

two well-de�ned situations in which symbolic lengths can be evaluated. This idea gives us a mechanism

with which to compare two symbolic lengths. We say that two sequence terms s1, s2 are comparable if

9

the symbolic expression L(s1)� L(s2) can be evaluated,5 to yield an integer, k. If k > 0 then s1 is longer

than s2. If k = 0 then s1 is the same length as s2.

For example, the sequence term s1 = actg � Y is longer than the sequence term s2 = Y . To see this,

note that L(s1) = 4+LY and L(s2) = LY , so L(s1)�L(s2) evaluates to 4, a positive integer. Similarly,

the term s3 = X[5:N] is longer than the term s4 = X[5:N � 3]. In this case, L(s3) = VN � 5+ 1 and

L(s4) = VN � 3� 5 + 1, so L(s3)� L(s4) evaluates to 3, a positive integer.

On the other hand, the terms s5 = S[1:N] and s6 = S[1:M] are incomparable. To see this, note that

L(s5) � L(s6) reduces to VN � VM , which cannot be evaluated. Similarly, the terms s7 = X � Y and

s8 = Y are incomparable. In this case, L(s7)� L(s8) reduces to LX , which cannot be evaluated.

4.2 Constrained Variables and Growing Attributes

Another notion that we need is constrained variables. Intuitively, we need to infer when a variable ranges

over a �xed domain that does not grow during query evaluation. For example, in the rule p(X[1 : 3])

q(X), the variable X is constrained, since it is guarded by q, so that X is forced to range over sequences

in relation q (recall that we say that a variable, X, is guarded in a clause if X occurs in the body of the

clause as an argument of some predicate). However, in the rule p(X) q(X[1 : 3]), variable X is not

constrained. To see this, note that X is unguarded; suppose the database contains the fact q(abc). Then

the index term X[1 : 3] can take on the value abc, which means that X can be any sequence that has

abc as a pre�x. Thus, X can range over an in�nite domain, including sequences of unbounded length.

These ideas motivate the following de�nition of constrained variable . In this de�nition, and throughout

the paper, we use the notation (p; i) to refer to the ith attribute (or argument) of predicate p.

De�nition 2 (Constrained Variables) We say that a sequence variable S is constrained by predicate

p in rule if at least one of the following holds: (i) variable S is guarded by predicate p in the body of ;

(ii) the body of contains an equality atom of the form S = S1[N1:N2] where S1 is guarded by p in the

body of .

There are some cases in which it is easy to see that an attribute of a predicate \grows" during the

bottom-up computation. For example, consider the following rules, where q is a base predicate:

p(X; �) q(X):

p(X;X[1 : N + 1]) q(X); p(X;X[1 : N]):

Here, p(X;Y) is true i� X is a sequence in q and Y is a pre�x of X. To see this, note that if X is a

sequence in q, then p(X; �) is true, by the �rst rule. Then, using the second rule, p(X;X[1 : 1]) is true,

then p(X;X[1 : 2]) is true, then p(X;X[1 : 3]), and so on up to p(X;X). After this, X[1 : N] is unde�ned,

so recursion stops. The rules thus scan each sequence in q from beginning to end, which is a canonical

example of structural recursion. There are two points to observe here. (i) In both rules, variable X is

constrained by the predicate q. (ii) The second attribute of p grows with each bottom-up application of

the rules. The notion of \growth" can be made precise by comparing the symbolic lengths of terms in

5Sometimes, two symbolic lengths can be intuitively compared even if their di�erence cannot be evaluated. For example,
we can easily conclude that every instantiation of the term s1 = X �Y �a is longer than the corresponding instantiation of
the term s2 = X, even though their di�erence L(s1)�L(s2) = LY +1 cannot be evaluated. However, we shall ignore this
possibility, since taking it into account would complicate the de�nitions and the theoretical development without increasing
the expressibility of the formalism.

10

the head and body of a rule. In this case, X[1 : N + 1] is longer than X[1 : N]. The following de�nition

generalizes this idea.

De�nition 3 (Growing attributes) Suppose predicate p occurs in the head and body of a rule. Suppose

the sequence term in attribute (p; k) in the head is not a constructive term. Attribute (p; k) grows in the

rule if the sequence term in attribute (p; k) in the head is longer than the sequence term in attribute (p; k)

in the body. In addition, attribute (p; k) does not shrink in the rule if the sequence term in attribute (p; k)

in the head is longer than or the same length as the sequence term in attribute (p; k) in the body.

4.3 Domain{Bounded Programs

We have now developed the concepts needed to de�ne Domain{Bounded Recursion. The idea is to allow

recursion through construction, but in a controlled and limited way. The result is a class of Sequence

Datalog programs that we call domain{bounded programs.

The �rst restriction we impose on Sequence Datalog is that recursive constructive rules be linear.

Recall that a rule is linear i� the predicate in the head is mutually recursive with the predicate of at most

one atom in the body [2]. Actually, in order to keep the technical development as simple as possible,

we require more than mere linearity: we disallow mutual recursion through construction. We call this

simple recursion through construction. The rulebases in Example 3.1, de�ning the predicates echo and

echo0, are both simple recursive. This property of a program can easily be checked in polynomial time

(polynomial in the number of rules).

It is important to note that: (i) mutual recursion and non-linear recursion are still allowed. However,

they are not allowed in constructive rules. We thus have all the power of classical Datalog at our disposal

(since Datalog is a subset of Sequence Datalog); (ii) abolishing mutual recursion through construction

does not limit our expressive power, since mutual recursion can always be reduced to non-mutual re-

cursion; (iii) the de�nition of domain{bounded recursion and the expressibility results can be extended

to programs with mutual recursion, but non-mutual recursion makes the treatment much simpler and

elegant. In fact, in simple recursive rules, the predicate symbol in the head must also occur once in the

body of the rule. This means that if p is the predicate in the head, then for every attribute (p; i), we can

try to compare the length of the term in attribute (p; i) in the body with the length of the corresponding

term in the head. In particular, we are interested in attributes that grow from body to head, according

to De�nition 3.

De�nition 4 (Set of growing attributes) We say that a predicate p has a set of growing attributes,

f(p; i1), (p; i2); : : : ; (p; in)g, if, for each simple recursive rule such that p occurs in head() it is the

case that: (i) at least one attribute (p; ik) grows in ; (ii) none of the other attributes (p; ij) in the set

shrinks.

We can now de�ne the notion of domain{bounded program.

De�nition 5 (Domain{bounded program) A program is domain{bounded if every recursive con-

structive rule, , in the program satis�es the following conditions: (i) the rule is simple recursive; (ii)

11

the predicate in the head, p, has a set of growing attributes; (iii) every variable associated with a growing

attribute is constrained by some predicate q di�erent from p in .

5 Complexity and Expressibility

In this section we prove a number of results: (i) that domain{bounded programs are �nite, (ii) that their

data complexity is complete for elementary time, and (iii) that they express exactly the class of elementary

sequence functions [10], that is, the class of sequence functions with hyper-exponential time complexity.

Thus, although �nite, domain{bounded recursion is highly expressive. As a simple illustration, the

following example shows that domain{bounded programs can generate sequences of exponential length.

Example 5.1 [Long sequences] The following program is domain{bounded:

doubling(�; 1) true:

doubling(X[1:N + 1]; Y � Y) R(X); doubling(X[1:N]; Y):

Given a sequence, �, of length n in predicate R, the predicate doubling computes a sequence of 1's of

length 2n by doubling the length of a unit sequence n times. }

This paper addresses the complexity and expressibility of domain{bounded programs in terms of

sequence functions. While a sequence query is a partial mapping from the set of databases over � to

itself, a sequence function [4] is a partial mapping from �� to itself. A sequence function is computable

if it is partial recursive. Sequence functions can be thought of as queries from a database, finput(�in)g,

containing a single sequence tuple, to a database, foutput(�out)g, containing a single sequence tuple.

Given a sequence function, f , the complexity of f is de�ned in the usual way, as the complexity of

computing f(�), measured with respect to the length of the sequence �. A query language, L, is said to

express a complexity class, c, of sequence functions if: (i) each sequence function expressible in L has

complexity in c and conversely, (ii) each sequence function with complexity in c can be expressed in L.

The class of elementary sequence functions, E , is de�ned in terms of the hyper-exponential functions,

hypi(n). These latter functions are de�ned recursively as follows: (i) hyp1(n) = n; (ii) hypi+1(n) =

2hypi(n), for i > 1. hypi is called the hyper-exponential function of level i. The set of elementary

sequence functions is the set of sequence functions that have hyper-exponential time complexity, that is,

the set of sequence functions: E =
S
i�1 dtime[hypi(O(n))]

The following theorem is the main result of this section. An immediate corollary is that the data

complexity of Sequence Datalog programs is complete for elementary time.

Theorem 1 (Finiteness and Expressibility) Every domain{bounded program P is �nite. Moreover,

Domain{bounded programs express the class E , of elementary sequence functions.

Proof Sketch: (Finiteness) Let us consider a domain{bounded program, P , and its predicate dependency

graph, pdgP . If there are k strongly connected components in the graph, then we can linearize the

components by a topological sort; i:e:, we can assign a distinct integer i 2 f1; : : : ; kg to each component

so that if there is an arc from component i to component j then i < j. Let us callN1; : : : ;Nk the linearized

components. The linearization induces a strati�cation on the program P , where the ith stratum consists

12

of those rules in P that de�ne predicates in Ni. Let Pi denote the ith stratum of P . The Pi are disjoint,

and P = P1 [P2 [� � � [Pk.

Because P is guarded, the extent of a predicate de�ned in Pi depends only on the rules in P1[� � �[Pi.

We can therefore apply the rules in P in a bottom-up fashion, one stratum at a time. Formally, given

a database db, we de�ne a sequence of minimal modelsM1; : : : ;Mk;Mk+1 as follows: (i)M1 = db ;

(ii)Mi+1 = TPi;Mi
" ! for 1 � i � k. Moreover,Mk+1 is the minimal model of P and db.

Our �rst goal is to bound the size of the extended domain of eachMi. To do this, note that size of

the extended domain is O(dli), where d is the alphabet size and li is the length of the longest sequence

in Mi. Thus, it is enough to bound li. We do this by induction on i. In particular, we show that

li = hypi(O(n)), where n = l1 is the length of the longest sequence in the database, db.

{ (Base case) Follows immediately, since hyp1(n) = n = l1, by de�nition.

{ (Inductive case) Suppose that li = hypi(O(n)). To show that li+1 = hypi+1(O(n)), we distinguish

two cases: (i) Ni does not contain predicates involved in constructive loops, that is, there is no simple

constructive rule in Pi; (ii) Ni is a singleton component having a constructive loop, that is, there is at

least one simple constructive rule in Pi.

First consider case (i). Since there is no recursion through construction, li+1 = O(li) = hypi(O(n)).

Hence li+1 = hypi+1(O(n)).

Now consider case (ii), in which Ni is a singleton component involved in a constructive loop. Pi

thus de�nes a single recursive predicate. Let h be the number of growing attributes for this predicate.

By the de�nition of domain-bounded programs, (i) each application of a recursive rule makes one of the

growing attributes grow and none shrink, and (ii) all the variables associated with a growing attribute

are constrained by some predicate de�ned in a lower stratum. Condition (ii) means that these variables

can bind only to sequences inMi, and so their lengths are bounded above li. Combined with condition

(i), this means that the bottom-up computation for Pi must saturate after at most hli steps. Now, let

s1 � s2 � : : :� sm be a constructive term in the head of a rule in Pi with a maximal number of � operators.

The length of the computed sequences therefore grows by at most a factor of m each time the rules in

Pi are �red. The maximum length of a computed sequence is therefore O(mhli) = 2O(li). Thus, if li is

hyper-exponential, then so is li+1. In particular, if li = hypi(O(n)) then li+1 = hypi+1(O(n)).

This shows that lk+1 is of hyper-exponential size. It follows thatMk+1, the minimal model of P , is

�nite and of hyper-exponential size.

(Expressibility) The upper complexity bound follows immediately from the fact that the size of the

least �xpoint of a domain program P is hyper-exponential in the size of the database; thus, the minimum

model can be computed in hyper-exponential time with respect to the size of the input database.

We now prove that domain{bounded programs are expressively complete for the elementary sequence

functions; that is, any elementary sequence function can be expressed by one of these programs. More

speci�cally, given a sequence function, f , and an input sequence, �in, we encode the input sequence as a

unary tuple in predicate input, and compute the output sequence, �out = f(�in), in predicate output.

Since f is an elementary function, there is a Turing machine mf which runs in hyper-exponential

time and computes f . We will prove the result by simulating the computation of mf over �in. The

13

crux in the proof is the construction of a unary hyper-exponential counter that will be used during the

simulation to mark time and space; if n is the length of the input sequence, and Turing machine mf runs

in time hypi(n), we need a counter from 1 to hypi(n). To do this, we use a technique similar to the one

in Example 5.1 to produce a sequence of length 2n, and then re-apply to this new sequence the same

rules i-times to produce a sequence of length hypi(n). Once this counter has been built, we can use the

counter to mark tape cells and keep track of time, and easily simulate the computation of mf over �in

using quite standard techniques. It is easy to show that the sequence in predicate output is the output

of function f on input �in. This completes the proof. }

References

[1] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker, editor,

Foundations of Deductive Databases and Logic Programming, pages 89{148. Morgan Kau�man, Los

Altos, 1988.

[2] F. Bancilhon and R. Ramakrishnan. An amateur's introduction to recursive query processing strate-

gies. In ACM SIGMOD International Conf. on Management of Data (SIGMOD'86), Washington,

D.C., pages 16{52, 1986.

[3] A. J. Bonner and G. Mecca. Sequences, Datalog and Transducers. Journal of Computing and System

Sciences, Special Issue on PODS'95(57):234{259, 3 1998. http://www.difa.unibas.it/users/gmecca.

[4] L. S. Colby, E. L. Robertson, L. V. Saxton, and D. Van Gucht. A query language for list-based com-

plex objects. In Thirteenth ACM SIGMOD Intern. Symposium on Principles of Database Systems

(PODS'94), pages 179{189, 1994.

[5] S. Ginsburg and X. Wang. Pattern matching by RS-operations: towards a uni�ed approach to

querying sequence data. In Eleventh ACM SIGACT SIGMOD SIGART Symp. on Principles of

Database Systems (PODS'92), pages 293{300, 1992.

[6] G. Grahne, M. Nykanen, and E. Ukkonen. Reasoning about strings in databases. In Thirteenth

ACM SIGMOD Intern. Symposium on Principles of Database Systems (PODS'94), pages 303{312,

1994.

[7] G. Grahne and E. Waller. How to make SQL stand for String Query Language ? In Seventh Intern.

Workshop on Database Programming Languages (DBPL'99), Kinloch Rannoch, Scotland, 1999.

[8] S. Grumbach and T. Milo. An algebra for POMSETS. In Fifth International Conference on Data

Base Theory, (ICDT'95), Prague, Lecture Notes in Computer Science, Springer-Verlag, pages 191{

207, 1995.

[9] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition, 1987.

[10] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

14

[11] K. Sohn and A. Van Gelder. Termination detection in logic programs using argument sizes. In

Tenth ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS'91),

pages 216{226, 1991.

15

