
Security and Privacy Requirements Analysis within a Social Setting

Lin Liu1 Eric Yu2 John Mylopoulos1

1Department of Computer Science, University of Toronto, Toronto, Canada, M5S 1A4

{liu, jm}@cs.toronto.edu
2Faculty of Information Studies, University of Toronto, Toronto, Canada, M5S 3G6

yu@fis.utoronto.ca

Abstract

Security issues for software systems ultimately

concern relationships among social actors -
stakeholders, system users, potential attackers - and the
software acting on their behalf. This paper proposes a
methodological framework for dealing with security and
privacy requirements based on i*, an agent-oriented
requirements modeling language. The framework
supports a set of analysis techniques. In particular,
attacker analysis helps identify potential system abusers
and their malicious intents. Dependency vulnerability
analysis helps detect vulnerabilities in terms of
organizational relationships among stakeholders.
Countermeasure analysis supports the dynamic decision-
making process of defensive system players in
addressing vulnerabilities and threats. Finally, access
control analysis bridges the gap between security
requirement models and security implementation models.
The framework is illustrated with an example involving
security and privacy concerns in the design of agent-
based health information systems. In addition, we
discuss model evaluation techniques, including
qualitative goal model analysis and property verification
techniques based on model checking.

1. INTRODUCTION

Security, and privacy to a lesser extent, have been active
research areas in computing for a long time. Methods
and techniques have been developed to protect data,
programs, and more recently networks, from attacks or
other infringements through mechanisms such as access
controls and firewalls. However, most techniques were
developed for earlier generations of computing
environments that were largely within a single, closed
jurisdictional control -- such as a single enterprise with a
well-defined boundary. The open Internet environment,
together with new business and organizational practices,
has increased the complexity of security and privacy
considerations dramatically. In such a setting, a system
could potentially be interacting and sharing information
with a large number of other systems, often on ad hoc

and dynamically negotiated configurations. Traditional
models and techniques for characterizing and analyzing
security and privacy are ill-equipped to deal with the
much higher social complexity that is implicit in this
new internet-based setting.

In this paper, we propose a methodological
framework for analyzing security and privacy
requirements based on the concept of strategic social
actors. The framework offers a set of security
requirements analysis facilities to help users,
administrators and designers better understand the
various threats and vulnerabilities they face, the
countermeasures they can take, and how these can be
combined to achieve the desired security and privacy
results within the broader picture of system design and
the business environment. Moreover, the analysis
process is integrated into the usual requirements process,
so that security and privacy are taken into account from
the very start all at once.

This paper builds on our work on designing trust
and role-based pattern analysis on security requirements.
In [13, 23], we use role-based mechanism to study
patterns of relationships such as trust relations, attacker-
defender relations at various levels of abstraction. These
patterns can be selectively applied and combined for
analyzing specific system configurations later on. This
idea has been integrated and extended in the attacker
analysis discussed below.

Based on our previous works in agent-oriented
software engineering [22] and non-functional
requirements [4], we recognize that, as with other non-
functional requirements, security and privacy goals must
be identified and dealt with starting from the earliest
stages of a software engineering process [24,23].
Security and privacy issues originate from human
concerns and intents, and thus should be modeled
through social concepts [24,13]. Social concepts are
extended to cover relationships among software systems
and components. Agent-based models enable richer
descriptions and analysis techniques about internet-based
environments, especially ones involving intelligent
agents. Based on these models, knowledge-based
decision support tools can help identify alternatives,
detect conflicts and synergies, understand related
implications and consequences, and through a systematic

process, eventually arrive at appropriate combinations of
proven policies, procedures, devices, and mechanisms to
achieve the desired levels of security and privacy.

The proposed security requirements analysis is
illustrated with the example of designing software agents
supporting patient-doctor interactions. Design of security
and privacy in health care information systems is a
challenging task due to the influences of complex factors
in multiple dimensions. For instance, in the social
dimension, there are both patient-physician and user-
system trust relationships. There are also regulations and
constraints along medical and financial dimensions.
Besides, adding unfamiliar new technologies such as
unified electronic medical records and software agents is
bound to make the design task even more challenging,
since problems that arise from these new dimensions
need to be taken into account.

Designing for security and privacy amounts to
answering questions such as: “ who is likely to attack the
system? By what means might a specific attacker attack
the system? Whose privacy is at risk? How to defend the
system from these threats? What are the side effects of
adding particular countermeasures?” Yet, there is no
systematic analysis technique through which one can go
from answers to these questions to particular security
and privacy solutions. Our proposal is intended to
provide mechanisms that explicitly relate social concerns
with the technologies and policies addressing these
concerns.

Section 2 introduces the basic requirement analysis
process supported by i*. We base our example on the
Guardian Angel (GA) project [20], a patient and
physician supporting system using software agents.
Section 3 discusses the extended modeling process and a
set of security- and privacy-related analysis techniques.
Section 4 describes two particular model evaluation
techniques – goal-based evaluation and model property
checking. Section 5 and section 6 discuss related work

and summarize the results of the paper.

2. Domain Requirements Analysis with i*
The solid lines and boxes on the left-hand side of Figure 1
indicate a series of basic domain requirements analysis
steps.

Actor identification answers the questions of “ who is
involved in the system?” In i* [22], an actor is used to
refer generically to any unit to which intentional
dependencies can be ascribed. Figure 2 shows some
actors in the GA domain. Actors may be further
differentiated into roles, agents, and positions. A role is
an abstract actor embodying expectations and
responsibilities, e.g., Owner, Primary User, and Administrator
of Patient Information, Guardian of Patient and Provider of
Health Care Service. An agent is a concrete actor, human
or machine, with specific capabilities and funcationalities,
e.g., Abby Kaye, Dr. Anthony, Ms. Young, GA-PDA and GA-
Hospital Module. An agent can play one or more roles. A
set of roles packaged together to be assigned to an agent
is called a position. In Figure 2, Patient is modeled as a
position which bridges the multiple abstract roles it
covers, and the real world agents occupying it. As a
simplification, other examples in this paper omit the use
of the position concept. Initially, human actors
representing stakeholders in the domain are identified
together with existing machine actors (step ① in Figure
1). As the analysis proceeds (step ⑤ in Figure 1), more
actors are identified, including new system agents such as
GA System, GA-PDA, GA-HomePC, and GA Hospital Module,
when certain design choices have been made, and new
functional entities are added.

Goal/task identification answers the question of “ what
does the actor want to achieve?” (step ② in Figure1). As
shown in Figure 3, answers to this question can be
represented as goals capturing the high-level objectives of

➐

① Actor Identification

Countermeasure Identification➎

Attacking Measure Identification➍

Malicious Intent Identification➋

➏

Attacker Identification➊

② Goal/Task Identification

Vulnerability Analysis➌
⑤

③

④ Dependency Identification

Figure 1. Requirements Elicitation Process with i*

Figure 3. Goal/task elicitation in the space of alternatives for a physician opening a new practice (SR)

Figure 2. Actors (roles, agents and position) in the GA system

Figure 4. Dependency relationships in the GA system (SD)

agents. A goal may be “ hard”, referring to a function, e.g.
Dr. Anthony wants Quality Health Care Be Delivered, or “
soft”, referring to a quality requirement, e.g. Timely
Accessibility of Medical Record. Tasks are used to represent
the specific procedures to be performed by agents, e.g.
Manage Clinician-based Record. A resource is a physical or
informational entity, about which the main concern is
whether it is available. A belief is used to represent a
domain characteristic, a design assumption or an
environmental condition.

A goal can be accomplished in different ways. For
example, the goal Medical Record Be Managed can be
achieved by performing the task Manage Clinician-Based
Record or Manage Unified Electronic Record. The tasks are
connected to the goal through means-ends links(). A
goal is satisfied if any of its tasks is satisfied. A task may
be detailed into subgoals, subtasks, resources and
softgoals through Decomposition link (). All
subcomponents of a task must be satisfied in order to
accomplish the task. Such goal models can represent the
different alternatives for achieving a goal, elaborate the
necessary components for carrying out a task, and
evaluate the positive or negative contributions from tasks
to softgoals. High-level abstract softgoals are reduced
into lower-level, more specific softgoals or
operationalized in terms of tasks through contribution
link (→). The refinement of goals, tasks, and softgoals
(step ③ in Figure 1) are considered to have reached an
adequate level once all the necessary design decisions can
be made based on the existing information in the model.
The i* model in Figure 3 are created by running through
steps ② , ③ , ④ in Figure 1 iteratively.

Dependency relationship identification answers the
question “ how do the actors relate to each other?” In i*,
we focus on intentional relationships (e.g., one actor
depends on another for a goal to be achieved) rather than
on information exchanges or flows (e.g., what message an
actor send to another). A strategic dependency (SD)
model is a network of intentional dependencies
(dependency link,), as shown in Figure 4. When the
internal rationales of agents are made explicit (as in
Figure 3), we call that a strategic rationale (SR) model.
By analyzing the dependency network in an SD model,
we can reason about opportunities and vulnerabilities.

The SD model in Figure 4 shows that Abby Kaye
depends on GA-PDA to provide medical instruction (Be
Provided [Medical Instruction]). This dependency is
accompanied by expectations on Timeliness, Accessibility,
and Comprehensiveness of the Medical Instruction. The
model is generated by running steps ③ , ④ and ⑤ in
Figure 1 recursively. As explained above, by hiding the
internal rationales of actors in an SR model, an SD model
can be obtained. Thus, the goal, task, resource, softgoal
dependencies presented in an SD model are not added

arbitrarily, it always indicates a necessity of delegation
relationship across the actor boundary.

Dependency types are used to differentiate the kinds
of freedom allowed in a relationship. Be Provided [Medical
Instruction], being modeled as a goal dependency, indicates
that GA-PDA has full freedom to decide how to provide
instruction to Abby Kaye. Scheduling, Alerting and Notifying,
being a task dependency means that GA-PDA must follow
a prescribed course of action. A resource dependency
(e.g., Patient Data) means that the depended party
(dependee) has to make it available to the depender.

In this paper, i* models are shown graphically.
Semantics and constraints of i* are embedded in the i*
meta-framework described in Telos[15]. With the
support of Telos, consistency checks between models,
scalability management of large project, and various
other knowledge-based reasoning techniques can be
applied to i* models.

The kind of analysis shown above answers questions
such as “ Who is involved in the system? What do they
want? How can their expectations be fulfilled? And what
are the inter-dependencies between them?”. These
answers initially provide a sketch of the social setting of
the future system, and eventually result in a fairly
elaborate behavioural model where certain design choices
have already been made. However, another set of very
important questions has yet to be answered, i.e., “ What if
things go wrong? What if the GA system does not behave
as expected? How bad can things get? What prevention
tactics can be considered?” These are some of the
questions we want to answer in the security requirements
analysis process.

3. Security Requirements Analysis with i*
The dashed lines and boxes on the right hand side of
Figure 1 indicate a series of security specific analysis
steps. These steps are integrated into the basic domain
requirements engineering process, such that threats from
potential attackers are anticipated and countermeasures
for system protection are sought and equipped wherever
necessary. Each of the security related analysis steps (step
➊ to ➐) will be discussed in detail in the following
subsections.

3.1 Attacker Analysis

Attacker analysis aims to identify potential system
abusers and their malicious intents. The basic premise
here is that all the actors are assumed “ guilty until proven
innocent”. In other words, given the result of the basic i*
requirements modeling process, we now consider any one
of the actors (roles, positions or agents) identified so far
can be a potential attacker to the system or to other actors.

For example, we want to ask, “ In what ways can a
physician attack the system? How will he benefit from
inappropriate information disclosure?”

In this analysis, each actor is considered in turn as an
attacker. This attacker inherits the intentions, capabilities
and social relationships of the corresponding legitimate
actor (i.e., the internal goal hierarchy and external
dependency relationships in the model). This may serve
as a starting point of a forward direction security analysis
(Step ➊ in Figure 1). A backward analysis starting from
identifying possible malicious intents and business assets
of value is also feasible here.

Proceeding to step ➋ of the process, for each
attacker identified, we combine the capabilities and
interests of the attacker with those of the legitimate actor
(Figure 5). The analysis would reveal the
commandeering of legitimate resources and capabilities
for illicit use. For example, Dr. Kohane in playing the role
of Family Doctor has access to certain patient data. While
becoming an attacker (Attacker Dr. Kohane As Family

Doctor), he will be able to Make Illegal Profit by Put Patient
Data Into Secondary Use.

Applying the above reasoning to the i* model in
Figure 2, we may identify that potential attackers to the
system are Patient Attacker, Patient Guardian Attacker, Care
Provider Attacker, Business Associate (e.g., Insurance
Company, Drug Company) Attacker and GA Software Agent
Attacker. Here, we use the term attacker to refer to the
source of any threat. Human attackers may attack
deliberately, e.g., by committing insurance fraud, hiding
malpractice evidence, and putting patient identifiable
information into secondary use. An attack can also be
accidental, e.g., accidental disclosure of embarrassing
private information. Software agents can be threats as
instruments of malicious human agents (e.g. they can be
compromised through “ hacking” or “ sniffing”) or
simply through malfunctions, e.g., misunderstanding of
user instructions, executing instructions improperly,
perform tasks not intended by the user. In any case,
software agents are considered as attackers to the system
just the same as human attackers.

The attacker identification approach introduced
above observes that all attackers are insider attackers.
We set a system boundary, then exhaustively searches
for possible attackers. In light of this, random attackers
such as Internet hackers/crackers, or attackers breaking
into a building can also be dealt within this framework
by being represented as sharing the same territory as
their victim. By conducting analysis on the infrastructure
of the Internet, we may identify attackers by treating
Internet resources as resources in i* model. By
conducting building security analysis, break-in attackers,
or attackers sharing the same workspace can be
identified. In [24], we have adopted an opposite
assumption, i.e., assume there is a trusted perimeter for
each agent, all the potential threats source within this
trusted perimeter are ignored, only threats out of the
perimeter will be protected.

 Figure 5. Attacker Analysis

3.2 Dependency Vulnerability Analysis

Dependency vulnerability analysis aims at identifying
the vulnerable points in the dependency network (step ➌
in Figure 1). The basic idea is that dependency
relationships bring vulnerabilities to the system and the
depending actor (the depender). Potential attackers may
exploit these vulnerabilities to actually attack the system,
so that their malicious intents can be served. i*
dependency modeling allows a more specific
vulnerability analysis because the potential failure of
each dependency can be traced to a depender and to its
dependers. The questions we want to answer here are
“ which dependency relationships are vulnerable to
attack?”, “ What are the chain effects if one dependency
link is compromised?”

Figure 6 shows some of the vulnerable points in the
GA system. Dependency vulnerability analysis starts by
substituting one of the actors in the basic dependency
model with its corresponding attacker identified above,
then referring to each incoming dependency link, it asks,
“ Is it possible that this actor, now as attacker, does
something the depender does not want?” If the answer is
“ yes”, a dependency attack link will be directed to that
dependency. For example, attacker Insurer Agent may
attack the GA Hospital Module by not Performing Insurance
Transaction as expected, or by hurting its expectation on
Privacy. Graphically, dependency attack links are
represented with an arrow annotated by a link type.
According to the different strength of the potential
attack, the type of a dependency attack link can be Break,
Hurt, Some-, or Unknown. Each dependency link
associated with a dependency attack link indicates a
vulnerable point of the future system.

The analysis of dependency vulnerabilities does not
end with the identification of potential vulnerable points.
We need to trace upstream in the dependency network,
and see whether the attacked dependency relationship
impacts other actors in the network. The model in Figure
6 shows that the Insurer Agent's attack eventually hurts
Abby Kaye's Privacy expectation through a dependency
chain passing through GA-Hospital Module, GA-HomePC,
and GA-PDA, all of which are parts of the GA System. To
conduct this analysis, we also need means-ends and task
structure information in the SR model. Another example
given in Figure 6 is that, when Jerry Potter is playing
attacker, he may break GA-PDA's expectation on his
Integrity, (e.g., by flooding messages), which will hurt
other agents in the GA system. This analysis process can
be repeated for each role playing attacker in the i*
model, so that an exhausive search can be conducted to
identify the vulnerabilities in the entire dependency
network.

Figure 6. Dependency Vunerability Analysis

3.3 Countermeasure Analysis

During countermeasure analysis, system designers make
decisions on how to protect security and privacy from

potential attackers and vulnerabilities. This type of
analysis covers general types of attacks, and formulates
solutions by selectively applying, combining, or
instantiating prototypical solutions to address the specific
needs of various stakeholders. The general types of
attacks and the prototypical solutions can be retrieved
from a taxonomy or knowledge repository such as the
ones in [2, 4].

Necessary factors for the success of an attack are
attacker’s motivations, vulnerabilities of the system, and
attacker’s capabilities to carry out the attack. Thus, to
counteract a hypothetical attack, we seek measures that
sufficiently negate these factors. Based on the above
analysis, we already understand the attackers' possible
malicious intentions and system vulnerabilities.
Proceeding to step ➍ , we now focus on how an attacker
may attack the vulnerable points identified above by
exploring the attacker’s capacities.

As shown in Figure 5, it is an attacker’s normal roles
that bring him/her the capabilities to perform system tasks
and to access system resources. By abusing such legal
capacities or exploiting certain design vulnerabilities, an
attacker may achieve its undesirable objectives. Although
software attackers pose different kinds of threats
compared to human attackers, who actively perform tasks
they are not supposed to, software agents may do this on
behalf of humans manipulating them.

Figure 7. Attacks and Threats Identification

In Figure 7, Abby’s GA-PDA depends on Peer GA-PDA

to provide medical information and transmitting doctor’s
instructions. The impacts of a Peer GA-PDA As Attacker’s
various attacks are explored by doing softgoal refinement
and evaluation, e.g., softgoal Privacy is refined to sub-
softgoal Confidentiality, while Accessibility is refined to
Availability ([4] provides more detailed refinements of
softgoals). Their impacts to the dependencies are
evaluated with a qualitative labeling algorithm [4] in the
same way that goals in the basic i* requirements models
are addressed. The labels are defined as follows: Satisficed

(), Weakly Satisficed (), Conflict/irresolvable (),
Undecided (), Weakly Denied (), Denied (). When
certain types of attacks are identified: Theft of Permission,
Deliberate Disclosure, Wiretapping, Substituting & Inserting,
Modification of System, Jamming, or Overloading,
dependencies on Security, Privacy, correctness of Information,
Accessibility, and Timeliness are compromised.
In Figure 8, the defender’s countermeasures to these
threats are sought by doing means-ends (“ how” and “
how else”) analysis (step ➎ in the security analysis
procedure). Prevention and protections such as User
Authentication Mechanism, Requiring User Authorization for
Information Passing, Transmitting Info in Encrypted Format,
Auto-Recovery Mechanism, Using High Efficiency Network and
Daily Refreshing of Medical Instruction are added into the
system design. When each actor is considered a system
defender, the overall evaluation results of security,
privacy, timeliness, accessibility, and correctness of
medical instruction will be changed. Here, the
hypothetical threats are represented as beliefs, since their
existence is based on the designer’s assumption. By
evaluating the effects of the countermeasures to the
threats, we are able to decide if the impacts of the threats
are reduced to an acceptable level. The countermeasure
analysis process will iterate until a satisfying solution is
found.

As shown in Figure 1, countermeasure analysis is an
iterative process. Adding protective measures may bring
new vulnerabilities to the system, so a new round of
vulnerability analysis and countermeasure analysis will
be triggered (step ➏).

Figure 8. Countermeasure Analysis

3.4 Access Control Analysis

Access control analysis uses i* models to refine a
proposed solution and bring it closer to a system design.
The role-based requirements analysis with i* fits naturally

to the role-based access control methodology in software
design [16], and makes the transition from the former to
the latter a smooth one. The basic idea for the access
control analysis in i* is that actor skills or capacities are
encapsulated into abstract roles. In i* model, skills and
capacities are represented as tasks within the actor’s
boundary. Due to the differences in the tasks actors may
perform, they will be assigned different access rights to
the necessary resources accordingly. Graphically, access
rights to data objects are represented as resources, whose
name are defined as “ DataObjectName[Access Privilege1,
…,n]”. A more detailed model would treat an access right
as a resource dependency on the role that grants that right.

The i* model in Figure 9 shows that, Dr. Jones plays
two roles: Family Doctor and Specialist [Amnesia]. He
inherits the different capacities (skills) and access rights
of the two roles. As a Family Doctor, he has access to Mr.
Smith and Jerry Potter’s full medical record. As a Specialist
for Amnesia, he has access to Mrs. Lee’s particular medical
record: Amnesia Record [Patient, [Open, Read, Append,
Transfer]].

An actor can play multiple roles. Within each role,
there can be multiple ways for achieving a given goal.
Each of these alternatives is composed of a different set
of tasks that will also lead to different access privileges.
These privileges need to be checked against principles
such as Least Privilege and Separation of Duties
discussed in section 4.2. For example, being the only
Family Doctor of Jerry Potter, Dr. Jones have total access
(open, read, append, transfer) to the complete medical
record of Jerry Potter, while he has only read access to the
old medical record of Mr. Smith created by his previous
physician Dr. Anthony.

Figure 9. Access Control Analysis

4. Model Evaluation Techniques Table 1. Labeling results of qualitative evaluation
Labeling Result Decision

Points Alternatives Quality
of Care

Easy
To Use

Priv
acy

Securit
y

Manage Clinician-based Record D2: Goal:
Medical

Record Be
Managed

Manage Unified Electronic
Patient Record

Created By Primary Care
Provider

Created By Patient

D6: Goal:
New Record
Be Created

Created by Health Authority
Fee-For-Service

Charge Fix Amount For Each
Patient

D4: Goal:
Health Care
Service Be
Charged Give Discount to Organization

Buying in Volume

Store in Clinical DB
Store in Central DB

D7: Goal:
Record
Storage Store in Patient Home PC

Share Info on Paper
Secured Web Access

Email
Mobile Device (e.g. Palm Pilot)

D8: Goal:
Medical Info

Sharing

Smart Card
Reserve Record Until

Appropriate Time Expired
Destroy the Record Once No

Longer the Primary Care
Provider

D9: Goal:
Inactive

Record Be
Managed Transfer a Record to A Provider

of the Patient's Choice
Obtain Implicit, Oral, Informal

Consent

Obtain Written Consent

D12:
Softgoal:
Patient

Awareness
of Usage
[Medical
Record]

Obtain Written Authorization

Publish Privacy Policies
Sign Transborder Dataflow

Contract

D11:
Softgoal:

Accountabilit
y of

Information
Abuse

Present Terms and Conditions

Provide Info on Need-to-Know
Basis

Provide Info As Requested by
Patient

D10:
Softgoal:

Limited Use
and

Disclosure
[Medical
Record]

Provide Info without Personal
Identifiable Info

4.1 Goal-Based Evaluation

To identify the best design solutions, goal-reasoning
techniques such as qualitative goal labeling algorithms [4,
9, 10] can be used. Quantitative techniques, such as
probability or other quantitative measures, can also be
used [8]. With the help of i* model, we are able to
explore a space of design alternatives of considerable
size. If there are m decision points (goals/softgoals with
black rectangle shadow) and average n options at each
point, there will be about nm alternatives to be chosen
from. The model in Figure 3 shows 12 decision points,
and there are 2-5 options at each decision point, which
means that there are around 312 alternative ways for a
physician to operate his practice. Considering the
presence of some external domain constraints, not all of
these alternatives are workable. An example domain
constraint is that, if a physician chooses to Manage
Clinician Based Record, then it is not possible to Create
(Record) By Patient. When there is a large space of
alternatives to choose from, system designers will greatly
appreciate automated support such as an approximate
ranking according to some criteria.

The ranking of design alternatives is determined by
the contributions to the softgoals of concern. When
ranking design alternatives, various criteria can be
adopted. We can then either rank alternatives according to
their overall contributions to all softgoals, or rank
according to user’s specific preferences. Table 1. shows
the labeling results of a qualitative evaluation. The
contribution links are not fully presented in Figure 3 for
the readability of the graph and limitation of space.
Below we present the two highest ranked combinations of
options according to a ranking criteria as follows: Quality
of Care > Easy to Use > Privacy > Security.
1. Manage Unified Electronic Patient Record / Created By Patient /

Store in Patient Home PC / Secured Web Access / Reserve
Record Until Appropriate Time Expired

2. Manage Clinician-based Record / Created By Clinician / Store in
Clinical DB / Secured Web Access / Transfer The Record to A
Provider of the Patient’s Choice

The alternatives could also involve different inter-

actor dependency relationships. Hence, goal-based
evaluation may involve multiple actors and their
dependencies. For example, when an unenforceable
dependency relationship arises, the depender actor
becomes more vulnerable to attacks. Thus, such
alternatives should receive lower ranks, and when it has
to be part of the design, countermeasures balancing the
relationship need to be sought. Evaluation of dependency
relationships are discussed in [24, 25].

4.2 Access Permission Verification

It is often necessary to verify whether some expected
properties are satisfied by the requirement model we have
obtained in the various stages of the requirements
process. Formal analysis techniques, such as model
checking, are proven to have great potential in

requirement model specification and property verification
[7]. Here we demonstrate how a lightweight object
modeling notation Alloy [11] can be used for the
specification of an access control requirements model
respecting certain security and privacy relevant
properties.

Thanks to the simplicity of the Alloy language and its
easy-to-use Alloy constraint analyzer, an i* model can be
easily rewritten into an Alloy specification. Following is a
simplified Alloy translation of the i* model framework.
Naturally, actors, goals, tasks, resources, dependency
relationships can be considered as sets of objects
(signature, sig) with various attributes.

module istarRBAC

sig Agent { /* Agent class declaration */
 plays_role: Role, /* “plays” link in I* */
 assigned: Permission /* resource access permissions in the
 system */
}
sig Role { /* Role class declaration */
 has_objective: Goal /* goals within the boundary of role */}

sig Goal { /* Goal class declaration */
 achieved_by_task: Task /* means ends link in I* */}

sig Task {
need_access: Permission /* task-resource link in I* */}

sig Permission { /* Resource class declarations that
 represents access permissions */
 exclusive: Permission /*mutual exclusive access permissions*/
}{ /* mutual exclusion does not apply to itself */
 all p: Permission | not p::exclusive = p
}

Some global constraints and properties that are hard

to represent with i* can be described as facts or functions
in Alloy. In the following, we specify two well-known
and good-to-have properties for a security and privacy
protected system.
• Least privilege (need-to-know principle) [16]
Least privilege requires that only those permissions
required for the tasks conducted by roles that an actor is
playing are assigned to the actor.

fact LeastPrivilege {
 all pm: Permission | all a: Agent |
 pm in a::assigned =>
 pm in

a::plays_role::has_objective::achieved_by
_task::need_access
} /* For all agent a, all the permission pm assigned to a is needed by some
task to achieve some goal of some role that a is playing. */

• Separation of duties (mutual exclusive roles

principle) [16]
Separation of duties ensures that a sensitive or critical
process cannot be performed by a single actor, mutually
exclusive roles must be invoked. It is one of the main

mechanisms to control fraud and error in the context of
automated systems.

fact SeparationO ties { fDu
 all a: Agent | all r1: Role |
 all p1:Permission | some p2: Permission |
 some r2: Role | r1 in a::plays_role
 && p1 in
r1::has_objective::achieved_by_task::need_access
 && p2 in p1::exclusive
 && p2 in

bje ve::achieved_ y_task::need_access r2::has_o cti b
 => not r2 in a::plays_role
}
/* For all agent a, if a plays role r1 which need permission p1, then a cannot
play another role r2, which needs p2, an exclusive permission of p1. */

By analyzing these properties on the requirements
models with the Alloy analyzer, we were able to verify
whether the defined access control models such as the one
in Figure 9 respect these properties. With the instance
editor in Alloy Analyzer, we may build an instance of the
Alloy model. The model shown in Figure 10 corresponds
to the i* model in Figure 9, which is proved to be a valid
solution. By defining the negation of the expected
principles, we may obtain counter-examples of the model
(e.g., an instance in which the agent is assigned
permissions that are not needed for the agents tasks). By
analyzing the counterexamples, we can trace back to the
i* model, see why the principles are violated by the
instance. Then we can decide whether the problem
originates from trivial modeling mistakes, or from
conflicts between domain constraints and the general
principle in question. The proposed model checking
technique is generally applicable for the verification of
requirement models. Since the size of the model is
bounded by the scheme used, and it is not always
necessary to generate the whole model when checking
certain property, the model checking effort is tractable.

Figure 10. Representing i* model in Alloy

5. Related Work
Security and privacy-related requirements engineering is
a cross-disciplinary effort, with synergistic theories,

methods and techniques from several research areas,
including requirements engineering, information and
network security, policy development, and business
process and organization management.

In the requirements engineering literature, [3, 23]
treat security and privacy requirements together with
other competing functional and non-functional
requirements from the early requirements stage till
concrete design choices are made. Our work adopts a
similar viewpoint. The major difference with this earlier
work is that, in our case, goal-oriented and agent-oriented
analyses are conducted together. In [4] and [2], general
catalogues/taxonomies for security and privacy goals are
established, along with operationalization methods. These
can serve as a general knowledge repository for a
knowledge-based goal refinement/assessment process. In
[21], a goal-oriented obstacle analysis method is used to
capture exceptional requirements of a system, which can
be used to model and analyze security requirements as
well. Misuse cases [19] and abuse cases [14] demonstrate
how negative scenarios can used to elicit and analyze
security-related requirements. In [5], prospective visions
on security requirements engineering of multiple
dimensions are discussed. Our work is generally
compatible with these visions. Generally speaking, the i*
approach encourages and facilitates the analysis of
security and privacy-related issues within the broader
social and organizational context of the relevant actors. In
[12], past lessons has been studied intensively to
demonstrate the importance of the tight coupling of safety
engineering efforts with system design practice. Models
that underlie particular approaches to safety problems are
described. Our work targets at security problems in the
new Internet-based systems based on similar
observations, with a different set of modeling concepts.

The proposed approach is complementary to and
benefits from the various theories and techniques
currently being developed for information security
protection. Traditional security engineering models and
techniques such as: access control models [16], security
policy models for specific application domain [1],
authentication techniques [6], and trust evaluation and
management mechanisms [17] are natural
operationalizations or solutions for the security and
privacy goals in the i* requirements model.

Other relevant work effectively bridges the gap
between information security and requirements
engineering using fault trees [9], attack trees/threat trees
[18] or other threat models to derive security
requirements and develop security assured systems. These
approaches are effective measures for security analysis of
existing systems or systems in detailed design stage. The
framework in this paper can be integrated with these
mechanisms to deal with security at various abstraction
levels. For example, we may use i* models in a first-pass

coarse-grained analysis when goals have not yet been
operationalized. Once process-oriented operational details
are obtained, other techniques may come into play.

6. Discussion
Security and privacy issues are becoming major concerns
in the design of software systems. As new technologies
and business models come into use in different socio-
technical contexts, security and privacy issues becomes
even more complex. Therefore, tools and methodologies
providing systematic guidance and support to the design
process are much needed.

This paper proposes a methodological framework
for dealing with security and privacy requirements
within an agent-oriented modeling framework. The main
objective of the work is to define a set of security and
privacy-specific analysis mechanisms and integrate them
into the usual requirements engineering process, so that
security and privacy requirements can be addressed
together with other functional and non-functional
concerns early on. The concepts provided by the i*
language make it possible to analyze security issues
within their (natural) social context, leading to a
systematic way of deriving vulnerabilities and threats.
Moreover, the combined use of goals and agents in i*
models makes it possible to conduct different
countermeasure analyses, such as counteracting
malicious intentions, addressing vulnerabilities, and
defending against attacking techniques.

The proposed methodological framework can be used
for a top-down security requirements analysis process, or
a bottom-up process that helps assess existing designs.
The qualitative goal-based evaluation techniques facilitate
trade-off analysis of security and other competing quality
requirements, such as cost and performance. Model
checking techniques can be applied at various stages of
the requirements process, so that desired properties can be
checked as the requirements models unfold.

We are currently refining the proposed methodology
and are preparing to use it in a real-life case study, such
that the scalability and tractability of the techniques can
be further studied. A next step of this work is to develop
a series of formalisms based on the current methodology,
and tools supporting the kinds of reasoning on security.

References:
[1] Anderson, R. A Security Policy Model for Clinical

Information Systems. IEEE Symposium on Security
and Privacy, Los Alamitos, 1996. pp.30-43.

[2] Anton,A.I., Earp, J.B., Reese, A. Analyzing Website
Privacy Requirements Using a Privacy Goal
Taxonomy. IEEE Joint International Requirements
Engineering Conference (RE'02). Essen, Germany,
September 9-13, 2002.pp.23-31.

[3] Chung, L. Dealing with Security Requirements
During the Development of Information Systems.
Proc. CAiSE'93, 5th Int. Conf. Advanced
Information Systems Engineering, Collette Rolland,
Francois Bodart, Corine Cauvet (Eds.). Springer,
1993. pp.234-251

[4] Chung, L., Nixon, B. A., Yu, E. and Mylopoulos, J.
Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, 2000.

[5] Crook, R., Ince, D., Lin, L., Nuseibeh, B. Security
Requirements Engineering: When Anti-
requirements Hit the Fan. IEEE Joint International
Requirements Engineering Conference (RE'02).
Essen, Germany, September 9-13, 2002.pp.203-205.

[6] Devanbu, P., Gertz, M., Martel, C., Stubblebine,
S.G. Authentic Data publication over the Internet.
Journal of Computer Security. Also available at:
http://sirius.cs.ucdavis.edu/publications/jcs1.pdf.

[7] Fuxman, A., Pistore, M., Mylopoulos, J., and
Traverso, P. Model Checking Early Requirements
Specifications in Tropos, 5th IEEE Int. Symposium
on Requirements Engineering (RE'01), Toronto,
August 2001. pp.174-181.

[8] Giorgini, P., Mylopoulos, J., Nicchiarelli, E.,
Sebastiani, R.. Reasoning with Goal Models. 21th
International Conference on Conceptual Modeling
(ER-2002). Tampere, Finland, October 167-181,
2002. LNCS 2503 Springer Verlag. pp. 232-246.

[9] Helmer, G., Wong, J., Slagell, M., Honavar, V.
Miller, L., Lutz, R. A Software Fault Tree Approach
to Requirements Analysis of an Intrusion Detection
System. Anton, A. eds. Special Issue on
Requirements Engineering for Information Security.
Loucopoulos, P., Mylopoulos, J. eds. Requirements
Engineering. Vol. 7, N0. 4, 2002. pp. 177-220.

[10] Hui, B., Liaskos, S., Mylopoulos, J. Requirements
Analysis for Customizable Software: A Goal-Skills-
Preferences Framework. The 11th IEEE Int.
Requirements Engineering Conference (RE'03).
Monterey Bay, California USA, Sept. 8-12, 2003.

[11] Jackson, D. Alloy: A Lightweight Object Modeling
Notation. ACM Transactions on Software
Engineering and Methodology (TOSEM), Vol. 11,
Issue 2, April 2002. pp. 256-290.

[12] Leveson, N. Safeware: System Safety and
Computers. Addison-Wesley Publishing Company.
1995.

[13] Liu, L., Yu, E., Mylopoulos, J. Analyzing Security
Requirements as Relationships Among Strategic
Actors. 2nd Symposium on Requirements
Engineering for Information Security (SREIS'02).
Raleigh, North Carolina, October 16, 2002.

[14] McDermott, J., Fox, C. Using Abuse Case Models
for Security Requirements Analysis. Proceedings

15th IEEE Annual Computer Security Applications
Conference. 1999.

[15] Mylopoulos, J., Borgida, A., Jarke, M. and
Koubarakis, M. Telos: Representing Knowledge
About Information Systems. ACM Transactions on
Information Systems 8(4), October 1990.

[16] Sandhu, R. S., Coyne, E.J., Feinstein, H.L.,
Youman, C.E. Role-Based Access Control Models.
IEEE Computer, Vol.29, No.2, Feburary 1996. pp.
38-47.

[17] Sandhu, R. eds. Special Issue: The Technology of
Trust. IEEE Internet Computing,
November/December 2002. pp. 28-53.

[18] Schneier, B. Attack Trees Modeling Security
Threats. Dr. Dobb’s Journal, December 1999. Also
available at:
http://www.counterpane.com/attacktrees-ddj-ft.html.

[19] Sindre, G., Opdahl, A.L. Templates for Misuse Case
Description. Proceedings of the 7th International
Workshop on Requirements Engineering,
Foundation for Software Quality (REFSQ'2001),
Switzerland, June 4-5, 2001.

[20] Szolovits, P., Doyle, J., Long, W.J. Guardian Angel:
Patient-Centered Health Information Systems.
Technical Report MIT/LCS/TR-604. Available at:
http://www.ga.org/ga.

[21] van Lamsweerde, A. and Letier, E. Handling
Obstacles in Goal-oriented Requirements
Engineering. IEEE Transactions on Software
Engineering, 26(10). 2000.

[22] Yu, E. Towards Modeling and Reasoning Support
for Early-Phase Requirements Engineering.
Proceedings of the 3rd IEEE International
Symposium on Requirements Engineering (RE'97)
Jan. 6-8, 1997, Washington D.C., USA. pp.226-235.

[23] Yu, E., Cysneiros, L. Designing for Privacy and
Other Competing Requirements. 2nd Symposium on
Requirements Engineering for Information Security
(SREIS'02). Raleigh, North Carolina, October 16,
2002.

[24] Yu, E. and Liu, L. Modeling Trust for System
Design Using the i* Strategic Actors Framework. In:
Trust in Cyber-Societies - Integrating the Human
and Artificial Perspectives. R. Falcone, M. Singh,
Y.H. Tan, eds. LNAI-2246. Springer,2001. pp.175-
194.

[25] Yu, E., Liu, L., Li, Y. Modeling Strategic Actor
Relationships to Support Intellectual Property
Management. 20th International Conference on
Conceptual Modeling (ER-2001). Yokohama, Japan,
November 27-30, 2001. LNCS 2224 Spring Verlag.
pp. 164-178.

http://sirius.cs.ucdavis.edu/publications/jcs1.pdf

	INTRODUCTION
	Domain Requirements Analysis with i*
	Security Requirements Analysis with i*
	3.1Attacker Analysis
	3.2 Dependency Vulnerability Analysis
	3.3 Countermeasure Analysis
	3.4 Access Control Analysis

	Model Evaluation Techniques
	4.1 Goal-Based Evaluation
	4.2 Access Permission Verification

	Related Work
	Discussion
	References:

