
Results on Reasoning about Updates in

Transaction Logic

Anthony J. Bonner1 and Michael Kifer2

1 Department of Computer Science, University of Toronto, Toronto, Ontario
M5S 1A4, Canada, bonner@db.toronto.edu

2 Department of Computer Science, SUNY at Stony Brook, Stony Brook, NY
11794, U.S.A., kifer@cs.sunysb.edu

Abstract. Transaction Logic was designed as a general logic of state
change for deductive databases and logic programs. It has a model the-
ory, a proof theory, and its Horn subset can be given a procedural in-
terpretation. Previous work has demonstrated that the combination of
declarative semantics and procedural interpretation turns the Horn sub-
set of Transaction Logic into a powerful language for logic programming
with updates [BK98,BK94,BK93,BK95]. In this paper, we focus not on
the Horn subset, but on the full logic, and we explore its potential as
a formalism for reasoning about logic programs with updates. We �rst
develop a methodology for specifying properties of such programs, and
then provide a sound inference system for reasoning about them, and
conjecture a completeness result. Finally, we illustrate the power of the
inference system through a series of examples of increasing di�culty.

1 Introduction

Updates are a crucial component of any database programming language. Even
the simplest database transactions, such as withdrawal from a bank account,
require updates. Unfortunately, updates are not accounted for by the classical
Horn semantics of logic programs and deductive databases, which limits their
usefulness in real-world applications. As a short-term practical solution, logic
programming languages have resorted to handling updates with ad hoc opera-
tors without a logical semantics. In previous work, we addressed this problem
by developing a general logic of state change called Transaction Logic (abbrevi-
ated T R). Like classical logic, T R has a Horn fragment that supports logic
programming; but unlike classical logic programs, programs in T R can up-
date the database as well as evaluate queries. Previous research on T R has
focussed on the speci�cation and execution of logic programs in this Horn frag-
ment [BK98,BK94,BK93,BK95]. In contrast, this paper focuses not on the Horn
fragment, but on the full logic. In particular, we show that the full logic can be
used to express properties of T R logic programs and to reason about them.

Because it is a general logic of state change, T R can be applied
in many areas, including databases, logic programming, workow manage-
ment, and arti�cial intelligence. These applications, are discussed in detail



in [BK95,Bon97b,DKRR98]. For instance, in logic programming, T R provides
a clean, logical alternative to the assert and retract operators of Prolog. In
relational databases, T R provides a logical language for programming transac-
tions, for updating database views, and for specifying active rules. In object-
oriented databases, T R can be combined with object-oriented logics, such as
F-logic [KLW95], to provide a logical account of methods|procedures hidden
inside objects that manipulate these objects' internal states [Kif95]. In AI, T R
suggests a logical account of procedural knowledge and planning, and of sub-
junctive queries and counterfactuals.

The results in this paper can be applied to reasoning about change in any of
these areas. For instance, one can write logical formulas stating that a transaction
program preserves the integrity constraints of a database, or that it can execute
without aborting. One can also specify the conditions under which a transaction
program will produce a given outcome. It is also possible to reason about the
e�ects of a transaction program on a database with null values or other sources
of inde�nite information, such as disjunction. In addition to database transac-
tions, T R can reason about actions in an AI context. For instance, one can
axiomatize the elementary actions of a robot, and then reason about the e�ects
of such actions. One can also combine simple actions into complex programs
using sequential composition, pre-conditions, post-conditions, non-determinism,
and subroutines, and reason about these. In AI terminology, this reasoning takes
place in open worlds, that is, in the absence of the closed world assumption. The
assumption of open worlds separates the theory of reasoning developed in this
paper, from the theory of execution developed in [BK98,BK93,BK95], which is
based on closed worlds.

Although the inference system developed here can deal with relatively com-
plex properties of transaction programs, we do not claim that such reasoning
goes beyond what other reasoning systems can do. However, unlike many sys-
tems, T R provides a declarative and operational semantics for logic programs
with updates. Our purpose here is to reason about such programs. In particu-
lar, (i) we begin developing a methodology for reasoning about T R programs,
(ii) we use T R itself as the basic reasoning system, and (iii) we illustrate the
simplicity and elegance of doing so. This, we hope, will establish T R not only
as a language for programming databases transactions, but also as a logic for
reasoning about the properties of such programs.

For the interested reader, an implementation of the logic-programming frag-
ment of T R is described in [Hun96], and an implementation of the reasoning
system is under development. Extensions of T R for dealing with concurrency
and communication are described in [BK96,Bon97b], and complexity results are
given in [Bon97a]. Additional information on T R, including a tutorial introduc-
tion to the implementation, and benchmark tests, is available at the Transaction
Logic Web page: www.cs.toronto.edu/~bonner/transaction-logic.html



2 Overview of Transaction Logic

This section de�nes the syntax of full T R and of the logic-programming frag-
ment, and describes their semantics informally and through examples. The for-
mal semantics is presented in Section 3.

2.1 The General Logic

As in �rst-order classical logic, the language of T R includes three in�nite, enu-
merable sets of symbols: a set F of function symbols, a set V of variables, and
a set P of predicate symbols. Each function and predicate symbol has an asso-
ciated arity, indicating how many arguments the symbol takes. Constants are
viewed as 0-ary function symbols, and propositions are viewed as 0-ary predi-
cate symbols. We also adopt the Prolog convention that variables begin in upper
case, and predicate and function symbols begin in lower case. Function terms
and atomic formulas are de�ned as usual in �rst-order logic. For brevity, atomic
formulas are also referred to as atoms. To build complex logical formulas, T R
extends classical logic with two logical operators: serial conjunction, denoted 
;
and executional possibility, denoted 3. If � and  are logical formulas, then so
are �
  and 3�. Logical formulas in T R are called transaction formulas, and
a set of transaction formulas is called a transaction base (since we will use them
to de�ne database transactions).

Whereas classical logic makes assertions about a static world, Transac-
tion Logic makes assertions about a changing world. Formally, transaction
formulas are interpreted on sequences of states, called paths. For instance,
the atom tues is true on paths representing Tuesdays. Likewise, the atom
withdraw(amount; account) is true on paths representing the withdrawal of
money from a bank account. The classical connectives have a familiar inter-
pretation. For instance, if formulas � and � are true on the same path, then the
formula � ^ � is also true on this path. Each classical connective is interpreted
in terms of a single path in this fashion. In contrast, the non-classical connectives
are interpreted in terms of multiple paths. If � and � are true on two adjacent
paths, then �
 � is true on their concatenation. Also, if � is true on a path,
then 3� is true on the �rst state of the path. Note that like the nodes of a graph,
the states in Transaction Logic are not linearly ordered and can belong to many
paths. Thus, the formula 3� intuitively means \� can start now." These ideas
are made precise in Section 3.1.

To illustrate, we give some simple examples of propositional transaction for-
mulas and their intuitive meanings. The �rst two examples use classical con-
nectives only. Their meaning in Transaction Logic is the same as in classical
logic.

{ A day is a Monday, a Tuesday, a Wednesday, ..., or a Sunday:

day $ mon _ tues _ wed _ thurs _ fri _ sat _ sun



{ A day cannot be both a Monday and a Tuesday:

day ! :(mon ^ tues)

The next examples uses serial conjunction to make statements about the
order and structure of temporal phenomena.

{ A weekend is a Saturday followed by a Sunday:

weekend $ sat 
 sun

{ Monday and Wednesday are not consecutive:

:(mon
 weds) ^ :(weds
mon)

{ The only pairs of consecutive days are Monday-Tuesday, Tuesday-
Wednesday, Wednesday-Thursday, etc.

day 
 day ! mon
 tues _ tues 
weds _ weds 
 thurs _
thurs
 fri _ fri 
 sat _ sat 
 sun _ sun
mon

This formula orders the days of the week. The order is circular, not linear,
since there is no �rst or last day. Eliminating the disjunct sun
mon would
imply a linear order in which Monday is �rst and Sunday is last.

{ A week is a sequence of seven consecutive days beginning with Sunday:

week $ sun 
 day 
 day 
 day 
 day 
 day 
 day

In this formula, each occurrence of the atom day represents a di�erent day
of the week. Also, the atom week is false on any path with less than seven
days. This illustrates a general property of TR: a formula can be true on a
path, and false on all its subpaths.

Finally, the next two examples use the 3 modality to make statements about
what is possible in the immediate future.

{ February 28 is a day that can be followed by March 1:

feb28 ! (day 
 3mar1)

{ February 28 and February 29 are the only days that can be followed by
March 1:

(feb28_ feb29)  (day 
 3mar1)

The above examples illustrate the declarative semantics of T R. In addition,
the Horn-like fragment of T R has an equivalent procedural semantics, just as the
Horn fragment of classical logic does. With this semantics, many transaction for-
mulas can be viewed imperatively, that is, as commands to execute actions. For
instance, the atom withdraw(amount; account) can be viewed as a command
to withdraw an amount of money from a bank account. In this light, logical
connectives become action constructors. For instance, the formula �
 � now
means \�rst do �, and then do �." Likewise, the formula � _ � means \do � or
do �," and the formula 9X �(X) means \do �(x), for some value of x." Even
negative formulas can be treated imperatively: the formula :� simply means
\do not do �." This interpretation of transaction formulas provides the basis for
a logic programming language for database transactions, as described below.



A Specialized Theory. Transaction Logic does not distinguish di�erent sorts
of predicate symbol, just as classical logic does not. However, neither logic pre-
cludes the possibility of de�ning such sorts in order to develop more special-
ized theories. For instance, the theory of deductive databases distinguishes two
sorts of predicate symbol within classical logic: base and derived. Intuitively,
base predicates represent stored data, and derived predicates represent virtual
data, or database views. The theory of change developed in this paper also dis-
tinguishes these two sorts of predicates. In addition, we adopt some standard
terminology from deductive databases. For instance, a formula is ground if it has
no variables, and a ground atomic formula is sometimes referred to as a fact. A
base fact is a fact with a base predicate symbol, and a derived fact is a fact with
a derived predicate symbol. A database state is a set (�nite or in�nite) of base
facts. We sometimes refer to a database state simply as a database or a state.

In addition to base and derived predicates, the theory developed in this paper
distinguishes a third sort of predicate, called elementary transitions. Intuitively,
an elementary transition is an atomic update that transforms a database from
one state into another. The theory does not depend on any particular set of
elementary transitions, just as it does not depend on any particular set of base or
derived predicates. However, to keep the presentation concrete, this paper focuses
on two kinds of elementary transition. Speci�cally, for each base predicate, p,
we introduce two new predicates, denoted p.ins and p.del, whose arities are the
same as p. Intuitively, these two elementary transitions represent the insertion
and deletion of stored facts in a database.

To illustrate these ideas, and the procedural interpretation of transaction
formulas, suppose that p and q are base predicate symbols of arity 1. Then, the
atom p.ins(b) intuitively means \insert the fact p(b) into the database," and the
atom p.del(b) means \delete the fact p(b) from the database." In addition, here
are several transaction formulas and their procedural interpretations:

{ p.del(b)
 q.ins(p) means \�rst delete p(b) from the database, and then insert
q(b) into the database."

{ p(b)
 p.del(b) means \�rst check that p(b) is in the database, and then delete
p(b) from the database."

{ p.ins(b) _ q.ins(a) means \insert p(b) into the database, or insert q(a) into
the database."

{ [p.ins(a) 
 p.ins(b)] _ [q.del(a)
 q.del(b)] means \do one of the following:
insert p(a) and then insert p(b); or delete q(a) and then delete q(b)."

{ 9X p.del(X) means \delete p(x) from the database, for some x."
{ 9X [q(X)
 p.ins(X)] means \�rst retrieve q(x) from the database, and then

insert p(x) into the database, for some x."

2.2 Transaction Logic Programming

Like classical logic, Transaction Logic has a Horn fragment, called serial-Horn
T R, in which logical formulas can be interpreted as programs. As in classi-
cal Horn logic, the procedural semantics of serial-Horn T R is based on an



SLD-style proof procedure that executes programs by proving theorems, in the
logic programming tradition. However, unlike classical logic programming, the
proof procedure for serial-Horn T R does more than just evaluate queries: it
also updates the database. These updates are handled in a completely logical
manner, and are an essential part of the proof theory of T R. This section
de�nes the syntax of serial-Horn T R, and illustrates its use in programming
database transactions and robot actions. A detailed development can be found
in [BK98,BK94,BK93,BK95].

Serial-Horn T R is based on the idea of serial goals. A serial goal is a transac-
tion formula of the form a1 
 a2 
 :::
 an, where each ai is an atomic formula
and n � 0. A serial-Horn rule has the form b a1 
 a2 
 :::
 an, where the
body, a1 
 a2 
 :::
 an, is a serial goal and the head, b, is an atomic formula.
In addition, the theory of change developed in this paper requires that b have a
derived predicate symbol. Finally, a serial-Horn transaction base is simply a set
of serial-Horn rules. Observe that a serial-Horn transaction base can be trans-
formed into a classical Horn rulebase by replacing each occurrence of 
 by ^.
This transformation changes the serial-Horn rule b a1 
 :::
 an into the clas-
sical Horn rule b a1 ^ :::^ an. In the absence of updates, this transformation
is a logical equivalence. Classical Horn logic is thus a special case of serial-Horn
T R.

Specifying and executing logic programs in serial-Horn T R is similar to us-
ing Prolog. To specify programs, the user writes a set of serial-Horn rules (the
transaction base). These rules de�ne database transactions, including queries,
updates, or a combination of both. To execute programs, the user submits a log-
ical formula to a theorem-proving system, which also acts as a run-time system.
This system executes transactions, updates the database, and generates query
answers, all as a result of proving theorems. As in Prolog, rules are evaluated in
a top-down fashion, rule premises are evaluated from left to right, and if a rule
premise fails, then the program de�ned by the rule also fails.

Unlike Prolog, T R provides a basic property of database transactions, namely
atomicity : the appearance that a program either executes to completion or not
at all. Atomicity allows a complex program to be treated as an atomic or ele-
mentary operation. Unfortunately, Prolog lacks this basic transactional feature.
Consequently, state-changing procedures in Prolog are the most di�cult to un-
derstand, debug and maintain, and their semantics is heavily dependent on rule
order. Moreover, even if the operational semantics of Prolog did support atomic-
ity (as in T R), a logical semantics would still be needed to account for it and for
updates. This semantics is provided by the model theory of T R. Operationally,
when a T R program fails, the theorem prover aborts the program's execution,
and rolls back both the program state and the database state to the last choice
point (or save-point), from whence execution resumes. In this way, the theorem
prover guarantees atomicity by implementing other transactional features, such
as abort, rollback, and save-points [Bon97b]. These features are all supported
by the implementation of serial-Horn T R described in [Hun96].



Example 1. (Financial Transactions) Suppose the balance of a bank ac-
count is given by the base predicate balance(Acct; Amt). The transac-
tion base below de�nes four derived predicates, each representing a trans-
action program: change(Acct; Bal1; Bal2) changes the balance of account
Acct from Bal1 to Bal2; withdraw(Amt;Acct) withdraws an amount from
an account; deposit(Amt;Acct) deposits an amount into an account; and
transfer(Amt;Acct1; Acct2) transfers an amount from account Acct1 to account
Acct2.

transfer(Amt;Acct1;Acct2)  withdraw(Amt;Acct1) 
 deposit(Amt;Acct2)

withdraw(Amt;Acct)  balance(Acct;Bal)

Bal > Amt 
 change(Acct;Bal; Bal� Amt)

deposit(Amt;Acct)  balance(Acct;Bal) 
 change(Acct;Bal;Bal + Amt)

change(Acct;Bal1;Bal2)  balance.del(Acct;Bal1) 
 balance.ins(Acct;Bal2)

These rules can be interpreted in a typical logic-programming style. The �rst
rule says: to transfer an amount, Amt, from Acct1 to Acct2, �rst withdraw Amt
fromAcct1; and then, if the withdrawal succeeds, deposit Amt inAcct2. Likewise,
the second rule says, to withdraw Amt from an account Acct, �rst retrieve the
balance of the account; then check that the account will not be overdrawn by
the transaction; then, if all is well, change the balance from Bal to Bal �Amt.
The last rule changes the balance of an account by deleting the old balance and
then inserting the new one. Observe that the transfer transaction fails (aborts)
if either of the subtransactions withdraw or deposit fails. Likewise, the withdraw
transaction fails if the query balance(Acct; Bal) fails (e:g:, if Acct is not a valid
account) or if the test Bal > Amt fails (i:e:, if the balance is not big enough).

Example 2. (Non-deterministic, Recursive Robot Actions) The transac-
tion base below simulates the movements of a robot arm in a world of toy blocks.
States of this world are de�ned in terms of three base predicates: on(x; y), which
says that block x is on top of block y; isclear(x), which says that nothing is on
top of block x; and wider(x; y), which says that x is strictly wider than y. The
rules de�ne four derived predicates representing actions that change the state of
the world.

stack(N;X)  N > 0 
 move(Y;X) 
 stack(N � 1; Y )

stack(0; X)  

move(X;Y )  pickup(X) 
 putdown(X;Y )

pickup(X)  isclear(X) 
 on(X;Y ) 
 on.del(X;Y ) 
 isclear.ins(Y )

putdown(X;Y )  wider(Y;X) 
 isclear(Y )

 on.ins(X;Y ) 
 isclear.del (Y )

(1)

The actions pickup(X) and putdown(X;Y ) mean, respectively: \pick up block
X" and \put down block X on top of block Y , where Y must be wider than



X." The e�ects of both actions are speci�ed in terms of elementary inserts and
deletes to database relations. The remaining rules combine simple actions into
more complex ones. For instance, move(X;Y ) means, \move block X to the top
of block Y ," and stack(N;X) means, \stack N arbitrary blocks on top of block
X."

The actions pickup and putdown are deterministic, since each set of argument
bindings speci�es only one robot action.1 In contrast, the action stack is non-
deterministic. To perform this action, the theorem prover searches the database
for blocks that can be stacked (represented by variable Y ). If, at any step, several
such blocks can be placed on top of the stack, the system arbitrarily chooses one
of them.

3 Herbrand Semantics

As described earlier, T R provides a general framework for combining elementary
database operations into complex transactions. This framework treats database
states and elementary operations abstractly: a state can be any abstract data
type and an elementary operation can be any mapping from states to states.
The theory of change developed in this paper instantiates this framework in
a particular way, by assuming a particular set of states, and a particular set
of elementary operations: a state in this paper is a set of base facts, and an
elementary operation may insert a base fact into a state or delete a base fact.
All of the results developed for T R in general are valid for any instantiation of
the framework, and in particular, for the theory of change developed here.

In [BK98,BK94,BK93,BK95], a general model-theoretic semantics for T R is
developed, along with an equivalent Herbrand-style semantics. In addition, for
the serial-Horn fragment of T R, the Herbrand semantics can be formulated as a
least-�xpoint theory, in the logic programming tradition. This theory shows that
every serial-Horn transaction base has a unique minimal model. This model is
a central feature of our theory of reasoning, and provides an essential link with
the theory of execution developed in [BK98,BK93,BK95]. This section reviews
the basic ideas, and presents a specialized version of the Herbrand semantics for
the particular theory of change developed in this paper.

As we shall see, Transaction Logic is an extension of �rst-order classical
logic. The notions of classical entailment and classical satisfaction therefore arise
frequently in this paper. We use the symbol j=c to denote both notions, where
the distinction between satisfaction and entailment will be clear from context.

3.1 Model Theory

In the Herbrand semantics of T R, the domain and interpretation of function
symbols are determined by the language of the logic. The Herbrand universe
U is the set of all ground �rst-order terms that can be constructed from the

1 Assuming that only one block can be on top of another block.



function symbols in the language; the Herbrand base B is a set of all ground
atomic formulas in the language; and a classical Herbrand structure is any subset
of B. Notice that the Herbrand universe and Herbrand base are in�nite, �xed,
and do not depend on the transaction base (or the database). Intuitively, this
means that the Herbrand universe does not represent a closed domain. As a
consequence, unlike classical logic, the Herbrand semantics of T R is equivalent
to the general semantics (as developed in [BK98,BK93,BK95]).2 A central feature
in the semantics of T R is the notion of a path and the associated operation of
splitting a path into two subpaths.

De�nition 1. (Paths and Splits) A path of length k, or a k-path, is any
�nite sequence of states, � = hD1 : : : Dki, where k � 1. A split of � is any pair
of subpaths, �1 and �2, such that �1 = hD1 ::: Dii and �2 = hDi ::: Dki for
some i (1 � i � k). In this case, we write � = �1 � �2.

Logical formulas in T R are evaluated on paths. To formalize this idea, we
de�ne the basic semantic structures of T R to be mappings from paths to classical
Herbrand structures (De�nition 2). Such a mapping speci�es what atoms are true
on what paths. Building on this, we then de�ne what formulas are true on what
paths (De�nition 3). Finally, we develop the standard logical notions of model,
entailment and validity for T R.

To simplify the technical development, we augment classical Herbrand struc-
tures with an additional, abstract structure, denoted >. We de�ne every �rst-
order formula to be true on >. This abstract structure is a technical device that
allows the semantic structures in T R to be de�ned as total mappings. Without
>, partial mappings would be needed to capture the right semantics. Although
the resulting logic would be equivalent, partial mappings would signi�cantly
complicate the technical development.

De�nition 2. (Herbrand Path Structures) A Herbrand path structure is
a mapping M that assigns a classical Herbrand structure (or >) to every path.
This mapping is subject to the following restriction, for all states D and Di, and
every base fact p:

1. M(hDi) j=c D
2. M(hD1;D2i) j=c p.ins if D2 = D1 [ fpg
3. M(hD1;D2i) j=

c p.del if D2 = D1 � fpg

Note p.ins and p.del are de�ned to be non-strict operations of insertion and
deletion. That is, in a procedural interpretation, p.insmay execute on a database
that already has p, in which case the database does not change. Likewise for p.del.
In addition, because this paper considers only Herbrand path structures, we shall

2 With the above universe, the Herbrand semantics becomes equivalent to the general
semantics even in classical logic. This is a consequence of the Skolem-L�owenheim
Theorem.



often omit the adjective \Herbrand." Therefore, in the sequel, the term \path
structure" should be taken to mean \Herbrand path structure."

A path structure, speci�es what ground atoms are true on what paths. In-
tuitively, each atom that is true on a path represents a property of the path.3

In arbitrary path structures, these atoms are independent of one another. In
particular, the atoms assigned to path � are independent of the atoms assigned
to subpaths of �. Intuitively, this means that we know nothing about how the
various properties of the various paths are related to each other. Such knowl-
edge, when it exists, is encoded as transaction formulas, as in the examples of
Section 2. These formulas constrain the assignment of atoms to paths, forcing
the atoms on one path to be related in precise ways to atoms on other paths.

As in classical logic, in order to de�ne the truth value of quanti�ed formu-
las and of open formulas, it is convenient to introduce variable assignments. A
variable assignment is a mapping � : V �! U , which takes a variable as input
and returns a Herbrand term as output. We extend the mapping from variables
to terms in the usual way, i.e., �(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn)). The
mapping can be extended to atomic formulas in a similar fashion.

De�nition 3. (Satisfaction) Let M be a Herbrand path structure, let � be a
path, and let � be a variable assignment. If M(�) = > then M; � j= � for
every transaction formula, �; otherwise,

1. Base Case: M; � j=� p if and only if �(p) 2 M(�), for any atomic
formula p.

2. Negation: M; � j=� :� if and only if it is not the case that M; � j=� �.
3. \Classical" Conjunction: M; � j=� �^ if and only if M; � j=� � and

M; � j=�  .
4. Serial Conjunction: M; � j=� � 
  if and only if M; �1 j=� � and

M; �2 j=�  for some split �1 � �2 of path �.
5. Universal Quanti�cation: M; � j=� (8X)� if and only if M; � j=� �

for every variable assignment � that agrees with � everywhere except on X.
6. Executional Possibility: M; � j=� 3� if and only if � is a 1-path

(i.e., � = hDi, for some state D) and M; � � �0 j=� � for some path �0.

As in classical logic, the variable assignment can be omitted for sentences, i.e., for
formulas with no free variables. From now on, we will deal only with sentences,
unless explicitly stated otherwise. If M; � j= �, then we say that sentence � is
satis�ed (or is true) on path � in structure M.

De�nition 4. (Models) A path structure, M, is a model of a transaction
formula � if M; � j= � for every path �. In this case, we write M j= �. A path
structure is a model of a set of formulas if it is a model of every formula in the
set.

3 For instance, in the examples of Section 2.1, if the atoms tues and feb:28 are true
on a path, then the path represents a Monday and it represents February 28.



De�nition 5. (Logical Entailment) Let � and  be two transaction formu-
las. Then � entails  if every model of � is also a model of  . In this case, we
write � j=  .

Entailment in Transaction Logic is an extension of entailment in classical
logic, as the following result shows.

Lemma 1 (Relationship to Classical Logic). If � and � are classical �rst-
order formulas, then � j= � if and only if � j=c �.

De�nition 6. (Abbreviations)

1. \Classical" disjunction: � _  means :(:� ^ : )
2. Existential quanti�cation: 9X � means :8X :�
3. \Classical" implication: �  means � _ : 
4. \Classical" equivalence: �$  means (�  ) ^ (  �)
5. Path: The propositional constant path is de�ned as � _ :�
6. States: The propositional constant state is de�ned as 3(path),

and [�] is an abbreviation for � ^ state

The �rst �ve items in De�nition 6 give standard abbreviations in classical
logic,4 while the last item gives abbreviations unique to Transaction Logic. In-
tuitively, state is a formula that is true only on states, that is, only on paths
of length 1. This allows us to reason about the properties of states and the ef-
fects that transactions have on states. In particular, the formula � ^ state is
true on states that satisfy formula �. The combination � ^ state, which tests
the properties of individual states, is used so frequently in reasoning about the
e�ects of transactions that we abbreviate it as [�].

De�nition 7. (Validity) A transaction formula, �, is valid if every path struc-
ture is a model of �. In this case, we write j= �.

Example 3. (Validity) The following formulas are valid, for all transaction for-
mulas �, �, :

(� _ �) 
  $ (�
 ) _ (� 
 ) � $ �
 state

[�
 �] $ [� ^ �] � $ (3�)
 �

3(� _ �) $ (3�) _ (3�) 3(�
 �) $ 3(�
3�)

(� ^ �) 
  ! �
  ^ � 
  3(� ^ �) ! 3� ^3�

4 While these abbreviations are standard, the connectives involved are not, which
is why the word \classical" is put in quotation marks. Indeed, even though the
connectives  , ^, and _ have a familiar look, they all are de�ned over paths, not
states, so they are all but standard. However, we use classical notation for them
because their de�nitions are very similar to the de�nitions for the corresponding
classical connectives.



Note that, in general, ^ does not distribute through 
 and 3, so the last two for-
mulas do not remain valid if the direction of implication is reversed. For instance,
suppose that � = a:ins, � = a:ins
 b:ins, and  = b:ins _ state. Then, the
formula (�
 ) ^ (� 
 ) is true on the path hfg; fag; fa; bgi in all path struc-
tures, but the formula (� ^ �) 
  is not.

Lemma 2 (Partial Deduction Theorem). If �! � is valid, then � logically
entails �; that is, if j= �! � then � j= �, for all transaction formulas, �, �.

The next example shows that the converse of Lemma 2 is not always true.

Example 4. (Validity vs. Entailment) The following expressions are entail-
ments, for all transaction formulas �, �, :

�! � j= �
  ! � 
  �! � j= 3�! 3�

However, the following formulas are not always valid:

(�! �) ! (�
  ! � 
 ) (�! �) ! (3�! 3�)

For instance, consider the left-hand formula,with � = state and � =  = b.ins.
Let M be any model for which b.ins is true only on paths of the form hD1;D2i
where D2 = D1 [ fbg. Then, for any such path,

1. M; hD1;D2i j= b.ins by De�nitions 2 and 3
2. M; hD1;D2i j= state! b.ins by the semantics of !

In addition,

3. M; hD1i j= state since state is true on every 1-path
4. M; hD1;D2i j= state
 b.ins by 1 and 3 and the semantics of 

5. M; hD1;D2i 6j= b.ins
 b.ins as b.ins
 b.ins is true only on 3-paths
6. M; hD1;D2i 6j= state
 b.ins! b.ins
 b.ins

using 4, 5 and the semantics of !.

Thus, from 2 and 6, the following formula is not true on path hD1;D2i of model
M:

(state! b.ins) ! (state
 b.ins! b.ins
 b.ins)

Hence, the formula is not valid.

This example shows that the deduction theorem does not always hold in
T R. However, since the deduction theorem holds for �rst-order classical logic, it
follows from Lemma 1 that it also holds in T R for the special case of �rst-order
formulas.5

5 It is possible to de�ne a stronger notion of entailment, jj=, for which the deduction
theorem holds: � jj= � i� for every M and �, if M; � j= � then M; � j= �. However,
this notion of entailment is not appropriate for the theory of reasoning developed in
this paper.



Corollary 1 (Deduction Theorem for First-Order Formulas). If � and
� are �rst-order formulas, then � j= � if and only if j= �! �.

Sections 4, 5 and 6 show that logical entailment allows us to express proper-
ties of T R logic programs and to reason about them.

3.2 Executional Entailment

In addition to logical entailment, T R supports another form of entailment, called
executional entailment. While logical entailment allows us to reason about T R
programs, executional entailment allows us to execute them. In particular, execu-
tional entailment provides the theoretical foundation for an SLD-style proof pro-
cedure for serial-Horn T R, a procedure that executes logic programs as it proves
theorems. However, unlike the proof procedures for classical logic programs, this
procedure does more than just evaluate queries: it also updates the database.
These results are described in detail elsewhere [BK98,Bon97b,BK93,BK95]. This
section reviews the main ideas.

De�nition 8. (Executional Entailment) Let P be a set of transaction
formulas (a transaction base), let � be a transaction formula, and let
D0;D1; : : : ; Dn be a sequence of database states. Then, the following statement

P;D0;D1; : : : ; Dn j= � (2)

is true if M; hD0;D1; : : : ; Dni j= � for every model M of P. We also de�ne

P;D0 --- j= � (3)

to be true if there is a database sequence D1; : : : ; Dn that makes (2) true.

Formally, statement (2) says that every model of P satis�es � on the path
hD0;D1; : : : ;Dni. However, it can also be interpreted procedurally in terms of
program execution. From this perspective, � is a program invocation, and P
is a set of program and subroutine de�nitions. Statement (2) then says that a
successful execution of � can change the database from state D0 to D1 : : : to
Dn.

Normally, users who want to execute transactions know only the initial
database state D0; they do not know the execution path in advance, and they
just want to reach a �nal state of the execution. To account for this situation,
the version of entailment in statement (3) allows us to omit the intermediate
and the �nal database states. Intuitively, statement (3) says that transaction �
can execute successfully starting from database D0. When the context is clear,
we simply say that transaction � succeeds. Likewise, when statement (3) is not
true, we say that transaction � fails. In [BK98,BK93,BK95], we develop a logi-
cal inference system that allows us to compute a database sequence D1; : : : ; Dn

that satis�es statement (2) whenever a transaction succeeds.



Example 5. (Executional Entailment) Suppose P contains the following
rules:

q  r q s r  a.ins
 b.ins s a.del
 b.del

Then, the following statements are all true:

P; f g; fag; fa; bg j= a.ins
 b.ins P; fa; bg; fbg;f g j= a.del
 b.del

P; f g; fag; fa; bg j= r P; fa; bg; fbg;f g j= s

P; f g; fag; fa; bg j= q P; fa; bg; fbg;f g j= q

P; f g; fag; fa; bg;fbg; fg j= r 
 s

P; f g; fag; fa; bg; fbg;f g j= q 
 q

Hence, the following statements are true as well:

P; f g --- j= a.ins
 b.ins P; fa; bg --- j= a.del
 b.del

P; f g --- j= r P; fa; bg --- j= s

P; f g --- j= q P; fa; bg --- j= q

P; f g --- j= r 
 s P; f g --- j= q 
 q

Executional entailment is an extension of classical entailment, as the following
lemma shows.

Lemma 3 (Relationship to Classical Logic). If � is a �rst-order for-
mula, and P is a set of �rst-order formulas, then P;D j= � if and only if
P [ D j=c �.

3.3 Minimal Models

Like classical logic programs, the Herbrand semantics of serial-Horn T R can
be formulated as a �xpoint theory. One of the results of this theory is that a
serial-Horn transaction base has a unique minimal model. This model provides
an essential link between the theory of reasoning developed in this paper and
the theory of execution developed in [BK98,BK93,BK95]. In particular, when
reasoning about a T R program, we shall be reasoning about formulas that are
true in the minimal model, since these formulas tell us a great deal about how a
program executes. This section provides the necessary background on minimal
models in serial-Horn T R.

De�nition 9. (Ordered Structures)

{ If �1 and �2 are classical Herbrand structures (or >), then �1 � �2 if
�1 � �2 or �2 = >.

{ If M1 and M2 are two Herbrand path structures, then M1 �M2 if
M1(�) �M2(�) for every path, �.



This ordering on path structures allows us to develop a �xpoint theory for serial-
Horn T R that is analogous to the �xpoint theory of classical Horn logic. The
following theorem is a basic result of this theory.

Theorem 1 (Unique Minimal Model). If P is a set of serial-Horn rules,
then P has a unique minimal Herbrand model, MP. That is, MP is a Herbrand
model of P, and MP �M for all other Herbrand models, M, of P.

Another basic result is that for serial-Horn rules, executional entailment is
equivalent to satisfaction in the minimal model. Intuitively, this means that
reasoning about truth in the minimal model is equivalent to reasoning about
program execution. Our theory of reasoning in T R is based on this idea.

Theorem 2. If P is a set of serial-Horn rules, and � is a serial goal, then

P;D1; :::;Dn j= � if and only if MP; hD1; :::;Dni j= �

4 Expressing Properties of Update Programs

This section shows how to express properties of T R programs as transaction
formulas. If these formulas are true in the minimal model of a transaction base,
then they describe the possible executions of a transaction program. We shall
make this idea precise after �rst illustrating how to represent program properties
as transaction formulas.

In this paper, we shall be concerned with two kinds of properties: (i) under
what conditions can a program execute successfully, and (ii), if a program ex-
ecutes successfully, what e�ect does it have on the database. We shall refer to
these as success and e�ect properties, respectively. Examples of success proper-
ties include the following:

{ Can program � always succeed?
{ If p _ q is true, can program � succeed?
{ If the database satis�es its integrity constraints, can transaction � succeed?

Examples of e�ect properties include the following:

{ Is p always true after program � executes?
{ If p _ q is true before program � executes, is r _ s true afterwards?
{ Does every execution of transaction � preserve the database integrity con-
straints?

Properties like these can be expressed by transaction formulas of a very
speci�c form:

Success properties: [condition] ! 3�
E�ect properties: [condition1] 
 � ! � 
 [condition2]



These formulas have a simple interpretation. The success property says, \if
condition is true, then � can execute successfully." The e�ect property says,
\If condition1 is true before � executes, then condition2 is true after � exe-
cutes." Here, each condition is an arbitrary formula of classical �rst-order logic,
which the underlying database state must satisfy. For example, the three success
properties listed above are expressed as follows:

state ! 3� [p_ q] ! 3� [C] ! 3�

where C a �rst-order formula representing the database integrity constraints.
Likewise, the three e�ect properties listed above are expressed as follows:

state
� ! �
 [p] [p_ q]
� ! �
 [r_ s] [C]
� ! �
 [C]

In general, we can (and will) also use formulas in which the direction of the
implication sign is reversed, i:e:, in which ! is replaced by  .

The reverse implication allows reasoning about conditions that must have
been true before transaction execution. For instance, [condition]  3� means
that if � can execute then condition must have been true in the initial state of
the execution. Likewise, [condition1] 
 �  � 
 [condition2] means that if
condition2 is true in the �nal state of an execution of �, then condition1 must
have been true when this execution started.

The examples above illustrate informally that transaction formulas can be
used to express properties of T R programs. We now make this idea precise.
Recall that T R programs are de�ned by serial-Horn transaction bases.

De�nition 10. (Properties) Let P be a serial-Horn transaction base, and let
 be a transaction formula. Then,  is a property of P if it is true in the minimal
model, that is, if MP j=  .

The following two theorems establish a precise relationship between the prop-
erties of a transaction base, P, and the way in which transactions de�ned by
P execute. This connects the theory of reasoning developed in this paper with
the theory of execution developed in [BK98,BK93,BK95]. The minimal model
semantics makes this link possible.

Theorem 3 (Success Properties). Let P be a serial-Horn transaction base,
let � be a serial goal, and let � be a �rst-order formula made from base predicate
symbols. Then, the following two statements are equivalent:

{ P has property [�] ! 3�
{ For every database state D, if D j=c � then P;D --- j= �

Suppose that P has the property [�] ! 3�. Theorem 3 says that if � is true
in the current database state, then � can execute successfully. A similar theorem
holds if ! is replaced by  .

Theorem 4 (E�ect Properties). Let P be a serial-Horn transaction base,
let � be a serial goal, and let � and  be �rst-order formulas made from base
predicate symbols. Then, the following two statements are equivalent:



{ P has property [�]
 � ! �
 [ ]
{ For every sequence of database states D1; :::;Dn, if D1 j=c � and
P;D1; :::;Dn j= � then Dn j=  

Suppose that P has the property [�]
 � ! �
 [ ]. Theorem 4 says that
whenever � executes, if the initial state satis�es �, then the �nal state satis�es
 . A similar theorem holds if ! is replaced by  .

4.1 Examples

This section gives several examples of transaction formulas that express prop-
erties of T R programs. Each example centers on a particular issue, such as el-
ementary operations, sequential composition, pre-conditions, non-determinism,
and subroutines. The �nal example suggests the richness of reasoning when a
program combines several of these issues. Each example also shows how the
meaning of transaction formulas can be expressed in terms of executional entail-
ment. To simplify the exposition, the examples use propositional T R, though
examples of predicate T R are easy to generate.

Example 6. (Elementary Operations) If b and c are distinct base facts, then
the formulas below are true in the minimal model of every transaction base.

c.ins ! c.ins
 [c] [b]
 c.ins $ c.ins
 [b] state $ 3 c.ins

The �rst formula says that c.ins makes c true (as one would expect). The syntax
can be read as follows: if c.ins is executed, then after execution, c is true. The
second formula says that b is una�ected by c.ins, i:e:, b is true before an execution
of c.ins if and only if b is true after execution. This is an example of a frame
axiom [MH69,Rei91] in our setting. The third formula says that it is always
possible to execute c.ins.

It follows from Theorems 4 and 3 that the following statements are also
true, for any transaction base P, any pair of distinct base facts b and c, and all
database states, D1, D2:

{ If P;D1;D2 j= c.ins then c 2 D2

{ If P;D1;D2 j= c.ins then b 2D1 i� b 2 D2

{ P;D1 --- j= c.ins

Example 7. (Sequential Composition) If a, b and c are distinct base facts,
then the formulas below are true in the minimal model of every transaction
base. They state some basic properties of the sequential transaction b.ins
 c.del,
which �rst inserts b into the database, and then deletes c.

b.ins
 c.del! b.ins
 c.del
 [b ^ :c]

[a]
 b.ins
 c.del$ b.ins
 c.del
 [a]

state$ 3(b.ins
 c.del)



The �rst formula says that the transaction makes b true and c false. The syntax
can be read as follows: if the transaction is executed, then after execution, b ^ :c
is true. The second formula says that the transaction does not a�ect a, i:e:, a is
true before execution if and only if it is true after execution. The third formula
says that it is always possible to execute the transaction.

It follows from Theorems 4 and 3 that the following executional entailments
are also true, for any transaction base P, any triple of distinct base facts a, b, c,
and all databases D1, D2, D3:

{ If P;D1;D2;D3 j= b.ins
 c.del then b 2D3 and c 62D3

{ If P;D1;D2;D3 j= b.ins
 c.del then a 2D1 i� a 2D3

{ P;D1 --- j= b.ins
 c.del

Example 8. (Pre-conditions) If b and c are distinct base facts, then the for-
mulas below are true in the minimal model of every transaction base. They
state some basic properties of the transaction c 
 c.del, which deletes c from
the database, but fails if c is not in the database to begin with.

(c
 c.del)! (c 
 c.del)
 [:c]

[b]
 (c
 c.del)$ (c 
 c.del)
 [b]

[c]$ 3(c 
 c.del)

The �rst formula says that the transaction makes c false. The second formula
says that the transaction does not a�ect b. The third formula says that the
transaction is possible if and only if c is in the database.

It follows from Theorems 4 and 3 that the following executional entailments
are also true, for any transaction base P and any pair of databases D1 and D2:

{ If P;D1;D2 j= c
 c.del then c 62D2

{ If P;D1;D2 j= c
 c.del then b 2D1 i� b 2D2

{ P;D1 --- j= c 
 c.del if and only if c 2D1

Example 9. (Non-Determinism) If a, b and c are distinct base facts, then the
formulas below are true in the minimal model of every transaction base. They
state some basic properties of the non-deterministic transaction b.ins_ c.del,
which either inserts b into the database or deletes c.

(b.ins _ c.del)! (b.ins _ c.del)
 [b_ :c]

[a]
 (b.ins _ c.del)$ (b.ins _ c.del)
 [a]

state$ 3(b.ins_ c.del)

The �rst formula says that the transaction makes b true or c false. The second
formula says that the transaction does not a�ect a. The third formula says that
the transaction is always possible.

It follows from Theorems 4 and 3 that the following executional entailments
are also true, for any transaction base P and any pair of states D1 and D2:



{ If P;D1;D2 j= b.ins _ c.del then b 2D2 or c 62D2

{ If P;D1;D2 j= b.ins _ c.del then a 2D1 i� a 2D2

{ P;D1; --- j= b.ins _ c.del

Example 10. (Subroutines) Suppose that transaction base P consists of ex-
actly one rule:

q  b.ins
 c.del

Intuitively, this rule de�nes a subroutine, where q is the subroutine name. The
rule says that one way to execute q is to execute the transaction b.ins
 c.del.
Because of the minimal model semantics, this is the only way to execute q. This
is reected in the following formula, which is true in the minimal model of P:

q $ b.ins
 c.del

Because of this equivalence, q has all the properties of b.ins
 c.del described in
Example 7. In particular, the following formulas are true in the minimal model
of P, where a is a base fact distinct from b and c:

q ! q 
 [b^ :c] [a]
 q $ q 
 [a] state $ 3q

These formulas say that q makes b true and c false, that q does not a�ect the
value of a, and that q is always possible.

It follows from Theorems 4 and 3 that the following executional entailments
are also true, for all states D1, D2, D3:

{ If P;D1;D2;D3 j= q then b 2D3 and c 62 D3

{ If P;D1;D2;D3 j= q then a 2 D1 i� a 2D3

{ P;D1 --- j= q

Example 11. (Potpourri) Suppose that transaction base P consists of exactly
two rules:

q  a
 c.ins q  b
 d.del

Intuitively, these rules de�ne a non-deterministic subroutine, where q is the sub-
routine name. The �rst rule says that one way to execute q is to execute the
transaction a
 c.ins. The second rule says that another way to execute q is
to execute the transaction b
 d.del. Because of the minimal model semantics,
these are the only ways to execute q. This is reected in the following formula,
which is true in the minimal model of P:

q $ (a
 c.ins _ b
 d.del)

This equivalence says that q amounts to a non-deterministic choice between the
two transactions a 
 c.ins and b
 d.del. Consequently, the following formulas
are also true in the model, where e is a base fact distinct from c and d:

q ! q 
 [c _ :d] [e]
 q $ q 
 [e] [a _ b] $ 3q



The �rst formula says that q makes c true or d false, the second formula says
that q does not a�ect the value of e, and the third formula says that q is possible
if and only if a or b is true.

In general, if we know nothing about the database state when q begins exe-
cuting, then q can execute in two possible ways (or it can fail to execute at all).
However, knowledge about the initial database state can reduce the possibili-
ties. For instance, if a is false in the initial state, then a
 c.ins cannot execute.
Thus, any execution of q must cause an execution of b
 d.del, so d must be
false in the �nal state. This is represented by the following formulas, which are
both true in the minimal model of P:

[:a]
 q ! b
 d.del [:a]
 q ! q 
 [:d]

Likewise, if b is false in the initial state, then b
 d.del cannot execute. Thus,
any execution of q must cause an execution of a
 c.ins, so c must be true in
the �nal state. This situation is represented by the following formulas, which are
both true in the minimal model of P:

[:b]
 q ! a
 c.ins [:b]
 q ! q 
 [c]

These formulas express a forward mode of reasoning, from initial state to
�nal state. However, we can also reason backwards, from �nal state to initial
state, since knowledge about the �nal state can also tell us something about
how q executed. For instance, if c is false in the �nal state, then a
 c.ins could
not have executed, so b
 d.del must have executed, so b must have been true
in the initial state. This is represented by the following formulas, which are both
true in the minimal model of P:

b
 d.del  q 
 [:c] [b]
 q  q 
 [:c]

Likewise, if d is true in the �nal state, then b
 d.del could not have executed,
so a
 c.ins must have executed, so a must have been true in the initial state.
This state of a�airs is represented by the following formulas, which are both true
in the minimal model of P:

a 
 c.ins  q 
 [d] [a]
 q  q 
 [d]

5 An Inference System

This section develops an inference system for reasoning about transaction for-
mulas. To simplify matters, the system presented here is intentionally limited in
two ways: (i) it reasons about the e�ects of transactions, but not about when
transactions can succeed; and (ii) it reasons about ground formulas only, not
about formulas with variables. Both of these restrictions can be lifted without
di�culty, and are the subject of a forthcoming work.

The inference system consists of a collection of axioms and inference rules.
Each axiom is a transaction formula, and each inference rule consists of several



transaction formulas separated by a horizontal line. An inference rule has the
following simple interpretation: if the formulas above the line can be derived,
then the formulas below the line can also be derived. Based on the axioms, the
inference rules derive additional transaction formulas. Section 6 shows how to
use the inference system to reason about transactions.

As in modal logic, reasoning in T R is an extension of reasoning in classical
logic. Thus, the inference system below starts with the axioms and inference
rules for classical logic, and augments them with a small number of axioms and
inference rules speci�c to T R.

De�nition 11. (Inference System T ) T is the system of axioms and infer-
ence rules below, where �, �, and  stand for arbitrary transaction formulas.

Axioms:

Classical Axioms: Every valid formula of �rst-order classical logic, where pa-
rameters representing �rst-order formulas now represent transaction for-
mulas, is an axiom in T .

Distributivity:

 
 (�_ �) $ ( 
�)_ ( 
 �) (�_ �)
  $ (�
 ) _ (� 
 )
Auxiliary Axioms:

1. state
 � $ � � $ �
 state

2. :path
 � $ :path :path $ �
:path
3. [�^ �] $ [�]
 [�]

Inference Rules:

Classical Rules: Every inference rule of �rst-order classical logic, where pa-
rameters representing �rst-order formulas now represent transaction for-
mulas, is an inference rule of T .

Attachment:
� ! �

 
 � !  
 �
� ! �

�
  ! � 
 

Because inference system T extends classical inference, we can immediately
write down a number of additional axioms and inference rules that are included
in T . For example, since � _ :� is a valid formula of classical logic, for all
�rst-order formulas �, it is an axiom of system T , for all transaction formulas �.
Likewise, since the following are inference rules of classical logic, for all �rst-order
formulas �, �, , they are also inference rules of system T , for all transaction
formulas �, �, :

Transitivity :
�! �; � ! 

�! 
Disjunction :

�1! �1; �2 ! �2
(�1 _ �2)! (�1 _ �2)

The following rule, which is used extensively in this paper, is also a rule of
classical inference, and thus of system T :

Substitution:
; �$ �
f�=�g



where f�=�g is the result of replacing some occurrence of � by � in .

Theorem 5 (Soundness). Every transaction formula derivable in system T is
valid. More generally, if � is a set of transaction formulas, and � can be derived
from � and T , then � j= �.

5.1 Derived Rules and Formulas

From the axioms and inference rules in system T , we can derive numerous other
rules and formulas. Many of these will be used in Section 6 to derive proper-
ties of transactions. All the derived formulas and rules in this section concern
the pre-conditions and post-conditions of transactions, that is, formulas of the
form [�]. The �rst two lemmas tell us when such conditions can be eliminated
or generalized. The remaining lemmas tell us how to derive conditions involv-
ing arbitrary �rst-order formulas, and how to reason about non-deterministic
transactions. The examples give proofs for special cases of the lemmas.

Lemma 4 (Eliminating Vacuous Conditions). The following formulas can
be derived in system T , for any transaction formula �:

[path]
 � $ � � $ �
 [path] [path] $ state

Proof. We derive only the right- and left-most formulas, since the middle formula
has a similar derivation. Observe that j=c (( _ : ) ^ �)$ � for all �rst-order
formulas, �. Hence,

1. (( _ : ) ^ �) $ � for all T R formulas, �, by Classical Axioms

2. (path^ state) $ state using � = state and the de�nition of path

3. [path] $ state by De�nition 6

4. state
 � $ � Auxiliary Axiom 1

5. [path]
 � $ � by 3, 4 and Substitution.

Note that Clause 3 above proves the right-most formula in this lemma.

Lemma 5 (Implied Conditions). If � and  are �rst-order formulas,
and � j=c  , then [�]! [ ] can be derived in system T .

Proof. If � j=c  , then j=c �!  by the deduction theorem for classical
logic, so j=c (� ^ �)! ( ^ �) for all �rst-order formulas, �. Hence,

1. (� ^ �)! ( ^ �) for all T R formulas, �, by Classical Axioms

2. (� ^ state)! ( ^ state) using � = state

3. [�]! [ ] by De�nition 6.



Example 12. (Combining Conditions) The following inference rule can be
derived in system T , for all transaction formulas, �, �i,  i:

[�1]
 � ! �
 [ 1]
[�2]
 � ! �
 [ 2]

[�1 ^ �2]
 � ! �
 [ 1 ^  2]

To show this, we �rst derive a related rule:

1. [�2]
 � ! �
 [ 2] by Hypothesis

2. [�1]
 [�2]
 � ! [�1]
 �
 [ 2] by Attachment

3. [�1]
 � ! �
 [ 1] by Hypothesis

4. [�1]
 �
 [ 2] ! �
 [ 1]
 [ 2] by Attachment

5. [�1]
 [�2]
 � ! �
 [ 1]
 [ 2] by 2, 4 and Transitivity

Using equivalences, we transform line 5 into the �nal form:

6. [�1 ^ �2] $ [�1]
 [�2] Auxiliary Axiom 3

7. [ 1 ^  2] $ [ 1]
 [ 2] Auxiliary Axiom 3

8. [�1 ^ �2]
 � ! �
 [ 1 ^  2] by 5, 6, 7 and Substitution.

The following lemma generalizes Example 12. It allows us to reason about the
e�ects of an update program under arbitrary �rst-order conditions. This is done
by combining simple conditions into complex conditions. In a database context,
this allows us to reason about the e�ects of transactions on �rst-order integrity
constraints. In Arti�cial Intelligence, it allows us to reason about so-called open
worlds.

Lemma 6 (Building Complex Conditions). The following inference rules
can be derived in system T , where �, �i and  i are transaction formulas:

(a)
[�i]
 �! �
 [ i]; i = 1; :::; k

[^�i]
 �! �
 [^ i]
[_�i]
 �! �
 [_ i]

(b)
[�i]
 � �
 [ i]; i = 1; :::; k

[^�i]
 � �
 [^ i]
[_�i]
 � �
 [_ i]

(c)
[�]
 �! �
 [ ]

[:�]
 � �
 [: ]
(d)

[�]
 � �
 [ ]
[:�]
 �! �
 [: ]

The following example derives an inference rule that is used frequently in
reasoning about non-deterministic transactions. The rule infers su�cient pre-
conditions for �1 _ �2 from su�cient pre-conditions for �1 and �2.

Example 13. (Non-Deterministic Transactions) The following inference
rule can be derived in system T , where �i, �i and �i are transaction formu-
las:

[�1]
 �1 ! �1
[�2]
 �2 ! �2

[�1 ^ �2]
 (�1 _ �2) ! (�1 _ �2)



Here is the derivation:

1. [�1]
 �1 ! �1 by Hypothesis

2. [�1 ^ �2] ! [�1] by Lemma 5, since �1 ^ �2 j=c �1

3. [�1 ^ �2]
 �1 ! [�1]
 �1 by Attachment

4. [�1 ^ �2]
 �1 ! �1 by 1, 3 and Transitivity

5. [�1 ^ �2]
 �2 ! �2 Likewise.

Combining lines 4 and 5 gives the result:

6. [�1 ^ �2]
 �1 _ [�1 ^ �2]
 �2
! �1 _ �2 by 4, 5, and the rule of Disjunction

7. [�1 ^ �2]
 �1 _ [�1 ^ �2]
 �2
$ [�1 ^ �2]
 (�1 _ �2) by Distributivity

8. [�1 ^ �2]
 (�1 _ �2) ! (�1 _ �2) by 6, 7 and Substitution.

The following lemma generalizes Example 13 to include both pre-conditions
and post-conditions, whether necessary or su�cient. The lemma allows us to
infer the e�ects of non-deterministic transactions from the e�ects of their sub-
transactions.

Lemma 7 (Conditions for Non-Determinism). The following inference
rules can be derived in system T , where �i, �i and �i are transaction formulas:

(a)
[�i]
 �i ! �i; i = 1; :::; k

[^i�i]
 (_i�i) ! (_i�i)
(b)

�i ! �i 
 [�i]; i = 1; :::; k

(_i�i) ! (_i�i)
 [_i�i]

(c)
[�i]
 �i  �i; i = 1; :::; k
[_i�i]
 (_i�i)  (_i�i)

(d)
�i  �i 
 [�i]; i = 1; :::; k
(_i�i)  (_i�i)
 [^i�i]

In general, when a disjunctive transaction such as � _ � is executed, either �
or � can execute, where the choice is non-deterministic. The lemma below gives
conditions under which the choice becomes deterministic, e:g:, conditions under
which � is guaranteed to execute. The idea is simple: suppose that a necessary
pre-condition for � is false when � _ � begins executing; then � cannot execute,
so � must execute. A dual rule for post-conditions is also given.

Lemma 8 (Loss of Choice). The following inference rules can be derived in
system T , where �, � and � are transaction formulas:

[�]
 �  �
[:�]
 (� _ �) ! �

� ! �
 [�]
�  (� _ �) 
 [:�]



6 Proving Properties of Update Programs

Inference system T developed in the last section provides a core of general ax-
ioms and inference rules for reasoning about update programs. However, it lacks
knowledge about speci�c updates. In particular, it knows nothing about elemen-
tary database operations, such as q.ins and q.del, which insert and delete facts
from the database. It also knows nothing about the transaction base, which de-
�nes named procedures, such as subroutines and database views. This section
provides the missing knowledge. In particular, we augment system T with ax-
ioms that describe elementary operations and transaction bases. The resulting
inference system, called T P, can reason about the e�ects of user-de�ned up-
date programs. This section de�nes T P and illustrates how to use it to prove
properties of programs.

De�nition 12. (Inference System T P) If P is a serial-Horn transaction
base, then T P consists of the axioms and inference rules in system T plus the
axioms below.

Elementary Operations: If b and c are distinct base facts, then

E�ect Axioms: c.ins $ c.ins
 [c] c.del $ c.del
 [:c]

Frame Axioms: [b]
 c.ins $ c.ins
 [b] [b]
 c.del $ c.del
 [b]

Query Axiom: b $ [b]

Completion Axioms: If q is a de�ned atom, then

q $ (�1 _ �2 _ � � � _ �n) if P has exactly n rules of the form q �i,

q $ :path if P has no rules de�ning q.

Intuitively, the e�ect axioms say that inserting c makes c true, and deleting c
makes c false. The frame axioms say that inserting or deleting c does not a�ect
b. The query axiom says that b is a query. The completion axiom is the analogue
in T R of the Clark completion in classical logic programs [Cla78].

Theorem 6 (Soundness). Every transaction formula derivable in system T P

is a property of P, i:e:, it is true in the minimal model of P.

It is well-known that no inference system can be complete for proving prop-
erties of general programs, since such reasoning is not even semi-decidable. An
interesting question, however, is for what class of transactions and properties
does a completeness result hold for T P? Although we do not have an answer
to this question at the moment, we conjecture that T P is complete for proving
success and e�ect properties (de�ned in Section 4) of programs de�ned by serial-
Horn transaction bases (de�ned in Section 2.2) as long as (i) the transaction base
is ground and non-recursive, and (ii) the properties are boolean combinations
of base facts. In addition, we conjecture that T P can easily be extended to (i)
transaction bases with variables, and (ii) properties with quanti�ers and vari-
ables.



6.1 Examples

This section illustrates how to use inference system T P to reason about up-
date programs. The examples derive many of the properties expressed in Sec-
tion 4, including programs involving sequential composition, pre-conditions, non-
determinism, and subroutines. The examples have also been chosen to illustrate
the various axioms and inference rules of T P. Most derivations are presented in
full detail, in order to illustrate the proper use of the system.

Example 14. (Basic Properties of Sequential Transactions)We derive the
following properties of the sequential transaction b.ins
 c.del, where a, b and
c are distinct base facts. These properties are similar to those expressed in Ex-
ample 7.

b.ins
 c.del! b.ins
 c.del
 [:c]

b.ins
 c.del! b.ins
 c.del
 [b]

[a]
 b.ins
 c.del$ b.ins
 c.del
 [a]

First, we infer that b.ins
 c.del makes c false:

1. c.del ! c.del
 [:c] E�ect Axiom

2. b.ins
 c.del ! b.ins
 c.del
 [:c] by Attachment.

Second, we infer that b.ins
 c.del makes b true:

1. b.ins ! b.ins
 [b] E�ect Axiom

2. b.ins
 c.del ! b.ins
 [b]
 c.del by Attachment

3. [b]
 c.del $ c.del
 [b] Frame Axiom

4. b.ins
 c.del ! b.ins
 c.del
 [b] by 2, 3 and Substitution.

Finally, we show that b.ins
 c.del preserves the value of a:

1. [a]
 b.ins
 c.del $ [a]
 b.ins
 c.del Classical Axiom �$ �

2. [a]
 b.ins $ b.ins
 [a] Frame Axiom

3. [a]
 b.ins
 c.del $ b.ins
 [a]
 c.del by 1, 2 and Substitution

4. [a]
 c.del $ c.del
 [a] Frame Axiom

5. [a]
 b.ins
 c.del $ b.ins
 c.del
 [a] by 3, 4 and Substitution.

By combining the basic properties derived in Example 14, we can derive
more-complex properties, as the next example shows.



Example 15. (Complex Properties of Sequential Transactions)We derive
the following property of the sequential transaction b.ins
 c.del:

[a]
 b.ins
 c.del ! b.ins
 c.del
 [a ^ b ^:c]

First, we put the three properties from Example 14 into the form required by
Lemma 6:

1. [path]
 b.ins $ b.ins by Lemma 4

2. b.ins
 c.del ! b.ins
 c.del
 [b] by Example 14

3. [path]
 b.ins
 c.del ! b.ins
 c.del
 [b] by 1, 2 and Substitution

4. b.ins
 c.del ! b.ins
 c.del
 [:c] by Example 14

5. [path]
 b.ins
 c.del ! b.ins
 c.del
 [:c] by 1, 4 and Substitution

6. [a]
 b.ins
 c.del ! b.ins
 c.del
 [a] by Example 14.

Next, we combine lines 3, 5 and 6, and simplify the result.

7. [path^ path] 
 b.ins
 c.del
! b.ins
 c.del
 [b ^ :c] by 3, 5, Lemma 6

8. path^ path $ path Classical Axiom

9. [path]
 b.ins
 c.del ! b.ins
 c.del
 [b ^ :c] by 7, 8, Substitution

10. [a ^ path]
 b.ins
 c.del
! b.ins
 c.del
 [a ^ b ^ :c] by 6, 9, Lemma 6

11. a ^ path $ a Classical Axiom

12. [a]
 b.ins
 c.del ! b.ins
 c.del
 [a ^ b ^ :c] by 10, 11, Substitution.

The transaction b.ins
 c.del, used in the examples above, contains database
updates but no queries. To derive properties of transactions with queries, we
sometimes need Lemma 9, below. Intuitively, this lemma says that if b is a base
fact acting as a yes/no query, then it gives rise to the pre-condition [b]. This
allows us to derive transaction pre-conditions from many of the queries in a
transaction program, as shown in Example 16, below.

Lemma 9 (Deriving Pre-conditions from Queries). If b is a base fact,
then the formula b$ [b]
 b can be derived in system T P.

Proof.

1. b $ [b] Query Axiom

2. b $ b ^ b Classical Axiom

3. b $ [b^ b] by 1, 2 and Substitution

4. [b^ b] $ [b]
 [b] Auxiliary Axiom 3

5. b $ [b]
 [b] by 3, 4 and Substitution

6. b $ [b]
 b by 1, 5 and Substitution.



Example 16. (Non-Determinism and Pre-conditions) Consider a transac-
tion that chooses non-deterministically between two sub-transactions, a
 c.ins
and b
 d.del. We derive the following two properties of this transaction:

(a 
 c.ins _ b
 d.del) ! (a 
 c.ins _ b
 d.del) 
 [c _ :d]

[:a] 
 (a 
 c.ins _ b
 d.del) ! (a 
 c.ins _ b
 d.del) 
 [:d]

The �rst property says that at the end of transaction execution, c is true or d is
false. The second property says that if a is false at the start of execution, then
d is false at the end. Here is the derivation of the �rst property:

1. c.ins ! c.ins
 [c] E�ect Axiom

2. a
 c.ins ! a
 c.ins
 [c] by Attachment

3. d.del ! d.del
 [:d] E�ect Axiom

4. b
 d.del ! b
 d.del
 [:d] by Attachment.

Applying Lemma 7(b) to lines 2 and 4 (using a
 c:ins for �1 and �1, and using
b
 d:del for �2 and �2) gives the �rst property.

To derive the second property, we �rst use Lemma 9 to infer that [a] is a
pre-condition for the sub-transaction a
 c.ins.

5. [a]
 a $ a by Lemma 9

6. [a]
 a 
 c.ins $ a
 c.ins by Attachment

7. [a]
 (a
 c.ins)  (a
 c.ins) by De�nition 6.

Next, we invoke Lemma 8 to remove the disjunct a
 c.del from the transaction:

8. [:a]
 (a 
 c.ins _ b
 d.del) ! b
 d.del by 7 and Lemma 8

9. d.del $ d.del
 [:d] E�ect Axiom

10. [:a]
 (a 
 c.ins _ b
 d.del) ! b
 d.del
 [:d] by 8, 9, Substitution.

Finally, we invoke classical inference to put the disjunct a
 c.del back into the
transaction:

11. b
 d.del ! (a
 c.ins _ b
 d.del) Classical Axiom

12. b
 d.del
 [:d] ! (a
 c.ins _ b
 d.del)
 [:d] by Attachment.

Applying Transitivity to lines 10 and 12 gives the second property.

Example 17. (Subroutines) As in Example 11, suppose that transaction base
P consists of the following two rules, where a and b are base facts:

q  a
 c.ins q  b
 d.del

Then, the following two properties can be derived in system T P:

q ! q 
 [c_ :d] [:a]
 q ! q 
 [:d]



These properties follow immediately from the Completion Axiom and the results
of Example 16. Here is the derivation of the �rst property:

1. q $ (a
 c.ins _ b 
 d.del) Completion Axiom

2. (a
 c.ins _ b
 d.del
! (a 
 c.ins _ b
 d.del)
 [c _ :d] by Example 16

3. q ! q 
 [c_ :d] by 1, 2 and Substitution.

Here is the derivation of the second property:

4. [:a]
 (a
 c.ins _ b
 d.del)
! (a 
 c.ins _ b
 d.del)
 [:d] by Example 16

5. [:a]
 q ! q 
 [:d] by 1, 4 and Substitution.

7 Conclusions

Transaction Logic was originally introduced as a logical language for specifying
and executing transactions that query and update database states. However, it
quickly became apparent that being a general logic for expressing change-related
phenomena, Transaction Logic has applications in areas outside databases and
logic programming. For instance, the logic can be used for such typical AI prob-
lems as plan generation [BK95]. Recently, it has also been applied to workow
analysis [DKRR98].

Although many other formalisms have been developed for reasoning about
action and change, they all represent signi�cant deviations from the logic-
programming paradigm. Dynamic Logic [Har79], Temporal Logic [Pnu77], and
the situation calculus [McC63] are three examples. These formalisms were not
intended for logic programming, and they are a world apart from Prolog with
assert and retract. It may be possible to model Prolog updates using these for-
malisms (perhaps through a complex encoding), but the resulting semantics
would do great violence to the traditional, classical semantics of logic programs.

Transaction Logic demonstrates that this is unnecessary. In T R, one can
specify, execute and reason about logic programs with updates, and remain �rmly
within the tradition of logic programming. In fact, the theory of classical logic
programs is a special case of the theory of Transaction Logic programs: when
updates are removed, the Horn fragment of Transaction Logic reduces to the
Horn fragment of classical logic.

In previous works, we developed the semantics of Transaction
Logic, and showed how to specify and execute Transaction Logic pro-
grams [BK98,BK94,BK93,BK95]. Syntactically, these programs look very much
like Prolog programs with assert and retract. Semantically, they also behave
like Prolog except that updates are treated as database transactions, so they
are rolled back whenever a program fails. This one di�erence leads to a simple
and natural model theory for logic programs with destructive updates. It also
improves upon Prolog with assert and retract in several ways. For instance, (i)



the semantics of updating programs is purely logical; (ii) the semantics does
not depend on rule order; (iii) programs are easier to understand, debug and
maintain; and (iv) it extends the logic programming paradigm to a wide range
of database applications, in which updates are transactional.

In this paper, we took a �rst step in showing how to reason about T R
programs. Again, this development is in the logic-programming tradition. For
instance, unlike most other formalisms for reasoning about programs, we do not
require two separate languages: a language for specifying programs, and a meta
language for specifying properties of programs. Instead, we use Transaction Logic
for both purposes: the Horn fragment is used to specify logic programs, and the
full logic is used to express properties of these programs. This is just like using
full classical logic to express properties of classical logic programs.

In addition to expressing properties of T R programs, we also presented a
sound inference system for proving these properties. We showed how to use the
system to reason about the feasibility of transaction execution, and about the
conditions that must hold before and after such executions. While this infer-
ence system is sound for recursively de�ned transactions, it is most useful for
non-recursive transactions. It is not hard to see that there can be no complete
inference system for reasoning about recursive programs, but we believe that
such a system can be developed for the non-recursive case. We are currently
investigating this possibility.

At the same time, it is clear that much work needs to be done to bring the
theory of reasoning in T R to the level of the more established theories mentioned
above. Inductive reasoning could be used to handle certain kinds of recursion,
the set of properties reasoned about should be expanded, and work is underway
to develop a resolution-based proof procedure for reasoning about transactions.

Finally, an extensive comparison of T R with other formalisms appears
in [BK98,BK95]. The interested reader is referred to these discussions.

Acknowledgments. We thank Rodney Topor and the anonymous referees for
their valuable comments. The �rst author was partially supported by a research
grant from the Natural Sciences and Engineering Research Council of Canada
(NSERC). The second author was partially supported by the NSF grant IRI-
9404629.

References

[BK93] A.J. Bonner and M. Kifer. Transaction logic programming. In Intl. Confer-

ence on Logic Programming, pages 257{282, Budapest, Hungary, June 1993.
MIT Press.

[BK94] A.J. Bonner and M. Kifer. An overview of transaction logic. Theoretical

Computer Science, 133:205{265, October 1994.
[BK95] A.J. Bonner and M. Kifer. Transaction logic programming (or a logic of

declarative and procedural knowledge). Technical Report CSRI-323, Uni-
versity of Toronto, November 1995. http://www.cs.toronto.edu/~bonner/
transaction-logic.html.



[BK96] A.J. Bonner and M. Kifer. Concurrency and communication in transaction
logic. In Joint Intl. Conference and Symposium on Logic Programming,
pages 142{156, Bonn, Germany, September 1996. MIT Press.

[BK98] A.J. Bonner and M. Kifer. A logic for programming database transactions.
In J. Chomicki and G. Saake, editors, Logics for Databases and Information
Systems, chapter 5, pages 117{166. Kluwer Academic Publishers, March
1998.

[Bon97a] A.J. Bonner. The power of cooperating transactions. Manuscript, 1997.
[Bon97b] A.J. Bonner. Transaction Datalog: a compositional language for transaction

programming. In Proceedings of the International Workshop on Database

Programming Languages, Estes Park, Colorado, August 1997. Springer Ver-
lag.

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, pages 292{322. Plenum Press, 1978.

[DKRR98] H. Davulcu, M. Kifer, C.R. Ramakrishnan, and I.V. Ramakrishnan. Logic
based modeling and analysis of workows. In ACM Symposium on Princi-

ples of Database Systems, June 1998.
[Har79] D. Harel. First-Order Dynamic Logic, volume 68 of Lecture Notes in Com-

puter Science. Springer-Verlag, 1979.
[Hun96] Samuel Y.K. Hung. Implementation and Performance of Transac-

tion Logic in Prolog. Master's thesis, Department of Computer Sci-
ence, University of Toronto, 1996. http://www.cs.toronto.edu/~bonner/
transaction-logic.html.

[Kif95] M. Kifer. Deductive and object-oriented data languages: A quest for inte-
gration. In Intl. Conference on Deductive and Object-Oriented Databases,
volume 1013 of Lecture Notes in Computer Science, pages 187{212, Sin-
gapore, December 1995. Springer-Verlag. Keynote address at the 3d Intl.
Conference on Deductive and Object-Oriented databases.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages. Journal of ACM, pages 741{843, July 1995.

[McC63] J. McCarthy. Situations, actions, and clausal laws, memo 2. Stanford Arti-
�cial Intelligence Project, 1963.

[MH69] J.M. McCarthy and P.J. Hayes. Some philosophical problems from the
standpoint of arti�cial intelligence. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 4, pages 463{502. Edinburgh University Press,
1969. Reprinted in Readings in Arti�cial Intelligence, 1981, Tioga Publ. Co.

[Pnu77] A. Pnueli. A temporal logic of programs. In Intl. Conference on Foundations

of Computer Science, pages 46{57, October 1977.
[Rei91] R. Reiter. The frame problem in the situation calculus: A simple solution

(sometimes) and a completeness result for goal regression. In V. Lifschitz,
editor, Ariti�al Intelligence and Mathematical Theory of Computation: Pa-

pers in Honor of John McCarty, pages 359{380. Academic Press, 1991.


