
ARTICLE IN PRESS
Information Systems 29 (2004) 187–203
*Correspondin

416-946-7132.

E-mail addre

yu@fis.utoronto

0306-4379/03/$ -

doi:10.1016/S030
Designing information systems in social context: a goal and
scenario modelling approach

Lin Liua,*, Eric Yub

aDepartment of Computer Science, University of Toronto, 40 St. George St., Toronto, Ont., Canada M5S 2E4
bFaculty of Information Studies, University of Toronto, 140 St. George St., Toronto, Ont., Canada M5S 3G6

Received 31 August 2002; received in revised form 14 January 2003; accepted 23 February 2003

Abstract

In order to design a better information system, a designer would like to have notations to visualize how design

experts’ know-how can be applied according to one’s specific social and technology situation. We propose the combined

use of a goal-oriented requirements language (GRL) and a scenario-oriented notation Use Case Maps (UCM) for

representing design knowledge of information systems. Goal-oriented modelling is used throughout the requirements

and design process. In GRL, goals are used to depict business objectives and system requirements, both functional and

non-functional. Tasks are used to represent different ways for achieving goals. Means-ends reasoning is used to explore

alternative solutions and their operationalizations into implementable system constructs. Social context is modelled in

terms of dependency relationships among agents and roles. Scenarios expressed in UCM are used to describe elaborated

business processes or workflow. The complementary use of goal-oriented modelling with GRL and scenario modelling

with UCM is illustrated with an example of designing a web-based training system.

r 2003 Elsevier Ltd. All rights reserved.

Keywords: Information system design; Goal-oriented requirements analysis; Scenario-based notation
1. Introduction

An information system is a social artifact
serving the different interests of many stake-
holders. Thus, inevitably, the design of an
information system is a social activity, which
involves understanding the social, organizational
context of the system-to-be and making design
decisions according to the limitations of environ-
ment and technology. As more and more software
g author. Tel.: +1-416-978-7569; fax: +1-

sses: liu@cs.toronto.edu (L. Liu),

.ca (E. Yu).

see front matter r 2003 Elsevier Ltd. All rights rese

6-4379(03)00052-8
and information systems adopt Internet technolo-
gies and protocols for greater openness and
interoperability, many new requirements appear.
Unlike the closed computing environments for
which most of the traditional information systems
development methods were designed, the open,
dynamic and almost unbounded nature of the
Internet presents many new challenges and com-
plexities. The design of new information systems,
particularly Internet applications and web-based
systems, are increasingly based on reusable com-
ponents and flexible combination of existing
patterns, which are hard to deal with without
effective models and decision support tools.
rved.



ARTICLE IN PRESS

L. Liu, E. Yu / Information Systems 29 (2004) 187–203188
In requirements engineering, a goal-oriented
modelling approach has been recognized to be
useful [1,2]. In general, goals describe the objec-
tives that the system should achieve through the
cooperation of actors in the software-to-be and in
the environment [2]. It captures ‘‘why’’ the data
and functions are there, and whether they are
sufficient for achieving the high-level objectives
that arise naturally in the requirements engineering
process. The incorporation of explicit goal repre-
sentations in requirement models provides a
criterion for requirements completeness, i.e., the
requirements can be judged as complete if they
are sufficient to establish the goals that they are
refining.
Scenario-oriented models present possible ways

in which a system can be used to accomplish some
desired functions or implicit purpose. Typically, it
is a temporal sequence of interaction events
between the intended software and its environment
(composed of other systems and humans).
A scenario could be expressed in various forms
including narrative text, structured text, images,
animation or simulations, charts, maps, etc. The
content of a scenario could describe system–
environment interactions or events inside a system.
Scenarios have been used for various purposes—as
means to elicit or validate system requirements, as
concretization of use-oriented system descriptions,
or as bases for test cases [3–5]. Scenarios have
also become popular in other fields, notably
human–computer interaction and strategic
planning [6,7].
While goal modelling and scenario modelling

each offers important capabilities, neither is
adequate on its own for fully support requirements
and design processes. Goals are sometimes ab-
stract and implicit and can be complemented by
concrete and explicit scenarios. Scenarios are
usually partial and incomplete. Their inadequacies
in coverage can be revealed through goal model-
ling and means-ends reasoning. Scenarios provide
the snapshots of possible design solutions or
fragments of solutions. Their concreteness facil-
itates the communication process between stake-
holders and implementers of the system. On the
other hand, goal modelling supports the explicit
identification of alternatives and design tradeoffs.
The proposed combined approach therefore draws
on the complementary strengths of goals and
scenarios to facilitate decision-making at all stages
from early requirements to fairly detailed design.
At the same time, it makes all the decision-making
process traceable.
The goal-oriented requirements language (GRL)

[8,9] is designed to support goal- and agent-
oriented modelling and reasoning, providing
guidance to the design process. In this paper,
we propose the combined use of GRL with
the scenario-based notation Use Case Maps
(UCM) [10]. UCM allows the behavioral aspects
of the designed system to be visualized at varying
degrees of abstraction and levels of detail. The two
notations complement each other to enable
technical solutions to be described and elaborated,
and evaluated according to their contributions to
the objectives of different stakeholders, guiding
the design towards viable solutions. While there
are other ways of expressing scenarios, such as
Use Cases and Activity Diagrams in UML,
Message Sequence Charts, etc., we choose UCM
to complement GRL due to the following con-
siderations. UCM intends to straddle requirements
and high-level architectural design stages, which
closely matches with the scope of GRL. UCM
supports the different levels of abstraction (with
stub and plug-in mechanism) of system architec-
ture, which complements the multi-level goal
modelling of GRL.
Information systems design is a knowledge-

intensive process. It involves domain-specific
design knowledge, generic software design knowl-
edge and knowledge about the specific situations
of the current design. GRL and UCM together
provide an ontology for expressing such knowl-
edge. For example, consider the design of a web-
based training (WBT) system. Domain-specific
know-how on picking a lesson structure can be
represented as UCM scenarios of common lesson
structures. Generic software design knowledge on
the possible collaboration mechanisms for a web-
based system is captured as a GRL means-ends
structure that connects the possible mechanisms
(e-mail, newsgroup, chat, screen-sharing and
audio/video conferencing) to the goal ‘‘Determine
Collaboration Mechanism’’.



ARTICLE IN PRESS

L. Liu, E. Yu / Information Systems 29 (2004) 187–203 189
Basic concepts of GRL are introduced in
Section 2. In Section 3, we summarize our
approach of using GRL to incrementally model
requirements and design. In Section 4, a case study
in the e-training domain is used to illustrate the
proposed approach. In Section 5, the combined
use of GRL and UCM is introduced. In Section 6,
related work is discussed. Conclusions and future
work are in Section 7.
2. GRL modelling notation

The GRL [8,9] is a language for supporting
goal- and agent-oriented modelling and reasoning
about requirements, with an emphasis on dealing
with non-functional requirements (NFRs) [11].
It provides constructs for expressing various types
of concepts that are useful for supporting the
requirements and high-level design process.
There are three main categories of concepts:
intentional elements, intentional links, and actors.
GRL elements and links are intentional in
that they are used in models that answer questions
about intents, motivations and rationales,
such as:

* Why are particular behaviors, information and
structures are chosen to be included in the
system requirements?

* What are the alternatives to be considered?
* What criteria are to be used to deliberate

among alternative options?
* What are the reasons for choosing one alter-

native over others?

A GRL model can be composed of either a
global goal model, or a series of goal models
distributed amongst several actors. If a goal model
includes more than one actor, then the intentional
dependency relationships between actors can also
be represented and reasoned about.
The intentional elements in GRL are goal, task,

softgoal, resource and belief. A goal is a condition
or state of affairs in the world that the stake-
holders would like to achieve. A goal can be
achieved in different ways, prompting alternatives
to be considered. A goal can be either a business
goal or a system goal. Business goals are about the
business or state of the affairs the individual or
organization wishes to achieve in the world.
System goals are about what the target system
should achieve, which, generally, describe the
functional requirements of the target information
system. In GRL graphical representation, goals
are represented as a rounded rectangle with the
goal name inside.
A softgoal is typically a quality (or non-

functional) attribute on one of the other inten-
tional elements. A softgoal is similar to a (hard)
goal except that the criteria for whether a softgoal
is achieved are not clear-cut and a priori. It is up to
the developer to judge whether a particular state of
affairs in fact sufficiently achieves the stated
softgoal. NFRs, such as performance, security,
accuracy, reusability, interoperability, time to
market and cost are often crucial for the success
of an information system. In GRL, NFRs are
represented as softgoals and addressed as early as
possible in the software lifecycle. They should be
properly modelled and addressed in design reason-
ing before a commitment is made to a specific
design choice. In the GRL graphical representa-
tion, a softgoal, which is ‘‘soft’’ in nature, is shown
as an irregular curvilinear shape with the softgoal
name inside.
A task specifies a particular way of doing

something. It may be decomposed into a combina-
tion of sub-goals, sub-tasks, resources and soft-
goals. These sub-components specify a particular
course of action while still allowing some freedom.
Tasks are used to incrementally specify and refine
solutions in the target system. They are used to
achieve goals or to ‘‘operationalize’’ softgoals.
These solutions provide operations, processes,
data representations, structuring, constraints and
agents in the target system to meet the needs stated
in the goals and softgoals. In GRL graphical
representation, tasks are represented as a hexagon
with the task name inside.
A resource is a (physical or informational)

entity, which may serve some purpose. From the
viewpoint of intentional analysis, the main concern
with a resource is whether it is available. Re-
sources are shown as rectangles in GRL graphical
representation.



ARTICLE IN PRESS

L. Liu, E. Yu / Information Systems 29 (2004) 187–203190
The Belief construct is used to represent design
assumptions and relevant environmental condi-
tions. It allows domain characteristics to be
considered and properly reflected in the decision-
making process, hence facilitating later review,
justification and change of the system, as well as
enhancing traceability. Beliefs are shown as
ellipses in GRL graphical representation.
Intentional links in GRL include means-ends,

decomposition, contribution, correlation and de-
pendency links. Means-ends links ( ) are used to
describe how goals can be achieved. Each task
connected to a goal by a means-ends link is one
possible way of achieving the goal. Decomposition

links ( ) define the sub-components of a task. A
contribution link (-) describes the impact that one
element has on another. A contribution can be
negative or positive and can be of different extents.
The extent is judged to be partial or sufficient
based on Simon’s concept of satisficing [12].
Accordingly, contribution link types include: help

(positive and partial), make (positive and suffi-
cient), hurt (negative and partial), break (negative
and sufficient), some+ (positive of unknown
extent), some� (negative of unknown extent).
Correlation links (dashed contribution links) de-
scribe the side effects of the existence of one
element to others. Dependency links ( ) describe
the inter-agent dependent relationships.
An actor is an active entity that carries out

actions to achieve its goals by exercising know-
how. It is an encapsulation of intentionally,
rationality and autonomy [13]. Graphically, an
actor is represented as a circle, and may optionally
have a dotted boundary, with intentional elements
inside. To model complex relationships among
social actors, we further define the concepts of
agents (circle with a line at top), roles (circle with a
line at bottom), and positions (four-leaf flower),
each of which is an actor in a more specialized
sense.
An agent is an actor with concrete, physical

manifestations, such as a human individual or a
machine. A role is an abstract characterization of
the behavior of a social actor within some
specialized context or domain of endeavor. A
position is intermediate in abstraction between a
role and an agent. It is a set of roles typically
played by one agent. Positions can cover roles.
Agents can occupy positions. Agents can also play

roles directly. The ‘‘INS’’ construct represents the
instance-and-class relation. The ‘‘ISA’’ construct
expresses conceptual generalization/specialization.
3. A goal and scenario modelling design method

The proposed goal and scenario modelling
approach was motivated by the need in the
telecommunications domain for a notation for
expressing and analyzing user requirements [14].
User requirements need to address behavior as
well as quality attributes. While UCM is a useful
requirement-level notation for telecommunications
software [15], it does not provide systematic
support for dealing with business objectives, goals,
and NFRs during requirement analysis and their
achievement during subsequent design. NFRs are
requirements such as performance constraints,
systems operational costs, reliability, maintain-
ability, portability, interoperability, robustness,
and the like. In software development practice,
many NFRs are stated only informally, making
them difficult to analyze, specify and enforce
during software development and to be validated
by the user once the final system has been built.
Goals and NFRs, however, do play a crucial role
during system development, serving as selection
criteria for choosing among alternatives during
requirements analysis, for example, determining
where the system boundaries should be and what
functional requirements to include in the system.
Many of the alternative approaches to deal with

NFRs originated from the technical work related
to quality metrics. Such approaches attempt to
quantify NFRs and then measure to what extent
an existing system or parts of it meet the desired
NFRs. Useful metrics exist only for a small
number of NFRs such as performance, reliability,
software complexity, and development process
maturity. Moreover, metric-based approaches are
hard to use. During analysis and design there are
many competing requirements, many of which are
not quantitative. The GRL notation deals with
NFRs and goals during the process of require-
ments analysis and system design; it allows for the



ARTICLE IN PRESS

L. Liu, E. Yu / Information Systems 29 (2004) 187–203 191
expression of conflict between goals, of decisions
that resolve conflicts and of the rationale for the
trade-off decisions. The agent aspect of GRL helps
in considering multiple stakeholders’ concerns
simultaneously.
To support early requirements engineering and

high-level system design, our goal modelling
approach aims to elicit, refine and operationalize
customer-specific requirements incrementally
based on the knowledge of domain experts, until
a satisfactory design is found. In this process, the
overall objectives of a system have to be clarified,
the concrete behaviors and constraints of the
system-to-be need to be elaborated, and functions
should be assigned to responsible units in that
system.
The goal- and agent-oriented modelling in GRL

focuses on answering the ‘‘why’’ questions of
requirements (such as ‘‘why does the system need
to be redesigned?’’ or ‘‘why is the interface
designed as it is?’’). The strength of GRL
modelling is that it puts the design in a broader
context, it considers from different stakeholders’
viewpoints, and seeking for a balanced solution
for all. Another advantage of GRL is that not only
functional requirements but also NFRs (in other
words, the quality requirements) are dealt with.
While goal orientation can be highly useful for

requirements engineering, goals are sometimes too
abstract to capture all at once. Often they are
discovered and become explicit only after a deeper
understanding of the system has been achieved. In
particular, users and developers often find it
natural to think about operational scenarios about
using the hypothetical system. More conventional
requirements and design notations typically an-
swers the ‘‘what’’ questions such as ‘‘what should
the system do to provide activity centered electro-
nic lessons?’’ or ‘‘what is the process of giving
learner customized tutorial?’’
The general steps of the proposed approach are

illustrated in Fig. 1. From the flowchart, we can
see that goal modelling and scenario modelling
proceed in parallel, and they can interact at certain
points in each round. In the goal-oriented model-
ling process, actor dependency models are first
created, then the original business objectives and
system requirements are identified and operatio-
nalized, until some concrete design options are
obtained. These design options are explored with
UCM scenarios. On the UCM side, business
process or workflow, as well as responsibility
assignment are visualized and analyzed. On both
sides, new requirements may become evident by
asking why questions, and be entered into the
GRL model. When all scenarios are acceptable,
and all goals and softgoals are sufficiently fulfilled,
the solution fragments for each independent goal
can be assembled to form a complete design for the
intended system. Elaborated descriptions of use
cases, processes and information flow are also
obtained.
4. Case study: designing a web-based training

system

The proposed goal and scenario modelling
approach is best used to address cases where there
are multi-stakeholders with diverse concerns and
expectations, leading to complex interactions
among functional and NFRs that need to be
balanced and traded off. There should be well-
established domain knowledge bases that the
current design can benefit from. The complexity
of the case should be such that there are many
decision points at which multiple alternatives need
to be considered, and where at least some of the
alternatives can be visualized as scenarios. The
proposed approach supports both the design of
new systems, and the reengineering of legacy
systems, as suggested by the iterative design
process shown in the flowchart of Section 3.
To illustrate the application of the goal and

scenario modelling approach, we use the example
of designing a WBT system, adapted from [16].
Web-based information system usually involves
multiple stakeholders with different interests.
These stakeholders, modelled as intentional
agents, impose complicated functional and quality
requirements on the future system, which need to
be considered and evaluated systematically accord-
ing to the prospective solutions.
Starting from the identification of the major

stakeholders of the domain, we explain in sequence
how to capture the original business objectives of



ARTICLE IN PRESS

Model major players in the industry (human, 
organization, and system) as actors, model their 
social relationships as dependencies in GRL model 

Refine the goals and softgoals to discover 

applicable solutions incrementally 

Model the business objectives and the system 

requirements of key actors as goals or softgoals 

Problem descriptions,
Business objectives… 
Existing technologies, processes…

YesNo 

No

No 

Yes 

All goals & 
softgoals are 
sufficiently fulfilled?

Represent (parts of) the solutions 
with UCM scanrios when appropriate

Evaluate the solutions' impacts to the 

social relationships and the fulfillment 

of goals and softgoals in GRL

Assemble the solutions into a complete design description 

Yes

No 

Add the new goals 
(softgoals) in GRL model 

The design details are
acceptable to users? 

Higher level goals 
are discovered when 
asking "why"? 

Model functional units as 

components, model actions as 

responsibilities in UCM Model 

Draw use case paths representing 

business processes or workflow  

Bind the responsibilities with the 

components in UCM model 

Fig. 1. Goal modelling based system design process.

L. Liu, E. Yu / Information Systems 29 (2004) 187–203192
the stakeholders, refine and operationalize these
objectives into applicable design alternatives
with GRL.

4.1. Step 1: modelling social entities and their

relationships

Placing system design within its broader social
context [17] (as in Fig. 3), the proposed modelling
approach helps to address the following questions
systematically: Who are the major players in the
business domain? What are the generic relation-
ships between these players? How to specialize
these generic patterns through role-assignment
and agent class instantiation? The major players
are modelled as actors. The relationships between
players are modelled as actor dependency relation-
ships of different type. Then by distinguishing
abstract roles and concrete agent classes and
instances, we may model requirements at both



ARTICLE IN PRESS

Fig. 2. Major players in E-Learning domain, agent dependency relationships, role-playing relationships and agent classification.

L. Liu, E. Yu / Information Systems 29 (2004) 187–203 193
the domain level (generic patterns) and the
application level (specialization of the generic
patterns).
In the WBT example, some of the major players

are course provider, learner, technology provider,
knowledge provider, and instructor. These are
modelled as roles because they embody abstract
capabilities and wants (Fig. 2). Learner depends
on Instructor to Give Instructions and Feedback.
Instructor depends on Course Provider to Be
Employed. Course Provider depends on support
from Technology Provider, Knowledge Provider
and Pedagogical Knowledge Provider. Square
brackets are used to include parameters necessary
for identifying the actors. The agent WBT/E-
Learning Consultant (a person) plays both the
roles of Technology Provider and Pedagogical
Knowledge Provider.
Apart from the three instance level agents—

Mortgage Bankers Association of America, Mort-
gage Banker Jim, and William Horton Consulting,
the model represents the common practices of the
e-training domain, and is a reusable domain
knowledge model. Mortgage Bankers Association
of America plays the role of Course Provider as
well as the role of Knowledge Provider, so it
inherits all the dependency relationships of the two
abstract roles in reality.

4.2. Step 2: modelling business objectives

After the main players are identified, their high-
level business objectives will be elicited, i.e., what
they hope to accomplish for their organization,
their sponsors, or their financial backers by using
the information system under consideration. Thus,
these objectives and requirements will be modelled
as primitive goals or softgoals of the actors. We
use (hard) goals to represent functional require-
ments, and softgoals for NFRs.



ARTICLE IN PRESS

L. Liu, E. Yu / Information Systems 29 (2004) 187–203194
In our case study, the Mortgage Bankers
Association of America playing Course Provider
has two specific targets in mind:

* Earn $200,000 by selling courses.
* Reduce costs of training by 50% over the next

year.

In the initial GRL goal model in Fig. 3, they are
represented as softgoals (we consider them as
variations of the NFR ‘‘profitability’’). From
commonsense knowledge, we also know that a
course provider’s primitive goal is to provide
course; thus, it is added as a goal of the
corresponding role.
Fig. 3. Business objectives represented as softgoals in original

goal model.

Fig. 4. Explore possible designs for
4.3. Step 3: generating design alternatives

Starting from the initial goals and softgoals, we
proceed to explore the alternative business pro-
cesses, methods or technologies used in this
industry to achieve these goals. A specific way
for achieving a goal is represented as a task, and it
is connected to the corresponding goal by a means-
ends link, while being connected to a softgoal by
contribution links. When refining a high-level
goal/softgoal, we may use decomposition, specia-
lization, substitution, or other refinement techni-
ques applicable to the domain, until operational
design solutions are found [11].
In Fig. 4, the two softgoals of the Mortgage

Banker’s Association of America can be reduced
into two general softgoal applicable to all Course
Providers—Low Cost and Customer Satisfaction.
The two softgoals, together with the goal of
Course Be Provided, are refined individually. Since
the two most obvious choices for giving a course
are to provide Conventional Classroom Training,
or WBT, a first design choice is made between
them. From the two initial softgoals, we can see
that cost is more critical for the stakeholder. Thus,
the softgoal Low Cost is refined in detail.
the future system (high level).



ARTICLE IN PRESS

Table 1

Cost estimation on the two kinds of training

Develop

time (h)

Develop cost

($/h)

Instructor travel

cost ($)

Instructor salary

cost ($/student)

Facility cost

($/student)

Learner travel

cost ($)

Total estimate

cost ($)

Conventional

classroom training

50 50 1500 25 500 1500 513,000

Web-based training 200 100 0 50 50 0 338,500

Fig. 5. Compare alternative designs by resource consumption.

L. Liu, E. Yu / Information Systems 29 (2004) 187–203 195
4.4. Step 4: evaluating design alternatives:

contributions to softgoals

To evaluate how the design alternatives are
serving the specific business objectives and the
quality expectations of stakeholders, contributions
of the design options to the softgoal will be
explicitly modelled. In addition to analyzing the
solutions within the boundary of one actor, we can
also evaluate the two solutions according to their
impacts to the relationships among actors. This
will be illustrated in Step 7.
In Table 1, we list how the two solutions WBT

and Conventional Classroom Training (repre-
sented as task nodes) lead to different cost on
the items indicated by the sub-softgoals of Low
Cost in Fig. 4. Based on these data, in Fig. 5, we
use contribution links to depict that WBT helps the
goal of Lower Total Training Costs, which in turn
helps the satisficing of Reduce Cost of Training by
50% Over Next Year. Conventional Classroom
Training hurts the fulfillment of this goal.
Furthermore, the fulfilling of this goal helps the
achievement of Earn $200,000 By Selling Courses.
The result of this initial analysis suggests that
WBT may be a better option for the current
stakeholder. The upper part of this model (the two
softgoals and the help relationship between them)
is only applicable to the current system, while the
lower part (the structure showing the different
resource consumption of the two solutions) depicts
generic domain knowledge reusable for all course
providers of WBT system.

4.5. Step 5: elaborating on the candidate solution

Having selected one solution over the other, we
need to evaluate the advantages and disadvantages
of the candidate solution further. In this round of
evaluation, other softgoals of concern are con-
sidered, to whom the candidate solution’s con-
tributions are investigated.
GRL evaluates the satisfaction of a softgoal via

a qualitative labelling procedure [11]. The label of
a high-level node is computed from the label of
low-level nodes and the type of contribution from
these nodes, with possible user input. As one can
hardly find a perfect technology, or a perfect
situation that a technology can apply to without
any change, a best solution, for many needs, may
be a hybrid combining the best features of
different solutions. In this case, alternative solu-
tions need to be further decomposed and reas-
sembled. For disadvantages indicated by negative
links or labels, mitigation measures are sought to
strengthen the current solution. The labels are
defined as follows: Satisficed ( ), Weakly Satis-

ficed ( ), Conflict/irresolvable ( ), Undecided ( ),
Weakly Denied ( ), Denied ( ).



ARTICLE IN PRESS

Fig. 6. Evaluate candidate design’s advantages and disadvantages.

L. Liu, E. Yu / Information Systems 29 (2004) 187–203196
The corresponding goal model in Fig. 6 shows
that the advantages of WBT include Costs Saved,
Better Teaching Techniques Enabled, Collabora-
tive Learning Promoted, and Effective Learning
Technologies Used. Consequently, Quality of
Learning Improved is weakly satisficed (repre-
sented with a check mark with a dot underneath).
It also contributes positively to Globalization,
Flexibility, and both help the Learner’s Satisfied,
as the right-hand side of the model suggests. On
the left side, unfortunately, negative contributions
are also revealed, e.g., the inherent High Dropout
Rates and More Efforts on Conversion and
Electronic Delivery of WBT hurts the high-level
softgoals of the stakeholder. These negative
contributions make the two high-level softgoals
be labelled as irresolvable (denoted by a thunder-
bolt symbol)—there are both strong positive
contributions and strong negative contributions.
To weaken the negative contributions, counter-

measures such as Require Commitment are added
in the design. They are represented as tasks with
negative correlation links (the dotted lines with
arrows) to the unfavorable contributions in the
graph. Adding these countermeasures will weaken
the impact of the softgoals with negative contribu-
tions. In such a case, although the contributions
from these softgoals are still undecided, high-level
softgoals are already judged as weakly satisficed

based on the system developer’s opinion (Fig. 7).
4.6. Step 6: refining a solution

After each decision-making session, the design
proceeds further by identifying the essential sub-
processes/components of the candidate solution,
then steps 3, 4 and 5 will be repeated. Sub-
components are connected to the root task with
decomposition links.
The model in Fig. 8 illustrates how the task

Build a WBT system is refined. First of all, a
Course Provider needs to Choose e-Course Pat-
tern, decide whether to use Collaboration Mechan-
isms and what mechanism to use, and Pick a
Lesson Structure for the course. As all of these
sub-processes are necessary steps for the finishing
of the root task, they are represented as sub-goals
connected to the root task with decomposition
links. Similarly, existing collaboration mechanisms
are connected to the goal Determine Collaboration
Mechanisms with means-ends links. Their impacts
to social dependencies and contributions to course
provider’s business objectives will be further
explored. By making tradeoffs among the possible
solutions, one iterates until an acceptable design is
obtained.

4.7. Step 7: evaluating impacts on dependencies

Now we come to the decision-making process
for Choose e-Course Pattern. In Fig. 8, two



ARTICLE IN PRESS

Fig. 7. Install mitigation measures to the design.

Fig. 8. Refinement of design and decision-making based on social relations.

L. Liu, E. Yu / Information Systems 29 (2004) 187–203 197
alternatives are generated and connected to the
parent node with means-ends link: Instructor-led
Pattern and Learner-led Pattern. In addition to
the kind of analysis shown in step 4, we can
also evaluate the alternative solutions according
to their impacts to social relationships. The



ARTICLE IN PRESS

L. Liu, E. Yu / Information Systems 29 (2004) 187–203198
dependency links pointing from these two tasks
tell us that the two solutions lead to quite different
role characteristics—the Instructor is the driving
force in Instructor-led Pattern, but only Act As an
Optional Learning Resource in Learner-led Pat-
tern. Conversely, the dependencies pointing to the
two task nodes show that they have different
capabilities and qualities to offer. Learner-led
Pattern favors Lower Cost. Learner enjoys more
Flexibility on their schedule and learning content,
and they also appreciate the Anonymity and
Privacy. In Instructor-led Pattern, Instructor can
often Prompt Answer to Questions, and the
Learner Be More Inspired or Motivated. Thus,
corresponding to the requirements of different
kinds of courses, different pattern can be adopted.
5. Scenario-based analysis

As the goal-oriented design proceeds, finer-
grained analysis needs to be conducted. The
scenario-based notation UCM comes into use.

5.1. Use case maps

UCM [10] provide a visual notation for scenar-
ios, which is proposed for describing and reason-
ing about large-grained behavior patterns in
systems, as well as the coupling of these patterns.
The UCM notation employs scenario paths to
illustrate causal relationships among responsibil-
ities. It provides an integrated view of behavior
and structure by allowing the superimposition of
scenario paths on a structure of abstract compo-
nents. Scenarios in UCM can be structured and
integrated incrementally. This enables reasoning
about and detection of potentially undesirable
interactions between scenarios and components.
Basic elements of UCMs are start points,

responsibilities, end points and components. Start

points (filled circles) represent pre-conditions or
triggering causes. End points (bars) represent post-
conditions or resulting effects. Responsibilities

(crosses) represent actions, tasks or functions to
be performed. Components (boxes) represent enti-
ties or objects composing the system. Use case

Paths (wiggle lines) connect start points, respon-
sibilities and end points. A responsibility is bound
to a component when the cross is inside the
component. In this case, the component is
responsible for performing the action, task, or
function represented by the responsibility.
When maps become too complex to be repre-

sented as a single UCM, a mechanism for defining
and structuring sub-maps becomes necessary.
A top level UCM, referred to as a root map, can
include containers (called stubs) for sub-maps
(called plug-ins). Stubs are represented as dia-
monds. Stubs and plug-ins are used to solve the
problems of layering and scaling or the dynamic
selection and switching of implementation details.
Other notational elements include OR-join, OR-
fork, AND-join, AND-fork, timer, abort, failure
point, and shared responsibilities. A detailed
introduction to and examples of these concepts
can be found in [10].

5.2. Combined use of GRL and UCM

Although UCM can represent system designs in
a high-level way, the tradeoffs between alterna-
tives, and the intentional reasoning behind design
decisions cannot be explicitly shown. In our
approach, we couple GRL with UCM to provide
support for reasoning about scenarios by estab-
lishing correspondences between intentional GRL
elements and functional components and respon-
sibilities in the scenario models of UCM. The
complementary modelling of goals and scenarios
aid in identifying further goals and additional
scenarios (and scenario fragments) important to
system design, thus contributing to the complete-
ness and accuracy of requirements, as well as to
the quality of system design.
Continuing with the design of WBT system in

Section 4, we now consider the implementation of
the goal Pick Lesson Structure. The alternative
structures are denoted as task nodes in the bottom
of the GRL model in Fig. 9. It is hard to tell which
structure is more appropriate only by doing
strategic, intentional analysis with GRL. In order
to visualize the behavioral aspects of the alter-
natives, we link the appropriate GRL nodes to
scenarios in UCM.



ARTICLE IN PRESS

Fig. 9. Design alternatives and the corresponding scenarios.

L. Liu, E. Yu / Information Systems 29 (2004) 187–203 199
In the lower half of Fig. 9 a class structure
representing Classic Tutorials is depicted as a
UCM scenario. In the scenario, WBT system and
Learner are represented as agent components
(rectangles), which holds responsibilities (small
crosses along the wiggle lines). The scenario shows
that, in a classic tutorial, after an introduction,
learners do readings through a series of sessions,
each teaching a more difficult concept or skill. At
the end of the sequence (denoted with a use case
path, the wiggle line with filled circle head, and
small bar tail) is a summary and a test. Examples
and practice are also provided in each session.
Elaborating on these details helps the identifica-

tion of new requirements. For example, Learner’s
Satisfaction, Flexibility, Reliability and Easy to
Use are required for the training program to be
profitable and successful. Thus, these newly
identified requirements are added on the right-
hand side of the goal model in Fig. 9.
In Fig. 10, the class structure is evaluated using
the qualitative evaluation procedure mentioned
above. The result shows that the current structure
is not an ideal choice. It is simple, reliable, but lack
flexibility.
Thus, a good-to-have feature of the above class

structure is that, for each learner, the tutorial is as
easy and straightforward as a class tutorial, but
the course content can be customized by different
learners. Below is a scenario for this class
structure—Learner Customized Tutorial.
The scenario in Fig. 11 shows that the use case

path branches for different learners if they choose
different subjects in the course, from which we can
see that student’s Individual/Specific Needs Be
Considered. This class structure satisfied all the
currently required softgoals, so it is a possible
choice for the designer.
In this case study, the UCM models are rather

simplistic because we have only tackled the highest



ARTICLE IN PRESS

Fig. 10. Evaluation of tutorial structure: (a) classical and (b) learner customized.

L. Liu, E. Yu / Information Systems 29 (2004) 187–203200
level of process design, and the processes in e-
training are not very complicated. As we go down
to a sufficiently detailed design, a UCM model can
be fairly complex, and more modelling constructs
need to be used. Having analyzed the benefits and
tradeoffs of these structures, we can see that UCM
is a useful complement to GRL in the process from
requirements to high-level design. It provides a
concrete model of each design alternative.
During each step shown above, new NFRs may

be detected and added to the GRL model. At the
same time, in the GRL model, new means to
achieve the functional requirements can be ex-
plored and concretized in a UCM model. Thus,
the above design process may iterate until an
acceptable design is reached.
6. Discussion and related work

The above example illustrated some of the
benefits of coupling goals and scenarios during
requirements analysis and design. GRL and UCM
together facilitates the transition from a require-
ments specification to a high-level design involving
the consideration of alternative architectures
and the discovery of further requirements that
must be vetted by the stakeholders. Both of the
notations have dynamic refinement capabilities.
During refinement, a high level of abstraction is
maintained, as scenarios in UCM are described as
first class entities without requiring reference to
system sub-components, specific inter-component
communication facilities, or sub-component states



ARTICLE IN PRESS

Fig. 11. UCM scenario for Learner Customized Tutorial.

L. Liu, E. Yu / Information Systems 29 (2004) 187–203 201
[10]. As one allocates scenario responsibilities to
architectural components in UCM, GRL helps
keeping track of decisions at various stages. GRL
provides facilities to express, analyze and deal with
goals and NFRs. It also provides facilities to
capture reusable analysis and design knowledge
related to know-how for addressing NFRs and to
manage evolving requirements.
The work of this paper builds on an original

submission to ITU-T Study Group 10 (now Study
Group 17) on the topic of User Requirements
Notation (URN) [14]. The URN is intended to
allow software engineers to specify, review for
correctness, and possibly discover requirements
for a proposed new system or for extensions to an
existing system. UCM is being proposed for
specifying functional requirements, and GRL for
NFRs. The methodology introduced in this paper
illustrates how the two modelling notations
complement each other.
Goal-oriented modelling has received consider-

able attention with requirements engineering [2].
The KAOS approach is most concerned with the
generation of alternative system designs from
high-level goals defined in temporal logic [1].
In [18], the process of inferring formal specifica-
tions of goals and requirements from scenario
descriptions is studied. While goal elaboration and
scenario elaboration are treated as intertwined
processes, the focus of the work is mainly on goal
elicitation. Our emphasis is the other way around,
i.e., how to use goal model (especially NFRs) to
direct design based on scenarios as well as other
notations. The fundamental point is that the goal-
oriented modelling and its interaction with other
modelling activity run through requirements to the
entire design process.
In the CREWS project, Rolland et al. [19] have

proposed the coupling of goals and scenarios in
requirements engineering with CREWS-L’Ecritoire.
In CREWS-L’Ecritoire, scenarios are used as a
means to elicit requirements/goals of the system-to-
be. Both goals and scenarios are represented as
structured text. The coupling of goal and scenario
could be considered as a ‘‘tight’’ coupling, as goals
and scenarios are structured into oGoal, Scenar-
io>pairs, which are called ‘‘requirement chunks’’.
The focus is mainly on the elicitation of functional
requirements and goals. In GRL, both functional
and NFRs are considered, with special attention
being paid to NFRs. The modelling process
involves both requirements engineering activities
and high-level architectural and process design.
Also in the CREWS project, Haumer et al. [20]

have proposed to use real world scenes to elicit and
validate requirements specifications. Goals are
used as central concepts of requirement descrip-
tion. Hierarchical goal structures are linked and
annotated with positive and negative scenarios.
Their approach typically starts from fairly low-
level functional goals rather than high-level goals
like ‘‘increase profit by 10%’’. The kinds of
scenarios they propose to capture are multi-media
scenarios of current system usage.
The Software Architecture Analysis Method

(SAAM) [21] is a scenario-based method for
evaluating architectures. It provides a means to
characterize how well a particular architectural
design responds to the demands placed on it by a
particular set of scenarios. Based on the notion of



ARTICLE IN PRESS

L. Liu, E. Yu / Information Systems 29 (2004) 187–203202
context-based evaluation of quality attributes,
scenarios are used as a descriptive means of
specifying and evaluating quality attributes.
SAAM scenarios are use-oriented scenarios, which
are designed specifically to evaluate certain quality
attributes of architecture. The evaluations are
done using simulations or tests on a finished
design. In the GRL and UCM approach, scenarios
are more design oriented, being concerned with the
refinement of system requirements. The quality of
the architectures corresponding to these scenarios
is judged based on expert knowledge as the design
proceeds.
7. Conclusions and future work

The complementary of GRL and UCM sup-
ports the progress from abstract requirements,
both functional and non-functional, to concrete
system models. The approach combines an inten-
tional strategic actor’s view of design rationales
and a non-intentional behavioral view of the
future system. We believe the approach is useful
to information systems in general, where there are
conflicting goals and tradeoffs to be dealt with
during design. A case study in telecommunication
domain is discussed in [22], which focuses more on
using goal and scenario together in software
architectural design. Combining the two notations
may not be necessary for some classes of applica-
tions. For example, if the design of a system does
not decide on temporal orders, causal relation-
ships, and other behavioral characteristics, then
GRL is sufficient. On the other hand, if during the
design of the system, there are not many alter-
natives and competing goals, and the main task for
the software engineer is just to work out all the
details, then UCM itself may be quite enough for
the work.
For future work, it would be worthwhile to

investigate tighter coupling at language level to
provide more guidance and support. In the current
approach, the coupling of goals with scenarios is
loose—goal models and scenario models can be
constructed fairly independently. One scenario
model may refer to more than one goal, and vice
versa. There are no rigid constraints on the
requirements engineering and design process. That
is, the goal model and behavior models can be
developed in parallel simultaneously, interacting
whenever there are design decisions to be traded
off, or new design alternatives need to be sought,
or new business goals or non-functional require-
ments are discovered.
GRL and UCM are vehicles for expressing

knowledge. To make better use of GRL and UCM
concepts, we need to acquire and accumulate both
software design knowledge and more knowledge
of various domains, and represent this knowledge
in the corresponding modelling structures. The
development of such repositories would enable the
reuse of knowledge and provide useful guidance
for the design process.
Another ongoing work is to extend a formal

goal-oriented requirements language, Formal Tro-
pos, so that the temporal properties shown in the
UCM behavior models currently can be embedded
into the goal models and so that they can be
validated with model-checking techniques [23].
Acknowledgements

The work of this paper is motivated by an
original submission to ITU-T study group 17 on
the topic of User Requirements Notation (URN).
The kind cooperation of members of Mitel Net-
works, Nortel Networks and other institutions is
gratefully acknowledged. This work received
financial support from NSERC, CITO, and Mitel
Networks.
References

[1] A.V. Lamsweerde, Requirements engineering in the year

00: a research perspective, in: The Proceedings of the 22nd

International Conference on Software Engineering,

Limerick, June 2000, ACM press, New York.

[2] E. Yu, J. Mylopoulos, Why goal-oriented requirements

engineering, in: E. Dubois, A.L. Opdahl, K. Pohl (Eds.),

Proceedings of the Fourth International Workshop on

Requirements Engineering: Foundations of Software

Quality, Pisa, Italy, Presses Universitaires de Namur,

Paris, June 1998, pp. 15–22.

[3] J.G. Leite, J. Doorn Hadad, G. Kaplan, A scenario

construction process, Requirements Eng. 5 (1) (2000) 38–61.



ARTICLE IN PRESS

L. Liu, E. Yu / Information Systems 29 (2004) 187–203 203
[4] A. Sutcliffe, N. Maiden, S. Minocha, D. Manual,

Supporting scenario-based requirements engineering,

IEEE Trans. Software Eng. 24 (12) (1998) 1072–1088.

[5] K. Weidenhaupt, K. Pohl, M. Jarke, P. Haumer, Scenario

management in software development: current practice,

IEEE Software (15) (1998) 34–45.

[6] J.M. Carroll, Introduction: the scenario perspective on

system development, in: J.M. Caroll (Ed.), Scenario-Based

Design: Envisioning Work and Technology in System

Development, Wiley, 1995, pp. 1–17.

[7] M. Jarke, X.T. Bui, J. MC arroll, Scenario management—

an interdisciplinary approach, Requirements Eng. J. 3

(3–4) (1998) 155–173.

[8] GRL web site. http://www.cs.toronto.edu/km/GRL/

[9] E. Yu, Towards modelling and reasoning support for early

phase requirements engineering, in: Proceedings of the

Third IEEE International Symposium on Requirements

Engineering (RE ’97), Washington, DC, USA, January

6–8, 1997, pp. 226–235.

[10] R.J.A. Buhr, Use case maps as architectural entities for

complex systems, in: Transactions on Software Engineer-

ing, Vol. 24, No. 12, IEEE Press, New York, December

1998, pp. 1131–1155.

[11] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, Non-

Functional Requirements in Software Engineering, Kluwer

Academic Publishers, Dordrecht, 2000.

[12] A H. Simon, The Sciences of the Artificial, 2nd Edition,

The MIT Press, Cambridge, MA, 1981.

[13] E. Yu, Agent orientation as a modelling paradigm,

Wirtschaftsinformatik 43 (2) (2001) 123–132.

[14] Z.150: Users requirements notation, Recommendation to

ITU-T Study Group 17, Available at URN web site.

http://www.usecasemaps.org/urn/

[15] D. Amyot, G. Mussbacher, N. Mansurov, Understanding

existing software with use case map scenarios, in: Third
SDL and MSC Workshop (SAM ’02), Aberystwyth, UK,

June 2002.

[16] W. Horton, Designing Web-Based Training, Wiley, New

York, 1990.

[17] E. Yu, Agent-oriented modelling: software versus the

world, in: The Proceedings Agent-Oriented Software

Engineering AOSE-2001 Workshop, LNCS 2222, On-line

at: http://www.fis.utoronto.ca/faculty/yu

[18] A.V. Lamsweerde, L. Willemet, Inferring declarative

requirements specifications from operational scenarios,

in: IEEE Transactions on Software Engineering, Special

Issue on Scenario Management, December 1998.

[19] C. Rolland, G. Grosz, R. Kla, Experience with goal-

scenario coupling in requirements engineering, in: Proceed-

ings of the IEEE International Symposium on Require-

ments Engineering, 1998, Limerick, Ireland, June 1999.

[20] P. Haumer, K. Pohl, K. Weidenhaupt, Requirements

elicitation and validation with real world scenes, IEEE

Trans. Software Eng. 24 (12) (1998) 1036–1054.

[21] R. Kazman, L. Bass, G. Abowd, M. Webb, SAAM:

a method for analyzing the properties of software

architectures, in: Proceedings of the 16th International

Conference on Software Engineering, Sorrento, Italy,

1994, pp. 81–90.

[22] L. Liu, E. Yu, From requirements to architectural

design—using goals and scenarios, in: ICSE-2001 Work-

shop: From Software Requirements to Architectures

(STRAW 2001), May 2001, Toronto, Canada, pp.22–30.

Toronto, Canada, May 14, 2001, On-line at: http://

www.cs.toronto.edu/Bliu/

[23] A. Fuxman, M. Pistore, J. Mylopoulos, P. Traverso,

Model checking early requirements specifications in

Tropos, in: Proceedings of the Fifth IEEE International

Symposium on Requirements Engineering, Toronto,

Canada, August 2001, pp. 174–181.

http://www.cs.toronto.edu/km/GRL/
http://www.usecasemaps.org/urn/
http://www.fis.utoronto.ca/faculty/yu
http://www.cs.toronto.edu/~liu/
http://www.cs.toronto.edu/~liu/

	Designing information systems in social context: a goal and scenario modelling approach
	Introduction
	GRL modelling notation
	A goal and scenario modelling design method
	Case study: designing a web-based training system
	Step 1: modelling social entities and their relationships
	Step 2: modelling business objectives
	Step 3: generating design alternatives
	Step 4: evaluating design alternatives: contributions to softgoals
	Step 5: elaborating on the candidate solution
	Step 6: refining a solution
	Step 7: evaluating impacts on dependencies

	Scenario-based analysis
	Use case maps
	Combined use of GRL and UCM

	Discussion and related work
	Conclusions and future work
	Acknowledgements
	References


