
Agent-Or iented Modelli ng: Software Versus the Wor ld

Eric Yu
Faculty of Information Studies

University of Toronto, Toronto, Canada M5S 3G6
yu@fis.utoronto.ca

Abstract. Agent orientation is currently pursued primarily as a software paradigm.
Software with characteristics such as autonomy, sociality, reactivity and pro-
activity, and communicative and cooperative abiliti es are expected to offer greater
functionality and higher quality, in comparison to earlier paradigms such as object
orientation. Agent models and languages are thus intended as abstractions of
computational behaviour, eventually to be realized in software programs. However,
for the successful application of any software technology, the software system must
be understood and analyzed in the context of its environment in the world. This
paper argues for a notion of agent suitable for modelli ng the strategic relationships
among agents in the world, so that users and stakeholders can reason about the
implications of alternate technology solutions and social structures, thus to better
decide on solutions that address their strategic interests and needs. The discussion
draws on recent work in requirements engineering and agent-oriented
methodologies. A small example from telemedicine is used to illustrate.

1 Introduction

Agent orientation is emerging as a powerful new paradigm for computing. It offers
a higher-level abstraction than the earlier paradigm of object orientation. Software
agents have autonomy and are social; they communicate, coordinate, and cooperate
with each other to achieve goals [3, 26, 50]. As agent software technology is
maturing and entering into the mainstream, methods and techniques are urgently
needed to guide system development in a production setting. Agent-oriented software
engineering has thus become one of the most active areas in agents research (see, e.g.,
[9, 48]). For each application system, one needs to address the full range of software
engineering issues – requirements, design, construction, validation and verification,
deployment, maintenance, evolution, legacy, reuse, etc. – over its entire product li fe
cycle.

Requirements engineering is an especially demanding, yet critical, task for a new
technology such as agent-based software technology. Some adopters will have high
expectations of the new capabiliti es, while others may be wary of potential pitfalls.
Yet, most users will be unfamili ar with the new technology and unclear about its
implications and consequences. Consider the healthcare domain. The potentials for
applying agent technology, along with other kinds of information technology, are far-
reaching. One can easily envisage software agents enhancing the information and
communication infrastructure by offering better semantic interoperabilit y, local
autonomy, dynamic management of resources, flexible and robust exception handling,
etc. Yet, it is by no means straightforward to go from idealized visions to viable
systems in actual contexts. In real-li fe application settings, there are many competing

requirements, and different interests and concerns from many stakeholders. As with
any software technology, each stakeholder may be asking:

• What do I want the software to do for me? What can it do for me? Would I be
better off to do the job myself, or to delegate to another human, or to another
(type of) system?

• Can the software be trusted? Is it reliable? Will I have privacy?
• How do I know it will work? What if some function fails – what aspects of my

work will be jeopardized? How do I mitigate those risks?
• What knowledge and information does it depend on? Where do they come

from? How do I know they will be accurate and up-to-date, and effective?
Will my skill s and expertise continue to be valued?

• Will my job be easier? tougher? Will my position be threatened? How will
my relationships with other people (and systems) change?

With agent technology, these issues and questions are accentuated by its greater
reliance on codified knowledge, by its supposed flexibilit y and adaptivity, and by its
autonomy (and thus possibly reduced perspicuity). Given their “ intelli gence”
capabiliti es, agent systems can be expected to do more decision-making and problem
solving. How does one decide what responsibiliti es to turn over to agent systems?
Agent technology (including multi -agent systems) opens up many more opportunities
and choices. At the same time, the task of exploring and analyzing the space of
possibil ities and their consequences has become much more complex.

The Requirements Engineering (RE) area in Software Engineering has been
developing techniques for dealing with these issues. It has been recognized that poor
requirements had led to many system failures and discontinued projects (see, e.g.,
[43]). Requirements engineering focuses on clarifying and defining the relationship
between intended systems and the world. The introduction of a new system (or
modification of an existing one) amounts to a redistribution of tasks and
responsibiliti es among agents in the world – humans, hardware, software,
organizational units, etc. Requirements engineering is therefore more than the
specification of behaviour, because the ultimate criteria for system success is that
stakeholders’ goals are achieved and their concerns addressed.

Recent work in requirements engineering has thus adopted an agent-oriented
perspective. The notion of agent in Requirements Engineering, however, is about
agents in the world, most of which the software developer has no control over. The
purpose of introducing an agent abstraction (or any other abstraction) for
requirements modelling is to support elicitation, exploration, and analysis of the
systems-in-the-world, possible alternatives in how they relate to each other, and the
pros and cons of the alternatives. The requirements engineer needs to help users and
stakeholders articulate their needs and concerns, explore alternatives, and understand
implications. Thus, while agents-as-software and agents-in-the-world may share
conceptual features, their respective abstractions are introduced for different reasons
and serve different purposes. Characteristics such as intentionality, autonomy, and
sociality have different connotations and consequences when treated as attributes of
software than as attributes of agents in the world. In proposing or choosing an agent
abstraction, different criteria and tradeoffs need to be considered.

In this paper, we examine the notion of agent as applied to the modelli ng of agents-
in-the-world. In Section 3, we offer an outline of the i* framework as an example of
an agent-oriented modelli ng framework. Section 4 reviews the main contrasts
between the notion of strategic agent-in-the-world, versus that of agent-as-software.
In section 5, we discuss recent related work in requirements engineering and agent-
oriented methodologies. In Section 6, we suggest a broader conception of AOSE not
exclusive to agent-oriented software, and argue that the strategic view of agents-in-
the-world should guide the entire software engineering process.

2 From Modelli ng Software to Modelli ng the Wor ld

Most agent models and languages are intended as abstractions of computational
behaviour, eventually to be realized as software programs. Such models are needed
for specifying and for constructing the software. Different kinds of models are
needed for different stages and aspects of software engineering. As agent technology
is maturing, attention is turning to the development of a full set of complementary
models, notations, and methods to cover the entire software li fecycle [9, 48].

In Requirements Engineering, the need to model the world has long been
recognized, as requirements are about defining the relationship between a software
system and its environment. The major activities in requirements engineering include
domain analysis, elicitation, negotiation & agreement, specification, communication,
documentation, and evolution [47, 34]. Modelli ng and analysis techniques have been
devised to assist in these tasks.

The Structured Analysis techniques first popularized the use of systematic
approaches for expressing and analyzing requirements. The Structured Analysis and
Design Technique (SADT) focused on the modelli ng of activities and data (inputs,
outputs, and control flows among activities), and their hierarchical decomposition
[40]. Dataflow diagrams include information stores, as well as external sources and
sinks, thus demarcating a system’s interfaces with its environment [12]. Complex
descriptions were reduced into structured sets of diagrams based on a small number of
ontological concepts, thus allowing for some basic analysis. For example, one could
check completeness and consistency by matching input and output flows. Later on,
these tasks were supported by CASE tools, although support is limited by the degree
of formality in the models. These techniques continue to be widely used.

As the size of the models grew, and the need for reuse became recognized,
structuring mechanisms were introduced to manage the knowledge in the models and
to deal with complexity. For example, RML [21] provided for classification,
generalization, aggregation, and time. To strengthen analysis, various approaches to
formalization were introduced, accompanied by appropriate ontological
enhancements. For example, RML offered assertions in addition to activities and
entities, and provided semantics based on translation to first-order logic. Temporal,
dynamic, deontic and other logics have also been introduced for requirements
modelli ng [34]. Many of these features subsequently found their way into object-
oriented modelli ng (e.g., UML [41]), which packages static and dynamic ontologies
together into one behavioural unit. However, the analysis done with these models

continue to be about the behaviour and interactions. There are no intentional concepts
or considerations of strategic alternatives.

The Composite Systems Design approach [16, 15] first identified the need to view
systems and their embedding environments in terms of agents that have choice. An
agent’s decisions and actions can place limits on other agent’s freedom of action. In
the KAOS framework [10], global goals are reduced through and/or refinement until
they can be assigned as responsibiliti es to agents. These become requirements for
systems to be built , or assumptions about agents existing in the environment. Goal
modelli ng has been incorporated into a number of RE frameworks [57]. They provide
incremental elicitation of requirements (e.g., [38]). They support the repeated use of
“why, how, and how else” questions in the constructions of means-ends hierarchies,
to understand motivations, intents, and rationales [52]. They reveal conflicts and help
identify potential resolutions [39]. Quality goals constrain choices in a design space
and can be used to guide the design process [8].

The introduction of goals into the ontology of requirements models represented a
significant shift. Previously, the world to be modelled consisted of entities and
activities and their variants. The newer ontologies attributed goals to agents in the
world. In other words, to do requirements engineering, it is not enough to attend to
the static and dynamic aspects, one also need to acknowledge intentionality in the
world.

While recent research in requirements has given considerable attention to goals, the
concept of agent has not been developed to the same extent. In particular, few RE
frameworks have elaborated on or exploited concepts of agent autonomy, sociality,
etc. The logical next step for RE is to go from goal-oriented requirements engineering
to full -fledged agent-oriented requirements engineering, to acknowledge the social as
well as the intentional [54, 33]. The need for this step is apparent as one considers the
changing nature of systems and their environments. In the past, systems and their
environments were much more stable and well delineated. Systems tended to be
developed in isolation in relation to other systems. So the simpli fying assumptions
were that global goals could be identified, and that differences could be resolved to
achieve agreement across the system.

Today, most systems are extensively networked and distributed, operating under
multiple jurisdictions each with their own mandates and prerogatives. Stakeholders
want local autonomy but cooperate on specific ventures. They depend on each other,
and on each other’s systems in multiply-connected ways. They have limited
knowledge about each other, and have limited influence and control over each other.
The traditional mechanistic worldview needs to give way to a more sophisticated
social worldview [55].

In the next section, we outline a modelli ng framework in which agents play a
central ontological role. The framework begins to address the more complex
relationships and issues that arise in Requirements Engineering. Agents-in-the-world
are taken to be intentional and semi-autonomous. They associate with each other in
complex social relationships. Their identities and boundaries are contingent. They
reflect upon their relationships in the world and strategize about alternate
relationships in order to further their interests.

It must be recognized that the framework represents only one possible approach. In
adopting a richer ontology, one gains in expressiveness and analytical power. On the

other hand, it places greater demands on elicitation and validation. So there are
significant trade-offs that need to be considered in the context of an overall
development methodology.

3 A Framework for M odelli ng Agents-in-the-Wor ld

Consider a home care scenario in which a patient receives remote monitoring and
telemedicine services from one or more healthcare service providers – hospitals,
physicians, nurses, pharmacies, laboratories, clinics, emergency centres, consultants,
etc., alli ed to varying degrees but sometimes also in competition.1 Such arrangements
can potentially improve quality of care and reduce overall healthcare costs, while
allowing patients to lead more normal li ves at home. Agent technology can be used
to achieve greater functionality, robustness, and flexibilit y in such systems, for
example, by incorporating knowledge-based decision support and knowledge
discovery, by offering context-aware initiatives and failure recovery, by enabling
dynamic resource discovery, negotiation, and mediation, or by facilit ating
collaboration among individuals and groups through multimedia and logistics support,
and cooperation among disparate systems. Patients get more customized care while
healthcare professionals are relieved of the more mundane aspects of their tasks.

But how does one decide what functionaliti es the systems should have? Who
should these systems be accountable to? How should responsibiliti es be divided
among them, and why? Do the stakeholders have common goals? Can the systems
function despite ongoing differences and competing interests? Clearly these
questions would results in different answers for each setting, depending on the
context. In each setting, there could be numerous options to consider. Some may
appear workable initially, but may turn out to be, upon further analysis, technical
infeasible, or unacceptable to certain stakeholders. During requirements engineering,
it is important for all stakeholders, customers, users, system developers, and analysts
to understand each other’s interests and concerns, to jointly explore options, and to
appreciate the implications of alternative decisions about the systems to be
constructed.

In the past, notations and methods in software development have focused more on
the specification of systems after these decisions have been made. Few of the
commonly used notations, e.g., UML, provide explicit support for expressing,
analyzing, and supporting decisions about these issues.

Today, systems and their surrounding context in the world are constantly changing.
Aside from rapid technological innovations, systems need to respond to frequent
changes in organizational structures, business models, market dynamics, legal and
regulatory structures, public sentiments and cultural shifts. We need systematic
frameworks – models, methods, and tools – to support the discovery of requirements,
analysis of their implications, and the exploration of alternatives.

The i* framework [53, 52] is used to model and analyze relationships among
strategic actors in a social network, such as human organizations and other forms of
social structures. Actors are semi-autonomous units whose behaviours are not fully

1 This home care setting is loosely based on [23].

controllable or predictable, but are regulated by social relationships. Most crucially,
actors depend on each other for goals to be achieved, tasks to be performed, and
resources to be furnished. By depending on someone else, an actor may achieve goals
that would otherwise be unachievable. However, a dependency may bring along
vulnerabiliti es since it can fail despite social conventions such as commitments. The
explicit representation of goals allows the exploration of alternatives through means-
ends reasoning. A concept of softgoal based on the notion of satisficing is used to
provide a flexible interactive style of reasoning.

Note that in the context of modelli ng the world, unlike the modelli ng of software
agents for the purpose of construction, qualiti es such as autonomy and sociality are
being externally ascribed to some elements in the world for the purpose of description
and analysis. Some selected elements depicted in the models may end up being
implemented as software agents, others may materialize as more conventional
software, while many of them are, and will remain mostly human wetware. The
implementational construction of the actors is irrelevant to this level of modelli ng of
the world. These considerations will be further discussed in Section 4.

The i* modelli ng framework consists of two types of models – the Strategic
Dependency (SD) model and the Strategic Rationale (SR) model.

3.1 Modelli ng intentional relationships among strategic actors – the Strategic
Dependency model

The Strategic Dependency (SD) model is a graph, where each node represents an
actor, and each link between two actors indicates that one actor depends on the other
for something in order that the former may attain some goal. We call the depending
actor the depender, and the actor who is depended upon the dependee. The object
around which the dependency relationship centres is called the dependum. An actor
is an active entity that carries out actions to achieve goals by exercising its knowhow.
In the SD model, the internal goals, knowhow, and resources of an actor are not
explicitly modelled. The focus is on external relationships among actors.

Figure 1 shows a Strategic Dependency model of a (much simpli fied) telemedicine
setting. A

� � � � � � �
 depends on a � � � � � � 	 �
 � �
 � � � �

 to have � � 	 � � � � � �
 � � � �
. The latter

in turn depends on the patient to � � � � � � � �
 � � � � � � � � � � �
. As the patient would like to

integrate the treatment into other activities, she wants the treatment plan to be � � � � � � � �
.

The healthcare provider partly addresses this by monitoring
� � � � � � � � � �

 remotely, with
the help of equipment on the patient site (� � � � � �
 � � � � � � � �

), and a host system
(� � � � � �
 � � � � � � � � �

) that oversees a number of patients.
The SD model expresses what actors want from each other, thus identifying a

network of dependencies. The intentional dependencies, in terms of wants and
abiliti es to meet those wants, are expressed at a high level, so that details about
information and control flows and protocols are deferred. Even at this high level,
many issues are already apparent. � � � � � � 	 �
 � �
 � � � �

 enables
� � � � � � �

 to achieve the
� � 	 � � � � � �
 � � � �

 goal that the latter may not be able to achieve on her own. In taking
advantage of this opportunity, the depender becomes vulnerable to the dependency.
The model assists them in deciding whether their dependencies are acceptable, or that
they should seek alternate arrangements.

Fig. 1. A Strategic Dependency model

Four types of dependencies are distinguished for indicating the nature of the
freedom and control in the relationship between two actors regarding a dependum. In
a goal dependency, the depender depends on the dependee to bring about a certain
state of affairs in the world. The dependum is expressed as an assertional statement.
The dependee is free to, and is expected to, make whatever decisions are necessary to
achieve the goal (the dependum). The depender does not care how the dependee goes
about achieving the goal. For example,

� � � � � � �
 depends on � � � � � � 	 �
 � �
 � � � �

 to have
� � 	 � � � � � � � �
 � � � �

. It is up to the Provider to choose how to treat the sickness, as
long as the goal is achieved.

In a task dependency, the depender depends on the dependee to carry out an
activity. The dependum names a task which specifies how the task is to be
performed, but not why. The depender has already made decisions about how the
task is to be performed.

� � � � � 	 � � �
 depends on

� � � � � � �
 to � � � � � � �
 � � � � � � � � � � �

,
described in terms of activities and sub-activities, possibly with constraints among
them, such as temporal precedence. Note that a task description in i* is not meant to
be a complete specification of the steps required to execute the task. It is a constraint
imposed by the depender on the dependee. The dependee still has freedom of action
within those constraints.

In a resource dependency, the depender depends on the dependee for the
availability of an entity (physical or informational). By establishing this dependency,
the depender gains the abilit y to use this entity as a resource. A resource is the
finished product of some deliberation-action process. In a resource dependency, it is
assumed that there are no open issues to be addressed or decisions to be made. For
example, � � � � � � � � � �

 from the patient is treated as a resource, as it is not considered
problematic to obtain.

In a softgoal dependency, a depender depends on the dependee to perform some
task that meets a softgoal. A softgoal is similar to a goal except that the criteria of
success are not sharply defined a priori. The meaning of the softgoal is elaborated in
terms of the methods that are chosen in the course of pursuing the goal. The depender

decides what constitutes satisfactory attainment (“satisficing” [42]) of the goal, but
does so with the benefit of the dependee’s knowhow. Whether a treatment plan is
considered to be suff iciently � � � � � � � �

 is judged by the
� � � � � � �

, with the � � � � � � 	 �
 �
�
 � � � �

 offering alternate methods for achieving flexibilit y. Similary,
�
 � � � � �
 � � � � � � �

of the healthcare system, and

� 	 	 � � � � � � � � � � � of the healthcare provider are treated as
softgoals, since there are no clear-cut criteria for their satisfaction.

The model also provides for three degrees of strength of dependency: open
(uncommitted), committed, and critical. These apply independently on each side of a
dependency.

Actors can assess the desirabilit y of alternate configurations of relationships with
other actors according to what they consider to be significant to them. The viabilit y
of a dependency can be analyzed in terms of enforceabilit y (Does the other actor
depend in return on me for something, directly or indirectly?), assurance (Are there
other dependencies on that actor that would reinforce my confidence in the success of
that dependency?), and insurance (Do I have back-ups or second sources in case of
failure?). Strategic dependencies can be analyzed in terms of loop and node patterns
in the graph.

The generic concept of strategic actor outlined above can be further differentiated
into the concepts of role, position, and agent [56]. A role is an abstract collection of
coherent abiliti es and expectations. A position is a collection of roles that are
typically occupied by one agent. An agent is an actor that has concrete
manifestations such as human, hardware, or software, or combinations thereof.
Agents, roles, and positions may also be composed into aggregate actors.

3.2 Modelli ng the reasoning behind strategic relationships – the Strategic
Rationale model

Whereas the Strategic Dependency model focuses on relationships between actors,
the Strategic Rationale (SR) model provides support for modelli ng the reasoning of
each actor about its intentional relationships. The SR model is a graph whose nodes
are goals, tasks, resources, and softgoals. These may be connected by means-ends
links or task-decomposition links. A goal may be associated, through means-ends
links, with multiple, alternative ways for achieving it, usually represented as tasks.
The means-ends links for softgoals, however, require more differentiation because
there can be various types of contributions leading to a judgement of whether the
softgoal is suff iciently met (“satisficing”). These include � � � �

,
�
 � � �

, � � � �
, � �
 �

, � � � � � � � �
, � � � � � � � �

,
� �

,

, ! � � � � � �

, and " # � � �
 [8]. Task-decomposition links provide

hierarchical decomposition of tasks into subtasks, subgoals, resources, and softgoals
that make up the task.

Figure 2 is an SR model showing some of the reasoning behind one possible
telemedicine arrangement. It has been argued that current healthcare systems are too
provider-centred, in that patients have littl e control over the information collected
about them, and cannot participate effectively in their own care.2

2 The patient-centred scenarios draw on those of [45] and [30].

Fig. 2. A Strategic Rationale model showing some reasoning behind patient-centred care

One way to achieve patient-centred care is to have the full medical records and
history of the patient controlled by the patient. A software agent acting in the interest
of the patient would grant access to healthcare providers for legitimate use. This
arrangement is in contrast to the current practice in which each provider generates and
keeps their own records, resulting in fragmented, partial views, delays and duplication
(e.g., the same lab tests repeated at multiple sites). The integrated personal medical
data would also allow the intelli gent assistant to customize treatment plans to suit the
specific needs and the li festyle of the patient. The healthcare provider monitors the
progress of the patient through her own software agent assistants.

The SR model for the Patient in Figure 2 shows that the patient has the goal of $ � � � � � � % � � �
, but is also concerned about

�
 � � � 	 � , & � � � � � � ' (�
 �
, and maintaining a

� �
 � � �) � ' � � � � � �
. The SR modelli ng constructs allow the systematic refinement of

these goals to explore ways for achieving them. According to the model,
�
 � � � 	 � is

achieved if the medical data is kept (� � ' � � � � � � �
, and if * � �
 � � � � � * � � � � � � � + �

 (And).
(� � ' � � � � � � � � � � is suff iciently addressed (Make) if

� 	 	 � � � * � , � � �
 � 	 � �
. The goal of $ � � � � � � % � � �

 can be accomplished with
� � � � � � � - (� � �
 � (�
 �

 or with
�
 � � � �
 - (� � �
 �

(�
 �
 (means-ends links).

� � � � � � � - (� � �
 � (�
 �
 involves the subtasks of � � � � � �

(� � � � � � + � �
 � � � � � � � � � � �
 and

� � � �) � ' � � 	 � � � � � � � �
. These subtasks have dependencies

with the
� � � � � � � � � � � � � � � � � � ' � � �
 � � � � � �

.
The example model is greatly simpli fied but provides some hints on the types of

reasoning to be supported. These include the raising of issues, the identification and
exploration of alternatives, recognition of correlated issues (good and bad side-
effects), and the settling of issues. For example, while

� � � � � � � - (� � �
 � (�
 �
 contributes

positively to
�
 � � � 	 � and � �
 � � �) � ' � � � � � �

, its contribution to & � � � � � � ' (�
 �
 is ! � � � � � �

.
This suggests further elaboration and refinement of the & � � � � � � ' (�
 �

 softgoal so that
the nature of the contributions can be better assessed. Elaboration of this and other

goals may help discover other kinds of provider-centred and patient-centred care,
each of which may have different contributions to the various goals.

We have presented i* in terms of a graphical representation. i* modelling is
implemented on top of the Telos conceptual modelli ng language [31], which offers
knowledge structuring mechanisms (classification, generalization, aggregation,
attribution, time). Generic knowledge codified in terms of methods and rules provide
semi-automatic support from a knowledge base. A prototype tool has been developed
to support i* modelli ng. Further analysis support is being developed in the Tropos
project [32].

4 Agents-in-the-Wor ld versus Agents-as-Software

Having reviewed i* as an example framework for modelli ng agents-in-the-world,
we now consider some of the key issues in designing such frameworks. These issues
help clarify the distinctions between modelli ng agents in the world versus modelli ng
agents as software entities. We consider the issues of autonomy, intentionality,
sociality, identity and boundaries, strategic reflection, and rational self-interest.
While most of these issues have their counterparts in agents-as-software, their
significance for modelli ng agents-in-the-world are quite different.

4.1 Autonomy

Traditional requirements analysis techniques rely heavily on the modelli ng of
processes or interactions. Through activity diagrams, event sequence charts, etc., one
describes or prescribes what would or should happen under various known conditions.
Real-li fe practice, however, often departs from these idealizations [44] and frequently
require workarounds [19]. There are many aspects of the world over which one has
littl e control or knowledge, so it is hard to anticipate all contingencies and be able to
know in advance what responses are appropriate.

Thus, in introducing autonomy into a model of agents-in-the-world, we are
adopting a less simplistic view of the world, so as to take uncertainties into account
when judging the viabilit y of proposed alternatives, such as different ways for
achieving patient-centred care using software agents. Agents-in-the-world need to be
aware of uncertainties around them. At the same time, they themselves are sources of
uncertainty in the world.

In devising a modelli ng scheme that acknowledges agent autonomy, the challenge
is to be able to describe or prescribe agent behaviour without precluding openness and
uncertainties. In i*, actors are assumed to be autonomous in the sense that the analyst
should not rule out any behaviour. An actor’s dependencies and strategic interests
provide hints on the actor’s behaviour, but do not provide guarantees. Thus, one
would be well advised to adopt mechanisms for mitigating risks, based on an analysis
of vulnerabiliti es, e.g., backup systems and procedures in case of failure in the patient
monitoring system. The dependency types in i* are used to differentiate among the
types of freedoms that actors have with regard to some specific aspect of the world, as
identified by the dependum.

For agents-as-software, autonomy refers to the abilit y of the software to act
independently without direct intervention from humans or other agents. It is a desired

property that must be consciously created in the software. It is a property only
achievable with recent advances in software and artificial intelli gence technology.
For agents-in-the-world, autonomy is an inherent property, but it has been ignored in
the past for simplicity of modelli ng. Now we want it back because we want to face
up to these more challenging aspects of the world. For software agents, greater
autonomy implies more powerful software, which are likely to be more challenging to
design and implement. For modelli ng the world, allowing greater autonomy in the
agent model means one would like to analyze the implications of greater uncertainties
and variabilit y in the world.

4.2 Intentionali ty

Conventional requirements analysis (e.g., as supported by UML) assumes complete
knowledge and fully specifies behaviour, so there is littl e need for intentional
concepts. To account for uncertainties and openness in the world, however,
intentional concepts such as goals and beliefs can be very useful. In modelli ng
agents-in-the-world, we ascribe intentionality to them so as to characterize alternate
realiti es in the world. Some of these alternate realiti es are desirable, but an agent may
not know how to get there, or may not want to fix the path for getting there to allow
for flexibilit y. Intentional concepts thus allow agents to be described without
detaili ng specific actions in terms of processes and steps. Explicit representation of
goals allows motivations and rationales to be expressed. They allow “why” questions
to be raised and answered. Beliefs provide for the possibilit y that an agent can be
wrong in its assumptions about the world, and mechanisms to support revisions to
those assumptions.

For agents-as-software, intentionality is a property that is used to generate the
behaviour of the agent. For example, there may be data structures and internal states
that represent goals and beliefs in the software. For agents-in-the-world, we do not
need to presuppose intentionality in their internal mechanisms. Multi -agent modelli ng
allows different goals, beliefs, abiliti es, etc., to be attributed to different agents. An
agent can be thought of as a locality for intentionality. Instead of having a single
global collection of goals, belief, etc., these are allocated to separate agents. The agent
concept provides a local scope for reconcili ng and making tradeoffs among
competing intentionality, such as conflicting goals and inconsistent beliefs.

4.3 Sociali ty

Traditional systems analysis views systems and their environments mechanistically.
They produce outputs from inputs, either as pre-defined processes or as reactive
responses to control signals or events. Complexity and scalabilit y is primarily dealt
with by composition or decomposition, with the behaviour of the whole being
determined by the behaviour of the parts together with compositional rules. When
systems and their environments have autonomy, these assumptions no longer hold.
Active autonomous entities in the world have their own initiatives, and are not
necessarily compliant with external demands or desires, such as those from a system
designer. Autonomous agents can choose to cooperate, or not, to varying degrees,
and on their own terms. A social paradigm is needed to cover the much richer kinds
of relationships that exist in such settings.

Social agents have reciprocal dependencies and expectations on each other. They
tend to have multi -lateral relationships, rather than one-way relationships. Agent A
can expect agent B to deliver on a commitment because B has goals and interests that
A can help fulfil or meet. Reciprocity can be indirect, mediated via other agents. In
general, social relationships exist as networks and patterns of relationships that
involve multi -lateral dependencies. In mechanistic artificial systems, where one
designer oversees interaction among parts, it is more common to see master-slave
relationships that go one-way.

Social agents typically participate in multiple relationships, with a number of other
agents, at the same time or at different times. In mechanistic systems as portrayed in
most traditional models, relationships are narrowly focused around intended
functions.

Conflicts among many of the relationships that an agent participates in are not
easily resolvable. There may be conflicts or potential conflicts arising from the
multiple relationships that an agent engages in. In traditional approaches, competing
demands need to be reconciled in order for requirements to be defined, then frozen for
system development and implementation. In a more fluid and open environment, the
demands of various agents may keep changing and may not be fully knowable.
Agents may also build new relationships with other agents and dissolve existing ones.
The management of conflicts is an ongoing one. Therefore it becomes necessary to
maintain an explicit representation of the competing interests and their conflicts.

Agent relationships form an unbounded network. There are no inherent limits on
how far the impact of dependencies may propagate in a network of agents. In
considering the impact of changes, one may ask: Who else would be affected? Who
will benefit, who will be hurt? Who can help me improve my position? These
questions may lead to the discovery of agents not previously considered.

Cooperation among agents cannot be taken for granted. The potential for
successful cooperation may be assessed through the analysis of agents’ goals and
beliefs. Techniques are needed to support the analysis of various aspects of
cooperation, including synergy and conflict among goals, how to discover shared
goals, and how goals may change.

For software agents, sociality refers to properties that must be created in the
software to enable them to exhibit richer behavioural patterns. For agents-in-the-
world, sociality refers to the acknowledgement of the complex realiti es in the world.
Instead of abstracting them away as in earlier modelli ng paradigm, we try to device
modelli ng constructs and analysis techniques that encompass them.

4.4 Identity and Boundary

In a social world, identities and boundaries are often contingent and contentious.
Many social or organizational problems arise from uncertainties or disputes about
boundaries and identities. For example, software agents working on behalf of or in
cooperation with healthcare workers need to deal with a complex array of
organizational roles, positions, and professions, often with sensitive relationships
among them. Requirements analysis needs to be able to deal with these, to arrive at
viable systems.

Boundaries and identities change, usually as a result of ongoing social processes
such as socialization, negotiation, and power shifts. Technical systems often

introduce abrupt changes in boundaries and identities, as they reallocate
responsibiliti es and powers. Agents-in-the-world are concerned about their
boundaries, and may attempt to change them to their advantage. Boundaries may be
based on concrete physical material criteria, or abstract concepts such as
responsibiliti es. In i*, dependums serve as actor boundaries at an intentional level.
The boundaries are movable as dependums can be brought “ inside” an actor or moved
“outside” along means-ends hierarchies in the Strategic Rationale model. The i*
constructs of role, position, and agent distinguish among abstract and concrete actors,
and provide mappings across them.

In models for agents-as-software, issues of identity and boundary can be much
simpler, if all the agents are within the control of a designer. They would be
determined by design criteria such as functional specialty, coordination eff iciency,
robustness, flexibilit y, etc. However, if the agents in a multi -agent system are
designed and controlled by different designers and operators, and are thus
autonomous in the social (agents-in-the-world) sense, then the more complex social
notions of identity could be applicable.

4.5 Strategic Reflectivity

Traditional requirements models are typically used to express one way – the
intended way – in which the system will operate in the world. Even if a space of
alternatives was explored in arriving at the requirements, there is littl e
representational or reasoning support for navigating that space. With today’s systems
undergoing frequent changes, the need to support evolution and to avoid legacy
problems is well recognized.

Reasoning about alternative arrangements of technical systems in the world is a
reflective process. Agents need to refer to and compare alternate ways of performing
tasks, rather than executing the tasks without question. The reflective process is
strategic because agents want to determine which changes would better serve their
strategic interests. For example, patients want healthcare technologies that improve
the quality of care while protecting their privacy. Hospitals may want greater
eff iciency without increased dependence on high-cost professionals.

During requirements analysis, strategic reflection is carried out by the human
stakeholders, assisted by requirements analysts. In software agents, this kind of
strategic reflection can potentially be done at run-time by the software. This
characteristic requires higher sophistication to be built i nto the software (see, e.g., [1])
and is not yet a common feature. Strategic reflection is, however, a fairly basic need
at the requirements stage.

4.6 Rational Self-interest

Most languages for modelli ng and requirements analysis (e.g., UML) do not
provide explicit support for rationales. Since their ontologies do not include
autonomous agents-in-the-world, the rationales, even if made explicit, would likely be
a rationalization of the many contributions that led to the eventual requirements for a
new system. In treating systems and environments as a multi -agent world, we try to
explicate the preferences and decisions of each stakeholder in terms of rational self-
interest. Each agent selects those options that best serve its interests. This
assumption provides a convenient idealization for characterizing agents whose

behaviour are otherwise unpredictable. Note that rational self-interest does not imply
selfishness, as an agent can have altruistic goals.

The modeller attributes rationality and coherence to agents-in-the-world in order to
draw inferences about their behaviour. However, the inferences are limited by
incomplete and imperfect knowledge. The rationality is bounded and partial. The
agent construct can be viewed as a scoping mechanism for delineating the exercising
of rationality within a limited local scope.

In contrast, for software agents, rationality is a regime for governing the behaviour
of the software according to internal states of goals and beliefs. Again, it is a
characteristic that needs to be explicitly built i nto the construction of a software agent.

4.7 Summary

To summarize, agent concepts are useful both for software construction and for
modelli ng the world. However, abstractions for agents-as-software and agents-in-the-
world came about with different motivations, premises, and objectives, and thus can
differ in ontology.

For software agents, the objective is to create a new software paradigm that would
make software more powerful, more robust, and flexible. The realization of software
agent characteristics requires greater sophistication in the implementation technology,
which are ideally hidden under the agent abstraction.

In contrast, in devising some concept of agent for modelli ng the world, we
recognize that the world already exists in its full complexity. Earlier modelli ng
paradigms have adopted abstractions that removed too much of that complexity,
resulting in ontologies that are too impoverished for dealing with today’s problems.
The agent abstraction is used to being back some of that complexity and richness to
support appropriate kinds of modelli ng and analysis.

In either case, there is choice in what agent abstraction to adopt. For software
agents, we want a concept of agent that fully embodies the behaviour to be generated.
We need to consider the feasibil ity of implementation, and the diff iculty of verifying
implementation against the specification. For modelli ng agents-in-the-world, we want
rich enough description of the world (expressiveness) to allow us to make the
distinctions that we want, leading to analyses that matter in stakeholders’ decision
making. We do not want more detail than we can use, since there are costs in
elicitation and validation, and potential for errors.

5 Related Work

Most of the current work in Agent-Oriented Software Engineering (AOSE)
originated from the programming and AI/DAI systems construction perspective. As
the technology infrastructure matures, attention is increasingly being paid to software
engineering and application methodology issues. The focus therefore continues to
have a strong systems construction flavour, with a gradual broadening to encompass
contextual activities such as requirements engineering.

The predominant notion of agent in the current AOSE literature is therefore that of
agent-as-software. Methodological frameworks have focused mostly on the “analysis
and design” stages (e.g., [51, 2, 6, 27]). Requirements are assumed to be given, at

least as informal descriptions. The analysis stage constructs a model of the intended
behaviour of the software system.

The importance of requirements is beginning to be recognized, with attention being
paid to the embedding environment. However, they are typically specified in terms of
behavioural interactions, as in conventional requirements approaches. The notion of
agent employed is still t hat of agent-as-software. For example, notions of autonomy,
intentionality, etc., are those associated with the software, not with agents-in-the-
world outlined in Section 4. Alternatives during requirements analysis, as viewed by
strategic agents-in-the-world, are not explicitly addressed.

Social and organizational concepts are applied to software agents, not to agents in
the world (e.g., [58, 36, 11, 13, 35]). Selective aspects of sociality are built i nto the
agent software, with the purpose of enhancing the capabiliti es of the software, as
opposed to the richer analysis of the environment for the purpose of defining the right
technical system to build.

When reflection is used, it is as a computational mechanism in software agents
(e.g., [1]), not used by stakeholders to reflect on strategic implications of alternative
arrangements of technical systems in their environment.

In Requirements Engineering, agents have served as a modelli ng construct without
assuming the use of agent software as the implementation technology. The concept of
agent has been elaborated to varying degrees. For example, the EKD methodology [5]
contains many of the concepts needed for agent-oriented modelli ng, but does not
explicitly deal with issues of agent autonomy and sociality. Agents appear in one of
six interconnected submodels: the Goal model, the Concepts model, the Business
Rules model, the Business Process model, the Actors and Resources model, and the
Technical Components and Requirements model. The KAOS approach [47] (also
mentioned in Section 2) offers a detailed formal framework for eliciting and refining
goals until they are reduced to operations that can be assigned to agents. The
openness and autonomy of agent actions is not considered when generating or
evaluating alternatives. Agents interact with each other non-intentionally, so they do
not have rich social relationships. Both EKD and KAOS can be said to be more goal-
oriented than agent-oriented.

Action-Workflow is a notation and method for modelli ng cooperative work [29].
The basic unit of modelli ng is a workflow between a customer and a performer. The
customer-performer relationship is characterized in terms of a four-phased loop,
representing the stages of proposing, agreeing, performing, and accepting. Each
phase involves different types of communication acts which can be analyzed using
Speech Acts theory. This framework has a stronger orientation to deal with the social
nature of agents, especially their reliance on commitments and the potential for
breakdowns. Intentional structures such as goals or means-ends relationships are not
explicitly represented, so there is no support for reflection or shifting boundaries of
responsibiliti es.

Many other techniques in Requirements Engineering bear close relations to agent
modelli ng, e.g., managing multiple viewpoints [17], dealing with inconsistencies [20],
supporting traceabilit y [25] and negotiation [39], and scenario analysis [24].

While the i* framework arguably goes farthest in addressing agent modelli ng issues
in the spirit of this paper, many open issues remain, both in theoretical and practical
areas. Recent work that have built on or extended i* include the incorporation of

temporal constraints to support simulation and verification [18, 49], development
methodologies [14, 46], and multi -perspective modelli ng [37, 28].

The Tropos project [32, 7, 4] aims to develop a software development methodology
that would carry the requirements ontology (based on i*) as far downstream as
possible, to ensure that the resulting software would be requirements-driven. Agent
orientation is assumed throughout all the development stages. Formal techniques are
being developed to support analysis at various stages.

6 Engineering of Agent-Or iented Software vs. Agent-Or iented
Engineering of Software

The predominant interpretation of the phrase “Agent-Oriented Software
Engineering” is that of the engineering of software that uses the agent concept as the
core computational abstraction. However, it is also possible to conceive of the use of
agent concepts to support the software engineering process, without necessarily
committing a priori to a software agent technology implementation. For the purpose
of distinction, we could refer to the two conceptions of AOSE as EAOS and AOES
respectively.

Agent-oriented techniques for requirements engineering, as exempli fied by the i*
framework, suggests that agent concepts can be used profitably without prejudging
the implementation technology. We have argued that issues of autonomy,
intentionality, sociality, etc. are just as relevant in requirements engineering as in
software construction, though in somewhat different senses.

A basic tenet in software engineering is to defer commitments on design and
implementation decisions as much as possible, so as not to over-constrain those
decisions unnecessarily. Conventional models and languages in software engineering
– for requirements specification, architectural design, detailed design, programming,
configuration, etc. – do not allow for the explicit representation of open decisions,
freedoms and constraints, and argumentation about them. While each stage or
activity in software engineering requires considerable deliberation and decision-
making, the notations can only express and record the results of decision processes.
Current notations provide hardly any support for the communication of intentional
content among software engineers, e.g., design intents and rationales. Intermediate
products in software engineering are passed on from one stage to another only after
they are fully reduced to non-intentional representations, e.g., input/output
relationships in architectural block diagrams.

Agent abstractions and models offer the expressiveness and flexibilit y that
conventional notations lack. Today’s increasingly fast-paced and fluid demands in
software engineering suggests that agent abstractions could be useful for supporting
software engineering processes in general. This is the premise behind the Tropos
project [32, 7, 4]. Agent-based ontologies are used for representing requirements,
architectures, and detailed designs. Intentional models involving goals and beliefs
provide higher-level descriptions that allow suitable degrees of freedom. The
ontologies that are appropriate are those for modelli ng agents-in-the-world. For the
most part, the subject matter in software engineering activities are not (yet) software
artefacts, but their precursors. While executable software would eventually emerge,

many of the key engineering processes occur at the earlier stages where relationships
among earlier design artefacts (e.g., architectural blocks or design modules) are
worked out. The appropriate ontology is therefore not a computational ontology for
machine execution, but a world ontology in which there are many human decision
makers and stakeholders, exploiting opportunities, mitigating vulnerabiliti es, and
choosing among alternatives according to strategic interests. The i* framework is
used as the starting point for the Tropos project.

Since software engineering work continues to rely heavily on human social
processes, a full development of the AOES vision should include the many human
players in a software engineering projects as full -fledged agents (or actors in i*
terminology). Human agents, roles, and positions would be interwoven with those
representing the emerging artefacts. As the software development process unfolds,
new actors and relationships would be created, existing ones evolve, others dissolve.
The agents-in-the-world modelli ng paradigm allows a uniform representation of
machine and human processes. This would support, for example, reasoning about
whether an activity should be done at run-time or at development time, by human or
by machine. These would be indicated as alternate boundaries among actors in i*.
This conception of AOES is currently being explored [22].

Many software engineering challenges are not only technical, but social and
organizational, e.g., reusabilit y, maintainabilit y, evolvabilit y, comprehensibilit y,
outsourcing, componentization, etc. A representation and engineering framework that
provides full and equal treatment to technical artefacts as well as to human processes
(including knowledge management and human capital considerations) can potentially
offer a fuller account of software engineering, as well as more effective solutions.

While the general vision of AOES is independent of software implementation
technology, the greatest benefit is obtained when the implementation does employ
software agent technology. This would allow certain open decisions to be deferred to
run-time to be executed by the agent software. Which ones to defer would be a
frequent question that occurs throughout the development process. AOES modelli ng
frameworks and tools should provide support for addressing such questions.

7 Conclusions

Agent orientation can contribute to software engineering in more ways than one.
We have outlined a notion of agent from the viewpoint of requirements engineering,
which focuses on the relationship between systems and their environments in the
world. This notion of agent benefits from the development of the agent-as-software
concept, but is distinct from it. We have outlined some major distinctions in terms of
key agent properties such as autonomy and sociality. Because of the differences in
context and objectives in different stages and aspects of software engineering, it is not
surprising that differing agent abstractions have developed. However, as
requirements engineering turns to face the new challenges raised by agent software
technology, and as software agents acquire greater abiliti es to reason strategically
about themselves and the world, one can expect closer links between conceptions of
agents-as-software and agents-in-the-world. These are topics of ongoing research.

Acknowledgements. Financial support from the Natural Sciences and Engineering
Research Council of Canada, Communications and Information Technology Ontario,
and Mitel Corporation are gratefully acknowledged.

References

1. Barber, K.S., Han D.C., Liu, T.H.: Strategy Selection-based Meta-level Reasoning for of
Multi -Agent Problem Solving. . In: Ciancarini, P., Wooldridge, M.J. (eds): Agent-
Oriented Software Engineering: AOSE 2000. Lecture Notes in Computer Science, Vol.
1957. Springer-Verlag. (2001) 269-284

2. Bauer, B., Müller, J.P., Odell , J.: An Extension of UML by Protocols for Multiagent
Interaction. Proc. 4th Int. Conf. on Multi -Agent Systems. IEEE Computer Society. (2000)
207-214

3. Bradshaw, J. (ed.): Software Agents. AAA I Press (1997)
4. Bresciani, P., Perini, A., Giunchiglia, F., Giorgini, P., Mylopoulos, J.: A Knowledge Level

Software Engineering Methodology for Agent Oriented Programming. Proc. 5th Int. Conf.
on Autonomous Agents, Montreal, Canada. (2001)

5. Bubenko, J., Brash, D., Stirna, J.: EKD User Guide. (1998). Available at
ftp://ftp.dsv.su.se/users/js/ekd_user_guide.pdf

6. Caire, C., Garijo, F., Gomez, J., Pavon, J., Leal, F, Chainho, P, Kearney, P., Stark, J.,
Evans R., Massonet, P.: Agent Oriented Analysis Using MESSAGE/UML. In this volume.

7. Castro, J., Kolp, M., Mylopoulos, J.: A Requirements-Driven Development Methodology,
13th International Conference on Advanced Information Systems Engineering
(CAiSE'01), Interlaken, Switzerland. LNCS Vol. 2068 Springer-Verlag (2001) 108-123

8. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers. (2000)

9. Ciancarini, P., Wooldridge, M.J. (eds): Agent-Oriented Software Engineering: First Int.
Workshop, AOSE 2000. Limerick Ireland, June 10, 2000. Lecture Notes in Computer
Science, Vol. 1957. Springer-Verlag. (2001)

10. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-Directed Requirements Acquisition,
Science of Computer Programming. 20 (1-2): (1993) 3-50

11. Dastani, M., Jonker, C., Treur, J.: A Requirement Specification Language For
Configuration Dynamics Of Multi -Agent Systems. In this volume.

12. DeMarco, T.: Structured Analysis and System Specification. New York: Yourdon, (1978)
13. Dignum, V., Weigand, H., Xu, L.: Agent Societies: Towards Frameworks-Based Design.

In this volume.
14. Dubois, E., Yu, E., Petit, M.: From Early to Late Formal Requirements: a Process Control

Case Study. Proc. 9th Int. Workshop on Software Specification and Design, Ise-Shima,
Japan. IEEE Computer Society (1998) 34-42

15. Feather, M.S., Fickas, S.F., Helm, B.R.: Composite System Design: The Good News And
The Bad News, Proceedings of Fourth Annual KBSE Conference, Syracuse. (1991) 16-25

16. Feather, M.S.: Language Support For The Specification And Development Of Composite
Systems. ACM Trans.on Programming Languages and Systems , 9(2): (1987) 198-234

17. Finkelstein, A., Sommervill e, I.: The Viewpoints FAQ: Editorial - Viewpoints in
Requirements Engineering. IEE Software Engineering Journal, 11(1): (1996) 2-4

18. Gans, G., Jarke, M., Kethers, S., Lakemeyer, G.,.Ell rich, L., Funken, C., Meister, M.:
Requirements Modeling for Organization Networks: A (Dis-)Trust-Based Approach. 5th
IEEE Int. Symp. on Requirements Eng., Toronto, Canada. (2001)

19. Gasser, L.: Social Conceptions of Knowledge and Action: DAI Foundations and Open
Systems Semantics. Artificial Intelli gence. 47(1-3): (1991) 107-138

20. Ghezzi, C., Nuseibeh, B.: Guest Editorial - Managing Inconsistency in Software
Development. IEEE Transactions on Software Engineering 24(11): (1998) 906-907

21. Greenspan, S.: Requirements Modelli ng: The Use of Knowledge Representation
Techniques for Requirements Specification, Ph. D. thesis, Dept. of Computer Science,
Univ. of Toronto (1984)

22. Gross, D., Yu, E.: Evolving System Architecture to Meet Changing Business Goals: an
Agent and Goal-Oriented Approach. ICSE-2001Workshop: From Software Requirements
to Architectures (STRAW), Toronto, Canada. (2001) 13-21

23. Inverardi, P. et al.: The Teleservices and Remote Medical Care System (TRMCS): Case
Study for the Tenth International Workshop on Software Specification and Design
(IWSSD-10) (2000) http://www.ics.uci.edu/iwssd/case-study.pdf

24. Jarke, M., Kurki-Suonio, R.: Guest Editorial - Special Issue on Scenario Management.
IEEE Transactions on Software Engineering, 24(12): (1998) 1033 -1035

25. Jarke, M.: Requirements Tracing - Introduction. Communications of the ACM, 41(12):
(1998) 32-36

26. Jennings, N.R., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and
Development. Autonomous Agents and Multi -Agent Systems, 1 (1998) 7-38

27. Kendall , E.A.: Agent Software Engineering with Role Modelli ng. In: Ciancarini, P.,
Wooldridge, M.J. (eds): Agent-Oriented Software Engineering: AOSE 2000. Lecture
Notes in Computer Science, Vol. 1957. Springer-Verlag. (2001) 163-170

28. Kethers, S.: Multi -Perspective Modeling and Analysis of Cooperation Processes. Ph.D.
thesis. Technical University of Aachen (RWTH), Germany. (2001)

29. Medina-Mora, R., Winograd, T., Flores, R., Flores, F.: The Action Workflow Approach to
Workflow Management Technology. Proc. Computer-Supported Cooperative Work. ACM
Press. (1992) 281-288

30. Miksch, S., Cheng, K., Hayes-Roth, B.: An Intelli gent Assistant For Patient Health Care,
Proc. of the First Int. Conf. on Autonomous Agents (Agents'97) ACM Press (1997) 458-
465

31. Mylopoulos, J., Borgida, A., Jarke, M., Kourbarakis, M.: Telos: A Language for
Representing Knowledge About Information Systems. ACM Trans. on Information
Systems 8(4) (1990) 325-362

32. Mylopoulos, J., Castro, J.: Tropos: A Framework for Requirements-Driven Software
Development In J. Brinkkemper, A. Solvberg (eds.), Information Systems Engineering:
State of the Art and Research Themes, Lecture Notes in Computer Science, Springer-
Verlag (2000) 261-273

33. Mylopoulos, J.: Information Modeling in the Time of the Revolution. Information Systems
23(3-4): (1998) 127-155

34. Nuseibeh, B.A., Easterbrook, S. M.: Requirements Engineering: A Roadmap. In:
Finkelstein, A.C.W. (ed): The Future of Software Engineering. (Companion volume to the
proceedings of the 22nd Int. Conf. on Software Engineering, ICSE'00. IEEE Computer
Society Press. (2000)

35. Omicini A.: SODA: Societies And Infrastructures In The Analysis And Design of Agent-
based Systems. In: Ciancarini, P., Wooldridge, M.J. (eds): Agent-Oriented Software
Engineering: AOSE 2000. Lecture Notes in Computer Science, Vol. 1957. Springer-
Verlag. (2001) 185-194

36. Parunak, H.V.D., Odell , J.: Representing social structures in UML. In this volume.
37. Petit, M.: A Multi -Formalism and Component-Based Approach to the Formal Modeling of

Manufacturing Systems Requirements. Ph.D. thesis. University of Namur, Belgium.
(2000)

38. Potts, C., Takahashi, K., Anton, A.: Inquiry-Based Requirements Analysis. IEEE
Software, March (1994) 21-32

39. Robinson, W.N., & Volkov, S. Supporting the Negotiation Life-Cycle. Communications
of the ACM, 41(5): (1998) 95-102

40. Ross, D.T.: Structured Analysis (SA): A Language for Communicating Ideas. IEEE
Transactions on Software Engineering, SE-3(1) (1977) 16-34

41. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, Addison-Wesley (1998)

42. Simon, H.A.: The Sciences of the Artificial. MIT Press (1969).
43. Standish Group: Software Chaos (1995) http://www.standishgroup.com/chaos.html
44. Suchman, L.: Plans and Situated Actions: The Problem of Human-Machine

Communication. Cambridge University Press (1987)
45. Szolovits, P., Doyle, J., Long, W.J., Kohane. I., Pauker, S.G.: Guardian Angel: Patient-

Centered Health Information Systems. Technical Report MIT/LCS/TR-604 (1994)
46. Taveter, K.: From Descriptive to Prescriptive Models of Agent-Oriented Information

Systems. 3rd Int. Workshop on Agent-Oriented Information Systems. Interlaken,
Switzerland. (2001)

47. van Lamsweerde, A.: Requirements Engineering in the Year 2000: A Research
Perspective. Proc. 22nd Int. Conf. on Software Engineering, June 2000, Limerick, Ireland
(2000) 5-19

48. Wagner, G., Lespérance, Y., Yu, E., (eds): Agent-Oriented Information Systems 2000:
Proceedings of the 2nd International Workshop. Stockholm, June 2000. iCue Publishing,
Berlin (2000)

49. Wang, X., Lespérance, Y.: Agent-Oriented Requirements Engineering Using ConGolog
and i*. 3rd Int. Workshop on Agent-Oriented Information Systems. Montreal, Canada.
(2001)

50. Weiss, G. (ed.): Multiagent Systems. MIT Press (1999)
51. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented

Analysis and Design. Journal of Autonomous Agents and Multi -Agent Systems 3 (3):
(2000) 285-312

52. Yu, E.: Modelli ng Strategic Relationships for Business Process Reengineering. Ph.D.
thesis. Dept. of Computer Science, University of Toronto. (1995)

53. Yu, E.: Towards Modelli ng and Reasoning Support for Early-Phase Requirements
Engineering. Proc. of the 3rd IEEE Int. Symp. on Requirements Engineering (1997) 226-
235.

54. Yu, E.: Why Agent-Oriented Requirements Engineering. In: Proc. of the 3rd Int.
Workshop on Requirements Engineering: Foundations for Software Quality. Barcelona,
Catalonia. E. Dubois, A.L. Opdahl, K. Pohl, eds. Presses Universitaires de Namur (1997)

55. Yu, E.: Agent Orientation as a Modelli ng Paradigm. Wirtschaftsinformatik 43(2) (2001)
123-132.

56. Yu, E., Mylopoulos, J.: Understanding "Why" in Software Process Modelli ng, Analysis,
and Design, Proc. 16th Int. Conf. Software Engineering, Sorrento, Italy, (1994) 159-168

57. Yu, E., Mylopoulos, J.: Why Goal-Oriented Requirements Engineering, Proc. of the 4th
Int. Workshop on Requirements Engineering: Foundations of Software Quality, Pisa, Italy.
E. Dubois, A.L. Opdahl, K. Pohl, eds. Presses Universitaires de Namur (1998) 15-22

58. Zambonelli , F., Jennings, N.R., Wooldridge, M.: Organisational Abstractions for the
Analysis and Design of Multi -Agent Systems. In: Ciancarini, P., Wooldridge, M.J. (eds):
Agent-Oriented Software Engineering: AOSE 2000. Lecture Notes in Computer Science,
Vol. 1957. Springer-Verlag. (2001) 235-251

