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Abstract

In previous work, we developed Transaction Logic (or T R), which deals with state changes in deduc-
tive databases. T R provides a logical framework in which elementary database updates and queries can
be combined into complex database transactions. T R accounts not only for the updates themselves, but
also for important related problems, such as the order of update operations, non-determinism, and trans-
action failure and rollback. In the present paper, we propose Concurrent Transaction Logic (or CT R),
which extends Transaction Logic with connectives for modeling the concurrent execution of complex
processes. Concurrent processes in CT R execute in an interleaved fashion and can communicate and
synchronize themselves. Like classical logic, CT R has a \Horn" fragment that has both a procedural
and a declarative semantics, in which users can program and execute database transactions. CT R is
thus a deductive database language that integrates concurrency, communication, and updates. All this
is accomplished in a completely logical framework, including a natural model theory and a proof theory.
Moreover, this framework is 
exible enough to accommodate many di�erent semantics for updates and
deductive databases. For instance, not only can updates insert and delete tuples, they can also insert and
delete null values, rules, or arbitrary logical formulas. Likewise, not only can databases have a classical
semantics, they can also have the well-founded semantics, the stable-model semantics, etc. Finally, the
proof theory for CT R has an e�cient SLD-style proof procedure. As in the sequential version of the
logic, this proof procedure not only �nds proofs, it also executes concurrent transactions, �nds their
execution schedules, and updates the database. A main result is that the proof theory is sound and
complete for the model theory.
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1 Introduction

Updates are a crucial component of any database programming language. Even the simplest database
operations, such as withdrawal from a bank account, require updates. Unfortunately, updates are not
accounted for by the classical Horn semantics of deductive databases. To �ll this theoretical gap, we developed
Transaction Logic (or T R), an extension of �rst-order classical logic that provides a clean, logical account
for state changes in databases and logic programs [8, 6, 9]. Like classical logic, T R has a \Horn" fragment
that has both a procedural and a declarative semantics, in which users can program and execute database
transactions. T R accounts not only for the updates themselves, but also for important related problems,
such as the order of update operations, non-determinism, and transaction failure and rollback. All this is
accomplished in a completely logical framework , including a natural model theory and a sound-and-complete
proof theory.

One of the di�culties posed by updates in logic programs is that the order of update operations is
often crucial. For example, erasing a database relation and inserting tuples into the relation are con
icting
operations: the �nal outcome depends on which operation is executed �rst. The classical semantics of Horn
logic does not address this issue. To deal with it, Transaction Logic extends classical logic with an operator|
called serial conjunction|that allows a user to specify a linear order on a set of transactions. Using this
operator in combination with logical rules, a user builds complex transactions out of simpler ones. This
approach provides more 
exibility and power than most other declarative database transaction languages. For
instance, many such languages do not support subtransactions, transaction failure, or transaction rollback.
Moreover, whereas most database transaction languages express all the database transactions computable
in PSPACE, T R expresses all the transactions computable in EXPTIME (in the function-free case) [10].

In this paper, we extend Transaction Logic by allowing updates to be combined concurrently , as well
as serially. We call the resulting logical system Concurrent Transaction Logic (or CT R). Like Transaction
Logic, CT R is a language for programming database transactions and applications.1 Concurrency increases
the 
exibility, performance, and power of the language. Flexibility is increased since users are no longer
forced to specify a total linear order on transactions. This opens the logic to a new range of advanced
applications, including work
ow management and multi-agent planning. Performance is increased since in a
multi-user environment, a database management system (DBMS) can execute any concurrent process whose
data items are available. It does not have to delay process execution because of an arti�cially-imposed linear
order. Finally, power is increased since the logic can now express any computable database transaction [10],
i:e:, concurrency increases expressibility from EXPTIME to RE (in the function-free case).

Although there has been considerable research on concurrency in databases, logic programming, and
elsewhere, CT R is the only deductive database language that integrates concurrency, communication, and
database updates in a completely logical framework. Such integration presents interesting new possibilities
for the programmer. For instance, concurrent processes can now communicate via the database; that is, one
process can read what another process has written. This form of communication leads to a programming
style that is very di�erent from that of existing concurrent logic programming (CLP) languages, as illustrated
in this paper.

In CLP languages [32], concurrent processes communicate via shared variables and uni�cation. This kind
of communication is orthogonal to communication via the database. Both are possible in CT R. Implemen-
tations of CT R may therefore adopt many of the techniques of shared-variable communication developed
for CLP. However, this possibility is not the focus of this paper. Instead, we focus on concurrent processes
that interact and communicate via the database. Indeed, one of the novelties of CT R is that it provides a
logical foundation for exactly this kind of interaction.

Programming with states is very common, and the practice of logic programming shows that it is also
unavoidable. Unfortunately, classical logic is stateless. One way to get around this problem is to repre-
sent states as terms, as in the situation calculus [21, 31]. However, this approach has not taken roots in
logic programming for many reasons, including the complexity of dealing with the frame problem [9]. In
Prolog, e�cient techniques have been developed where states are represented as lists or terms, which do
not require frame axioms. However, these techniques rely heavily on Prolog's control strategy, cuts, or on
other non-logical features. Moreover, it is not clear that this approach is practical for very large states,

1Consequently, this paper is about database application programming, not concurrency control and recovery.
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such as databases. Only \tiny" databases �t in main memory, and databases several gigabytes in size are
commonplace. Can Prolog e�ciently manage a 10 GByte list? What if several processes need to modify the
list concurrently?

Another possibility is to do updates via the database. Prolog even supplies primitive operators for
doing this, such as assert and retract. Unfortunately, these update operators have no logical semantics, and
each time a programmer uses them, he moves further away from declarative programming. Moreover, Prolog
programs using these operators are often awkward and the most di�cult to understand, debug and maintain.
These problems are all exacerbated by concurrency.

Another problem is that updates in Prolog are not integrated into a complete logical system. Thus,
it is not clear how assert and retract should interact with other logical operators. For instance, what do
the following formulas mean: assert(X) _ assert(Y ), 8X9Y assert(p(X;Y )), assert(X) retract(Y ),
or :assert(X). Also, how does one logically account for the fact that the order of updates is important?
Finally, what does it mean to update a database that contains arbitrary logical formulas? None of these
questions is addressed by Prolog's classical semantics or its update operators. Likewise, these problems are
not addressed by existing concurrent logic programming languages [32]. In fact, the problems of updates are
even more complex in a concurrent environment.

Concurrent Transaction Logic provides a general solution to the aforementioned limitations, both of
Prolog and of concurrent logic programming languages. Intuitively, a CT R program consists of a number
of concurrent processes, where each process produces a sequence of elementary database operations. By
interleaving these sequences, we obtain a new sequence of operations, which can then be executed. The set
of possible interleavings is determined by interactions between the processes. For instance, if one process
writes data that another process must read, then the write operation must come before the read operation
in the interleaved sequence. These interactions are speci�ed by CT R programs. Given such a program, the
model theory describes the set of all possible interleavings, and the proof theory generates them.

From the programmer's point of view, CT R supplies a syntax and a semantics by which elementary
database operations can be combined serially and concurrently into complex programs. Like sequential
Transaction Logic, the emphasis in CT R is not on specifying elementary operations, but on combining them
logically into programs. This emphasis re
ects programming practice. In databases and logic programming
(as in C and Pascal), application programmers spend little if any time specifying elementary operations, but
a lot of time combining them into complex transactions and programs.

Nevertheless, the set of elementary operations is an important feature of a language, and can determine its
domain of application. Moreover, practice shows that elementary operations can vary widely. For example, in
C and Pascal, changing the value of a variable is an elementary operation. In Prolog, asserting or retracting
a clause is elementary. In database applications, SQL statements are the basic building blocks. In scienti�c
and engineering programs, basic operations include Fourier transforms, matrix inversion, least-squares �tting,
and operations on DNA sequences [14, 20]. In work
ow management systems, elementary operations can
include any number of application programs and legacy systems [4]. In all cases, the elementary operations
are building blocks from which larger programs and software systems are built.

Although elementary operations vary dramatically, the logic for combining them does not. In fact, the
same control features arise over-and-over again. These features include sequential and concurrent com-
position, iterative loops, conditionals, subroutines and recursion. CT R provides a logical framework in
which these control features can be expressed. This framework is orthogonal to the elementary operations.
CT R can therefore be used with any set of elementary database operations, including destructive updates.
To achieve this 
exibility, CT R treats a database as a collection of abstract datatypes, each with its own
special-purpose access methods. These methods are provided to CT R as elementary operations, and they
are combined by CT R programs into complex transactions. This approach separates the speci�cation of
elementary operations from the logic of combining them. As we shall see, this separation has two main
bene�ts: (i) it allows us to develop a logic language for programming state-changing procedures without
committing to a particular theory of elementary updates; and (ii) it allows CT R to accommodate a wide
variety of database semantics, from classical to non-monotonic to various other non-standard logics. In this
way, CT R provides the logical foundations for extending the logic-programming paradigm to a host of new
applications in which a given set of operations must be combined into larger programs or software systems.
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2 Syntax

2.1 Transaction Formulas

The alphabet of a CT R language L includes three countable sets of symbols: a set F of function symbols, a
set V of variables, and a set P of predicate symbols. Each function and predicate symbol has an associated
arity, indicating how many arguments the symbol takes. Constants are viewed as 0-ary function symbols,
and propositions are viewed as 0-ary predicate symbols. The language L also includes the logical connectives
^, 
, j, :, the modal operator � , and the quanti�er 8. Function terms are de�ned as usual in �rst-order
logic.

As the alphabet suggests, transaction formulas extend �rst-order formulas with two new connectives, 

and j, which we call serial conjunction and concurrent conjunction, respectively, and one modal operator
� for specifying atomic actions. The simplest transaction formulas are atomic formulas, which are de�ned
as in classical logic via predicates and terms. In addition, if � and  are transaction formulas, then so are
�^ , �
 , � j  , :�, ��, and (8X)�, where X is a variable. Intuitively, the formula �
 means that
the subtransactions � and  execute serially, i :e:; �rst � executes to completion, and then  executes. The
formula � j  means that the subtransactions � and  execute concurrently. The formula �� means that
� must execute \atomically", meaning that its execution should not be interleaved with other transactions.
Note that classical �rst-order formulas are transaction formulas that do not use the connectives 
, j, or the
modal operator � . As in classical logic, we introduce convenient abbreviations for complex formulas. For
instance, �  is an abbreviation for � _ : . Likewise, � _  is an abbreviation for :(:�^ : ), and 9�
is an abbreviation for :8:�. Other useful abbreviations are developed in [9]. Here are three examples of
transaction formulas: (a
 b) j � (c 
 d), a(X) [b(X) j c(X;Y )], 8X[a(X) _ :b(X)
 :c(X;Y )]

2.2 Database States, Elementary Operations, and Oracles

Logical theories always come with a parameter: a language for constructing well-formed formulas. This
language is not �xed, since almost any set of constants, variables and predicate symbols can be \plugged
into" it. In addition, CT R theories have another parameter: a pair of oracles that encapsulate elementary
database operations. Like the language of the logic, the oracles are not �xed, since almost any pair of oracles
can be \plugged into" a CT R theory. The oracles come with a set of database states, upon which they
operate. In practice, we expect that each database state will be a set of data items, as in the theory of
transaction management [2]. Intuitively, a data item can be any kind of persistent object, such as a tuple,
a disk page, an email queue, or a logical formula. Formally, however, a database state has no structure, and
our only access to it is through the two oracles.

Both oracles are mappings. The data oracle, Od, is a mapping from states to sets of �rst-order formulas.
Intuitively, if D is a state, then Od(D) is the set of formulas that are true of the state. Likewise, the
transition oracle, Ot, is a mapping from pairs of states to sets of ground atomic formulas.2 Intuitively, if
b 2 Ot(D1;D2) then b is an elementary update that changes state D1 into state D2. Primitive data access
is thus speci�ed outside CT R, by using the oracles. The oracles also provide a semantics for the data items:
the data oracle provides a static semantics; and the transition oracle provides a dynamic semantics, that is,
a semantics of change. By using oracles in this way, CT R can accommodate di�erent data access primitives
and di�erent database semantics.

Here are some examples of data and transition oracles. Some of these can be combined to yield more
powerful oracles. Typically, such combinations are possible when oracles operate on disjoint domains of data
items.

� Relational Oracles: A state is a set of ground atomic formulas, D. The data oracle simply returns
all these formulas. Thus, Od(D) = D. Moreover, for each predicate symbol p in D, the transition
oracle de�nes two new predicates, p.ins and p.del , representing the insertion and deletion of single
atoms, respectively. Formally, p.ins(x) 2 Ot(D1;D2) i� D2 = D1 [ fp(x)g. Likewise, p.del (x) 2
Ot(D1;D2) i� D2 = D1 � fp(x)g. SQL-style bulk updates can also be de�ned by the transition
oracle [9], as can primitives for creating new constant symbols.

2Ground atomic formulas are required for simplicity.
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� Horn Oracles: A state D is a set of Horn rules and Od(D) is the minimal Herbrand model of D.
One may also want to augment Od(D) with the rules from D. The transition oracle can be de�ned to
insert and delete Horn rules from D.

� Communication Oracles: A state is a set of message queues, each representing a communication chan-
nel. Each queue has a name, q, and a list of messages. The data oracle de�nes a binary predicate, peek,
which corresponds to reading a message without consuming it. Formally, peek(q;msg) 2 Od(D) i�
the front of queue q in D has the message msg. The transition oracle de�nes two binary predicates,
send and receive, which correspond to sending and receiving messages along a communication channel.
Formally, send(q;msg) 2 Ot(D1;D2) i� D2 is obtained fromD1 by adding msg to the end of queue
q. Likewise, receive(q;msg) 2 Ot(D1;D2) i� the front of queue q in D1 has the message msg, and
D2 is obtained from D1 by removing msg from the front of q. Intuitively, receive reads a message on
channel q and consumes it. Other communication primitives, such as creating and destroying channels,
can also be de�ned by the oracles.3

Unlike transaction formulas, we do not expect the oracles to be coded by casual users. Although the
oracles allow for many di�erent semantics, we envision that any logic programming system based on CT R will
provide a carefully selected repertoire of built-in database semantics and a tightly controlled mechanism for
adding new ones. This latter mechanism would not be available to ordinary programmers. For this reason,
we assume in this paper that the data and transition oracles are �xed. A more complete discussion of data
and transition oracles can be found in [9].

2.3 Examples

This section gives some simple examples of Concurrent Transaction Logic programs, or transaction bases. A
transaction base is a �nite set of transaction formulas. In this paper, all examples of transaction bases use
so-called concurrent Horn rules, which are de�ned formally in Section 4. The body of these rules consists
of atomic formulas connected by serial or concurrent conjunction. Atomic modalities are also allowed. Each
atomic formula stands for a query, an update or, more generally, a transaction. For example, the formula
a (b1 
 b2) j (c1 
 c2) is a concurrent Horn rule. Intuitively, it says, \To execute transaction a, execute
concurrently the two transactions b1 
 b2 and c1 
 c2. To execute b1 
 b2, �rst do b1 then b2, and similarly
for c1 
 c2." The rule-head, therefore, acts as the name of a transaction, while the rule-body acts as the
transaction de�nition.

All examples in this paper are based on a combination of the relational and communication oracles de�ned
in Section 2.2. A state is a collection of ground atomic formulas and communication channels (queues). A
relation p is accessed by using the predicates p, p.ins, and p.del . Communication takes place using the
predicates send, receive, and peek. Formally, these predicates are no di�erent from other predicates, and
their fancy names is a mere convention. Their special status, however, comes from the choice of the data
and transition oracles.

The �rst example, below, focuses on serial conjunction and shows how updates can be combined with
queries to de�ne complex transactions. It also illustrates the use of transaction subroutines (or nested
transactions), and shows how sequential Transaction Logic improves upon Prolog's update operators.

Example 2.1 (Financial Transactions) Suppose the balance of a bank account is given by the relation
balance(Acct; Amt). We de�ne four transactions: change balance(Acct; Bal1; Bal2), to change the balance
of an account from one amount to another; withdraw(Amt;Acct), to withdraw an amount from an account;
deposit(Amt;Acct), to deposit an amount into an account; and transfer(Amt;Acct1; Acct2), to transfer an
amount from one account to another. These transactions are de�ned by the following four rules, which form
a transaction base:

3It is important to keep in mind here that concurrency and communication are not built into the oracles in CTR. Com-
munication oracles are just a matter of convenience. We shall see that all communication primitives can be expressed using
CTR's logical connectives.
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transfer(Amt;Acct1; Acct2)  � [withdraw(Amt;Acct1)
 deposit(Amt;Acct2)]

withdraw(Amt;Acct)  balance(Acct; Bal) 
Bal � Amt 
 change balance(Acct; Bal; Bal �Amt)

deposit(Amt;Acct)  balance(Acct; Bal) 
 change balance(Acct; Bal; Bal +Amt)

change balance(Acct; Bal1; Bal2)  balance.del (Acct; Bal1)
 balance.ins(Acct; Bal2)

In each rule, the premises are evaluated from left to right|an evaluation order imposed by the serial
conjunction. For instance, the �rst rule says: to transfer an amount, Amt, from Acct1 to Acct2, �rst
withdraw Amt from Acct1 and, if the withdrawal succeeds, deposit Amt in Acct2. Likewise, the second rule
says, to withdraw Amt from an account Acct, �rst retrieve the balance of the account; then check that the
account will not be overdrawn by the transaction; if all is well, change the balance from Bal to Bal � Amt.
Notice that the atom balance(Acct; Bal) is a query that retrieves the balance of the speci�ed account, and
Bal � Amt is a test. All other atoms in this example are updates. The last rule changes the balance of an
account by deleting the old balance and then inserting the new one. Unlike the other rules, the last rule
is de�ned via built-in, elementary updates, balance.del and balance.ins. Finally, observe that the entire
transfer transaction is atomic, as speci�ed in the body of the �rst rule. Thus, if two transfers are carried
out concurrently, then they will not interfere with each other. 2

Observe that the rules in Example 2.1 can be cast into Prolog syntax by replacing \
" with \," and
replacing the elementary transitions, balance.ins and balance.del , with assert and retract, respectively.
However, the resulting, apparently innocuous, Prolog program does not behave correctly! The problem is
that Prolog does not undo updates during backtracking. As an example, consider a transaction involving
two transfers, de�ned as follows:

?� transfer(Fee; Client; Broker) 
 transfer(Cost; Client; Seller)

That is, a fee is transferred from a client to a broker, and then a cost is transferred from the client to a
seller. Because this is intended to be a transaction, it must behave atomically ; that is, it must execute
entirely or not at all. Thus, if the second transfer fails, then the �rst one must be rolled back. In this
respect, CT R behaves correctly. Prolog, however, does not, since it commits updates immediately and does
not undo partially executed transactions. Thus, if the second transfer above were to fail (say, because the
client's account would be overdrawn by the transaction), then Prolog would not undo the �rst one, thus
leaving the database in an inconsistent state.

The non-logical behavior of Prolog updates is notorious for making Prolog programs cumbersome and
heavily dependent on Prolog's backtracking strategy. Some Prologs do have the means to implement back-
trackable updates through the use of non-logical operations, such as assert, retract, and cut (!). However, the
logic behind the resulting update operations has not been developed. Transaction Logic can be considered to
provide the missing semantics and proof theory, although there are many �ne di�erences between simplistic
implementations of backtrackable updates and our logic.

The above example illustrates some salient features of sequential Transaction Logic, but it consists of a
single process that executes alone. Here is a simple example of two processes executing concurrently:

?� transfer(Fee; Client; Broker) j transfer(Cost; Client; Seller)

Once again, because this is a transaction, it must behave atomically. Thus, if one transfer process fails, then
the other one must be rolled back. The semantics of Concurrent Transaction Logic speci�es exactly this.
This illustrates in the simplest way the combination of concurrency and updates that CT R supports. The
next examples illustrate how CT R also supports communication. The �rst example shows how processes
in Concurrent Transaction Logic can synchronize themselves by exchanging messages along communication
channels.

Example 2.2 (Synchronization) Consider the following transaction base, which de�nes two processes,
processA and processB:

processA taskA1 
 send(ch1; startB2) 
 taskA2 
 receive(ch2; startA3)
 taskA3

processB  taskB1 
 receive(ch1 ; startB2)
 taskB2 
 send(ch2; startA3)
 taskB3
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Processes processA and processB invoke three tasks each. The concurrent transaction
?� processA j processB causes processA and processB to execute concurrently while synchronizing the
execution of their tasks by passing messages along channels ch1 and ch2. In particular, taskB2 cannot start
executing until taskA1 is �nished, and taskA3 cannot start executing until taskB2 is �nished.

While executing taskA1 and taskB1, the two processes run concurrently, without interacting with each
other. However, when processB completes taskB1, it cannot start taskB2 until it receives a message
from processA. To understand why, recall the de�nition of the communication oracle. The transition
receive(ch1; startB2) cannot execute (which means it cannot be true on any execution path emanating
from the current state|see Section 3) unless the message startB2 is sitting at the front of the queue ch1.
However, this message will not be there unless processA makes the transition send(ch1; startB2), which will
only happen after it executes taskA1. In this way, processB is synchronized with processA.

In a similar fashion, on completing taskA2, processA cannot start taskA3 until it receives a message from
processB, which will only happen after processB executes taskB2. Note that CT R processes do not need
a hand-shake in order to communicate (but hand-shake can be always achieved by sending more messages).
2

Example 2.3 (Producer/Consumer) Consider the following transaction base that de�nes two processes:

produce([N jList]) send(ch;N )
 produce(List)
produce([ ]) send(ch; done)

consume(Sum; Total)  receive(ch;N ) 
 consume(Sum + N; Total)
consume(Total; T otal)  receive(ch; done)

When executed concurrently, the producer sends a list of numbers to the consumer, one number at a time. As
the consumer receives the numbers, it adds them together in a running sum (the �rst argument of consume).
After the producer has sent all the numbers in the list, it sends the message done to the consumer. When
the consumer receives the done message, it terminates its recursion and returns the total sum (the second
argument of consume). For instance, the transaction

?� produce([1; 2; 3; 4; 5]) j consume(0; T otal)

causes the producer to send the numbers 1 through 5 to the consumer, while the consumer concurrently
receives them, sums them up, and returns Total = 15. 2

Section 2.2 described the predicates for sending and receiving messages via oracles. However, it is worth
mentioning that in CT R they can also be de�ned via run-of-the-mill insert and delete primitives for ground
atoms. The three rules below implement a simpli�ed version of these predicates, in which a communication
channel is a set of messages, rather than a queue. Intuitively, these rules treat a channel as a \pool" of
messages, rather than a \stream." Queues and queue operations are also easily implemented in terms of
insert and delete primitives.

send(Ch;Msg) channel.ins(Ch;Msg) % Transmit:

peek(Ch;Msg) channel(Ch;Msg) % Listen; do not consume:

receive(Ch;Msg)  � (channel(Ch;Msg)
 channel.del (Ch;Msg)) % Listen and consume:

In these rules, communication channels are implemented as a binary database relation, channel. Intuitively,
channel(Ch;Msg) means that channel Ch contains message Msg. Sending a message along a channel
amounts to inserting a tuple in the channel relation, peeking at a message amounts to retrieving a tuple,
and receiving a message amounts to deleting a tuple. Receiving a message requires that the message be in
the channel, so tuple deletion is preceded by a query, to make sure that the tuple is there. Note the use
of the modal operator � , which ensures that checking for a message and consuming it is done atomically,
preventing other processes from interposing their actions between the test channel(Ch;Msg) and the update
channel:del(Ch;Msg).
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3 Model Theory

The semantics of the sequential Transaction Logic is based on sequences of database states, called paths
[9, 8, 6]. Concurrent Transaction Logic extends this idea to sequences of paths, called multi-paths, or m-
paths. Multi-paths provide the basis for a logical semantics of concurrent conjunction. This section describes
the intuitive motivation for multi-paths, and develops them into a formal model theory of CT R.

3.1 Multi-Paths

When a user executes a transaction, the database may change, going from its initial state to some �nal
state. In doing so, the database may pass through any number of intermediate states. For example, the
transaction � = a.ins 
 b.ins 
 c.ins takes the database from an initial state, D, through the intermediate
states D + fag and D + fa; bg, to the �nal state D + fa; b; cg. In sequential Transaction Logic [9, 6], a
�nite sequence of states is called a path, and transactions are true on paths. For example, transaction � is
true on the path hfg fag fa; bg fa; b; cgi, in which the initial state is the empty database. We also say that
hfg fag fa; bg fa; b; cgi is an execution path of �. Execution paths allow us to model a wide range of dynamic
constraints [9, 7, 11].

To model concurrent processes, we generalize the notion of path to multi-path, or m-path. An m-path
records the execution history of a process. Intuitively, it represents periods of continuous execution, separated
by periods of suspended execution (during which other processes may execute). Formally, anm-path is a �nite
sequence of paths, where each constituent path represents a period of continuous execution. For example,
if D1;D2; : : : ;D8 are database states, then hD1D2D3; D4D5; D6D7D8i is an m-path. If this m-path
represents the execution history of process �, then the process has three periods of continuous execution. In
the �rst period, � changes the database from D1 to D2 to D3, after which � is suspended and re-awakened
when the database is at state D4. At this point, � starts its the second period of continuous execution, and
changes the database from D4 to D5. At state D5, � is suspended once again and re-awakened when the
database reaches state D6 (due to other processes). This begins the third period of �'s execution, which
changes the database from D6 to D7 to D8.

Note that paths are a special case of m-paths, as can be seen from our notation.

Operations on Multi-Paths

Concurrent Transaction Logic extends �rst-order logic with three logical operators: serial conjunction, 
,
concurrent conjunction, j, and the modality of atomicity,� . Semantically, these three operators are related to
three kinds of operations on m-paths: concatenation, interleaving, and reduction. The rest of this subsection
de�nes these three operations.

De�nition 3.1 (Concatenation) Suppose that � = hD1 : : : Dki and �0 = hDk : : : Dk+li are two paths,
where Dk is the last state in � and also the �rst state in �0. Then, their concatenation is the path
� o�0 = hD1 : : : Dk : : : Dk+li. If � = h�1; : : : ; �ni and � 0 = h�01; : : : ; �

0
mi are two m-paths, then

their concatenation is the m-path � � � 0 = h�1; : : : ; �n; �
0
1; : : : ; �

0
mi. 2

The second operation on m-paths is interleaving. To illustrate, suppose that m-paths h�1; �2i
and h�01; �

0
2i represent executions of processes � and �0, respectively. If we interleave these two m-

paths, then we get new m-paths representing interleaved executions of � and �0, that is, executions
of the composite process � j �0. For example, the following four m-paths represent executions of
� j �0: h�1; �01; �2; �

0
2i, h�

0
1; �1; �

0
2; �2i, h�1; �

0
1; �

0
2; �2i, h�

0
1; �1; �2; �

0
2i.

De�nition 3.2 (Interleaving) If � and �1; :::; �n are m-paths (i:e:, sequences of paths), then � is an interleav-
ing of �1; :::; �n if � can be partitioned into order-preserving subsequences C1; :::; Cn, such that each Ci is �i.
The set of all interleavings of �1 and �2 is denoted �1k�2. 2

The �nal operation on m-paths is reduction. The idea is that if the database state does not change while
a process is suspended, then the process can also execute continuously, without any suspension. For instance,
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if a process can execute along the m-path hD1D2; D2D3i, then the process is suspended in state D2 and
re-awakened in state D2. It should therefore be able to execute continuously along the path hD1D2D3i. We
say that the former m-path reduces to the latter.

De�nition 3.3 (Reduction) Let � = h�1; : : : ; �ni be an m-path, where each �i is a path. If
the paths �i and �i+1 can be concatenated, for some i, then we say that � reduces to � 0 =
h�1; : : : ; �i�1; �i o�i+1; �i+2; : : : ; �ni. We also require reduction to be closed under transitivity and re
ec-
tion. 2

Observe that reduction is not reversible, since some processes may be speci�ed as atomic. An atomic
process must execute continuously, without being suspended and interleaved with other processes. For
instance, an atomic process that can execute along hD1D2D3i cannot execute along hD1D2; D2D3i. In
general, atomic processes can only execute along paths (i.e., without suspension).

3.2 Semantics

CT R formulas are interpreted by multi-path structures. A multi-path structure assigns a classical �rst-order
structure to each m-path, specifying which atoms are true on what m-paths. In turn, these atoms determine
which formulas are true on what m-paths. Intuitively, a formula that is true on an m-path represents an
action that takes place along the m-path. Multi-path structures generalize the path structures of sequential
Transaction Logic. Many subtle points about path structures apply equally well to multi-path structures,
and the reader is referred to [9, 8, 6] for a thorough discussion. The main novelties of m-path structures are
the m-paths themselves, the interleaving operation, and reduction, which account for concurrent and atomic
processes.

Recall that CT R comes with a language, L, and a pair of oracles, Od and Ot, which determine the
syntax of formulas and the semantics of databases, as described in Section 2. In the rest of this paper, the
language L and the oracles are implicit. Also, j=c denotes satisfaction in classical �rst-order models.

De�nition 3.4 (Multi-Path Structures) Let L be a language of CT R with the set of function symbols F . A
multi-path structure (abbr. m-path structure) M over L is a triple hU; IF ; Ipathi, where

� U is a set, called the domain of M.

� IF is an interpretation of function symbols in L. It assigns a function Un 7�! U to every n-ary function
symbol in F .

Given U and IF , let Struct(U; IF ) denote the set of all classical �rst-order semantic structures over
L of the form hU; IF ; IPi, where U is the domain of the structure, IP is a mapping that interprets
predicate symbols in P by relations on U , and U and IF are the same as in M.

� Ipath is a total mapping from the m-paths in L to the semantic structures in Struct(U; IF ). Ipath is
subject to the following restrictions:

{ Conformance with m-path reduction: If an m-path �1 reduces to �2, then Ipath(�1) j=c a implies
Ipath(�2) j=c a, for every atom a (i.e., if a can execute along �1, then it can execute along �2).

{ Compliance with the data oracle: Ipath(hDi) j=
c � for every formula � 2 Od(D).

{ Compliance with the transition oracle: Ipath(hD1 D2i) j=
c b for every atom b 2 Ot(D1;D2). 2

As in classical logic, a variable assignment, �, is a mapping V 7�! U that takes variables as input and
returns domain elements as output. We extend the mapping from variables to terms in the usual way.

De�nition 3.5 (Satisfaction) Let M = hU; IF ; Ipathi be an m-path structure, let � be an arbitrary m-path,
and let � be a variable assignment. Then,

1. Base Case: M; � j=� p(t1; : : : ; tn) if and only if Ipath(�) j=c
� p(t1; : : : ; tn), for any atomic formula

p(t1; : : : ; tn).
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2. Negation: M; � j=� :� if and only if it is not the case that M; � j=� �.

3. \Classical" Conjunction: M; � j=� � ^  if and only if M; � j=� � and M; � j=�  .

4. Serial Conjunction: M; � j=� � 
  if and only if M; �1 j=� � and M; �2 j=�  for some
m-paths �1, �2 whose concatenation �1 ��2 reduces to �.

5. Concurrent Conjunction: M; � j=� � j  if and only if M; �1 j=� � and M; �2 j=�  for some
m-paths �1, �2 with an interleaving in �1k�2 that reduces to �.

6. Universal Quanti�cation: M; � j=� 8X:� if and only if M; � j=� � for every variable assignment
� that agrees with � everywhere except on X.

7. Atomic Processes: M; � j=� �� if and only if M; � j=� � and � is a path (not a general m-path).

As in classical logic, the mention of variable assignment can be omitted for sentences, i :e:; for formulas
with no free variables. From now on, we will deal only with sentences, unless explicitly stated otherwise. If
M; � j= �, then we say that � is satis�ed (or is true) on m-path � in structure M. 2

It can be seen from the de�nitions that on paths of length 1, the connectives 
, j, and ^ all reduce to
the usual conjunction of classical predicate logic. Thus, the \classical," serial, and concurrent conjunctions
in CT R extend the usual conjunction in classical logic from states to execution paths, albeit in three
di�erent ways. The following lemma states a basic property of satisfaction on m-paths. It is proved by a
straightforward induction on the structure of  .

Lemma 3.6 If m-path �1 reduces to �2, then for any m-path structure M and transaction formula  ,

if M;�1 j=  then M;�2 j=  

De�nition 3.7 (Models) An m-path structureM is a path-model (or simply amodel) of a transaction formula
�, written M j= �, if and only if M; � j= � for every m-path �. An m-path structure is a model of a set of
formulas if and only if it is a model of every formula in the set. 2

3.3 Execution as Entailment

A CT R program has two distinct parts: a transaction base P and an initial database state D. Recall that
the database is a set of data items, and the transaction base is a �nite set of transaction formulas. Of these
two parts, only the database is updatable. The transaction base is immutable and speci�es procedures for
updating the database and answering queries. The transaction base will normally be composed of formulas
containing the new connectives, 
, j, and � , although classical �rst-order formulas are also allowed. With
this in mind, we are ready to de�ne executional entailment , a concept that provides a logical account of
transaction execution.

De�nition 3.8 (Executional Entailment) Let P be a transaction base. If � is a transaction formula and
D0;D1; : : : ; Dn is a sequence of database states, then the statement

P;D0 D1 : : : Dn j= � (1)

is true if and only if M; hD0 D1 : : : Dni j= �, for every modelM of P.4 Related to this is the statement

P;D0 --- j= � (2)

which are true i� Statement (1) is true for some sequence of database states D0;D1; : : : ; Dn. 2

4Being parameters to CTR, the oracles and hence the set of all states are �xed.
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Intuitively, Statement (1) says that a successful execution of transaction � can change the database from
state D0 to D1 : : : toDn. Formally, it means that in every model of P, the m-path hD0 D1 : : : Dni satis�es
formula �. The statement is read as follows: \Under the transaction base P, transaction � may transform
database D0 into database Dn by passing through intermediate states D1; : : : ; Dn�1."

Observe that executional entailment is de�ned over paths, not over arbitrary m-paths. This is because
executional entailment describes the behavior of a complete system of transactions, which behaves like an
atomic transaction since its execution is not interleaved with anything else. Intuitively, a more general m-
path with \gaps" represents the execution of an incomplete system of transactions, since the gaps must be
\�lled in" by the execution of other, unspeci�ed transactions.

Normally, users issuing transactions know only the initial database state D0, so de�ning transaction
execution via (1) is not always appropriate. To account for this situation, the version of entailment in
(2) allows us to omit the intermediate and the �nal database states. Informally, Statement (2) says that
transaction � can execute successfully starting from databaseD0. Formally, this statement is read as follows:
\Under the transaction base P, the transaction � succeeds from database D." When the context is clear,
we simply say that transaction � succeeds. Likewise, when statement (2) is not true, we say that transaction
� fails. In Section 4, we present an inference system that actually �nds a database sequence, D1; : : : ; Dn,
that satis�es Statement (1) whenever a transaction succeeds.

4 Proof Theory for Concurrent Horn Transactions

Like classical logic, CT R has a \Horn" version, which has both a procedural and a declarative semantics.
It is this property that allows a user to program transactions within the logic. This section de�nes the Horn
subset of CT R and develops an SLD-style proof theory that is both sound and complete. Unlike classical
logic programming, the proof theory presented here computes new database states as well as query answers.
In this sense, it is similar to the proof theory of sequential Transaction Logic. However, the latter proof
theory accounts only for sequential processes, while the proof theory developed here accounts for concurrent
and atomic processes as well. This leads to the notion of hot components, de�ned as those subprocesses that
are ready to execute.

In the Horn fragment of CT R, database states are represented by a Horn oracle, as de�ned in Section 2.2.
In addition, the transaction base Pmust satisfy certain conditions. The �rst condition is based on the idea of
concurrent serial goal , de�ned below, which generalizes the notion of conjunctive query in classical database
theory. We say that b  � is a concurrent Horn rule if b is an atomic formula and � is a concurrent
serial goal. All examples in this paper use concurrent Horn rules. Finally, we say that the combination
of a transaction base P and a Horn data oracle Od(D) is concurrent Horn if P is a set of concurrent
Horn rules satisfying the following independence condition: For every database state D, predicate

symbols occurring in rule-heads in P do not occur in rule-bodies in Od(D). Intuitively, the
independence condition means that the database does not de�ne predicates in terms of transactions. Thus,
the rule a  b cannot be in the database if the rule b  c is in the transaction base. Observe that all
relational databases satisfy the independence condition, since the data oracle returns only a set of atoms.

De�nition 4.1 (Concurrent Serial Goal) A concurrent serial goal is any formula of the form:

� An atomic formula; or

� �1 
 :::
 �k, where each �i is a concurrent serial goal, and k � 0; or

� �1 j ::: j �k, where each �i is a concurrent serial goal, and k � 0; or

� ��, where � is a concurrent serial goal. 2

4.1 Inference System =
C

This section develops an inference system for verifying that P;D0 --- j=  . Informally, this statement says
that transaction  can successfully execute starting from state D0. The inference succeeds if and only if
it �nds an execution path for the transaction  , that is, a sequence of databases D1; : : : ; Dn such that
P;D0;D1; : : : ;Dn j=  . We refer to the inference system of this section as =C .
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Formula Hot Components

a 
 b
 c fag

a j b j � (c
 d)
 e fa; b;� (c
 d)g

(a j b)
 (c j d) fa; bg

(a
 b) j (c 
 d) fa; cg

Figure 1: Some formulas and their hot components.

The inference rules of =C focus on the left end of a transaction. Intuitively, this corresponds to the left-
to-right execution of serial transactions. For instance, in the transaction a1
a2
 :::
ak, the subtransaction
a1 executes �rst, then a2, then a3, and so on until ak executes. Because of concurrency, there may be many
subtransactions ready for execution at any given time. For instance, in the transaction a1 j a2 j a3, any of
the subtransactions a1; a2; a3 can start executing �rst. The next de�nition formalizes this idea. It de�nes the
set of subformulas that are ready for execution, which we refer to as \hot" components. Figure 1 illustrates
the idea.

De�nition 4.2 (Hot Components) Let � be a concurrent serial goal. Its set of hot components, written hot(�),
is de�ned recursively as follows:

� hot( ( ) ) = f g, where ( ) is the empty goal;

� hot(b) = fbg, if b is an atomic formula;

� hot( 1 
 :::
  k) = hot( 1);

� hot( 1 j ::: j  k) = hot( 1) [ :::[ hot( k);

� hot(� ) = f� g.
2

Just as databases and logic programs assume that queries are existentially quanti�ed, we shall assume
that processes are existentially quanti�ed. We thus introduce the notion of an existential goal, which is a
formula of the form 9X �, where � is a concurrent serial goal. For convenience, we shall often drop the
variable list X and simply write (9)�.

De�nition 4.3 (Inference in =C) If P is a concurrent Horn transaction base, then =C is the following system
of axioms and inference rules, where D is any legal database state.

Axioms: P;D --- ` ( ), for any D.

Inference Rules: In Rules 1{4 below, � is a substitution,  and  0 are concurrent serial conjunctions, and
a is an atomic formula in hot( ).

1. Applying transaction de�nitions: Let b  � be a rule in P, and assume that its variables have
been renamed so that none are shared with  . If a and b unify with mgu � then

P;D --- ` (9) 0 �
P;D --- ` (9) 

where  0 is obtained from  by replacing a hot occurrence of a by �.

For instance, if  = c j a j d then  0 = c j � j d.

2. Querying the database: If Od(D) j=c (9)a�, and a� and  0� share no variables, then

P;D --- ` (9) 0 �
P;D --- ` (9) 

where  0 is obtained from  by deleting a hot occurrence of a.

For instance, if  = c j a j d then  0 = c j d.
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3. Executing elementary updates: If Ot(D1;D2) j=c (9)a� and a� and  0� share no variables, then

P;D2 --- ` (9) 0 �
P;D1 --- ` (9) 

where  0 is obtained from  by deleting a hot occurrence of a.

For instance, if  = c j a j d then  0 = c j d.

4. Executing atomic transactions: If �� is a hot component in  then

P;D --- ` (9) (�
  0)
P;D --- ` (9) 

where  0 is obtained from  by deleting a hot occurrence of ��.

For instance, if  = c j (��) j d then  0 = (c j d). 2

This system manipulates expressions of the form P;D --- ` (9) , called sequents. The informal meaning
of such a sequent is that the transaction (9) can succeed from D, i.e., it can execute on a path starting
at database D. Each inference rule consists of two sequents, one above the other, and has the following
interpretation: If the upper sequent can be inferred, then the lower sequent can also be inferred. As in
classical resolution, any instance of an answer-substitution is a valid answer to a query.

To understand inference system =C , �rst note that the axioms describe the empty transaction, \( )".
By de�nition, this transaction does nothing and always succeeds. That is, if the user issues the command
?� ( ), then the database simply remains in its current state.5 The axioms formalize this behavior. The four
inference rules describe more complex transactions. To understand these rules, it is convenient to temporarily
ignore the uni�er, �, and to assume that a is identical to b. With this in mind, we can interpret the rules as
follows:

1. Inference rule 1 deals with de�ned transactions. It assumes that b is de�ned by �, and that � is a
subtransaction of  0. The rule says that if transaction  0 succeeds from database D, then so does  .
Intuitively, this rule replaces a subroutine de�nition, �, by its calling sequence, b.

2. Inference rule 2 deals with tests (i :e:; queries) that do not cause state changes. It assumes that test b
is true at state D. The rule says that if transaction  0 succeeds fromD, then so does  . Intuitively, b
is a pre-condition that is satis�ed by D, so it can be attached to the front of  0.

3. Inference rule 3 deals with elementary updates. It assumes that update b transforms the database
from state D1 to state D2. The rule says that if transaction  

0 succeeds from D2, then transaction  
succeeds from D1. Intuitively, b is attached to the front of  0, so that the resulting transaction starts
from D1 instead of D2.

4. Inference rule 4 deals with atomic subtransactions. It assumes that subtransaction � is ready to
execute, and that it must execute atomically. To achieve atomicity, the rule extracts � from the main
transaction,  ; then it executes � to completion; and then it executes the rest of transaction  , which
we have denoted  0. The formula � 
  0 represents the execution of � followed by the execution of
 0. Here � executes atomically since it is not interleaved with anything.

Example 4.4 (Deduction) Suppose the data oracle is relational and the transition oracle inserts propositional
atoms into the database. Suppose also that the transaction base P contains the following two rules:

p  c.ins
 d.ins q  e.ins
 f .ins

Then the formula p j q represents a transaction in which the atoms c; d; e; f are inserted into the database,
where c is inserted before d, and e before f . This transaction can be executed in several ways. Figure 2
illustrates one possibility. It shows a derivation of the sequent P; fg --- ` p j q. Each sequent in the table is
derived from the one below by an inference rule. The deduction succeeds because the bottom-most sequent
is an axiom. When carried out top-down, the deduction corresponds to an execution of the transaction p j q
in which atoms are inserted into the empty database in the order c; e; f; d. 2

5Model theoretically, \( )" is a transaction that is true on every m-path of the form hDi, i:e:, on any m-path corresponding
to a single database [9, 6].
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Sequent Inf. Rule Hot Components

P; fg --- ` p j q 1 fp; qg

P; fg --- ` (c.ins
 d.ins) j q 1 fc.ins; qg

P; fg --- ` (c.ins
 d.ins) j (e.ins 
 f .ins) 3 fc.ins; e.insg

P; fcg --- ` (d.ins) j (e.ins
 f .ins) 3 fd.ins; e.insg

P; fc; eg --- ` (d.ins) j (f .ins) 3 fd.ins; f .insg

P; fc; e; fg --- ` (d.ins) 3 fd.insg

P; fc; d; e; fg --- ` ( ) axiom f g

Figure 2: A Deduction in System =C .

Theorem 4.5 (Soundness and Completeness of =C) If P is a concurrent Horn transaction base, and
 is a concurrent serial goal, then the executional entailment P;D --- j= (9) holds if and only if there is
a deduction in =C of the sequent P;D --- ` (9) .

Having developed the inference system, we must remind ourselves that our original goal was not so much
proving statements of the form P;D --- j= (9)�, but rather of the form P;D0; : : : ;Dn j= (9)�, where
D0 is the database state at the time the user issues the transaction ?� (9)�. Note that the intermediate
states, D1; : : : ; Dn�1, and the �nal state, Dn, are unknown at this time. An important task for the
inference system is to compute these states. A general notion of deduction is not tight enough to do this
conveniently, since general deduction may record the execution of many unrelated transactions, mixed up in
a haphazard way. Since we are interested in the execution of a particular transaction, we introduce the more
specialized notion of executional deduction, which|without sacri�cing completeness|de�nes a narrower
range of deductions. The notion of executional deduction needed here is exactly the same as that developed
for sequential Transaction Logic in [9, 6]. It also leads naturally to a proof-theoretic notion of execution
path. It remains only to show that executional deduction in concurrent Transaction Logic is sound and
complete for the model theory of Section 3. This is established by the following theorem.

Theorem 4.6 (Executional Soundness and Completeness of =C) Let P be a concurrent Horn trans-
action base, and let � be a concurrent serial goal. There is an executional deduction of (9)� whose execution
path is D0 D1 : : : Dn if and only if the following entailment is true:

P;D0 D1 : : : Dn j= (9)�

5 Expressive Power

The ability to express the send and receive primitives using the modal operator � provides for general
communication and synchronization among CT R processes. A process can send a message and either
choose to synchronize with the receiver immediately or go on doing its business, possibly synchronizing
later. In other words, both synchronous and asynchronous communication are supported. To synchronize
with another process, a process calls receive(Ch;Msg), where Ch and Msg are (possibly non-ground)
terms, as illustrated in Example 2.2. Such a process cannot advance beyond this call until a channel that
uni�es with Ch has a message that uni�es with Msg. In that sense, CT R supports pattern-directed
communication. Patterns (which in our case are function terms representing channels) can be arranged
in various ways to achieve point-to-point, broadcast, blackboard, and other forms of communication, with
bounded or unbounded bu�ers.

Dynamic Communication Topology: As in the �-calculus [26], CT R processes can send channel names to
each other, through which they can communicate later, thereby changing the communication topology. To
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illustrate, the program below simulates a simple server that responds to client requests. Intuitively, the
predicate client(Id) represents a client process with identi�er Id. The predicate server(N ) represents a
server process that can respond to N client requests before expiring. The client and server processes can be
started in any number of ways. For example, to create three clients and a server that can respond to three
requests, the system administrator could issue the following command:

?� server(3) j client(c1) j client(c2) j client(c3):

where the constants c1; c2; c3 are client identi�ers. The immediate e�ect of this command is to create four
concurrent processes: one server process, and three client processes. As the clients send requests to the
server, additional concurrent processes will be created by the server.

server(0)  
server(N )  receive(servConnect; Ch) 
 [servClient(Ch) j server(N � 1)]
servClient(Ch)  receive(Ch;Request) 
 doIt(Request;Result) 
 send(Ch;Result)

client(Id) newChannel(Ch)
 � � � 
 send(servConnect; Ch) 
 clientDoWork(Id; Ch)
clientDoWork(Id; Ch) send(Ch;Req)
 � � � 
 receive(Ch;Result) 
 � � � 
 delChannel(Ch)

Here, servConnect is the name of a public communication channel. The predicate newChannel(Ch) is an
atomic process that creates a private channel and returns its name, Ch. The predicate delChannel(Ch)
is an atomic process that destroys channel Ch. newChannel and delChannel are easily de�ned via the
transition oracle or the transaction base [9].

A client process client(Id) �rst generates a new channel, Ch. It then connects to the server via the
public channel, passing it the new channel name. The server then spawns a subprocess servClient(Ch) to
deal with the client. Future communication between the client and this server subprocess takes place along
the new channel, Ch. This communication has a simple form: the client sends a request Req to the server
subprocess, which carries out the request, and sends the result back to the client. Finally, the client destroys
its private channel and terminates.

Passing Process Names: In addition to sending channel names between processes, in CT R, one can send
process names between processes. One way to do this is to give each process an id encoded as a function
term, like the client id's used above. Process names can then be sent and received like other messages, and
executed like other processes. Another way to do this is to extend CT R in the direction of HiLog [12], a
well-known higher-order extension of classical logic.

In a nutshell, HiLog allows variables over functions, predicate symbols, and even over atomic formulas.
Moreover, the distinction between atomic formulas and terms is completely erased, and arbitrary (even non-
ground) terms can serve as predicate names in HiLog, which provides a convenient way of de�ning generic
logical procedures [12]. For instance, A(X;Y )(Z)(V;W ) is a well-formed term in HiLog. As a concrete
example, the rules below de�ne a predicate fact(N )(A) that computes the factorial function. The de�nition
is pretty much classical except that fact(N ) is treated as a parameterized predicate, with the parameter
serving as input. Thus, fact(20)(A) means compute 20! and return the result in A. The reason for using
HiLog here is that it lets us transmit and execute processes without knowing their precise calling sequence.

To illustrate these ideas, consider the two processes proc1 and proc2 de�ned below. To see how they
work, suppose the user issues the command ?� proc1(ch1; fact(20); A) j proc2(ch1). First, the process
proc1 sends the term fact(20) out along channel ch1. Process proc2 then receives fact(20), interprets it as
a process, and executes it. Finally, proc2 sends the answer out along channel ch1, whence proc1 receives the
answer and returns it to the user.

proc1(Ch; Process; Ans) send(Ch; Process)
 receive(Ch;Ans)
proc2(Ch) receive(Ch; Process) 
 Process(Ans) 
 send(Ch;Ans)

fact(0)(1)  
fact(N )(N �A) fact(N � 1)(A)

(3)
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Guarded Clauses: Finally, a remark on the relationship between CT R and concurrent logic programming
(CLP) languages [32] is in order. Since the semantics of these languages has eluded capture in logic, we will
not pretend that CT R can simulate these languages faithfully. However, some analogies can be made. For
instance, CLP languages commonly use the idea of rules with guarded bodies, which can have the following
form:

head g1; : : : ; gn j a1; : : : ; am (4)

When head uni�es with the goal, the guards g1; : : : ; gn are evaluated. If they all succeed, then the subgoals
a1; : : : ; an are executed concurrently. An important point here is that if one of the subgoals ai fails, then head
also fails, even though another clause for head|had it been chosen instead of (4)|could have succeeded.
The CT R analogue of (4) is:

head (g1 j : : : j gn)
 (a1 j : : : j am)

A crucial di�erence with guarded rules is that CT R does not rely on committed choice, which is so inherent
to CLP languages. Thus, if some ai fails, then another clause for head will be tried.

The importance of committed choice in CLP languages is that it helps control non-determinism, leading
to greater e�ciency. However, committed choice has been criticized for its distinctly non-logical semantics
that may cause a system to commit to a clause that would later fail, even though another clause would have
succeeded. In contrast, CT R o�ers a di�erent paradigm, one with clean, logical model and proof theories
and several ways of controlling non-determinism via synchronization. Non-determinism has entirely di�erent
nature here (\don't know" rather than \don't care" [32]), and it is deeply rooted in the model theory.

6 Conclusions and Discussion

We presented Concurrent Transaction Logic ( CT R), a logic that can declaratively specify and procedurally
execute concurrent communicating database processes involving queries, updates, or combinations of both. It
is thus a high-level deductive language for programming database applications, a language with a completely
logical semantics. The semantics emphasizes the combination of elementary database operations into complex
processes. The elementary operations themselves are not built into the semantics of CT R, but rather play
the role of a parameter to the logic. In this paper, we focused on the concurrent Horn subset of CT R and
developed its model theory and a sound and complete proof theory.

CT R is not yet-another-logic unrelated and isolated from other extensions. It is an idea that is orthogonal
to several other recent proposals, such as F-logic [17] (structural object-orientation), HiLog [12] (higher-
order logic programming), and Annotated Logic [3, 18, 19] (reasoning with uncertainty), and it can be easily
integrated with them to endow these static formalisms with the ability to capture database dynamics in a
clean, logical fashion (cf., e.g., [16]).

The communication paradigm within CT R is inspired by the �-calculus [26, 27]. However, CT R is a
programming logic, while �-calculus is an algebra used for specifying and verifying �nite-state concurrent
systems (which databases and logic programs are not). Although there is growing interest in designing
programming languages based on �-calculus (e.g., PICT [30]), the application domain of such languages
seems very di�erent from CT R. These languages have a functional 
avor, and their ability to express data-
driven non-determinism is limited. Once a process is committed to a certain execution path, there is no
possibility for failure. In general, it is hard to specify pre-conditions and post-conditions in �-calculus, and
search-related problems, such as those arising in databases and AI are di�cult to program. Compared to
�-calculus, concurrency in CT R is more 
exible in some respects, and more limited in others. For instance,
CT R supports both synchronous and asynchronous communication, while the �-calculus requires a hand-
shake. Like the �-calculus, CT R can send and receive messages and channels, and it can recon�gure the
communication topology dynamically. To a large extent, CT R processes can create private communication
channels, �a la �-calculus. With a simple extension in the direction of HiLog [12], CT R can pass transactions
between processes for remote execution.

In a recent work, Miller [25] has shown that most of the �-calculus can be encoded in Linear Logic
[13]. The reduction process of the �-calculus is simulated via the proof theory of Linear Logic. However,
the semantics of Linear Logic does not give direct meaning to execution and communication, unlike CT R.
Also, the programming paradigm that might arise from such an encoding seems to imitate the behavior of
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�-calculus, which is quite di�erent from the programming style of CT R, which draws on deductive databases
and logic programming.

Linear Objects is another concurrent formalism based on Linear Logic [1]. Processes are represented via
atomic formulas and their execution corresponds to branches in the proof tree. The semantics is provided
via a mapping into Linear Logic, although, strictly speaking, this does not yet provide a model-theoretic
account of concurrency. Furthermore, although processes can communicate, there does not seem to be an
obvious way for one process to change the database and for others to query the changes (or to have di�erent
views of the changes). There is also no programming language for specifying how processes evolve. Instead,
one must list all the operations performed by a process (and its subprocesses) before execution begins.

Another related formalism, rewriting logic [22], is a general framework for specifying executable concurrent
systems. In fact, it is so general that classical logic, Linear Logic, the �-calculus, and CT R can all be
encoded as particular theories within this logic. Rewriting logic serves two purposes: as a general framework
within which to compare di�erent concurrent formalisms, and as a workbench for designing languages for
programming concurrent systems. In the �rst capacity, we believe that an embedding of CT R into rewriting
logic may prove useful for clarifying the relationship between CT R and other concurrent formalisms. In the
second capacity, rewriting logic has been used to design languages for object-oriented programming [23, 24],
and equational programming [23]. However, the programming paradigm of CT R is fundamentally di�erent
from these other languages.

Some of the earliest attempts at adding concurrency to logic programming were PARLOG, Concurrent
Prolog, GHC, and related languages (see [32] for a survey). We discussed possible connections between
CT R and concurrent logic programming earlier in this paper. Although concurrent logic programming
languages lack model-theoretic semantics, the programming paradigm promoted by these languages is related
to rewriting logic and linear objects in the sense that once the 
ow of control commits to a certain action,
this action never backtracks; this style is quite unlike the one promoted by CT R.

Finally, a comparison of CT R with Concurrent Dynamic Logic (CDL) [29, 28] is in order. There are
two versions of CDL. The version developed in [29] is very di�erent from CT R. It is modeled on the kind
of concurrency found in alternating Turing machines, which does not allow for communication between
concurrent processes. A deductive-database analogue of this version of CDL is Hypothetical Datalog [5], in
which hypothetical databases represent the states of the various (non-communicating) concurrent processes
in an alternating computation. The version of CDL developed in [28] does allow for communication, but
only after adding considerable complexity to the semantics.

In both versions of CDL, the meaning and intent of dynamic formulas is fundamentally di�erent from
that of transaction formulas in CT R. CDL was intended to reason about what is true during program
execution, while CT R was designed to actually execute declaratively speci�ed procedures. This di�erence
in the intent is re
ected in the syntax. For instance, CDL uses a separate alphabet to represent actions,
and a set of modal operators to reason about them. Thus, unlike CT R, CDL processes are not represented
as propositions. In particular, processes are not logical formulas, but rather are terms used in constructing
modal operators. One consequence is that only elementary actions have names. Composite actions cannot
be named, and thus the logic lacks a subroutine facility. Another di�erence between CT R and CDL is in
the nature of states. In CT R, the concept of a state immediately leads to the idea of data and transition
oracles. In contrast, CDL worries about internal states of executing programs, while the notion of a database
state is entirely missing. It is also worth noting that these statements equally apply to another related logic,
Process Logic [15], although we are not aware of any extensions of Process Logic that allow concurrency and
communication.
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