Vulnerability Analysis for Web Services-based Business Processes

Lutz Lowis
Department of Telematics
Institute of Computer Science and Social Studies (IIG)
University of Freiburg, Germany
lowis@iig.uni-freiburg.de
http://www.telematik.uni-freiburg.de
Vulnerability Example

- XML injection vulnerability
- Business process:
 - order a book
 - claim travel expenses
 - order a travel expense claim
- Attacker collects bonus
Scenario for Analysis

Business process as workflow

Web Services, some with vulnerabilities
(e.g., XML injection)

IT components, some with vulnerabilities
(e.g., buffer overflow)
Outline

• Vulnerability Analysis Methods
 - static and dynamic
 - bottom-up and top-down

• Analysis of Web Service Compositions
 - challenge
 - prototype design

• Use in Risk Management and Compliance
Static Analysis

- Analyze source code to reveal dangerous paths/actions (also used to answer information flow questions)

- Will find many vulnerable code sequences…
  ```php
  $input=$_GET[´id´];
  $sql=´SELECT * FROM users WHERE id=´.$input;
  mysql_query($sql);
  ```

- …but not all of them…
 - vulnerable patterns need to be known
 - false negatives are possible

- …or more than there are
 - false positives are also possible
  ```php
  $input=$_GET[´id´];
  $sql=somefunction($input);
  mysql_query($sql);
  ```

order a book:
book title might be altered
Dynamic Analysis

- Analyze program at runtime
- Less/no false alarms thanks to runtime information
- Utilizing static analysis results “is a must” (big picture)

Static analysis shows possible violation
Dynamic analysis rings alarm

order a book:
book title is about to be altered
Bottom-up Analysis

- Failure Mode and Effects Analysis (FMEA)

- Given a failure (or an exploited vulnerability), what are the effects on the system?

 If a component fails…

 …which services will affect…

 …the workflow and how?

- Highly complex, even for relatively small amounts of components and vulnerabilities

 claim travel expenses: sql injection might alter name
Top-down Analysis

- Attack Trees

- Given an attack (or an exploited vulnerability), what are the steps to get there?

 How could an attacker...

 ...violate the security of services...

 ...or other components?

- More likely to find combined vulnerabilities

Claim travel expenses: integrity might be harmed through sql injection
Attack Graphs

CHAPTER 10. EXAMPLE NETWORK

Input:
- attack(s)
- hosts and services
- connectivity
- vulnerabilities

Output:
- attack model
- attack graph

Figure 10.2: Example Attack Graph
Web Services-based business processes with
- WSDL service descriptions,
- BPMN/BPEL workflow descriptions,
- CVE/CVSS vulnerability descriptions.

Input:
- attack(s)
- hosts and services
- connectivity
- vulnerabilities

Output:
- attack model
- attack graph
Challenge: Analyzing Service Compositions

• “x protocols, y ports” boils down to HTTP on port 80
• huge graphs need to be created after each change
• service selection requires quick decision

order travel expense claim:
can an attacker steal the bonus/harm integrity?
Utilizing BPEL for Composition Analysis

• From a workflow point of view, BPMN/BPEL describes service connectivity

• Pre-calculated graph can be pruned according to that connectivity
Vulnerability-based Graph Pruning

- Fewer vulnerability types mean a smaller attack graph

- Considering only **known and present** vulnerabilities further reduces the graph

order travel expense claim:
Bonus is secure, service does not introduce new attack possibilities
Prototype Design 1/4: Identifying Service Vulnerabilities

Bottom-up approach to keep the analysis up-to-date regarding published vulnerabilities:

a) Obtain vulnerability description from vuln. DB, e.g., via RSS feed

b) Identify affected IT components through, e.g., network scan

c) Identify affected services via enterprise service bus (ESB) info

d) Identify affected workflows from process models (e.g., BPMN/BPEL)

Vuln. DB such as CVE/NVD, ISS X-Force, OSVDB
Prototype Design 2/4: Building and Pruning BAGs

Input:
- attack(s)
- hosts and services
- connectivity
- vulnerabilities

Output:
- business process attack model
- business process attack graph
Prototype Design 3/4: Comparing Service Compositions

- one workflow, many service choices
- use CVSS (and similar data) to compare quality of service in security (CIA) terms

<table>
<thead>
<tr>
<th>Workflow</th>
<th>BAG 1</th>
<th>BAG 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

of vuln.
Prototype Design 4/4: Putting it all together

1) Identify service vulnerabilities

2) Build BAGs

3) Compare service compositions

workflow:

which services are vulnerable?

which attacks are possible?

which composition better fits the security requirements?
Risk Management and BAG: current status

- **Identification**
 Which services are vulnerable? How can the workflow be attacked?
 Component-to-service identification, BAG

- **Quantification**
 How likely is an attack? How much damage would it cause?
 Expert estimates (CVSS), controlling, weighted BAG

- **Control**
 Are there countermeasures? Where should they be placed?
 Expert analysis, attack graph analysis

- **Monitoring**
 Are the selected countermeasures effective? And efficient?
 BAG w/ dynamic analysis, expert analysis
Compliance and BAG: some thoughts

• show that services have been “carefully selected“

• create logs for audits and forensics

• help automate audits, guide human auditors
Vulnerability Analysis
for Web Services-based Business Processes

Questions?

Comments?

Lutz Lowis
Department of Telematics
Institute of Computer Science and Social Studies (IIG)
University of Freiburg, Germany
lowis@iig.uni-freiburg.de
http://www.telematik.uni-freiburg.de