A Concept of Agent for Software Development

Eric Yu
University of Toronto
June 2001

AOIS workshop @ CAiSE’01
What is AOIS? Why AOIS?

- AOIS is a (specialized) class of information technology solutions?
 - compare: software agents technology, data mining tech.,...
 - Solutions looking for problems?

- AOIS is a (specialized) class of IS applications?
 - compare: e-commerce, m-commerce, digital libraries,...
 - Problems looking for solutions?

- AOIS is a new conception of what information systems are, by adopting “agent” as a key abstraction.
 - Agent concepts can (should) be used throughout conceptualization, requirements analysis, architecture, design, and implementation, as well as during ongoing support.
 - Provides techniques for expressing problems, solutions, and for matching problems with solutions (at each stage)
Problems & Solutions in IS & SE

• Problems in IS/SE
 ♦ high costs, frequent failures, ...
 ♦ legacy, evolution, ...
 ♦ inflexibility, incompatibilities, ...

• Solutions in IS/SE
 ♦ technologies, platforms, ...
 • e.g., C/S, dist’d systems, DBs, web technologies,
 ♦ models, languages, tools
 ♦ formal methods, informal (structured) methodologies for system development – requirements, design, implementation,...
 ♦ reuse, patterns, frameworks, ...
Problems & Solutions in AOIS

• Problems addressed by AOIS?
 ◦ high costs, frequent failures, ...
 ◦ legacy, evolution, ...
 ◦ inflexibility, incompatibilities, ...

• Solutions offered by AOIS?
 ◦ agent technologies, platforms, ...
 ◦ models, languages, tools
 ◦ methodologies for system development ??
 • – requirements, design, implementation,...
 ◦ reuse, patterns, frameworks, ...??

same as in IS/SE
+ new opportunities
Points to remember

1. AOIS (and IS) is not just about technology.
 - Systems exist in a social/organizational environment.
 - ISD/SE continues to be intensely a human activity.
So...

• **If agent** concepts are to be used throughout conceptualization, requirements analysis, architecture, design, and implementation, as well as during ongoing support,

 ✷ what concept(s) of agent is appropriate?
 ✷ what properties/characteristics should it have?
 ✷ what abstractions should the agent concept provide?
Conception of Agent as a Computational Abstraction

e.g., Jennings, Sycara, Wooldridge (1998)

- **Situated**
 - sense the environment and perform actions that change the environment

- **Autonomous**
 - have control over their own actions and internal states
 - can act without direct intervention from humans

- **Flexible**
 - responsive to changes in environment, goal-oriented, opportunistic, take initiatives

- **Social**
 - interact with other artificial agents and humans to complete their tasks and help others
Analysis and Design of Agent-Oriented Systems
e.g., Wooldridge Jennings Kinny (JAAMAS 2000) “GAIA”

- **Analysis level**
 - Roles and Interactions
 - Permissions
 - Responsibilities
 » liveness properties
 » safety properties
 - Activities
 - Protocols

- **Design level**
 - Agent types
 - Services
 - Acquaintances

Modelling concepts being driven from programming again?!!

- Structured Analysis from Structured Programming
- OOA from OOD, OOP
- AOA from AOP??
Requirements Engineering

• relationship between system and environment.

• Traditional focus:
 - consistency, completeness, ...
 - e.g., “Three Dimensions of RE” *Pohl (1993)*
 - informal -> formal (representation)
 - opaque -> complete (specification)
 - personal view -> common view (agreement)

• Recent:
 - goals, scenarios, agents *van Lamsweerde (ICSE 2000)*
Points to remember

1. AOIS (and IS) is not just about technology.
 ✷ Systems exist in a social/organizational environment.
 ✷ ISD/SE continues to be intensely a human activity.

2. Need to model relationships between machine and world.
Ontologies for Modelling

- Static Ontologies
- Dynamic Ontologies
- Intentional Ontologies
- Social Ontologies

- Most current conceptions and models of information systems are based on static and dynamic ontologies.
 - business process models
 - workflow models
 - enterprise models

[J. Mylopoulos CAiSE 97 Keynote]
i* - agent-oriented modelling
I* objectives, premises, key concepts

- Actors are semi-autonomous, partially knowable
- Strategic actors, intentional dependencies
- Have choice, reasons about alternate means to ends
1. explicit intentionality → goals

2. implicit intentionality → agents

inputs
outputs

wants and abilities
“Strategic Dependency” Model

Meeting Scheduling Example

[Yu RE97]
Revealing goals, finding alternatives

- Ask "Why", "How", "How else"
Development-World model refers to and reasons about...

Operational-World models

As-is

Alt-1

Alt-2

To-be
Scheduling meeting ... with meeting scheduler
“Strategic Rationale” Model with Meeting Scheduler
So what are the important concepts for Agent Orientation as a Modelling Paradigm?

- Intentionality
- Autonomy
- Sociality
- Identity & Boundaries
- Strategic Reflectivity
- Rational Self-Interest

Agent Orientation as a Modelling Paradigm

1. Intentionality
 - Agents are intentional.
 - Agent intentionality is externally attributed by the modeller.
 - Agency provides localization of intentionality.
 - Agents can relate to each other at an intentional level.

Meeting Scheduling Example

![Meeting Scheduling Diagram]
Agent Orientation as a Modelling Paradigm

2. Autonomy

- An agent has its own initiative, and can act independently. Consequently, for a modeller and from the viewpoint of other agents:
 - its behaviour is not fully predictable.
 - It is not fully knowable,
 - nor fully controllable.

- The behaviour of an agent can be partially characterized, despite autonomy, using intentional concepts.
3. Sociality

- An agent is characterized by its relationships with other agents, and not by its intrinsic properties alone.
- Relationships among agents are complex and generally not reducible.
- Conflicts among many of the relationships that an agent participates in are not easily resolvable.
- Agents tend to have multi-lateral relationships, rather than one-way relationships.
- Agent relationships form an unbounded network.
- Cooperation among agents cannot be taken for granted.
- Autonomy is tempered by sociality.
Agent Orientation as a Modelling Paradigm

4. Identity & Boundaries

- Agents can be abstract, or physical.
- The boundaries, and thus the identity, of an agent are contingent and changeable.
- Agent, both physical and abstract, may be created and terminated.
- Agent behaviour may be classified, and generalized.
5. Strategic Reflectivity

- Agents can reflect upon their own operations.
- Development world deliberations and decisions are usually strategic with respect to the operational world.
- The scope of reflectivity is contingent.
Agent Orientation as a Modelling Paradigm

6. Rational Self-Interest
 - An agent strives to meet its goals.
 - Self-interest is in a context of social relations.
 - Rationality is bounded and partial.
Points to remember

1. AOIS (and IS) is not just about technology.
 - Systems exist in a social/organizational environment.
 - ISD/SE continues to be intensely a human activity.

2. Need to model relationships between machine and world.
 - Requirements Engineering

3. Use agent concepts for modeling, analysis, design, regardless of implementation technology.
 - goals, means-ends, strat. deps., opportunities, vulnerabilities...
Now apply to ...

Software Development throughout
A Requirement-Driven Development Methodology

Jaelson Castro † Manuel Kolp ‡ John Mylopoulos ‡

† Centro de Informática
Universidade Federal de Pernambuco
Recife 50732-970, Brazil

‡ Department of Computer Science
University of Toronto
Toronto M5S 3G4, Canada

CAiSE’01 - June 6 2001, Interlaken, Switzerland
Agent-Oriented Software Development
[J. Mylopoulos AOIS’99 Invited Talk]

TROPOS

i*

KAOS

GAIA

Z

AUML

The GAP !

Early requirements

Late requirements

Architectural design

Detailed design

Agent Implementation

The GAP !!

UML & co.
Tropos & related projects

http://www.cs.toronto.edu/km/tropos

U. of Toronto, Canada
• John Mylopoulos
• Eric Yu
• Yves Lespérance
• Manuel Kolp
• Ariel Fuxman

U. of Trento/IRST, Italy
• Paolo Bresciani
• Paolo Giorgini
• Fausto Giunchiglia
• John Mylopoulos
• Anna Perini
• Marco Pistore
• Paolo Traverso

RWTH Aachen, Germany
• Matthias Jarke
• Gerhard Lakemeyer
• Gunther Gans

UFPE Recife, Brazil
• Jaelson Castro
Research Agenda

• Ontology
• Formalization
• Analysis and reasoning
• Methodologies
• Knowledge Based Support
 ♦ Generic knowledge, e.g., common NFR goals, refinements, solution techniques (e.g., for security, safety,...)
 ♦ Larger patterns
• Tools
• Evaluation, Validation, Empirical studies
• Heterogeneous modelling frameworks
Recent Work

- Requirements -> architectural design *STRAW01*
- Trust & security *Trust00*
- GRL – part of URN proposal for ITU standard
- GRL+UCM *STRAW01*
- Intellectual property management *submitted*
- Others – Tropos *AOIS@AA01 i*+ConGolog *Lesperance+*
Points to remember

1. AOIS (and IS) is not just about technology.
 - Systems exist in a social/organizational environment.
 - ISD/SE continues to be intensely a human activity.

2. Need to model relationships between machine and world.
 - Requirements Engineering

3. Use agent concepts for modeling, analysis, design, regardless of implementation technology.
 - goals, means-ends, strat. deps., opportunities, vulnerabilities...

4. AOIS means new ways for understanding problems, and for translating them into solutions.
 - techniques for expressing, analyzing problems, solutions, and for matching them at each stage/level in development.