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Bärenfänger, Maja
Applied and Computational Linguistics,
Justus Liebig University
Gießen, Germany
E-mail: Maja.Baerenfaenger@germanistik.

uni-giessen.de

Beißwenger, Michael
Institute for German Language and
Literature, TU Dortmund University
Dortmund, Germany
E-mail:
michael.beisswenger@tu-dortmund.de

Bieler, Heike
Applied Computational Linguistics,
University of Potsdam
Potsdam, Germany
E-mail: bieler@uni-potsdam.de

Boyd-Graber, Jordan
School of Information Studies,
University of Maryland
College Park MD, USA
E-mail: jbg@umiacs.umd.edu

Chamberlain, Jon
School of Computer Science and Electronic
Engineering, University of Essex
Colchester, United Kingdom
E-mail: jchamb@essex.ac.uk

Cramer, Irene
Institute for German Language and
Literature, TU Dortmund University

Dortmund, Germany
E-mail: irene.cramer@tu-dortmund.de

Denoyer, Ludovic
Computer Science Laboratory,
University of Paris 6
Paris, France
E-mail: ludovic.denoyer@lip6.fr

Diewald, Nils
Faculty of Technology, Bielefeld University
Bielefeld, Germany
E-mail: nils.diewald@uni-bielefeld.de

Fellbaum, Christiane
Department of Computer Science,
Princeton University
Princeton NJ, USA
E-mail: fellbaum@princeton.edu

Gallinari, Patrick
Computer Science Laboratory,
University of Paris 6
Paris, France
E-mail: patrick.gallinari@lip6.fr

Geibel, Peter
Electrical Engineering and Computer
Sciences, Technical University Berlin
Berlin, Germany
E-mail: info@peter-geibel.de

Goecke, Daniela
Faculty of Linguistics and Literary Studies,
Bielefeld University, Bielefeld, Germany
E-mail: daniela.goecke@uni-bielefeld.de



XIV List of Contributors

Heyer, Gerhard
Institut for Computer Science,
Leipzig University
Leipzig, Germany
E-mail: heyer@informatik.uni-leipzig.de

Hilbert, Mirco
Applied and Computational Linguistics,
Justus Liebig University
Gießen, Germany
E-mail: Mirco.Hilbert@germanistik.

uni-giessen.de

Hirst, Graeme
Department of Computer Science,
University of Toronto
Toronto, Ontario, Canada
E-mail: gh@cs.toronto.edu

Huitfeldt, Claus
Department of Philosophy,
University of Bergen
Bergen, Norway
E-mail: Claus.Huitfeldt@fof.uib.no

Jettka, Daniel
Faculty of Linguistics and Literary Studies,
Bielefeld University
Bielefeld, Germany
E-mail: daniel.jettka@uni-bielefeld.de

Kracht, Marcus
Faculty of Linguistics and Literary Studies,
Bielefeld University
Bielefeld, Germany
E-mail: marcus.kracht@uni-bielefeld.de

Konya, Iuliu Vasile
Fraunhofer Institute for Intelligent Analysis
and Informations Systems IAIS
Schloss Birlinghoven, Germany
E-mail:
iuliu.vasile.konya@iais.fraunhofer.de

Kruschwitz, Udo
School of Computer Science and Electronic
Engineering, University of Essex
Colchester, United Kingdom
E-mail: udo@essex.ac.uk
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Chapter 1
Introduction: Modeling, Learning and
Processing of Text-Technological Data
Structures

Alexander Mehler, Kai-Uwe Kühnberger, Henning Lobin, Harald Lüngen,
Angelika Storrer, and Andreas Witt

1.1 Textual Units as Data Structures

Researchers in many disciplines, sometimes working in close cooperation, have
been concerned with modeling textual data in order to account for texts as the prime
information unit of written communication. The list of disciplines includes com-
puter science and linguistics as well as more specialized disciplines like computa-
tional linguistics and text technology. What many of these efforts have in common
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2 A. Mehler et al.

is the aim to model textual data by means of abstract data types or data structures1

that support at least the semi-automatic processing of texts in any area of written
communication.2

Generally speaking, an abstract data type is a mathematical model of a certain
range of data together with operations defined on that model in such a way that they
can be performed automatically on the data [2]. From this point of view, natural lan-
guage texts are a very special sort of data that requires very specific data structures
for being processed automatically – of course, there is no single data structure that
can model all aspects of natural language texts. A central characteristic of this task
is structural uncertainty.

Structural Uncertainty

In order to understand this notion, take the example of a tree-like model of text
structure as proposed, for example, by Rhetorical Structure Theory (RST) [7]. Any
text can be made an object of operations (e.g., linkage of text spans) related to
this data structure by virtue of interpreting (e.g., delimiting) its constituents (e.g.,
text spans). However, due to the semiotic nature of natural language texts, this
interpretation is, in principle, open, that is, not necessarily determined by the data
itself. Moreover, the relevant context that allows for determining this interpretation
is not necessarily known in advance, nor fixed once and for all. Take the example of
rhetorical structure as modeled in RST: on the one hand, there is disagreement on
the range of rhetorical relations that can actually hold between text spans [8]. On
the other hand, there is uncertainty about which relation actually holds between a
given pair of spans – even if the set of rhetorical relations is fixed in advance – a
problem known as inter-annotator disagreement [3]: often, humans diverge in their
interpretation of the same data with respect to the same data structure.

In other words, the way textual data is structured is not necessarily clear from
the data itself. It may be the result of semantic or even pragmatic interpretations
that are ultimately carried out by humans going beyond (and possibly far beyond)
the linguistic context of the data to be interpreted. As a consequence, the structure
of a given text as an instance of a given data structure can be very uncertain as this
structure does not need to be reflected by the text’s constituents in an obvious way.3

Thus, the semi-automatic or even manual annotation of textual data, that is, its
informational enrichment to make its structure explicit according to the underly-
ing data structure, is a central task of text technology and related disciplines. This
also includes linking textual data with other linguistic resources. Any such anno-
tation and linkage, whether done manually, semi-automatically, or fully automati-
cally, would support various tasks of text processing (e.g., information extraction
[10], text categorization [9], text mining [4], text summarization [6], topic modeling

1 In this chapter, we use these terms interchangeably.
2 Throughout this volume, we concentrate on written communication.
3 This sort of structural uncertainty should not be confused with the notion of semi-

structured data [1, 10].
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[5], or discourse parsing [8]). Any of these tasks requires expressive data structures
in conjunction with efficient operations that together allow for moving closer to the
goal of automating text processing.

This book, “Modeling, Learning and Processing of Text-Technological Data
Structures”, deals with such data structures. Here we focus on theoretical foun-
dations of representing natural language texts as well as on concrete operations of
automatic text processing. Following this integrated approach, the present volume
includes contributions to a wide range of topics in the context of processing of tex-
tual data. This relates to the learning of ontologies from natural language texts,
annotation and automatic parsing of texts as well as the detection and tracking of
topics in texts and hypertexts. In a nutshell, the book brings together a wide range
of approaches to procedural aspects of text technology as an emerging scientific
discipline. It includes contributions to the following areas:

• formalizing annotations of textual units
• extracting knowledge and mining ontologies from texts
• building lexical and terminological resources
• machine learning of document structures
• classifying and categorizing texts
• detecting and tracking topics in texts
• parsing discourse

This book addresses researchers who want to get familiar with theoretical de-
velopments, computational models and their empirical evaluation in these fields of
research. It is intended for all those who are interested in standards of representing
textual data structures, the use of these data structures in various fields of appli-
cation (such as topic tracking, ontology learning and document classification) and
their formal-mathematical modeling. In this sense, the volume concerns readers
from many disciplines such as text and language technology, natural language pro-
cessing, computational linguistics and computer science.

1.2 Overview of the Book

1.2.1 Text Parsing: Data Structures, Architecture and Evaluation

Part I of the volume focuses on the automatic analysis of text structure. By analogy
to the analysis of sentence structure, it is often called text or discourse parsing. Fun-
damental aspects of text parsing are the data structures used, principles of system
architecture, and the evaluation of these parsing systems.

The first chapter on “The MOTS Workbench” by Manfred Stede and Heike Bieler
deals with the standardization of processing frameworks for text documents – an
important issue for language technology for quite some time. The authors examine
one particular framework, the MOTS workbench, and describe the overall architec-
ture, the analysis modules that have been integrated into the workbench, and the
user interface. After five years of experience with this workbench, they provide a
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critical evaluation of its underlying design decisions and draw conclusions for future
development.

The second chapter, “Processing Text-Technological Resources in Discourse
Parsing” by Henning Lobin, Harald Lüngen, Mirco Hilbert and Maja Bärenfänger,
investigates discourse parsing of complex text types such as scientific research ar-
ticles. Discourse parsing is seen from a text-technological point of view as the
addition of a new layer of structural annotation for input documents already marked
up on several linguistic annotation levels. The GAP parser described in this chap-
ter generates discourse structures according to a relational model of text structure,
Rhetorical Structure Theory. The authors also provide an evaluation of the parser by
comparing it with reference annotations and with recently developed systems with
a similar task. In general, both chapters show that text or discourse parsing is no
longer of purely experimental interest, but can yield useful results in the analysis of
huge amounts of textual data. This will eventually lead to parsing applications that
pave the way to new generations of content-based processing of documents in text
technology.

1.2.2 Measuring Semantic Distance: Methods, Resources, and
Applications

The determination of semantic distance between lexical units is crucial for vari-
ous applications of natural language processing; in the context of text technology
semantic distance measures were used to reconstruct (and annotate) cohesive and
thematic text structures by means of so-called lexical chains. The two contribu-
tions of Part II deal with methods and resources to determine semantic distance and
semantic similarity in different application contexts.

In their chapter, “Semantic distance measures with distributional profiles of
coarse-grained concepts”, Graeme Hirst and Saif Mohammad first provide an
overview of NLP applications using such measures. Then, they group the vari-
ous approaches to calculate semantic distance into two classes: (1) resource-based
measures which determine semantic distance by means of the structure of lexical
resources such as thesauruses or word-nets; (2) distributional measures which com-
pare distributional profiles of lexical units generated on the basis of text corpora.
The authors list the strengths and limitations of the two measure classes and pro-
pose, as an alternative, a hybrid method which calculates distributional profiles not
for word forms but for coarse-grained concepts defined on the basis of Roget-style
thesaurus categories, disambiguating words attached to more than one concept with
a bootstrapping approach. The evaluation results discussed in Section 3 of this chap-
ter indicate that their concept-based hybrid method (using the BNC as a corpus and
the Macquarie Thesaurus as a lexical resource) performs considerably better than
the word-based distributional approach. However, the performance is still not at the
level of the best resource-based measure obtained by using the Princeton WordNet
as the lexical resource. However, not all languages dispose of resources with the
coverage and quality of the Princeton WordNet. The authors show that for such
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languages, a good alternative might be an extension of their method which links
the concepts of the English thesaurus to a bilingual lexicon with English as the tar-
get language. This can then generate concept-based distributional profiles for the
lexicon’s source language. This extended method was tested for German, using the
bilingual lexicon BEOLINGUS and the taz-Corpus as resources. In the comparative
evaluation, presented in Section 5.2 of the chapter, the extended method performed
even better than the resource-based approach using the German word-net-style re-
source GermaNet. In their final section, the authors show how another extension
of the concept-based method may help to determine different degrees of antonymy
between pairs of lexical units in text corpora.

The Princeton WordNet has proven to be a widely-used and valuable lexical
resource not only for computing semantic distance but for a broad range of other nat-
ural language processing applications. However, some approaches profit from com-
plementing the part-of-speech-specific WordNet relations by cross-part-of-speech
links between semantically similar and strongly associated concepts (like [dog]
and [to bark], or [sky] and [blue]). In their chapter “Collecting Similarity Ratings
to Connect Concepts in Assistive Communication Tools”, Sonya Nikolova, Jordan
Boyd-Graber, and Christiane Fellbaum describe such an application context: the
structuring of the vocabulary in assistive communication tools, such that people
with aphasia can retrieve words that express the concepts they want to communi-
cate. In the multi-modal visual vocabulary component for these tools, concepts
are represented in combination with pictures and sounds. With each concept being
mapped to a core set of the Princeton WordNet, navigating through the vocabulary
can be improved using WordNet’s semantic and lexical relations between words
and concepts. The authors identify the need to establish additional links between
concepts which are strongly associated with each other in a specific context, based
on human judgments on the strength of association between disambiguated words.
Since experiments to gain such judgments in controlled studies with trained persons
have proven to be time-consuming and expensive, the authors have developed and
tested an alternative method using Amazon Mechanical Turk. The results of their
experiments indicate that this method is indeed feasible for gathering a large num-
ber of association ratings at low cost and in a short amount of time, provided that
reliability checks are applied to filter out invalid ratings.

1.2.3 From Textual Data to Ontologies, from Ontologies to
Textual Data

Part III, “From Textual Data to Ontologies, from Ontologies to Textual Data”, con-
tains chapters that focus on semantic issues in text technology. Centered on the
current standard of using ontologies for the coding of conceptual knowledge, this
part covers semantic resources and cognitive constraints in the process of ontology
creation by presenting a formal specification of the semantics of current markup
standards and by proposing a general framework for the extraction and adaptation
of ontological knowledge in text-technological applications.
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Alessandro Oltramari’s chapter “An Introduction to Hybrid Semantics: the Role
of Cognition in Semantic Resources” argues, in a detailed way, for the considera-
tion of cognitive structures and cognitive constraints in semantic technologies and,
in particular, the process of ontology creation. The author argues that semantic ap-
proaches in text technology need to be enriched by modules that are informed by
the cognitive structure of conceptualizations.

The chapter “Modal Logic Foundations of Markup Structures in Annotation
Systems” by Marcus Kracht shows that it is useful to study connections between
Markup languages and logical characterizations of these languages. The chapter
shows, for example, that it is possible to derive complexity results of the query lan-
guage XPath by simply transferring well-known model theoretic results of Proposi-
tional Dynamic Logic (PDL) to XPath.

The third chapter entitled “Adaptation of Ontological Knowledge from Structured
Textual Data” by Tonio Wandmacher, Ekaterina Ovchinnikova, Uwe Mönnich, Jens
Michaelis, and Kai-Uwe Kühnberger presents a general framework for the extrac-
tion of semantic knowledge from syntactically given information. The authors de-
scribe the transformation of this information to a logical representation and the
adaptation of ontological knowledge using this new information. The framework
builds on many well-known technologies and tools as, for example, WordNet and
FrameNet. Further, it also builds on reasoning in description logic.

1.2.4 Multidimensional Representations: Solutions for Complex
Markup

Text enrichment by the substantial addition of markup is one of the characteristics
of the application of text-technological methods. Part IV – “Multidimensional rep-
resentations: Solutions for complex markup” – addresses problems related to the
creation, interpretation, and interchange of richly annotated textual resources. This
part includes one chapter devoted to general problems of annotated documents, and
two case studies that reveal insights into specific aspects of creating and representing
annotations. The chapter “Ten problems in the interpretation of XML documents”
by C. M. Sperberg-McQueen and Claus Huitfeldt examines questions related to the
semantics of document markup. The problems addressed in this chapter are related
to a formalization of the interpretation of annotations. The aim of this formalization
is, as it is quite often in computational linguistics and text technology, to enhance
the specification of algorithms for an automatic processing of potentially richly an-
notated resources. The methodology presented is based on a mapping from XML
annotations to predicates of first-order logic. As the title indicates, the main part
of the chapter focuses on the problems which arise when transforming markup into
formulas of a logical calculus. The problems discussed concern the arity of state-
ments, the form of inference rules, deictic reference to other parts of the document,
the inheritance of properties and how to override them, the treatment of a union of
properties with conflicting values, the treatment of milestone elements, the defini-
tion of the universe of discourse, the occurrence of definite descriptions and multiple
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references to the same individual, and the recording of uncertainty and responsibil-
ity. For each of these items, a description of the problem is presented along with a
proposal of a corresponding solution.

The second chapter in Part IV is entitled “Markup Infrastructure for the
Anaphoric Bank: Supporting Web Collaboration”. The authors Massimo Poesio,
Nils Diewald, Maik Stührenberg, Jon Chamberlain, Daniel Jettka, Daniela Goecke,
and Udo Kruschwitz focus on the creation of specific high-quality annotations, and
their publication. A collaborative approach is taken for the annotation process de-
scribed in this chapter. Two different methods have been developed to support an-
notators. The first method is based on the special purpose editor Serengeti, a web
application for modern browsers. Tools like this facilitate the process of annota-
tion considerably, but they require expert knowledge. Since non-expert users could
also provide high-quality annotations, a second method was also used. The anno-
tations of the non-experts are produced by means of a game in which, e.g., a user
tries to find the correct antecedents of an anaphora. All the annotated corpora are
accessible through the web. The structure of the annotated resources is based on an
XML-conformant markup scheme that makes use of the stand-off technique. This
format is imported into a relational database system that allows for fast access to the
data.

Part IV closes with the chapter “Integrated Linguistic Annotation Models and
their Application in the Domain of Antecedent Detection” by Andreas Witt, Maik
Stührenberg, Daniela Goecke, and Dieter Metzing. It deals with potential benefits
of using information about the logical document structure for the task of anaphora
resolution. Even though the investigations of these effects show only a weak influ-
ence of the logical document structure for the task (as reported in this chapter), the
findings give insights into complex markup and multidimensional representations.
The ways to integrate different information types in text resources are discussed at
length. The discussion is based on a corpus study with a focus on logical document
structure and anaphoric relations in texts. To do this study, the texts in the corpus
were annotated according to the annotation schemes for these two different levels
of information. The level of logical document structure was annotated according to
a document grammar that uses elements from the wide-spread annotation schemes
XHTML and DocBook. The other level covers the annotation of anaphoric ele-
ments, antecedents and the types of anaphoric relations. The semi-manual annota-
tion of this anaphora level was carried out with the help of the special purpose editor
Serengeti. From the point of view of multidimensional representation by means of
complex markup, this chapter on the one hand presents techniques that allow for
the integration of heterogeneous types of annotations in a single representation. On
the other hand it presents a corpus study that investigates the interaction between
diverse levels of information. The methodology described could also be adapted to
examine the existence of interrelations between different linguistic levels.
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1.2.5 Document Structure Learning

The chapters in Part V of the volume deal with document structure learning. One
of the chapters focuses on “classical” texts, all other chapters deal with web docu-
ments. In this way, Part V includes models of learning the structure of texts and of
hypertexts. In both cases, the Logical Document Structure (LDS) of a textual unit is
used as a reference point for learning. In the case of texts, the LDS can be identified
with their hierarchical division into sections, subsections, etc. down to the level of
sentences and their lexical constituents. In the case of hypertexts, things are more
complicated since hyperlinks give rise to non-hierarchical, network-like structures.

Note that the LDS is used as the reference point of many text-linguistic models
that focus, for example, on rhetorical, argumentative or thematic structures. How-
ever, approaches to information retrieval that aim to go beyond the bag-of-words
approach are likewise in need of models of logical document structure that can be
easily induced from text instances. The chapter “Machine Learning for Document
Structure Recognition” by Gerhard Paaß and Iuliu Konya describes approaches in
this field of research. Based on the notion of a Minimum Spanning Tree (MST), the
chapter describes an algorithm of layout-based document analysis that processes
images of document pages to identify their LDS. As a matter of fact, this approach
to logical layout analysis is highly important in the field of digitizing historical
documents. However, a central problem of structure recognition relates to the vari-
ability of layout-based cues of document structuring. In order to tackle this chal-
lenge, approaches to machine learning are needed that deal with the uncertainty of
layout-related manifestations of the LDS. Following this idea, the chapter reviews
and describes approaches to document structure recognition that utilize Conditional
Random Fields (CRF) as a learning method. Both classes of approaches, the MST-
and the CRF-based approaches, are discussed in terms of their F-measure-related
evaluation.

The variety of layout structures is one source of the uncertainty about the struc-
ture of non-digitized documents. A related problem concerns the variety of formats
that are used to represent already digitized documents, say, by means of (X)HTML,
XML-DTD, or XML Schema. Moreover, for a wide range of semi-structured docu-
ments on the web, which have multiple sources and undergo frequent changes, one
has no access to the underlying document schema (if such a schema exists at all).
The chapter “Corpus-Based Structure Mapping of XML Document Corpora: A Re-
inforcement Learning based Model” by Francis Maes, Ludovic Denoyer, and Patrick
Gallinari addresses this kind of structural variety. Starting from a document-centric
perspective, they introduce an algorithm for automatically mapping documents that
vary only by their format onto a mediating schema, which expresses the structural
unity of these input documents. The algorithm for aligning documents by their
structure works on a set of pairs of input-output documents and, thus, is supervised.
The chapter provides an extensive evaluation of this approach by means of five dif-
ferent corpora including a corpus of documents from Wikipedia. These experiments
show that generic models of learning web document structure are possible. This, in
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turn, focuses on one of the challenges of exploring information from the web that is
restricted by the variety of document formats and schemata in use.

What makes the web unique in terms of document structure is its hyperlink-based
structuring. That is, as instances of webgenres (i.e., types of web documents by
analogy to text types), websites usually consist of several pages that are connected
by hyperlinks. From a formal point of view, such documents can be seen as a special
class of graphs with an internal hierarchical structure that is superimposed by graph-
inducing links. Starting from this notion, the chapter “Learning Methods for Graph
Models of Document Structure” by Peter Geibel, Alexander Mehler and Kai-Uwe
Kühnberger describes two approaches to learning web document structures. First,
it describes a range of kernel-based approaches that utilize structure-related kernels
to build supervised classifiers of webgenres. The chapter then adopts quantitative
structure analysis in order to arrive at an unsupervised classifier of the same range
of webgenres. Using a corpus of three webgenres, the chapter provides empirical
evidence into the learnability of hyperlink-based document structures on the level
of websites.

A central aspect of learning web document structures is given by their inter-
nal and external structuring. More specifically, instances of webgenres are man-
ifested by page-level units as well as by units across the border of single pages.
Consequently, when trying to automatically delimit instances of webgenres, one
has to process document-internal as well as document-external structures, whether
hyperlink-based or not. The chapter “Integrating Content and Structure Learning: A
Model of Hypertext Zoning and Sounding” by Alexander Mehler and Ulli Waltinger
tackles this task. By integrating web content and structure mining, it introduces a
classifier of page-internal, webgenre-specific staging together with an unsupervised
algorithm of content tagging that utilizes Wikipedia as a social-semantic resource.
In this way, the chapter focuses on the task of hypertext zoning, that is, of delimit-
ing webgenre instances based on their content and structure. The chapter ends by
outlining an approach to estimate bounds of thematic sounding in Wikipedia.

1.2.6 Interfacing Textual Data, Ontological Resources and
Document Parsing

The three chapters in Part VI deal with the extraction of semantic relations from
text, the evaluation of measures of the semantic relatedness of lexemes using lin-
guistic resources, and the modeling of WordNet-like resources in a formalism for
the representation of ontologies. Semantic relations include lexical-semantic rela-
tions like antonymy and meronymy, but also a more general semantic relatedness
relation sometimes called association, or evocation.

The chapter “Exploring Resources for Lexical Chaining: A Comparison of Au-
tomated Semantic Relatedness Measures and Human Judgments” by Irene Cramer,
Tonio Wandmacher, and Ulli Waltinger gives an overview of 16 different measures
of semantic relatedness using four types of linguistic resources in their calculations.
They categorize the measures according to three types, that is, net-based measures,
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distributional measures, and Wikipedia-based measures, and evaluate them by com-
paring their performance with human judgments on two lists of word pairs. The re-
sults show that among the three types of measures, distributional measures perform
better than the other two types, while in general the correlations of all 16 measures
with human judgments are not high enough to accurately model lexical cohesion as
perceived by humans. In their conclusion, Cramer et al. argue that more research is
needed in order to come up with a sounder theoretical foundation of semantic relat-
edness and to determine what kind of resource should be employed for what kind of
task. To further these directions of research, they argue for the definition of a shared
task by the research community.

The chapter “Learning Semantic Relations from Text” by Gerhard Heyer de-
scribes semantic relations in terms of the traditional structuralist notions of syntag-
matic and paradigmatic relations between words. Accordingly, wordforms stand in a
paradigmatic relation if their global contexts (statistically relevant syntagmatic rela-
tions captured in a co-occurrence set) are similar according to some (distributional)
similarity measure. Semantic relations such as the hyponymy relation can then be
derived by applying linguistic filters or constraints on the similarity measure. Two
applications of iterative filtering and refining global contexts of words are exempli-
fied, namely word sense disambiguation, and the identification of (near) synonymy.
Heyer also sketches a language-independent, modular, web-service-oriented archi-
tecture for interactively learning semantic relations.

One type of resource frequently used in the calculation of semantic related-
ness is lexical-semantic networks such as the Princeton WordNet for English. Re-
cently, suggestions have been made to represent wordnets in formalisms designed
for the representation of ontologies in order to provide better interoperability among
lexical-semantic resources and to make them available for the Semantic Web. In
their chapter – “Modelling and Processing Wordnets in OWL” – Harald Lüngen,
Michael Beißwenger, Bianca Selzam, and Angelika Storrer argue that when model-
ing wordnets in OWL, it has to be decided whether to adhere to either a class model,
an instance model, or a metaclass model. They discuss and compare the features of
these three models by the example of the two resources GermaNet and TermNet. In
several experiments, each model is assessed for its performance when querying and
processing it in the context of automatic hyperlinking. Because of its compatibility
with notions from traditional lexical semantics, they favor the metaclass model.
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Chapter 2
The MOTS Workbench

Manfred Stede and Heike Bieler

Abstract. Standardization of processing frameworks for text documents has been
an important issue for language technology for quite some time. This paper states
the motivation for one particular framework, the MOTS workbench, which has been
under development at Potsdam University since 2005 for purposes of research and
teaching. We describe the overall architecture, the analysis modules that have been
integrated into the workbench, and the user interface. Finally, after five years of
experiences with MOTS, we provide a critical evaluation of the design decisions
that were taken and draw conclusions for future development.

2.1 Introduction and Overview

The development of general frameworks for quickly configuring natural language
processing (NLP) applications started in the 1990s, with the release of GATE in
1996 being the most significant first milestone [6]. Nowadays, several of such
frameworks are in successful use; we will provide a brief overview in Section
2.2. Our aim in this paper is to provide a description and critical review of our
own framework, which has been implemented at Potsdam University since 2005.
The MOTS (MOdular Text processing System) Workbench was devised as a frame-
work1 for integrating diverse NLP modules by means of a specific standoff XML
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components is ‘middleware’. When graphical tools for configuring and testing systems
are being added, the framework turns into a ‘development system’; MOTS provides a first
step here but does not go all the way, as will become clear later.
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format that serves as “interlingua” or “pivot” format to mediate between modules.
An important goal in designing this format (called PAULA for ‘Potsdamer Aus-
tauschformat für Linguistische Annotation’) was to serve both the worlds of manual
annotation and of automatic processing:

• Manual annotation, in our setting, primarily serves the needs of a large collabo-
rative research center on information structure (IS), where data of very different
kinds and in different languages was hand-annotated with different types of in-
formation that can support IS research. Heterogeneity thus is a key concept here.
The different annotation needs are best suited by different existing tools, which
can be used to label the same data from different viewpoints. The challenge
then is to merge the output formats of the annotation tools into a single linguistic
database, where the data can be queried across the layers in order to check for
correlations of features. This setting is described in detail in [4]

• Automatic processing, the focus of the present paper, was conceived in the same
way: analysis modules contribute separate layers of annotation to a text docu-
ment, and – in addition – a module in charge of a “complex” task should be able
to access the results of modules that have already solved a less complex task.
Thus layers of analysis are being stacked upon each other, and each layer can be
stored in the PAULA format.

The basic idea therefore was to realize a layer-based annotation of text data, where
layers might either be independent or in their annotations refer to other layers, and
where the origin of the layer (manual annotation or automatic analysis) would not
matter. Our emphasis on an XML-based pivot format results on the one hand from
the need to make the output of manual annotation tools (such as MMAX2, EX-
MARaLDA, RSTTool, ANNOTATE) inter-operable, and on the other hand from
the desire to integrate automatic analysis tools written in arbitrary programming
languages – at present, MOTS includes modules written in Java, C, C++, Lisp, Perl,
and Python.

A common problem for integrative approaches of the kind described here is to
ensure that all annotations refer correctly to the intended spans of text. Our ap-
proach is to submit each incoming document to a preprocessing phase where sen-
tence splitting and tokenisation is performed, and the basic layout of the document
represented in a light-weight XML “logical document structure” format (henceforth
called ‘LDOC’). The sentence and token boundaries are then enforced for all other
modules – which can be difficult to do when integrating external modules that per-
form their own tokenization, thus generating the need for synchronization. One ad-
vantage of the standardized LDOC base format is that different types of documents
(XML, HTML, plain text) can all be translated to LDOC during preprocessing, so
that all subsequent analysis modules are not being bothered by idiosyncratic data
formats.

The first task that MOTS was designed for was automatic text summarization.
Our user interface thus was given the job to not only show all the intermediate
analysis results (for debugging purposes) but also to allow for a flexible visual-
ization of summaries (extracts) of different lengths. From the outset, we targeted a
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web-based UI, as development of the text summarizer involved external project part-
ners who had to have quick access to our results. This decision was also supported
(and proved very helpful) by the desire to use MOTS also for teaching purposes:
In classes on NLP and text analysis, results can be shown and compared, and new
modules implemented by students be integrated into the framework with relatively
little effort. In this sense, we see MOTS as a ‘workbench’: a flexible environment
for combining NLP modules and showing results. However, MOTS was not con-
ceived as a framework for building real-time or even industry-standard applications
– which is why we use the term ‘NLP workbench’ rather than ‘Language Engineer-
ing (LE) workbench’.

Having described the “starting position” of the MOTS development, we now
turn first to a brief review of related approaches along with a comparison to MOTS
(section 2.2). Afterwards, we provide a description of the PAULA XML format
(section 2.3) and give overviews of the overall architecture of the processing pipeline
(section 2.4), the analysis modules we have integrated so far (section 2.5), and the
user interface (section 2.6). Finally, we mention some ongoing work on MOTS, and
provide a critical evaluation of the design decisions in the light of several years of
experience with the system (section 2.7).

2.2 Background: Natural Language Processing Frameworks

The central task of an NLP framework is to support an effective re-use of processing
modules – usually called components when part of a framework – and possibly also
of linguistic (data) resources, and their flexible re-combination to systems made up
of a particular set of components. Thus, a component would be in charge of a partic-
ular subtask, and the composition of the subtasks to the overall application is being
designed with the help of the framework, which ensures the inter-operability of com-
ponents. One of the first major steps to the design of such frameworks for language
processing was the TIPSTER architecture [13], conceived at the time primarily for
the task of information extraction. In general, we can distinguish between frame-
works aiming primarily at document processing and handling rather diverse types
of information, and those focusing more specifically on linguistic analysis, empha-
sizing the role of unifying formalisms for representing information and performing
computations. A recent example for the latter is ‘Heart of Gold’ [19]; our focus in
this paper, however, is on the former group.

When devising GATE2, [5] characterized the basic design decision as one be-
tween the ‘embedded’ and the ‘referential’ type of annotation (p. 98), where the
former was represented by SGML “inline” markup in the document itself, and the
latter by a database model where columns in the table represent annotations refer-
ring to sequences of characters in the source document – i.e., the TIPSTER ap-
proach. GATE adopted the database solution, mainly because it seemed to provide

2 http://gate.ac.uk

http://gate.ac.uk
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more efficient access in comparison to the inherently sequential data storage using
SGML, and because of the possibility to represent graph structures in the annota-
tions. Nowadays, SGML inline markup has developed to XML standoff markup,
where each layer of annotation resides in a separate file, the source text document
remains unchanged, and annotations merely refer to it (borrowing from TIPSTER’s
idea of the database table). This allows for more flexibility in the annotations (e.g., it
is possible to represent overlapping spans) and it also allows for representing graph
structures; this has been suggested in the Linguistic Annotation Format (LAF, [15])
as well as in PAULA, and it is the approach pursued in MOTS, as will be explained
in the next section.

Apart from this difference in basic design, MOTS obviously is a much more
modest endeavour than GATE. For one thing, at the moment we provide only single-
document processing, so there is no corpus management facility. For the time be-
ing, MOTS offers neither a systematic description of component behaviour nor a
treatment of linguistic non-processing resources (e.g., lexicons), as it has been in-
troduced in version 2 of GATE. More importantly, as will become clear in Section
2.5, a unified access to the analysis results of the components is only now becoming
available in the form of a Java API; apart from that, components need to parse the
standoff representations and extract the required data themselves.

Another important issue for NLP frameworks is their providing for distributed
and/or parallel processing. Regarding distribution, the introduction of service ori-
ented architectures and in particular web services was a very influential development
in recent years, and it is beginning to play a more important role in language pro-
cessing as well. The possibility of flexibly coupling services that do not have to
be locally installed can speed up the prototyping of NLP applications significantly
(but, on the other hand, it of course may slow down execution speed); notable exam-
ples are the web services provided by the project Deutscher Wortschatz at Leipzig
University.3 The MOTS approach of exchanging analysis results via standoff XML
annotations makes the integration of external services quite straightforward – they
can be wrapped in much the same way as modules running on the local machine.

Non-linear execution, on the other hand, is as of today not a standard feature
in NLP frameworks. Various proposals had been made in the 1990s, among them
the PVM-based ICE manager [1] in the Verbmobil project. Today, however, the
well-known and widely-used frameworks LT-XML24 and GATE realize strictly se-
quential “pipe/filter” architectures. So does MOTS, and at the moment it gives the
user only limited means to influence the processing chain: In contrast to, for exam-
ple, the possibility of dynamically adding components and menu-based construction
of processes in GATE, we merely allow for selecting the modules that are to take
part in the process from a hard-wired list – the user can thus activate modules, while
MOTS ensures the well-formedness of the resulting chain (keeping track of depen-
dencies).

3 http://wortschatz.uni-leipzig.de/Webservices/
4 http://www.ltg.ed.ac.uk/software/ltxml2

http://wortschatz.uni-leipzig.de/Webservices/
http://www.ltg.ed.ac.uk/software/ltxml2
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Parallel processing is enabled in implementations of the Unstructured Informa-
tion Management Architecture (UIMA)5. This is the most ambitious approach, in
principle targeting not only text documents but other kinds of unstructured informa-
tion as well (audio, video), with the basic mission to turn unstructured into struc-
tured information (e.g., database tables). Though sharing many similarities with
GATE, UIMA is more explicitly oriented to scalable processing of vast amounts of
data, hence to the professional construction of language engineering applications. In
contrast to GATE, the basic unit of processing in UIMA is a general feature struc-
ture rather than an annotated text (which would be just one special kind of feature
structure). Also, these structures are strongly typed, requiring very explicit descrip-
tions of components’ interfaces. This clearly facilitates sharing of components (a
number of repositories already exist) but at the same time is not trivial and requires
negotiation between parties interested in using the components, possibly for quite
different purposes.

With its much more modest goals, the idea of MOTS is to provide a lean,
easy-to-use framework for effective development and testing of modules for single-
document processing, in the spirit of rapid prototyping. It is aimed explicitly at
research and teaching and not at building applications, so there is more emphasis on
simplicity than on performance.

2.3 The PAULA XML Format

The rationale behind our representation format PAULA6 (a German acronym for
‘Potsdam interchange format for linguistic annotation’) is the integration of different
annotation structures, whether resulting from manual or from automatic annotation.
With respect to manual annotation, we provide conversion tools that map the out-
put of the following tools to PAULA: annotate for syntax annotation; Palinka7 and
MMAX28 for discourse-level annotations such as co-reference; EXMARaLDA9 for
dialogue transcription and various layer-based annotations. The conversion scripts
are publicly available via the PAULA webpage: Users can upload their data and
annotations, and the data is converted automatically to PAULA. The mappings from
the tool outputs to our format are defined such that they only transfer the annota-
tions from one format into another without interpreting them or adding any kinds of
information.

5 http://incubator.apache.org/uima/
6 See [7] and
http://www.sfb632.uni-potsdam.de/projects/d1/paula/doc/

7 http://clg.wlv.ac.uk/projects/PALinkA/
8 http://mmax2.sourceforge.net
9 http://exmaralda.org

http://incubator.apache.org/uima/
http://www.sfb632.uni-potsdam.de/projects/d1/paula/doc/
http://clg.wlv.ac.uk/projects/PALinkA/
http://mmax2.sourceforge.net
http://exmaralda.org
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2.3.1 PAULA: Logical Structure

The conceptual structure of the PAULA format is represented by the PAULA Ob-
ject Model (POM). It operates on a labeled directed acyclic graph. Similar to the
NITE Object Model [12, NOM] and the GrAF data model [16], nodes correspond
to annotated structures, and edges define relationships between independent nodes.
Both nodes and edges are labeled, and generally, labels define the specifics of the
annotation. Nodes refer to other nodes, or point to a stream of primary data.

Besides labels that define concrete annotation values, a specialized set of labels
serves to indicate the type of an edge or a node. For a specific set of pre-defined edge
labels, POM defines the semantics of the relation expressed by the corresponding
edge. For instance, the dominance relation is characterized as a transitive, non-
reflexive, antisymmetric relation, which requires that the primary data covered by
the dominated node is covered by the dominating node as well. On the basis of these
dominance relations, tree structures can be represented, e.g. syntactic trees.

Another pre-defined edge type is reference, a non-reflexive, antisymmetric rela-
tion. Reference relations may occur with different annotation-specific labels. Ref-
erence relations with the same label, e.g. ‘anaphoric link’, or ‘dependency link’ are
also transitive. Reference relations serve to express, for instance, dependency trees,
coreference relations, or alignment of text spans in multilingual data.

The PAULA Object Model differs from related proposals, e.g. GrAF, in the def-
inition of explicit semantics for certain edge types. The specifications of the domi-
nance relation are comparable to the NITE Object Model, but while NOM focuses
on hierarchical annotation, POM also formulates the semantics of pointing relations.

On the basis of this general object model, annotation-specific data models are
then defined with reference to POM.

2.3.2 PAULA: Physical Structure

The elements of the PAULA representation format along with their corresponding
POM entities are given in Table 2.1. For illustration, Figure 2.1 shows a sample
annotation data set, as it is distributed across different layers (and files). The to-
ken layer, via xlink, identifies sequences of characters in the primary text files, and
thereby provides the ultimate reference objects (in POM, terminal nodes) for other
levels of annotation. We call such objects ‘markables’, and hence the token layer
is of type ‘mark list’. The POS (part of speech) layer, in contrast, does not define
new markables but merely provides labels to existing ones; its type therefore is ‘feat
list’. The sentence layer, not surprisingly, provides objects that are sequences of
tokens; these can then also be given attributes, such as the term relevance values in
our example (on the Term layer). Paragraphs are then represented as sequences of
sentences in the Div layer (see Section 2.4.1) and can in turn receive attributes, as
by the Zone layer in the example (see Section 2.5).
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Table 2.1 Predefined structure elements in the PAULA Object Model.

PAULA element POM entity
tok(en) terminal node
mark(able) non-terminal node (containing references to nodes)
struct(ure) non-terminal node (containing dominance relations to nodes)
rel(ation) within struct: dominance, otherwise reference relation
feat(ure) annotation label
multiFeat(ure) bundles of annotation labels

Fig. 2.1 Illustration of PAULA standoff annotation.
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Fig. 2.2 Example of a TIGER tree.

For the encoding of hierarchical structures, including labeled edges, PAULA pro-
vides the specific elements struct and rel. Like markables, a struct element
represents a node in POM, but in this case a node which is the parent node of a dom-
inance relation. The dominance relation is expressed by the rel element. An an-
notation example with hierarchical syntax annotation in the TIGER format is shown
in Figure 2.2. A PAULA struct element with its daughters corresponds to a local
TIGER subtree, i.e. a mother node and its immediate children. For instance, the



22 M. Stede and H. Bieler

subtree dominated by the first NP in Figure 2.2, sein Tod, ‘his death’, is represented
by a struct element that, via rel elements, embeds the daughter tokens with IDs
tok 26/27 (these are stored in a separate file called “tiger.ex.tok.xml”). The NP
subtree itself is dominated by another struct element, with ID const 14. feat
elements encode the categorial status of these subtrees, “NP” and “S” respectively,
and their grammatical functions. For example, the rel element with ID rel 39,
which connects the subtree of S with the subtree of the NP, is marked as “SB” rela-
tion by the feat element pointing to #rel 39.

File tiger.TIG49796.const.xml:
...
<struct id="const_11">

<rel id="rel_30" type="edge" xlink:href="tiger.ex.tok.xml#tok_26"/>
<!-- Sein -->

<rel id="rel_31" type="edge" xlink:href="tiger.ex.tok.xml#tok_27"/>
<!-- Tod -->

</struct>
<struct id="const_14">

<rel id="rel_38" type="edge" xlink:href="tiger.TIG49796.tok.xml#tok_28"/>
<!-- hatte-->

<rel id="rel_39" type="edge" xlink:href="#const_11"/>
<rel id="rel_40" type="edge" xlink:href="#const_13"/>

</struct>
...

File tiger.TIG49796.const˙cat.xml:
...
<feat xlink:href="#const_11" value="NP"/>
<feat xlink:href="#const_14" value="S"/>
...
File tiger.TIG49796.const˙func.xml:
...
<feat xlink:href="#rel_30" value="NK"/><!-- Sein -->
<feat xlink:href="#rel_31" value="NK"/><!-- Tod -->
<feat xlink:href="#rel_39" value="SB"/>
...

A consequence of the decision to have annotations point – possibly by transi-
tivity – to tokens is that the information cannot be directly read off in the opposite
directions, i.e., for a particular token we do not represent explicit links to all its an-
notations. If needed, this has to be computed by traversing the various annotation
layers, which is a functionality provided by our Java API (see Section 2.7).

2.4 Processing Pipeline

We now turn to the description of the MOTS workbench itself, which is realized as
a pipeline architecture.

When a text document is submitted, a preprocessing stage first transforms it
into the PAULA standoff format, which will be explained below. Then, during the
“proper” processing stage it is enriched with further layers by the analysis compo-
nents (see Section 2.5). Finally, all resulting PAULA layers are being merged into
a standard inline XML representation, which is used for visualization purposes (see
Section 2.6.1).
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The pipeline is implemented as a shell script. It manages the flow of processing,
starting from the input document and leading to an output representation that can
be shown to the user, while the analysis steps can be flexibly switched on and off.
Each component in the processing pipeline constitutes a distinct application and
thus can also be executed outside of MOTS. The components (to be described in
the next section) were developed in various programming languages; some of them
are external off-the-shelf solutions, others were developed in-house by our research
group and students.

MOTS offers a set of parameters for configuring the analysis pipeline. One class
of parameters, as mentioned above, serves to de-/activate analysis components; vi-
olations of dependencies are detected automatically. An important parameter is the
genre of the text, as several of our components provide genre-specific information
tailored to, for example, news articles, film reviews, or court decisions. Other pa-
rameters reflect document properties such as the language (German or English) and
the technical format of the input (see below). A parameter specific to the summa-
rization task is the desired definition of ‘term’ (wordform, lemma, Porter stems,
character based n-grams), which is then used for calculating sentence relevance.
Certain other, more technical, parameters defining the use of meta information and
output directories can be used on the command line, but are hidden in the regular
user interface (the GUI page for setting these parameters is shown in Figure 2.6,
Section 2.6).

A common problem for integrative NLP platforms is character encoding. All
our intermediate representations are encoded in UTF-8, but because some of the
modules work only with ISO 8859-1, we use only characters compatible to this
encoding. In a first step, the input document is converted to ISO 8859-1. This
conversion uses some intelligent features, such as mapping Cyrillic letters to their
ISO 8859-1 transcriptions. Afterwards we convert the ISO 8859-1 file back to UTF-
8. For the modules using ISO 8859-1, we use gnu iconv for converting the input
from UTF-8 to ISO 8859-1 and the output back from ISO 8859-1 to UTF-8.

The preprocessing, i.e., the first phase of the pipeline, is performed obligatorily
for each input document. It consists of three steps: conversion to a normalized
format, tokenization, and conversion to PAULA standoff. The result is a PAULA
representation of the input document with layout information, tokens and sentence
boundaries. Next, we discuss the three steps in turn, and afterwards describe the
integration of “real” analysis modules.

2.4.1 Normalized Input Format: LDOC

The system accepts input in various forms: plain text, some XML formats, and
HTML. In the first preprocessing step, the input document is converted into our
“normalized” XML format LDOC [21], which provides markup for layout features.
The conversion identifies headers, paragraphs and highlighted text, and it extracts
metadata from XML or HTML headers.
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<?xml version="1.0" encoding="utf-8"?>
<ldoc id="text.utf8.in">
<body>
<div id="div_1" type="heading" typeConf="high" >

29. Dezember 2005
</div>
<div id="div_2" type="heading" typeConf="high">

Bube, Damenopfer, König, As und Sieg
</div>
<div id="div_3" type="heading" typeConf="high">

Match Point
</div>
<div id="div_4" type="paragraph" typeConf="medium">

Ein junger Mann gerät unversehens in die High Society.
Aufgrund seines gestiegenen Selbstbewusstseins verkalkuliert er sich
im Privaten und schreckt schließlich vor einem Doppelmord nicht zurück,
um seine Stellung zu verteidigen.

</div>
...
<div id="div_22" type="paragraph" typeConf="medium">

c© filmrezension.de
</div>
</body>
</ldoc>

Fig. 2.3 LDOC representation of a film review.

<html>, <meta>, <head>, <body>
<h1>, <h2>, <h3>, <h4>, <h5>, <h6>
<p>, <div>, <span>
<a>, <img>, <q>, <abbr>
<table>, <menu>, <ul>, <ol>, <dl>
<th>, <td>, <tr>, <li>, <dt>, <dd>
<i>, <b>, <u>, <strike>, <big>, <small>, <sub>, <sup>, <em>,
<strong>

Fig. 2.4 HTML tags considered for LDOC.

The LDOC format is defined and validated with a RELAX NG specification.
Figure 2.3 shows an excerpt from a sample LDOC file. The general structure is
as follows. A <header> tag encloses meta information, and the <body> tag en-
closes the document content. The layout is marked by <div> and <span>. <div>
stands for division and marks the document structure, i.e., headings and paragraphs.
<span> is used to mark smaller highlighted units within a <div>. Both tags have
attributes. The type attribute, for instance, determines whether a <div> is a head-
ing or a paragraph. Other attributes can encode the confidence value assigned by
the converter. For instance, if a line in the text contains only one or two words, it is
very likely that this line is a heading, while the confidence value for a longer line to
be a header is lower.10

Our prototypical converter from HTML to LDOC resulted from a students
project, where rules for all those HTML tags that are relevant for LDOC were

10 These confidence values play a role predominantly for converting plain text documents,
where quite a bit of guesswork can be involved.
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developed; these tags are listed in Figure 2.4. All other tags are ignored. The
converter works on XHTML, which is first produced from the HTML input.

2.4.2 Tokenization

The second preprocessing step is tokenization. Our tokenizer accepts an LDOC doc-
ument as input, determines the character positions of individual tokens, and assigns
a label to each token, which gives its type. Some of the types we use are XMLTAG,
WORD, PUNCT, DATE, SBOUND, ABBREV, QUOTE, BRACE-OPEN, FLOAT,
MIXEDSTRING.

Another task of the tokenizer is sentence boundary detection. Using lists of ab-
breviations, full stops are identified, disambiguated, and labeled accordingly. For
German texts, the presence of upper-case letters at the beginning of sentences is
taken into consideration: A determiner starting with an upper-case letter after an ab-
breviation or ordinal number marks the beginning of a sentence, while other tokens
do not.

The tokenizer follows a decidedly “surface-level” approach and does not recog-
nize any multi-word expressions such as proper names. This step is left to a dedi-
cated named-entity recognition component that can be adapted to specific domains,
while tokenization is a domain-independent task.

2.4.3 Conversion to PAULA

Tokenized LDOC is the input for the last preprocessing step: the conversion to
PAULA standoff. The output is a set of PAULA layers: markables for text, token,
sentence, div, span; features for div and span. The conversion distinguishes between
XML and text tokens: XML tokens mark the layout, text tokens contain the original
text. As indicated above, the PAULA ‘text’ layer is a sequence of all text tokens,
while the ‘token’ layer records the character positions of each token. Each token is
attached to a sentence in the corresponding layer, where headings are also regarded
as sentences. Sentence boundaries are determined by full stops as well as closing
division boundaries (</div>). Other markable layers are ‘span’ (referring to to-
kens) and ‘div’ (referring to sentences). For each attribute of <div> and <span>,
a separate feature layer is produced.

Now the preprocessing is completed and the basic PAULA layers are available
for the “real” analysis components in the pipeline, whose job it is to add further
layers to the PAULA set.

2.4.4 Integrating Analysis Components

The flexible part of the pipeline can be configured for each execution by selecting the
active processing modules. The pipeline script then manages the order of processing
and resolves all module dependencies. Input and output of the modules in general
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are one or more layers of the PAULA standoff set. On the output side, in addition to
PAULA layers, most modules also provide a human-readable format, which can be
used for debugging purposes.

Any external, off-the-shelf tools that are to be integrated into MOTS need to be
wrapped by converters that generate input for the tool from PAULA, and create
PAULA layers from the output. The effort needed for building a converter depends
on the type of the annotation. Writing a converter for a tool just annotating to-
kens with features is easily done. For annotations with complex structures, the task
becomes more difficult. The efficiency of a converter at runtime depends on the
complexity of annotations as well. For example, when running the Tree Tagger11

and chunker [20], the time needed to convert from and to PAULA is 1/3 of the over-
all runtime of the component. For this reason, we skip the conversion steps when
components depend directly on another’s output.

Another well-known issue with integrating a variety of off-the-shelf components
is their tokenization behavior. Many “black box” components read their input as text
and tokenize it by their own rules. In such cases, the converter has to align the tokens
produced by the component with the “standard” MOTS tokenization performed in
preprocessing. Usually, the differences are restricted to the interpretation of spaces,
punctuation and sentence boundaries, but some tools also identify multiword tokens
(such as Golden Gate Bridge) and portmanteau words (such as German im, which is
evaluated as i+m = in dem). In such cases, the features of the additional or reduced
tokens are determined by heuristic rules.

The central advantage of using PAULA standoff in MOTS is the flexibility in the
architecture and pipeline configuration. Components such as taggers or parsers can
be easily replaced, or both run on the same text for evaluation purposes. The results,
always in the shape of different annotation layers on the same text, can be visualized
quite straightforwardly (see Section 2.6). On the other hand, the substantial XML
“packing and unpacking” at runtime comes with a cost that may be prohibitive for
“real-time” applications; we will return to this issue at the end of the paper.

2.5 Analysis Components

In this section, we provide an overview of the analysis components that we have
integrated into MOTS so far, sorted (roughly) by the level of analysis to which they
apply: token, clause/sentence, and discourse.

Token Level

To provide a basic level of analysis for other components to build on, we integrated
the Tree Tagger with the off-the-shelf models for English and German, along with
its chunking mode. Thus two separate levels of analysis are created, one for part-of-
speech tags and one for NP- and PP-chunks. Also operating on the level of tokens,

11 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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a named entity recognizer combines gazetteer-based lookup of person’s first names,
location and company names with a set of rules that hypothesize the presence of a
last name after a first name or a title, and the like [11]. Similarly, a component in
charge of temporal information [17] identifies German time and date expressions
(including their manifold linguistic variants such as: 11.25, fünfundzwanzig nach
elf, fünf vor halb zwölf, . . . ) and assigns corresponding formal representations in
the Temporal Expression Language [10], which is similar in spirit to TimeML12.

On the level of (sub-)tokens, we compute weights based on TF/IDF with respect
to a genre-specific reference corpus. This is one of the points where the user’s
choice of genre for the input text plays a role. (If no genre is selected, a “generic”
corpus is used.) These weights are later used for computing sentence weights (for
summarization/extraction) as well as for isolating ‘topic’ identifiers in text tiles (see
below). As for the unit of analysis, MOTS allows for selecting regular tokens as
well as character n-grams. As shown by [2], different definitions are better-suited
for different purposes.

Clause and Sentence Level

As a preparatory step for discourse-level analysis of coherence relations, we pro-
vide the Brill tagger with a model that we incrementally trained in order to per-
form disambiguation of certain connectives as to their sentential versus discourse
reading. Based on the part-of-speech context, this tagger tries to distinguish the
readings of, for example, German darum (causal connective versus verbal particle)
– as we had reported in [8], off-the-shelf taggers for German often do not provide
this information correctly, sometimes because of errors and sometimes because the
part-of-speech tag is the same for both the discourse and the sentential reading.

Using the sentence boundaries and the part-of-speech tags, a first version of a
subjectivity analysis component employs a rule-based approach to recognizing opin-
ions in text. It was designed for the genre of student’s evaluations of their classes
and uses lists of subjective vocabulary tailored to this task. After identifying posi-
tive/negative lexemes from the lists, it checks for the presence of negations (using a
simple fixed-size word window) and if appropriate, applies rules to reverse the po-
larity of the opinion. On the basis of these results, sentences are labelled as positive,
negative, or neutral.

To enable deeper linguistic analyses, we integrated the Connexor syntax parser13

for German. It delivers dependency structures that are required by the Rosana
anaphora resolution (see below), and we also use them as the basis for other
discourse-level tasks. In addition, we built a wrapper for the BitPar parser14, which
delivers constituent structures of sentences in the TIGER format.

12 http://www.timeml.org
13 http://www.connexor.com
14 http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/BitPar.html

http://www.timeml.org
http://www.connexor.com
http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/BitPar.html
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Discourse Level

The anaphora resolution component Rosana was originally developed by [22] for
English, and later (in collaboration with our group) also for German. Based on the
Connexor dependency structures, Rosana tries to resolve pronouns, proper names
and definite descriptions. A significant gap for the coreference analysis (especially
for the genre of newspaper texts) is the handling of named entities. We are currently
designing an approach to fusing the algorithms employed by Rosana with the results
of our named-entity recognizer, working towards an integrated approach that would
cover the whole variety of (direct) nominal anaphora.

For statistical text tiling and topic detection, we implemented algorithms by [14]
and [24], which determine topic boundaries in the text (either in correspondence
with or in ignorance of the paragraphs encoded in our LDOC layer) and also com-
pute keywords that are representative for the particular “tile”. For this purpose, we
also make use of the aforementioned genre-specific reference corpora.

As an investigation into the ‘rhetorical structure’ of paragraphs, we developed
a component for local coherence relations, which specifically identifies causal re-
lations in German text. On the basis of a declarative lexicon, the presence of a
relation is established by analyzing connectives and, if necessary, performing dis-
ambiguation (using rules operating on the part-of-speech context). Then, the spans
related by the connective are hypothesized on the grounds of the syntactic depen-
dency trees. This works quite well for conjunctions and prepositions; whereas for
adverbial connectives, we can only guess that the two neighbouring sentences are in
fact the related spans.

Finally, operating on the level of the complete text, our IDOC component per-
forms an analysis of the functional role of the individual LDOC portions of the text
(i.e., lines and paragraphs), similar to the “argumentative zoning” approach by [23].
The target of this approach are semi-structured documents, which display regulari-
ties as to the inventory of labels needed to describe the role of paragraphs and the
linear order of the elements. Also, some of the zones need to be recognizable on the
basis of surface features (words, length of paragraph, etc.). Our approach performs
two steps: In the first phase, regular surface patterns are matched using LAPIS [18],
thus identifying a certain number of zones reliably. In the second phase, the zones
already found are used to hypothesize the presence of other zones in the remaining
material, using likelihoods derived from surface features and from the neighbour-
hood of zones already found. So far, we implemented the approach for two genres:
film reviews [3] and court decisions.

2.6 User Interface

When the execution of the pipeline script is complete, and all analyses are accom-
plished, the PAULA standoff set contains a lot of XML files that the average user
would not want to inspect. Hence, the MOTS user interface is a convenient way to
evaluate and compare all the results of the analysis pipeline.
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<div _id="id_1893" _org_id="div_2" type="heading" typeConf="high"
zone="tagline|title">
<sent _id="id_1101" _org_id="s_2" W5g="0.028237089618056307" Wxdoc="0.64">
<tok _org_id="tok_4" _id="id_4" pos="NN" lemma="Bube">Bube</tok>
<tok _org_id="tok_5" _id="id_5" pos="$," lemma=",">,</tok>
<tok _org_id="tok_6" _id="id_6" pos="NN"
lemma="Damenopfer">Damenopfer</tok>
<tok _org_id="tok_7" _id="id_7" pos="$," lemma=",">,</tok>
<tok _org_id="tok_8" _id="id_8" pos="NN" lemma="Koenig">Koenig</tok>
<tok _org_id="tok_9" _id="id_9" pos="$," lemma=",">,</tok>
<tok _org_id="tok_10" _id="id_10" pos="NN" lemma="As">As</tok>
<tok _org_id="tok_11" _id="id_11" pos="KON" lemma="und">und</tok>
<tok _org_id="tok_12" _id="id_12" pos="NN" lemma="Sieg">Sieg</tok>

</sent>
</div>

Fig. 2.5 Inline representation.

2.6.1 XML Inline Representation

The input to the visualization component is a standard inline-XML file whose format
is called ‘PAULA-inline’. It results from merging all the PAULA layers into a single
file – a step needed solely to facilitate the graphical presentation of the output. The
inline-XML document contains an XML element for each markable (token or span).
All features referring to this markable are annotated as attributes of this element.
Smaller spans of markables are added as children of wider spans.

Figure 2.5 gives an extract of the inline representation of the beginning of a text
we had shown earlier (Figure 2.3). The example shows a headline, which is also
annotated as sentence. The tokens contained therein are represented as children of
the sentence element. Tokens are annotated with pos and lemma. PAULA markables
do not have any dominance relation between each other; they just mark spans in the
text. If two markables cover exactly the same span of text, in the inline document
one is arbitrarily chosen to embed the other. Thus in the example, the division
element could also be included into the sentence element.

To mark “real” embedding in structures such as trees (PAULA <struct> ele-
ments), we use the special element < rel>, which explicitly encodes the dominance
relation in PAULA-inline. This allows us to annotate edges between nodes.

XML embedding cannot be used for the representation of overlapping segments.
For such data, we use the strategy of fragmentation: One of the overlapping ele-
ments is broken into smaller units and an attribute gid (‘group id’) is added to the
fragmented elements to explicitly mark elements that belong together. For further
details on creating the PAULA-inline representation, see [9].
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Fig. 2.6 Graphical user interface: parameter selection.

2.6.2 Visualization

The user interface is a PHP script accessible with a web browser – see Figure 2.6.
It is to be used in two steps: First, the user defines the input and the processing pa-
rameters. The input can be directly entered as text, uploaded as a file, or defined by
a URL. Then, the pipeline script is started with the ‘send’ button. When processing
is complete, the resulting PAULA-inline document is converted by an XSLT script
to HTML and thus available for viewing with PHP and Javascript.

In the second step, the user can browse the results and compare various analyses
(Figure 2.7). All annotations on a specific token are shown on a mouse-over. Other
annotations on larger spans are highlighted upon request. Some component-specific



2 The MOTS Workbench 31

Fig. 2.7 Graphical user interface: browsing results.

visualization is being realized. Sentence and paragraph boundaries and headings
are marked by a tag at the beginning of the text range. Tile boundaries are marked
more prominently and are completed by keywords describing the topic. Most an-
notations assign labels to ranges of text (mostly tokens). The labels appear at the
right frame of the page ordered by the kind of annotation and can be selected for
colored highlighting. In addition to the merged graphical presentation, the output of
each component is accessible in its original form by following hyperlinks; likewise
we provide debugging and runtime information on separate pages. Also, there is a
button for downloading the PAULA files that have been produced, so that they can
be used as input for other software.

2.7 Current Developments and Conclusion

The file-centric approach of MOTS, managing interfaces through a fairly generic
standoff annotation format, resulted on the one hand from the dual needs of (i)
bridging between manual annotation tools and (ii) automatic processing. At the
same time, it provides a simple way of allowing for interoperability of components
that enables rapid prototyping, which has been utilized in a number of students’
projects and diploma theses. One advantage here is the independence on program-
ming languages: Existing modules in script languages or more traditional languages
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(e.g., Lisp) can be added quite easily. In this way, MOTS enables quick experiments
with combining modules for new tasks, without right away taking the step to work
with a more complex system such as GATE or UIMA.

In this spirit of a lean, “low-cost” framework, we are currently making several
additions to MOTS, whose primary goal is to somewhat reduce the effort of XML
processing in a pipeline of components. A Java API is being developed that will be
in charge of parsing PAULA files and providing convenient access to the data via
the PAULA Object Model (cf. Section 2.3.1). One perspective then is to replace
the shell script managing the processing pipeline with a Java application, so that
PAULA processing can be restricted to the interfaces of non-Java components.

For the time being, we will hold on to the menu-based de-/activation of com-
ponents when the pipeline is started. For most purposes of text processing, it has
proven sufficient, and moving to a fully-flexible component management system
would amount a leap toward GATE-style frameworks, which we are not intending.
However, a slightly more generic way of describing component behavior (using
simple configuration files) could be added, so that integrating new modules can be
done more systematically than by changing the shell script. Likewise, it should be
possible to integrate annotations that have been produced manually with a suitable
tool. This can be interesting when a higher-level component builds on the output
of a lower-level one and for testing purposes, “perfect results” can be provided in
place of the lower-level component’s output.

Our approach to visualising results currently creates problems with long texts
holding many annotations, as Javascript execution becomes prohibitively expensive.
While this can be attended to with limited effort, a more substantial problem is the
conversion from (possibly many) standoff files to inline-XML, which our GUI is
currently based on. This merging step is an inherently complex task, and rather than
trying to improve our current merging solution, it is probably more effective to try to
circumvent it altogether and base the visualisation on the standoff files. This would
amount to a general overhaul of the output side of the GUI, offering the opportunity
to establish a more generic solution that maps types of annotations to their visual
counterparts (both menu items for clicking annotations on/off and the annotation
visualization itself).

Our PAULA tools are being made available via the webpage mentioned in Sec-
tion 2.3, and in conjunction with our ANNIS linguistic database (focusing on the
scenario of manual annotation) [4]. Likewise, the MOTS software is available to
interested parties for research or teaching.
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Chapter 3
Processing Text-Technological Resources in
Discourse Parsing

Henning Lobin, Harald Lüngen, Mirco Hilbert, and Maja Bärenfänger

Abstract. Discourse parsing of complex text types such as scientific research arti-
cles requires the analysis of an input document on linguistic and structural levels that
go beyond traditionally employed lexical discourse markers. This chapter describes
a text-technological approach to discourse parsing. Discourse parsing with the aim
of providing a discourse structure is seen as the addition of a new annotation layer
for input documents marked up on several linguistic annotation levels. The dis-
course parser generates discourse structures according to the Rhetorical Structure
Theory. An overview of the knowledge sources and components for parsing sci-
entific journal articles is given. The parser’s core consists of cascaded applications
of the GAP, a Generic Annotation Parser. Details of the chart parsing algorithm
are provided, as well as a short evaluation in terms of comparisons with reference
annotations from our corpus and with recently developed systems with a similar
task.

3.1 Introduction

Relational discourse theories like RST [Rhetorical Structure Theory, 29, 31],
D-LTAG [Lexicalized Tree-Adjoining Grammar for Discourse, 43], ULDM [Uni-
fied Linguistic Discourse Model, 33, 34], or SDRT [Segmented Discourse Rep-
resentation Theory 2, 3] provide text-type independent principles for analysing
coherence relations between parts of a text of different sizes. For some of these
theories, discourse parsers have been implemented, notably for RST. Two features of
RST make it especially favourable for an automatisation of discourse analyses: RST
utilises trees (not graphs like SDRT) as a data structure for discourse representation.
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(It is in fact controversial whether graph-based representations are actually nec-
essary for the representation of discourse structures [cf. e.g. 12].) And while in
the definition of rhetorical relations in the original theory, references to the beliefs
and intentions of speakers and hearers abound [cf. 29]), in the different approaches
to RST-based discourse parsing it has been shown that automatic discourse anal-
ysis can also be achieved by applying mainly surface-oriented discourse markers
(cues) [cf. 31, 36, 21]. In the following, we give a brief overview of previous RST
approaches to discourse parsing.

[30, 31] presented several alternative algorithms for the RST parsing of unre-
stricted texts. One prerequisite for rhetorical parsing formulated by Marcu is the
compositionality principle for RST structures, which states that a rhetorical relation
holding between two text constituents (spans) also exists between their respective
most salient subconstituents. According to Marcu, another prerequisite for the pars-
ing of unrestricted texts is a feature-based description of discourse markers based
on an extensive corpus analysis. Discourse markers are utilized both for the seg-
mentation and identification of related discourse units and for the assignment of a
particular rhetorical relation.

Corston-Oliver’s [8] automatic Rhetorical Structure Analyser RASTA bases its
rhetorical analyses on fully-fledged syntactic analyses of the sentences of a text (in
this case articles from the Microsoft Encarta Encyclopedia). Thus the cues that in-
dicate rhetorical relations comprise discourse connectives as well as syntactic and
morphological features. A further novelty introduced in this approach is the associ-
ation of cue:relation pairs with weights that are based on linguistic intuition. They
are used to build up more plausible discourse representations before less plausible
ones.

An extension of Corston-Oliver’s algorithm is the symbolic RST parser for En-
glish developed by Le Thanh [20, 21, 23, 22]. It performs an automatic discourse
segmentation into elementary discourse units, sentence-level discourse parsing us-
ing syntactic information and cue phrases, and finally, text-level discourse parsing
using a beam-search algorithm. To reduce the search space, heuristic scores are
used as constraints on textual adjacency and textual organisation. The parser was
evaluated on a test corpus from the RST Discourse Treebank [7].

As an alternative approach [35, 36] implemented discourse parsing according to
RST as a quantitative approach as a series of text classification decisions. Clas-
sification instances from a training corpus are represented as feature vectors and
associated with rhetorical relation schemata. The linguistic features used include
the occurrence of discourse markers in certain segment positions, concepts intro-
duced by definite noun phrases, punctuation, POS tagging and lexical similarity
[35]. Support vector machines (SVM) are used as a classification algorithm. As a
representation format for RST trees, the XML application URML [Underspecified
Rhetorical Markup Language, cf. 37] is chosen. In an URML document, alternative
tree structures can be presented as well. Besides, URML is used to represent partial
results in the parsing process, similar to a chart in chart parsing.

URML is also used in the approach by [14], employing a feature-based RST
grammar with a rule hierarchy. The grammar also includes robust rules that
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Table 3.1 Annotations in the SemDok corpus.

XML annotation layer # annotated articles

Logical document structure (DOC) 47+2
Morphological and syntactic structure (CNX) 47 +2
(using the tagger Machinese Syntax from Connexor Oy)
Discourse markers (DMS) 47
Rhetorical structure (RST-HP) 5+2
Discourse segments (SEG) 5+2
Anaphoric structure (CHS) (from Sekimo project) 3+2
Lexical chains (LC) (from HyTex project) 1+2
Genre-specific text type structure (TTS) 47

combine subtrees when no discourse marker is found. Using this grammar, a stan-
dard chart parsing algorithm is applied for discourse parsing. The chart is extended
to accommodate parse forests, and URML is used for their representation.

In several of the above described projects, collections of newspaper articles were
used as test corpora [36, 38, 19]. The goal of the SemDok project was to design
and implement a new RST parser for the text type1 of (German) scientific journal
articles as a text-technological application.2 Scientific articles form a more com-
plex text type than newspaper articles – primarily due to their deeply nested logical
document structure. A discourse parser therefore has to resolve a higher number
of potential relational combinations of text segments. Besides the traditional dis-
course markers such as lexical cues, grammatical features and punctuation, fea-
tures derived from analyses of text and document structures need to be included as
well. An overview of the requirements for such an approach in terms of linguistic
foundations, resources, and an application scenario is given in [27]. The linguistic
resources are made available for the SemDok parser using text-technological (XML-
based) standards, formalisms, methods and tools and are described in the following
sections.

3.2 Corpus

A corpus of German linguistic journal articles, which was created between 2002
and 2008, served as a development corpus. It provides XML annotations on various
linguistic and text-structural analysis layers. The corpus contains 47 German arti-
cles of the online journal Linguistik Online (www.linguistik-online.de) from
between 2000 and 2003 (comprising approx. 360,000 word forms). One newspa-
per article (from the German weekly Die Zeit) and one web-published article on

1 The term text type is used as an equivalent for genre.
2 SemDok was a project within the DFG research group 437 Text-technological modelling

of information. The discourse parser was developed in the project’s second funding phase
(2005-2008) called Generic document structures in linearly organised texts.
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hypertext were added (from the corpora compiled in the projects Sekimo3 and
HyTex4, cf. “+2” in Table 3.1).

An overview of the SemDok corpus and its different annotation layers is given in
Table 3.1. The different annotation layers were added according to the framework
of XML-based multi-layer annotation [44]: Each annotation layer is stored in a
separate XML document, i.e. the primary (text) data are copied several times. Since
in all annotation layers, the primary data are absolutely identical, relations holding
between elements on different annotation layers can be analysed using the so-called
Sekimo tools5 [45].

The corpus was semi-automatically annotated according to a modified Doc-
Book format (“DOC”, [cf. 41, 24]). For the annotation of morphology and syntax
(“CNX”) we employed the commercial software Machinese Syntax from Connexor
Oy. Machinese Syntax yields dependency trees according to the Functional Depen-
dency Grammar [FDG, 39] as an XML-like annotation. For an annotation of lexical
discourse markers (“DMS”), a tagger was developed which basically performs lex-
ical insertions according to the SemDok discourse marker lexicon in combination
with some context checking [cf. 27]. The initial discourse segmentation (“SEG”)
was achieved by a segmentation program also developed in SemDok, which seg-
ments a document according to criteria on punctuation, grammar, and logical doc-
ument structure [cf. 25]. Anaphoric structure (or referential structure) represented
by the annotation layer “CHS”, was added to the SemDok documents corpus in the

� �

<para xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="hypo-para.xsd" relname="Contrast" id="i12">
<n id="i13">
<hypo id="i14" relname="Elaboration-example">
<n id="i1">
<t id="ti1">In der Schrift hat die Sprachpflege einen etwas besseren
Erfolg als im Gespräch gehabt.</t>

</n>
<s id="i2">
<t id="ti2">In öffentlichen Dokumenten ist man z.B. darauf bedacht,
dass die Termini dem Gebrauch in Schweden entsprechen.</t>

</s>
</hypo>

</n>
<n id="i4">
<t id="ti4">Trotzdem enthalten sowohl Sachtexte als auch die

Belletristik
sprachliche Züge, die den Schweden fremd vorkommen.</t>

</n>
</para>

� �

Listing 3.1 RST analysis in RST-HP.

3 http://www.text-technology.de/Sekimo/
4 http://www.hytex.info
5 The Sekimo tools operate on a stand-off Prolog fact base format and include tools for

merging different annotation layers, for transforming between XML and the Prolog format
and for checking relations holding between elements of single annotations layers.

http://www.text-technology.de/Sekimo/
http://www.hytex.info
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Fig. 3.1 Discourse Parsing Architecture.

partner project Sekimo [cf. 10]. The SemDok parser is also projected to handle two
further annotation layers: an annotation of lexical chains (“LC”), as provided by
the partner projects HyTex [cf. 9] and IndoGram [cf. 42], and an annotation of the
genre-specific text type structure (“TTS”), available from the first funding period of
SemDok [cf. 4].

Apart from the above annotation layers, which serve as auxiliary annotations
in the discourse parsing process, several corpus articles were also provided with
reference annotations according to the Rhetorical Structure Theory in RST-HP. RST-
HP is an XML application developed in the SemDok project to represent RST trees
in XML [27, 17]. “HP” stands for <hypo> and <para>, which are two element
types to label RST subtrees as either hypotactic or paratactic (relations). An example
of an RST analysis in RST-HP is given in Listing 3.1. RST-HP is also the target
format of the SemDok discourse parser.

3.3 Architecture

For the technical realisation of our discourse parsing approach we chose a pipeline
architecture, in which linguistic analyses of one text document at different linguistic
levels are provided by auxiliary analysis components (preprocessors) implemented
as part of the SemDok project, or by project-external software. These components
were also used in creating the SemDok corpus (Section 3.2).

The pipeline architecture is shown in Figure 3.1. The auxiliary analysis compo-
nents are shown in the middle part, on the left-hand side there are four knowledge
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sources that are used by some of these preprocessors. In this chapter, we do not dis-
cuss these knowledge sources, but see [6] for information on the Relation Taxonomy
RRSet, [27] on the discourse marker lexicon, and [26] for techniques of combining
GermaNet with a domain ontology.

As well as in the corpus, the results of the auxiliary analyses are represented as
XML annotations according to the principles of XML-based multi-layered annota-
tion [44]. To evaluate them, the SemDok parser was provided with an interface to
the Sekimo tools [45]. Using the Sekimo tools, configurations of elements and at-
tributes on the different XML annotation layers are tested in the condition parts of
reduce rules (see Section 3.4.3.2). Finally, the parser puts out an XML document in
RST-HP format.

3.4 Parser

The discourse parser is realised as a cascade, where the input document is processed
in bottom-up fashion along its document levels (see Figure 3.2). The information
about document levels is provided by the annotation layer SEG, which contains the
initial segmentation into elementary and complex discourse segments [cf. 25]. SEG
is the only obligatory annotation layer, i.e. all other layers are optional in terms of
input requirements.

In each cascade step, a parsing iteration is activated for the associated document
level. At the first level, called “EDS+”, for each containing element of type “SDS”
(sentential discourse segment), “EDSes”, (elementary discourse segments – mostly
clauses) are recursively combined to form structures on SDS level. At the second
level, called “SDS+”, SDSes are combined to form complex discourse segments
on block level (mostly paragraphs, “CDSblock”), on the third level, the block-level
segments are combined to form CDSes of type “division” (sections and the like,
“CDSdiv”), and finally, the CDSdiv are combined up to the level of the complete
document (i.e. one CDSdoc). In each cascade step, the respective higher level ele-
ments are called the containing elements, they thus act as top-down constraints in
the otherwise bottom-up parsing process.

3.4.1 Initialisation

The chart parser’s internal representation “HPX” [cf. 17] is an extended version
of the target format RST-HP that can accommodate underspecified information, cf.
Section 3.4.3. During the parsing process, the HPX chart is gradually augmented by
new information in the form of new chart edges. Hence, in an initialisation phase,
the elementary discourse segmentation SEG is converted to HPX by changing each
EDS into a terminal edge element <t> and assigning it an underspecified nuclearity
in the form of an <undefined> element [cf. 31, 152ff]. That way, a sequence of
adjacent <undefined> elements forms the basis of the parsing process.
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Fig. 3.2 Parsing Cascade.

The actual parsing is achieved by consecutive calls of the central parsing compo-
nent GAP (Generalized Annotation Parser) for each containing element on the SEG
layer. The GAP is described in Section 3.4.3.

3.4.2 Cascade Step

An example of the operation of the algorithm in one cascade step is illustrated in
Figure 3.3. The invocation of a cascade step depends on several parameters.

• The Base Layer Type and the Containing Layer Type specify the document level
to be parsed. On the level of “EDS+”, for example, RST structures are built
whose leaf nodes correspond to segments of the base layer type “EDS” and
whose root node completely covers the associated segment of the containing
layer type “SDS”.

• The Reduce Rule Set is the third mandatory parameter. It contains the rules
stating how a set of adjacent segments may be linked by a rhetorical relation
and combined to form a bigger segment.
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Fig. 3.3 Initialisation and execution of one cascade step by the example of the document
level “EDS+” (Sentence Level).

Two further parameters modify and extend the effect of the reduce rules: the Rhetor-
ical Relation Set and the Default Relation.

• The SemDok Rhetorical Relation Set (RRSet) forms a taxonomy of rhetorical
relations suitable for our application purpose [cf. 6]. A full set consisting of 44
relations and a reduced set consisting of 30 relations with less specific relations
at the leaves of the taxonomy are available. Depending on the RRSet variant
selected for a cascade step, the reduce rules are customised to label a combined
segment with a more specific (e.g. ELABORATION-CONTINUATION-OTHER) or
a more general relation (e.g. ELABORATION).

• In the Default Relation parameter, a relation is specified that combines two ad-
jacent segments when no regular reduce rule matches the configuration and its
features. As values, the three relations most frequently found in the SemDok
corpus can be specified: the general multi-nuclear coordination relation LIST-
COORDINATION, and two multi-nuclear relations indicating thematic progres-
sion, ELABORATION-DRIFT and ELABORATION-CONTINUATION-OTHER.
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Fig. 3.4 GAP.

Within a cascade step, a list of <undefined> elements is generated first for each
segment of the Containing Layer Type (Containing Element). Each <undefined>

element corresponds to an element of the Base Layer Type (Base Element) (for an
example cf. the initialisation of cascade step “EDS+” in Figure 3.3).

Iterating over all Containing Elements, the GAP is then invoked for each list with
multiple <undefined> elements.6

The GAP attempts to build a partial HPX chart which spans the current Con-
taining Element, applying the reduce rules, which make reference to information
available on the auxiliary annotation layers. If the HPX chart built fails to com-
pletely span the current Containing Element, an artificial “RST collection” edge is
inserted, which spans the current Containing Element by connecting a sequence of
longest adjacent <undefined> elements in the <undefined> list. This ensures an
output of connected RST trees and robustness of discourse parsing.

3.4.3 Generic Annotation Parser (GAP)

The Generic Annotation Parser (GAP), as displayed in Figure 3.4, has been con-
ceived as an abstract parsing system augmenting n input annotation layers with
identical primary text data by one new, n + 1st output annotation layer represent-
ing a constituency structure. The building of the output annotations is based on the
reduce rule set that contains reduce rules to add new annotations starting from the

6 The GAP is not invoked for lists with only one <undefined> element, as that already
covers the respective Containing Element.
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base annotation layer. In the reduce rules, reference can also be made to information
on further input annotation layers.

The base annotation layer must consist of a sequence of adjacent elements that
covers the whole text and provides the basis for building the new, output structure.
In the case of discourse parsing in SemDok, these are the <undefined> elements
on the annotation layer HPX, which can be changed into <n> or <s> elements as
exemplified in Figure 3.3.

The rule set contains declarative reduce rules which are selected based on the
sequences (mostly pairs) of matching elements on the base layer and on additional
conditions referring to other annotation layers.

Since element configurations may be ambiguous i.e. match with multiple rules
and associated relations, the quality of each possible output structure is evaluated
by means of a scoring function. Scoring is discussed more fully in Section 3.4.3.6,
further details of the reduce rules are given in Section 3.4.3.2.

In the following section, we describe the bottom-up passive chart parser that
constitutes the core of the GAP.

3.4.3.1 Chart Parser

A discourse parser needs a strategy to handle ambiguities, arising e.g. due to dis-
course markers which are ambiguous according to the discourse relation they in-
dicate, or their scope. Chart parsing is designed to efficiently store and retrieve
information about partial structures that have already been parsed [cf. 16].

The chart of the SemDok Parser is defined by minimally extending the Sekimo
fact base format [45] for RST-HP-compliant XML documents such that SemDok
chart edges are always potential Prolog node/5 facts representing the XML elements
of a RST-HP result document. The chart format is therefore called HPX, for HP
extended. An HPX chart edge has the following components:

1. Layer: name of the base Layer; in the discourse parsing application:
HPX

2. Start: PCDATA offset of the begin of the text range spanned by the
chart edge (XML element)

3. End: PCDATA offset of the end of the text range spanned by the chart
edge (XML element)

4. NodeID: edge ID of the chart edge (node ID of the XML Element)
5. LoLoI: List of Lists of child node IDs, pointers to the child edges
6. Score: score according to probabilistic parsing, cf. Section 3.4.3.6
7. DM-ID-List: list of those discourse markers that have already been used in the

parsing history, cf. Section 3.4.3.7
8. Element: XML element name; in the application of discourse parsing, one

of n|s|para|hypo|embed|t|undefined|rstCollection

The algorithm we employ for discourse parsing is based on bottom-up passive
chart parsing [cf. 32, 1]. In our variant, no edge sequence is analysed more than
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once, because in the loop over the current set of edges, each edge is checked only
against those right-adjacent edges that have been inserted in the previous loop.

Node sequences of n nodes (as opposed to node pairs of two nodes) are cur-
rently analysed in two reduce rules for recognising embedded discourse segments
(<embed> constructions cf. [27]).

3.4.3.2 Rule Components

Reduce Rules

For each cascade step (EDS+, SDS+, CDSblock+, and CDSdiv+), an individual set of
reduce rules is loaded. The reduce rules presently used in the SemDok parser have
been acquired in two ways:

1. rules generated from the SemDok Discourse Marker Lexicon [27] using an XSLT
style sheet

2. rules manually encoded in Prolog

Naturally, the rules which were generated from the Discourse Marker Lexicon
mainly refer to the annotation layer DMS (cf. Section 3.2). The manually encoded
rules typically refer to other layers and are based on findings from qualitative and
quantitative corpus analyses, e.g. rules for assigning the ELABORATION relation
and several of its subtypes which refer to the CHS layer as described in [5].

Listing 3.2 shows the entry for dagegen (“in contrast”) in the SemDok Discourse
Marker Lexicon. Listing 3.3 shows the Prolog reduce rule generated from it.

The “corpus score” specified in the attribute @corpusScore is derived from an
XML database consisting of 564 RST tree instances from an annotated subcorpus,
in which the discourse markers that indicate the relation are annotated as well. The
corpus score in Listing 3.2 specifies that 56% of all occurrences of dagegen in the
subcorpus were marked to indicate the relation CONTRAST-MULTI. The simple
score in the attribute @score, on the other hand, represents the a priori probability

� �

<dm id="c333" typ="lexical">
<cue>
<text>dagegen</text>
<lemma pos="ADV">dagegen</lemma>
<position>
<vorfeld>+</vorfeld>
<mittelfeld>+</mittelfeld>

</position>
</cue>
<rels default="Contrast-multi">

<relation corpusScore="0.55556" score="1" relname="Contrast-multi"
skopus="sds+" typ="n" beds-richtung="l"/>

</rels>
</dm>

� �

Listing 3.2 Entry in the discourse marker lexicon.
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� �

%-------------------------------------------
% Case sentence adverb/coordinating conjunction "dagegen"
% Type N-N with simple lexical DM in N2

reduce_rule(dmlist1, [N2, N1|[]], [Np|[]], L_new_undefined) :-

gap_baselayer(BaseLayer),

node(BaseLayer, _Start1, _End1, N1, _, _Score1, _DML1, element(’
undefined’)),

node(BaseLayer, Start2, End2, N2, _, _Score2, DML2, element(’undefined’)
),

% Constraint:
one_relation(inclusion_B_in_A, ’undefined’, BaseLayer, N2, dm, ’DMS’,

N_d, Start2, End2, Start_d, End_d),

% Constraint:
attr(’DMS’, Start_d, End_d, N_d, ’lemma’, ’dagegen’),

attr(’DMS’, Start_d, End_d, N_d, ’pos’, ’ADV’),

% Get DMID and check DMID in DML2:
attr(’DMS’, Start_d, End_d, N_d, ’id’, ID),
nonvar(ID), nonvar(DML2),

not(member((’DMS’, ID), DML2)),

reduce_to_N_N(N1, N2, ’Contrast-multi’, Np, L_new_undefined, 0.00829, [(
’DMS’, ID)]).

� �

Listing 3.3 Reduce in Prolog, generated from the discourse marker lexicon.

of the discourse marker derived from its ambiguity in the Discourse Marker Lexicon.
In the entry in Listing 3.2, the simple score is 1, because in the lexicon the discourse
marker is specified to indicate only one relation.

A reduce rule as in Listing 3.3 is processed in the following way: First, all com-
ponents of the current node sequence are retrieved from the chart via their IDs. (In
the example in Listing 3.3, the variables N1 and N2 represent the IDs of the current
node sequence.) Then it is checked whether an occurrence of <dm>dagegen</dm>
on the annotation layer ‘DMS’ is included in the text span of node N2 on the base
layer. Finally, it is checked whether the discourse marker has not already been used
in the parsing history of the segment represented by N2 (using the DM-ID (discourse
marker identifier) list DML2). When all constraints are satisfied, the required com-
ponents will be passed to the reduce schema reduce to N N which is invoked to
insert the edges representing a new multi-nuclear relation into the chart.

The generated score of the rule (0.00829) is not identical with the conditional
probability in the @corpusScore attribute in the discourse marker lexicon entry
in Listing 3.2, since it has been combined with the a priori probability of the rela-
tion CONTRAST-MULTI (also acquired from the corpus) when generating the Prolog
rule.
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Reduce Schemas

When a reduce rule and its constraints match XML annotations of the current node
sequence, the edges forming a new RST subtree are inserted into the chart. For this
purpose, five reduce rule application schemata are available (similar to the RST ap-
plication schemata in [29]). Depending on the schema, either a <hypo>, a <para>
or an <embed> edge is generated, as well as the corresponding <n> and <s> edges,
and one new <undefined> edge, which will be available in the subsequent parsing
process. The following schemas are available.

1. reduce to N S: mono-nuclear schema
2. reduce to S N: mono-nuclear schema
3. reduce to N N: bi-nuclear schema
4. reduce to N N List Add: schema for a “tree-adjoining” construction of multi-

nuclear structures. Proper multi-nuclear structures (with more than two nuclei,
such as potentially occurring with the relations LIST, SEQUENCE, and their sub-
types) will first be initialised by an application of Schema 3 to the first two nu-
clei. The remaining nuclei will then be added by iteratively applying Schema
4 in the parsing loops to follow (when the constraints of the rule match). This
procedure represents one way to derive multinuclear structures using only binary
rules. Within Schema 4, incomplete intermediate multinuclear structures are re-
moved from the chart; this is the only possible destructive action during chart
building. Nevertheless, some incomplete (from the viewpoint of a correct ref-
erence annotation) multi-nuclear structures may still be kept in the chart, since
Schema 3 may be applied to non-initial elements of a multi-nuclear structure as
well.

5. reduce to embed: schema for embedded satellite constructions. This schema
has actually two components, one for two embedded satellites, and one for three
embedded satellites within a nucleus. As <embed> constructions can only be
built over EDSes, they could alternatively be parsed in a separate function to
be invoked before the first call of the GAP. The chart parsing algorithm would
then operate on node pairs instead of node sequences, because all the remaining
reduce rules in the SemDok parser are binary.

3.4.3.3 Ranking of Reduce Rules

In the SemDok parser, each rule is ranked so that rules are grouped into specific
ones, less specific ones, and default rules. The parser tests a node sequence against
rules in a group with a more general rank only when no rules in the more specific
groups matched. Rule ranking allows for a prioritisation of rules. Another method
of prioritising rules employed in the SemDok parser is scoring (cf. Section 3.4.3.6).
The two methods supplement one another as ranking represents a discrete gradation
of rules that may lead to an absolute exclusion of certain rules, as opposed to scoring
which represents a continuous measurement of the quality of parse trees. In the
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current version, three named ranks are defined, representing the following groups of
rules.7

1. ‘dmlist1’: Rules based on lexical discourse markers. If one of these matches, do
not continue with the following rule groups.

2. ‘elab’: Rules based on the annotation of anaphora, mostly indicating ELABORA-
TION. If one of these matches, do not continue with the following rule group.8

3. ‘list’: A group containing one default rule.

3.4.3.4 Supplementary Functions

To check the constraints formulated in the reduce rules a set of application-indepen-
dent functions (i. e. Prolog predicates) is available. It contains predicates for query-
ing information about the general configuration of XML elements on the multiple
annotation layers as stored in the Prolog fact base, such as “Are the nodes in L
children of node N?”, or “Are the nodes in L all the children of node N”?

Furthermore, a set of application-dependent functions (i. e. discourse parsing-
specific predicates) is available. For the most part, it contains query predicates
referring to the grammatical annotation, such as: “Does segment ‘N1 correspond
to a complete sentence?”, “Is discourse marker D1 contained in the first sentence of
N2?” or “Is the anaphoric expression A1 the subject of the first sentence in N2?”

The purpose of separating application-independent and application-dependent
functions is to be able to simply exchange the module containing the application-
dependent functions when the GAP is employed for a different application such as
sentence parsing.

3.4.3.5 Node Packing

A situation where the parser finds two or more analyses for the same local text range
is called local ambiguity. Local ambiguity occurs when more than one reduce rule
is applicable to an edge sequence, or because a discourse marker is ambiguous, or
because the current segments contain several discourse markers indicating different
rhetorical relations for the combination of the segments, or because n different chart
edge sequences were combined to form n new chart edges with identical range. Lo-
cal ambiguity has to be distinguished from cases where the current segments contain
several discourse markers indicating the same rhetorical relation for the combina-
tion of the segments, these are treated by an adjustment of the score, cf. Section
3.4.3.6.

In the original chart parsing algorithm, when n analyses are found over the same
text span, n <undefined> edges will be inserted in the chart, and the overall

7 Not all ranks are used for each document level/in each cascade step.
8 Rules in which anaphora indicate (a type of) ELABORATION have a default character with

respect to rules based on lexical discourse markers, cf. [6].
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ambiguity grows exponentially. To eliminate this kind of ambiguity, we use packed
representations in the line of [40]:9

For a set of edges with an identical range (start and end offsets) but different
analyses (their relation labels or sets of child edges), only one new <undefined>

edge will be inserted into the chart. Note that in discourse parsing, the type of
an edge (the RST tree type plus its relation label) is irrelevant for its combination
with another segment in a rule application, and consequently edges can be packed
regardless of their type. In syntax parsing, in contrast, no edges with identical range
but different types (e.g. AP, NP, VP) may be packed.

3.4.3.6 Scoring

The sixth argument of a chart edge is its score, which assigns a rating to the RST tree
it represents. Its purpose is to make competing hypotheses of rhetorical relations
comparable. The score of an edge depends on the context in which it is inserted
into the chart. In principle, we distinguish two cases in the calculation of a new
score. When two or more adjacent discourse segments are combined to form a larger
segment (case “children2parent”), a new score is computed for the edge representing
the larger segment [cf. 28, 23]. Similarly, when several alternative analyses are
combined in a packed edge (case “alternative”, cf. Section 3.4.3.5), a new, averaged
score is computed for the packed edge. For both cases of score combinations, a
number of different mean calculations have been implemented: product, geometric
mean, arithmetic mean, quadratic mean, and maximum of the involved scores.

Calculating the product is the common method to combine two independent prob-
ability values. [28] alternatively suggested the geometric mean in order to reduce
the influence of very low partial scores on the total score, e.g. on account of very
few occurrences of a discourse marker in a corpus. The arithmetic mean is the clas-
sic average calculation, treating each partial score equally. Using the square mean,
good scores have a higher influence on the resulting score than bad ones in compar-
ison with the arithmetic mean. The maximum of the underlying scores is another
possible heuristic for the combination of alternative analyses, meaning that a packed
edge will get the score of the best-scored edge among the alternatives it represents.

A score newly computed using one of these methods is set off against the score
of the rule that has been applied for inserting the edge. The rule score is the a
priory probability of the rhetorical relation propagated by the rule combined with the
conditional probability of the relation given the discourse marker that was tested in
the rule. The probabilities used have been estimated by calculating the percentages
of relation occurrences and discourse marker occurrences in the SemDok corpus (cf.
Section 3.4.3.2).

Which one of the mean calculations is to be chosen in the two cases can be
parametrised in the main call of the SemDok parser, so that the best settings for the
parameters can be determined in test runs.

9 Packed representations were originally introduced as shared forests of parse trees, as [40]
is not a chart parsing approach.
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A special case occurs when several reduce rules indicate one and the same rhetor-
ical relation for the same segment combination, which means that a matching rule
would lead to a set of new edges that are already in the chart. In that situation, no
new RST tree is inserted in the chart but the score of the existing chart edges is
updated by increasing it by the rule score of the newly matched rule. That way, the
score for a relation will be rated higher, the more cues for the relation are found.

3.4.3.7 DM-ID Lists

The seventh component of a chart edge is a list of identifiers (i.e. values of XML
ID attributes of XML elements representing the discourse markers in the linguistic
annotations of the input document) of those discourse markers that were used in
the parsing history of the RST tree represented by the edge, cf. Section 3.4.3.1. In
the derivation of one RST tree, one discourse marker must have induced exactly
one relation. Hence, one has to keep account of those discourse markers that have
already led to rule applications in the bottom-up parsing process. This purpose
is served by the DM-ID list. The set of already consumed discourse markers is
indicated on the chart edges of the types para, hypo, or embed. When a new edge
is inserted in the chart as the result of a successful rule application, the DM-ID list
of the edge for the new RST tree edge consists of the union of the DM-ID lists of
its child edges plus the DM-ID(s) of the discourse marker(s) that matched in the
current rule application.

A conflict occurs when packed edges (cf. Section 3.4.3.5) are inserted in the
chart. Like all chart edges, packed edges are specified for exactly one DM-ID list.
However, they do not represent one unique, but several tree derivations. Thus, if A
and B are two derivations packed in one packed edge, in derivation A, a discourse
marker may have been applied that has not been applied in derivation B. To capture
all the possible cases, one would have to employ disjunctions of DM-ID lists, which
would of course counteract the purpose of packed representations. Hence, in the
SemDok parser, the following three heuristics are implemented for combining two
DM-ID lists: intersection, union, and the so-called majority union.

When intersection is chosen as the combination method, some DM-IDs may get
lost so that the associated discourse markers might (falsely) be applied once again
in the subsequent parsing process. When the DM-ID lists of the edges K1,K2 . . .Kn

to be packed are combined by the union operation, the packed edge does repre-
sent the derivation associated with the edge Ki, but its DM-ID list possibly also
contains discourse markers of the derivation associated only with the edge Kj. In
the subsequent parsing process, these will (falsely) not be available any more for
the continued derivation associated with Ki. The “majority union” of K1,K2 . . .Kn

is defined such that the DM-ID list of the packed edge will contain only DM-IDs
contained in least 50% of the DM-ID lists associated with K1,K2 . . .Kn. It is then
possible that some discourse markers may be falsely applied a second time in the
subsequent parsing process, however in less cases than with regular list intersection.
It is also possible that some discourse markers are falsely not available anymore,
however in less cases than with regular list union.
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Fig. 3.5 Consumed discourse markers in the DM-ID list.

When calling the SemDok parser, one of the three methods to combine DM-
ID lists for packed chart edges needs to be specified. Since node packing itself
can also be selected or deselected on the parser’s top-level call [cf. 18], it can be
determined in evaluation suites which of the three methods yields the best results
and how high the error rate is in comparison with parsing without node packing, i.e.
with unmanipulated DM-ID lists.

3.4.3.8 Relaxation of the Compositionality Criterion

In [31], a compositionality criterion for rhetorical structures is formulated stating
that a relation that holds between two text segments also holds between at least
two of the nuclei among their embedded segments. Consequently, according to
Marcu, in discourse parsing it is sufficient to consider discourse markers only in
the top nuclei of the segments concerned. However, numerous counterexamples to
this claim can be found in the SemDok corpus, one of which is illustrated in Fig-
ure 3.5. Between segment 2 (the satellite) and segment 3 (the nucleus) in the lower
RST subtree, an ATTRIBUTION relation holds. This relation is indicated by a ci-
tation marker (XML element <doc:citation> on the annotation layer DOC) in
segment 2, strictly speaking in combination with the colon and the predicate “gibt
Auskunft” (“provides information”). In the top-level RST tree (segments 1-3) an
ELABORATION-EXAMPLE relation holds, indicated by the discourse marker “z. B.”
(“e.g.”) in segment 2, a lower-embedded satellite from the perspective of the top-
level tree. Thus, in case of the ELABORATION-EXAMPLE relation in Figure 3.5, a
consideration of the embedded nuclei is not sufficient because the relevant discourse
marker occurs in the subordinated satellite. The observation that the compositional-
ity criterion is not sufficient was made previously by [20], and many more examples
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of this kind can be found in the SemDok corpus. Consequently, discourse markers
occurring in any subsegment of the candidate segments are considered in the re-
duce rules for cascade step EDS+. For the higher segment levels SDS+, CDSblock+,
and CDSdiv+, however, lexical discourse markers are only considered in the first
sentence (SDS) of the second segment, as, with the exception of list contexts, no in-
stance of a lexical discourse marker indicating a relation and occurring in a non-first
sentence of its second segment was found in the SemDok corpus.

3.4.4 Traversing the Chart

Our result chart is equivalent to a parse forest [cf. 40, 14], i.e. the chart edges rep-
resent the nodes of subtrees connected by the ID pointers in the edges’ LoLoIs,
representing sets of alternative child node lists (see Section 3.4.3.1). Starting from
the “root edge” (the one that spans the complete document and becomes the root
note of any result tree), the chart can be traversed along the LoLoIs to generate RST
result trees. In the case of a packed edge, the scores of its sub-edges are used to
select only the best-rated alternative(s).

Our chart traversion algorithm produces a set of x best-rated parse trees and stores
each in a separate Prolog fact base. They can subsequently be exported into RST-HP
XML documents using the Sekimo tool prolog2xml 10.

The exact number of the best-rated parse trees cannot be determined beforehand
but results from the number of alternative branches traversed on account of the
scores found. To better be able to manipulate the number of result trees, it is in-
tended to implement the possibility of specifying a relative threshold ϑ , according
to which alternatives can be selected by comparing it with the edge scores instead
of automatically selecting all of the x best alternative edges.

For the visualisation and exploration of result trees, a graphical web interface
was developed which displays an RST tree structure as well as the related document
structure and the text, and also provides the possibility to navigate both structures
and between both structures [cf. 18].

3.5 Evaluation

In a parsing experiment, six documents from our development corpus were parsed
on the sentence and block level (EDS+ and SDS+). Two of them were not scientific
articles, but one web-published article on hypertext and one newspaper article from
our partner projects HyTex and Sekimo, cf. Section 3.2.

10 http://coli.lili.uni-bielefeld.de/Texttechnologie/
Forschergruppe/sekimo/python/
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Table 3.2 Comparative evaluation.

#relation set precision recall

SemDok Exp 1 block level 44 relations 11.53 32.71
SemDok Exp 2 block level 30 relations 12.22 36.64

LeThanh 1 text level 22 relations 38.5 39.6
LeThanh 2 text level 14 relations 39.3 40.5

The six articles contained between 1235 and 9988 wordforms, altogether 26325
wordforms. Their manually built reference annotations of their RST structure con-
tained 2219 elementary discourse segments. The automatically generated initial
segmentation was post-edited with respect to faulty segmentations that were intro-
duced on account of errors in the morphology/syntax analysis but otherwise not
adapted to the reference annotation.

In the evaluation, the parser’s output RST analyses were compared with the ref-
erence annotation. Only completely agreeing RST subtrees counted as a match, i.e.
RST subtrees had to agree with respect to their relation label and the text range of
the combined segment, the text ranges of the constituent segments and the nucle-
arity labels of the constituent segments.11 We evaluated two parser runs on the six
documents, one in which the full RRSet was used [cf. 6], and one in which a re-
duced RRSet with 30 (partly underspecified) relation labels was used. The results
of the two runs are shown in the first two lines of Table 3.2.

Many relations present in the reference annotations are still not indicated by
surface-related discourse markers as are currently analysed in the SemDok ap-
proach. Their absence is the main reason for the recall values of 32.71% and
36.64%. Note also that discourse analysis in terms of RST is not an unambiguously
feasible task for human annotators, either. While producing the reference annotation
of the corpus articles, our human annotators achieved agreements between κ = 0.47
and κ = 0.81 for RST analyses of the sentence and block level.12

The low precision values of 11.53% and 12.22% arise from the remaining ambi-
guities of many discourse markers with respect to the relation they indicate and to
the scope of a relation, and also by a suboptimal performance of the export of the
n-best subtrees from the chart using the scores in the traversal algorithm.

A recent symbolic rhetorical parser is the one by Le Thanh [20, 21, 23, 22, 19]
for English, which represents an extension of Corston-Oliver’s [8] system. It was
evaluated on a test corpus of 20 documents from the RST Discourse Treebank [7]

11 We would like to thank Daniela Goecke of Bielefeld University for implementing the first
version of the evaluation program.

12 Three annotators annotated the same three corpus articles using the full RRSet consisting
of 44 relation categories. This setting resulted in 3∗3 = 9 agreement ratings. The number
of RST subtrees of that annotator which had identified the most RST subtrees was taken
as N in the κ formula. A match of RST subtrees (an agreement) was defined as explained
for precision and recall above.
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that contained between 30 and 1284 word forms [23]. This parser also performs an
automatic segmentation of the input text into elementary discourse segments.

A comparison with this parser also suggests that recall values above 40% are
generally hard to achieve on discourse segments that are bigger than sentences. The
third and fourth line in Table 3.2 shows Le Thanh’s [23] results for discourse parsing
on the level of the entire text, which like the CDSblock level in the SemDok parser
uses sentences as base segments. The results of her parser are better than those of
the SemDok parser, but note that her texts are substantially shorter than the scien-
tific articles of the SemDok corpus and that both versions of her relation set are
substantially smaller.

3.6 Conclusion

In syntax parsing, the Earley algorithm [11], which combines the basic bottom-up
approach with top-down predictions is usually applied to avoid a combinatorial ex-
plosion of the number of edges to be inserted in the chart. In discourse parsing,
however, categorial top-down constraints corresponding to the phrase labels NP,
AP, VP etc. are not available. Hence, in the SemDok approach, elements of the log-
ical document structure of a text are used as top-down constraints by applying the
central parsing component multiple times in a cascade for each containing element
identified on the logical document structure annotation level of the input text. Fur-
ther techniques implemented in the SemDok parser to reduce the hypothesis space
are the representations of parse forest, node packing and a ranking of reduce rules.
Moreover, rule scoring is applied during parsing and evaluated in the chart traversal
to reduce the search space. Still the number of possible parses of the scientific arti-
cles of our corpus is quite high, as the precision figures of our evaluation indicate.
Additionally, many correct analysis (according to reference annotations) are still not
found because the rule component lacks certain types of rules especially relevant for
higher-level segment types. In the following, we give an overview of the major er-
ror types that we identified through an analysis of RST annotations generated by
the SemDok parser. On their basis, we point out future enhancements that would
further increase its performance.

Disambiguation of discourse markers. The sample corpus consisting of 564 RST
subtree annotations together with their indicating discourse markers is actually too
small to reliably disambiguate the 96 readings of discourse markers accounted for
in the discourse marker lexicon. A bigger corpus with annotations of both rhetorical
relations and their indicating discourse markers thus should be acquired.

Cues for higher segment levels. Although the SemDok parser was projected for
discourse parsing of text types with a more complex structure, so far only cues from
the logical document structure (and partly anaphoric structure) are implemented
to analyse rhetorical structures on higher levels than the block level. Particularly,
analyses of cues from lexical chaining analyses and text type structure analyses
have been prepared for inclusion [4] but not been implemented yet.
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1. Aufmerksamkeit
gilt als notwendige
Voraussetzung
für erfolgreiches
Lernen.

2. Zwar wurde in
der Fremdsprachen-
erwerbsforschung
im Zusammenhang
mit der noticing-
Hypothese (vgl.
Schmidt 1990 und
1995) die Rolle
der auf den In-
put gerichteten
Aufmerksamkeit
untersucht.

3. Die Funktion
der lernerseitigen
Aufmerksamkeit für
den Output im L2-
Erwerb blieb bisher
jedoch weitgehend
unberücksichtigt.

4. Mit
entsprechenden
Aufgabenstellungen
soll daher die
Ausrichtung der
Aufmerksamkeit
auf verschiedene
Aspekte der L2-
Sprachproduktion
manipuliert werden.

Fig. 3.6 Reference annotation above and output of the SemDok parser.

Syntactic and morphological annotation. The morphological and syntactic anno-
tations of the SemDok corpus were produced using the commercial software Machi-
nese Syntax from Connexor Oy. For the fairly complex sentences of the scientific ar-
ticles in the SemDok corpus, however, the software frequently yields false analyses
primarily because much of the domain-specific vocabulary occurring in the corpus
is apparently not included in the Machinese lexicon. Furthermore, the performance
of discourse parsing on sentence level is negatively affected by the frequently miss-
ing or erroneous identifications of the embedding structure of paratactic sentences.

Identification of higher-level discourse segments and scope of discourse
markers. A top-down identification of higher-level discourse segments other than
those predicted by the logical document structure is currently lacking in the Sem-
Dok parser. Presently, all RST subtrees constructed during bottom-up parsing yield
new complex discourse segments. This leads to an overgeneration of chart edges
that currently cannot be disambiguated adequately by the scoring routine. Instead,
a top-down prediction of further higher-level, complex segments would be desir-
able and would also help identify the scope of discourse markers more efficiently.
Figure 3.6 shows that in the reference annotation (the above structure), the adverb
daher (“hence”) led to a connection of the nucleus segment 4 with a satellite con-
sisting of segments 2-3 by the CAUSE relation. In contrast, the SemDok parser
identified segment 1-3 as the best-rated satellite of the CAUSE relation indicated by
the discourse marker in segment 4. Apart from the fact that such an analysis seems
to express an alternative but maybe also correct interpretation of segments 1-4, an
independent identification of only 1-3 as a complex discourse segment could have
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avoided this failed match. For this purpose, an initial thematic segmentation of an
input document should be deployed, e.g. according to the algorithms of described
in [15] or [13].
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P. (eds.) Constraints in Discourse, Pragmatics & Beyond, Benjamins, Amsterdam, pp.
117–138 (2008)

[13] Green, S.J.: Lexical semantics and automatic hypertext construction. ACM Computing
Surveys 31(4) (1999)

[14] Hanneforth, T., Heintze, S., Stede, M.: Rhetorical parsing with underspecification and
forests. In: Proceedings of the Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics (HLT/NAACL),
Edmonton, Canada (2003)

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2002T07
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2002T07


3 Processing Text-Technological Resources in Discourse Parsing 57

[15] Hearst, M.A.: TextTiling: A quantitative appraoch to discourse segmentation. Technical
Report UCB:S2K-93-24 (1993),
http://people.ischool.berkeley.edu/hearst/
tiling-about.html
(visited 20.01.2009)

[16] Hellwig, P.: Parsing natürlicher Sprachen: Grundlagen und Parsing natürlicher
Sprachen: Realisierungen. In: Bátori, I.S., Lenders, W., Putschke, W. (eds.) Compu-
tational Linguistics. An International Handbook on Computer Oriented Language Re-
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[27] Lüngen, H., Bärenfänger, M., Hilbert, M., Lobin, H., Puskàs, C.: Discourse relations
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Chapter 4
Semantic Distance Measures with Distributional
Profiles of Coarse-Grained Concepts

Graeme Hirst and Saif Mohammad

Abstract. Although semantic distance measures are applied to words in textual
tasks such as building lexical chains, semantic distance is really a property of con-
cepts, not words. After discussing the limitations of measures based solely on lex-
ical resources such as WordNet or solely on distributional data from text corpora,
we present a hybrid measure of semantic distance based on distributional profiles of
concepts that we infer from corpora. We use only a very coarse-grained inventory of
concepts—each category of a published thesaurus is taken as a single concept—and
yet we obtain results on basic semantic-distance tasks that are better than those of
methods that use only distributional data and are generally as good as those that use
fine-grained WordNet-based measures. Because the measure is based on naturally
occurring text, it is able to find word pairs that stand in non-classical relationships
not found in WordNet. It can be applied cross-lingually, using a thesaurus in one
language to measure semantic distance between words in another. In addition, we
show the use of the method in determining the degree of antonymy of word pairs.

4.1 Semantic Distance

Many applications in natural language processing can be cast in terms of semantic
distance between words in one way or another. For example, word sense dis-
ambiguation can be thought of as finding the sense of the target word that is se-
mantically closest to its context [27]. Real-word spelling errors can be detected
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Table 4.1 Some NLP applications that have used semantic distance measures [18].

Cognate identification
Coreference resolution
Document clustering
Information extraction
Information retrieval
Multi-word expression identification
Paraphrasing and textual entailment
Question answering
Real-word spelling error detection
Relation extraction
Semantic similarity of texts
Speech recognition
Subjectivity determination
Summarization
Textual inference
Word prediction
Word sense disambiguation
Word-sense discovery
Word-sense dominance determination
Word translation

by identifying words that are semantically distant from their context and the exis-
tence of a spelling variant that is semantically much closer [8]. Word completion
and prediction algorithms may rank those candidate words higher that are semanti-
cally close to the preceding context [14]. Table 4.1 lists a number of applications of
NLP identified by Mohammad [18] that have been attempted with semantic distance
measures.

In particular, semantic distance measures are important in any application that
involves finding lexical chains in a text – that is, sequences of identical or semanti-
cally close words in a text. Lexical chains arise naturally in text that is coherent and
cohesive, and thus they can be good indicators of the topic structure of a text.

Table 4.2 Intuitions of semantic distance.

Semantically close

bank–money
apple–fruit
apple–banana
tree–forest
pen–paper
hot–cold
mistake–error
car–wheel
dog–bark
bread–butter

Semantically distant

doctor–beer
painting–January
money–river
apple–penguin
nurse–bottle
pen–river
clown–tramway
car–algebra
faint–porpoise
asphalt–chocolate
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Some examples of word pairs that intuitively are semantically close and seman-
tically distant are shown in Table 4.2. People’s intuitions of semantic distance are
remarkably consistent. In experiments in which subjects are asked to judge the se-
mantic distance of word pairs on a scale of 0 to 4, correlation between subjects is
around .9 [29, 17].

We say that two terms are semantically related (or semantically close) if either
there is a lexical semantic relation between them, such as synonymy, hyponymy,
meronymy, or troponymy, or a non-classical relation [26], such as role-filler of ac-
tion, causal relation, co-occurrence, or even just a strong association. We say that
two semantically close terms are semantically similar if the relation between them
is synonymy, hyponymy, or troponymy. For example, the pairs dog–paw and dog–
bark are semantically related but not similar; the relationships are meronymy and
typical-action, respectively. The pair dog–golden retriever is not only semantically
related by hyponymy but is also semantically similar.

The metaphor of semantic distance implies that the measure of relatedness of
two words is a continuous function with metric properties yielding a real number in
the interval [0,∞), where 0 means identity and larger values imply larger distances
or less relatedness. On the other hand, similarity implies a continuous function
yielding a real number in [0,1], where 1 means identity and 0 means maximal dis-
similarity. It is necessary, therefore, to keep in mind which view is being taken at
any particular time, and map between them as necessary.

Lexical ambiguity is a serious complication for these intuitive ideas of semantic
distance. Relations are defined on words yet they depend on senses or concepts; two
words may be related with respect to some of their senses but unrelated with respect
to others. In this paper, we will take word senses and concepts to be much the
same thing – we need not be concerned with the distinctions between them nor with
concepts that are unlexicalized (that have no word) – and we will implicitly take a
word to be, more precisely, a lexical unit composed of a surface string and a sense.
However, in many instances, if a word is ambiguous, we know only the surface
string and not its particular sense in the instance. In our exposition below, we will
use the word word sometimes to refer to a complete lexical unit and sometimes to
refer to just the surface string; the intent will be clear from the context in each case.

4.2 Measures of Semantic Distance

There are many ways that semantic distance can be computed in NLP applications.
The first class of methods is resource-based measures that use the lexicographers’
judgments that are implicit in thesauri, dictionaries, or wordnets. In a thesaurus,
for example, the semantic distance between two words can be defined as the length
of the path between them through the thesaurus’s category structure and/or cross-
references and index [25, 10]. In a dictionary or wordnet it can be the number of
words that occur in the definitions of both target words and possibly, in the case of a
wordnet, their neighbours [1]. In a wordnet, it can be the length of the path from one
word-sense (synset) to the other (possibly with scaling factors to account for change
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Table 4.3 Correlations of several resource-based measures of semantic relatedness with data
on human judgments from experiments by Miller and Charles [17] (M&C) and by Rubenstein
and Goodenough [29] (R&G). Based on a table by Budanitsky and Hirst [4], with additional
data.

Measure M&C R&G

Hirst and St-Onge [9] .744 .786
Jiang and Conrath [11] .850a .781a

Leacock and Chodorow [13] .816 .838
Lin [15] .829 .819
Resnik [28] .774 .779
Roget-as-tree [10] .878 .818
Gloss overlaps [1] .67 .60
Latent semantic analysis [2] .73 .64

aAbsolute value of correlation coefficient.

in grainedness with depth [9, 13, 31]); or it can be the amount of information shared
by both nodes [11, 28, 16]. Most of these methods are reasonably successful in
that they correlate well with the human judgments observed in experiments [4]; see
Table 4.3. However, they also have serious limitations:

• Each measure is only as good as the resource it depends on. And most word-
net measures use only the noun portion of the wordnet and only the hyponymy
relation.

• The measures typically do not work across parts of speech; that is, one can com-
pare nouns only to other nouns, verbs only to other verbs, and so on.

• Non-similarity relationships are not well covered.
• High-quality resources are not available for many languages.
• The role of context is not accounted for.

An alternative to resource-based measures that overcomes these limitations is to
use a distributional measure as a proxy for ‘real’ semantics. These methods look
only at surface strings of words without regard to their sense. In this class of meth-
ods, e.g., [15, 6, 30], we say that two words are semantically related or similar if
they tend to co-occur with similar word contexts – that is, if they have similar distri-
butions among other words. The distance between two words is thus defined as the
distance between the distributions of the contexts in which they occur. For example,
if our target word is credit and we see the phrase a rise in credit and the money sup-
ply in the corpus, we will add 1 to our count of occurrences of credit in contexts of
rise, of money, and of supply, building a distributional profile of the word. Later,
we might observe that debit tends to occur with many of the same context words,
and hence has a distributional profile similar to that of credit. Within this idea, there
are many definitions of context (e.g., a window of n tokens or a syntactic argument
relationship), many definitions of “tend to co-occur” (e.g., conditional probability
or pointwise mutual information), and many measures of distributional similarity
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(e.g., α-skew divergence, cosine, Jensen-Shannon divergence, Lin’s similarity mea-
sure). To define a specific measure, a choice must be made for each of these param-
eters. See Mohammad and Hirst [19] for a detailed survey of these methods.

These methods overcome some of the limitations of the resource-based ap-
proaches. Being corpus-based, they reflect true language usage for which a corpus
is available and they are not limited to any particular part of speech or lexical rela-
tionship. Moreover, by their very definition they take into account at least a local
view of context.

But these methods have limitations too, the most serious of which is that they
don’t actually work. Their performance is mediocre to awful; Weeds [30] exper-
imented with a number of measures and found their correlation with human data
to be between .26 and .62; one of the poorer measures that she experimented with
returned this list as the ten words most similar to hope: hem, dissatisfaction, dismay,
skepticism, concern, outrage, break, warrior, optimism, readiness. Moreover:

• The measures are based only on the occurrence of the surface forms of words,
not meanings; hence ambiguity is a confound. For example, credit has both fi-
nancial and non-financial senses (. . . credited with the invention of the sextant),
but contexts of the different meanings will be conflated in the word’s distribu-
tional profile. This leads both to attenuation of the measures in the case of true
relatedness and to spuriously higher measures between unrelated words.

• They rely on inter-substitutability, which is far too strict a criterion for similarity,
let alone relatedness.

• They require enormous corpora to gather sufficient data. Weeds [30] found that
the 100M-token British National Corpus was adequate for gathering data for only
2000 word-types. Yet their use in tasks such as real-word spelling correction re-
quires distributional data for a very large vocabulary. This is especially a problem
for applications in specific domains and in low-resource languages.

4.3 A Hybrid Method for Semantic Distance Measures

We propose a solution to the limitations of these two classes of methods of measur-
ing semantic distance: a hybrid method that uses both distributional information and
a lexicographic resource [21, 18]. Our goal is to gain the performance of resource-
based methods and the breadth of distributional methods. The central ideas are
these:

• In the lexicographical component of the method, concepts are defined by the
category structure of a Roget-style thesaurus.

• In order to avoid data sparseness, the concepts are very coarse-grained.
• The distributional component of the method is based on concepts, not surface

strings. We create distributional profiles of concepts.

A Roget-style thesaurus classifies all lexical units into approximately 1000 cat-
egories, with names such as CLOTHING, CLEANNESS, and DESIRE. Each category
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is divided into paragraphs that classify lexical units more finely.1 We take these
thesaurus categories as the coarse-grained concepts of our method. That is, for our
semantic distance measure, there are only around 1000 concepts (word-senses) in
the world; each lexical unit is just a pairing of the surface string with the thesaurus
category in which it appears.

In the distributional component of the method, we look at the distribution of
these concepts in word contexts. For example, when we see in the corpus a rise
in credit and the money supply, and given that credit appears in category 729 FI-
NANCE in the thesaurus, it’s now the count for category 729 that we increment for
the context words rise, money, and supply. To implement this idea, just as for the
word-distribution methods, we must choose a definition of context, a measure of
strength of association, and a measure of distributional similarity. Given these dis-
tributional profiles of concepts, we then define the distance between two concepts
as the distance between the distributions of the contexts in which they occur.

But what if a word is ambiguous – appears in more than one thesaurus category?
An inability to cope with lexical ambiguity, after all, was one of the limitations of
the distributional method that we described earlier. We resolve the ambiguity by
bootstrapping as follows. On the initial pass, we count a word for all its categories.
This gives a noisy result, but, unlike the word-distribution case and as a consequence
of the coarse-grainedness of the concepts, the signal shows through because there
are many words in each category. On the second pass, we disambiguate each word
by taking the greatest strength of association from the first pass. (We found that
additional passes don’t increase accuracy.) We define the distance between two
lexical units as the distance between their closest senses.

Thus the method is still primarily distributional at heart; its use of lexicographic
information is solely for mapping words to the coarse-grained set of concepts.
Therefore, we cannot expect it to have the fine performance of measures that are
based on rich lexical resources. Nonetheless, the distributional component will give
it the breadth that is presently lacking in measures based on those resources.

4.4 Evaluation in Monolingual Applications

We carried out several task-oriented monolingual evaluations of our hybrid method.
Our corpus was the British National Corpus, our online thesaurus was the Mac-
quarie Thesaurus [3], and context was defined to be a±5-word window, We defined
four different versions of the method by choosing four combinations of measures of
strength of association and distributional similarity that are frequently used in the
literature on the simple word-distance measures described in section 4.2 above:

• Conditional probability (cp) with

– α-skew divergence (ASDcp);

1 We do not use other characteristics of Roget-style thesauri, such as the hierarchical struc-
ture of the category system, the index, the cross-references, and the further subdivision of
paragraphs.
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Fig. 4.1 Performance of four distributional concept-distance measures (grey bars) compared
with the corresponding word-distance measures (white bars) on the task of ranking word-
pairs by semantic distance (correlation with human judgments).

– Jensen-Shannon divergence (JSDcp);
– Cosine similarity (Coscp).

• Pointwise mutual information (pmi) with Lin’s [16] distributional similarity2

(Linpmi).

We then compared these four distributional concept-distance measures with distri-
butional word-distance measures using the same four choices.

Our first evaluation was simply to compare the measures’ ranking of word-pair
distances with human norms [21]. The results are shown in Figure 4.1. In each
case, using concepts instead of words improved the results markedly. Nonetheless,
as we would expect, the performance is not at the level of the best WordNet-based
measures (shown in Table 4.3).

Our second evaluation was to use the measure in correcting real-word spelling er-
rors. Hirst and Budanitsky [8] presented a semantic-distance method for finding and
correcting real-word spelling errors in a text, and used it to compare six WordNet-
based semantic distance measures. We tried our four measures in the method,
along with the corresponding four word-distance versions, with the results shown in
Figure 4.2 [21]. The y-axis shows the correction ratio for each method, which is a
statistic that takes into account both the number of errors corrected and the number

2 Lin’s distributional similarity measure [16] should not be confounded with his WordNet-
based semantic distance measure [15], which was mentioned in section 4.2 above.
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Fig. 4.2 Performance of four distributional concept-distance measures (grey bars) compared
with the corresponding word-distance measures (white bars) on the task of real-word spelling-
error correction.

of non-errors flagged as errors (false positives). Again, concept-distance measures
give better results than word-distance measures, and except for Linpmi, the differ-
ence is quite large. In fact, here the performance of the two best concept-distance
measures exceeded that of all but one of the WordNet-based measures as well –
though the WordNet-based measure that did better, that of Jiang and Conrath [11],
did much better, with a score of 12.91 [21]; the second-best WordNet-based measure
scored 8.48.

It should be noted that the Rubenstein and Goodenough word-pairs used in the
ranking task and the real-word spelling errors in the correction task are all nouns.
We expect that the WordNet-based measures will perform less well when other parts
of speech are involved, as those hierarchies of WordNet are not as extensively devel-
oped. Further, the various hierarchies are not well connected, nor is it clear how to
use these interconnections across parts of speech for calculating semantic distance.
On the other hand, our hybrid measures do not rely on any hierarchies (even if they
exist in the thesaurus) but on sets of words that unambiguously represent each sense.
And because our measures are tied closely to the corpus from which co-occurrence
counts are made, we expect the use of domain-specific corpora to give even better
results.
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Our other two monolingual evaluations involved word senses. In the task of
determining which sense of a word is dominant in a text, we achieved near upper
bound results [20]. And using the measures in word sense disambiguation with
an unsupervised naive Bayes classifier, we achieved respectable results in SemEval
2007 [23].

4.5 Extension to Cross-Lingual Applications

4.5.1 Method

It is not necessary in our method that the corpus of text used to determine the dis-
tributional profiles of concepts be in the same language as the thesaurus used to
define the concepts. In particular, the thesaurus may be in English (E) while the
corpus is in a lower-resource language L that has no Roget-style thesaurus. All that
is necessary to make this work is a bilingual dictionary from L to E that can map
the words of the corpus from L to their thesaurus concepts in E . Of course, there
will be ambiguity in the translation that creates spurious candidate senses, but this
is background noise, as before, that can be eliminated by bootstrapping [22].

Figure 4.3 illustrates the method with two examples in which German plays the
role of the low-resource language (see section 4.5.2 below). The first example,
Stern, is mapped by the bilingual dictionary to star, which has additional senses
in English; the second example, Bank, is ambiguous in German and is mapped to
two different English words, bank and bench, in its different senses (Figure 4.3(a)).
Concepts, that is thesaurus categories, are obtained for each of the English words
(Figure 4.3(b)), at which point the English words themselves can be ignored (Fig-
ure 4.3(c)); observe that some of the concepts are spurious, relative to the original
German words, being artifacts of the intermediate English (Figure 4.3(d)). How-
ever, on the next iteration in the bootstrapping process, these spurious concepts can
be identified and removed (Figure 4.3(e)) because of their relatively low strength of
association with the original German words.

4.5.2 Evaluation

We evaluated the method on two tasks, with German playing the role of the low-
resource language L. Of course, German is not really a low-resource language, but
the logic of the evaluation requires that the test language L actually have sufficient
resources that our method can be compared with resource-based monolingual meth-
ods in L. The two tasks were ranking German word pairs for relatedness and solving
“Word Power” problems (which require finding the word semantically closest to the
target word from a choice of four alternatives) from the German edition of Reader’s
Digest. Our aim was not to perform better than the monolingual method but merely
to obtain results that are not markedly poorer; after all, the cross-lingual method is
inherently noisy, and is intended for situations only when the resources for mono-
lingual methods are not available at all.
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(a)

(b)

(c)

Fig. 4.3 Cross-lingual examples (German to English) demonstrating how bootstrapping re-
moves the artifacts of lexical ambiguity. (a) The bilingual dictionary maps the words from
German to English. (b) The English words are then mapped to thesaurus concepts. (c) The
English words can now be ignored. [Figure continues on next page.]
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(d)

(e)

Fig. 4.3 (cont.) (d) Some of the concepts are spurious artifacts of the intermediate English.
(e) In the bootstrapping process, these spurious concepts can be identified and removed.

As resources for the cross-lingual measure, we used the German newspaper cor-
pus taz and the German–English bilingual lexicon BEOLINGUS. As before, the En-
glish thesaurus was the Macquarie Thesaurus. We tried the same four versions of
the method that we used in the evaluations of section 4.4 above. Our benchmark
for comparison as a monolingually based semantic distance measure in the same
tasks was WordNet-style measures (see section 4.2 above) with GermaNet as the
resource; in addition to the measures of Jiang and Conrath, Lin, and Resnik (see
Table 4.3) we also used two pseudo-gloss-based measures proposed explicitly for
GermaNet by Gurevych [7].
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We found the cross-lingual method to be not just the equal of the GermaNet-
based monolingual methods but better in both tests. Figure 4.4 illustrates the results.
The upper histogram shows Spearman rank correlations with human rankings of the
best of our cross-lingual measures (which was Linpmi) and the best of the GermaNet
measures (which was Jiang and Conrath’s); the former achieves a notably better
result. The lower series of histograms shows results on the “Word Power” prob-
lems for the best methods of each type; for the GermaNet methods, this was one
of Gurevych’s, and for the cross-lingual method this was JSDcp and Linpmi equally,
with Coscp only a tiny amount behind. Although the cross-lingual measures have
a lower precision than the best monolingual measure, they have higher recall and
overall a slightly better F-score. The higher recall implies that the bilingual dictio-
nary had a better coverage of the vocabulary of the “Word Power” problems than
GermaNet did.

In addition to these tests, we tried the cross-lingual method out in a Chinese–
English setting in the SemEval 2007 task of choosing the best English translation
for an ambiguous Chinese word in context, and we achieved good results with an
unsupervised naive Bayes classifier [23].

4.6 Antonymy and Word Opposition

In this section, we show that our method for semantic distance can be extended
to solve the related problem of finding words that are antonyms or, more gener-
ally, pairs of words whose meanings are contrasting or opposed to one another
[24]. Thus we want to go beyond the conventional kinds of antonymy (wet–dry,
open–closed, life–death), which are already well-recorded in lexical resources such
as WordNet, to a more-general notion of contrast in meaning (closed–accessible,
flinch–advance, cogent–unconvincing) which is largely unrecorded. This has ap-
plication in tasks such as detecting contradictions and differences in opinion, and
detecting paraphrases in which one alternative is negated (caught–not evaded).

We base our approach on two hypotheses:

• The co-occurrence hypothesis (Charles and Miller [5]): Antonyms co-occur
more often than chance.

• The distributional hypothesis (after Justeson and Katz [12]): Antonyms tend to
occur in similar contexts.

By comparing 1000 randomly chosen antonym pairs from WordNet with a control
set of 1000 randomly chosen (non-antonymous) word pairs, we showed [24] that
both of these hypotheses are correct: antonym pairs have a higher strength of co-
occurrence (by pointwise mutual information) than random word pairs (p < .01) and
are distributionally more similar (by Lin’s measure [16]) than random pairs (p <
.01). The same is true, of course, of semantically similar and semantically related
words. So these two hypotheses alone are not sufficient to identify contrasting word
pairs.
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Fig. 4.4 Performance of the cross-lingual method (grey bars) compared with monolingual
GermaNet-based method (white bars) on ranking word-pairs by distance (correlation with
human judgments) (top) and on Reader’s Digest “Word Power” problems (precision, recall,
and F-measure) (bottom).
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Fig. 4.5 Two thesaurus categories are assumed to be contrasting if each contains one member
of a pair from the seed set of antonyms.

The central ideas of our method are these: First, we identify contrasting cate-
gory pairs in the thesaurus using the structure of the thesaurus and a set of seed
antonym pairs. We then determine the degree of antonymy between a pair of words,
one from each of a pair of contrasting categories, using the two hypotheses men-
tioned above and, again, the structure of the thesaurus.

4.6.1 Contrasting Categories

We have two heuristics for recognizing contrasting categories. First, thesaurus lex-
icographers often explicitly place contrasting categories adjacent to each other; for
example, the LOVE category may follow the HATE category. So we assume that
all adjacent category pairs are contrasting. This is obviously untrue in general; for
example, the other category adjacent to HATE may be INDIFFERENCE. Second, we
manually create a list of 16 affixes that tend to generate antonyms, such as X–antiX
(clockwise–anticlockwise), Xless–Xful (harmless–harmful), and imX–exX (implicit–
explicit) and we use this list to generate a seed set of about 2600 pairs of likely
antonyms.3 We then assume that a pair of thesaurus categories containing a word
pair in the seed set is contrasting (see Figure 4.5); this is our second heuristic. Ad-
ditionally, we also use antonym pairs from WordNet to find contrasting categories
where possible; WordNet contains 10,800 antonym pairs for which both words were
in our thesaurus.

3 The affix list obviously overgenerates (part–depart; tone–intone; sect–insect; coy–decoy),
but this has little effect on the results.
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‘hardened in feelings’

obdurate:
a. meager
b. unsusceptible
c. right
d. tender*
e. intelligent

‘resistant to persuasion’

obdurate:
a. yielding*
b. motivated
c. moribund
d. azure
e. hard

‘persistent’

obdurate:
a. commensurate
b. transitory*
c. complaisant
d. similar
e. uncommunicative

Fig. 4.6 GRE-style multiple-choice closest-opposite questions using the same prompt in dif-
ferent senses. The correct answer is marked with an asterisk.

4.6.2 Degree of Antonymy

We can now determine the degree of antonymy between two thesaurus categories,
and from that between two lexical units (a word and its thesaurus category), and
from that between two words:

• Categories: Following the distributional hypothesis for antonyms, we stipulate
that the degree of antonymy between two contrasting categories is proportional to
the semantic closeness of the two categories as measured by our hybrid semantic-
distance measure (section 4.3 above).

• Lexical units: We assign four discrete levels of antonymy. If the units do not
occur in contrasting categories, then they have ZERO antonymy. Otherwise, if
each occurs in its respective category in the same paragraph as one of the seeds
that is the basis for the contrast between the categories, then antonymy is HIGH.
Otherwise, following the co-occurrence hypothesis, the antonymy is MEDIUM or
LOW depending on the strength of co-occurrence between the categories.

• Words: We take the degree of antonymy of two words to be that of their most
antonymous pair of senses.

4.6.3 Evaluation

We evaluated the method on 950 GRE-style multiple-choice closest-opposite ques-
tions. Each question contains a prompt word and five alternatives from which the
closest opposite to the prompt must be chosen. Typically the alternatives will in-
clude as distractors both another close opposite and a near-synonym of the prompt.
An ambiguous word may appear in more than one question in different senses; Fig-
ure 4.6 shows three questions all using the prompt obdurate in different senses. (Of
course, the system is not informed of the intended sense.)

The results are shown in Figure 4.7. The baselines for our evaluation are simple
random choice from the five alternatives, and looking for the answer in WordNet
but choosing at random if none of the alternatives are listed as an antonym of the
prompt. In fact, the answer is so rarely found in WordNet that it scarcely improves
on random choice.
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Fig. 4.7 Results of evaluation of method for determining degree of antonymy. In each group,
the bars show, from left to right: a random-choice baseline; random choice except using
WordNet antonyms where possible; the method using only WordNet-generated seed-pairs;
the method using only affix-generated seed-pairs; the method using both seed sets; the method
using only the category-adjacency heuristic; and the method using all heuristics.

We also tried the heuristics individually as well as in combination. The relatively
small set of affix-generated seed-pairs performed almost as well by itself as the
larger set of WordNet-generated seed-pairs; but the two together performed better
than either alone. The simple adjacency heuristic achieved better precision than this
combination; however, its recall was much lower. The highest F-score was achieved
by a combination of all three heuristics.

4.7 Conclusion

There have been many prior proposals for measuring semantic distance: measures
based on lexicographical resources and measures based on word distributions in
word contexts. Both kinds have significant limitations. By proposing a hybrid
measure based on distributions of coarse-grained concepts (thesaurus categories)
in word contexts, we avoid the limitations of purely corpus-based and WordNet-
based measures. Its performance is competitive with WordNet-based measures
(and better than corpus-based measures), it operates across parts of speech, and it
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offers the possibility of cross-lingual use for resource-poor languages. In addi-
tion we have shown how it can be used in a method for determining the degree
of antonymy between words.
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Chapter 5
Collecting Semantic Similarity Ratings to
Connect Concepts in Assistive Communication
Tools

Sonya Nikolova, Jordan Boyd-Graber, and Christiane Fellbaum

Abstract. To compensate for the common inability of people with lexical produc-
tion impairments to access and express intended concepts, we make use of mod-
els of human semantic memory that build on the notion of semantic similarity and
relatedness. Such models, constructed on evidence gained from psycholinguistic
experiments, form the basis of a large lexical database, WORDNET. We augment
WORDNET with many additional links among words and concepts that are seman-
tically related. Making this densely connected semantic network available to people
with anomic aphasia through assistive technologies should enable them to navigate
among related words and concepts and retrieve the words that they intend to express.

5.1 Background and Motivation

In this section, we briefly review a debilitating language disorder known as anomic
aphasia: the inability to access, retrieve, and produce words. Technology can aid
people suffering from the failure to generate the words they wish to express. Our
work is motivated by the belief that the effectiveness of such tools can be enhanced
by our knowledge of human semantic memory.
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5.1.1 Aphasia

Estimated to affect 1 million people in the United States alone, aphasia is an ac-
quired disorder that impacts an individual’s language abilities [23]. It can affect
speaking, language comprehension, and writing to varying degrees in any combina-
tion in an individual. Rehabilitation can reduce the impairment level, but a signif-
icant number of people with aphasia are left with a life-long chronic disability that
impacts a wide range of activities and prevents full re-engagement in life. Apha-
sic individuals often employ different techniques in order to compensate for their
inability to communicate; for example, they write notes, gesture, draw, or mimic.

There have been sustained efforts to use technology to help individuals with apha-
sia communicate. Designing technology that satisfies the needs and expectations of
the intended user is a fundamental challenge in the field of human-computer interac-
tion research. This is particularly challenging when designing technology for people
with aphasia due to the variability of impairment. The failure of existing assistive
communication tools to address the problems arising from the heterogeneity of the
user population has stimulated additional research efforts that show it is essential to
seek flexible and customizable solutions [5, 16, 19].

Despite efforts to design adaptive assistive tools for elderly and cognitively dis-
abled people, none has proven to be usable by aphasic individuals. Such aids mainly
include scheduling and prompting systems that aim to reduce the burden of care-
givers [6, 11, 13, 18]. On the other hand, most assistive tools for people with aphasia
focus on essential therapeutic efforts and the recovery of basic language function.
Thus, they do little to leverage the skills of individuals with some residual com-
municative ability [3]. There have been relatively few systems for non-therapeutic
purposes to be used by less severely affected individuals, such as systems that sup-
port daily activities like email or social interactions [8, 16].

In addition, the growing ubiquity of personal electronics, whose form factor
could address the stigma attached to communicating with the help of a computer,
has not benefited individuals with aphasia. In our experience [5], the weakest link is
the ability for users to intuitively and quickly select words. Users, particularly those
suffering from anomic aphasia, are confused by arbitrary organization of vocabu-
lary terms and terms absent from the vocabulary. The real difficulty is in providing
a flexible system in terms of adding new vocabulary items, adapting to users, and
minimizing the complexity of navigating the vocabulary. While we are interested in
addressing all of these issues, in this work we focus on vocabulary navigation.

5.1.2 ViVA: Visual Vocabulary for Aphasia

Although initial vocabulary sets can be formed from words frequently needed by the
target population, no packaged system has the depth or breadth to meet the needs
of every individual. In addition to expressiveness, vocabulary organization and re-
trieval in existing assistive technology are also problematic. Most of the existing
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visual vocabularies have a lexical organization scheme based on a simple list of
words. The words are organized either in hierarchies which tend to be deep and
non-intuitive or in a long list of arbitrary categories. Disorganization and incon-
sistency result in fruitless scrolling, backtracking, and ultimately frustration. It is
important to build an easy to construct and maintain visual vocabulary that rests on
a framework of a well-structured computerized vocabulary.

We have developed a multi-modal visual vocabulary that relies on a mixed-
initiative design and enables the user to compose sentences and phrases efficiently.
The visual vocabulary for aphasia (ViVA) implements a novel approach that or-
ganizes the words in the vocabulary in a context-aware network tailored to a user
profile that makes finding words faster. ViVA is designed to reorganize and update
the vocabulary structure depending on links created between words due to specific
user input and system usage.

5.2 The Design of ViVA

In this section, we aim to describe the design of ViVA to show how semantic similar-
ities can play a role in creating a better communication aid for people with aphasia.
Our goal for ViVA is for it to be adaptable, able to be customized by the user, in
addition to being adaptive, able to dynamically change to better suit the user’s past
actions and future needs.

The first component, adaptivity, allows the user to add and remove vocabulary
items, group them in personalized categories (for example a “Favorites” folder or
ideas related to “Family”), enhance words with images and sounds and associate
existing phrases and sentences with a concept. In addition to practical concerns
of having sufficient vocabulary terms to express the needed concepts, the ability to
adapt a system invests in the user a sense of ownership and empowerment. This
attachment to the system, brought about by a sense of accomplishment, is an impor-
tant aspect of the rehabilitation process [1].

We explain the adaptive component with an example. If the user wishes to
compose the phrase “I need an appointment with my doctor.”, for example, and
she searches for [doctor] first, the vocabulary network centered on [doctor]
may look as the one shown in Figure 5.1. The links between the words may
exist because the user has previously composed sentences using [doctor] and
[medication] or using [doctor] and [appointment]. [hospital]
and [doctor], for example, may be linked because of a prediction based on
known word association measures and usage. In addition, the user may be able
to find the phrase “Need appointment with doctor” right away if she had already
composed it in the past and had linked it deliberately to [doctor].
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Fig. 5.1 Schematic of components of a system to assist individuals with aphasia.

This is in contrast to existing systems (e.g., [14], [9]) that have a dichotomy
between user-created organization and content and the initial vocabulary. Our goal
is to let the user seamlessly add new content and for the organizational structure to
change to better suit usage needs. However, we still need an initial organization to
allow the user to successfully use ViVA from day one. We derive this scaffold from
the body of work investigating how the human brain organizes concepts.

5.3 The Organization of Words

To address the fundamental issues which prevent individuals with aphasia from ef-
fectively using communication aids, we appeal to the psychological literature on
speakers’ “mental lexicon,” where words are stored and organized in ways that al-
low efficient access and retrieval. Our goal is to build a system that can help provide
the missing semantic connections in the mental lexicon for sufferers of aphasia.
Thus, any successful system must provide an ersatz mental lexicon that users can
easily and naturally navigate and explore.



5 Semantic Similarity for Assistive Communication 85

The tip-of-the-tongue (TOT) phenomenon is familiar to every speaker: the tem-
porary inability to retrieve from our mental lexicon a specific word needed to express
a given concept. This access failure may be due to a variety of factors, including
fatigue and interference from a word that is morphologically or phonologically sim-
ilar to the target word. People with anomic aphasia can be thought of as suffering
from a chronic and severe case of TOT, as they have persistent difficulties accessing
and retrieving words that express the concepts they wish to communicate.

Experimental evidence – including evidence from TOT states induced in the lab-
oratory – suggests that words are organized in speakers’ mental lexicons by various
similarity relations, in particular phonological and semantic similarity. For example,
subjects in word association experiments overwhelmingly respond with husband to
the stimulus wife [17]. Semantic priming [22], a robust and powerful tool for the
experimental investigation of cognitive processes, relies on the semantic relatedness
of the prime and an experimental target: responses to the target are faster when
it is related to the prime as in the classic case doctor–nurse. Spreading network
activation models [7] assume that presenting a prime stimulus word activates the
corresponding representation in lexical memory and that this activation spreads to
other related nodes, thus facilitating the processing of related target words. The se-
mantic network WORDNET [15, 10] is a large-scale lexical database inspired by
network theories of semantic memory that accommodate the spreading activation
paradigm among related words and concepts.

5.3.1 WORDNET and Evocation

WORDNET has a rich structure connecting its component synonym sets (synsets)
to one another. Noun synsets are interlinked by means of hyponymy, the super–
subordinate or is-a relation, as exemplified by the pair [poodle]-[dog].1

Meronymy, the part–whole or has-a relation, links noun synsets like [tire]
and [car] [15]. Verb synsets are connected by a variety of lexical entailment
pointers that express manner elaborations [walk]-[limp], temporal relations
[compete]-[win], and causation [show]-[see] [10]. The links among the
synsets structure the noun and verb lexicons into hierarchies, with noun hierarchies
being considerably deeper than those for verbs.

We aim to exploit the structure of WORDNET to help “find” intended concepts
and words by navigating along the paths connecting WORDNET’s synsets. How-
ever, WORDNET’s internal density is insufficient – there are too few connections
among the synsets. Boyd-Graber et al. [4] represents an attempt to create thousands
of new links that go beyond the relations specified in WordNet. This measure is
called “evocation” as it attempts to measure how much one concept brings to mind
another.

1 Throughout this article we will follow the convention of using a single word enclosed in
square brackets to denote a synset. Thus, [dog] refers not just to the word dog but to the
set – when rendered in its entirety – consisting of {dog, domestic dog, canis
familaris}.
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In total, evocation [4] aims to add cross-part-of-speech links, connecting nouns
to verbs and adjectives. Such syntagmatic relations allow for connections among
entities (expressed by nouns) and their attributes (encoded by adjectives); similarly,
events (referred to by verbs) can be linked to the entities with which they are charac-
teristically associated. For example, the intuitive connections among such concepts
as [traffic], [congested], and [stop] should be encoded in WORDNET.
This paper [4] also addressed another shortcoming of WORDNET, namely the ab-
sence of weights that indicate the semantic distance between the members of related
pairs.

These human judgements of evocation were collected via a laborious, expensive
method. Undergraduate students were put through a training and vetting process to
consistently rate pairs of synsets through a specially designed interface. Because
the pairs of synsets were randomly selected, many of the ratings, as expected, were
zero. Although we originally hoped that these initial ratings, collected over the
course of year and with a significant outlay of time and money, would allow us to
automatically label the rest of WORDNET with directed, weighted links, machine
learning techniques could not reliably replicate human ratings. In Section 5.4.1, we
propose a method to collect the same valuable empirical similarity ratings using a
far less expensive annotation strategy.

5.4 Building the Visual Vocabulary for Aphasia

We selected ViVA’s initial vocabulary set such that it is a collection of commonly
used words as well as ones relevant to our target population, people who have apha-
sia. ViVA’s core vocabulary was mined from two sources: the “core” WORDNET

consisting of frequent and salient words selected for the initial collection of evoca-
tion data and the visual vocabulary of an assistive device for people with aphasia
created by Lingraphicare [14]. The core WORDNET consists of two sets of 1000
and 5000 salient words. The sets were constructed by collecting the most frequently
used words from the British National Corpus [24]. Each word from the resulting list
was then assigned its most salient meaning available in WORDNET [4]. We used all
synsets from the core 1000 synsets used in our initial evocation study [4], all verbs
in Lingraphicare’s vocabulary, and all nouns and adjectives in both Lingraphica’s
vocabulary and the core 5000 synsets.

Lingraphica’s multi-modal vocabulary consists of icons that combine text, a pic-
torial representation of the concept and speech output of the text. We used the pic-
torial representation to perform a form of coarse disambiguation. For each concept
in Lingraphicare’s vocabulary, we selected the corresponding concept from WORD-
NET to create a single, unified representation of the vocabulary.
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eat (v)

take in solid food

hungry (a)

feeling a need or desire to eat food

Fig. 5.2 Example stimulus for collecting evocation ratings. A user rates 50 pairs in a single
sitting.

5.4.1 Collecting Inexpensive Ratings from Untrained Annotators

Many natural language processing tasks such as determining evocation require hu-
man annotation that is expensive and time-consuming on large scale. Snow et
al. [21] demonstrated the potential of Amazon’s Mechanical Turk [2] as a method
for collecting a large number of inexpensive annotations quickly from a broad pool
of human contributors. Their experiment illustrated that labels acquired through
Amazon Mechanical Turk (AMT) from non-expert annotators are in high agreement
with gold standard annotations from experts. The positive results of their work mo-
tivated us to collect evocation ratings to be used in the visual vocabulary for aphasia
through a Mechanical Turk experiment described in this section.

5.4.2 Method

We used a machine learning algorithm to select the synset pairs to be rated via
AMT annotators. We used many of the features found to be predictive of evocation
including those based on WORDNET connectivity [12], pointwise mutual informa-
tion based on words appearing in the same sentence, and context similarity [4]. We
duplicated high evocation pairs (having a median rating of greater than 15) to create
a high-recall training set, trained a classifier using AdaBoost [20], and then took the
subset of all pairs of synsets in our vocabulary labeled as having a high predicted
evocation by our learning algorithm. These pairs were the ones selected to be rated
via AMT.

We created 200 tasks consisting of 50 pairs each. The design of the template we
posted on AMT was closely modeled after the computer program used by Boyd-
Graber et al. [4] to collect ratings from undergraduate annotators. Anchor points on
a scale from 0 to 100 were available to rate evocation (Figure 5.2). Raters were first
presented with the following set of instructions:

1. Rate how much the first word brings to mind the second word using the provided
scale.

2. The relationship between the two words is not necessarily symmetrical. For ex-
ample, “dollar” may evoke “green” more than the reverse.

3. Pay attention to the definition of the words given on the second line; words can
have more than one meaning. For example “dog” (the animal) would not bring
to mind “bun” (the piece of bread you serve with a hot dog).
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Fig. 5.3 The distribution of the mean of the evocation pairs collected. The extra bump at 100
is because same synset check was placed in each task to ensure annotator reliability.

4. The letter in parenthesis signifies whether the word is a: an adjective, n: a noun
or v: a verb.

5. Don’t use information from your personal life. For example, if you had a dog
named “bog” you personally would associate “bog” and “dog,” but the average
person wouldn’t.

6. Don’t use the spelling of words to make your decisions. For example, even
though “bog” and “dog” rhyme, they are not associated.

7. We cannot offer you a big reward for your time, but we greatly appreciate your
sincere effort. There are a few pairs with known average ratings embedded in
the task. If your ratings for those pairs do not fall in generously set acceptance
bounds, we will have to reject your responses.

The last instruction was included to forewarn annotators that sloppy contributions
such as clicking all zeros will not be rewarded. We embedded five checks, unknown
to the annotators, in each task which were later used to determine the validity of the
gathered results. Annotators were paid $0.07 to complete a task.

5.5 Results

We collected 2990 completed tasks in a period of ten days. The average time to
complete a task was 4.5 minutes, resulting in an average pay of $0.92 per hour. To
ensure the quality of the ratings and a consistency with previous results, we used
embedded checks to decide which submitted tasks were valid. The ratings for four
of those checks were collected from the dataset provided by Boyd-Graber et al. [4].
The fifth check required annotators to rank a pair consisting of the same synset, for
example [help] and [help].



5 Semantic Similarity for Assistive Communication 89

Table 5.1 Correlation of the mean and median against evocation annotations collected by
trained undergraduate annotators.

Filtering Method Correlation with Mean Correlation with Median Number Ratings
All Checks 0.604 0.563 14850

Most Checks 0.529 0.484 23700
Some Checks 0.355 0.279 24750

Table 5.2 Examples of mean evocation ratings given three different methods to ensure rater
reliability. For comparison, evocation ratings from trained undergraduates are also shown.

Filtering Method Trained Synset 1 Synset 2
All Most Some Undergraduates
50 10 61 88 trust.v.01 responsible.a.01
39 44 41 44 surgeon.n.01 responsible.a.01
25 18 22 42 deservingness.n.01 exceed.v.02
31 31 28 33 philosopher.n.01 convert.v.03
29 30 30 20 television receiver.n.01 performance.n.02
46 57 62 19 log.n.01 leaf.n.01
12 12 14 18 subject.n.06 check.v.22
34 33 31 16 diligence.n.02 craft.n.04
25 20 27 16 abundant.a.01 harmony.n.02
21 10 14 1 category.n.02 beginning.n.03
23 19 18 0 eyelid.n.01 wrist.n.01
25 28 26 0 reason.n.02 reference point.n.01
4 5 9 0 spread.n.05 pill.n.02

We ran three different reliability tests depending on the number of checks we
wanted satisfied. If the annotator’s rating for the fifth check was 100 and a number
of the remaining checks were met within certain acceptance bounds, the annotations
were considered valid. The acceptance bounds were defined as follows. As in the
task, the scale of 0 to 100 was split into 5 intervals, [0–9], [10–29], [30–69], [70–89],
[90–100]. If an annotator’s rating fell within the same interval as the corresponding
check or in the immediately lower or higher intervals, the rating was considered
valid. The first reliability test required all checks to be met. For this set, 40.2%
of the pairs were rated as having moderate or no association and 3.5% fell in the
category immediately brings to mind (see Figure 5.3).

The second reliability test required most, three or more, checks to be met in
addition to satisfying the complete-evocation check. The final and most relaxed
reliability test required some, two or more, checks to be met in addition to the
complete-evocation check. Table 5.1 shows the number of synset pair ratings for
each of the reliability levels, and Table 5.2 has explicit examples of mean evocation
ratings for the three levels.
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Fig. 5.4 Ratings from untrained annotators on the web correlated well (0.604) with those
collected by trained undergraduate annotators.

Finally, Table 5.1 shows mean and median correlation of the three reliability sets
against the ratings provided by undergraduate students in [4]. As expected, the re-
sults get noisier when less strict checks are applied. The set of synsets where all
checks were met results in the highest correlation to the original evocation data.
While it is not very high, it is sufficient to show that with good quality control, gath-
ering ratings through AMT was a valid approach. While AMT annotators seem to
rate on average evocation lower than the trained annotators, as seen from Figure 5.4,
the inter-annotator agreement in the most reliable set and the original evocation set
are comparable.

5.6 Discussion

While the results may appear less compelling than one might have expected, it is
important to bear in mind the difficulty of the task. First, the nature of the task was
such that we asked the participants to actively produce a rating, rather than to agree
or disagree with a pre-set judgment or to select one from a few pre-defined options.
Second, the ratings were to be expressed on a scale from 0 to 100, thus allowing
for – and in fact, encouraging – very subtle judgments that permitted significant
disagreement. Third, while we controlled for intra-rater reliability, we did not know
who our raters were in terms of educational level, literacy, and familiarity with the
words and concepts that were presented. Indeed, we had no way to ascertain that
the raters were native or near-native speakers of English. Finally, the raters might
have received insufficient training given the cognitive demands of the task.
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The results must be compared to those obtained in the carefully controlled study
reported by Boyd-Graber et al. [4]. At the outset of that experiment, it was unknown
whether any reasonable reliability could be obtained at all, as we were well aware
of the difficulty of the task, for which no precedent existed, and we considered the
results encouraging. Our raters came from a small, homogeneous pool – Princeton
undergraduate students – whose identity we knew and whom we trained carefully
and with personal feedback. In light of the different methods of data collection,
the results of the current study are comparable. The inherent noise in the evocation
data reflects idiosyncrasies in world knowledge; only by accepting this reality and
incorporating it into assistive technologies can we hope to build devices that can
truly help a heterogenous target population.

Even though our strictest reliability test invalidated half of the collected data,
using AMT to gather evocation is still more efficient and economical compared to
using trained annotators. This collection of reliable evocation ratings adds on to
the scaffolding of our assistive vocabulary by providing meaningful links between
words. Such links will compensate for impaired access to the user’s “mental lex-
icon” and assist her in communicating. A network of words whose organization
reflects human semantic memory has the potential to help users with anomic apha-
sia navigate the vocabulary more naturally and thus find what they are trying to
express faster.
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Chapter 6
An Introduction to Hybrid Semantics: The Role
of Cognition in Semantic Resources

Alessandro Oltramari

Abstract. This paper focuses on the problem of opening semantic technologies to a
comprehensive cognitive modeling of information: assuming an unilateral focus on
symbolic ‘representations’, in fact, spoils human knowledge processes of their pe-
culiar ‘embodied’ features. We claim, conversely, that the mutual interlinks between
static and dynamic cognitive structures should be adopted in semantic technologies
to improve existing knowledge resources. In particular, in the process of ontology
creation, a preliminary analysis of knowledge formation and cognitive structuring
of conceptualization becomes a necessary module of semantic technologies.

6.1 Introduction

In cognitive science, knowledge is conceived as the main outcome of the process
of understanding (see for example [21] and [23]): by interacting with the environ-
ment, intelligent agents are able to interpret and represent world situations, suitably
acting to preserve themselves and pursue specific goals. Representing knowledge
is a necessary step for communication; but knowledge can be represented in so far
that world phenomena are previously presented to humans, namely structured and
perceived as unique experiences of the subject: one can hear the sound of a boiling
teapot and express a sentence about that; trivially, the linguistic rendering is dif-
ferent from the personal hearing event, which is called ‘act of presentation’: in the
former humans exploit natural language to transmit the conceptual content of expe-
rience; in the latter, a concrete sense-driven process supplies perceptual information
to the subject. What is not trivial, instead, is the analysis of the relations holding
between ‘knowledge representations’ and ‘perceptual presentations’, namely what
we refer to here as ‘cognitive matrix of static and dynamic dimensions of human
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cognition’. Knowledge contents are neither simple products of abstraction nor bare
perception-driven units: they genuinely correspond to an interwoven combination
(so called cognitive matrix) of the two.

These arguments are particularly important for the field of human-computer in-
teraction, with the substantial difference that here conceptual contents have to be
‘realized’ in a machine-readable format: to ignore the embodied nature of mean-
ing when switching from natural to computational languages would be to discard
an essential part of information that is needed to face the problem of semantic am-
biguity in knowledge technologies. If static and dynamic dimensions of cognition
constitute meaning, as we claim in the current work, then they need to be also en-
coded in those information systems dealing with world knowledge description. The
cognitive adequacy of knowledge technologies allows humans and machines to im-
prove the mutual access to information: in this work, our study of the process of
understanding aims at integrating the proper vision underlying the field of knowl-
edge representation, in particular concerning so-called ‘ontological level’. In this
perspective we outline an hybrid approach to cognitive science and technology to
overcome the delineated problems and improve information systems accordingly.
Quoting Negroponte , the ‘quality of the (digital) world we live by depends on the
quality of information we access to, that needs to be selected, filtered, and orga-
nized’ [22].

6.2 Statics and Dynamics of Cognition

In this section we introduce the core aspects of a hybrid perspective on cognition,
where both static and dynamic structures of the mind are involved. We define as
statics of cognition the study of mental representations from a formal or symbolic
viewpoint. The usefulness of the symbolic approach for computational analysis is
well-recognized: nevertheless, assuming mental representations to be genetically
symbolic could be dangerous and misleading. In this context, dynamics of cogni-
tion refers to a level of analysis where mental phenomena and their perceptual basis
become the real objective of the inquiry ([1], p.2).

The core principle grounding statics and dynamics of cognition consists in
the seminal distinction between presentation (Vorstellung) and representation
(Darstellung): the concept of Darstellung appeared in Kant’s Kritik der Urteil-
skraft [16] and, roughly speaking, designates the communicable part of a mental
representation/object, its exhibition.

In order to eschew any terminological problem, we consider henceforth men-
tal presentation (or just presentation) and conceptual representation (or mental
object) as kinds of mental entities. Conceptual representations, as the adjective
itself suggests, refer to concepts (e.g. ‘composer’), namely organizations of individ-
uals (e.g. ‘Bach’,‘Beethoven’,‘Verdi’) according to the similar properties they share
(‘writing music’).
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‘Buying’ the notion of conceptual representation can be advantageous only if we
resist the temptation of reducing all mental phenomena to it. We are not denying
here the use of formal languages to model the dynamics of cognition, that is of
course an important issue related to the implementation of information systems and
machine-understandable resources. Nevertheless, the dynamic forms of mental pre-
sentations have to be necessarily analysed at first by suitable instruments, in order
to bring out their structural elements and relations, which cannot be merely inter-
preted as ‘abstract symbols managed by formal rules’. Among those instruments
we can find cognitive semantics, according to which language is not interpreted as
an autonomous and self-referent domain but consists of features that are directly de-
pendent on perception. Far from willing to deepen a topic that is intimately related
to history of philosophy and psychology, we need at least to trace back the notion of
‘presentation’ to its peculiar origin. We recall, in particular, Franz Brentano’s meta-
physical conception [5]. When something from the environment becomes present to
the subject, there is an act of presentation – a psychic phenomenon – that reveals the
manifestation of that object to the subject. Even if the act of presentation depends
on the interaction of the subject with the environment, and ultimately to the peculiar
features of the environment itself as stated one century later in the ‘ecological ap-
proach’ [11], there is also a massive information ‘imposed’ by the subjective act to
the presented object, a sort of ‘filtering’ through cognitive structures. Presentations
correspond to psychological events directed to objects, namely the objects presented
by the act: hearing the sound of a cascade points to the phenomenal aspect of an ob-
ject i.e. – in Brentano’s terms – the intentional object of the hearing that differs
from the characteristic wavelength of the sound emission produced by the falling
water.

Summarizing, the backbone of our hybrid perspective on cognition has two core
keystones:

1. the notion of mental presentation studied by cognitive semantics, according to
which language is conceived as a complex system directly dependent on percep-
tual structures;

2. the notion of conceptual representation analysed by means of formal semantics,
which assumes language to be autonomous.

Two concepts of ‘meaning’ are clearly into play here: on one side, meaning is
“the product of mental activity on the part of physically embodied, socio-culturally
grounded human minds” (see [18], p. 26); on the other side, formal semantics char-
acterizes meaning by pointing to the truth-conditions of a sentence in a language
(e.g. Montague semantics – see [8]). This double aspect of cognition constitute
the basis of the ‘cognitive matrix’. Following the former approach, the connection
between language and the world does not take on a direct shape but displays to
be mediated by perceptive structures: these structures, suitably indicated as con-
ceptual schemas or just schemas, capture the dynamics of the cognitive relations
holding within the elements of a presentation, their mutual position, dependence,
salience and ambiguity, projecting them into language ([3], p. 9). Although the no-
tion of schema has not been deeply inspected by any of the proponents of cognitive
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semantics ([2], p. 16), its role in the analysis of the cognitive level remains unques-
tionable: Langacker, for example, refers to it as ‘a mapping of a structural complex
in a coarse grid’, e.g. the concept of TOOL is a schema for notions like HAMMER,
SCREWDRIVER, SAW, which specify peculiar details the schema abstracts from
specific instances or content units – [19], p.103).

6.3 From Conceptualization to Specification: The Ontological
Level

The overall framework of the Cognitive Matrix refers to the specific problem of
defining what is a representation: in particular, here we are considering how the
above-mentioned notions of presentation and mental representation affect the
present topic, even helping to detect dangerous misunderstandings in the basic vo-
cabulary widely in use. First of all, we need to make a step back to literature.

Many different definitions of ‘conceptualization’ and ‘ontology’ are available1,
even though a common agreement has been reached today on the ‘usage’ of both
for capturing shared knowledge in software systems. In general, “ontologies are de-
fined as a formal specification of a shared conceptualization”2. Guarino gave a finer
characterization: a ‘conceptualization’ is a language-independent view of the world,
a set of conceptual relations defined on a domain space3; besides, an ontology is a
language-dependent cognitive artifact, committed to a certain conceptualization of
the world by means of a given language (see [14] for formal details)4. As words
in italics suggest, the main disagreement here consists in the fact that the former
definition talk about shared conceptualizations, while latter doesn’t ask for such a
strong requirement. We endorse here Guarino’s definition for the following reason:
every conceptualization is bound to a single agent, namely it is a mental product
which stands for the view of the world adopted by that agent; it is by means of
ontologies, which are language-specifications of those mental products, that hetero-
geneous agents (humans, artificial or hybrid groups of them) can assess if a certain
conceptualization is shared or not and choose if it is worthwhile to negotiate mean-
ing or not. Borst and Gruber’s definition, which is an example of the general position
adopted by AI, database and information systems community, overturns the argu-
ment and misleads the inner sense of the problem: since we can’t directly ‘read’
agent’s minds, how could we know that different agents share the same conceptu-
alization, without a linguistic projection of such conceptualization? The exclusive
entryway to concepts is by language; if the layman normally uses natural language,

1 See [12] for a short review.
2 This definition by Borst [4] is a refinement of Gruber’s one [13].
3 Given a domain of entities, a domain space is a set of possible states of affairs of that

domain (see also Kripke’s notion of possible worlds [17]).
4 Guarino and Giaretta, in their 1995 seminal paper [15] distinguish between ‘Ontology’ as

a discipline (with the capital ‘o’) from ‘ontologies’ as engineering artifacts, constituted by
a specific vocabulary used to describe a certain reality, plus a set of explicit assumptions
regarding the intended meaning of the vocabulary words.
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Fig. 6.1 Guarino’s revisited.

societies of hybrid agents composed by computer, robot and humans, need a formal
machine-understandable language.

Apart from the level of complexity and explicitness, what is crucial is that on-
tologies, as language-dependent specifications of conceptualizations, are the basis
of communication, the bridge through which common understanding is possible.

Figure 6.1, based on Guarino’s original one5, depicts the above-mentioned gen-
eral scenario: note that we have substituted here the notion of conceptualization
with the notion of Cognitive Matrix to stress the fact that ontological models orig-
inate from the (semantic) interpretation of the network of static and dynamic struc-
tures underlying the cognitive level of human mind, even though they don’t com-
pletely reflect it.
Definition. The intended models of a logical language reflect its commitment to a Cogni-
tive Matrix; an ontology indirectly reflects this commitment (and the underlying Cognitive
Matrix) by approximating this set of intended models’.

Let’s resume the situation. Different agents (independently from their biological
or artificial nature) have different cognitive matrices: they need ontologies to bar-
gain meanings and communicate in a common environment. Ontologies enable the

5 See, for example, [14].
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organization of information contents and “provide agents with the shared knowledge
that they can use to communicate and work together” ([26], p.343).

6.4 Building ‘Hybrid’ Semantic Technologies

If static and dynamic structures of cognition form the essential features of linguistic
meanings – as we showed above – the comprehensiveness and efficiency of se-
mantic technologies in terms of human-computer interaction actually depends on
an adequate treatment of those aspects in the design and implementation phases of
different computational resources. As testified by research and industrial projects,
‘knowledge technologies’ are bound to a life-cycle constituted by acquisition, re-
trieval, modeling, reuse, publishing and maintenance of knowledge. In this context,
we introduce the notion of knowledge matrix as the machine-understandable man-
ifold structure emerging from modeling knowledge according to the cognitive ma-
trix perspective. This notion reflects the cognitive matrix meta-model from an im-
plementational standpoint: interfacing ontologies and computational lexicons has
to be seen as a new route of the information space across which hybrid agents
negotiate knowledge contents and exchange linguistic and ontological aspects of
knowledge6.

The ontological layer has been recognized in recent years as a fundamental
one in agent communication [10]: besides the protocol layer, where the syntax
of the communication language is specified7, the ontological layer formally defines
the concepts needed to exchange messages8. Furthermore, when building human-
computer interaction resources, accessing to ontological concepts through natural
language becomes a necessary requirement: in this context, the complementary role
played by computational lexicons is very important, also considering the function
of natural language as common ‘vehicles’ conceptual schemas. Computational lex-
icons, whose aim is to make lexical-content machine-understandable, constitute a
fundamental component of the Knowledge Matrix. As Lenci, Calzolari and Zam-
polli pointed out, “ontologies represent an important bridge between knowledge
representation and computational lexical semantics, and actually form a continuum
with semantic lexicons”9[20]. The most relevant areas of interest in this context are
Semantic Web and Human-Language Technologies (HLT): they converge in the task
of providing the semantic description of content, although concerning two different

6 In Computer Science, this particular notion of ‘knowledge’ would correspond to T-box
(terminological) statements in a knowledge base (i.e. student is a subclass of person). The
assertion component (A-box), namely factual knowledge associated to terminology (i.e.
John is a person), is not central in the present context.

7 KQML (Knowledge Query and Manipulation Language) is one of the most well known
language protocols in the field [9].

8 The granularity of these concepts may change from high level to domain-dependent: for
instance, in e-learning systems an agent may ask about the general notion of ‘learner’ and
also about the knowledge of a specific topic [6]: the ontology must provide both concepts.

9 Here ‘semantic lexicon’ and ‘computational lexicon’ have been used as synonyms.
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dimensions, the conceptual and lexical one. Implemented ontologies and compu-
tational lexicons aim at digging out the basic elements of a given semantic space
(domain-dependent or general), characterizing the different relations holding among
them. As we claim in [24], the interface between ontologies and lexical resources,
provides the ground for approximating and implementing information according to
the cognitive matrix components. Cognition has been depicted as a complex net-
work of static and dynamic structures (the cognitive matrix) that filters information
from the environment to the human mind. Dynamics of cognition concerns the
acts of presentation and their intentional objects; statics of cognition, on the other
side, deals with peculiar conceptual representations which emerge from singling out
common properties from those intentional objects. Making machine-understandable
this grounding manifold can foster the creation of information systems according to
suitable cognitive principles and distinctions.

6.5 The Project of a Collaborative Hybrid Semantic Resource

Several automatic methodologies and techniques are employed to build ontologies
from variable-scaled data sources such as annotated corpora, unstructured texts, ter-
minologies, lexical databases, etc. Although, at a first stage, it is important to adopt
automatic tools to “skim off” knowledge from heterogeneous data sources, the es-
sential limit of ontology learning lays in the quality of the obtained resources: in
order to make extracted ontologies robust and consistent with cognitive models of
knowledge, human-based conceptual analysis and possible re-organization of the
overall ontological structure are needed, together with suitable comparisons with
pre-existing ontologies. Therefore, human intervention over the extracted concep-
tual and relational distinctions becomes a mandatory requirement for developing
well-founded re-usable ontologies. By separating the linguistic layer from the on-
tology, users are allowed to manifest their knowledge in a free, incremental, natural,
collaborative and potentially conflicting way. As Wikipedia demonstrates, collabo-
rative projects produce huge amount of knowledge, which is continuously updated,
amended and extended by wiki-editors. We think that by applying a crowdsourcing
approach to the collection of human common-sense and linguistic knowledge can
also fit the Semantic Web paradigm. Following the cognitive perspective presented
in this paper, we introduce here the general features of TMEO, a tutoring methodol-
ogy to support semi-automatic ontology learning by means of interactive enrichment
of ontologies (both from the lexical and the ontological levels). Originally conceived
as a Q/A system for guiding humans in the elicitation of ontological knowledge at
the common sense level, TMEO’s model is being also applied to the industrial and
business scenarios of Italian FIRB 2006 project “TOCAI.it” (Knowledge-oriented
technologies for enterprise aggregation in Internet).

TMEO is based on a simplified OWL-lite version of DOLCE (called DOLCE-
spray, characterized only by very general ontological distinctions ‘spread over’ the



104 A. Oltramari

original DOLCE10: it corresponds to a formal model where upper level categories
(endurant, perdurant, quality, and abstract) and general relations (part-of, participa-
tion, dependence, etc.) are represented in a standard logic language. This ontology
has been explicitly developed in order to meet some core cognitive and linguistic
features of common sense knowledge. Although presenting DOLCE-spray in de-
tails is out of scope in this paper, we can say that the basic layer of DOLCE-spray
originates from the distinction between ENDURANT and PERDURANT, the former
class including those entities that are in time (like tables, cars, trees, persons, etc.),
the latter corresponding to entities that happen in time (such as conversations, wars,
dives, concerts, weddings, thoughts, et cetera). According to common sense, EN-
DURANT would roughly point to the everyday category of PHYSICAL OBJECT while
PERDURANT class would refer to EVENT (see Figure 6.2).

TMEO is inspired by Plato’s dialectic (Socrates’ methodology to drive his disci-
ples to true knowledge, posing questions and arguing on answers): it exploits some
suitable ontological properties for posing questions to users in support of domain in-
dependent or dependent knowledge modeling. TMEO is an interactive Q/A system
based on general distinctions embedded in DOLCE-spray.

Consider the case in which a given user is asked to classify the term (shoe),
whose WordNet gloss is “footwear shaped to fit the foot (below the ankle) with a
flexible upper of leather or plastic and a sole and heel of heavier material”11. After
initializing TMEO wizard, the HCI interface will put the user through a series of in-
tuitive conceptual questions – driven by the underlying DOLCE-spray ontological
model – in order to make explicit the intended meaning of the term. The following
sequence reflects an experimental trial made with multiple users.

• TMEO-Wizard: Can you touch or see or smell or taste or hear or feel a shoe?
User: Yes

• TMEO-Wizard: Can you count or enumerate shoes?
User: Yes

• TMEO-Wizard: Can you say that “a shoe is happening or occurring”?
User: No

• TMEO-Wizard: Can you say that a shoe is a product of human activity (no matter
whether hand-made or with the help of suitable tools and machines)?

User: Yes
• TMEO-Wizard: shoe in the sense of “footwear shaped to fit the foot (below the

ankle) with a flexible upper of leather or plastic and a sole and heel of heavier
material” has been classified as a kind of ARTIFACT.

• TMEO-Wizard: What are shoes commonly used for?
User: to walk

10 Descriptive Ontology for Linguistic and Cognitive Engineering (see
http://www.loa-cnr.it/DOLCE.html)
consists of about 40 concepts, 100 relations and 80 axioms

11 See http://wordnetweb.princeton.edu/perl/webwn

http://www.loa-cnr.it/DOLCE.html
http://wordnetweb.princeton.edu/perl/webwn
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Fig. 6.2 The DOLCE-spray general schema.

• TMEO-Wizard: Select the correct sense of to walk: [s1 - s2 - s3 - sn]12.
User: s1

• TMEO-Wizard: to walk in the sense s1 has been classified as the typical FUNC-
TION of shoes.

Here the algorithm drives the user through tracing the following path of knowl-
edge: shoes as ARTIFACT have the common FUNCTION of being used in walking
events. As the above-mentioned scenario suggests, TMEO methodology may there-
fore be adopted not only in the unilateral classification of a given term (‘shoe’)
but also in making related lexical items explicit. This kind of relatedness between
terms actually unwraps the inter-categorial relation(s) holding between the corre-
sponding ontological categories. Indeed, from the ontological viewpoint we can
say that there is a relation of Participation holding between the category ARTIFACT

(which is a kind of PHYSICAL OBJECT) and FUNCTION, which is conceptualized in
DOLCE-spray as a kind of PROCESS13.

TMEO has been implemented as a Java finite state machine (FSM): in general,
the elaboration process of a FSM begins from one of the states (called a ‘start state’),
goes through transitions depending on input to different states and can end in any of
those available (only the subset of so-called ‘accept states’ mark a successful flow of
operation). In the architectural framework of TMEO, the ‘start state’ is equivalent
to the top-most category ENTITY, the ‘transitional states’ correspond to disjunctions
within ontological categories and ‘accept states’ are played by to the most specific

12 For the sake of readability, we don’t go through the basic senses of the verb ‘to walk’, also
assuming that s1 is adequately selected by the user.

13 Note that we may wish to distinguish descriptions of functions from actual ones, namely
those functions which are performed at a certain time by a given object. In the above
example we simplify this distinction only focusing on the latter case.
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categories of the model, i.e. ‘leaves’ of the relative taxonomical structure. In this
context, queries represent the conceptual means to transition: this means that, when
the user answers to questions like the ones presented in the above-mentioned ex-
ample (e.g. “can you count or enumerate shoes?”), the FSM shifts from one state
to another according to answers driven by boolean logic14). If no more questions
are posited to the user, then this implies that the operations have reached one of the
available final ‘accept state’, corresponding to the level where ontological categories
don’t have further specializations (no transitions are left). TMEO human language
interface is very simple and comes in the form of a window where yes/no options are
presented together with the step-by-step questions: Figure 6.3 shows an example in
Italian for the word ‘cane’ (=dog), where the Wizard asks whether one can perceive
cane with the five senses or not. At the end of any single process of enrichment,
the system automatically stores the new concept as an OWL class in the knowledge
base under the category of DOLCE-spray suitably selected by the user (e.g. in this
sense,‘shoe’ and ‘dog’ become respectively a subclass of ARTEFACT and of ‘ani-
mal’). Future work on TMEO aims at extending the coverage of the model, adding
new ‘transitional states’ and ‘accept states’. We discovered that users, in fact, have
an high degree of confidence and precision in classifying the concept referring to the
physical realm, while they face several problems in distinguishing abstract notions
like ‘number’, ‘thought’, ‘beauty’, ‘duration’, etc. [7]: future releases of TMEO
will have to be improved both conceptually and heuristically, in this direction.

As the reader should have realized so far, one of the major advantages of this
approach consists in its flexibility: it is relatively easy in terms of human-effort to
apply and customize TMEO to specific domains, given some preliminary conceptual
analysis of the entities and relations at play, or to add some finer-grained distinctions
to enhance the degree of precision of the enrichment (e.g., distinguishing ‘artistic
artefact’ from ‘mechanical artefacts’, ‘collective actions’ from actions depending on
a single agent, and so on and so forth). From the software engineering perspective,
the scalability of the system is bound to the maintenance of the knowledge base:
that is, any change to the conceptual structures of TMEO can be made at the level
of the ontology, directly modifying the OWL model (for instance, in the Protégé
frame-based platform15): in fact, the actual Q/A dialog system retrieves information
from the ontology and eventually updates questions (stored in the form of RDF
“annotation properties”) and categories accordingly.

In conclusion we should also mention that TMEO has been deployed in the
TasLab Project16, concerning the realization of a semantic portal for fostering ter-
ritorial ICT innovation, including the use of domain ontologies and thesauri (e.g.,
Eurovoc17), indexing and semantic search techniques18. We are also planning to

14 Uncertainty will be included only in future releases of the TMEO system.
15 http://protege.stanford.edu/
16 http://www.taslab.eu/
17 http://europa.eu/eurovoc/
18 See [25].

http://protege.stanford.edu/
http://www.taslab.eu/
http://europa.eu/eurovoc/
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Fig. 6.3 The TMEO Wizard.

adopt TMEO in the DARPA project ‘Mind’s Eye”, which deals with recognition
and classification of basic actions19.

6.6 Conclusion

In a world where artificial agents are built to recognize, adapt and mimic human
features in interactive scenarios, it is a major task for cognitive scientists, and in par-
ticular for knowledge engineers, to acknowledge the cognitive dimensions of infor-
mation in their systems: knowledge is externally accessible, but internally shaped.
To hold the multifariousness of the knowledge world in building information sys-
tems, leaving aside those static and dynamic cognitive structures that shape contents
is thus to be avoided. In this paper we tried to sketch the general problems, foun-
dational issues and implementational direction towards the cognitive adequacy of
knowledge technologies.
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Chapter 7
Modal Logic Foundations of Markup Structures
in Annotation Systems

Marcus Kracht

Abstract. In this paper I explain how modal logic is used to talk about structured
documents and how this relates to markup languages, in particular XML. It will be
seen that there is a tight connection between XPath and dynamic logic over ordered
trees. This connection allows to get a good insight into the semantics and complexity
of XPath.

7.1 Introduction

Markup structures have established themselves as a quasi universal tool for stor-
ing and sharing data. Deriving ultimately from attribute value systems, they have
become very powerful through the use of recursive embedding. The most known
format is perhaps XML, but similar formats have been used before that. What is
more, typed feature structures—known mainly from computational linguistics—are
quite similar (see [4] and [6], for an introduction to XML see [18]).

Formal work on markup languages has focused on the computational behaviour
as well as the expressive power. On the one hand, one wants to allow for a rich query
language, on the other one would like to guarantee reasonably fast algorithms con-
sidering the magnitude of the data that is being searched. The relationship between
expressiveness of a language and its computational complexity is precisely the field
of finite model theory [8]. Consequently, the quickest way to establish results is to
measure the strength of queries into XML documents against languages studied in
finite model theory. The queries are formulated in a special language of the XML
family called XPath. XPath is a language that allows to define and use relations in
a document. XPath is most directly connected with modal logic (see [2]). Research
has therefore proceeded by comparing XPath with various variants of modal logic.

Markus Kracht
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There is a very close connection between markup and linguistic structures. For
the idea of using modal logic for analysing semistructured data derives from the
research on the model theory of syntactic and phonological structures (see [12]).
This was part of a research agenda now known as model theoretic syntax (MTS).
Similar to finite model theory, MTS uses logical languages to describe the model
structures of linguistic theories. There are two plurals here: “logical languages”
means that there are alternatives. Indeed, [20] has used (weak) monadic second
order logic to do this. [17] has used predicate logic with an added transitive closure
operator. Similarly, “linguistic theories” means that there are several theories, not
just one. Indeed, not only is there a plethora of linguistic theories, it should also
be said that there are numerous other languages, each defining a different set of
constraints on structures.

The research into model theoretic syntax was mainly an exercise in formalis-
ing linguistic theories. It has emerged, though, that there is a mutual benefit for
markup languages. There is now quite an active research area of query languages,
where techniques of finite model theory are being used to determine the strength
and tractability of query languages. The results can be applied almost directly also
to implementations of MTS.

The present paper serves as an introduction into the particular perspective of
modal logic on markup structures, or semistructured data. Its main purpose is to
explain the background and not to give a comprehensive overview over the literature
and the results of the research.

Many thanks to Richard Schröder for helping me piecing the files together after
some data crash and reading earlier drafts. I also thank two anonymous referees
for carefully reading this paper and making many helpful suggestions. Remaining
errors and omissions are solely my own responsibility.

7.2 Some Elements of Modal Logic

Propositional modal logic is defined as follows. The set of symbols of the language
consists of

1. a set Var of propositional variables (typically Var = {pi : i ∈ N});
2. a set Con of propositional constants;
3. a set MOp of modalities;
4. and the boolean connectives�, ⊥, ¬, ∧, ∨,→.

So, we basically distinguish modalities from modal operators. In standard terminol-
ogy, when μ is a modality, the construct [μ ] is a modal operator. The terminology
here makes the notation more user friendly and aligns modal logic with dynamic
logic (see the end of this section). Propositions are formed as follows.

1. Variables and constants are propositions.
2. � and ⊥ are propositions.
3. If ϕ is a proposition and μ a modality then ([μ ]ϕ) is a proposition as well.
4. If ϕ and χ are propositions, so are (¬ϕ), (ϕ ∧χ), (ϕ ∨χ) and (ϕ → χ).
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There is another modal operator associated with the modality μ , namely 〈μ〉. It can
be defined as follows.

〈μ〉ϕ := (¬([μ ](¬ϕ))) (7.1)

Brackets are dropped when no confusion arises. Conjunction binds stronger than
disjunction and implication. Sequences of unary operators need not be disrupted by
brackets. There is another notational tool that I shall borrow from dynamic logic,
namely sequencing.

[μ1; μ2; · · · ; μn]ϕ := [μ1][μ2] · · · [μn]ϕ
〈μ1; μ2; · · · ; μn〉ϕ := 〈μ1〉〈μ2〉 · · · 〈μn〉ϕ (7.2)

Propositions are evaluated in so-called pointed frames. A frame is a triple 〈W,R,U〉,
where W is a set (members of which are called worlds), R is a function assigning
each modality a binary relation on W , and U is a function assigning to every constant
a subset of W . A pointed frame is a quadruple 〈W,R,U,w〉 where 〈W,R,U〉 is a
frame and w∈W . A valuation is a function β : Var→℘(W). A model is a quintuple
〈W,R,U,β ,w〉 such that 〈W,R,U,w〉 is a pointed frame and β a valuation into it.

In the following definition p ranges over variables, c over constants and μ over
modalities.

〈W,R,U,β ,w〉 � p :⇔ w ∈ β (p)
〈W,R,U,β ,w〉 � c :⇔ w ∈U(c)
〈W,R,U,β ,w〉 �� :⇔ true
〈W,R,U,β ,w〉 �⊥ :⇔ false
〈W,R,U,β ,w〉 � (¬ϕ) :⇔ 〈W,R,U,β ,w〉 � ϕ
〈W,R,U,β ,w〉 � (ϕ ∧χ) :⇔ 〈W,R,U,β ,w〉 � ϕ

and 〈W,R,U,β ,w〉 � χ
〈W,R,U,β ,w〉 � (ϕ ∨χ) :⇔ 〈W,R,U,β ,w〉 � ϕ

or 〈W,R,U,β ,w〉 � χ
〈W,R,U,β ,w〉 � (ϕ → χ) :⇔ 〈W,R,U,β ,w〉 � ϕ

or 〈W,R,U,β ,w〉 � χ
〈W,R,U,β ,w〉 � ([μ ]ϕ) :⇔ for all w′: if w R(μ) w′ then

〈W,R,U,β ,w′〉 � ϕ

(7.3)

It is an easy exercise left to the reader to check that

〈W,R,U,β ,w〉 � (〈μ〉ϕ)⇔ there is w′: w R(μ) w′ and 〈W,R,U,β ,w′〉 � ϕ (7.4)

(Since 〈μ〉ϕ is an abbreviation, this is not a definition. Rather, it now follows from
the above definitions.) Note that only in the case of modalities does the world at
which we evaluate get changed. In XPath terminology, we change the focus (see
[10]).
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Example 1. Linear Structures.

Let the language L� be defined by Var := {pi : i ∈ N}, Con := ∅, and MOp :=
{→,←,→∗,←∗}. Now let 〈W,R,U〉 be such that

1. W is finite.
2. R(→∗) is the reflexive and transitive closure of R(→).
3. R(←∗) is the reflexive and transitive closure of R(←).
4. R(←) is the converse of R(→).
5. For all v,w ∈W : either w R(→∗) v or v R(→∗) w.
6. If w R(→∗) v and v R(→∗) w then w = v.

Recall that H is the transitive closure of K⊆W×W if and only if it is the smallest set
that is transitive and contains K. The reflexive and transitive closure of K, denoted
by K∗, is the transitive closure of K∪{〈w,w〉 : w ∈W}. Also, K� := {〈y,x〉 : 〈x,y〉 ∈
K} is called the converse of K. It is easy to see that (K�)∗ = (K∗)�.

The above conditions on the frames say that 〈W,R(→∗)〉 is a finite linear order.
We may think, for example, of a file as an instance of such a structure. (The frame
here supplies only the positions; I shall discuss below where the actual symbols of
the file come in.)

Example 2. Ordered Trees.

Let the language Lt be defined by Var := {pi : i ∈N}, Con := ∅, and MOp := {↑,↓,
→,←,↑∗,↓∗,→∗,←∗}. Now let 〈W,R,U〉 be such that

1. W is finite.
2. R(↑∗) (R(↓∗), R(→∗), R(←∗)) is the reflexive and transitive closure of R(↑) (R(↓

), R(→), R(←)).
3. R(↑) is the converse of R(↓); R(←) is the converse of R(→).
4. There is exactly one w such that for all v: w R(↓∗) v. (This is called the root.)
5. For all v, the set of w such that w R(↓∗) v is linearly ordered by R(↓∗).
6. For all v, the set of w such that w R(→∗) v or w R(←∗) v is linearly ordered by

R(→∗).
This structure is therefore defined by only two of the eight relations, namely the
‘vertical’ R(↓) and the ‘horizontal’ R(→). For R(↑) is the converse of R(↓), and
R(←) the converse of R(→); and the other relations are reflexive and transitive
closures of these four.

Such a structure is easily recognised as an ordered tree. It will play a fundamental
role in what is to follow. It is a tree because of the vertical relation R(↓) satisfies the
typical properties of immediate dominance; it is ordered since the daughters of each
node (in the tree sense) are linearly ordered with respect to each other.

We conclude this section with some remarks on PDL. Propositional Dynamic
Logic or PDL, presents a substantial strengthening of modal logic. In PDL, modal-
ities are called programs. As before there is a fixed set MOp of programs; however,
programs can now be combined.
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1. If α and β are programs, so are α∗, α;β and α ∪β .
2. If ϕ is a proposition, ϕ? is a program.

We extend the function R as follows.

R(α;β ) :=R(α)◦R(β )
R(α ∪β ) :=R(α)∪R(β )
R(α∗) :=R(α)∗
R(ϕ?) :={〈x,x〉 : x � ϕ}

(7.5)

In PDL with converse we also have an operator � on programs. Furthermore,
R(α�) := R(α)�. I note here the following properties of the converse, which I
state as identities between programs.

(α ∪β )� = α�∪β �

(α;β )� = β �;α�

(α∗)� = (α�)∗
(ϕ?)� = ϕ?

(7.6)

Using PDL we can reduce the number of basic modalities as follows. ↑∗ can be
defined; in fact, the notation has now become transparent in the right way. Now we
have only four basic programs, ↑, ↓, →, and ←. With converse, just two of them
suffice.

7.3 Classes of Models

Given a proposition and a model we can evaluate the proposition and see whether it
is true; this is known as model checking, since we are checking the proposition in the
model. Given a proposition, we can also ask which frames allow no countermodel
for it. This is used in axiomatising classes of structures. First a few definitions.
We write 〈W,R,U,w〉 � ϕ if for all valuations β : 〈W,R,U,β ,w〉 � ϕ . In this way,
a pointed frame satisfies a formula if it satisfies the formula for all valuations; with
propositional quantifiers (which we do not use) we may write this as 〈W,R,U,w〉 �
(∀p)ϕ , where p collects all variables occurring in ϕ . We write 〈W,R,U〉 � ϕ if for
all w ∈W : 〈W,R,U,w〉 � ϕ .

Definition 1 (Axiomatisable Classes). Let K be a class of pointed frames. K is
called axiomatisable if there is a set Δ of formulae such that 〈W,R,U,w〉 ∈K iff
〈W,R,U,w〉 � δ for all δ ∈ Δ .

Similarly for classes of frames. I shall present here a few positive and negative
results. First, let us note the following. Given w, let Tr(w) denote the set of worlds
that can be reached from w using any of the relations. Formally, let S be the reflexive
and transitive closure of the union of all the R(μ). Then

Tr(w) := {v : w S v} (7.7)
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Furthermore, let R′(μ) :=R(μ)∩S and U ′(c) :=U(c)∩Tr(w). Then 〈Tr(w),R′,U ′,w〉
is called the subframe generated by w. Given a valuation β into W , we put
β ′(p) := β (p)∩Tr(w). Then

〈W,R,U,β ,w〉 � ϕ iff 〈Tr(w),R′,U ′,β ′,w〉 � ϕ (7.8)

If β ′ is a valuation on the generated subframe then we may put β (p) := β ′(p). In
that case, (7.8) also holds.

Definition 2. 〈W,R,U,w〉 is said to be generated if W = Tr(w). 〈W,R,U〉 is said to
be 1-generated if there is a w such that W = Tr(w).

It then follows that if K and L are axiomatisable classes of frames whose 1-
generated members are identical then the two classes are identical. Similarly, two
axiomatisable classes of pointed frames are identical if only their generated mem-
bers are the same. In view of this, it is perhaps better to axiomatise just classes of
generated pointed frames (1-generated frames).

It turns out that the classes of finite linear frames is axiomatisable (as a class of
1-generated frames).

Theorem 3. The following holds.

1. 〈W,R,U〉 � 〈μ〉p0→ 〈ν〉p0 iff R(μ)⊆ R(ν).
2. 〈W,R,U〉 � 〈μ ; μ〉p0→ 〈μ〉p0 iff R(μ) is transitive.
3. 〈W,R,U〉 � p0→ [μ ]〈ν〉p0 iff R(μ)⊆ R(ν)�.
4. 〈W,R,U〉 � [ν](p0→ [μ ]p0)∧ p0→ [ν]p0 iff R(μ)∗ ⊇ R(ν).
5. 〈W,R,U〉 � 〈μ〉p0→ [μ ]p0 iff R(μ) is a partial function.
6. 〈W,R,U〉 � [μ ]([μ ]p0→ p0)→ [μ ]p0 iff R(μ) is transitive and conversely well-

founded.

I show the second claim. Suppose that 〈W,R,U〉 � 〈μ ; μ〉p0 → 〈μ〉p0. Now let
x R(μ) y R(μ) z. Pick β such that β (p0) := {z}. Then 〈W,R,U,β ,x〉 � 〈μ ; μ〉p0.
Hence, by assumption, 〈W,R,U,β ,x〉� 〈μ〉p0. So there is a u such that x R(μ) u and
〈W,R,U,β ,u〉 � p0. By choice of β this means u = z, and so x R(μ) z. Conversely,
suppose that R(μ) is transitive. Pick x and β such that 〈W,R,U,β ,x〉 � 〈μ ; μ〉p0.
Then there are y and z such that x R(μ) y R(μ) z and 〈W,R,U,β ,z〉 � p0. R(μ) is
transitive, and therefore x R(μ) z, which means that 〈W,R,U,β ,x〉 � 〈μ〉p0.

For a somewhat more difficult case, I turn to (6). Rather than proving the entire
claim, let me show that the formula is valid on a transitive, conversely well-founded
frame 〈W,R,U〉. To that end, let P0 be all the points that have no R-successor.
Inductively, define Pα to be the set of all points w such that all successors are in Pβ
for some β < α and for every β < α there is some u ∈ Pβ which is a successor of
w. (This definition is over all ordinals, it does not require the frame to be finite.)
By ordinal induction it is shown that 〈W,R,U,β ,w〉 � [μ ]([μ ]p0→ p0)→ [μ ]p0 for
every w ∈ Pα . To that end, assume that the claim has been shown for all β < α .
Pick w ∈ Pα . Assume that 〈W,R,U,β ,w〉 � [μ ]([μ ]p0→ p0). We need to show that
〈W,R,U,β ,w〉 � [μ ]p0. To that end we pick a successor u. It is in Pβ for some
β < α . By assumption on w, we have 〈W,R,U,β ,u〉 � [μ ]p0→ p0. By transitivity,
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we also have 〈W,R,U,β ,u〉 � [μ ]([μ ]p0→ p0). Finally, by inductive hypothesis we
have 〈W,R,U,β ,u〉 � [μ ]([μ ]p0→ p0)→ [μ ]p0. This gives 〈W,R,U,β ,u〉 � [μ ]p0,
and finally 〈W,R,U,β ,u〉 � p0. u has been arbitrary. This shows the claim. (Notice
that we do not need to prove the case α = 0 separately. It is however easy to see
directly that the claim holds in that case.)

Corollary 4. The following holds.

➀ The class of linear orders is axiomatisable in L� (as a class of 1-generated
frames).

➁ The class of (ordered) trees is axiomatisable in Lt (as a class of 1-generated
frames).

Let me also say a few words about the relationship between frames and pointed
frames. We say that ξ is a master modality in 〈W,R,U〉 if R(ξ ) is reflexive, transi-
tive, and for all μ ∈MOp, R(μ)⊆ R(ξ ).

Proposition 5. Let 〈W,R,U,w〉 be generated and assume that ξ is a master modal-
ity. Then 〈W,R,U,β ,w〉 � [ξ ]ϕ iff 〈W,R,U,β 〉 � ϕ . Also, 〈W,R,U,w〉 � [ξ ]ϕ iff
〈W,R,U〉 � ϕ .

It is possible to axiomatise the class of frames where a given modality is guaranteed
to be a master modality. In linear frames, there is no such master modality. However,
it turns out that we have something that is effectively the same. Namely, if both
R(→∗) and R(←∗) are linear and each others converse, then for every x,y there is a
z such that: x R(→∗) z R(←∗) y. Thus, in place of the above we have

〈W,R,U,β ,w〉 � [→∗;←∗]ϕ ⇔ 〈W,R,U,β 〉 � ϕ (7.9)

7.4 Modal Logic and DOMs

Now we turn to more realistic models. First of all, we like to define a realistic theory
of a file. To this end, all we need to do is to take the language of our first example
and supplement it with constants. There are many ways to go. Given our alphabet
A of letters, we can define a constant a for each letter of A. (The alphabet is usually
assumed to be finite.) Then we add the axioms a→ ¬b for all a,b ∈ A such that
a �= b; moreover we shall add

∨〈a : a ∈ A〉. In raw (that is, binary) format, we can
take A to be just {0,1}. The worlds are then the positions of the individual bits. But
different structures can be used (say, with a constant for each alphabetical symbol
of Unicode).

A given file is therefore a 1-generated frame for this logic. It has the form
〈W,R,U〉, where W is a finite set, and R(→) is a partial function with inverse R(←).
Since the frame is 1-generated, every point is connected with every other, which
means that we have a finite linear order in the standard sense. The worlds can thus
be identified with an initial segment of the natural numbers. The function U assigns
to each constant a, with a ∈ A, a set U(a). If i ∈U(a) the file is said to carry the let-
ter a at position i. The axiom a→¬b guarantees that every position carries exactly
one letter.
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Consider a generated pointed frame 〈W,R,U, i〉. Here, the members of W are
numbers, and i is a particular number. This is equivalent to a file plus cursor po-
sition. The commands that move the cursor to the right and left can be interpreted
as changing the world i to i + 1 and i− 1, respectively. More complex motions of
the cursor can be defined, though the present language may be too limited for that.
Without the modalities, we can only determine what symbol is present at the current
position; the modalities present something of a lookahead. For example, 〈→〉a is
true at i if i+ 1 carries the letter a, equivalently, if a is true at i+ 1.

Let me now turn to XML. For readers unfamiliar with this format, I advise to
get hold of a book on XML, for example [18]. An XML-document is a file, that is,
in first instance a string. The data in the file combines both the primary data itself
and the metadata in the form of annotation tags. The tags may carry any additional
information about this data. But first and foremost they serve to structure it. They
turn it into a tree.

<library>
<book>

<author>Hugo</author>
<title>Les Misérables</title>

</book>
<book>

<author>Flaubert</author>
<title>Madame Bovary</title>

</book>
</library>

(7.10)

For each opening tag, say <author> there must be a corresponding closing tag,
</author>. In principle, tags can be inserted anywhere as long as they are prop-
erly nested. However, from a theoretical point of view it is best to require that text
can only be inserted between deepest embedded tags. (This is the default in XSL
Schema, by the way.) A slight modification of the structure is enough to get this
form. Say we have the following line.

<p>This was an <i>inspiring</i> discussion.</p> (7.11)

This line is then transformed as follows, where <text> is a tag reserved for text
input.

<p><text>This was an</text>
<i><text>inspiring</text></i>
<text>discussion.</text></p>

(7.12)

This is the form we shall assume here. In XML talk, we disallow the mixed type.
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The linear structure (7.10) is converted into a tree structure in the following way.
A tag <τ> together with the next corresponding closing tag </τ> define a con-
stituent of type τ . In this way, a linguistic representation of the above structure
might look like this:

[library[book[authorHugo][titleLes Misérables]]
[book[authorFlaubert][titleMadame Bovary]]] (7.13)

However, this is not entirely adequate. For disregarding order the structure is a node
labelled directed graph. These are triples 〈N,E, �〉, where E ⊆N×N and � : N→ L,
where L is a labelling domain.
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However, in semistructured data we like to think of these structures as edge labelled
graphs [1]. These are triples 〈N,E, �〉, where E ⊆ N ×N and � : E → L. These
graphs are called the DOMs (document object models).
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This necessitates the introduction of a root node since we need an edge with label
library. Now, in this structure the tags correspond to edge labels. This does not
apply to the attributes, though. Furthermore, types and content are properties of the
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nodes, not the edges. Thus the following tag represents a mixture of edge and node
labels:

< author︸ ︷︷ ︸ ID="VH07"︸ ︷︷ ︸ nationality="French"︸ ︷︷ ︸
>

↑ ↑ ↑
edge node node
label label label

(7.14)

In fact, as noted in [1], the notation is not fully transparent with respect to the
structure that it represents. First, ID and IDREF should be treated separately; they
deal with so-called oids (object identifiers). Attributes on the other hand should also
be seen as edge labels, so that they are basically equivalent to tags. However, one
difference remains: attributes are not recursive; and they are not ordered. I remark
briefly that in a tree there is a simple correspondence between edge labels and labels
on nodes other than the root. Observe that every node has a unique parent, so if we
make the edge label a label of the endpoint of the edge, the edge labelling can be
recovered except of the root node. The document root however is added on top of
the root node of the tree; and this makes the correspondence exact. Also note that
in practice, XPath seems to treat DOMs rather as node labeled trees.

I shall first present a formalism for fixed tag sets (for example, HTML). In the
next section I shall return to XML. The tags are at present undecorated (no attributes,
no identifiers). Hence, for each tag τ we take a separate modal operator with the
same name. So, we have, in the case of HTML, modal operators h1, p, and so on.
The following is assumed: the union over all R(τ), where τ is a tag, corresponds
to the relation R(↓). Second, for different tags τ and τ ′, R(τ)∩R(τ ′) = ∅ (though,
surprisingly, this is not modally axiomatisable unless all daughters of a node are
linearly ordered with respect to each other). Third, x R(→) y only if there is z
and a tag τ such that z R(τ) x,y. This is a known situation: only the siblings are
ordered with respect to each other. (Thus R(→) is the sibling ordering, not the
linear precedence in the file defining the model.) A different proposal is to assume
that x R(→) y if x and y have ancestors that are neighbouring siblings. (So, using the
previous definition, we take the ordering to be R(↑∗) ◦R(→) ◦R(↓∗).) The sibling
order is derived from the linear precedence in the XML-document (the file), which
specifies a linear order on the entire set of nodes.

7.5 XPath

In XML the tagset is not fixed. Yet we still can encode XML structures with a finite
set of modalities. The trick is as follows. We return to the language of ordered trees.
The edge label no longer defines a modality in its own right. Rather, we make the
edge label a property of the node to which the edge points. This is exactly how
it is done in XML. (And it is the reason why in the DOM we need an extra root
node.) We introduce a new modality, τ , which relates a node with its tag. XPath
has a function called name() to return the name of a node. However, notice that
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there is no limit on the number of tags, so we need to convert tags into structures
as well. This we can do by representing the tag in the model as a string. Thus we
arrive at a new sort of language and structures. They extend the ordered trees. The
additional postulates are as follows. Say that z is a tag node if there are x and y such
that x R(τ) y, and z ∈ Tr(y). Then we add the condition that if z is a tag node, there
is no y such that z R(τ) y or z R(↑) y or z R(↓) y. This makes Tr(y) in effect a linear
structure, for any tag node y. It is important to note that if z is not a tag node and
z R(μ) y for μ ∈ {↑,↓,→,←}, then y also is not a tag node. Thus, the only way to
enter tag nodes is via the relation τ . Finally, the tag nodes are treated as coding a
string, so the letters are basically introduced via constants. It must then be specified
that the constants are false at ordinary tree nodes.

With this in mind we shall now turn to the analysis of XPath. XPath is a language
for selecting nodes from a tree, based on various properties. These properties need
not be local to the node (like the tag), mostly they involve ways in which the node
is embedded in a structure. We can define the set of nodes that have a particular
parent node, for example. We can also find nodes based on their linear position
in the DOM. The expressive power of XPath is therefore quite rich; too rich to
receive a comprehensive logical treatment. (In fact, [5] show that adding numeric
comparisons quickly leads to undecidability.) [9] have therefore proposed to define
a subset, called Core XPath, where only the relational properties are studied. It is
this language that we shall look at below. XPath itself nowadays has two versions:
there is XPath 1.0 and XPath 2.0. Consequently, there is Core XPath 1.0, and Core
XPath 2.0. The discussion below treats Core XPath 1.0, and takes only a brief look
at Core XPath 2.0.

XPath contains so-called axes. These are relations between nodes in a tree. Here
are the main axis relations:

XPath PDL

parent ↑
ancestor-or-self ↑∗
ancestor ↑;↑∗
child ↓
descendant-or-self ↓∗
descendant ↓∗;↓
following-sibling →∗;→
following ↑∗;→;→∗;↓∗
preceding-sibling ←∗;←
preceding ↑∗;←;←∗;↓∗

(7.15)

There are three more: self, namespace and attribute. The actual surface
syntax of XPath is somewhat different. There are first of all two types of path
expressions: relative and absolute. We deal with the relative pattern first. The
relative pattern is composed from so-called step patterns by means of / and //.
A step pattern in turn is a sequence consisting of (a) an axis specifier, (b) a node
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test, and (c) a sequence of predicates. The axis specifier says whether the node
test specifies the value of an attribute or the label. The predicates are properties of
nodes. They are enclosed in square brackets. These properties can be even numeric,
but it is customary to restrict them to what is expressible to the relational language
described here. The absolute paths are obtained from the relative paths by prefixing
them with / or // (as is customary in Unix). This makes / and // both unary and
binary symbols. Finally, it is important to realise that path expressions can have
a short form and a long form. What appears in short as author is in long form
self::node()/child::author. In the long form the symbol/ is interpreted
as relational composition while in the short form it effectively takes the meaning
“compose with child-of”, as it does in Unix. (More on the precise syntax and the
relationship to modal logic and relational algebras can be found in [5].)

One big problem area in the theory of markup language is fast algorithms for
the path containment problem. This is the problem to determine, given two path
descriptions p and q, whether or not in every tree all the p-paths are included in
the q-paths. One of the reasons to be interested in this problem is in reformulating
queries either to speed them up or to discover if they are consistent [7, 16].

Since the full language is quite difficult to tackle one is therefore interested in
fragments of it. A popular fragment is one where the horizontal axes are eliminated.
One can then in effect only talk about hierarchy, not about linear order. An XP-
expression is an expression generated by the following grammar, taken from [16].
It is based on the short forms and does not use upward directed axes.

p := p1|p2 (disjunction)
| /p (root)
| //p (descendant)
| p1/p2 (child)
| p1//p2 (descendant)
| p1[p2] (filter)
| σ (element test)
| * (wildcard)

(7.16)

Here, σ is a basic boolean constant. The queries are evaluated as relations in Kripke-
models. Let T be a tree with root r and 〈W,R,U,β ,w〉 a Kripke-model.

�p1|p2�T =�p1�T∪ �p2�T

�/p�T =�p�T∩{r}×W
�//p�T ={〈r,w〉 : ∃u : 〈u,w〉 ∈ �p�T}
�p1/p2�T =�p1�T ◦R(↓)◦ �p2�T

�p1//p2�T=�p1�T ◦R(↓+)◦ �p2�T

�p1[p2]�T={〈v,w〉 ∈ �p1�T : ∃u : 〈w,u〉 ∈ �p2�T}
�σ�T ={〈w,w〉 : w ∈ β (σ)}
�∗�T ={〈w,w〉 : w ∈W}

(7.17)

Based on work by [15], [16] establish the following. The first, standard, case is
when the set L of labels is infinite:
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Theorem 6. The following holds.

1. Containment of XP(/, //, [], ∗, |) is in CONP.
2. Containment of XP(/, |) is CONP-hard.
3. Containment of XP(//, |) is CONP-hard.

A problem P is in CONP if it can be verified in nondeterministic polynomial time (=
NP) whether a given structure is a counterexample to P.

Theorem 7. Let L be finite.

1. Containment of XP(/, //, [], ∗, |) is in PSPACE.
2. Containment of XP(/, //, |) is PSPACE-hard.

[16] contains many more results. Additional complexity comes from the addition
of DTDs, which describe the structure of documents. The problem becomes the
following: given a DTD d and two path expressions p, q say whether �p�T ⊆ �q�T

for all T satisfying d. Effectively, DTDs are some kind of axioms. Thus adding a
DTD may in fact increase the complexity of the problem.

Theorem 8. The following holds.

1. Containment of XP(DTD, /, []) is in CONP.
2. Containment of XP(DTD, /, []) is CONP-hard.
3. Containment of XP(DTD, //, []) is CONP-hard.
4. Containment of XP(/, //, [], ∗) is EXPTIME-complete.
5. Containment of XP(/, //, |) is EXPTIME-complete.

7.6 Paths in Dynamic Logic

Based on the results of Sections 7.2 and 7.3 we can conclude.

Theorem 9. The class of ordered forests is axiomatisable in PDL over ↑, ↓,→ and
←. The logic is denoted by PDLt.

It is possible to extend this to edge labelled forests. Just add one more operator,
node, and the axioms

[node;node]⊥, 〈node〉p→ [node]p (7.18)

This makes the interpretation of node a relation R such that if x R y then y has no
R-successor, and if x R z then y = z. The value at this node is any text (the edge
label). If there are only finitely many tags available, then we can mimic the edge
labels by a fixed set of boolean constants. Otherwise, we need to encode the strings
over an alphabet.

We can offer an analysis of path expressions by translating them into PDL ex-
pressions. Recall that in XPath expressions are evaluated into node sets. The set
contains the nodes satisfying the expression. Since the syntax of path expressions is
somewhat different from PDL, we must first translate them. This must be done with
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care. For in the previous section we have just translated them as relations. Here
we must reduce them to formulae. Given an expression book/author we must
decide whether we look at the set of nodes where the path originates or whether
we look at the set of nodes where the path ends. In a template, for example, we
look at the nodes where the path ends. So, for each path we have two translations,
{·}o (looking at nodes where the paths originate) and {·}g (looking at nodes where
the paths end). These can be derived, though, from a direct translation {·}δ into
relations, which runs as follows (based on the long form).

{p1|p2}δ :={p1}δ ∪{p2}δ

{p1/p2}δ :={p1}δ ◦ {p2}δ

{p1[p2]}δ :={p1}δ ◦ {〈x,x〉 : (∃y)(〈x,y〉 ∈ {p2}δ )}
{ρ :: τ}δ :=ρ ◦ τ?

(7.19)

Now {·}o can be obtained, translating ◦ by ; and ∪ by ∪:

{p1|p2}o :={p1}o∪{p2}o

{p1/p2}o :={p1}o;{p2}o

{p1[p2]}o:={p1}o;(〈{p2}o}〉�)?
{ρ :: τ}o :=ρ ;τ?

(7.20)

To see the rationale behind this translation note that 〈α〉� is true at a point iff there is
an α-path starting at that point. Also, 〈α;ϕ?〉� is true iff there is an α-path ending
in a node satisfying ϕ . With the converse operator we can now write as follows.
If x � 〈α〉� selects the nodes at which α can successfully start, {x : x � 〈α�〉�}
selects the nodes at which α ends. Thus we have

{π}g = ({π}o)� (7.21)

Applying this to path expressions gives the following.

{p1|p2}g :={p1}g∪{p2}g

{p1/p2}g :={p2}g;{p1}g

{p1[p2]}g :=〈{p2}o〉�?;{p1}g

{ρ :: τ}g :=τ?;ρ�

(7.22)

The third line is noteworthy (the derivation makes use of the equations (7.6)).

{p1[p2]}g =({p1[p2]}o)�

=({p1}o;〈{p2}o〉�?)�

=(〈{p2}o〉�?)�;({p1}o)�

=〈{p2}o〉�?;{p1}g

(7.23)

Absolute paths can be defined as follows.

{/p}o := ¬〈↑〉�?;{p}o (7.24)
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The program ϕ?;α effectively restricts the set of nodes to those where ϕ is true.
Here is a classical result.

Theorem 10 ([22]). The satisfiability problem for PDL is in EXPTIME.

By reducing it to the original result, [2] show that the same complexity holds for the
logic of trees.

Theorem 11 ([2]). The satisfiability problem of PDLt is in EXPTIME.

Path inclusion can be reduced to the negation of a satisfiability problem. Namely,
π � ρ in some structure iff [{π}o]p∧〈{ρ}o〉¬p is satisfiable in PDLt. Formulated
differently, π ⊆ ρ in every structure iff [{ρ}o]p→ [{π}o]p ∈ PDLt. According to
Theorem 11 the problem is decidable in EXPTIME. Notice that the actual queries
that can be issued in XPath are a proper subset of the queries that are definable in
PDLt [13].

An interesting property of PDLt is that we can define nominals. Nominals are
special kinds of propositional variables that may be instantiated to a single point
[3]. That is, if i is a nominal and 〈W,R,U,β ,w〉 a model then β (i) = {v} for some
v ∈W . Given a formula ϕ(i) which contains such a nominal, we can replace the
nominal by a standard variable p as follows. We put

�= := ↓+ ∪(↑∗;(→+ ∪←+);↓∗) (7.25)

It is not hard to see that R(�=) = {〈v,w〉 : v �= w}. Then suppose that the following
is true at w:

〈↑∗;↓∗〉(p∧ [�=]¬p)∧ϕ(p) (7.26)

Then at some point v, v � p∧ [�=]¬p, which is to say that β (p) = {v}, as required.
Since an added nominal can be recoded at constant expense, the complexity does
not rise in PDLt if we add nominals.

Formally, the argument runs as follows. Let NPDLt be the extension of PDLt by
nominals. Then one can show that for every formula ϕ there is a formula ϕ� such
that ϕ ∈ NPDLt iff ϕ� ∈ PDLt. The complexity of NPDLt can be bounded from
that of PDLt using the properties of the map ϕ �→ ϕ�. Since in this case |ϕ�| ≤ c|ϕ |
for some constant c, if PDLt is decidable in f (x) time, NPDLt is decidable in f (cx)
time. The same argument can be used to show that the logic with an added constant
axiom ξ has the same complexity. Here we take ϕ → ϕ ∧ [↑∗;↓∗]ξ . The function
is f (d + x), where d is a constant (1 plus the length of [↑∗;↓∗]ξ . Likewise, mak-
ing a program deterministic or adding the converse typically have no effect on the
complexity (see [11]). Let us close this section with a quick look at Core XPath
2.0. This language extends Core XPath 1.0 by operators on paths. There are new
constructs union, intersect, and except to form the union, intersection and
difference of relations or path sets. Paths can be combined using these expressions.
This exceeds the syntactic means of PDL, so [5] turn to relation algebras instead.
This language is decidable, and expressively complete for first-order logic. This
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means that if a property of nodes is first-order definable it is also definable in Core
XPath 2.0 [14]. Since the paths definable in Core XPath 1.0 are not closed under
negation [19], this language is therefore stronger. [5] give a complete axiomatisation
of path equivalence.

7.7 Conclusion

A logical analysis of computer languages is important in many respects: it gives us
a clear idea of what is expressible and what is not; it also gives us a clear notion of
the sort of structures we are using; and third, it allows to prove precise results about
the complexity of algorithms. The analysis of XML, in particular Core XPath, in
terms of modal logic is a good example of this. The relational character of the
models for modal logic make it very useful in studying DOMs from an abstract
point of view. Also, expressive and computational properties of Core XPath can be
addressed succinctly. Although quite different in detail, the two languages share a
large enough core to allow for useful results. Since the model theory of PDL is well
understood, results can be transferred almost immediately.
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Chapter 8
Adaptation of Ontological Knowledge from
Structured Textual Data

Tonio Wandmacher, Ekaterina Ovchinnikova, Uwe Mönnich, Jens Michaelis,
and Kai-Uwe Kühnberger

Abstract. This paper provides a general framework for the extraction and adapta-
tion of ontological knowledge from new structured information. The cycle of this
process is described starting with the extraction of semantic knowledge from syntac-
tically given information, the transformation of this information into an appropriate
format of description logic, and the dynamic update of a given ontology with this
new information where certain types of potentially occurring inconsistencies are
automatically resolved. The framework uses crucially certain tools for this incre-
mental update. In addition to WordNet, the usage of FrameNet plays an important
role, in order to provide a consistent basis for reasoning applications. The cycle of
rewriting textual definitions into description logic axioms is prototypically imple-
mented as well as the resolution of certain types of inconsistencies in the dynamic
update of ontologies.

8.1 Introduction

Ontologies have been playing an important role for many applications in artificial
intelligence, computational linguistics, and text technology. The tremendous suc-
cess of the world wide web, large repositories of textual data used by the public
sector and industry, and knowledge-based expert systems boosted the endeavor to
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develop standardized representations of background knowledge. The state-of-the-
art for such a representation formalism are ontologies, commonly understood as a
hierarchy (partial order) of concepts enriched by certain additional features, like
relations holding between concepts.

There are several obvious challenges in ontology design and maintenance related
to textual applications. In particular, with respect to distributed, highly interac-
tive, and dynamic applications, e.g. in the WWW context, the need for a fast and
reliable possibility to generate and to adapt ontologies is an absolutely necessary
prerequisite for successful applications. Because hand-coded ontologies, developed
by knowledge engineers, lack the possibility of rapid updates and changes and the
pure generation is expensive and time-consuming in the first place, tools for the
automatic acquisition and adaptation of ontologies need to be developed. In this
context, different aspects can be distinguished:

• Development of top-level ontologies: usually top-level ontologies are hand-
coded, represented in full first-order logic, and static, i.e. they describe the most
general conceptual principles that are used to govern knowledge of a particular
domain [44].

• Knowledge acquisition for domain ontologies: Domain ontologies describe con-
ceptual hierarchies and relations between concepts in particular domains: As a
de facto standard for domain ontologies, description logics (DLs) are commonly
used [2]. A (semi-)automatic procedure for acquiring ontological knowledge is
in the focus of this type of challenge [31].

• Development and representation of lexical ontologies: Lexical ontologies tend
to be logically inconsistent and are therefore inappropriate for reasoning tasks.
Consequently, interfaces are necessary to map lexical ontologies to domain and
top-level ontologies [35].

• Dynamic updates of domain ontologies: Domain ontologies are subject to
changes, updates, and conflict resolution. However, not all updates can be con-
sistently added to the existing ontology. Therefore, conflict resolution strategies
need to be developed to implement dynamic changes in an automatic way [37].

This article attempts to give a general framework for the whole cycle of incre-
mentally updating existing ontologies with new information (cf. Figure 8.1 for a
schematic diagram of this process). More precisely, given structured textual infor-
mation, e.g. coded in annotation graphs (cf. Subsection 8.2.1), the first step is the
extraction of semantic knowledge from these structures that can be used in an appro-
priate format for an update of an existing ontology (cf. Subsection 8.2.2 and Section
8.3). Some specific features of the presented system (including well-known tools
that are used) are documented in Section 8.4. Our procedure for extracting ontolog-
ical axioms from natural language definitions is built upon the approach presented
in [45] which is discussed in section 8.3.1.

It is possible that the update makes the ontology inconsistent resulting in a knowl-
edge base that is inappropriate for deducing inferences (a necessary prerequisite for
many important applications in text technology). This problem can be addressed
by the development of an integration engine that resolves occurring inconsistencies
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Fig. 8.1 Architecture depicting the cycle of incrementally updating an existing ontology
with new information.

(cf. Sections 8.5 and 8.6). The output is an integrated and consistent ontology in
a standard format (like OWL). In this article, we focus primarily on the following
challenge of ontology design: given an update of an ontology, tools and resolution
strategies need to be used for its consistent extension and the possibility to deduce
inferences. The task to extract ontological knowledge from given information re-
sources is a preliminary step for addressing this problem.

8.1.1 Project Context

The results of this paper have emerged from work done in sub-project C2 “Adaptive
Ontologies on Extreme Markup Structures” of the research unit FOR 437 “Text
Technological Information Modelling”, a larger research endeavor funded by the
German Research Foundation. The collaborative research has been carried out by
the Universities of Bielefeld, Dortmund, Gießen, Tübingen, and Osnabrück and has
been funded for six years. The overall goal of FOR 437 is the development of
theoretical foundations and practical tools for text technological applications. With
respect to the C2 sub-project the overall goal is to develop a formal framework
that allows the representation of the process of extracting semantic knowledge from
structured textual data, the incremental process of expanding existing conceptual
background knowledge by this new semantic knowledge, and the adaptation of this
expansion in case the added information is inconsistent with the existing ontology.

8.2 Theoretical Background

8.2.1 Annotation Graphs and Their Logical Representation

Recently, artificial intelligence and computational linguistics have tried to develop
tools to extract semantic knowledge from syntactic information. In particular, from
a text technological point of view, the general research perspective is to extract



132 T. Wandmacher et al.

(semantic) information from annotated documents. Regarding this aim, some of the
relevant annotation models used in this context are multilayer annotations, hyper-
links, discourse structure, or (classical) linguistic description levels.

An important aspect concerning annotation models is the development of a suit-
able logic system that is rich enough to represent linguistic information on multiple
levels. The challenges of such architectures are twofold: first, the dynamic interac-
tion between syntactic and semantic information must be represented and second,
the efficiency of algorithms must be guaranteed.

Fortunately, in the case of annotation graphs (AGs) in the sense of [5], techniques
from parameterized complexity theory can be exploited. This theory provides pow-
erful tools for a detailed investigation of algorithmic problems. As it turns out, the
concept of treewidth in the sense of [40], indicating the similarity of a graph or a
relational structure with a tree, is a parameter which helps to show that many oth-
erwise intractable problems become computable in linear time when restricted to
tree-like inputs (cf. [32]).

The key feature of AGs is their abstraction from the diversity of concrete formats
used for the transcription of text and speech. This feature makes them an ideal
candidate for the comparison of different annotation systems, e.g., those currently
developed by several linguistic collaborative research centers in Germany.

Translating these different representation schemes into the framework of AGs is
a necessary prerequisite for the transfer of the pleasant computational properties of
AGs to the original systems. This is particularly important in those circumstances
where the natural data structure of the concrete markup system cannot be readily
understood as describing trees.

A classical domain for the model of multilayered annotations is linguistics. Ut-
terances of speakers can be considered from different perspectives: examples are
syntactic, semantic, discourse and intonation aspects, just to mention some of them.
Representing these types of data in one representation format yields overlapping
hierarchies. Moreover, the resulting structures are naturally considered as graphs
rather than trees.

These different types of data can be accommodated by representing AGs in logi-
cal form resulting in a structure of low descriptive complexity. Furthermore, logical
representations are amenable to techniques from logical graph theory, especially
in terms of Monadic Second-Order Logic (MSO) based on the work of Courcelle
starting from [15]. While the logical approach towards annotation models provides
a unified format for the syntactic level, it still has to be complemented with a compo-
nent that serves to integrate syntactic with semantic structures, as, e.g., those given
within the FrameNet account [41].

Clearly, an MSO representation of AGs is not yet in accordance with a format
generally accepted for representing semantic knowledge. This format usually re-
quires a reduced representation of the available knowledge in a form similar to a
two-variable logic, namely, description logics (DLs), thus, in accordance with a rea-
sonable logical representation of the semantic information provided by FrameNet.
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A procedure of transforming the rich MSO representations into a two-variable
representation where semantically irrelevant information is discarded and complex
representations are simplified yields a core of conceptual information that can be
used for a learning procedure on ontologies. Transformations of this sort by which
labeled or tagged XML trees, e. g., are converted into patterns provided by a differ-
ent language like HTML are critical nowadays to the core business in applications
such as data exchange. A case in point is the use of the transformation language
XPath in the approach [45], to be discussed below, in which annotated natural lan-
guage definitions are translated into DL axioms.

A multitude of languages for transforming tree structures coded along the XML
format was created with the particular needs of specific applications in mind. The
language XPath, e. g., comes in a bewildering variety of dialects and this is also
true of the more powerful Turing complete transformation language XSLT. It is thus
highly desirable to characterize these transformation languages by suitable logics in
order to understand their expressive power and their computational behavior. The
way modal logic can be exploited for this purpose is documented by the contribu-
tion of Marcus Kracht to this volume [28]. He shows convincingly how complexity
properties of XPath can be successfully addressed by an analysis of this XML lan-
guage in terms of an adequate modal logic.

XPath serves to define expressions for absolute and relative paths in an XML doc-
ument. The most general language for specifying such relations on trees which still
has pleasant computational properties is MSO. MSO formulas with two free vari-
ables built on the appropriate signature have as models regular path languages on a
(family of) tree(s). A path p from a node x to a node y satisfies such a formula if
the sequence of tags or labels from node x to node y is a word in the regular lan-
guage specified by this formula. Note that expressions in this logical language are
not restricted to the domain of XML trees. By switching to this logical expression
format an additional level of independence from the concrete details of XML syn-
tax is achieved. Furthermore, the expressive power of MSO on trees is equivalent
with the level of regular tree grammars and its expressive power on words/strings
matches exactly the family of regular string grammars. The two steps of the logic-
based approach described in this subsection consisting of the restriction to annota-
tion structures of bounded treewidth and their subsequent transformation by means
of logic-based path definitions, thus rely on two regular tools and retain in this way
the desirable properties of the component formalisms.

It goes without saying that the path expressions on which the approach in [45]
is based on are easily translated into MSO expressions. This can be done either
directly or via the translation scheme provided in Kracht’s contribution. The step
from the modal logic in latter paper to MSO is then a routine matter.

For concreteness we have abstained in the ensuing discussion from rewriting the
approach followed in [45] along the method sketched in this subsection. The infor-
mal presentation is intended to outline the theoretical background of such a trans-
formation procedure. We hope it will be of help for potential readers who are not
familiar with the techniques of model theoretic syntax.
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8.2.2 Ontologies and Description Logics

Although there is no generally accepted definition of what an ontology is, from an
abstract point of view, an ontology contains as a core terminological knowledge
in form of hierarchically structured concepts. These concepts can be enriched by
relations specifying constraints on them.

Certain standards allow to represent ontological knowledge in well-defined for-
mal languages. In recent years, the fast development of the WWW has brought
about a wide variety of standards for knowledge representation. Probably the most
important existing markup language for ontology design is the Web Ontology Lan-
guage (OWL) in its three different versions: OWL Lite, OWL DL, and OWL Full1.
The mentioned OWL versions are hierarchically ordered, such that OWL Full in-
cludes OWL DL, and OWL DL includes OWL Lite. Consequently, they differ in
their expressive power with respect to possible concept formations.

All versions of OWL are based on the logical formalism called description logics
(DL) [2]. This family of logical representation formalisms was originally designed
for the representation of terminological knowledge and reasoning processes. They
can be characterized, roughly speaking, as subsystems of first-order predicate logic
using at most two variables. In comparison to full first-order logic, description log-
ics are – due to their restrictions concerning quantification – rather weak logics with
respect to their expressive power. Therefore, DLs allow rather efficient reasoning.

A classical distinction in description logic is to separate knowledge about con-
cepts and facts in two different data structures. Terminological knowledge about
concepts is coded in the so-called terminological box (T-Box) whereas knowledge
about facts is coded in the assertion box (A-Box).

A DL terminology contains terminological axioms that define concepts occur-
ring in the domain of interest. In present paper, we consider A L C N terminolo-
gies. Let NC and NR be sets of concept names and role names respectively. A
DL-terminology consists of terminological axioms (TBox) of the form A � C or
A ≡ D where A ∈ NC and C is a concept description specified in A L CN -DL
(R ∈ NR,n ∈N) as follows:

C→� | ⊥ |A |¬C | ∀R.C | ∃R.C | C1�C2 | C1�C2 | ≤ nR | ≥ nR

An assertion box is a finite set of facts C(a) or R(b,c) where C is a concept name,
R is a relation name, and a,b, and c are individuals. C(a) means that an individual
a belongs to a concept C and R(b,c) means that individuals b and c stand in relation
R to each other.

The semantics of concepts and axioms is defined in the usual model-theoretic
way (see [2]) in terms of an interpretation function I = (ΔI , ·I ), where ΔI is
a non-empty set of individuals and the function ·I maps every concept name A to
AI ⊆ ΔI and every role name R to RI ⊆ ΔI ×ΔI . I is called a model of a
TBox T iff for every C � D ∈ T we have CI ⊆ DI and for every C ≡ D ∈ T :

1 see http://www.w3.org/TR/owl-features/
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CI = DI . A concept description D subsumes C towards T (T |= C � D) iff
CI ⊆DI for every model I of T . A concept description C is called satisfiable in
T iff there is a model M of T such that CM �= /0. A terminology is unsatisfiable if
it contains an unsatisfiable atomic concept.

8.3 Automatic Extraction of Ontological Knowledge from Texts

8.3.1 Existing Approaches in Ontology Learning

In the past few years, a variety of approaches has been presented that aim at ex-
tracting conceptual knowledge from unstructured and semi-structured data. These
approaches are of growing importance in the ontology building process, since for
many semantic web as for text technological applications the amount of available
knowledge is crucial. Since these methods are unsupervised, their output is usually
rather noisy.

So far, most of the approaches are light-weight from a logical point of view; they
return structurally simple constructions such as concepts, instances, taxonomic rela-
tions and other general relations (e.g. part-of or author-of). Current methods
basically make use of three strategies (or combinations of these):

1. Distributional information: The co-occurrence of terms within a given context
or document is an important hint for their conceptual relatedness. Moreover,
two terms will be similar in meaning if they tend to occur with the same neigh-
bors (2nd order co-occurrence). Different distributional methods (e.g. colloca-
tion analysis or Latent Semantic Analysis, [16]) give a distance measure between
two terms that can be used to represent semantic relatedness. For example, the
term dog might appear to be more similar to cat than to table. Even though this
cannot help labeling the type of relation, it gives a reliable clue that can be fur-
ther used. Clustering techniques, for example, use this information to form sets
of related terms. In hierarchical clustering procedures, these sets of terms are
arranged in a hierarchical fashion. The hereby generated cluster hierarchy can be
the base for a taxonomic structure, i.e. a hierarchy of concepts. Approaches that
use this kind of strategy are for example described in [10] or [12].

2. Lexico-syntactic patterns: The second strategy basically relies on lexico-syntactic
patterns, the so-called Hearst patterns [24]. Here, a text corpus is scanned for
characteristic recurring word combinations, typically containing a semantic rela-
tion between two terms (e.g. [w2, such as w1]⇒ w1 �w2). These approaches
however usually suffer from data sparsity, since many word combinations cannot
be found in even large corpora. To cope with this fact, efforts have been made to
harvest these patterns on the web, cf. [11].

3. Syntactic and morphosyntactic information: Finally linguistic structures like
verb frames and modifier constructions can help extract conceptual relations. For
example, it is easy to infer a subsumption relation between car ferry and ferry,
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since car is here a modifier of ferry (cf. [7]) Moreover, from the analysis of
dependency paths in syntactic derivations, reliable relations can be learned [26],
other methods make use of predicate-argument relations [20]. For the extraction
of nontaxonomic relations the analysis of selectional preferences of verbs can be
very helpful, cf. [47].

Techniques based on these strategies can be found in many ontology learning
systems, such as Snowball [1], OntoLearn [34], OntoLT [8], and Text2Onto [13].
Most of these systems are concerned with the extraction of the relevant terminology
(from which they deduce the respective classes), with the derivation of subsumption
relations and with some basic non-taxonomic relations.

Only very few approaches are aimed at extracting more expressive information
in a (semi-)automatic way. One of the most elaborated works is detailed in [45].2

Their methodology is based upon a syntactic analysis of definitional text segments,
acquired from encyclopedia entries, and it works as follows.

Using a very efficient and robust dependency parser (Minipar, cf. [30]), a de-
pendency tree is obtained from definitional text segments. By means of a set of
manually defined transformation rules this tree is transformed into one or several
axioms in OWL DL, as shown in the following example3:

Disjunction: NP0 or NP1 ⇒ X ≡ (NP0�NP1)
Negation: not V0NP0⇒ X ≡ (¬∃V0.NP0)

The implemented rules comprise rather complex logical constructions such as
negation, disjunction and number restriction, which implies that much of the ex-
pressivity of OWL DL is indeed exploited. By applying the methodology, axioms
of considerable complexity can be created, as shown by the following example:

Example 1 (a).
Definition: “A number is an abstract entity that represents a count or a mea-

surement.”

The output of the Völker’s approach yields the following:

Example 1 (b).
Axioms: Number ≡ ((Entity�Abstract)�∃represents.(Count�Measurement))

However, this example also illustrates some of the major problems of the ap-
proach. While the axiom is syntactically quite complex, the symbols out of which
it is composed are not grounded, i.e. their semantic interpretation is not provided.
The grounding problem is probably one of the most difficult problems of artificial
intelligence, and, as long as a complete theory of meaning has not been developed,
it is obvious that some part of the semantic interpretation of ontological symbols

2 Hereafter, the approach proposed in [45] is referred to as “Völker’s approach”.
3 Alternatively, the transformation could be achieved by following the logic-based method

described in the previous section
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remains ungrounded, i.e. it can only be explained by means of natural language.
However, in order to operate on output of the form presented in the example, it has
to be mapped onto existing ontological resources, which is by itself a highly com-
plex task (cf. [19]). The two main problems that have to be addressed are synonymy
and ambiguity.

The synonymy problem is given by the fact that one ontological entity can usu-
ally be realized by several natural language expressions; as a consequence such
expressions bearing the same (or very similar) meaning have to be identified and
mapped onto each other. Let us look at the following example:

Example 2 (a).
Def.: “A desert is a region receiving little precipitation.” “Sahara is a desert.”
Query: “Find all areas that have little rain.”

By applying the methodology described in [45] the definitory sentence and the
query result in the following DL axioms:

Example 2 (b).
Axioms:
Desert ≡ Region�∃receives.(Little�Precipitation)
Sahara� Desert
?Area�∃have.(Little�Rain)

It is easy to see that, with no further information given, it is impossible to answer
the query. It is not known that Rain is a sort of Precipitation (Rain� Precipitation);
likewise the synonymous character of receive and have in this expression is not
given. To address such problems the extracted axioms have to be connected with
a large-scale ontology of general language such as the Princeton WordNet [21].
It comprises taxonomic information as well as standard semantic relations (e.g.
meronymy), and it groups words as sets of synonyms (synsets). If each of the given
words in an axiom would be mapped onto the respective synset, a part of the syn-
onym problem could be solved.

However, this mapping process involves the second problem mentioned above,
the problem of ambiguity: a given natural language expression can have more than
one meaning, i.e. it can be mapped onto several ontological entities. This means that
without a proper disambiguation procedure the intended meaning of a symbol can-
not be specified. Disambiguation is a very active field of research in NLP, however
up to now a robust and reliable disambiguation procedure has not been developed.

Moreover, ambiguity is not limited to atomic symbols, but can be extended to
larger units. The definition of number above is a good example: Syntactically the
given semantic interpretation is not the only possible solution; the following inter-
pretation would be valid as well:
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Example 3.
Number ≡ ((Entity�Abstract)�∃represents.Count)�Measurement

Treating ambiguous constructions is a very difficult aspect for parsers, since the
disambiguation on the syntactical level involves information from previous sen-
tences as well as an important amount of world knowledge.

The Völker’s approach has another problem concerning the treatment of different
arguments of the same predicate. Consider Example 4 below. The relation names
in this example are constructed from the predicates and the corresponding propo-
sitions attached. Thus, the relation names are strongly connected to a particular
syntactic realization. Therefore the phrase passes or rivers separate a mountain
range from other mountain ranges will have a completely different OWL represen-
tation (∃separate.(Mountain� Range)� ∃separate.(Other�Mountain� Range))
than the definition in Example 4, while they are semantically equivalent. The exis-
tence of different superficial representations of a concept (in this case of the relation
separate) can hinder or even prevent reasoning.

Example 4.
Definition: A mountain range is a group of mountains separated from other

mountain ranges by passes or rivers.
Axiom: Mountain�Range≡ ∃group o f .Mountains�

∃separated f rom.(Other�Mountain�Range)�∃separated by.(Pass�River)

In addition to the problematic issues mentioned above, a rule-based approach like
the one described here is usually unable to deal with non-compositional semantics,
occurring for example in idiomatic expressions or certain types of adjective con-
structions. In such cases, manual intervention by an ontology engineer remains an
essential part of the ontology development process.

8.4 Our Proposal

In order a) to deal with the natural language ambiguity and b) to be able to represent
complex propositions with their argument structure we propose to “standardize”
axiomatic representation of ontological knowledge extracted from textual resources.

A natural way for coping with the lexical ambiguity is mapping synonymous
lexemes (e.g. beverage and drink) onto a unique representation. An ideal reference
resource for such a mapping is WordNet [21], an electronic database containing
lexical-semantic knowledge presented in a network-like structure. Nouns, verbs,
adjectives, and adverbs are grouped in WordNet into sets of cognitive synonyms
(synsets). In fact, synsets do not contain words but word senses. For example, the
lexeme board participates in several synsets ({board1, plank}, {board2, committee}
etc.) which refer to its different senses. Every synset in WordNet is identified by a
unique “id”.
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As mentioned in the previous section, disambiguating lexemes is not enough.
One has to be able to bind arguments to a corresponding predicate and abstract
from a concrete syntactic realization. We propose to use FrameNet (FN) frames
as patterns for the representation of predicates. The FrameNet lexical resource is
based on frame semantics [41]4. The lexical meaning of predicates in FN is ex-
pressed in terms of frames which are supposed to describe prototypical situations
in natural language. Every frame contains a set of roles (or frame elements, FEs)
corresponding to the participants of the described situation. Predicates with similar
semantics are assigned to the same frame, e.g. to give and to hand over refer to the
GIVING frame. Consider a FN annotation for Example 5(a) below. In this anno-
tation, DONOR, RECIPIENT, and THEME are roles in the frame GIVING and John,
Mary, and a book are fillers of these roles. The FN annotation generalizes across
near meaning-preserving transformations, cf. Example 5(b).

Example 5.
(a) [John]DONOR [gave]GIVING [Mary]RECIPIENT [a book]THEME.
(b) [John]DONOR [gave]GIVING [a book]THEME [to Mary]RECIPIENT.

Additionally, semantic relations, such as inheritance, causation, precedence, are
defined on frames, e.g. the KILLING and DEATH frames are connected to each other
with the causation relation. Frame elements of the connected frames are also related,
e.g. VICTIM in KILLING is related to PROTAGONIST in DEATH. For some of the
roles semantic types of the possible fillers are defined. For example, the role VICTIM

can be filled by an entity of the type Sentient. Semantic types are organized in a
small hierarchy in FN.

The presence of the frame relations gives an essential advantage in using FN
frames for the representation of predicates, because these relations serve as an ad-
ditional knowledge source which can be exploited in reasoning (c.f. [42]). Let us
consider Example 2 again. The predicates receives and has in the definition and in
the query will be mapped on different frames in FN: the frame RECEIVING with
roles RECIPIENT (desert) and THEME (little precipitation) and the frame POSSES-
SION with roles OWNER (desert) and POSSESSION (little rain) respectively. The
frames RECEIVING and POSSESSION are connected in FN trough the following
path of relations: RECEIVING inherits from GETTING precedes POST GETTING in-
herits from POSSESSION. Therefore it is possible to infer that the two frames under
consideration refer to the same situation and map corresponding roles on each other.

In order to make inferences with FrameNet available one has to represent the re-
source in a logical form. At present there exists an OWL DL representation of FN
in which frame names and frame element names are formalized as OWL concepts,
see [42] for more details. If a role belongs to a frame in FN then the corresponding
frame name is connected to the corresponding role name with the usesFE relation
in OWL representation. We aimed at staying in line with the AI tradition of repre-
senting semantic roles as relations rather than as concepts [6]. Therefore we have

4 cf. http://framenet.icsi.berkeley.edu
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created an alternative OWL DL representation of FN such that role names are for-
malized as OWL relations connecting frame names and semantic types. Relations
between frames are also represented as OWL relations. The following three axioms
represent the KILLING and DEATH frames as well as the causation relation between
them.

Example 6.
Killing � ∃Killing killer.� � ∃Killing victim.Sentient � ∃causes.Death
Death� ∃Death protagonist.Sentient
Killing victim� Death protagonist

To sum up, our approach consists in replacing lexically and syntactically am-
biguous natural language expressions in axioms extracted from text on the basis of
parsing and transformation rules (cf. section 8.3) with uniform representations using
FrameNet frames and WordNet synsets as reference sources. Let us illustrate with
Example 7 how the axioms resulting from the process described above look like.

Example 7 (a).
Definition: “An alcoholic beverage is a drink containing ethanol.”
Query: “Find all beverages in which alcohol is contained.”

Suppose we have axiom (1) extracted from the definition by the method presented
in [46]. Additionally, we have a FN annotation of the original definition (2) and an
OWL representation of the frame evoked by this definition (3).

Example 7 (b).
(1) Alcoholic�Beverage≡ Drink � ∃containing.Ethanol
(2) Alcoholic beverage is [a drink]TOTAL [containing]INCLUSION [ethanol]PART

(3) Inclusion≡ ∃Inclusion total.� � ∃Inclusion part.�

The FN annotation (2) can be formalized in OWL as shown in axiom (4) below.
In this axiom, words (drink, ethanol) have been already replaced with the corre-
sponding WordNet synsets.

(4) Alcoholic Beverage Inclusion≡ Inclusion � Inclusion total.{Drink} �
∃Inclusion part.{Ethanol}

The amalgamation of axioms (1) and (4) results in (5), where words are replaced
with synsets and an additional relation evokes is introduced in order to express the
connection between the defined concept and the evoked frame.

(5) {Alcoholic}�{Drink}≡ {Drink}�∃evokes.Alcoholic Beverage Inclusion

Let us now demonstrate how reasoning will work with axiom (5). Suppose we
have such additional facts as (6) and (7) in our ontology, claiming that beer is an
alcoholic beverage and ethanol is a kind of alcohol.
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(6) {Beer} � {Alcoholic} � {Drink}
(7) {Ethanol}� {Alcohol}
The query Find all beverages in which alcohol is contained can be represented

as follows.

(8) X � {Drink} � ∃evoke f rame.X Inclusion

(9) X Inclusion≡ Inclusion � ∃Inclusion total.{Drink} �
∃Inclusion part.{Alcohol}

For answering the query one has to find concepts in the ontology which are sub-
sumed by the right part of (8). It is easy to see that in our example the target atomic
concept is Beer.

8.5 Axiom Rewriting Procedure

8.5.1 Transforming Textual Input into OWL Axioms

Figure 8.2 shows the axiom rewriting procedure which is informally described in
the previous section. A textual concept definition from a thesaurus is treated in
two parallel processing lines. On the one hand, transformation rules are, in gen-
eral, applied to annotated analysis trees and, in our special case, to the output of the
Minipar parser as described in section 8.3. This module outputs OWL axioms pre-
serving lexemes and syntactic structure of the original definition. Then, lexemes in
the definition are disambiguated and mapped onto WordNet synsets. This task can
be performed by the SenseLearner toolkit [33], a freely available package offering
to disambiguate text with minimal supervision. The output of this processing line
then consists of OWL axioms with WordNet synsets expressing concepts.

The second processing line concerns the annotation of the original definition
with FrameNet frames. In order to achieve this step automatically we use the Shal-
maneser tool [18], developed at Saarland University. Shalmaneser is a robust and
shallow semantic parser assigning semantic roles to words in a text. In principle,
it can be run with any set of senses and semantic roles, however we made use of
the inbuilt FrameNet-based classifier. The output of Shalmaneser is a multi-level
(i.e. syntactic and semantic) annotation of a given text. As annotation format SAL-
SA/TIGER XML is used, which is expressive enough to describe various linguistic
layers and also offers the possibility of inter-layer references [17].

Given a concept name C, the FN annotation for the definition of C is converted
into the OWL format by using rule 1 as described below. Syntactic transformation
rules as described in section 8.3 are again applied to the role fillers. Propositions are
removed from the corresponding constituents.5.

5 In Example 4, fillers are expressed by prepositional phrases:
[a group of mountains]PART 1 [separated]SEPARATION [from other mountain ranges]PART 2

[by passes or rivers]AGENT . We remove prepositions keeping the following roles:
∃Separation part 2.(Other�Mountain�Range) and ∃Separation agent.(Pass�River))
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Rule 1. Translating FN annotation to OWL
Input: {[filler 1]FE NAME 1, . . . , [filler n]FE NAME N,

[frame evoking predicate]FRAME NAME}
Output: C Frame name≡ Frame name � ∃ f e name 1.Trans f iller 1 � . . .

� ∃ f e name n.Trans f iller n

An OWL axiom obtained in the first processing line has the following form:

C � D � ∃ f rame evoking predicate Y. f iller 1 � . . .∃X n. f iller n,

where D is an arbitrary concept, Y is empty or has the form prep (prep stands for a
preposition) and X n has the form f rame evoking predicate Y or prep. Then, the
amalgamation rule looks like the following:

Rule 2. Amalgamation rule
Input: C � D � ∃ f rame evoking predicate Y. f iller 1 � . . .∃X n. f iller n
Output: C � D � ∃evokes.C Frame name

Fig. 8.2 Axiom rewriting procedure.
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We have experimented with a set of 120 axioms created using the method de-
scribed in [45].6 Some of the axioms have been automatically created from defini-
tions which have been selected from a fishery glossary of the Food and Agriculture
Organization and extracted from Wikipedia in order to extend definitions for some
classes of the Proton ontology, see [45] for more details. In the following we discuss
several examples of the rewritten axioms and compare them to the original axioms
created by the Völker’s approach.

Example 8.
(a) Ministry
Def.: A ministry is a department of a government, led by a minister.
Orig.ax.: Ministry≡ Department � ∃o f .Government � ∃led by.Minister
Rewr.ax.: Ministry≡ {Department} � ∃o f .{Government} �

∃evokes.Ministry Leadership
Ministry Leadership≡ Leadership � ∃Leadership Leader.{Minister}
� ∃Leadership Jurisdiction.{Ministry}

(b) Desert
Def.: In geography, a desert is a landscape form or region that receives

little precipitation.
Orig.ax.: Desert ≡ ((Landscape � Form) � Region)�

∃receives.(Little�Precipitation)
Rewr.ax.: Desert ≡ (({Landscape} � {Form}) � {Region})�

∃evokes.Desert Receiving � ∃evokes.Desert Biological Area
Desert Receiving≡ Receiving � ∃Receiving Theme.({Little} �
{Precipitation}) � ∃Receiving Place.{Geography}
Desert Biological Area≡ Biological Area �
∃Biological Area Locale.{Desert} �
∃Biological Area Relative location.{Geography}

(c) Spring
Def.: A spring is a point where groundwater flows out of the ground,

and is thus where the aquifer surface meets the ground surface.
Orig.ax.: Spring≡ Point � ∃groundwater f lows out o f .Ground �

∃aqui f er sur f ace meets.(Ground�Sur f ace)
Rewr.ax.: Spring≡ {Point} � ∃evokes.Spring Fluidic motion �

∃evokes.Spring Congregating
Spring Fluidic motion≡ Fluidic motion�
∃Fluidic motion Source.{Ground}�
∃Fluidic motion Fluid.{Groundwater}
Spring Congregating≡Congregating�
∃Congregating Con f iguration.({Ground} � {Sur f ace})

While in simple cases like Example 7 (alcoholic beverage) the proposed proce-
dure works rather well, for more complicated definitions it can produce mistakes.
For definition (a) the Leadership frame was assigned correctly. However, no frame

6 Special thanks to Johanna Völker for providing us with these data!
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was assigned to the phrase a department of a government. In (b) the Receiving
frame was assigned correctly, but the Receiver role which should be filled by Desert
remained unfilled. Moreover, the phrase in geography was falsely defined as de-
scribing a location. In (c) the Fluidic motion frame is in the right position, but the
Congregating frame was incorrectly assigned to the predicate meet and the adverb
where was not determined as pointing to a location. In spite of the mistakes, the
given axioms support paraphrasing and allow answering queries which can not be
treated on the basis of the original axioms. Some examples of the supported types of
paraphrasing and queries which cannot be answered by reasoning with the original
axioms are listed below:

Example 9.
Inclusion frame: X contains Y, Y is contained in X, X includes Y, X has Y in it
Query for Example 7: Find all beverages in which alcohol is contained.

Leadership frame: X is a head of Y, Y is lead by X
Query for Example 8 (a): Who is the head of a ministry?

Receiving frame: X receives Y, X gets Y
Query for Example 8 (b): Find all areas which get little rain.

Fluidic motion frame: X flows out from Y, X streams out of Y, X comes from Y
Query for 8 (c): How is a point called where the groundwater does come from?

8.5.2 Discussion

In the previous sections, we have shown that the presented approach has some po-
tential in integrating and standardizing axiomatic knowledge extracted from tex-
tual resources. It grounds automatically extracted concept and relation names by
providing a reference to such standard lexical-semantic resources as WordNet and
FrameNet which generalize over synonyms and allow additional inferences by using
lexical-semantic relations. However, this approach obviously has several limitations
which are connected both to technical issues and to some general problems. In the
following, we briefly discuss some of these limitations.

8.5.2.1 Lexical Semantics and Conceptual Knowledge

As mentioned in section 2.2, description logics are based on model-theoretic se-
mantics which in particular enables reasoning over DL knowledge bases. Nat-
ural language definitions in thesauri are usually formulated without taking into
account (possibly unintended) inferences and logical contradictions. Therefore a
straightforward mapping between lexical and model-theoretic semantics may cause
unexpected logical consequences making the resulting ontology inconsistent, cf.
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Section 6. Moreover, natural language definitions are not always ontologically
sound. There are ontology engineering principles which are based on philosoph-
ical insights and practical experience, see for example [22]. For example, stating
something like Student � Person (a part of a definition which can be easily found
in a thesaurus) can be problematic from a formal ontological point of view, because
Student is a role while Person is a natural kind.

8.5.2.2 FrameNet Frames as Predicate Patterns

FrameNet, as any other lexical semantic resource, is work in progress. It cannot
be considered as a gold standard. In previous studies it was found that low cover-
age of the current version of FN makes its successful application to the real textual
data difficult, cf. [9]. In addition, FN suffers from conceptual inconsistency and a
lack of axiomatization which can prevent appropriate inferences, cf. [4]. For ex-
ample, fundamental conceptual relations such as part-of or causation have no logi-
cal axiomatization in FN. However, the resource has been constantly improved and
extended, see for example [9, 39].

8.5.2.3 Technical Problems

The described procedure relies on several NLP modules performing linguistically
rather complex tasks, which are usually error-prone. However, mistakes arising on
every processing step percolate to the next level and therefore multiply in the fi-
nal output. For example, the Minipar7 dependency parser applied has problems
in treating such complex linguistic phenomena as ambiguity, anaphora, quantifica-
tion, compounds, cf. [45]. The Shalmaneser tool that we have used for annotating
definitions with FrameNet frames is at present also far from being perfect. Con-
cerning 120 definitions selected for our experiment, approximately 320 frames were
assigned correctly, 200 predicates were not annotated, 60 frames were assigned in-
correctly, 40 frame elements were missing or were assigned incorrectly.

8.6 Adaptivity

As mentioned in section 8.1, it is one of the main features of a formal ontology to
allow the inference of new information which is implicitly coded in a set of explic-
itly given axioms, i.e. automatic reasoning is supported. In order to support logical
reasoning, an ontology has to be logically consistent.

Adding new axioms to an already existing knowledge base may cause logical
contradictions and therefore disable reasoning. This concerns especially axioms
automatically extracted from text, because, as mentioned in section 8.5.2, defini-
tions in thesauri are usually formulated without taking into account resulting infer-
ences. Since the purpose of our system is to expand ontologies through extracting
axioms from textual resources we focus in particular on supporting consistency. The

7 http://www.cs.ualberta.ca/ lindek/minipar.htm
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described system mostly extracts terminological axioms. Thus, in the following we
concentrate on a procedure that resolves inconsistencies in terminological knowl-
edge bases.

8.6.1 Terminological Inconsistency

The notion of terminological inconsistency has several meanings. In [23], for ex-
ample, three types of inconsistency are distinguished:

• Structural inconsistency is defined with respect to the underlying representation
language. A knowledge base is structurally inconsistent, if it contains axioms
violating the syntactical rules of the representation language (for example, OWL
DL).

• Logical inconsistency is defined on the basis of formal semantics of the knowl-
edge base. An ontology is logically inconsistent, if the ontology has no model.

• User-defined inconsistency is related to application context constraints defined
by the user.

In this paper, we consider logical inconsistency only. In particular, the main focus
lies on contradicting unsatisfiable terminologies.

Definition 1. A terminology T is unsatisfiable if there exists a concept C that is
defined in T and is unsatisfiable.

Informally, Definition 1 implies that an inconsistent ontology necessarily contains
logical contradictions. An ontology can be inconsistent only if its underlying logic
allows negation. Ontologies share this property with every logical system (like,
for example, first-order logic). In practice, logical inconsistency can be caused by
several reasons. For example, errors in the automatic ontology learning procedure
or mistakes of the ontology engineer can generate unintended contradictions.

Another type of logical inconsistency is related to polysemy. If an ontology is
learned automatically, then it is hardly possible to distinguish between senses of
words that represent different concepts in texts. Suppose, the concept tree is de-
clared to be a subconcept both of plant and of data structure (whereas plant and
data structure are disjoint concepts). To cope with this, both the structure and the
plant sense of tree will have to be described in the ontology by using distinct iden-
tifiers (e.g. TreePlant, TreeStructure).

Finally, there is a set of problems related to generalization mistakes, i.e. ontolog-
ical definitions which are too general to take into account exceptions or too narrow,
so that concepts are not reasonably distinguished from one another. Let us consider
Example 10. Suppose that the ontology contains the following facts:
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Example 10.
Terminology
(1) Bird �CanFly (Birds are creatures that can fly.)
(2) CanFly�CanMove (If a creature can fly then it can move.)
(3) Canary� Bird (Canary is a bird.)
New axiom
(4) Penguin� Bird�¬CanFly (Penguin is a bird and cannot fly.)

The statement all birds can fly (1) in Example 10 is too general. If an exception
penguin (a bird that cannot fly) is added, the terminology becomes unsatisfiable.

In the past few years, a number of new approaches to automatic ontology de-
bugging have been suggested. A technique to find a minimal set of axioms that
is responsible for inconsistencies in an ontology was first proposed in [3] and fur-
ther developed, for example, in [43]. Several other debugging methods are con-
cerned with explanation services that are integrated into ontology developing tools
[23, 48]. However, these approaches either do not provide solutions of how to fix
the discovered contradictions or just propose to remove a problematic part of an
axiom, although removed parts of axioms can result in a loss of information. Con-
sidering Example 10 again, if the concept CanFly is removed from axiom 1, then
the entailments Bird �CanMove and Canary�CanFly are lost.

The second type of solutions contains approaches that use several well-known
techniques from non-monotonic reasoning, like default sets [25] or epistemic op-
erators [27]. Unfortunately, these approaches go beyond the expressive power of
description logics. The disadvantage is that standard DL-reasoners cannot be used
easily for these extensions.

Finally, different techniques for rewriting problematic axioms were proposed
[29, 36]: Besides the detection of conflicting parts of axioms, a concept is con-
structed that replaces the problematic part of the chosen axiom. [29] extend the
tableau-based algorithm in order to find sets of axioms causing inconsistency and
the set of “helpful” changes that can be performed to debug the ontology. This
approach keeps the entailment Bird �CanMove, but not Canary�CanFly in Ex-
ample 10. An approach to resolve overgeneralized concepts conflicting with excep-
tions as well as to treat polysemous concept names is presented in [36]. Besides
rewriting problematic axioms, a split of an overgeneralized concept C into a more
general concept (not conflicting with exceptions) and a more specific one (capturing
the original semantics of C) is proposed. The entailment Canary�CanFly is also
preserved.

8.6.2 Adaptation Procedure

In this section, we informally describe an approach to resolve inconsistent ontolo-
gies that is based on the ideas technically introduced in [36] and developed in [37].
Given an inconsistently extended ontology we want to change it automatically in
order to obtain a consistent one, according to the following criteria:
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• The performed changes have to be relevant and intuitive.
• The changed ontology is formalized in a description logic language.
• As few pieces of information as possible are removed from the ontology.

In general, accidental mistakes cannot be fixed automatically. But the polysemy
problem can be resolved by renaming concepts which have polysemous names. Fur-
thermore, overgeneralized concepts can be redefined so that problematic pieces of
information will be deleted from their definitions.

8.6.2.1 Adaptation Algorithm

The proposed approach treats inconsistent ontologies that are extended with addi-
tional axioms conflicting with the original knowledge base. Given a consistent on-
tology O (possibly empty) the procedure adds a new axiom A to O. If O+ = O∪{A}
is inconsistent then the procedure tries to find a polysemy or an overgeneralization
and repairs O+. Suppose that the new axiom A represents a definition of a concept
C. Regarding the terminological component, O+ is inconsistent if a subconcept C′
of the newly introduced or newly defined concept C is unsatisfiable. Unfortunately,
it is impossible to distinguish between accidental mistakes, polysemy problem and
overgeneralization in a strict logical sense. Our algorithm inspects the definitions
of the unsatisfiable concept C′, tries to identify overgeneralized concepts subsum-
ing C′ and regeneralize these concepts. If no overgeneralized concepts have been
found, then the algorithm defines which concepts are suspected to be polysemous
and renames these concepts (by default or given the consent of the user).

8.6.2.2 Regeneralization of Overgeneralized Concepts

We will illustrate the regeneralization of the overgeneralized concepts with the on-
tology given in Example 10. Since the definition of the concept Bird is overgener-
alized, it needs to be rewritten. We wish to retain as much information as possible
in the ontology. The following solution is proposed:

Example 11. Adapted ontology from Ex. 10
(1) Bird �CanMove (Birds are creatures that can move.)
(2) CanFly�CanMove (If a creature can fly then it can move.)
(3) Canary� FlyingBird (Canary is a flying bird.)
(4) Penguin� Bird � ¬CanFly (Penguin is a bird and cannot fly.)
(5) FlyingBird � Bird � CanFly (Flying birds are birds that can fly.)

We want to keep in the definition of the concept Bird (subsuming the unsatis-
fiable concept Penguin) a maximum of information that does not conflict with the
definition of Penguin. The conflicting information is moved to the definition of the
new concept FlyingBird, which is declared to subsume all former subconcepts of
Bird (such as Canary for example).
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The example below represents a case where two overgeneralized definitions of
the same concept conflict with each other.

Example 12.
Terminology
(1) Child � ∀likes.Icecream (Children only like ice cream.)
(2) IceCream� Sweets (Ice cream is a sweet.)
(3) Cholocate� Sweets (Chocolate is a sweet.)
(4) IceCream� ¬Chocolate (Ice cream and chocolate are disjoint concepts.)
New axiom
(5) Child � ∀likes.Chocolate (Children only like chocolate.)

In Example 12, the definitions of Child (Children only like ice cream and Chil-
dren only like chocolate) are overgeneralized. IceCream and Chocolate being dis-
joint concepts produce a conflict. It seems to be an intuitive solution to replace
these concepts by their least common subsumer (see [14]) Sweets. Furthermore, it
is plausible to claim that children only like sweets without specifying it precisely,
as described below:

Example 13. Adapted ontology from Ex. 12
(1) Child � ∀likes.Sweets (Children only like sweets.)
(2) IceCream� Sweets (Ice cream is a sweet.)
(3) Cholocate� Sweets (Chocolate is a sweet.)
(4) IceCream� ¬Chocolate (Ice cream and chocolate are disjoint concepts.)

Let us now describe informally the regeneralization procedure (see [37] for more
details). Suppose that a) X is an unsatisfiable concept in the terminology T , b) X
is defined in T by the definitions A and B, c) A and B which are logically con-
flicting (their conjunction is unsatisfiable in T ). Then the following options can be
distinguished:

1. A and B are disjoint concepts having common subsumers (Example 12):

The solution in this case is to replace the definitions A and B of X by their least
common subsumer.

2. A is defined in T and some definition DA of A conflicts with B (Example 10):

This case is considered as the overgeneralization of A. The definition DA has to
be revised as follows: (a) DA is replaced by its minimal specific superdescription
that does not conflict with B; (b) a new concept A′ is added to T as a subconcept
of A and DA; (c) A is replaced by A′ in the definitions of all its subconcepts except
in the definition of X .

3. A and B are defined in T , a definition DA of A conflicts with B, and a definition
DB of B conflicts with A:
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In this case there is no unique solution. On the one hand the concept X is sus-
pected to be polysemous. Here, the preferred solution is to split the definition of
X and rename X as, for example, X1 and X2. On the other hand we may face two
overgeneralized concepts, one or both definitions of which can be adapted in the
way described in the previous option

4. Otherwise:

The concept X is suspected to be polysemous as in the previous option.

In [38], a prototypical implementation of the idea of splitting overgeneralized
concepts in A L E -DL was discussed. This implementation was tested on the fa-
mous wine-ontology8 that was automatically extended with new classes extracted
from text corpora with the help of the Text2Onto9 tool. Several cases of overgen-
eralization were detected and correctly resolved10. In the near future we plan to
experiment with the adaptation of the Proton ontology provided by Völker et al.
(cf. [45]) to the axioms extracted automatically from the thesauri, see section 5.

8.7 Conclusions and Future Work

This paper provides a general framework for the extraction and adaptation of on-
tological knowledge from new structured information. The cycle of this process
is described starting with the extraction of semantic knowledge from syntactically
given information, the transformation of this information into an appropriate for-
mat of description logic, and the dynamic update of a given ontology with this new
information where certain types of potentially occurring inconsistencies are auto-
matically resolved. The framework uses crucially certain tools for this incremental
update. In addition to WordNet, the usage of FrameNet plays an important role, in
order to provide a consistent basis for reasoning applications. The cycle of rewrit-
ing textual definitions into DL axioms is prototypically implemented as well as the
resolution of certain types of inconsistencies in the dynamic update of ontologies.
Future work will be devoted to refinements of the framework, in particular, with
respect to the axiom generation and the resolution of inconsistencies. Furthermore,
the framework needs to be evaluated whether it is practically applicable to large
knowledge bases and to updates with bigger numbers of new axioms.

Acknowledgements. This research was partially funded by the grant MO 386/3-4 of the
German Research Foundation, a sub-project of research unit FOR 437 “Text Technological
Information Processing”.

8 http://www.w3.org/TR/owl-guide/wine.owl
9 http://ontoware.org/projects/text2onto/

10 For example, the class LateHarvest originally defined to be a sweet wine was claimed to
be overgeneralized after an exception RieslingSpaetlese which was defined to be a late
harvest wine and a dry wine appeared.
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Chapter 9
Ten Problems in the Interpretation of XML
Documents

C.M. Sperberg-McQueen and Claus Huitfeldt

Abstract. We seek to develop methods for making the meaning of markup explicit
using notations like first-order predicate calculus. In the context of that work, a
number of problems have arisen; this paper discusses ten of them, describing how
we propose to solve them. Topics include: Logical predicates of variable arity; the
form to be taken by inference rules; deictic reference to other parts of the document;
property inheritance and how to override inherited values; distinguishing between
unions of properties and overriding of properties; treatment of milestones; definition
of the universe of discourse; definite descriptions; and the recording of uncertainty
and responsibility.

9.1 Background

In many ways, the use of markup in electronic documents to convey meaning seems,
and is, unproblematic. Like many unproblematic topics, it may benefit from closer
examination. An attempt to describe more formally and explicitly the use of markup
to convey information may or may not lead to interesting or surprising results. In
1973, Wilhelm Ott wrote [9, p. V] that:

Ihr [d.i. der EDV] Einsatz ist überall dort möglich, wo Daten irgendwelcher Art – also
auch Texte – nach eindeutig formulierbaren und vollständig formalisierbaren Regeln
verarbeitet werden müssen.1
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The goal of the work described here2 is to formulate unambiguous formal rules
for assigning meaning to the markup in documents. Our working definition of
meaning is exhibited in this quotation from a work on the semantics of computer
programs [11, p. 4]:

. . . we shall accept that the meaning of A is the set of sentences S true because of A.
The set S may also be called the set of consequences of A. Calling sentences of S
consequences of A underscores the fact that there is an underlying logic which allows
one to deduce that a sentence is a consequence of A.

When A is taken as denoting some markup construct in a document marked up
using XML or some similar markup language, the description just given applies
directly to the situation we wish to elucidate. (Without loss of generality, the re-
mainder of this document will speak only of XML documents.) Following [10], S
may also be referred to as the set of inferences licensed by A.

9.1.1 Derivation of Inferences

The rules for finding the set S for a given document or markup construct are not
constant for all XML documents; they vary with the markup vocabulary in use. It is
natural, then, to seek a method of documenting the meaning of a vocabulary more
formally, in what may be called a ‘formal tag-set description’ (FTSD), in such a
way that a process reading a document instance marked up using a vocabulary can
consult an FTSD for that vocabulary and use it to generate the set S of inferences
licensed by the markup in the document. Attention is limited to the meaning of
the markup, rather than extending to the meaning of the document itself taken as a
whole, because in the cases of interest here markup forms an utterance in a formal,
artificial language and thus lends itself to systematic treatment by machines. The
document content, in contrast, is usually in a natural language and in the current state
of linguistics, natural-language processing, and artificial intelligence, its meaning is
not readily identifiable by automatic means.

If S is the set of all inferences licensed by the markup in a document, then by
its definition, S is closed under inference: any sentence inferable from S is already
a member of S. In most systems of symbolic logic, the set of inferences licensed
by any proposition p is infinite: from p one may infer ¬¬p, p∧ p, p↔ p, p∨ p,
¬¬¬¬p, etc. It should not be expected, therefore, that the sentences in S should be
exhaustively enumerated; instead the goal is to enumerate some finite subset of S,
which we may call S′, whose closure under inference is S itself. That is, S′ should
be a set of sentences from which all of the sentences in S, and no others, may be
inferred. In some cases only a subset of the inferences licensed by the markup is of
interest and it is unnecessary to enumerate even S′ exhaustively.

2 This paper summarizes some work done in the context of the ‘Bechamel’ project. It owes
a great deal to our collaborators in that project, Allen Renear and David Dubin of the
University of Illinois in Urbana/Champaign, who are however not responsible for any of
its shortcomings.
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Fig. 9.1 Data flow in inferencing. As described in the text, the figure is a flowchart show-
ing a flow of data through various processes. The flow begins at two documents labeled
D: marked up Document Instance and F : Formal Tag Set Description. A process labeled
Generate immediate inferences takes these as inputs and produces a data stream labeled Im-
mediate Inferences II(D,F). This in turn flows into a second process labeled Close set under
inference. This second process also takes a second input, from a data stream labeled P:
Additional premises (world knowledge). The product of the second process is labeled All
inferences I(D,F,P).

The flowchart in Figure 9.1 illustrates the structure of the system:
The immediate inferences II(D,F) to be drawn from the markup in a document

D depend partly on D and partly on the formal tag-set description F which describes
the markup vocabulary used in D. When combined with additional premises P (rep-
resenting, for example, facts about a particular domain, or more generally ‘world
knowledge’), and closed under inference, the immediate inferences give rise to the
complete set I(D,F,P) of inferences derivable from document D given the formal
tag-set description F and the additional premises P.
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In this flowchart, the set S is represented by the data stream labeled “All infer-
ences I(D,F,P)”; the set S′ is represented by the data stream labeled “Immediate
inferences II(D,F)”.

9.1.2 An Example

A short example may help to illustrate the goal. The following example shows part
of a transcription using TEI markup [3] of a letter written in 1775 by the South
Carolina political leader Henry Laurens to the royal governor of South Carolina,
Lord William Campbell.

1 <p><del>It was be</del> <del>For</del> When we
2 applied to Your Excellency for leave to adjourn
3 it was because we foresaw that we
4 <del>were</del> <add>should continue</add>
5 wasting our own time ... </p>

The documentation of the TEI Guidelines enables the reader to make a number
of inferences from the markup in this document. Among them:

• There is a paragraph in the document whose final text begins with the words
“When we applied to Your Excellency for leave to adjourn”.

• At the beginning of this paragraph, the words and letters “It was be” have been
deleted.

• At the beginning of this paragraph, the word “For” has also been deleted (sepa-
rately).

• Later in the paragraph, the word “were” has been deleted; at the same location,
the words “should continue” have been inserted.

The inferences licensed by the markup in an XML document may be expressed as
English sentences3 or in some formal notation such as first-order predicate calculus
(in any of its myriad forms) or Prolog.

If expressions of the form of a lower-case Latin letter and a subscript number
(e.g. d10305, p1, s1, s2, etc.) denote individuals in the universe of discourse, and the
predicates is document, is paragraph, and contains are defined in the obvious way,
then S′ might contain, among other things, the sentences:

• is document(d10305)
• is paragraph(p1)
• contains(d10305, p1)

One of the tasks of the formal tag-set description is to provide the information
necessary to generate appropriate sentences in the style just shown, for the markup
actually encountered in the document instance.

3 This is the approach taken by intertextual semantics, see [8, p. V].
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XML provides no primitive semantics and imposes no restriction on the form
of inferences licensed by markup; it may be impossible for any single notation for
FTSDs to handle all imaginable XML-based markup languages. Many markup lan-
guages of fairly conventional design (what are sometimes called ‘colloquial XML’),
however, use similar idioms. One aim of our project is to formulate a notation for
FTSDs which is relatively convenient for colloquial XML vocabularies.

In the discussion that follows, the inferences discussed are for the most part ex-
pressed in a conventional notation for first-order predicate calculus; in some cases,
however, natural-language prose has seemed more convenient.

9.2 The Ten Problems

Any attempt to build a system of the kind described above will encounter a number
of problems, some technical and others more philosophical in nature. The remainder
of this paper describes ten of these problems, and proposes tentative solutions for
some of them.

9.2.1 The Arity of Statements

The ‘straw-man proposal’ of [10] postulates that each element type in XML cor-
responds to a unary predicate which takes the element instance as an argument. It
similarly assumes that every attribute can be described by a dyadic predicate whose
arguments are the attribute instance and its host element instance. In this style, using
“.” to denote the element instance, skeleton sentences for the element types used in
the example given above might be written:

• p: is paragraph(.)
• del: is deletion(.)
• add: is insertion(.)

Because each predicate takes just one argument, which is always the element
instance being glossed, the translation rules can be successfully represented just as
a set of name pairs. Even name pairs are unnecessary if the names of element types
are used in the formal system as names of predicates.

In skeleton sentences formulated in English, the word this can be used to denote
the element instance:

• p: this is a paragraph.
• del: this is a deletion (or: is deleted material).
• add: this is an insertion (or: is material added later).
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As described in [10], however, colloquial XML vocabularies often include ele-
ment types which seem to invite paraphrase by predicates of more than one argu-
ment. For example:

• TEI.2: There exists a text;4 this (the TEI.2 element) is an electronic represen-
tation or encoding of that text.

• bibl: There exists a bibliographic item (i.e. a book, an article, anything that can
be described by an item in a bibliography); this (the bibl element) contains (or:
is) a bibliographic description of that item.

• head: This is the title of the immediately enclosing div | div0 | div1 | div2
. . . element.

The solution is straightforward: skeleton sentences must be able to use predicates
which take two or more arguments. Adopting the same convention as before for
references to the current instance of the given element type:

• TEI.2: (∃x)(text(x)∧ encoding(.)∧ encodes(.,x))
• bibl: (∃x)(bibitem(x)∧bibdesc(.)∧bibitem desc(x, .))
• head: (∃x)(section(x)∧ section-title(.)∧ title section(.,x))

The last formulation is not entirely satisfactory: it says that the head element is
the title of some section of the text, but it does not capture the fact that it is the title
of the same section as is represented or encoded by the enclosing div element.

9.2.2 The Form of Inference Rules

As the TEI head element illustrates, polyadic predicates often need to refer to more
than one element or attribute in the document. Typically, these stand in some pre-
dictable relation to each other; in the case of head, one is the head element itself
and the other is its parent element.

Given a universe of discourse that includes the elements and attributes of the
document instance, and appropriate predicates for describing the relations (e.g. that
between parent and child or that between preceding and following sibling), it is
possible to describe the appropriate inference in a way familiar from other formal
systems involving inference. Using a conventional notation for inference rules, one
may write5

element(x)
element(y)
name(z)
element type(x,“head“)

4 Or, “There exists a document,” or “. . . a text witness. . . .” Different interpreters may take
different views of just what it is that a TEI.2 element allows the reader to infer. See
further section 9.2.8.

5 For simplicity this formulation assumes not that y encodes a section of a text but that y is
a section of the text. See also section 9.2.8.
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element type(y,z)
z ∈ {“div“,“div0“,“div1“,“div2“, . . .}
parent child(y,x)

section-title(x)
section(y)
title section(x,y)

In English: for any elements x and y, where the element-type name of x is “head”
and the element-type name z of y is one of “div”, “div0”, “div1”, etc., if y is the
parent of x, then one may infer that x is a section-title, that y is a section, and that x
is the title of y.

The inference rule can also be written as a universally quantified conditional (as
is sometimes preferred).

(∀x,y,z)(element(x)∧ element(y)∧name(z)
∧element type(x,“head“)
∧element type(y,z)∧ z ∈ “div“,“div0“,“div1“,“div2“, . . .
∧parent child(y,x)
→ section-title(x)∧ section(y)∧ title section(x,y))

The set of inferences S will contain sentences derived from either of these rules by
replacing the variables with references to individuals in the universe of discourse.6

It is sometimes convenient, however, to omit much of the notational machinery
of the forms just given and (as suggested in [10]) to document the inferences li-
censed by particular markup constructs in the form of ‘skeleton sentences’ (sentence
schemata) with blanks to be filled in from appropriate information in the context.

The rule for all head elements, for example, might be:

section-title( )∧ section( )∧ title section( , )

with the specification that the first and third blanks are to be filled in with references
to the head element itself, and the second and fourth with references to the parent
element of the head, if that parent is a div, or a div0, or a div1, or a div2, etc.

How best to record information about how to fill in the blanks is the topic of the
next section.

9.2.3 Deixis

When a skeleton sentence for a colloquial XML vocabulary refers to more than one
element or attribute, the rule will typically be associated with one or the other of the
elements or attributes referred to; the information in the FTSD must specify how to

6 Note that under normal circumstances the consequence “section( )” is likely to be
redundant, since the rule for the parent element will independently license the inference
that it is (or encodes) a section. It is retained here for clarity, since the redundancy does
no harm: whether it is generated by the rule for div or the rule for head, or both, it will be
in S.
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find the other. The items referred to will typically stand in some prescribed relation
to each other: one is the parent, or an ancestor, or a sibling, of the other, or one is
the element identified by a particular IDREF attribute, and so forth. That is, it will
normally be possible to navigate from one to the other by some well understood
path, and it is the navigation path which must be recorded. The path expression
will denote different results, depending on the starting point, so it will be, in the
linguistic sense, a deictic expression.

As illustrated in the preceding section, the necessary relations can be defined by
means of standard logical predicates. It proves more convenient, however, to formu-
late the deictic expressions using a notation invented for expressing such relations
concisely and conveniently, e.g. caterpillar expressions [2], CSS selectors [4], or
XPath expressions [5, 1].

In what follows, XPath expressions will be used for deixis; instead of blanks,
skeleton sentences will contain XPath expressions; to distinguish them from other
parts of the expression, they will be enclosed (following a notational convention in
XSLT and XQuery) in braces.

In this modified notation, the skeleton sentence for head given in the preceding
section takes the following form:

section-title({.})
∧section({parent :: div | parent :: div0 | parent :: div1 | parent :: div2})
∧title section({.},{parent :: div | parent :: div0 | parent :: div1 | parent :: div2})
The title element as a child of a bibl element provides another simple example. In
English, one of the required inferences is:

This is a title of the bibliographic item described by the nearest containing bibl ele-
ment.

A rough paraphrase of this sentence in logical notation is:7

title({.})
∧(∃x)(bibitem(x)
∧bibitem desc(x,{parent :: bibl})
∧bibitem title(x,{.}))

9.2.4 Inheritance

Colloquial XML vocabularies often use a form of inheritance to propagate proper-
ties from parent to child. The xml:lang attribute defined by the XML specification
and used by [3] (and other vocabularies) provides an example. Given a TEI doc-
ument containing a body element whose start-tag is <body xml:lang="en">,
and which is to be referred to, in the sentences of S, by the arbitrary identifier e3141,
the reader is (oversimplifying slightly) licensed to infer that

7 The paraphrase is rough because it fails to capture the claim implicit in the phrase “the
bibliographic item described by the parent bibl element”, namely that there is exactly one
such bibliographic item. See further Section 9.2.9.
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is-in-English(e3141)

For simplicity, this inference assumes that the property of being in a given lan-
guage is to be postulated of the document and its constituent parts, and not of some
other object distinct from the document; see further Section 9.2.8.

Alternatively one might write:

utterance language(e3141,”en”)

That is, the element e3141 is in the language identified by the ISO 639 language
code ”en”, i.e. English.

But it is legitimate to ask about the language not only of body elements, but
also of paragraphs and sections. And the documentation for the xml:lang attribute
makes clear that from the information given on the body element e3141 the reader is
licensed (in the absence of contrary indications) to infer not only that e3141 itself is
in English, but that each part of it is in English. That is, for each descendant d of
e3141 the markup licenses (at a first approximation) the inference that

utterance language(d,”en”)

or that

is-in-English(d)

If the meaning of the xml:lang attribute were really as simple as just described,
then the predicate is-in-English would fall into the class of dissective predicates
identified by [6]: “A one-place predicate is said to be dissective if it is satisfied
by every part of every individual that satisfies it” (p. 38). In practice, though, a
document described as being in English can contain material in other languages
without violating the documented meaning of xml:lang; for further discussion see
Section 9.2.5 below.

Note that not all properties are inherited in the same way: the property of being
in a given language applies equally to the document as a whole and to (most of) its
parts, but the property of being a document, or a paragraph, or a poem, or a line of
verse, does not similarly hold for the component parts of the document, paragraph,
poem, or line.

9.2.5 Overriding

The account of inheritance given above in Section 9.2.4 is too simple: in many cases,
inheritance specifies a default value for a property, but a defeasible one, which can
be overridden by a locally specified value. The xml:lang attribute is a well known
example of this design pattern: the language property of an element e is given by
the xml:lang attribute specified on e, if there is one, and otherwise by the xml:lang
attribute on the nearest ancestor which has an explicit value for the attribute.
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An operational system to enumerate the immediate inferences licensed by the
markup in a document can generate the appropriate inferences either top-down or
bottom-up. The difference is of no particular theoretical interest, but the choice may
have practical consequences.

One way to propagate language information top-down is to use two inference
rules. The first licenses an instance of the utterance language predicate introduced
in Section 2.4:

element(x)
attribute(y)
string(z)
attribute localname(y, ‘lang‘)
attribute ns(y, ‘htt p : //www.w3.org/XML/1998/namespace‘)
attribute value(y,z)

utterance language(x,z)

The second inference rule propagates the information downward:

element(x)
element(y)
string(z)
utterance language(x,z)
parent child(x,y)
¬(∃w)(attribute(w)
∧attribute parent(w,y)
∧attribute localname(w, ‘lang‘)
∧attribute ns(w, ‘htt p : //www.w3.org/XML/1998/namespace‘))

utterance language(w,z)

For every element e, the first rule ensures that if e has an explicit value for
xml:lang, then e uses the specified value for its language property. The second rule
ensures that if e has no local value for xml:lang, then it will inherit the language
value of its parent.

The language property can also be calculated bottom-up, for example by instan-
tiating the following skeleton sentence for each element in the document:

utterance language({.},
{ancestor-or-self::* [@xml:lang] [1] / @xml:lang})

If an element has neither an xml:lang value of its own nor any ancestor with one,
the expression just given will assign it the empty string as its language identifier.
This is not an unusual convention, but if it is desired instead to use the ISO 639-2
code “und” for undetermined languages, then the XPath 2.0 may be used to make
the expression conditional:



9 Ten Problems in the Interpretation of XML Documents 167

utterance language({.},
{if (ancestor-or-self::* [@xml:lang])
then ancestor-or-self::* [@xml:lang] [1] / @xml:lang
else "und" })

Both techniques just outlined follow conventional practice in assuming that XML
elements have a language property; if it is desired, however, to exclude XML el-
ements from the first argument of utterance language and allow only character
strings (here, the character data contained by the XML elements), then it will be
preferable to use a rule like the following in the FTSD, applied to every text node in
the document:

utterance language({string(.)},
{ancestor-or-self::* [@xml:lang] [1] / @xml:lang})

9.2.6 Conflict and Union

In the case of xml:lang, the conflict between a specification of xml:lang="en"
on one ancestor and xml:lang="de" on another is easily detected and resolved.

In other cases, detecting conflict may be harder. Do the XHTML elements b
(bold) and i (italic), or analogous constructs in other markup languages, override
each other, or supplement each other?

If an i element inside a b element is intended to override the boldface and to
signal that its contents are italic (not bold italic), it will be helpful to write the
skeleton sentences for the two element types in terms of the same property. If in
the universe of discourse both elements and text nodes may have a styling property,
whose values are (for example) "bold", "italic", or "normal", then the
following skeleton sentence, applicable to every element and every text node in the
XML document, will correctly convey the intention.

node styling({.},
{if (ancestor-or-self::*[self::b or self::i][1][self::b])

then "bold"
else if (ancestor-or-self::*[self::b or self::i][1][self::i])

then "italic" else "normal"})
Handling the case of nested XHTML i and em elements, or analogous constructs

in other languages, will require similar rules.
If on the other hand the b and i elements are taken to be orthogonal, so that any

content appearing in both a b and an i is bold italic, then it is straightforward to write
the skeleton sentences in terms of two distinct properties.

node font-weight({.},
{if (ancestor-or-self::b) then "bold" else "normal"})

node font-style({.},
{if (ancestor-or-self::i) then "italic" else "normal"})
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9.2.7 Milestones

As illustrated above, colloquial XML vocabularies typically define the meaning of
markup constructs in terms of the tree structure characteristic of XML. The prop-
erties associated with an element or a text node depend on the element-types and
attributes of the element itself and of its ancestors.

The ‘milestone’ idiom used in some vocabularies to mark non-hierarchical phe-
nomena, by contrast, depends less on the tree structure of the XML document than
on its form as a sequence of characters interspersed with markup: each milestone
element (such as the pb element in [3]) specifies a property value not for descen-
dants of the milestone element (typically there are none) but for the text nodes and
elements which follow the milestone in the data stream.

The meaning of a milestone, however, is easy to specify, as long as the language
used for deictic expressions allows it to be expressed.8 In XPath, the preceding axis
provides the necessary information.

The TEI pb element specifies the page number of the following material in its
n attribute, and in its ed attribute it identifies the edition(s) whose pagination is
thus recorded. The following skeleton sentence for text nodes will assign to each
text node in the document the appropriate page number for edition e; the sentence
should be instantiated once for each edition whose pagination is recorded. The
relation textnode ed pagenum is a set of triples whose members are (1) text nodes,
(2) edition identifiers (strings), and (3) page numbers.

textnode ed pagenum({.}, e, {preceding::pb[@ed="e"][1]/@n})
Elements will not, in the general case, have a single page number. If it is desired

to assert, for each element x, a sentence of the form “element ed pagenum(x,e,n)”
for each edition e and page number n from which material appears in some text node
of x, the following conditional will license the necessary inferences.

(∀x)(∀t)(∀e)(∀n)(element(x)∧ textnode(t)∧ancestor descendant(x, t)∧
textnode ed pagenum(t,e,n)→ element ed pagenum(x,e,n))

9.2.8 The Universe of Discourse

Any satisfactory account of the interpretation of markup in documents is obliged to
specify a universe of discourse. What individuals, what kinds of individuals, can be
referred to in the set S of inferences licensed by the markup? What properties do
they have? What relations hold among them?

For several reasons, these can be contentious issues.
XML provides no assistance in this matter: in the interests of flexibility, XML

avoids constraining the universe of discourse for XML vocabularies. Designers of
XML vocabularies can thus assume any universe of discourse they desire.

8 This is not a given. CSS selectors [4], for example, do not allow the rules given here to be
expressed.
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For many colloquial XML vocabularies, however, the universe of discourse is
not specified formally or fully: such a detailed specification might be essential for a
proper formal tag-set description, but it is not essential in practice for conventional
XML documentation, or for the successful use of colloquial vocabularies. Many
users of an XML vocabulary will have no particular interest in any formalization of
the domain beyond the use of XML itself to define element and attribute types and
to mark instances of those types in documents. A painstaking enumeration of the
various classes of individual in the expected domain of discourse can even prove
confusing, if the required distinctions are sufficiently subtle to make explication
difficult.

Moreover, vocabularies developed for use in heterogeneous communities may
practice a studied agnosticism with regard to the nature of the entities about which
the markup is expected to provide information. The TEI Guidelines, for example,
specify that the tag p is used to mark paragraphs, but carefully avoid any attempt to
specify just what a paragraph is or to list its distinguishing characteristics. Is a para-
graph a sequence of characters? A portion of one or more pages in a manuscript?
An abstract object with various suitable properties? The Guidelines would be more
complete if a more explicit account of the nature of paragraph-hood had been pro-
vided, but the intended user community does not have consensus on the issue, and
any more precise formulation might be expected to alienate at least some potential
users. In effect, the Guidelines take paragraph to be a given class of individuals,
and do not attempt to specify explicitly what relations might hold between that class
and other classes of individual.

In practice, attempts to agree even among a small group of interested parties
on the universe of discourse to be assumed even for small toy examples can prove
difficult. Deep convictions about the nature of the world, the reality or otherwise of
sets and other abstract objects, and correct modeling practice may all be involved.

Some careful observers, for example, will wish for a clear, crisp distinction be-
tween the XML document and the domain-specific objects it represents. A customer
element in an electronic purchase order is not a customer but a representation of a
customer. The sentences in the set of inferences S will be characterized by the fact
that their universe of discourse will be that of the application domain: they will talk
about customers and products and shipping dates, not about XML elements and at-
tributes. XML elements and attributes, or other artefacts of the representation, will
be present, if at all, only in the preconditions of inference rules.

By analogy, one may argue that a p element in a TEI document is not a paragraph
but a representation of a paragraph. From this point of view, many of the exam-
ples given in previous sections of this paper need revision. Holders of this view
might for example argue that it is not XML elements or text nodes, but the natural-
language utterances they encode, which have the property of being in a language.
The rule given in Section 9.2.5 above for the language property of elements might
be rewritten, with the aid of an encodes relation holding between XML elements
and natural-language utterances, as follows.
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(∃u)(utterance(u)∧ encodes({.},u)∧utterance language(u,
{if (ancestor-or-self::* [@xml:lang])
then ancestor-or-self::* [@xml:lang] [1] / @xml:lang
else "und"}))

Other careful practitioners may object to this reformulation on philosophical
grounds. The principle of Occam’s Razor leads them to reject the existence of ut-
terances as distinct from the sound patterns or physical writing media by which
utterances are conveyed. They will accordingly prefer the earlier formulation of
this rule. The same practitioners may object, on similar grounds, to the postulation
of text as a class of abstract objects, and prefer to restrict the sentences of S to a
universe of discourse perhaps containing (physical) documents, but not (abstract)
texts.

From a TEI-encoded document D identified as a transcription of some manuscript
M, for example, some formulations of TEI semantics might generate the following
list of licensed inferences.

• There exists a manuscript M.
• The catalog number of M is . . .
• There exists a text T such that M is a manuscript representation of T.
• The language of T is German.
• D is an electronic representation of T, transcribed from M.

An alternative formulation would dispense with the abstract object T:

• There exists a manuscript M.
• The catalog number of M is . . .
• D is a transcription of M.
• The language of M is German.
• The language of D is German.

9.2.9 Definite Descriptions and Multiple References to the Same
Individual

In some cases, several markup constructs in a document license inferences about the
same individual in the universe of discourse.

1 <bibl id="soa3" n="Goodman 1977">
2 <author>Goodman, Nelson</author>.
3 <date>1977</date>.
4 <title level="m">The structure of appearance</title>.
5 <edition>Third edition</edition>.
6 <pubPlace>Boston</pubPlace>:
7 <publisher>Reidel</publisher>.
8 </bibl>



9 Ten Problems in the Interpretation of XML Documents 171

The following TEI bibl element may illustrate the point.
The bibl element itself licenses inferences that can be expressed in English as:

• There exists a bibliographic item b.
• This bibl element contains (or is) a bibliographic description of b.

The title element appearing within the bibl licenses not only the inference

• The string “The structure of appearance” is a title.

but also

• The string “The structure of appearance” is the title of the bibliographic item
described by the parent bibl element (i.e. b).

The mechanism for enumerating the inferences in S must make clear that the
bibliographic item mentioned in the inferences from the bibl element and the bib-
liographic item mentioned in the inferences from the title element are the same
bibliographic item.

To take another example, the Open Archives Initiative protocol for metadata
harvesting [7] defines a markup language for queries sent to OAI servers and for
responses to those queries. The response header provides information about the re-
quest which elicited the response (for example, a request for metadata in a particular
format about a particular resource), and unless an error has occurred the response
body provides the information requested (for example, the current metadata record
for the resource identified in the query). The fact that the resource described by
the metadata record is the same individual as the resource identified in the query is
central to the meaning of the markup.

The usual method of translating definite descriptions in symbolic logic is due to
Russell. Using this method, a reference to “the x such that Px” is translated into the
assertion that there is an x such that Px, and that for all y such that Py, y = x. The
inference given above as

The string ‘The structure of appearance’ is the title of the bibliographic item described
by the parent bibl element (i.e. b).

is accordingly translated into

(∃b)(bibliographic-item(b)
∧describes({parent::bibl},b)
∧ (∀y)(bibliographic-item(y)∧describes({parent::bibl},y)→ y = b)
∧bibitem title(b,{string(.)}))

In English: There exists some b, and b is a bibliographic item, and b is described
by the bibl element which is the parent of this (title) element, and for any thing y, if
y is a bibliographic item and y is described by the bibl element which is the parent
of this (title) element, then y is identical to b – and the string value of this (title)
element is the title of b.

Some logical formalisms provide shorthand notations for asserting the unique-
ness of entities; such shorthands may be expected to be helpful in practical work but
they will not be discussed further here.
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9.2.10 Certainty and Responsibility

A special challenge is posted by markup which explicitly marks some inferences
normally licensed by markup as doubtful, uncertain, or controversial. Extensive
support for markup of uncertainty, for specifying alternative interpretations, and for
attributing particular interpretations to particular authorities in markup languages
like the TEI Guidelines or the MECS-WIT language used in preparing the Bergen
Electronic Edition of Wittgenstein’s Nachlaß [12].

The markup may indicate, for example, that a particular proper noun in the doc-
ument (e.g. “Essex”, marked by XML element e3141) is probably a reference to a
person (identified by a database key as p2234), but possibly instead a reference to a
geographic entity (p7621). If there were no doubt about the matter, the set of infer-
ences S might include the sentence

person-name id(e3141, p2234)

When there is some doubt, however, the process for generating set S must find
some other way of formulating the information.

A satisfactory solution to this problem may require a choice of methods for han-
dling probabilistic or defeasible reasoning; such a choice goes beyond the scope of
this paper, which will limit itself to sketching a few possible methods of recording
uncertainty.

When the inferences are to be formulated in natural language, the solution may
be as simple as writing

The word “Essex” here (in element e3141) is probably a reference to the person whose
database ID is p2234. (Alternatively it may be a reference to geographic location
p7621.)

When the inferences in S are to be formulated in a formal notation, each predicate
can be augmented by an additional argument indicating a level of probability. For
illustration, the examples here use a number between 0 (falsehood) and 1 (truth,
certainty). The following sentences assign probabilities of 75% and 20% to the two
analyses indicated, leaving a 5% chance that the word is something else entirely.

person-name id p(e3141, p2234,0.75)
place-name id p(e3141, p7621,0.20)

If only a few inferences are unproblematic, it may be convenient to define predi-
cates which omit the probability, and to define them as implying the more complex
predicate with 100% probability.

(∀x)(∀y)(person-name id(x,y)→ person-name id p(x,y,1.00))
(∀x)(∀y)(place-name id(x,y)→ place-name id p(x,y,1.00))

A different method is to reify the assertions in order to talk about them without
asserting them. Using a notation for structured terms similar to that used in logic
programming, the example could be written as



9 Ten Problems in the Interpretation of XML Documents 173

sentence probability(person-name id(e3141, p2234),0.75)
sentence probability(place-name id(e3141, p7621),0.20)

Alternatively, each sentence in S could be given an identifier.
In the absence of any mechanisms for working with probabilities or for defeasible

inference, one simple but drastic method is to use disjunction, thus capturing the
uncertainty, though not the relative likelihood of the two analyses.

person-name id(e3141, p2234)∨place-name id(e3141, p7621)

Other methods have been proposed in the extensive recent discussion of methods
of reifying statements in the context of work on Topic Maps and on the Semantic
Web; even a brief survey of the alternatives lies beyond the scope of this paper. As
a practical matter, satisfactory results for the expression of uncertainty will only be
achieved when the nature of the system intended to use the information is better
understood.
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Chapter 10
Markup Infrastructure for the Anaphoric Bank:
Supporting Web Collaboration

Massimo Poesio, Nils Diewald, Maik Stührenberg, Jon Chamberlain,
Daniel Jettka, Daniela Goecke, and Udo Kruschwitz

Abstract. Modern NLP systems rely either on unsupervised methods, or on data
created as part of governmental initiatives such as MUC, ACE, or GALE. The data
created in these efforts tend to be annotated according to task-specific schemes.
The Anaphoric Bank is an attempt to create large quantities of data annotated with
anaphoric information according to a general purpose and linguistically motivated
scheme. We do this by pooling smaller amounts of data annotated according to
rich schemes that are by and large compatible, and by taking advantage of Web
collaboration. In this chapter we discuss the markup infrastructure that under-
pins the two modalities of Web collaboration in the project: expert annotation and
game-based annotation.

10.1 Introduction

Modern, statistical computational linguistics crucially relies on the availability of
large amounts of annotated data, but such data requires substantial investment to
produce. The problem is particularly serious for semantic annotation tasks such
as anaphoric annotation or word-sense annotation. The lack of an established con-
sensus on the linguistics of such phenomena and the potential open-endedness of
the task (e.g., virtually every expression is anaphoric in some respect) mean that a

Massimo Poesio · Jon Chamberlain · Udo Kruschwitz
University of Essex, School of Computer Science and Electronic Engineering,
Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
e-mail: {poesio,jchamb,udo}@essex.ac.uk

Nils Diewald ·Maik Stührenberg · Daniel Jettka · Daniela Goecke
Bielefeld University, Faculty of Linguistics and Literary Studies,
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substantial effort is required to define the guidelines1 and the judgments required of
annotators are often subtle. In addition, the mediocre performance of existing sys-
tems makes semi-automatic annotation unfeasible. As a result, semantically anno-
tated corpora have been created in two types of contexts: to support initiatives such
as MUC or ACE; or to provide data for other projects, such as PhD dissertations. In
the first example of annotation large amounts of data have been annotated, but using
simplified and task-specific guidelines (for a critique of the MUC scheme, see [7]).
In the second, linguistically rich annotation schemes have been used (see e.g., the
schemes used for the GNOME annotation [25], Navarretta’s dissertation work [23],
or early work in the Sekimo project [28]) but the amount of data annotated is rather
small.

The situation has been greatly improved with the OntoNotes project [13], that
is creating a 1 million word corpus annotated for coreference, argument structure,
and word-senses. OntoNotes is likely to become the main reference corpus for
studying semantics and training semantic annotators in the near future. Data created
by OntoNotes will have limitations: only a few languages (English, Arabic and
Chinese) and genres (news), and only some of the information of interest to study
anaphora resolution are covered. (E.g., no agreement information is annotated, or
associative reference.)

However, the increasing convergence between markup schemes –e.g., the de-
velopment of pivot representations, see below– and, in the case of anaphora, among
annotation schemes, makes it possible to pursue a different type of solution by pool-
ing together richly annotated but smaller resources. Such resources may usefully
complement larger annotated corpora (e.g., to study aspects of anaphoric interpre-
tation that are less well understood), or to train specialised classifiers (e.g., for gen-
der detection). The Anaphoric Bank2 can be seen as a club whose participants are
groups willing to share, or to participate in the collaborative creation of, anaphori-
cally annotated corpora. It focuses on linguistically rich annotation, on genres such
as narratives or spoken language that, although linguistically key, are not consid-
ered of interest in practical applications and on languages other than English. The
Anaphoric Bank attempts to achieve the creation of large anaphorically annotated
corpora for different languages by:

1. pooling together corpora which have already been annotated according to com-
patible schemes;

2. providing a framework in which new annotated resources for anaphora can be
created in such a way that facilitates their reuse, in particular utilising Web col-
laboration;

3. encouraging such annotation.

These goals have become achievable as the result of recent developments in XML-
based annotation, in particular the development of ‘pivot’ representation formats,
including the GRAF representation format developed within ISO TC37 SC4 [14],

1 An example is the effort spent on this in the creation of OntoNotes, see [13].
2 http://www.anaphoricbank.org/
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PAULA (Potsdamer Austauschformat für Linguistische Annotation – Potsdam In-
terchange format for Linguistic Annotation) [10], SGF (Sekimo Generic Format)
[31] and its successor XSTANDOFF [32]. In addition, standard tools for anaphoric
annotation such as MMAX [22] or Serengeti [33, 9] lead to more uniformity among
annotations. These developments make it possible to share resources by developing
import and export converters from the markup format of these standard annotation
tools to the pivot representation. In addition, the greater agreement on annotation
schemes for anaphora (cf. [19]) makes it easier to standardise the task. In this chap-
ter we will discuss this infrastructure supporting the Anaphoric Bank project, focus-
ing in particular on the creation of new resources.

The structure of the chapter is as follows. In Section 10.2 we discuss how we
expect new data to be added to the Anaphoric Bank. A novelty of the project is that
two different ways of creating new data through Web collaboration are supported:
through what we will call Expert Annotation, and by playing a game. We will ex-
plain how both modes of annotation have already been applied to build a substantial
annotated corpus as part of the AnaWiki3 research project. In Section 10.3 we dis-
cuss the uniform XML infrastructure supporting these two types of contributions,
and in particular the SGF format and how a relational database representation of
the format is used by both types of resource creation.

10.2 How Data Is Added to the Anaphoric Bank

We envisage two different ways of contributing to the Anaphoric Bank: by sharing
data that has already been annotated, and by annotating new data on the Web. We
can control data added in the second way. Augmenting the corpus using the first
method requires criteria to be defined in order to avoid adding data annotated ac-
cording to incompatible markup languages or annotation schemes. We will begin
by discussing such criteria, before explaining how we expect to integrate data anno-
tated using different markup languages. Finally, we will explain how we propose to
use Web collaboration to augment the bank.

10.2.1 Filtering Criteria

Application-oriented definitions of the coreference or anaphoric task differ from
linguistically oriented definitions along three main dimensions:

1. whether all potentially anaphoric nominals should be treated as markables, or
only those that are mentions of a restricted set of entities, as done e.g., in MUC

or ACE [12];
2. whether the entire nominal should be marked, or only the head noun without any

postmodifiers (e.g., whether in the man who shot Liberty Valance, only the man
should be treated as markable, or whether instead the relative clause should be
included);

3 http://www.anawiki.org/

http://www.anawiki.org/
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3. how the ‘coreference’ or ‘anaphoric’ relation should be defined. In MUC and
ACE, the (predication) relation between Microsoft stock and $3 in Microsoft stock
was $3 today is marked as coreference. The consequence is that potentially the
coders should mark $3 and $2.75 as co-referring in Microsoft stock was $3 today,
up from $2.75 yesterday [7].

Given that there is already plenty of data annotated according to the MUC/ACE
guidelines, and that anyway this scheme is being abandoned in more recent anapho-
ric annotation efforts, it was decided to restrict the Anaphoric Bank to text annotated
to ‘linguistic’ guidelines–i.e., annotations in which all nominals are treated as mark-
ables, the full boundaries of markables are identified, identity is restricted to pure
identity and does not include predication (although a separate predication relation
can be marked, as specified by the MATE and OntoNotes guidelines).

10.2.2 Data That Has Already Been Annotated

The development of powerful anaphoric annotation tools such as MMAX24, Pa-
linka5 [24], WordFreak6 [21] and Serengeti has greatly facilitated the creation of
anaphorically annotated resources both on a small and larger scale. However, the
lack of uniformity among their markup languages (e.g., Palinka stores annotations
inline; MMAX2, Serengeti and WordFreak all employ standoff markup, but in the
case of MMAX2 it is token standoff, whereas in the case of Serengeti and Word-
Freak it is character standoff) means that even sharing data annotated according to
uniform annotation schemes requires some form of conversion between formats.

Fortunately a solution has been proposed by using the already mentioned pivot
representation formats. We envisage using one of these pivot formats (e.g., PAULA
or SGF) as the uniform representation format for the data in the Anaphoric Bank,
and developing import / export scripts to convert data annotated according to other
formats into such representations. The Potsdam group already developed import
scripts from Palinka and MMAX2 into PAULA.

10.2.3 Using the Expert Annotation Tool

So far we have looked at collecting data that has already been annotated. The
Anaphoric Bank offers an alternative to this which allows access to shared corpora
for those interested parties that have no data to provide: research groups or inter-
ested individuals (e.g., research students and other researchers) can annotate data
through the Web as a way to be granted access to the collections maintained in the
Anaphoric Bank.

4 http://mmax2.net/
5 http://clg.wlv.ac.uk/projects/PALinkA/
6 http://sourceforge.net/projects/wordfreak/

http://mmax2.net/
http://clg.wlv.ac.uk/projects/PALinkA/
http://sourceforge.net/projects/wordfreak/
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10.2.3.1 Serengeti Annotator

A collaborative annotation project like the Anaphoric Bank requires a special archi-
tecture regarding the submission and management of the collected data. Compared
to tools with separated data stores, browser-based annotation tools with a central
data management offer some advantages in this aspect:

1. All corpus data is managed on a central server. New corpus data can be added at
any time and is immediately available to all members of the annotation project.
All annotation data can be accessed, compared and validated at any time.

2. The annotation scheme is centrally managed. It can be adjusted at any time with
immediate effect to the annotators and the collected data.

3. The software is maintained centrally. New functions can be added at any time
with immediate effect to the annotators.

Applying web-based tools for collaborative annotation projects minimises the
effort required by the annotators for the annotation process.

Serengeti [33, 9] is a tool that adheres to these principles. It was developed in the
Sekimo project for the annotation of semantic relations, targeted initially for Mozilla
Firefox,7 and currently present in version 0.8.15.8 The AJAX-driven application
(Asynchronous JavaScript and XML, cf. [11]) is written in Perl on the server side
and uses a MySQL database (see 10.3.2).

Serengeti allows the fine-grained definition of markables (that is textual spans
that can take part in semantic relations) as well as the annotation of anaphoric rela-
tions within a simple graphical user interface.

The GUI is subdivided into several parts (cf. Figure 10.1). Beneath the main area,
where the document is rendered, all annotated relations and defined markables are
listed as empty XML elements, reflecting the underlying annotation scheme. Next
to the list are two tabbed forms for the type selection of markables and relations.
Predefined markables in the text are underlined, followed by clickable boxes to
choose them as anaphora or antecedents when creating a relation. By marking a span
of the text, a new markable can be created that can take part in further relations.9

In a second step an administrating user is able to validate the work of the an-
notators (e.g., considering possible game data, see 10.2.4) to create gold standard
annotations that can be part of the Anaphoric Bank.

7 Firefox is freely available for several operating systems, published by the Mozilla Project
Group under the terms of the Mozilla Public License
(http://www.mozilla.com/firefox/).

8 http://anawiki.essex.ac.uk/serengeti/
9 For a detailed description of the annotation process, see [8].

http://www.mozilla.com/firefox/
http://anawiki.essex.ac.uk/serengeti/
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Fig. 10.1 Graphical user interface of Serengeti.

10.2.3.2 The Data

The input format for the expert annotation tool is the SGF (cf. 10.3.1) which has
been developed in the Sekimo project to store multiple annotation layers. The in-
put for Serengeti are three annotation layers defined by distributed XML Schema
instances providing information on logical document structure, anaphoric relations
and markables. The schema for the logical document structure contains definitions
about paragraph and sentence elements. A development of the ARRAU scheme [27]
is used to define relations and markables (based on the MATE/GNOME schemes
[26]) and is imported as an annotation layer in SGF.

Relations are specified by attribute information on their primary relation type
(i.e. cospecification or bridging [5]) and their secondary relation type which allows
for a further distinction of subtypes of the primary type (cf. [33]). Furthermore,
references to the anaphora and antecedents represented by markables in the corre-
sponding annotation layer can be declared. The markable XML Schema defines
markable elements and their potential attributes. The attributes contain information
on several features like grammatical function, morphological information (number,
gender, case, person), the part-of-speech of the markable’s head and some others.
While markables can be various parts of speech, in our case they are considered to
be nominal entities which can be part of an anaphoric relation.
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Special filter plugins for these layers were established to allow Serengeti the
import of pre-annotated data. For AnaWiki we apply a pipeline of scripts to get
from raw text to preannotated SGF format:

1. Automated normalisation, sentence splitting, and tokenisation of the input text
using the openNLP10 toolkit.

2. Automated POS tagging using the Berkeley Parser11.
3. Automated markable recognition.
4. Heuristic identification of additional features associated with markables (e.g.,

person, case, number etc.). The output is MAS-XML.
5. MAS-XML is converted into SGF using the XSLT stylesheet described in Sec-

tion 10.3.1.3.

The text layout is rendered according to the logical document structure and mark-
ables are introduced as described above. These predefined annotations are shared
by all annotators, while modifications regarding markables and relations (adding,
deleting, editing) only take effect in the annotator’s own annotation.

10.2.4 Using a Non-expert Annotation Game
One drawback of the expert annotation tool is that it requires linguistically trained
users, i.e. experts. Collaborative resource creation using the general Web population
offers a different approach. The motivation for this is the observation that a group
of individuals can contribute to a collective solution which has a better performance
and is more robust than an individual’s solution as demonstrated in simulations of
collective behaviours in self-organising systems [17].

Wikipedia12 is perhaps the best example of collaborative resource creation, but
it is not an isolated case. The gaming approach to data collection, termed Games
with a purpose, has received increased attention since the success of the ESP game
[1]. Interestingly, the Games with a purpose concept has now also been adopted
by the Semantic Web community in an attempt to collect large-scale ontological
knowledge because currently “the Semantic Web lacks sufficient user involvement
almost everywhere” [30].

10.2.4.1 The Phrase Detectives Game

Phrase Detectives offers a game interface for the Anaphoric Bank to collect anno-
tations from the general Web population [4]. This creates a pool of potential an-
notators that is magnitudes larger than the expert annotators we can hope to recruit
using the expert annotation tool Serengeti. It does however raise the question of data
quality. Two obvious causes for poor quality annotation are a lack of understanding
of the task and malicious behaviour on the part of the annotator. A range of control
mechanisms are in place to ensure quality annotation in Phrase Detectives [20].

10 http://opennlp.sourceforge.net/
11 http://nlp.cs.berkeley.edu/
12 http://www.wikipedia.org/

http://opennlp.sourceforge.net/
http://nlp.cs.berkeley.edu/
http://www.wikipedia.org/
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Fig. 10.2 A screenshot of the Annotation Mode.

There are two ways to annotate within the game: by selecting a markable that
corefers to another highlighted markable (Annotation Mode – see Figure 10.2); or
by validating a decision previously submitted by another player (Validation Mode –
see Figure 10.3).

Players begin the game at the training level where they are given a set of anno-
tation tasks created from the Gold Standard, i.e. texts that have been annotated by
experts using the Serengeti annotation tool. They are given feedback and guidance
when they select an incorrect answer and points when they select the correct answer.
When the player gives enough correct answers they graduate to annotating texts that
will be included in the corpus.

Occasionally, a graduated player will be covertly given a Gold Standard text to
annotate. A bonus screen will be shown when the player has completed annotating
the text indicating what the player selected incorrectly, with bonus points for agree-
ing with the Gold Standard. This is the foundation of a player rating system to judge
the quality of the player’s annotations.

The game is designed to motivate players to annotate the text correctly by using
comparative scoring (awarding points for agreeing with the Gold Standard), and col-
laborative scoring (players gain points by agreeing with other players, these points
may be awarded retrospectively once new annotations have been submitted by other
players).
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Fig. 10.3 A screenshot of the Validation Mode.

10.2.4.2 The Data

Ambiguity is an inherent problem in all areas of NLP [18]. Here we are not in-
terested in solving this issue but in capturing ambiguity where it is appropriate. If
an anaphora is ambiguous, then the annotated corpus should capture this informa-
tion. We are therefore not aiming at selecting ‘the best’ or most common annotation
but to preserve all inherent ambiguity (which is supported by the output formats as
discussed later on).

The beta version of Phrase Detectives went online in May 2008, with the first
live release in December 2008. Initially over 100,000 words of text from Project
Gutenberg13 and Wikipedia were automatically parsed to identify the markables
and added to the game. The game now accesses a corpus of more than a million
words in different languages [20].

In less than three months of live release the game has collected over 100,000
annotations of anaphoric relations provided by more than 500 players. To put
this in perspective, the GNOME corpus, produced by traditional methods, included
around 3,000 annotations [25] and the Sekimo corpus around 4,000 annotations of
anaphoric relations [37].

13 http://www.gutenberg.org/

http://www.gutenberg.org/
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10.3 Architecture for the Anaphoric Bank

Apart from the pivot formats already mentioned in Section 10.2.2 there are two parts
of the architecture that should be examined further: the XML part and the database
part.

10.3.1 SGF – The XML Architecture Part

Usually one does not want to start over with a fresh corpus but wants to use an
existing corpus. As already mentioned in Section 10.2.2, different pivot formats are
available. One of these formats is SGF, the Sekimo Generic Format.

As a successor of the Prolog fact base format used in the first project phase [36]
the Sekimo Generic Format (SGF) has been developed in the Sekimo project follow-
ing these design goals: import and storage of multiple annotation layers, possibility
of analysing semantic relations without any transformation beforehand, usage as
an exchange format for the Serengeti web-based annotation tool (and other similar
tools). Since SGF is not focussed on the single task of anaphora resolution which
was intended in the Sekimo project, the format uses a standoff approach [34] fol-
lowing the Annotation Graph’s formal model [2]. This makes it possible to use SGF
for a large variety of linguistic annotations, including lexical chaining [35], multi-
modal annotation or diachronic corpora. For this reason the format tries to reuse the
structure and features of existing annotation formats. As a result, SGF itself con-
sists only of the declaration of a base layer which provides the primary data (i.e., the
data that is annotated) and its segmentation, and serves as a container for standoff
representations of the original inline annotation (these are converted automatically
using an XSLT stylesheet). Figure 10.4 shows a graphical representation of SGF’s
corpusData element14.

Either textual or multimodal data can serve as primary data in SGF (in the former
case one may include the primary data in the SGF instance or use an external file,
in the latter case the primary data file is referenced via a URI attribute at all times),
the use of multiple primary data instances is supported as well (e.g., for annotating
multimodal or diachronic corpora). Metadata can be supplied at various locations of
an SGF instance, either underneath the corpus element (for information regarding
the whole corpus) or underneath a corpusData entry (denoting metadata related
to a single corpus item). In addition, the meta element can be located as a child
of the primaryData or the annotation element. In all cases it is possible to
include the metadata in the SGF instance or to refer to an external file. No restric-
tions apply to the structure of the metadata (even non-XML metadata is allowed),
therefore the reuse of established metadata specifications such as OLAC [29], IMDI
[15, 16], DublinCore [6], or the Component Metadata Infrastructure (CMDI) [3] is
encouraged.

14 Note that an SGF instance’s root element is either the corpusData or the corpus
element, thus allowing to store a whole corpus or a single primary data aligned with its
annotations.
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Fig. 10.4 SGF’s corpusData element containing (optional) metadata, the primary data,
its segmentation and annotation level(s).

10.3.1.1 Segmentation and Import of Annotations

Segmentation of the primary data is application driven, i.e. for textual primary data
segmentation is usually character based.

Segments are established by importing a single inline annotation of the primary
data (e.g., as a result of the application of a parser, a chunker, or similar linguistic re-
sources, cf., e.g., listing 10.2). Similar to approaches such as PAULA or GRAF, for
each annotation element the start and end positions relative to the character stream
are computed (cf. listing 10.1 and Section 10.3.1.3) and a segment element is
created underneath the segments parent.

Listing 10.1 Using the character positions for defining segmentation of the input text.

T h e s u n s h i n e s b r i g h t e r .
00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|17|18|19]20|21|22|23|24

Segments delimiting the same part of the primary data are only created once,
even if used in different annotation layers, since the segmentation is independent of
the annotation (even overlapping segments are possible). After the creation of the
corresponding segment element, a converted (i.e. standoff) representation of the
original annotation is stored. An example instance is shown below (cf. listings 10.2
and 10.3).
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Listing 10.2 Inline annotation as a result of a morpheme tagging process of the input sen-
tence “The sun shines brighter”.

1 <morphemes xmlns="http://www.text-technology.de/sekimo/morphemes">
2 <morpheme>The</morpheme>
3 <morpheme>sun</morpheme>
4 <morpheme>shine</morpheme>
5 <morpheme>s</morpheme>
6 <morpheme>bright</morpheme>
7 <morpheme>er</morpheme>.
8 </morphemes>

Note that SGF distinguishes between the annotation level as the concept used for
the annotation and the annotation layer as the XML serialisation, i.e. it is possible
to sum up different XML serialisations of the same linguistic concept (e.g., logical
document structure, POS annotation) underneath the same level element (cf. Fig-
ure 10.5). As a second option it is allowed to combine different annotation levels
(i.e. linguistic concepts) together with their respective layers underneath the same
annotation element which can be useful to subsume different linguistic con-
cepts that are realised in a single XML document grammar (e.g., discourse entities
and semantic relations).

Fig. 10.5 SGF’s level element containing the converted standoff representations of the
annotation levels (i.e. the annotation layer).

Since the layer element is a wrapper for elements derived from different XML
namespaces the original annotation format has to be changed only slightly: ele-
ments with a former mixed content model are converted into pure container ele-
ments, elements containing text nodes are converted into empty elements, and the
sgf:segment attribute is added to former non-empty elements as an attribute.
This conversion applies both to the XML instance and the underlying document
grammar (SGF relies on XML schema descriptions). In the latter case it is possible
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to only import the sgf:segment attribute as an optional attribute and therefore
use the converted schema representation for both the original (inline) representation
and the converted representation as part of the SGF instance. Listing 10.3 shows
the SGF instance containing the morpheme annotation level.

Listing 10.3 The SGF instance including the converted morpheme annotation layer.

1 <sgf:corpusData xmlns:sgf="http://www.text-technology.de/sekimo"
sgfVersion="1.1" xml:id="s_m1">

2 <sgf:meta><!-- meta data goes in here --></sgf:meta>
3 <sgf:primaryData start="0" end="24" xml:lang="en">
4 <textualContent>The sun shines brighter.</textualContent>
5 </sgf:primaryData>
6 <sgf:segments>
7 <sgf:segment xml:id="seg1" type="char" start="0" end="24"/>
8 <sgf:segment xml:id="seg2" type="char" start="0" end="3"/>
9 <sgf:segment xml:id="seg3" type="char" start="4" end="7"/>

10 <sgf:segment xml:id="seg4" type="char" start="8" end="13"/>
11 <sgf:segment xml:id="seg5" type="char" start="13" end="14"/>
12 <sgf:segment xml:id="seg6" type="char" start="15" end="21"/>
13 <sgf:segment xml:id="seg7" type="char" start="21" end="23"/>
14 </sgf:segments>
15 <sgf:annotation xml:id="a_morph">
16 <sgf:level xml:id="a_morph_layer" priority="0">
17 <sgf:meta><!-- meta data goes in here --></sgf:meta>
18 <sgf:layer xmlns:morph="http://www.text-technology.de/sekimo/

morphemes">
19 <morph:morphems sgf:segment="seg1">
20 <morph:morphem sgf:segment="seg2"/>
21 <morph:morphem sgf:segment="seg3"/>
22 <morph:morphem sgf:segment="seg4"/>
23 <morph:morphem sgf:segment="seg5"/>
24 <morph:morphem sgf:segment="seg6"/>
25 <morph:morphem sgf:segment="seg7"/>
26 </morph:morphems>
27 </sgf:layer>
28 </sgf:level>
29 </sgf:annotation>
30 </sgf:corpusData>

10.3.1.2 Adding Layers

For storing a single annotation layer SGF is quite verbose. However, if we want to
add another annotation, e.g., a syllable annotation ranging over the very same input
text, such as the one shown in listing 10.4, we cannot combine the elements de-
rived from this annotation layer with the already established morpheme annotation
because of overlapping structures which are not allowed in XML instances.

Listing 10.4 A syllable annotation.

1 <syllables xmlns="http://www.text-technology.de/sekimo/syllables"
xml:lang="en">

2 <syllable>The</syllable>
3 <syllable>sun</syllable>
4 <syllable>shines</syllable>
5 <syllable>brigh</syllable>
6 <syllable>ter</syllable>.
7 </syllables>
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Since SGF uses a standoff approach it is easily possible to add the additional
syllable annotation level to the already established SGF instance. Given that most
of the syllable elements share their ranges with the segments defined by the
elements of the morpheme level, only three new segment elements have to be
defined: seg8, seg9 and seg10 in listing 10.5.

Listing 10.5 The SGF instance containing both annotation levels.

1 <sgf:corpusData xmlns:sgf="http://www.text-technology.de/sekimo" xml:id=
"s_m_s" sgfVersion="1.1">

2 <sgf:meta><!-- meta data goes in here --></sgf:meta>
3 <sgf:primaryData start="0" end="24" xml:lang="en">
4 <textualContent>The sun shines brighter.</textualContent>
5 </sgf:primaryData>
6 <sgf:segments>
7 <sgf:segment xml:id="seg1" type="char" start="0" end="24"/>
8 <sgf:segment xml:id="seg2" type="char" start="0" end="3"/>
9 <sgf:segment xml:id="seg3" type="char" start="4" end="7"/>

10 <!-- manually shortened, cf. listing 3 ... -->
11 <sgf:segment xml:id="seg7" type="char" start="21" end="23"/>
12 <sgf:segment xml:id="seg8" type="char" start="8" end="14"/>
13 <sgf:segment xml:id="seg9" type="char" start="15" end="20"/>
14 <sgf:segment xml:id="seg10" type="char" start="20" end="23"/>
15 </sgf:segments>
16 <sgf:annotation xml:id="a_syll">
17 <sgf:level xml:id="l_syll">
18 <sgf:meta><!-- meta data goes in here --></sgf:meta>
19 <sgf:layer xmlns:morph="http://www.text-technology.de/sekimo/

syllables" priority="0">
20 <syll:syllables sgf:segment="seg1" xml:lang="en">
21 <syll:syllable sgf:segment="seg2"/>
22 <syll:syllable sgf:segment="seg3"/>
23 <syll:syllable sgf:segment="seg8"/>
24 <syll:syllable sgf:segment="seg9"/>
25 <syll:syllable sgf:segment="seg10"/>
26 </syll:syllables>
27 </sgf:layer>
28 </sgf:level>
29 </sgf:annotation>
30 <sgf:annotation xml:id="a_morph">
31 <!-- See listing 3, line 16 - 28 -->
32 </sgf:annotation>
33 </sgf:corpusData>

In contrast to similar approaches the hierarchical structure of the imported an-
notation layers remains intact (i.e. there is still a parent child relationship between
the syllables and syllable elements) as well as the attribute information (if
there is any – in this example the xml:lang attribute). The only information that
is dismissed are the text nodes which are referred to by the segment elements and
the respective sgf:segment attributes.

For the Anaphoric Bank SGF uses the three annotation levels that are discussed
in Section 10.2.3.2, namely the logical document structure, the markable level and
the semantic relation level derived from the further developed ARRAU scheme. The
resulting SGF instances are imported into the web-based annotation tool Serengeti
that serves as the Anaphoric Bank’s Expert Annotation Tool (cf. Section 10.2.3).
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10.3.1.3 SGF Tools

The conversion of an inline annotation into an SGF instance containing a single
annotation level is performed by the XSLT stylesheet inline2SGF.xsl. The
transformation requires an XSLT 2.0 processor (e.g., Saxon15 which was used for
the transformation). To call the transformation one has to provide the name of an
input file containing an inline annotation. The primary data, i.e., the non-annotated
text file that deals as the basis of all annotation tasks, can be provided as stylesheet
parameter $primary-data or can be inferred from the textual content of the input
document. The exact execution call differs with respect to the used processor and
with the stylesheet parameters used in the transformation call16.

The first basic task of the stylesheet is to create segments on the basis of the XML
element boundaries in the inline annotation. By means of the primary data file,
start and end positions of the XML elements can be calculated, stored as segment
element and referenced later on. There is the possibility to create optional segments
for white-spaces and other non-character data, too. Their inclusion can be controlled
by a boolean stylesheet parameter.

Afterwards the elements from the input annotation are copied into single layers
by separating them with respect to their XML namespace. Thus for every names-
pace in the input, an annotation element is created and the converted (i.e. stand-
off) representation of the annotation bound to this namespace is copied as a layer
underneath the annotation element.

In addition to the conversion of a single inline annotation to an SGF instance con-
taining a single annotation element, a second XSLT stylesheetmergeSGF.xsl
is available for merging SGF files based on the same primary data. By this means
different annotations can be combined into a single SGF instance without manually
dealing with duplicate segment elements or duplicate segment identifiers. This
stylesheet was optimized in speed and memory consumption to work in production
scenarios.

10.3.1.4 Validation and Analysis

Since SGF makes heavy use of XML namespaces for the separation of annotation
layers and XML’s inherent ID/IDREF mechanism for linking segments to their re-
spective annotation elements, each annotation layer must provide its own XML doc-
ument grammar. SGF itself is based on XML schema and demands XML schemas
for the imported annotation layers as well. In return it is possible to not only validate
the SGF instance as a whole but also the entirety of annotation layers and – with
the usage of XSLT or XQuery – to do cross layer validation.

SGF can be used for analysing correlations between elements derived from dif-
ferent annotation layers. For a detailed discussion of the format and its application

15 Information regarding the Saxon XSLT processor can be found at
http://saxon.sourceforge.net and http://www.saxonica.com/.

16 See the Resources Section at http://www.text-technology.de/sekimo for a
documentation of the tools mentioned.

http://saxon.sourceforge.net
http://www.saxonica.com/
http://www.text-technology.de/sekimo
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in the field of anaphora resolution cf. [31] and [37]. Both, SGF and its currently
developed successor, XSTANDOFF [32], are freely available under the GNU Lesser
General Public License (LGPL v3) including the accompanied tools discussed in
Section 10.3.1.3 and a large variety of example annotations17.

10.3.2 Database Format

Natively the Sekimo Generic format is formulated in XML Schema. But for the
application in the Anaphoric Bank a relational database representation of SGF has
been developed, transforming all information without loss from XML to a relational
database management system and vice versa. Figure 10.6 shows the conceptual
database model of the relational database representation of SGF used in Serengeti
as well as in Phrase Detectives.

This coherent design in corpus data management allows for fast access of the
data, by storing regularly accessed data more efficiently than in XML. We prefer
SQL to plain XML or XML databases because of its performance and the ease of
integration with other system parts, for example the user management.

For the database management an application programming interface (API) was
implemented as Perl classes, used by Serengeti and special administration tools for
importing and exporting corpus data. This SGF-API, working as an object rela-
tional mapper for the database, can be extended by plugins, serving as filters for the
import and export as well as objects (in an object oriented sense) for the travers-
ing and manipulation of special corpus data. For the AnaWiki project, three filters
were established for markables, relations and the logical document structure (cf.
10.2.3.2). Thus the database representation of the AnaWiki data can be separated
from the SGF core (see Figure 10.7).

Plugins detect their corresponding layers during import by recognising the XML
namespaces. The complete layer then is assigned to the plugin. When travers-
ing, modifying (e.g., in Serengeti) or exporting the data, the plugin provides all
necessary methods by extending a prototyped layer object of the API. Layers in un-
known namespaces are stored in a representation compatible with the document ob-
ject model, providing methods for traversing and modifying according to the DOM
specification18.

The Phrase Detectives game has additional tables in the database to store in-
formation about the players, scores, ratings etc. as well as additional information
required for documents and a simplified version of the ana markable table. This
table (pd markable) connects to the original file and immediately after import
is identical to the ana markable table. Once the document is either used in the
game or in Serengeti the tables become asynchronous. The game stores markables

17 See
http://www.text-technology.de/sekimo
and http://www.xstandoff.net/ for further details.

18 The Document Object Model interface is specified in
http://www.w3.org/TR/DOM-Level-3-Core/.

http://www.text-technology.de/sekimo
http://www.xstandoff.net/
http://www.w3.org/TR/DOM-Level-3-Core/
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Fig. 10.6 The relational database representation of SGF.

and relations slightly different to Serengeti but exports into MAS-XML and SGF
format so the two annotations can be compared. Exported documents from the game
can be imported into Serengeti and vice versa.
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Fig. 10.7 The relational database representation of the AnaWiki layers.

10.4 Conclusion

To our knowledge, the Anaphoric Bank is the first attempt to build a large anaphor-
ically annotated corpus by collaboration–via sharing of previously annotated re-
sources or through Web annotation. Recent developments in XML technology such
as pivot representations and Web annotation tools greatly facilitate this effort but a
number of technical issues still have to be addressed. In this chapter we discussed
the solutions developed to facilitate the sharing of data created via Web collabora-
tion. Work is ongoing on the selection of a pivot representation and the development
of import / export converters to allow for contribution.
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Chapter 11
Integrated Linguistic Annotation Models and
Their Application in the Domain of Antecedent
Detection

Andreas Witt, Maik Stührenberg, Daniela Goecke, and Dieter Metzing

Abstract. Seamless integration of various, often heterogeneous linguistic resources
in terms of their output formats and a combined analysis of the respective annotation
layers are crucial tasks for linguistic research. After a decade of concentration on the
development of formats to structure single annotations for specific linguistic issues,
in the last years a variety of specifications to store multiple annotations over the
same primary data has been developed. The paper focuses on the integration of the
knowledge resource logical document structure information into a text document
to enhance the task of automatic anaphora resolution both for the task of candidate
detection and antecedent selection. The paper investigates data structures necessary
for knowledge integration and retrieval.

11.1 Introduction

Anaphora Resolution (AR) describes the process of identifying the correct an-
tecedent for a given anaphoric element and, in general, consists of three steps:
(1) identification of anaphoric elements, (2) creation of a candidate set for each
anaphora and (3) detection of the correct antecedent from the candidate set. In this
paper we will focus on the second and third step and we will investigate the question
how to create an appropriate candidate set.

In recent approaches that define anaphora resolution as a pairwise decision, the
candidate set is created by choosing all candidates that precede a given anaphora
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or by using a fixed search window (e.g. in terms of sentences) and by collecting
all discourse entities in this window [e.g. 52, 41, 46, 58]. Taking all preceding
candidates into account works well for small texts, however for long texts this might
lead to large candidate sets. The definition of an appropriate size of the search
window is important inasmuch as a small window leads to errors due to the fact that
the search window does not cover the correct antecedent at all and as a large window
leads to large candidate sets which increases the possibility of preferring a wrong
candidate over the correct one (for a discussion of the window size’s impact on
precision and recall values see [52]). Furthermore the computational effort increases
due to the large number of candidates.

We argue that the approach of a fixed search window is not appropriate for long
texts and thus not for all text types but that the search window has to be flexible in
order to include the correct antecedent but to exclude those candidates that are least
likely. How can we decide on the likelihood of an antecedent candidate? Current ap-
proaches of anaphora resolution are learning based, i.e. the likelihood of antecedent
candidates is trained on a set of positive and false examples. However, in these ap-
proaches the candidate set is either created by taking all preceding discourse entities
into account or by using a fixed window; for a given candidate set the most likely
candidate is chosen. In our approach we investigate constraints in order to create
an appropriate search window. We decide against a fixed search window due to two
reasons:

1. With a fixed search window only antecedents can be found that lie within the
given window size.

2. The search window cannot be enlarged arbitrarily as the size of the candidate list
has negative impact on the resolution process.

Previous corpus investigation shows that linear distance between anaphora and
antecedent is an important factor when creating an antecedent candidate set. Figure
11.1 shows linear distance of anaphoras of pronominal as well as of non-pronominal
type in the corpus under investigation. The majority of pronominal anaphoras
find their antecedents at a small distance whereas non-pronominal anaphoras find
their antecedents even across large distances: For 26.8% of all non-pronominal
anaphoras, the antecedent is found at a distance of two or more paragraphs. These
anaphoras form 20.9% of all anaphoras occurring in the corpus under investigation.
Previous investigations of the same corpus regarding the size of the search windows
focused on linear distance in terms of discourse entities rather than sentences or
paragraphs. For 50% of the direct anaphoric relations and 55.78% of the indirect
anaphoric relations, the anaphoric element finds it antecedent within a distance up
to 15 discourse entities (see [17]).

In this paper we will investigate how to resolve those anaphoras whose candi-
dates lie outside a fixed window of one paragraph or 15 discourse entities. We will
investigate the impact of hierarchical structure, especially logical document struc-
ture (LDS), on anaphora resolution. Why logical document structure might help
to resolve anaphoric relations? The term logical document structure refers to the
structure of a text in the sense of its formal composition and is in contrast to the
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Fig. 11.1 Linear distance of anaphora and antecedent.

text’s contentual composition, e.g. in terms of Introduction, Body or Conclusion.
These contentual categories are realized by categories of the LDS, i.e. introduc-
tion, body and conclusion are realized as separate sections. The influence of the
logical document structure on the choice of an antecedent might either be a direct
influence on the markables (or antecedent life span) or an influence on the search
window (see [15]). Thus, we investigate how to describe accessibility of antecedent
candidates both in terms of linear as well as in terms of hierarchical distance. Ac-
cessibility is of special interest as linear distance between anaphora and antecedent
might be large. The term linear distance is based on text structure and refers to syn-
tagmatic distance between anaphora and antecedent in terms of words, discourse
entities, sentences or paragraphs. Hierarchical distance describes distance between
anaphora and antecedent on the basis of a hierarchical structure in terms of a tree
structure, for example as found in discourse structure or logical document structure.

The remainder of the article is structured as follows: In Section 11.2, we pro-
vide the theoretical background of anaphora resolution and describe our categorial
framework of anaphoric relations. In Section 11.3 we give an overview of logi-
cal document structure, describe the annotation of LDS and formulate our research
questions regarding the use of LDS for anaphora resolution. In Section 11.4 we
present annotation models that allow the investigation of different types of informa-
tion and in Section 11.5 we will present the results of a corpus study investigating
the use of LDS for anaphora resolution.



200 A. Witt et al.

11.2 Anaphora Resolution

Anaphora Resolution (AR) describes the process of identifying for a given anapho-
ric element its correct antecedent in the previous textual context. The anaphoric
element picks up its antecedent linguistically. In case of coreference, anaphora and
antecedent refer to the same entity whereas in case of cospecification the anaphoric
element picks up its antecedent linguistically but the two expressions are not coref-
erent. According to the relations that hold between the discourse entities, anaphora
can be divided into direct anaphora and indirect anaphora. For direct anaphora, the
antecedent is explicitly mentioned in the previous context (Example (1)) whereas for
indirect anaphora the antecedent is not mentioned explicitly but has to be inferred
from the context (Example (2)).

(1) I met a man yesterday. He told me a story.
(Example taken from [7], p. 414)

(2) I looked into the room. The ceiling was very high.
(Example taken from [7], p. 415)

Apart from the distinction of direct/indirect anaphora, discourse referents may be
coreferent or not. In Example (1) the linguistic units “a man” and “he” are co-
specified and refer to the same entity whereas “the room” and “the ceiling” in Ex-
ample (2) do not although they are closely related due to world knowledge.

In this article we will investigate both direct and indirect anaphora as well as
pronominal and definite description anaphora. We will focus on the question how
to detect possible antecedent candidates from the set of discourse referents and how
to select the correct one from the candidate set. The question how to detect pos-
sible candidates is of special interest as the linear distance between anaphora and
antecedent might be large thus leading to a large set of candidates when using a
fixed search window. In order to resolve anaphoric relations different types of infor-
mation are needed. Information on discourse structure and referential accessibility
is needed apart from information on POS, congruency, grammatical function and
linear distance.

The corpus study is based on a corpus of German scientific articles that have been
annotated manually for anaphoric relations. The annotation scheme comprises two
primary relation types (direct and indirect anaphora) and a set of secondary relation
types both for direct as well as for indirect anaphora. The annotation scheme is
described in detail in [16]. The annotation has been done using the annotation tool
SERENGETI [11] and has been checked for inter-annotator-agreement using kappa
values [18]. Additional information for the resolution process has been added to
the corpus by annotating the data automatically using the dependency parser MA-
CHINESE SYNTAX1 which provides lemmatization, POS information, dependency
structure, morphological information and grammatical function. Based on this in-
formation, discourse entities have been detected automatically afterwards by iden-
tifying nominal heads (i.e. nouns or pronouns) and their pre-modifiers. Information

1 http://www.connexor.eu/technology/machinese/machinesesyntax/

http://www.connexor.eu/technology/machinese/machinesesyntax/
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on logical document structure has been provided by the partner project C1 (see also
Section 11.3.3).

11.3 Logical Document Structure

The aim of this section is to describe logical document structure as a structuring
means of texts. LDS is a hierarchical structure: An article consists of sections which
consist of subsections which consist of paragraphs. Furthermore, LDS describes the
structure of a text – not its realization in a given medium, i.e. different realizations
refer to the same structuring elements, e.g. paragraph boundaries or footnotes. Para-
graph boundaries can be realized by line breaks with indentation or by blank lines
(with or without following indentation). In print media, footnotes are often found
at the bottom of the page whereas in hypertexts they are found at the end of the text
and are linked via hyperlinks. In the next subsections we will provide a formal de-
scription of logical document structure and give an overview how LDS can be used
for linguistic tasks.

11.3.1 What Is Logical Document Structure?

Formally, LDS forms a tree structure: Each section can contain several adjacent
subsections, i.e. there are no overlapping arcs, and each subsection has exactly one
parent section that contains it. Figure 11.2 shows the typical structure of a scientific
article.

Fig. 11.2 Logical document structure of an article.
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For a formal description of logical document structure as a tree, we follow the
definition of [1]:

1. A single node by itself is a tree. This node is also the root of the tree.
2. Suppose n is a node and T1,T2, ...,Tk are trees with roots n1,n2...,nk respectively.

We can construct a new tree by making n the parent of nodes n1,n2...,nk. In this
tree n is the root and T1,T2, ...,Tk are the subtrees of the root. Nodes n1,n2...,nk are
called the children of node n.

(ibid. p. 75)

Knowledge about the expressiveness and complexity of LDS is important as it
determines the means to describe and to annotate LDS in linguistic data. In terms of
information modeling, the structuring elements shown in Figure 11.2 form a prop-
erly nested tree and thus follow the model of an ordered hierarchy of content objects
(OHCO, cf. [10]). Each properly nested tree can be annotated using XML since the
underlying formal model of XML is the tree – although extensions to this rule may
apply according to the document grammar formalism that is used to define a specific
markup language: e.g. DTDs are considered as tree-equivalent (extended) context-
free grammars [cf. 22, p. 199] and [cf. 38, for a further discussion]. Any given
XML annotation can be accessed by using XML tools: XPATH to traverse the tree
and XSLT for further analyses. However, apart from their textual content, texts do
contain objects that have to be converted into a tree structure in order to be anno-
tated using XML, e.g. tables (cf. [31], p. 55ff). The application of LDS for linguistic
tasks as well as its annotation for the corpus under investigation is described in the
next subsections.

11.3.2 Application of Logical Document Structure for Linguistic
Tasks

Information on logical document structure is applied for different linguistic tasks,
e.g. language generation or genre detection. In this article we investigate the ques-
tion whether LDS can be applied for the task of anaphora resolution.

Regarding language generation, [37] apply LDS (abstract document structure
following the authors’ terminology) in order to describe the abstract representation
of a text – in contrast to its rhetorical structure or its realization (rendering). Whereas
rhetorical structure is used to model the semantic content of a text, abstract docu-
ment structure is used to model the hierarchical structure of textual entities. Abstract
document structure is realized as a text using appropriate layout.

[34] describe the generation of referring expressions in hierarchically structured
domains. [33] applies this framework for the domain of documents. Each document
can be described as a hierarchical domain due to its hierarchical structure. For
the task of language generation, a referring expression should allow for an easy
identification of its referent. For hierarchically structured domains, information on
the domain can be used to improve referring expressions in order to reduce the
amount of search necessary to identify the referent. For a given document item, it
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is necessary to identify the amount of information that is necessary to detect the
referent, e.g. in order to refer appropriately to a picture item, information is needed
whether the picture is located in the actual section or in another section.

Regarding anaphora resolution, the influence of the LDS on the choice of an
antecedent might be either (a) a direct influence on the discourse entities (or an-
tecedent life span), (b) an influence on the selection of a candidate according to
the anaphora’s and antecedent’s position regarding the LDS or (c) an influence on
the search window (comparable to different window sizes according to the NP type
of the anaphora) (see also [15]). The first type is related to the fact that discourse
entities “only serve as antecedents for anaphoric expressions within pragmatically
determined segments” (cf. [52], p. 549).

Regarding LDS, previous investigation shows that some discourse entities are
more prominent throughout the whole document than others, e.g. markables oc-
curring in the abstract of a text might be accessible during the whole text whereas
markables that occur in a list item or in a footnote-structure are less likely to be an
antecedent for anaphoric elements in the main text. For a corpus of 4323 anaphoric
relations 65.3% of all anaphora-antecedent-pairs are located in the same segment.
Regarding the remaining anaphora-antecedent-pairs, we expect markables described
in hierarchically higher elements (e.g. in a subsection) to be much more prone to
finding their antecedents in structuring elements of a higher level (i.e. in a section)
than in a preceding but hierarchically lower segment (i.e. in a preceding subsub-
section). Thus, the influence on the search window may either enlarge the search
window, i.e. the antecedent may be located outside the standard window (e.g. lo-
cated in the whole paragraph or in a preceding one), or may narrow the search
window, e.g. due to the start of a new chapter or section. Apart from defining an
appropriate search window, the position of an antecedent candidate within a para-
graph gives hints as to how likely that candidate is chosen as the correct one: 50.2%
of the antecedents in the corpus are located paragraph-initial and 29.1% are located
paragraph-final whereas only 20.2% are located in the middle of the paragraph.
Thus, information on LDS might give information regarding the search window and
for selecting the correct antecedent from a set of candidates (see also [47]).

In the following we will analyze how to apply these findings to antecedent detec-
tion and we will investigate the following research questions:

1. How are anaphora and antecedent located regarding LDS?
2. Does the position of the anaphora/the antecedent regarding LDS give hints for

the antecedent choice?
3. Is it possible to define the search window by using information on the position of

the anaphora/the antecedent?

In the next sections we will describe the annotation of LDS and the integration
of different annotations layers for the task of analyzing their interrelationship and
investigating the research questions.
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11.3.3 XML-Annotation of Logical Document Structure

In order to investigate the influence of LDS on anaphora resolution we analyze a
corpus regarding the research questions formulated above. The corpus under inves-
tigation has been annotated manually for anaphoric relations, additional information
on lemmatization, POS, dependency structure, morphology and grammatical func-
tion as well as on discourse entities has been added afterwards (cf. Section 11.2).
This information together with the annotation of the layer of logical document struc-
ture forms the basis for our analyses.

Apart from a set of newspaper articles that have been annotated in our project, we
had the possibility to use an extensive set of annotations for scientific articles that
have been annotated in the partner project C1. The annotation of the corpus data is
based on an annotation scheme that has been defined by the partner projects C1 and
B1 and which forms a subset of the DocBook annotation scheme with additional
elements from (X)HTML. A detailed description of the annotation scheme as well
as of the annotation procedure is given in [30, 28] and we will only give a brief
overview here. For the annotation, a subset has been chosen from the complete
set of elements from the DocBook standard (cf. [53]) which has been originally
developed for technical documentation. The subset has been chosen in order to ease
annotation by using only those elements that are needed for annotating the corpus
of scientific articles. Another set of elements has been defined in order to describe
elements that are not contained in the set of DocBook elements, e.g. elements for a
table of contents which – in a standard DocBook creation process – is not annotated
but created automatically from DocBook annotations. These elements are defined in
a separate XML namespace. Another set of elements comprises XHTML-elements
in order to describe e.g. link elements already annotated in the original corpus data.
Altogether a set of 45 DocBook-elements and another 13 logical elements has been
used for the annotation process. The annotation set thus comprises elements for
describing the hierarchical structure of texts according to author, abstract, sections,
paragraphs, footnotes, lists, list items, bibliography, tables, captions and the like.

The different annotation layers have been combined using markup unification
which allows the combination of two XML annotation layers into a new XML in-
stance [55]. The analysis of the research questions is based on the unified annotation
data. This data is stored in a generic format that allows for creating different output
formats, e.g. a candidate list (see Section 11.4.3), and for analyses using XSLT and
XQuery. Different approaches for the integration of resources are presented in the
next section.

11.4 Integration of Resources

In linguistic research often using only a single linguistic annotation layer is inad-
equate for dealing with specific tasks. This inadequacy does not only occur when
one has to handle different linguistic levels, but can arise when working on a sin-
gle representation level, e.g. [35] describe the problems when annotating multiword
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units on different lexical representation levels. Usually, annotation of linguistic rep-
resentation levels is generated by linguistic resources, such as parsers, taggers, and
the like. The integration of different resources is a crucial problem and, since the
application of most linguistic resources results in heterogeneous output formats, i.e.,
XML instances following different document grammars that are only suitable for the
given linguistic aspect this resource is aimed at, usually one encounters the problem
of combining these different annotation layers that are all based on the same primary
data. In this section we will present approaches to this problem.

11.4.1 Representation Formats

XML-based markup languages follow the formal model of a tree, i.e., the data that
is structured by means of such a markup language is organized hierarchically as
a tree (to be more specific: as a single tree) [59], similar to the above-mentioned
OHCO model. Dealing with multi-dimensional annotation (i.e. multiple trees) and
– as a result – with possibly overlapping structures is one of the key problems when
working with XML-based annotation formats.

In the last years a variety of approaches has been developed to cope with over-
lapping structures. These proposals can be mainly divided into three categories:
non-XML based approaches, XML-related approaches and XML-based approaches.
The classic approach for dealing with multiple annotation layers is the use of sepa-
rate documents or twin documents as [59] call them (if they share some annotation,
the so-called sacred markup). [9] presents several formats that have been devel-
oped over the past years and that allow overlapping markup, starting from SGML’s
CONCUR feature [20] – a reimplementation approach named XCONCUR has been
made by [21, 39, 56] –, over TEI milestones and fragmentation [5] and different
standoff (i.e. the markup is separated from the primary data and stored in a separate
document, [5, 51]) approaches up to specifications that leave the XML path, such
as the Layered Markup and Annotation Language (LMNL, cf. [49, 8]) in conjunc-
tion with Trojan milestones following the HORSE (Hierarchy-Obfuscating Really
Spiffy Encoding) or CLIX model. [44] discusses similar approaches for the formal
representation of overlapping markup, adding colored XML [27] and the tabling ap-
proach described by [14] to the set of already stated proposals. Again, [59] compare
state of the art in overlapping markup approaches, including alternatives to XML’s
data model (e.g. a directed acyclic graph structure (GODDAG, [45]) over the XML
inherent tree) and its notation. In addition, the Prolog fact base approach discussed
by [54, 55] or adding delay nodes to the XQuery 1.0 and XPath 2.0 Data Model
(XDM) as virtual representation of nodes proposed by [29] allowing different nodes
to share children describe other non-XML based specifications. Furthermore, XML-
based specifications that follow the Annotation Graph paradigm [4], such as NITE
[6], the Potsdamer Austauschformat für Linguistische Annotationen (PAULA, cf.
[12, 13]), the Graph-based Format for Linguistic Annotations (GrAF, cf. [25]) de-
veloped by ISO/IEC TC37 or the Sekimo Generic Format (SGF) and its successor
XStandoff (cf. section 11.4.2 and [47]) have been developed as well.
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In case of using the classic approach of separate or twin documents the primary
data (or source data, i.e. the textual data that is to be annotated) is saved together
with a single annotation layer in separate files. Since only a single tree hierarchy is
saved per file no overlapping structures occur. However, this approach might present
problems in respect to the fact that the primary data is saved several times redun-
dantly and analyzing relations between elements derived from different annotation
layers may be cumbersome when dealing with multiple files without a linking ele-
ment between the annotations. Although it is possible to use the character stream of
the primary data as coordinates to align different annotation layers (cf. [55]), often
changes to the primary data are introduced during the annotation process (in terms
of added or deleted whitespace) raising further issues.

The Text Encoding Initiative proposes different XML-based solutions for deal-
ing with complex markup (as multi dimensional markup is sometimes called): apart
from stand-off markup, [5, chapters 16.9 and 20.4] there are milestone elements
(empty elements that can be used as boundary markers, [5, chapter 20.2]) or frag-
mentations and joints (i.e., a series of elements is used in which each represent only a
portion of the virtually larger element, [5, chapter 20.3]). In addition [57] describes
a system that adopts TEI’s feature structures [5, chapter 18] as a meta-format for
representing heterogenous complex markup. The TEI tag set for feature structures
supports a method for a general purpose data structure. A feature structure is built
up of a fs element (feature structure) with an optional type attribute containing
various instances of f elements (feature). Each f element bears a name attribute
containing the feature’s name. Possible child elements of the f element – apart from
other feature structures (fs) – can be binary, symbol, numeric or string
elements, allowing differentiation of the feature’s value. Apart from the string el-
ement, which stores the value as its textual content, each of the named elements use
a value attribute for this purpose. This simple mechanism can be used as a very
general representation system. As an extension, feature and feature-value libraries
can be established for re-using feature structure components in different instances.
Re-entrant feature structures and Collections (complex feature structures) can be
used as well. The connection between the primary data and the feature structure
annotation(s) can be established by various linking mechanism described in the TEI
guidelines (e.g. standoff techniques or XML ID/IDREF). For a concrete example of
use cf. [57].

While most of the before-mentioned approaches target at the representation of
multi-dimensional annotation, their usage in validating and analyzing multiple an-
notation layers is restricted: The non XML-based formats such as TeXMECS,
LMNL or XCONCUR lack the support for XML’s companion specifications such
as XPath, XSLT or XQuery (although development has been started for an API for
XCONCUR, [40] and query languages for overlapping markup have been proposed
by [27, 23, 24, 2, 3]). Another problem arises by the fact that document gram-
mars for validating overlapping markup structures are in the proposal state only, e.g.
the Rabbit/Duck grammars proposed by [43] for GODDAG structures/TexMECS,
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XCONCUR-CL [39] or Creole (Composable Regular Expressions for Overlapping
Languages etc., [50]) an extension to RELAX NG [26] developed in the LMNL
community. For these reasons, if validating complex markup is an issue, it is easier
to stick with XML-based approaches that can make use of the full scale of XML
processing tools.

In the following section we will present the format developed in the Sekimo
project for analyzing complex markup, the Sekimo Generic Format (SGF).

11.4.2 Sekimo Generic Format and XStandoff

The Sekimo Generic Format has been developed at Bielefeld University during the
second phase of the Sekimo project. It is an XML-based successor of the Prolog
fact base format for the storage and analysis of multiple annotated texts described in
[55] and [19]. It follows a standoff annotation approach but combines all annotation
levels that belong to the same primary data in a single XML instance, following
the formal model of a multi-rooted tree. In fact, it is possible to store not only the
annotations belonging to a single corpus item but several different corpus entries
together with their respective annotation and metadata, the resources used during
the annotation process and the document editing history.

The basic set-up of an SGF instance is quite simple: it consists of the primary data
(either included in the instance or as a reference to an external file – or even multiple
files when dealing with diachronic or multi-modal corpora), the segmentation (in
terms of character position when dealing with texts, in terms of time spans or frames
when dealing with non-textual primary data) and its annotation layers. In addition,
optional metadata can be inserted at various positions and a log can be used for
saving the document history (i.e. added, modified or deleted annotation elements).2

In contrast to other pivot formats such as TEI’s feature structures, PAULA or
GrAF, SGF tries to maintain as much of the original annotation format as possible,
i.e. the only changes that are made concern the deletion of text nodes and the addi-
tion of the sgf:segment attribute that links to the correspondingsgf:segment
element (via XML ID/IDREF) that defines the character span in the primary data
storing the textual data part that is annotated by this specific element. A second
distinguishing feature is that SGF usually stores all information, i.e. primary data,
its segmentation and all respective annotation layers, in a single instance. SGF is
flexible enough to allow in addition the use of multiple files or – at the opposite
range – the storage of a whole corpus together with the resources used in its cre-
ation process in a single file. A graphical overview of an SGF instance is shown
in Figure 11.3. As one can see, the original annotation layers (one containing POS
annotation, the second a logical document structure) remain intact, including their

2 The log functionality was primarily designed for the web-based annotation tool Serengeti
but can be used in every other environment to track the changes that have been made to an
SGF instance.
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respective element hierarchy and attributes (the latter not shown in the simplified
graphical overview).3

corpus

meta corpusData id=’cd1’

meta primaryData

meta textualContent

He saw a man.

segments

segment
id=’s1’
start=’0’
end=’8’

...
segment
id=’sn’
start=’n’
end=’n’

annotation id=’a1’

meta level

meta layer

s segment=’s1’

np segment=’s2’ vp segment=’s3’

log

... annotation id=’an’

meta level

meta layer

p segment=’s1’

log

... corpusData id=’cn’

XML ID/IDREFdelimits text

Fig. 11.3 A graphic overview of an SGF instance.

The format as such is designed as a set of XML schema files. In addition, there
are converter scripts available as well, allowing the transformation of a single inline
annotation into an SGF instance (inline2SGF), the merging of SGF annotation
levels regarding the very same primary data input (mergeSGF), the deletion of SGF
annotation levels (removeLevel) and a conversion from SGF to inline annotation
using TEI milestone elements (SGF2inline).

We use SGF for two purposes: first, as a storage and exchange format that can
be used in the web-based annotation tool Serengeti that has been developed in our
project, and second, as a basis for corpus analysis, such as the relationship between
elements of the logical document structure layer and anaphoras or antecedents re-
spectively. For the latter it is possible to use standard XML related tools such as
XSLT or XQuery to process and query SGF instances. Furthermore, it is possible
to extract the reasonable parts from the culminated information stored in an SGF
instance that are crucial for a specific task, which is shown in section 11.4.3.

A more detailed description of SGF can be found in [47], for a discussion of its
use in the Anaphoric Bank project cf. [36] (in this volume).

The currently developed successor of SGF, called XStandoff (for both extended
and extensible standoff format), introduces some changes to both the format and

3 A real SGF instance is shown in [36] (in this volume).
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the accompanied toolkit (see [48] for a detailed description), including the support
for differentiating between containment and dominance relations in XML annota-
tions (see [42] for a discussion) and an all namespace that can be used to subsume
elements that are present in different annotation layers, amongst others. As a re-
sult, XStandoff is capable of expressing GODDAG structures (including cross-layer
validation) while maintaining full compatibility to the XML standard. SGF and
XStandoff are available under the GNU Lesser General Public License (LGPL v3)4.

11.4.3 Antecedent Candidate List

Given the representation formats described in the previous section, the annotation
layers for anaphoric relations and logical document structure (see Sections 11.2 and
11.3.3) are converted to SGF and can be analyzed afterwards. For the application
domain of anaphora resolution, a set of candidates is identified via an XSLT script
for each anaphoric relation and each anaphora together with its candidate set is
stored in a candidate list (see Listing 11.1 for a shortened example of a candidate
list).

The candidate list consists of several semRel elements each containing one
anaphora element and several antecedentCandidate elements. Information
on the relation type between the anaphora and its correct antecedent is stored as
attribute information in the semRel element. The anaphor element describes
properties of the anaphoric element as well as information on the correct antecedent,
the antecedentCandidate elements store information on the antecedent can-
didates. All information is stored in terms of attributes. Congruency information
is stored in the attributes num and gen. Additional information is given for part
of speech (pos, npType), grammatical function (syntax), dependency structure
(dependHead, dependValue) and lemma of head noun (lemma). The position
of an element is described as position within the sentence (sentencePos), within
the paragraph (paraPos) and in terms of its position regarding the whole docu-
ment (sentencePosition, position). For all antecedentCandidate
elements distance information in terms of sentences and discourse entities is added
(sentenceDistance,deDistance). Information on the hierarchical structure
of the respective candidates is stored as attribute information c1-docPath. The
attribute c1-docAnteHierarchy stores information on the hierarchical relation
between anaphora and antecedent candidate, in Listing 11.1 anaphora and correct
antecedent are located in the same paragraph, i.e. their discourse entity elements
are siblings. For the process of anaphora resolution each anaphora-candidate-pair
is interpreted as a feature vector which is used for training a classifier (see also
[41, 46, 58]). A detailed description of the candidate list creation process as well as
of the XSLT processing script is given in [47].

4 See http://www.xstandoff.net for downloads, example annotations and further
details.

http://www.xstandoff.net
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Listing 11.1 Example candidate list. Shortened and manually revised output

1 <?xml version="1.0" encoding="UTF-8"?>
2 <candidateList
3 xmlns:sgf="http://www.text-technology.de/sekimo"
4 xmlns:chs="http://www.text-technology.de/sekimo/chs"
5 xmlns:c1-doc="http://www.text-technology.de/do-gi-docbook"
6 <!-- [...] -->
7 maxDeDistance="15"
8 filename="ling-deu-010-sgf-c1doc.xml">
9 <semRel relationID="sr71" type="cospecLink" subtype="ident"

phorIDRef="de258" antecedentIDRefs="de249">
10 <anaphor deID="de258" deType="nom" pos="N" syntax="@NH" lemma="

monitoring-prozess" dependHead="w932" dependValue="mod"
npType="pureNP" num="PL" gen="MSC" cas="DAT" sentencePos="
6/6" paraPos="10/23" sentenceParaPos="2/4" position="241"
sentencePosition="38" c1-docPath="/article[1]/sect1[3]/para
[2]">Monitoring-Prozessen</anaphor>

11 <!-- [...] -->
12 <antecedentCandidate correctAntecedent="yes" deID="de249"

deType="nom" pos="N" syntax="@NH" lemma="monitoring-prozess
" dependHead="w914" dependValue="subj" npType="pureNP" num=
"PL" gen="MSC" cas="NOM" sentencePos="2/4" paraPos="2/23"
sentenceParaPos="1/4" position="233" sentencePosition="37"
c1-docPath="/article[1]/sect1[3]/para[2]" deDistance="8"
sentenceDistance="1" c1-docAnteHierarchy="siblings">
Monitoring-Prozesse</antecedentCandidate>

13 <!-- [...] -->
14 <antecedentCandidate deID="de252" deType="nom" pos="N" syntax="

@NH" lemma="aufmerksamkeits#fokus" dependHead="w910"
dependValue="mod" npType="defNP" num="SG" gen="MSC" cas="
DAT" sentencePos="4/4" paraPos="4/23" sentenceParaPos="1/4"
position="235" sentencePosition="37" c1-docPath="/article

[1]/sect1[3]/para[2]" deDistance="6" sentenceDistance="1"
c1-docAnteHierarchy="siblings">m Aufmerksamkeitsfokus</
antecedentCandidate>

15 <!-- [...] -->
16 </semRel>
17 </candidateList>

11.5 Results of a Corpus Study

The corpus annotated during the project has a total size of 14 documents, divided
into six German scientific articles with complex document structure and eight Ger-
man newspaper articles. The corpus comprises 3084 sentences with 55221 tokens
and 11459 discourse entities. We’ve annotated 4185 anaphoric relations (3223 di-
rect and 962 indirect).

The corpus under investigation consists of five German scientific articles, its size
and information on anaphoric relations are given in Table 11.1. In our analyses we
focus on semantic relations with only one antecedent due to the fact that relations
with more than one antecedent only play a minor role (see column #SemRels > 1
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Ante in Table 11.1). Pronominal anaphoras tend to find their antecedent at a small
distance that almost always lies within a distance of 15 discourse entities (DE hence-
forth) therefore we focus our research questions on non-pronominal anaphoras (see
Figure 11.4).

Table 11.1 Overview on the corpus.

Text #Token #DE #Antecedent #Anaphora #Anaphoric #Anaphoric rel. #Anaphoric rel.
DE DE relations (1 Ante) (>1 Ante)

ld-003 12423 2619 996 1347 1358 1311 (96.54%) 47 (3.46%)
ld-010 2248 501 139 174 183 177 (96.72%) 6 (3.28%)
ld-012 6467 1189 342 465 489 484 (98.98%) 5 (1.02%)
ld-014 9385 1529 424 496 500 488 (97.6%) 12 (2.40%)
ld-016 9286 1773 307 395 405 394 (97.28%) 11 (2.72%)
∑ 39809 7611 2208 2877 2935 2854 (97.24%) 81 (2.76%)

Fig. 11.4 Distance between pronominal anaphora and antecedent in discourse entities.

Distance information for non-pronominal anaphoras shows that linear distance
is greater than for pronominal anaphoras (Figure 11.5). Both pronominal and non-
pronominal anaphoras show fairly homogeneous behavior among the different texts
which supports the assumption that distance information is stable among different
texts of the same text type even if text length varies among these texts.

Figure 11.5 shows for a distance baseline of 15 discourse entities that – for the
different texts – a minimum of 48.27% and a maximum of 61.81% of all anaphoras
find their antecedents within this search window. We will now investigate our re-
search questions:

1. How are anaphora and antecedent located regarding LDS?
2. Does the position of the anaphora/the antecedent regarding LDS give hints for

the antecedent choice?
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Fig. 11.5 Distance between non-pronominal anaphora and antecedent in discourse entities.

3. Is it possible to define the search window by using information on the position of
the anaphora/the antecedent?

Regarding questions (1) and (2) we classify the discourse entities (DEs) occurring
in the scientific articles into four categories: (1) DEs that are both in anaphora and
in antecedent position, (2) DEs that are in anaphora position only, (3) DEs that are in
antecedent position only and (4) DEs that are neither in anaphora nor in antecedent
position. We then analyze the attribute c1-docPath and extract possible parent
elements for each category of DEs. Apart from the fact that anaphoric DEs tend
to not occur in title elements (only one of 1532 anaphoric-only DEs occurs in a
title element), anaphoric and antecedent elements occur in the same elements of
the logical document structure. Thus, sole information on the LDS parent element
cannot be used as a constraint on antecedent detection, but might help to identify
anaphoric elements. In order to constrain antecedent selection the complete LDS
path has to be taken into account (see e.g. LDS-Filter3 below). Previous corpus
evidence regarding the choice of DEs located in footnote elements or list items can
be confirmed by the corpus under investigation. LDS information cannot be used as
a hard constraint in a sense that the occurrence of a DEs in a given LDS structure
prohibits the antecedent to be in antecedent position. Nevertheless, LDS can serve as
a weak constraint when comparing structures of competing antecedent candidates.

Regarding question (3) we define a search window of 15 discourse entities to be
the baseline and we compare different LDS filters against this baseline. Table 11.3
shows the results of the tests for anaphoric relations with non-pronominal anaphora.
For the baseline we simply collect all discourse entities that are within a distance
of no more than 15 discourse entities. As the annotation scheme used for corpus
creation only allows non-pronominal discourse entities in antecedent position the
number of candidates in each set might be smaller than 15. Therefore, we define
candidate sets of exactly 15 elements by adding candidates to the baseline set. For
each of the LDS filters we create candidate sets of exactly 15 elements, too.

The first LDS filter (Table 11.3: LDS-Filter1) selects antecedent candidates
according to their values for the attribute c1-docAnteHierarchy. This at-
tribute has different values according to the relationship of c1-docPath-values
of anaphora and antecedent. The value siblings is chosen if the DE-elements
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of anaphora and antecedent have the same parent element and the value same
describes LDS paths that contain exactly the same types of elements (e.g. /arti-
cle[1]/sect1[1]/para[10] – /article[1]/sect1[3]/para[3]). The value ante-ancestor is
chosen if the parent element of the antecedent DE is an ancestor to anaphora DE’s
parent element (e.g. /article[1]/sect1[1]/para[10] – /article[1]/sect1[1]/para[10]/
emphasis[1]), the value ana-ancestor is chosen accordingly. If none of the above
values hold, yes indicates the anaphora’s LDS path to be longer than the ancestor’s
path, no indicates the opposite. LDS-Filter1 chooses candidates with values sibling,
same and yes according to the corpus findings given in Table 11.2: sibling, same
and yes cover most of the anaphoric relations.

Table 11.2 LDS-Hierarchy of anaphora and antecedent.

ld-003 ld-010 ld-012 ld-014 ld-016
Total 1311 177 484 488 394

siblings 751 (57.28%) 83 (46.89%) 277 (57.23%) 278 (56.97%) 255 (64.72%)
same 276 (21.05%) 28 (15.82%) 154 (31.82%) 125 (25.61%) 97 (24.62%)

ante-ancestor 31 (2.36%) 4 (2.26%) 5 (1.03%) 4 (0.82%) 1 (0.25%)
ana-ancestor 10 (0.76%) 1 (0.56%) 1 (0.21%) 10 (2.05%) 10 (2.54%)

yes 168 (12.81%) 40 (22.6%) 37 (7.64%) 39 (7.99%) 22 (5.58%)
no 75 (5.72%) 21 (11.86%) 10 (2.07%) 32 (6.56%) 9 (2.28%)

LDS-Filter2 is the same as LDS-Filter1 but filters only those candidates whose
DE-distance value is greater than 15, thus the baseline set remains unfiltered.

LDS-Filter3 keeps the baseline set unfiltered, too. All LDS elements glosslist5

are filtered from the candidate set as these do not occur in antecedent position, can-
didates with values sibling, same and yes are chosen afterwards.

Table 11.3 Results of LDS filters.

ld-003 ld-010 ld-012 ld-014 ld-016
#Anaphoric Relations 1153

(100%)
166
(100%)

380
(100%)

370
(100%)

265
(100%)

Coverage for different test cases
(1) Baseline: deDistance≤15 61.67% 59.64% 59.21% 47.57% 56.6%
(2) CL Size=15 (no LDS-Filter) 65.39% 60.24% 62.89% 51.35% 61.51%
(3) CL Size=15 (LDS-Filter1) 61.49% 61.45% 64.21% 52.16% 61.13%
(4) CL Size=15 (LDS-Filter2) 65.13% 60.84% 63.16% 52.43% 62.26%
(5) CL Size=15 (LDS-Filter3) 65.22% 62.05% 63.16% 52.43% 62.26%

5 This element was introduced to annotate definition and glossary lists (containing glossary
items and the respective definition) which may be found in some of the scientific docu-
ments. Since anaphoras should not occur between an anaphora in the running text and an
antecedent in a glossary definition we can safely apply the filter.
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Table 11.3 shows for each scientific article and for each of the test cases the
amount of anaphoric relations for which the correct antecedent candidate is con-
tained in the candidate list. The results show that LDS filters do only play a minor
role in the creation of an appropriate candidate set. The antecedent candidate set of
15 elements with no LDS filters is only slightly outperformed by the LDS filters.
In fact, LDS-Filter1 decreases the amount of correct antecedents found as it filters
correct antecedents that would have been found within the search window. LDS-
Filter3 filters candidates whose value of the c1-docPath-attribute never occur in
antecedent position. However, as distance between anaphora and antecedent can be
very large, filtering for single candidates does not much improve the coverage. We
can draw the conclusion, that LDS as a hard constraint cannot close the gap to full
coverage of antecedent candidates in long texts. We argue to enlarge the candidate
set to an appropriate size (see Figure 11.5) and to apply weak constraints in order to
choose the correct antecedent from the set of candidates, e.g. based on information
as given in Table 11.2.

11.6 Conclusion

The research described in this chapter started with the initial assumption that typical
language technological tasks would benefit from considering not only textual con-
tent but also additional information that quite often is available in digital documents.
Unfortunately, however, the results of our investigations do support our initial as-
sumptions only weakly. The minor effects found led us to the conclusion not to use
logical document structure as an absolute constraint for the (non-)accessibility of
anaphora antecedents but using it only as an additional resource that might improve
the task of anaphora resolution slightly. Moreover, we believe that a whole bunch of
additional information sources could be taken into account to improve applications
of language technology. (see also [32]) To enhance the accessibility of the diverse
information types we propose to make this information available together with the
text document in a standardised way. XStandoff could be used as an annotation
technique that allows doing this in a powerful way.
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A. (eds.) Modelling, Learning and Processing of Text-Technological Data Structures.
Springer, Berlin (2011)

[37] Power, R., Scott, D., Bouayad-Agha, N.: Document structure. Computational Linguis-
tics 29(2), 211–260 (2003)

[38] Rizzi, R.: Complexity of context-free grammars with exceptions and the inadequacy of
grammars as models for xml and sgml. Markup Languages – Theory & Practice 3(1),
107–116 (2001)

[39] Schonefeld, O.: XCONCUR and XCONCUR-CL: A constraint-based approach for the
validation of concurrent markup. In: Rehm, G., Witt, A., Lemnitzer, L. (eds.) Daten-
strukturen für linguistische Ressourcen und ihre Anwendungen. Data Structures for
Linguistic Resources and Applications. Proceedings of the Biennial GLDV Conference
2007. Gunter Narr Verlag, Tübingen (2007)

[40] Schonefeld, O.: A simple API for XCONCUR. In: Proceedings of Balisage: The
Markup Conference, Montréal, Québec (2008)
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Chapter 12
Machine Learning for Document Structure
Recognition

Gerhard Paaß and Iuliu Konya

Abstract. The backbone of the information age is digital information which may
be searched, accessed, and transferred instantaneously. Therefore the digitization
of paper documents is extremely interesting. This chapter describes approaches for
document structure recognition detecting the hierarchy of physical components in
images of documents, such as pages, paragraphs, and figures, and transforms this
into a hierarchy of logical components, such as titles, authors, and sections. This
structural information improves readability and is useful for indexing and retrieving
information contained in documents. First we present a rule-based system segment-
ing the document image and estimating the logical role of these zones. It is exten-
sively used for processing newspaper collections showing world-class performance.
In the second part we introduce several machine learning approaches exploring large
numbers of interrelated features. They can be adapted to geometrical models of the
document structure, which may be set up as a linear sequence or a general graph.
These advanced models require far more computational resources but show a better
performance than simpler alternatives and might be used in future.

12.1 Introduction

In the last years, there has been a rising interest in the easy access of printed material
in large-scale projects such as Google Book Search [47] or the Million Book Project
[37]. To make this material amenable to browsing and retrieval the logical structure
of documents into titles, headings, sections, and thematically coherent parts has to
be recognized. To cope with large collections this task has to be performed in an
automatic way. The result produced by a document understanding system, given
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a text representation, should be a complete representation of the document’s logi-
cal structure, ranging from semantically high-level components to the lowest level
components.

Document structure recognition can exploit two sources of information. On the
one hand the layout of text on the printed page often gives many clues about the
relation of different structural units like headings, body text, references, figures, etc.
On the other hand the wording and the contents itself can be exploited to recognize
the interrelation and semantics of text passages.

Currently there exists a wide range of algorithms specialized for certain parts of
document analysis. In large scale applications these approaches have to cope with
the vast variety of printed document layouts. A recent comparison is given by [39]
showing that no single algorithm is uniformly optimal. As argued by [5], versatility
is the key requirement for successful document analysis systems. Even for the same
publisher, the layout of its publications changes drastically over time. This is espe-
cially visible when dealing with publications spanning over many decades or even
centuries. As a general rule, more recently printed documents are also more com-
plex, and the difference between the layouts used by different publishers becomes
more pronounced. Thus it is extremely difficult to have algorithms consistently de-
livering good results over the whole range of documents.

Machine learning approaches are a potential remedy in this situation. Starting
form a training set of documents they are able to extract a large number of features
relevant for document structure. In contrast to manually built rule systems they are
capable to weight these features such that the change of a few features does not lead
to a drastic loss of performance.

In this chapter we describe an approach based on minimum spanning trees. It is
able to cope with multiple text columns and embedded commercials having a non-
Manhattan layout and may be automatically adapted to the different layouts of each
publisher. It has been used in large scale newspaper digitization projects. In chapter
3 we discuss some advanced approaches for detecting the structure of text based on
the sequence of text objects and layout features. We introduce Conditional Random
Fields, which characterize the interrelation of hidden structural states of text and are
able to include a large number of dependent features.

12.2 Document Analysis for Large-Scale Processing

Despite intensive research in the area of document analysis, the research community
is still far from the desired goal, a general method of processing images belonging
to different document classes both accurately and automatically. While geomet-
ric layout analysis methods are fairly mature, logical layout analysis research is
mainly focused on journal articles. The automatic discovery of logical document
structure allows the application of a multitude of electronic document tools, in-
cluding markup, hyperlinking, hierarchical browsing and component-based retrieval
[40]. For this purpose, the usage of machine learning techniques to arrive at a good
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Fig. 12.1 Functional model of a complete, generic Document Image Understanding (DIU)
system. The ordering of some subsystems may vary, depending on the application area.

solution has been identified by many researchers as being a promising new direction
to take [30].

The current section is dedicated to the presentation of a rule-based module for
performing logical layout analysis. The described module has been extensively
used as part of an automatic system in the processing of large-scale (i.e. >100.000
pages) newspaper collections. As can be seen from Figure 12.1, a generic Docu-
ment Image Understanding (DIU) system must incorporate many specialized mod-
ules. Logical layout analysis is considered to be one of the most difficult areas in
document processing and is a focal point of current research activity. We will also
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discuss the applicability of the previously described machine learning approaches
as a replacement for the traditional rule-based methods. As a prelude, for the sake
of completeness, a brief overview on the current research in geometric layout anal-
ysis is presented before going into the state-of-the-art algorithms for logical layout
analysis.

12.2.1 Geometric Layout Analysis

The purpose of geometric layout analysis (or page segmentation) is to segment a
document image into homogeneous zones, and to categorize each zone into a certain
class of physical layout elements. Most commonly, the physical layout elements
are divided into text, graphics, pictures, tables, horizontal and vertical rulers. It is
important to note that in the specialized literature there exists no consensus on the
number of physical classes considered, the number depends mostly on the target
domain.

Ideally, the page segmentation process should be based solely on the geometric
characteristics of the document image, without requiring any a priori information
(such as a specific document type – e.g. newspaper, engineering drawing, envelope,
web page). Many current page segmentation algorithms are able to meet this condi-
tion satisfactorily. In the vast majority of cases, however, the input image is assumed
to be noise free, binary, and skew-free.

Traditionally, page segmentation methods are divided into three groups: top-
down (model-driven), bottom-up (data-driven) and hybrid approaches. In top-down
techniques, documents are recursively divided from entire images to smaller re-
gions. These techniques are generally very fast, but they are only useful when a
priori knowledge about the document layout is available. To this class belong meth-
ods using projection profiles [21], X-Y cuts [21], or white streams [1]. Bottom-
up methods start from pixels, merging them successively into higher-level regions,
such as connected components, text lines, and text blocks. These methods are gen-
erally more flexible and tolerant to page skew (even multiple skew), but are also
slower than top-down methods. Some popular bottom-up techniques make use of re-
gion growing [24, 25], run-length smearing [49], or mathematical morphology [19].
Many other methods exist which do not fit exactly into either of these categories;
they were consequently called hybrid methods. Hybrid approaches try to combine
the high speed of the top-down approaches with the robustness of the bottom-up
approaches. Within this category fall all texture-based approaches, such as those
employing Gabor filters, multi-scale wavelet analysis [14], or fractal signatures [44].

Many other algorithms for region detection have been proposed in the literature.
For a more complete overview one may consult the most recent surveys and meth-
ods, such as [9, 29, 39]. Page segmentation methods are being evaluated from time
to time, e.g. by [39] who compare the performance of six algorithms and, most re-
cently, in the 2007 ICDAR competition described by [2]. As one may see from the
results obtained in recent years, current page segmentation algorithms perform quite
well in the task of separating text and non-text regions. An evaluation of the page
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Fig. 12.2 Example of page segmented images from newspaper. Color legend: green= text,
red= image, orange= drawing, blue= vertical separator, cyan= horizontal separator, darkened
background= frame box

segmentation results produced by the module used in our DIU system on a set of
22 newspaper images coming from 6 different publishers has shown an accuracy of
about 95% correctly separated text regions for the text-non-text separation task.
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Fig. 12.3 Example of page segmented images from a chronicle. Color legend: green= text,
red= image, orange= drawing, blue= vertical separator, cyan= horizontal separator, darkened
background= frame box
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12.2.2 Logical Layout Analysis

The purpose of logical layout analysis is to segment the physical regions into mean-
ingful logical units according to their type (e.g. text lines, paragraphs), assign a
logical label to each of the determined regions (e.g. title, caption), as well as to
determine the logical relationships between the logical regions (e.g. reading order,
inclusion in the same article). Note that in case the processed document type is a
periodical, logical layout analysis is also referred to as article segmentation.

The set of available logical labels is different for each type of document. For
example: title, abstract, paragraph, section, table, figure and footnote are possible
logical objects for technical papers, while: sender, receiver, date, body and signa-
ture emerge in letters. Logical relationships are typically represented in a hierarchy
of objects, depending on the specific context [9]. Examples of relations are cross
references to different parts of an article or the (partial) reading order of some parts
of a document. Taking into consideration all these aspects, it becomes clear that
logical layout analysis can only be accomplished on the basis of some kind of a pri-
ori information (knowledge) about the document class and its typical layout, i.e. a
model of the document. Such knowledge can be represented in very different forms
(e.g. heuristic rules, formal grammars, probabilistic models such as Hidden Markov
Models, a.s.o.). [9] contains a survey of the different document formats used in
modern document image understanding systems.

The number of available logical layout analysis algorithms is much lower than
that of geometrical layout analysis algorithms, as the difficulty of the task is signif-
icantly higher. This section will only present the main ideas of a few methods and
the interested reader is advised to consult one of the dedicated survey papers (e.g.
[9, 22, 29]).

[46] regarded both the physical layout and logical structure as trees. They trans-
formed the geometrical layout tree into a logical layout tree by using a small set of
generic rules suitable for multi-column documents, such as technical journals and
newspapers. The physical tree is constructed using block dominating rules. The
blocks in the tree are then classified into head and body using rules related to the
physical properties of the block. Once this logical tree is obtained, the final logi-
cal labels are assigned to the blocks using another set of rules. The logical labels
considered are: title, abstract, sub-title, paragraph, header, footer, page number, and
caption. A virtual field separator technique is introduced, in which separators and
frames are considered as virtual physical blocks in the physical tree. This technique
allows the tree transformation algorithm to function with a low number of transfor-
mation rules. The authors tested their algorithm on 106 pages from various sources
and reported a logical structure recognition accuracy of 88.7%. Errors were due to
inaccurate physical segmentation, insufficient transformation rules, and the fact that
some pages did not actually have hierarchical physical and/or logical structures.

A general algorithm for automatic derivation of logical document structure from
physical layout was described by [40]. The algorithm is divided into segmentation
of text into zones and classification of these zones into logical components. The
logical document structure is obtained by computing a distance measure between a
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physical segment and predefined prototypes. The set of properties assigned to each
prototype are the parameters from which each distance value is calculated. The
properties include contours, context, successor, height, symbols, and children. Ba-
sic textual information was also used in order to obtain a higher accuracy. The algo-
rithm was tested on 196 pages from 9 randomly selected computer science technical
reports. The labeling result of each text block was characterized as correct, over-
generalized, or incorrect. Two metrics, precise accuracy and generalized accuracy,
were used to evaluate the performance. Both average accuracy values were found to
be greater than 86%.

[32] presented a system called DeLoS for the derivation of logical document
structures. In their system, the algorithm is regarded to be the result of applying a
general rule-based control structure as well as a hierarchical multi-level knowledge
representation scheme. In this scheme, knowledge about the physical layouts and
logical structures of various types of documents is encoded into a knowledge base.
The system includes three types of rules: knowledge rules, control rules, and strat-
egy rules. The control rules control the application of knowledge rules, whereas the
strategy rules determine the usage of control rules. A document image is first seg-
mented using a bottom-up algorithm, followed by a geometric classification of the
obtained regions. Finally, the physical regions are input into the DeLoS system and
a logical tree structure is derived. The DeLoS system was tested on 44 newspaper
pages. Performance results were reported in terms of block classification accuracy,
block grouping accuracy, and read-order extraction accuracy.

In recent years, research on logical layout analysis has shifted away from rigid
rule-based methods toward the application of machine learning methods in order to
deal with the required versatility. There are several examples for this. [15] employ
machine learning in almost every aspect of document analysis, from page segmenta-
tion to logical labeling. Their methods are based on inductive learning of knowledge
that was hand-coded in previous approaches. [10] use a set of training pages to learn
specific layout styles and logical categories. An unknown page is recognized by
matching the page’s layout tree to the trained models and applying the appropriate
zone categories from the best fit layout model. Similarly, the method of [7] finds for
a given unlabeled page the best matching layout in a set of labeled example pages.
The best match is used to transfer the logical labels to the unlabeled page. The au-
thors see this as a light-weight yet effective approach. [35] use an artificial neural
network as the basis of their approach. Instead of a Multi Layer Perceptron where
the internal state is unknown, they implement a Transparent Neural Network that
allows for introducing knowledge into the internal layers. The approach features
a feedback mechanism by which ambiguous results can be resolved by proposing
likely and unlikely results to the input layer based on the knowledge about the cur-
rent context. The input layer can respond by switching between different feature
extraction algorithms in order to determine, for example, the word count in a given
block.

In the final Section 12.3 of the paper we describe some machine learning ap-
proaches, which capture the meaning of document parts by hidden state variables.
A probabilistic model is used to describe the probabilistic relation of these state



12 Machine Learning for Document Structure Recognition 229

variables, which may have a rich set of interactions with observable surface fea-
tures. Conditional Random Fields may be used to estimate the parameters of these
models from training data. The models have the potential to automatically adapt to
novel structures and layouts.

The logical layout analysis methods described so far have not been evaluated rig-
orously on layouts more complex than journal papers. The very complex newspaper
layouts are for example the subject of [18]. This is one of very few publications on
the matter of article segmentation. It appears that this reflects the difficulty of the
task. Yet, the author realizes that the mass digitalization of newspapers will be one
of the next steps after the current wave of book digitalization projects. He proposes
a method for learning the layout of different newspapers in an unsupervised manner.
In a first stage, a word similarity analysis is performed for each pair of neighboring
text blocks. The second stage uses geometric and morphological features of pairs
of text blocks to learn the block relations that are characteristic for a specific news-
paper layout. Results with high confidence from the word similarity analysis serve
as ground truth for the training of the second stage. This method gives promis-
ing results and further strengthens the machine learning approach to logical layout
analysis.

It is very important to note that in the area of logical layout analysis, there are
no standardized benchmarks or evaluation sets, not even algorithms for comparing
the results of two different approaches. This is a gap that needs to be filled in future
research, as a standardized evaluation is the only way to convincingly demonstrate
advances in research on logical layout analysis.

12.2.3 Minimum Spanning Tree-Based Logical Layout Analysis

In case of newspaper pages or other complex layout documents, the logical layout
analysis phase must be able to cope with multiple columns and embedded com-
mercials having a non-Manhattan layout. Most importantly however, the approach
has to be flexible enough so as to be readily adaptable (or to adapt automatically)
to the different layouts of each publisher. The current section contains the concise
description of an article segmentation method, which, based on the construction of
a Minimum Spanning Tree (MST), is able to handle documents with a great variety
of layouts.

Previous approaches using the MST in document layout analysis were proposed
by [23] and [13]. [23] construct the MST from the centers of the connected compo-
nents in the document image; by means of a histogram of slopes of the tree edges,
the authors are able to detect the dominant orientation of the text lines. Their method
is based on the assumption that inter-character distance is generally lower than inter-
line spacing. The algorithm of [13] constructs the MST in a similar way by using the
automatically determined inter-character (horizontal) and inter-line (vertical) spac-
ing as splitting thresholds for the tree edges. It produces a segmentation of the
document page into text regions as output. As input, the algorithm assumes that the
input page is noise-free and contains only text, i.e. all non-text physical regions have
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been previously removed from the image via specialized filters. The most impor-
tant problems observed by [13] are the sensitivity of the MST to noisy components
and the fact that a single incorrectly split branch can potentially produce a poor
segmentation.

The MST-based algorithm introduced in this section requires as input a list con-
taining the bounding boxes of all connected components belonging to text regions as
well as the lists of vertical and horizontal separators detected in the given newspaper
page. The first step consists of simply grouping the connected components into text
lines. This can be accomplished by means of many algorithms as, for example, the
geometric algorithm proposed in [24]. Several features are computed for each text
line, the most important being the stroke width, the x height and the capital letter
height of the font, the set of intersected layout columns and its position therein (e.g.
left- or right-aligned or centered). Based on these features, one can compute (by
minimizing the total merging cost) an optimal set of text regions formed by verti-
cally merging adjacent text lines having similar enough characteristics. This step
can be accomplished by a dynamic programming approach. The costs of merging
two vertically adjacent regions/lines is given by a measure of the similarity between
their computed features. Note that here one may also include rules that take into
account common formatting conventions, such as indentation at the beginning of
each paragraph, in order to prevent text regions from spanning over several para-
graphs. A single threshold is needed for this step, namely a stopping criterion for
the merging of two regions. The threshold can be determined experimentally, and
can subsequently be used for a wide range of publications, as shown by our experi-
ence.

At this point, it is possible to compute a compound distance measure between
any two text regions as a weighted mean of the Euclidean distance between their
bounding boxes and a value directly related to the “logical distance” between the
two text blocks. The logical distance between two text blocks is asymmetrical and
directly influenced by the number and type of separators present between the two
text blocks, as well as by their feature similarity (as used for text region creation).
The weights assigned to each of these components can and must be adjusted so as to
match the different layouts used by a certain newspaper publisher. In order to be able
to compute a meaningful logical distance between two blocks, we have additionally
performed two steps before it: detection of titles and detection of captions. By
using this additional information (which is in most cases relatively simple given
a certain layout), one may compute more accurate logical distances between text
blocks. For example a regular text block located before a title block in reading order
will have a high logical distance to it (a probable article ending is located between
them). A hierarchy of titles proved beneficial to be used in our tests, as it allows
for the formulation of rules such as: a lower-level title located (in reading order)
after a higher-level title with no other title in between has a low logical distance to
it (as they are very likely part of the same article). By using the compound distance
measure between text blocks, the MST of the document page can be constructed in
the next step of the algorithm. It is important to notice that hereby the inherent noise
sensitivity of the MST is significantly reduced, due to the usage of higher-order page
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components (i.e. logical blocks instead of just connected components). Next, the
obtained tree is split into a set of smaller trees, each one ideally corresponding to an
article. The splitting operation is done by removing the edges which have weights
greater than a certain threshold value. The considered threshold value is closely
related to the logical distance between blocks, and it should be adjusted according
to the layout templates used by each publisher.

Finally, a suitable algorithm for determining the reading-order can be applied
separately for each article. The determination of the reading order is a hard task and
may depend not only on the geometric layout of a document (which varies widely
among publishers even for the same document type), but also on linguistic and se-
mantic content. For all our processing tasks as well as for all experiments described
here we used the method proposed by [8], enriched with information regarding the
layout columns present in the newspaper image. The method of [8] uses solely ge-
ometric information about the text blocks (i.e. bounding boxes, vertical overlaps)
and internally performs a topological sort given a list of pairs of text regions, each
sorted in reading order.

A post-processing stage was found to be useful in many cases where an obtained
tree actually corresponds to merely a part of an article. This is usually the case when
text blocks that do not have an overlain title section are identified as independent ar-
ticles. Such situations can readily be detected at this stage, followed by a merge at
the end of the previous article having a title (if such an article exists). The previous
article can be found by searching backward (toward the head) in the list of articles
sorted in reading order, where the search seeks the first article which has no hori-
zontal separator between itself and the article under consideration. This procedure
has the advantage that it is independent of the language-dependent algorithm used
to determine the reading order that was previously employed.

The algorithm of layout analysis described in this section has the advantage of
being very fast, robust to noise and easily adaptable to a wide range of document
layouts. Its main shortcoming, however, is the need to manually adapt the logical
distance measures for each publisher or layout type. Further, the current version of
the algorithm does not need to take into account the text within each block, which
may be informative in the case of more complex layouts. Thus, machine learning
algorithms (such as those described in Section 12.3) for automating these tasks seem
to be more promising.

12.2.4 Evaluation

All algorithms described in this section were incorporated in an in-house developed
DIU system and were successfully used for segmenting several large (> 10,000
pages) newspaper collections. No formal evaluation of the article segmentation re-
sults was performed on the respective collections, as a meaningful evaluation can
only be performed by humans, which is, of course, prohibitive for such large quan-
tities of data. However, a formal testing of our methods was done on 100 multi-
column chronicle pages from the year 2006. Examples of the layout can be observed
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Fig. 12.4 Example of MST-based article segmentation on newspaper image: initial graph
edges.

in the figures 12.2, 12.3, and 12.6. The original input images had 24-bit color depth
and a resolution of 400dpi (approx. 4000× 5000 pixels). Under these conditions,
the total processing time for the article segmentation (including text line- and region
detection and labeling of titles and captions) on one document image was about 8
seconds on a computer equipped with an Intel Core2Duo 2.66GHz processor and
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Fig. 12.5 Example of MST-based article segmentation on a newspaper image: result after
the extraction of the Minimum Spanning Tree.

2GB RAM. In the test set there were 621 titles (including subtitles, roof titles and
intermediary titles). For the detection and labeling task the manual rule set achieved
a precision of 86% and a recall of 96% (resulting in an F-measure of 90.7%). For the
detection of captions on the test set containing 255 instances, the rule set was able to
achieve an F-measure of 97.6% (precision 98.4% and recall 96.8%). These values
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Fig. 12.6 Example of article segmented images from a newspaper. Articles have distinct
colors and the line segments indicate the detected reading order.

show that a relatively simple rule set is able to perform quite well on known layouts,
thus giving hope that in the future such rule sets can be evolved automatically by
means of machine learning methods. Based on the results produced by these two
manual rule sets, the article segmentation algorithm was able to correctly segment
85.2% of the 311 articles present in the test set. While the vast majority of document
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Fig. 12.7 Example of a document image (from a chronicle) segmented into articles. Articles
have distinct colors and the line segments indicate the detected reading order.

images were segmented correctly, a few pages failed almost totally, thus generating
most of the observed errors (e.g. two pages were responsible for more than 75% of
the title labeling errors). Article split errors were the most common ones, totaling
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13.2%. Most often these errors were generated as a direct consequence of a wrong
page segmentation (i.e. split non-text regions such as tables).

12.3 Estimating Document Structure by Conditional Random
Fields

Deterministic models for document structure recognition often cannot handle noise
or ambiguity. Document pages are usually noisy due to printing, handling, and OCR
processes, and this can lead to ambiguous or false results. Geometric structure anal-
ysis procedures also have performance uncertainties and so may provide uncertain
input to the logical structure analysis process.

In this section we present a number of advanced models to cope with these un-
certainties. Supervised Machine Learning algorithms are a very general paradigm
to train models on annotated training data to reconstruct the most plausible solution
from a large number of ambiguous features. In this section we discuss a number of
probabilistically oriented machine learning models which address these problems.
The relation between input and output is regarded as probabilistic to reflect uncer-
tainty due to erroneous geometric layout analysis results and document noise. These
models take into account the geometrical structure of the input documents to derive
efficient learning strategies.

12.3.1 Basic Model

Our first model exploits the linear structure of a text for document structure recog-
nition. Let us consider the problem that we want to identify the title and the author
in the following text snippet

The new bestseller:
Tears of Love
by Paula Lowe

For reasons of simplicity, we represent the series of all words in this snippet together
with line breaks as a single string in which items are coded by a T if they belong to
the title, by an A if they belong to the author line, and by an O otherwise. This gives
the vectors x of words and y of unknown states:

y O O O O T T T O O A A
x The new bestseller \n Tears of Love \n by Paula Lowe

Note that text data in documents has two characteristics: first, statistical depen-
dencies exist between the words, we wish to model, and second, each word often
has a rich set of features that can aid classification. For example, when identifying
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the title in a document we can exploit the format and font properties of the title itself,
but the location and properties of an author and an abstract in the neighborhood can
improve performance.

To infer the unknown states we represent the relation between sequences y and x
by a conditional probability distribution p(y|x). More specifically let the variables
y =(y1, . . . ,yn) represent the labels of the word that we wish to predict with a set Y of
possible values. Let the input variables x = (x1, . . . ,xn) represent the observed words
and their properties. If I = {1, . . . ,n} is the set of indices of y then we denote the
subvector corresponding to the indices in A⊂ I by yA. Let φA(x,yA) > 0 be a factor
function with x and the subvectors yA as arguments and let C be a set of subsets
of A ⊆ I. Each φA(x,yA) is a function taking into account the relation between the
labels in the subvector yA, which often are the adjacent labels in the sequence. Then
we represent the conditional distribution by a product of factor functions

p(y|x) =
1

Z(x) ∏
A∈C

φA(x,yA) (12.1)

Here Z(x) = ∑y ∏A∈C φA(x,yA) is a factor normalizing the sum of probabilities to 1.
The product structure enforces a specific dependency structure of the variables

yi := y{i}. Consider the conditional distribution of yi given all other variables yD(i) =
(y1, . . . ,yi−1,yi+1, . . . ,yn). It may be written as

p(yi|yD(i),x) =
p(yi,yD(i),x)

∑yi∈Y p(yi,yD(i),x)
=

∏B∈C ,i∈B φB(x,yB)
∑yi∈Y ∏B∈C ,i∈B φB(x,yB)

(12.2)

as the factor functions φA(x,yA) where i /∈ A cancel. Therefore the conditional prob-
ability of yi is completely determined if the values of x and the yB are known for
all B which contain i. The factor functions φA(x,yA) describe the interactions be-
tween the argument variables. Obviously C determines the dependency structure of
the components of y. A probability distribution of this form is called Conditional
Random Field (CRF) [27, 42]. As dependencies among the input variables x do not
need to be explicitly represented, rich, global input features x may be used. For
example, in natural language tasks, useful features include neighboring words and
word bigrams, prefixes and suffixes, capitalization, membership in domain-specific
lexicons, and semantic information from sources such as WordNet.

Usually there exists a number of different features for the same variables x,yA.
For A = {i} for instance φA(x,yi) may cover the feature that word xi is in bold
and yi = T , i.e. is a title word. If we have KA features for A then we may write
φA(x,yA) = exp(∑KA

k=1 λA,k fA,k(x,yA)). Here λA,k is a real-valued parameter deter-
mining the importance of the real-valued feature function fA,k(x,yA). The exponen-
tiation ensures that the factor functions are positive. This yields the representation
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Fig. 12.8 A linear conditional random field with four states.

p(y|x) =
1

Z(x) ∏
A∈C

exp

(
KA

∑
k=1

λA,k fA,k(x,yA)

)

=
1

Z(x)
exp

(

∑
A∈C

KA

∑
k=1

λA,k fA,k(x,yA)

)

(12.3)

Often the feature functions are binary with value fA,k(x,yA) = 1 if the feature
is present and fA,k(x,yA) = 0 otherwise. If λA,k = 0 the corresponding feature has
no influence. For non-negative feature functions positive values for λA,k indicate
that the feature increases p(yA|x), while negative values decrease the conditional
probability and have to be estimated from training data by maximum likelihood.

A common special case is the linear chain conditional random field, where only
interactions between yt and yt−1 are allowed. If in addition we only take into
account the corresponding inputs xt and xt−1 the feature functions have the form
f{t−1,t},k(xt−1,xt ,yt−1,yt). Therefore only the adjacent states yt−1 and yt influence
each other directly. Figure 12.8 shows such a linear chain with four states. For
simplicity reasons only a single type of feature function is shown.

Often it can be assumed, that the parameters do not depend on the particular t and
hence λ{t−1,t},k = λ{t,t+1},k for all t. This parameter tying drastically reduced the
number of unknown parameters. More generally we may partition C = {C1, . . . ,CQ}
where each Cq is a set of all A whose parameters are tied. Then we get the represen-
tation

p(y|x;λ ) =
1

Z(x)
exp

(

∑
Cp∈C

∑
A∈Cp

KA

∑
k=1

λp,k fA,k(x,yA)

)

(12.4)

We may estimate the unknown parameters according to the maximum likelihood
criterion. Assume that we have observed a number of independent identically dis-
tributed observations (x(1),y(1)), . . . ,(x(N),y(N)), for example, different documents
that are already labeled with the states. Differentiating the log-likelihood function
�(λ ) = log∏n p(y(n)|x(n);λ ) with respect to λp,k yields

∂�(λ )
∂λp,k

=
N

∑
n=1

[

∑
A∈Cp

fA,k(x(n),y(n)
A )− ∑

A∈Cp

∑
yA∈YA

p(yA|x(n);λ ) fA,k(x(n),yA)

]

(12.5)
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where YA is the set of all possible yA and p(yA|x(n);λ ) is the probability of yA given
x(n) and the current parameter values λ .

The first sum contains the observed feature values for fA,k(x(n),y(n)
A ) and the sec-

ond sum consists of the expected feature values given the current parameter λ . If the
gradient is zero both terms have to be equal. It can be shown that the log-likelihood
function is concave and hence may be efficiently maximized by second-order tech-
niques such as conjugate gradient or L-BFGS [42]. To improve generalization a
quadratic penalty term may be added which keeps the parameter values small.

Gradient training requires the computation of the marginal distributions
p(yA|x(i)). In the case of a linear chain CRF this can efficiently be done by the
forward-backward algorithm requiring 2 ·N steps. Networks with cycles require
more effort as the exact computation grows exponentially with the diameter. An
approximate solution is provided by loopy belief propagation (see Section 12.3.4).

If the parameters are known we have to determine the most likely state configu-
ration for a new input x+ = (x+

1 , . . . ,x+
n )

y∗ = argmax
y

p(y|x+;λ ) (12.6)

which in the case of linear chain models can be efficiently calculated by dynamic
programming using the Viterbi algorithm. During prediction the linear-chain CRF
takes into account the correlations between adjacent states, which for many prob-
lems increase the prediction quality. Other problems requiring long-range correla-
tions between states are described in Section 12.3.3 and Section 12.3.4.

12.3.2 Application of Linear-Chain CRFs to Structure
Information Extraction

[34] applied linear chain CRFs to the extraction of structural information from sci-
entific research papers. In their header extraction task they consider the first part of
a paper which has to be labeled with the following states: title, author, affiliation,
address, note, email, date, abstract, introduction, phone, keywords, web, degree,
publication number, and page. A second reference task labels the references at
the end of a paper with the following states: author, title, editor, book title, date,
journal, volume, tech, institution, pages, location, publisher, note. They used the
following features:

• local features describing the current word xi: the word itself, whether it starts
with a capital letter, whether it contains only capital letters, whether it contains
digits, whether it contains only digits, whether it contains a dot, an instance of
“-”, an acronym, a capital letter and a dot, whether it matches regular expressions
for phone numbers, ZIP codes, URLs or emails;

• layout features: the word occurs at the beginning of line, in the middle of line,
or at the end of line;



240 G. Paaß and I. Konya

• external lexicon features: the word occurs in the list of authors, in the list of dates
(e.g. Jan., Feb.), or in notes.

On a training set with 500 headers they achieve an average F1 of 94% for the
different fields, compared to 90% for SVMs and 76% for HMMs. For the reference
extraction task trained on 500 articles they yield and F1-value of 91.5% compared
to 77.6% for an HMM. They found that the Gaussian prior consistently performs
best.

[38] uses linear CFRs to extract information like conference names, titles, dates,
locations, and submission deadlines from call for papers with the goal to compile
conference calenders automatically. He models the sequence of words in a CFP and
uses the following layout features: first / last token in the line, first / last line in the
text, line contains only blanks / punctuations, line is indented, in first 10 / 20 lines
of the text. Using a training dataset of 128 CFPs they achieve an average F1-value
of about 60-70% for the title, date and other fields of a CFP. More difficult is the
identification of the co-located main conference which has only an F1-value of 35%.

12.3.3 Discriminative Parsing Models

Document structure extraction problems can be solved more effectively by learning
a discriminative Context Free Grammar (CFG) from training data. According to
[48, 4] a grammar has several distinct advantages: long range, even global, con-
straints can be used to disambiguate entity labels; training data is used more ef-
ficiently; and a set of new more powerful features can be introduced. The specific
problem [48] consider is of extracting personal contact, or address, information from
unstructured sources such as documents and emails.

A CFG consists of a set of terminals T = {w1, . . . ,wV } and a set of non-terminals
N = {N1, . . . ,Nn}, a designated start symbol N1 and a set of rules or productions
R = {Ri : Nji → ζi} where ζi is a sequence of terminals and non-terminals in N ∪
T . A parse tree for a sequence w1, . . . ,wm is a tree with w1, . . . ,wm as leaf nodes
and some Ni ∈N as interior nodes such that the child nodes of an interior node are
generated by a rule Ri ∈R. Associated with each rule is a score S(Ri). The score
of a complete parse tree is the sum of all scores of the rules used in the parse tree.
The CKY (Cook-Kasami-Younger) algorithm (see [28]) can compute the parse with
the highest score in time O(n3 · |R|), which is feasible for relatively small sequence
length m.

Assume that a nonterminal Nji generates the terminals wa, . . . ,wb. Then the prob-
ability of a rule may be written by a log-linear expression

p(Ri) =
1

Z(λ (Ri),a,b,Ri)
exp

F

∑
k=1

λk(Ri) fk(w1, . . . ,wm,a,b,Ri) (12.7)

Here Nji directly or indirectly generates wa, . . . ,wb by Ri. f1, . . . , fk is the set of
features similar to the CRF features above, which may depend on all terms in the
parenthesis. In principle, these features are more powerful than the linear-chain
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CRF-features because they can analyze the sequence of words associated with the
current non-terminal and not only for the direct neighboring words. λk(Ri) is the
weight of feature k for Ri and Z(·) is a factors ensuring that the probabilities add up
to 1.

As for the CRF this log-linear model is not intended to describe the genera-
tive process for w1, . . . ,wm but aims at discriminating between different parses of
w1, . . . ,wm. For training [48] use a training set of documents manually labeled with
the correct parse tree. They semiautomatically infer a set R of production rules and
a set of features. The weights λk(Ri) of the features for production rule Ri are deter-
mined by the perceptron learning algorithm, which successively increases weights
for examples with active features and decreases weights for samples with inactive
features.

They apply this approach to a CRF trained by the voted perceptron algorithm.
They used a data set with about 1500 contact records with names addresses, etc. for
training. For only 27% of the records in the training set an error occurred, while
the linear chain CRF had an error rate of 55%. This means that taking into account
non-local information by the parse tree approach cut the error in half.

12.3.4 Graph-Structured Model

Up to now we have analyzed document structures with an inherent sequence of
elements for the linear chain CRF or discriminative parsing models. We now discuss
graph-like structures with more complex dependencies.

As an example consider the problem of processing newspaper archives. After
scanning and applying OCR, low-level algorithms may be used to identify elements
like lines, paragraphs, images, etc. The 2-dimensional page analysis can go fur-
ther and establish spatial, logical relations between the elements as, for example,
“touch”, “below”, “right of” etc. Especially in newspapers with multi-column lay-
out the sequence of paragraphs of an article in different columns or even on contin-
uation pages is not unique. In the same way the assignment of tables, figures and
images located somewhere on the page to an article is a challenging problem.

The low-level analysis generates a number of object oi, for example, lines, para-
graphs, articles, images etc. For some pairs of these object relations r j may be
specified, for example, image left-of article, image belongs-to article, article below
article. Each object and each relation has an associated type t(oi) or t(ri). De-
pending on the type each object and each relation is characterized by type-specific
attributes as, for example, topic, title, or x-y-position. This yields for each type t

a type-specific attribute vector xt(oi)
oi for an object or and attribute vector xt(ri)

ri for a
relation. Figure 12.9 shows a small example network of relations between articles
and images of a newspaper. A Probabilistic Relational Model (PRM) [20, 31, 45]

represents a joint distribution over the attributes xt(oi)
oi and xt(ri)

ri of objects and
relations.
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Fig. 12.9 Articles and images of a newspaper page are characterized by a number of at-
tributes. Between a subset of pairs different types of relations exist.

Attributes of an object or relation can depend probabilistically on other attributes
of the same or other objects or relations. For example, the probability of an image to
belong to an article is higher if it is located close to that article. In the same way, the
probability of an image to belong to an article is higher, if the topic of the caption
and the topic of the article are similar. These dependencies can be exploited in a
probabilistic relation model.

In a linear chain CRF we had a generic dependency template between the states
of successive states in the chain. This resulted in using the same parameters inde-
pendent of the step index or the specific sentence. In the same way probabilistic
relational models may define a number of generic dependency templates depending
on the types of the involved items. This approach of typing items and tying parame-
ters across items of the same type is an essential component for the efficient learning
of PRMs. It enables generalization from a single instance by decomposing the rela-
tional graph into multiple examples of each item type (e.g., all image objects), and
building a joint model of dependencies between and among attributes of each type.

The resulting probabilistic dependency network is a graph-structured CRF (see
Equation 12.4) where parameters are tied in a specific way. This model is discussed
in depth by [42]. A number of variants of CRF models have been developed in
recent years. Dynamic conditional random fields [43] are sequence models which
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allow multiple labels at each time step, rather than single labels as in linear-chain
CRFs. Lumped label CRFs [33] allow to include observations, where only a subset
of labels is observed and it is known that one of the labels in the subset is the true
label. Finally, Markov logic networks [36] are a type of probabilistic logic network
in which there are parameters for each first-order rule in a knowledge base. These
first-order rules may, for example, be exploited to specify constraints between layout
elements.

Parameter estimation for general CRFs is essentially the same as for linear chains,
except that computing the model expectations requires more general inference al-
gorithms. Whenever the structure of the relationships between elements form an
undirected graph, finding exact solutions require special graph transformations and
eventually the enumeration of all possible annotations on the graph. This results in
the exponential complexity of model training and inference. To make it tractable,
several approximation techniques have been proposed for undirected graphs; these
include variational and Markov Chain Monte Carlo methods.

A number of alternatives exist:

• Gibbs sampling [17], where for each training example the labels are selected ran-
domly according to the conditional distribution (12.2). The required probabilities
can be estimated from the resulting joint distribution of labels.

• Loopy belief propagation [41], performing belief propagation, which is an exact
inference algorithm for trees, ignoring part of the links.

• Pseudo-likelihood approaches [6] which instead of the predicted labels use the
observed label values to predict a label from its environment.

[11] use a variant of probabilistic relational models to analyze the structure of
documents. They aim at annotating lines and pages in layout-oriented documents
which correspond to the beginning of sections and section titles. For a local network
corresponding to linear chain CRFs, they get an F1-value of 73.4%; it is increased
to 79.5% for a graph-structured probabilistic relational network.

There are other, more heuristic models that take into account graph-structured de-
pendencies. [50], for example, consider the problem of sequence labeling and pro-
pose a two steps method. First they use a local classifier for the initial assignment of
elements without taking into account dependencies. Then a relaxation process suc-
cessively evaluates non-local dependencies in order to propagate information and to
ensure global consistency. They test their approach on a collection of 12,000 course
descriptions which have to be annotated with 17 different labels such as lecturer,
title, start time or end time. Each description contains between 4 and 552 elements
to be extracted. For a CRF they report an F1-value of 78.7%, for a probabilistic
context free grammar using maximum entropy estimators to estimate probabilities
they yield 87.4%, while the relaxation model arrives at an F1-value of 88.1%.
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12.4 Conclusion

Electronic documents have many advantages over paper documents, including effi-
cient retrieval and fast transmission. Consequently there has been extensive research
on converting paper-based documents into electronic documents. In general, paper
documents have an inherent structure partly manifested by layout that greatly im-
proves the comprehension of document content. Document structure recognition
aims at detecting the hierarchy of physical components, such as pages, columns,
paragraphs, and figures, and transforms this into a hierarchy of logical components,
such as titles, authors, and sections. This structural information is useful for index-
ing and retrieving information contained in documents.

This chapter described modern approaches to document structure recognition.
It presented a rule-based system that is extensively used for processing newspaper
collections. This system employs geometric layout analysis to segment a document
image into homogenous zones and performs a logical layout analysis to determine
the logical role of these zones. Our minimum spanning tree-based approach outlined
here is described in more detail in [26]. It exhibits state-of-the-art performance and
won the ICDAR 2009 Page Segmentation Competition [3].

Despite of extensive research, the current algorithms for document structure
recognition are far from being perfect, especially if document layout varies. In
order to cope with problems of this sort, we described several machine learning ap-
proaches that explore large numbers of interrelated and properly weighted features
in order to detect document structures. More specifically, we described Conditional
Random Fields (CRF) as a general probabilistic algorithm to model the uncertain
relation between input and output units. It can be adapted to deal with geometrical
models of document structure, which may be set up as a linear sequence or a general
graph. As an alternative, we outlined discriminative parsing models which are able
to cope with tree-structured documents. These advanced models show a better per-
formance than simpler alternatives, but require far more computational resources.

In the future, traditional approaches to document structure recognition will be
enhanced by machine learning approaches, which are able to take into account the
underlying publication as a whole. This is especially attractive if many different
types of layouts have to be processed as, for example, in large digitization projects
like Google books [47], the Deutsche Digitale Bibliothek [12] and Europeana [16].
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Chapter 13
Corpus-Based Structure Mapping of XML
Document Corpora: A Reinforcement Learning
Based Model

Francis Maes, Ludovic Denoyer, and Patrick Gallinari

Abstract. We address the problem of learning to map automatically flat and semi-
structured documents onto a mediated target XML schema. This problem is mo-
tivated by the recent development of applications for searching and mining semi-
structured document sources and corpora. Academic research has mainly dealt with
homogeneous collections. In practical applications, data come from multiple het-
erogeneous sources and mining such collections requires defining a mapping or cor-
respondence between the different document formats. Automating the design of
such mappings has rapidly become a key issue for these applications. We propose
a machine learning approach to this problem where the mapping is learned from
pairs of input and corresponding target documents provided by a user. The map-
ping process is formalized as a Markov Decision Process, and training is performed
through a classical machine learning framework known as Reinforcement Learning.
The resulting model is able to cope with complex mappings while keeping a linear
complexity. We describe a set of experiments on several corpora representative of
different mapping tasks and show that the method is able to learn mappings with a
high accuracy on different corpora.

13.1 Introduction and Motivation

The question of heterogeneity is central for semi-structured data: documents often
come in many different formats and from heterogeneous sources. Web data sources
for example use a large variety of models and syntaxes, as illustrated in Figure 13.1.
Although XML has emerged as a standard for encoding semi-structured sources,
the syntax and semantic of XML documents following different DTDs or schemas
will be different. For managing or accessing an XML collection built from several
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sources, a correspondence between the different document formats has to be estab-
lished. Note that in the case of XML collections, the schemas themselves may be
known or unknown depending on the source. For HTML data, each site will develop
its own presentation and rendering format. Thus even in the case of HTML where
the syntax is homogeneous across documents, there is a large variety of formats. Ex-
tracting information from different HTML web sites also requires specifying some
type of mapping between the specific Web sites formats and the predefined format
required by an application.

Fig. 13.1 Example of web page wrapping. This is a case of XHTML to XML Structure
Mapping. Nodes can be relabeled, inserted, suppressed and moved.

Designing tree transformations, in order to define correspondences between the
different schemas or formats of different sources is thus a key problem to de-
velop applications exploiting and accessing semi-structured sources. This problem
has been addressed for some times by the database and to a lesser extent by the
document communities for different conversion tasks and settings. Anyway, the
real world solution is to perform a manual correspondence between heterogeneous
schemas or towards a mediated schema via structured document transformation lan-
guages, like XSLT. Although special tools have been developed for helping pro-
grammers at this task, the process remains complex; it requires expert skills and
the resulting mappings are often very complicated. This is not adapted to situa-
tions where document sources are multiple and change frequently. Furthermore,
languages such as XSLT are limited by two important properties of real world doc-
ument collections:

• The schema for large document collections are often very loose and impose only
few constraints on valid documents1. In this case, the schema itself does not
provide enough information and writing an XSLT script for document transfor-
mations can be very difficult and time consuming.

• Many sources, especially on the Web, come without schema and the only evi-
dence comes from the document itself. The transformation problem has then to

1 This is the case for example for the Wikipedia [6] or the IEEE INEX XML collections.
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be studied from a document centric perspective as opposed to the data centric
view developed for databases. This means that the semantic of the document is
important and that transformations shall take into account both the textual con-
tent and the structure of the document. Here, the order of the document leaves
and nodes is meaningful and shall be taken into account by the transformation.

Automating the design of these transformations has rapidly become a challenge.
Several approaches have been explored ranging from syntactic methods based on
grammar transformations or tree transducers to statistical techniques. However,
these methods are still hard to use in practical cases. Many of them heavily rely on
task specific heuristics. Current approaches to document transformation are usually
limited to one transformation task or to one type of data. A majority of techniques
only consider the structural (logical or syntactic) document information and do not
exploit content nodes. Even this structural information is used in a limited way and
most methods exploit only a few structural relationships. Besides, most proposed
techniques do not scale to large collections.

We consider here the problem of Structure Mapping which consists in auto-
matically learning to map semi structured documents coming from heterogeneous
sources onto a predefined mediated schema. This transformation problem is studied
from a document centric perspective as opposed to the data centric view devel-
oped for databases. This means that the semantic of the document is important
and that mappings shall use both the textual content information and the structure
of the document. Let us motivate this mapping task. The structure mapping task
encompasses a large variety of real-world applications like:

• Semantic Web conversion from raw HTML to semantically enriched XML. Ex-
ample sources include forums, blogs, wiki-based sites, domain specific sites (mu-
sic, movies, houses, . . . ).

• Wrapping of Web pages conversion from pages coming from many sources to
a unified format.

• Legacy Document conversion The document-engineering field were document
mapping has been at the heart of many applications like document annotation or
document conversion of flat text, loosely structured text, HTML or PDF formats
onto a predefined XML schema [4, 3].

• Heterogeneous Search Tree transformation is also relevant to the field of In-
formation Retrieval. When searching in XML collections, targets are no more
documents but document elements. Queries may address either the content of
the document, or both its content and structure. In both cases, the goal will be
to retrieve the most specific relevant elements in a document. The INEX ini-
tiative [12] launched in 2002 has focused on the development of XML search
engines. The initial collections at INEX were homogeneous, all documents shar-
ing a common DTD. Recently a heterogeneous search track has been launched
where the goal is to query collections coming from different sources and with
different formats.
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The paper is organized as follow: We propose a related work in Section 13.2. In
part 13.3 we describe the general Structure Mapping task. We introduce the model
in part 13.4 and then present experiments on five different corpora in Section 13.5.
The related work is presented in Section 13.2.

13.2 Related Work

Three domains have been mainly concerned up to now with the document conver-
sion problem : Information Retrieval, Document Engineering and Databases. We
briefly review below related work in these three domains.

Structured document transformation is a relatively new topic in the document
community. Automating XML document transformation from one source format
onto a target schema is a key issue for document reuse and several approaches have
been recently proposed. Work in this area only consider schema transformations and
thus requires that the input schema is provided. Content information is completely
ignored. This class of methods is thus restricted to collections with well-defined
schema and little content like bibliographic data. It does not apply to large doc-
ument collections. Leinone and al. in [15] for example propose a syntax directed
approach based on finite state tree transducers. The system automatically generates
mappings when the user specifies a correspondence between document leaves. Su
et al. in [21] propose a tree-matching algorithm, which decomposes the mapping
into a sequence of basic operation. The algorithm relies on heuristics for explor-
ing the “action” space and on user provided semantic information. Boukotaya et
al. in [1] also propose a heuristic algorithm, which combines multiple criteria (se-
mantic relationships between label names, data types compatibility, path similarity,
etc). Another interesting topic in the document and web communities is document
annotation, which is the transformation of rendering formats like HTML or PDF for-
mats onto a target XML schema. Annotation is a special case of structure mapping
where for example the input and output documents have similar leave sequences.
Yip Chung et al. in [4] consider an HTML to XML conversion problem. They use
unsupervised machine learning and manually defined rules to discover tree patterns
in the input document and to produce the output structure. Closest to us is the work
by Chidlovskii and colleagues [3] which has been used here as a baseline model
for comparison. They also consider the conversion of HTML or PDF documents
to a target XML schema. They use classifiers and probabilistic grammars to label
input document elements and build output trees. The complexity of these methods
however limits their application to small collections (e.g. Shakespeare corpus in the
tests presented here).

It is worth mentioning here the work of Collins et al. [5] who recently proposed
an incremental method based on machine learning for parsing. This method, which
achieved impressive results, also uses a sequence of actions quite similar to ours
for building the parse tree from an input sentence but it used for natural language
processing and cannot be easily adapted to our structure mapping task.
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In the database community automatic or semi-automatic data integration – known
as schema matching – has been a major concern for many years and there is a pro-
fusion of work and topics in this area. Surveys of these techniques can be found in
[19] and [20]. We briefly review below three groups of matching models.

• Schema-based models: they transform schemas and ignore the document content
[18, 8, 2].

• Instance-level approaches: they consider both the schema and the meaning of the
schema elements. They are used when the schema information is limited [9, 16].
Some of these models use basic machine learning techniques like rule learners,
neural networks, . . .

• Multiple-Matchers approaches: they use several type of matchers in order to
compute the matching of two schemas [9, 11]. Some approaches in this field
have explored the inference of mapping using machine learning techniques. A
remarkable series of work has been developed in this direction by Halevy, Doan
and colleagues. In [10], Doan et al. propose a methodology which combines sev-
eral sources of evidence in the documents (tag names, schema description, data
types, local structure, etc), using a regression function learned from a dataset.
This method has been developed for different matching problems, and has been
used in Section 13.5.4 for comparison on the RealEstate corpus.

Past work on schema matching has mostly been done in the context of a particular
application domain. As far as we know, there is no benchmark in this domain and
no comparison of the different existing approaches.

13.3 Structure Mapping Task

13.3.1 Task Description

We consider here a generic structure mapping task which covers a large range
of structure mapping problems like document conversion, document annotation,
etc. We define the mapping problem as the task of learning document transforma-
tions from heterogeneous formats onto a pre-defined format. Input documents may
come from different sources and may take different formats like flat text, wikitext,
HTML or XML. Output documents are expressed in a predefined XML schema.
The mapping itself may involve several types of elementary actions on the docu-
ment elements: node labeling, node creation or suppression, merging of nodes, node
displacement. The only restriction is that no input leaf will be split during the trans-
formation2 which is a reasonable assumption for most applications. Of course, the
transformation should be consistent so that the output document is a valid XML
document according to the target schema.

Figure 13.1 illustrates an example of XHMTL to XML conversion.

2 This transformation can be handled by our model but it increases its complexity
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13.3.2 Notations

Structure mapping consists in transforming an input document d ∈ Din into a target
XML document d∗ ∈ Dout where Din is the set of possible input documents and
Dout is the set of possible output documents. For example in the case of structure
mapping on Web sources, Din may be the set of all valid HTML documents. In our
setting, the mapping will be performed via a mapping function fθ : Din→Dout with
parameters θ that transforms input documents into target documents. There will be
two problems to be solved:

• Inference problem: given fθ and an input document d, compute the target docu-
ment d∗

• Learning problem: learn the parameters θ of the mapping function fθ from a
training set of examples.

As training data, a user provides a set of document pairs {(di,d∗i )}i∈[1,N] ∈Din×Dout

where di is an input document, d∗i is the corresponding output document and N is
the number of training examples.

13.3.3 Complexity of Inferring and Learning Mappings

Inferring a target structure from an input document is a complex task which involves
a search process. The fθ function will typically evaluate different potential solutions
and output the best one according to some scoring function. For a general mapping
task, the size of Dout – the set of potential solutions – is exponential w.r.t. the number
of nodes of input documents. In most cases, search amounts at solving a combina-
torial problem. This is the reason why most works in this domain only considers
limited classes of mappings. For annotation for example the leaf sequence is left
unchanged by the mapping which reduces the size of the search space. Even in this
limited setting, the inference of document trees rapidly becomes intractable. Exist-
ing solutions like [3] rely on dynamic programming for trees and their complexity
is:

O((number of leaves in the input document)3×C) (13.1)

where C is a constant that measures the complexity of the output schema3. This
complexity is prohibitive even for moderate size documents.

We adopt here a different approach to the inference problem which will allow the
complexity to remain linear w.r.t. the number of leaves of the input document. The
transformed document will be inferred from the input document through a sequence
of elementary actions. The global mapping problem is decomposed into a sequence
of sub problems which will allow us to break the inherent complexity of the global

3 The number of leaves of a document is usually much larger than the number of possible
output node labels.
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problem. Training amounts at learning how to explore the search space in order
to perform efficient and reliable inference. Inference is modeled using the Deter-
ministic Markov Decision Process framework and training is framed in a classical
machine learning framework known as Reinforcement Learning [22].

13.4 Reinforcement Learning Based Model

13.4.1 Informal Description

Since this topic might not be familiar to a Knowledge Management audience we
will provide here a brief introduction to the key ideas of the domain. Given an input
document, an output document is build in an incremental process using a sequence
of elementary actions. Figure 13.2 illustrates the inference step. The leaves of the
input document are considered sequentially one after the other and for each leaf, a
series of action will be chosen. Initially, we start with a void output document (node
labeled HTML on the left of the figure). The first input leaf is then selected and
different possible actions for inserting this leaf in the output document are consid-
ered. This is illustrated in the second column of the figure. For example, this first
leaf may be inserted as a new section (top column box) or as a title (box below),
etc. The set of specific actions used in our model will be defined in Section 13.4.2.
After this first step, the process is reiterated by selecting the second leaf and by
considering potential actions for inserting this leaf in the partial tree built in the first
step. The process is then iterated for all leaf nodes. When the last node of the input
document has been examined, a valid output documents has been constructed (last
column). A partially built output document is called a state, transformation from a
current state to a new state is called a state transition. The graph whose vertices are
states and edges transitions is the state graph. Since there are usually many valid
documents and many valid actions for each state, the graph grows rapidly, hence the
combinatorial nature of the problem.

• Inference consists in exploring the state space in order to build the best output
document. With our model, only a small part of the whole state space will be
explored: at each step the best action will be selected according to a decision
function called a policy. In this way, only one output documents will be selected
as the computed output.

• Training amounts at learning the policy in order to explore efficiently the search
space. This policy will compute a probability for each action in a given state
and a subset of actions with high probability will be selected for exploring and
growing the state graph. Suppose that the complete state graph was built. We
could use a score function to measure the similarity of each output document
with the target document. From this score the policy could be learned. Explor-
ing the whole graph is however unfeasible: at each state, one must evaluate the
expectation of the loss when taking this specific decision. This loss can be seen
as a prediction of the quality of the final solution obtained by following this ac-
tion in the graph. To do that, a reward will be associated to each action, and the
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Table 13.1 Some examples of φ(s,a) features which jointly describe the current state s and
the action a. These features are usually binary features (in {0,1}) but real valued features are
also possible. The features are generated in a data-driven way: a feature is considered only
once it is observed in the learning data.

The second word of the input node is made of lower case letters and
we are creating a node with label LINE.

The first word of the input node is made of one upper case letter followed by lower case letters and
we are creating a node with label ISBN.

The first word of the input node is made of one lower case letter followed by digits letters and
the node we are creating follows a SECTION node.

The first word is a symbol and
we are creating a node which follows a TITLE.

The input node has tag H3 and we are skipping it.
...

learning algorithm will learn to optimize the cumulative reward associated to the
best path. The algorithms for this kind of sequential learning problem are known
as Reinforcement Learning [22] and their general formulation is illustrated in
Figure 13.3.

We provide in the next section a more formal description of this process, however,
the main ideas have been introduced and the reader may skip the formal Section
13.4.2.

13.4.2 Deterministic Markov Decision Process

A classical mathematical setting for modeling sequential decision making is pro-
vided by Markov Decision Processes (MDP) [14]. We will consider here Determin-
istic MDP.

A DMDP is a tuple (S,A,δ (., .),r(., .)) where S is the state space, A is the action
space, δ :S×A→ S is the transition function and r:S→ℜ is a reward function. At
any time the process is in a given state s ∈ S. In each state s, several actions in A
can be chosen by the model. For a state s and an action a, the transition function
δ defines the next state δ (s,a). The model earns a reward r(s,a) when choosing
action a in a visited state s. Decisions are taken according to a Policy πθ where
the parameters θ are learned from examples. πθ : S×A→ [0,1] is a function that
maps states to action probabilities. πθ (s,a) ∈ [0,1] thus denotes the probability to
select action a in state s. Learning algorithms attempt to estimate the parameters
θ of the policy that maximize a cumulative reward over the course of the problem.
The cumulative reward is simply the sum of all rewards over all the states visited
from an initial state to a final state.
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Fig. 13.2 This figure is an example of DMDP. The states (squares on the figure) correspond
to partial output trees. The initial state (at the left) is the state with the empty document (one
HTML node). States at the right of the figure are potential output documents. The edges are
the possible actions. In this DMDP, we first choose an action for the first input document node
(blue square node), and then choose an action corresponding to the second input document
node (black square node).

Let us now instantiate this model for the structure mapping task. We define below
the state and action spaces S and A for the problem. The input document is processed
sequentially leaf per leaf. ni will denote the ith leaf node.

At time t, a state st contains the input document d and the current output docu-
ment d̂t . The initial output document d̂1 is the XML root. Each state corresponds
to a different partial output document. At each step t, the model has to take a deci-
sion concerning the current leaf nt of the input document d. A final state is reached
when all input leaves have been processed i.e when t =⊥d where⊥d is the number
of leaves of d. We denote state s⊥d a final state and d̂ the corresponding predicted
output document for input document d.

In a given state st , the model has to choose an action for the current input node
nt according to the policy. We consider here two elementary actions: Skip and
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Start with a random policy

Choose an action using the current policy
 or choose a random action

Get the immediate reward

Update the parameters of the policy using this reward

Go to the next state by applying the chosen action

Fig. 13.3 The learning algorithm is an iterative algorithm which chooses an action and then
updates its parameters according to the immediate reward obtained by applying this action at
the current state.

Create(Tags, Position). The former skips the input node so that it will
not appear in the output document. The latter creates a path whose tag sequence
is Tags and leaf is nt . This path is rooted at position Position in the current
output tree. The addition of a new node must comply with the target DTD or XML
schema. Note that the Create action allows us to handle complex transformations
like leaves reordering, relabeling,etc.

13.4.3 Modeling the Policy

At each state st , the model will choose an action at according to the policy πθ .
The policy used in our model is deterministic and computed via a scoring function
Qθ : S×A→ℜ which estimates the quality of action a in state s. Given this scoring
function, the policy is defined as:

πθ (s,a) =
1 if a = argmaxa′Qθ (s,a′)
0 otherwise.

(13.2)
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This means that for each state s, only the most relevant action a according to function
Q is selected. The goal of the scoring function Qθ (s,a) is to evaluate, for all possible
states and actions, the benefit of choosing action a at state s w.r.t. to the target output
document. In our experiments, Q is a linear combination of features describing
(state, action) pairs:

Qθ (s,a) = 〈θ ,φ(s,a)〉 (13.3)

where 〈., .〉 is the classical dot product, φ(s,a) is a vectorial joint description of
the state-action pair, and θ is a vector of parameters which will be learned by the
algorithm. We describe in Table 13.1 some examples of features which have been
used in our experiments. Note that we have used mainly different features that can’t
be all described in this paper and we just give here the general underlying idea
about features generation for structure mapping. You can find more details about
the different features in [17].

13.4.4 Evaluating and Learning the Policy

Let d∗ and d̂ be the target and computed outputs for the input document d. The
quality of d̂ can be computed via a user supplied loss-function Δ : Dout ×Dout →
[0,1] which measures the dissimilarity between d∗ and d̂.

The optimal policy is the one which given any state s in the state graph will lead
to the best approximation d̂ of d∗ which can be reached from s. Said otherwise,
suppose that the process has reached a state s, the optimal policy will always find
a sequence of actions which will lead to the best possible output (as measured by
Δ(., .)) which can be computed from s. Formally, it is defined as the policy which
minimizes the expectation of the loss computed over all states of the state graph.

One way to learn the corresponding optimal parameters consists in exploring all
the states of the state space i.e computing all the losses obtained by choosing the
different possible actions for all states and then using a classical regression algo-
rithm in order to compute the parameters θ ∗ of the optimal policy. This is usually
intractable due to the size of the state space and we have to use sampling techniques
that allow us to explore only a small but relevant part of this space.

Reinforcement learning algorithms like SARSA learning or Q-Learning [22] use
the immediate reward function r(s,a) in order to find the Q function that maximizes
the cumulative reward over all the actions taken. The cumulative reward is the
sum of the immediate rewards obtained at each state for each action taken. The
immediate reward provides information used to guide the exploration of the state
space so as to focus only on the relevant parts of the space.

For the structure mapping problem, we propose to define a reward function based
on the loss function provided by the user. We use the following immediate reward
function:
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r(st ,at) =
−Δ(d̂t+1,d∗) if t = 0,

Δ(d̂t ,d∗)−Δ(d̂t+1,d∗) otherwise.
(13.4)

where d̂t is the partial output document at state st and d̂t+1 is the partial output doc-
ument obtained by applying action at to state st . Δ(d̂t ,d∗) measures a dissimilarity
between partial document d̂i and target document d∗. The reward thus measures the
improvement made on the partial output document d̂t after the t-th action which has
led to partial document d̂t+1.

The cumulative obtained reward is then:

R(s⊥d ) =
⊥d

∑
t=0

r(st ,at) =−Δ(d̂,d∗) (13.5)

which corresponds to the negative loss. So, the parameters θ ∗ that maximize the
cumulative reward also minimize the loss over the predicted output document and
the real output document.

Once the model is learned, the complexity for computing a mapping is O(⊥d ∗
‖Âs‖) where ‖Âs‖ corresponds to the mean number of possible actions per state s
and ⊥d∗ is the number of leaves of d∗ The complexity of the inference is linear
w.r.t. the number of leaves of d times the number of possible actions and thus the
inference is tractable on large document.

13.5 Experiments

We present experiments performed on different corpora. We learn for each of them
to map the input documents expressed in one or two homogeneous input format
onto a target XML schema. These corpora have very different characteristics and
illustrate how the proposed method behaves on a variety of situations and mapping
tasks.

13.5.1 Datasets

We used three medium-scale datasets and two large-scale datasets that are described
below:

• RealEstate [10]. This corpus, proposed by Anhai Doan4 is made of 2,367 data-
oriented XML documents. The documents are expressed in two different XML
formats. The aim is to learn the transformation from one format to the other.

• Mixed-Movie [7]. The second corpus is made of more than 13,000 movie de-
scriptions available in three versions: two mixed different XHTML versions and

4 http://www.cs.wisc.edu/˜anhai/

http://www.cs.wisc.edu/~anhai/
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Table 13.2 Tree transformation corpora properties and statistics: The top part of the table
gives properties of the tree transformation problem. From top to bottom: the name of the
corpus, the input format, the target format and two flags that tell if the transformation requires
node skipping and if it requires node reordering. The bottom part of the table gives statistics
on the target documents of the dataset. From top to bottom: the number of documents, the
mean number of internal nodes per tree, the mean number of leaves per tree, the mean tree
depth and the number of output labels.

Corpus RealEstateMixed-Movie Shakespeare Inex-Ieee Wikipedia
Input Format XML HTML Segmented TextSegmented Text HTML
Target Format XML XML XML XML XML
Node skipping yes yes no no yes

Node reordering yes yes (±10) no no yes (±10)
Num. Documents 2,367 13,048 750 12,107 10,681

Internal Nodes about 33 about 64 about 236 about 650 about 200
Leaf Nodes about 19 about 39 about 194 about 670 about 160

Depth about 6 5 about 4.3 about 9.1 about 7.7
Labels 37 35 7 139 256

one XML version. This corresponds to a scenario where two different websites
have to be mapped onto a predefined mediated schema. The transformation in-
cludes node suppression and some node displacements.

• Shakespeare [3]. This corpus is composed of 60 Shakespeare scenes5. These
scenes are small trees, with an average length of 85 leaf nodes and 20 inter-
nal nodes over 7 distinct tags. The documents are given in two versions: a flat
segmented version and the XML version. The tree transformation task aims at
recovering the XML structure using only the text segments as input.

• Inex-Ieee [13]. The Inex-Ieee corpus is composed of 12,017 scientific articles in
XML format, coming from 18 different journals. The tree transformation task
aims at recovering the XML structure using only the text segments as input.

• Wikipedia [6]. This corpus is composed of 12,000 wikipedia pages. For each
page, we have one XML representation dedicated to wiki-text and the HTML
code. The aim is to use the layout information available in the HTML version,
for predicting the semantical XML representation.

The properties and statistics of our corpora are summarized in Table 13.2. For
each corpus, we mention if node skipping and node reordering are required to fulfill
the transformation. Note that the node skipping and node reordering properties have
effect on the set of possible actions allowed in the model. In the general case (skip-
ping and reordering), the set of actions can be very large and, in the experiments, we
have used additional constraints to limit this size. For example, we only consider
actions that result in an output document where node paths have been seen in the
training set. More details on the constraints used can be found in [17].

5 http://metalab.unc.edu/bosak/xml/eg/shaks200.zip

http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
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Fig. 13.4 Computation of the Fstructure, Fpath and Fcontent similarity measures: The left and
right parts of the figure respectively correspond to the predicted tree and the correct tree. For
each similarity measure, the trees are decomposed into set of elements (structure elements,
path elements or content elements). The bottom part of the figure gives the similarity scores,
which are the F1 score between predicted and correct elements.

13.5.2 Evaluation Measures

Ideally, evaluating the quality of structure mapping should be made in the context
of a specific application as, for example, the search on heterogeneous collections, a
specific document conversion task, etc. Our model was developed to solve a large
variety of tasks and we propose here to evaluate the general performance of the
method by measuring the similarity of computed output documents with target doc-
uments. We used three measures, each one corresponds to the mean over the docu-
ments of the test corpus of a F1 measure. The measures used are the following:

• Flea f : F1 score computed between the label of the leaves of the input and the
output document. It measures the capacity of the model for computing the correct
leaves labels.

• Fpath: F1 score computed between the paths of the input and output document. A
path corresponds to the set of ordered labels from the root node to a leaf node.
This measure evaluates the ability of the model at discovering the structure of the
output tree.

• Fsubtree: F1 score computed between all the subtrees of the input and output doc-
ument. This measure reflects the percentage of common subtrees. Two subtrees
are equals if they share exactly the same nodes in the same order. Note that this
measure decreases quickly with only a few errors because each node is involved
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in many subtrees. For example, only one error on a medium-sized document
gives a Fsubtree measure of around 80%.

The different measures are illustrated in Figure 13.4.

13.5.3 Comparison to Baseline Models

We compare our model to both a real model and some artificial ones:

• The PCFG+ME model proposed in [3] is the model closest to ours. Due to its
complexity (roughly cubic in the number of nodes whereas ours is linear), this
baseline model can only be used on small corpora. For the same reason, there is
no competing model which can deal with the larger corpora.

• The artificial models are incremental models based on a greedy policy which is
computed by using the F measures presented previously.These greedy policies
make use of the correct output and select actions whose execution most increase
the immediate Fstructure or Fpath similarity scores. The scores of πgreedy

structure could be
considered as upper bounds for the performance reachable by learning to max-
imize the immediate reward, e.g. with SARSAand a discount factor of 0. We
also computed the scores of the random policy π random, which selects actions
randomly.

Some methods in the field of Information Extraction or Wrapper Induction are
able to extract some pieces of structure from XML documents (names, locations,
etc.) but these methods are not able to transform a whole document to a mediated
schema. As far as we know, our approach is the only one able to perform the struc-
ture mapping task on large XML documents corpora.

13.5.4 Results

We only have one learning-based baseline on two of these datasets for the com-
plexity reasons explained in Section 13.3.3. The baseline model PCFG+ME [3] is
a global model for one-to-one tree transformation. It models the probability of out-
puts by using probabilistic context free grammars (PCFG) and maximum-entropy
(ME) classifiers. Inference is then performed with a dynamic-programming algo-
rithm that has a cubic complexity in the number of input leaves. This model can
only operate on the two smallest datasets RealEstate and Shakespeare.

Our experimental results on the three medium-scale datasets are given in Table
13.3. On RealEstate and Mixed-Movie, the reinforcement learning approaches give
significantly better results than the greedy policy baselines. This result is very satis-
factory and has two major implications. Firstly, it shows that reinforcement-learning
algorithms are able to find a better strategy than greedily moving toward the correct
output. Secondly, it shows that the algorithms perform an effective learning and gen-
eralization of this strategy. On Shakespeare, the scores of reinforcement learning
algorithms is slightly inferior to those of the greedy policies. Since greedy policies
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Table 13.3 Tree transformation with collapsed actions, medium-scale datasets: For each
dataset and each method, we give the three average similarity scores Fstructure, Fpath and
Fcontent between the predicted and correct trees of the test set. The first column corresponds
to the SARSA reinforcement learning algorithm. The next three columns are non-learning
baselines. The last column is the PCFG+ME [3] baseline. The / symbol denotes results that
could not be computed due to the complexity of PCFG+ME.

RL Baselines

Corpus Score SARSA πgreedy
structure πgreedy

path πrandom PCFG+ME

RealEstate

Fstructure 99.54 87.09 97.09 3.27 49.8
Fpath 99.87 84.42 100 3.91 7
Fcontent 99.88 100 100 5.10 99.9

Mixed-Movie

Fstructure 86.22 47.04 44.15 3.54 /
Fpath 91.53 52.02 52.18 5.29 /
Fcontent 91.53 52.02 52.18 5.67 /

Shakespeare

Fstructure 96.03 98.65 75.16 11.34 94.7
Fpath 97.88 98.91 100 16.47 97.0
Fcontent 98.87 99.83 100 18.25 98.7

perform nearly perfectly on this corpus, the main difficulty here is to generalize over
the whole corpus.

The RealEstate collection corresponds to an XML database where we need to
label the leaves correctly and to put them in the correct order. The task is easy,
and most RL approaches achieve > 99% on the different scores. PCFG+ME only
performs 7 % on the Fpath score and about 50 % on the Fstructure score because
it does not handle node skipping and node reordering, which are required on this
collection. On the Shakespeare corpus, PCFG+ME gives slightly lowers results
than RL methods.

In order to demonstrate the scalability of our approach, we have performed ex-
periments with SARSA on the two large-scale corpora. These experiments re-
quired ≈ 5 days training time in order to perform 1000 training iterations, i.e. 105

SARSAepisodes, for each dataset. This huge amount of time has to be contrasted
with the scale of the task: these corpora involve particularly large documents (the
biggest documents in these corpora contain up to 10.000 nodes), complex opera-
tions (nodes displacements or nodes deletions), highly heterogeneous documents
and large number of labels (139 labels for Inex-Ieee and 256 labels for Wikipedia).

The results for large-scale tree transformation are given in Table 13.4. On
Wikipedia, SARSA outperforms the scores of the greedy policy baselines, which
is very satisfactory, given the large number of labels on this corpus. On Inex-Ieee,
SARSA does not reach the level of the greedy policy baselines. However, this cor-
pus contains a huge amount of noise, which could explain this result.
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Table 13.4 Tree transformation with collapsed actions, large scale datasets: For each
method and each dataset, we give the three average similarity scores on the test set. We
compare SARSA with the baseline policies, which do not use learning.

RL Baselines

Corpus Score SARSA πgreedy
structure πgreedy

path πrandom

Inex-Ieee
Fstructure 67.5 76.32 49.94 2.17

Fpath 74.4 39.23 97.20 1.00
Fcontent 75.8 82.91 97.20 8.62

Wikipedia
Fstructure 65.6 57.37 23.53 5.51

Fpath 74.3 2.28 32.28 0.12
Fcontent 80.2 72.92 39.34 12.35

13.6 Conclusion

We have described a general model for mapping heterogeneous document repre-
sentations onto a target structured format. This problem has recently appeared as
a key issue for querying heterogeneous semi-structured document collections. The
model learns the transformation from examples of input and corresponding target
document pairs. It is based on a new formulation of the structure mapping problem
based on Deterministic Markov Decision Processes and Reinforcement Learning.
This formulation allows us to deal with a large variety of tasks ranging from the
automatic construction of a target structure from flat documents to the mapping of
XML and HTML collections onto a target schema. Experiments have been per-
formed for different mapping tasks using four corpora with different characteristics.
They have shown that the model scales well with large collections and may achieve
high accuracy for different mapping tasks.
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Chapter 14
Learning Methods for Graph Models of
Document Structure

Peter Geibel, Alexander Mehler, and Kai-Uwe Kühnberger

Abstract. This chapter focuses on the structure-based classification of websites ac-
cording to their hypertext type or genre. A website usually consists of several web
pages. Its structure is given by their hyperlinks resulting in a directed graph. In or-
der to represent the logical structure of a website, the underlying graph structure is
represented as a so-called directed Generalized Tree (GT), in which a rooted span-
ning tree represents the logical core structure of the site. The remaining arcs are
classified as reflexive, lateral, and vertical up- and downward arcs with respect to
this kernel tree.

We consider unsupervised and supervised approaches for learning classifiers
from a given web corpus. Quantitative Structure Analysis (QSA) is based on de-
scribing GTs using a series of attributes that characterize their structural complex-
ity, and employs feature selection combined with unsupervised learning techniques.
Kernel methods – the second class of approaches we consider – focus on typical
substructures characterizing the classes. We present a series of tree, graph and GT
kernels that are suitable for solving the problem and discuss the problem of scalabil-
ity. All learning approaches are evaluated using a web corpus containing classified
websites.
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14.1 Introduction

In this chapter, we consider the classification of websites (i.e., collections of web
pages) according to their genre [48]. Examples of such types are conference web-
sites, corporate sites, electronic encyclopedias, online shops, personal and academic
home pages, weblogs, etc. [56, 58, 62]. The structure of a website is influenced by
its content and function, and can be seen as a source of features for detecting the
(main) topic of a site (content-related) or its genre (function-related). In this chap-
ter, we focus on genre by exploring structural features of websites. These structural
features might pertain to the structure of single documents and to the structure of
the whole collection of pages spanned by their hyperlinks.

We consider the learning of classifiers from a given corpus, which allow to de-
termine the hypertext type of a website. This question, which is of interest in com-
putational linguistics [59], is also highly relevant for information retrieval. Being
able to determine the hypertext type of a site returned as a result to a query, we can
group the list of hits accordingly and return it to the user in a more structured and
organized way [64].

Content-related approaches usually apply the bag-of-words approach to represent
single documents by the frequency of their lexical constituents [e.g., 7]. This allows
for applying approaches to feature-based learning as, for example, Support Vector
Machines (SVM) introduced by Vapnik [66]. This approach frequently delivers
classifiers with high accuracy in the domain of text categorization [32]. Structure-
based approaches are rarely found in this area [e.g., 69, 27, 45]. One reason is that
in order to learn the topic or genre of a (web) document by means of its structure,
one has to define and process training sets with labeled trees and graphs that repre-
sent the respective DOM trees (Document Object Model) and hyperlink structure,
respectively. This task is considerably more complex than learning based on feature
vectors.

In previous work [27, 45], we considered the classification of single documents
that were represented as DOM trees, that is, labeled ordered trees. We considered
two types of approaches:

• In Quantitative Structure Analysis (QSA), input graphs are characterized by fea-
ture vectors that describe their topological complexity. That is, indices are used
or newly invented (according to the specifics of the object area) that model struc-
tural characteristics of the micro-, meso- or macro-level of the input graphs.1

These indices range from features as simple as the average geodesic distance to
the entropy of the distribution of the fraction of triggered vertices as introduced
by [44]. Since QSA maps graphs onto feature vectors, it allows for supervised
learning based on SVMs.

• As an alternative approach, we also developed a series of tree kernels, which
allow to characterize a pair of input trees in terms of common substructures that

1 The micro-level relates to local vertex or edge-related invariants, while the meso-level
refers to graph clustering, graph motifs and other types of subgraphs. Finally, the macro-
level relates to graph invariants that represent the topology of the corresponding graph as
a whole.
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influence their similarity. In particular, we defined the Soft Tree Kernel (SoftTK),
which is based on the Parse Tree Kernel by [9], which we combined with a kernel
for node labels and positions, and a set kernel for the children of a node.

Note that QSA and tree kernels correspond to orthogonal approaches for charac-
terizing structures. QSA relies on structural complexity measures, whereas a typical
graph kernel is based on computing common (isomorphic) substructures. In this
chapter, we extend QSA and the kernel approach to graphs, which is necessary for
the classification of websites consisting of several web pages. We will focus on the
hyperlink structure of a website. The inclusion of DOM trees of single web pages
will only play a minor role.

It is well-known from the field of structural kernels that tree kernels can be com-
puted relatively efficiently, whereas graph kernels tend to be very challenging in
terms of computational complexity. We therefore consider the representation of
websites by so-called Generalized Trees (GTs) [39], in which the core structure is
defined by a so-called kernel tree (not to be confused with the kernels used by the
SVM) plus additional types of arcs (lateral, upward, downward, and reflexive) that
allow for the representation of the potentially cyclic structure of a graph.

In addition to applying an unsupervised version of QSA to GTs, we present the
following types of kernels for supervised learning:

• Tree kernels for GTs: It is possible to apply the Soft Tree Kernel (SoftTK) to
the kernel trees of a pair of GTs. We use a feature-based approach to include
information on reflexive, lateral, upward and downward arcs.

• GT kernels: We present the Soft GT kernel (SoftGTK) for generalized trees that
is also based on the SoftTK, but treats the graph underlying a GT as a directed
acyclic graph (DAG).

• Graph kernels: We consider kernels based on the learning system INDIGO [23,
24, 25, 22], which transforms graphs into feature vectors by computing certain
types of attributes based on label sequences.

The article is structured as follows. Generalized trees are described in Sec-
tion 14.2, followed by a description of QSA (Section 14.3). The class of kernel
methods are explored in Section 14.4 including the SoftTK, the two INDIGO ker-
nels, and the SoftGTK. In Section 14.5 we present experimental results for a corpus
of webgraphs describing conference, personal, and project websites. Our conclusion
can be found in Section 14.6.

14.2 Directed Generalized Trees

Let G′ = (V,E ′) be an undirected connected finite graph. Informally speaking, an
undirected generalized tree G = (V,E,r) is a graph rooted in r such that this graph
is induced by a rooted spanning tree T = (V,E ′′,r) of G where any edge e ∈ E is
classified as either a kernel (if belonging to T ), lateral or vertical edge.2 That is,

2 The range of edge types varies with the underlying application area. See, for example,
[42] who distinguishes seven types by example of directed generalized trees.



270 P. Geibel, A. Mehler, and K.-U. Kühnberger

Fig. 14.1 Visual depiction of a directed generalized directed tree with four upward arcs, one
downward arc (d) and one lateral arc (la) [39].

generalized trees are graphs whose edges are classified subject to selecting a certain
spanning tree together with a certain root. Analogously, directed generalized trees
D are digraphs whose arcs are classified as a result of selecting a rooted sub-tree T
of D such that the disorientation of T is a spanning tree of the disoriented variant of
D. In what follows we concentrate on directed generalized trees and therefore will
widely omit the attribute directed. This class of graphs is defined as follows [cf. 42]
(see Figure 14.1 for a schematic depiction of generalized trees):

Definition 1. Let T = (V,A′,r) be a directed tree rooted in r ∈ V . Further, for
any vertex v ∈ V let Prv = (vi0 , a j1 ,vi1 , . . . ,vin−1 ,a jn ,vin),vi0 = r,vin = v,a jk ∈
A′, in(a jk) = vik−1 ,out(a jk) = vik , 1 ≤ k ≤ n, be the unique path in T from r to v
such that V (Prv) = {vi0 , . . . ,vin} is the set of all vertices on that path. A Directed
Generalized Tree G = (V,A1..5,r) based on the kernel tree T is a pseudograph whose
arc set is partitioned in the sense that A1..5 = ∪5

i=1Ai, ∀1 ≤ i < j ≤ 5 : Ai∩A j = /0,
a ∈ A1..5 iff a ∈ ∪5

i=1Ai and

A1 = A′ (kernel arcs)
A2 ⊆ {a | in(a) = v ∈V ∧out(a) = w ∈V (Prv)\ {v}} (upward arcs)
A3 ⊆ {a | in(a) = w ∈V (Prv)\ {v} ∧ out(a) = v ∈V} (downward arcs)
A4 ⊆ {a | in(a) = out(a) ∈V} (reflexive arcs)
A5 ⊆ V 2 \ (A1∪A2∪A3∪A4) (lateral arcs)

G is said to be generalized by its reflexive, lateral, up- and downward arcs.

At this stage, the following question arises: Why do we care about the notion
of generalized trees instead of just speaking about connected graphs? The reason
behind this notion is manifold due to empirical and formal considerations:
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Fig. 14.2 The ACM Multimedia 2005 website represented as a generalized tree [from 42].
Vertices denote HTML pages or resources in the form of, for example, PDF documents.

• Generalized trees are used to model a range of empirical, non-formal systems
like websites [15, 16, 42], social ontologies [41], semantic spaces [39], multi-
modal data [43] or discourse structures [46]. Further, [40] introduces a new
class of Markovian spanning trees that are motivated in terms of cognitive se-
mantics. This shows that kernel trees of generalized trees are not restricted to
well-known classes of spanning trees. Rather, generalized trees are a sort of text-
technological data structure that captures a certain range of empirical systems.
This also means that the selection of the kernel tree T of a generalized tree G
is restricted by the underlying empirical system. In the case of natural language
texts, for example, T may correspond to their logical document structure [53] or
to their RST-tree [38], while in the case of websites, T may be induced by the
logical hypertext document structure of the corresponding website [42].

• In formal terms, generalized trees are digraphs whose arcs are typed non arbi-
trarily. That is, generalized trees provide more information than digraphs with-
out typed arcs. This typing is immediately of help when considering the task of
graph similarity measuring or graph matching, since corresponding algorithms
can profit from the inherent tree-like structure of generalized trees. This kernel
provides a way to reduce the complexity of measurements especially if being
determined by the underlying application area in a predictable manner. Natural
language texts, for example, are characterized by their logical document structure
that provides information about their text type [27, 45, 54].

• Finally, [39] shows that by typing arcs in generalized trees, we get a basis for a
functional interpretation of these arcs in terms of information retrieval. In this
sense, the notion of generalized trees serves as a bridge between a purely formal
data structure and its semantic interpretation according to structure models in
cognitive science [cf. 35].

In this chapter, we utilize the notion of directed generalized trees to learn web-
genres. As instances of certain genres, we represent websites as directed generalized
trees to get graph representations as input to structure learning (see Figure 14.2 for
the depiction of a website represented as a generalized tree). In this sense, we intro-
duce an approach to learning a class of graphs in the range of trees and unrestricted
graphs.
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14.3 Quantitative Structure Analysis by Example of Websites

Generally speaking, Quantitative Structure Analysis (QSA) is an approach to learn-
ing classes of (discourse) structures based on their salient, distinctive features while
disregarding their content. This relates to the micro-level of vertices and their arcs,
the meso-level of subgraphs and the macro-level of graphs as a whole as models of
certain empirical structures. Starting from a classification of a corpus of instances of
a certain application area, QSA seeks structural features that best distinguish them
according to this classification. In terms of discourse analysis, QSA is based on
the idea that the structure of these instances reveal their class membership (either
according to some predominant function or content) [2, 17]. Thus, QSA goes along
with developing structural models of the underlying application area as based, for
example, on their entropy [14], distance structure [3], clustering [5] or modularity
[49]. QSA involves three steps of modeling:

1. Quantitative graph modeling: firstly, each target object (i.e., graph) is repre-
sented by a vector of topological indices that model its micro, meso or macro
level structure. Ideally, these indices are developed based on a thorough analysis
of the distribution of structures in the corresponding object area.

2. Feature selection: in the next step, a genetic search is performed to find salient
features within the vectors that best separate the target classes (in each round
of the search, a fraction of features is reselected at random while all other fea-
tures are selected according to the list of highest ranked features of the preceding
round; further, in each round, several such feature populations compete with each
other). This step implements a sort of supervised learning as the search utilizes
the F-measure3 to select feature subsets. Currently, this feature selection acti-
vates or deactivates features. However, one may also consider genetic searches
that result in weighting their contribution. Note that the process of feature se-
lection may stop at a local maximum as it does not necessarily find an optimal
feature subset.

3. Classification: Based on the appropriately projected feature vectors, a hierarchi-
cal agglomerative clustering is performed together with a subsequent partitioning
that is informed about the number of target classes. Within the current implemen-
tation of QSA, classification and feature selection occur in a single step in that
the feature selection includes a search for the best performing linkage methods
and distance measures. We use weighted linkage together with the Mahalanobis
distance and the correlation coefficient to perform this step.4 Note that the Ma-
halanobis distance handles correlations between different features.

To sum up, QSA takes the set of input objects together with the parameter space
of linkage methods and distance measures to find out the feature subset that best

3 The F-measure is the harmonic mean of precision and recall; see Section 14.5.
4 The correlation coefficient is transformed into a distance function. Note that we use MAT-

LAB to make any of these computations.
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separates the data according to the underlying classification. In the present study,
we model directed generalized trees according to [41]. That is, we utilize a subset
of indices of complex network theory together with a subset of indices that were
invented to model nearly acyclic graphs [60] to capture the structural specifics of
websites. Additionally, a subset of measures of graph entropy is used as described in
[41]. See [47] for a summary of this quantitative graph model. Finally, the fractions
of upward, downward and lateral arcs were considered as additional topological
indices. All in all, 77 different topological indices were computed per input website
to model its structural characteristics. Frequency oriented indices (e.g., the number
of vertices or arcs) were excluded.

Note that QSA explores structural features. This does not mean to rule out
content-related features in principle, but to measure the classificatory power of
structural features.

14.4 Kernel Methods

The Support Vector Machine (SVM) introduced by [66] is known for its high classi-
fication accuracy and can be applied to non-vectorial data like sequences, trees, and
graphs by defining an appropriate kernel for the structural class of the data. A kernel
is a similarity measure that is required to be positive-semidefinite [see, e.g., 61, 11].
Given an appropriate feature mapping for the structures considered, each kernel also
corresponds to the scalar product in the vector space defined by this mapping.

A well-known example of a kernel for structures is the so-called Parse Tree Ker-
nel [9, 50, 51, 33], which operates on parse trees of sentences given a fixed un-
derlying grammar. The Parse Tree Kernel allows the classification of sentences, or
parts of them. In the following section, we present the Soft Tree Kernel, which is
an extension of the Parse Tree Kernel for general labeled ordered trees. A slight
extension allows the application of the Soft Tree Kernel to GTs. In section 14.4.2,
we present an additional kernel, SoftGTK, that is also based on the Soft Tree Ker-
nel, but incorporates more elaborate extensions specifically tailored for generalized
trees.

In addition to trees, the SVM can be applied to labeled graphs by defining appro-
priate graph kernels [26, 29, 13, 63, 34, 20, 18, 36, 21, 52, 37]. In Section 14.4.3, we
describe two graph kernels derived from the feature extraction algorithm employed
in the learning system INDIGO: Based on the INDIGO context kernel, we explore
the INDIGO label sequence kernel and discuss its relationship to the random walk
kernel [19, 34]. Both the context kernel and the label sequence kernel can be used
with a training set of generalized trees, although they are also applicable to arbitrary
labeled directed graphs.
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14.4.1 The Soft Tree Kernel for GTs

The well-known Parse Tree Kernel can be used for solving learning and classifica-
tion problems for parse trees generated from a given grammar. For a parse tree, the
grammar rule applied to a non-terminal determines the number, type, and sequence
of the children. Our goal will be to describe a tree kernel that is applied to the ker-
nel tree of a GT, and additionally takes into account some of the information given
by other types of arcs (i.e., reflexive, lateral, upward, and downward). To this end,
we first describe the Soft Tree Kernel (SoftTK) introduced by [27], followed by the
extensions for GTs.

In the following, we consider node-labeled ordered trees. The node labels will
later on be used to encode the information given by reflexive, lateral, upward and
downward arcs. We assume arcs (i.e., directed edges) E ⊆ V ×V where V is the
set of nodes of tree T . For a node v ∈ V , we denote the ordered set of children
as {v1, . . . ,vn(v)}, where n(v) denotes its (out-)degree which is defined as 0 for tree
leaves. The root of the tree, r, has only outbound arcs.

We consider ordered trees whose nodes are labeled by a function α : V −→ Σ ,
where Σ is a set of node labels, which will later on be used for defining indicator
functions for the different types of GT arcs. Since Σ is a general set, it is also
possible to label nodes with specific attributes like tags, words, etc. In this case,
each element of Σ corresponds to a tuple, list, or set of (elementary) labels. For the
task at hand, however, it is most natural to label a node (representing a single web
page) with its DOM tree. In order to work with node labels inside the SoftTK, we
have to provide an appropriate node kernel that defines the overall similarity of node
labels in an appropriate manner, see below.

In what follows we assume that the input trees are ordered because the children of
each node are considered a sequence and not a set. Since the ordering information
might not be relevant in the case of generalized trees, the Soft Tree Kernel has a
parameter γ that determines how order-sensitive the kernel is.

As a last definition, two trees T and T ′ are called isomorphic if there is a bijective
mapping of the nodes that preserves the structure given by the arcs, the ordering of
the children and the labellings specified by α and α ′.

Kernels in general, and the Parse Tree Kernel in particular, can be defined by
specifying a sequence of features t. This way each input structure can be described
by a feature vector. Based on this projection, the kernel is defined to correspond to
the dot product in a feature space. In the case of the Parse Tree Kernel, the features
or pattern trees t correspond to incomplete parse trees, in which some productions
have not yet been applied, yielding leaves labeled with non-terminals. In the fol-
lowing, we will use the general graph-theoretic term subtree for referring to these
trees. Note, however, that other authors distinguish between subtrees, subset trees,
and partial trees [e.g., 51], which correspond to specific kinds of subgraphs of parse
trees.

For a tree T and a feature or pattern tree t in the tree sequence, we define φt(T ) as
the number of subtrees of T being isomorphic to the feature tree t. Let φ(T ) denote
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the arbitrarily ordered sequence of all feature values, i.e., numbers, obtained by this
procedure. Based on this sequence, the Parse Tree Kernel is defined as

k(T,T ′) = 〈φ(T ),φ(T ′)〉= ∑
t

φt(T ) ·φt(T ′) . (14.1)

The index t ranges over all pattern trees in the sequence. Since there is only a limited
number of subtrees shared by two input trees T and T ′, k(T,T ′) results in a finite
number despite the infinite set of potential subtrees. Note that the term φt(T ) ·φt (T ′)
corresponds to the number of possible isomorphic mappings of subtrees (isomorphic
to t) between T and T ′.

Collins and Duffy showed that k can be computed efficiently by directly de-
termining the number of possible mappings of isomorphic subtrees instead of ex-
plicitly generating all possible pattern trees. Let v ∈ V and v′ ∈ V ′. The func-
tion Δ((v,T ),(v′,T ′)) is defined as the number of isomorphic mappings of subtrees
rooted in v and v′, respectively. It holds that

k(T,T ′) = ∑
v∈V,v′∈V ′

Δ((v,T ),(v′,T ′)) . (14.2)

Note that Δ is a tree kernel as well, in which v and v′ serve as “pointers” to the
respective subtrees. That is, (v,T ) corresponds to the subtree of T that is rooted
in v. In contrast to k, however, the pattern trees t underlying Δ are required to be
subtrees restricted to such parse trees that start in the root. The next trick of the
kernel computation is to compute Δ in a recursive manner.

14.4.1.1 The Soft Tree Kernel (SoftTK)

We will leave out the technical details of the Parse Tree Kernel and refer the reader
to the work by [9, 10]. In the following, we describe a tree kernel introduced by
[27], which is called the Soft Tree Kernel (SoftTK). This tree kernel additionally in-
corporates kernel values kΣ (α(v),α ′(v′)) for the node labels, which comes in handy
for generalized trees. For two node labels α(v) and α ′(v′) from the set of all labels,
Σ , the value of kΣ (α(v),α ′(v′)) correspond to their similarity. The simplest choice
for kΣ is the identity function. Dependent on the type of the elements in Σ (i.e., tu-
ples, vectors, sets, lists, trees etc.) more elaborate kernels can be used, which better
reflect the semantics of the domain. For the problem at hand, in which a node rep-
resents a single web page, a natural choice for kΣ would be a tree kernel operating
on DOM trees. Later on, we will extend any given kΣ with information specific for
GTs.

The SoftTK takes the position of a node in the child sequence into account. The
position i of some child vi of a node v is basically used as an additional attribute of
the respective node. When comparing two positions, their similarity can be based
on their numerical distance. This suggests to use the RBF kernel defined as

kγ(i, i′) = e−γ(i−i′)2
(14.3)
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for node positions i and i′. The maximum value is attained for i = i′. The value
of the parameter γ is to be set by the user. It determines how much a difference in
position diminishes the value of the kernel. Note that the comparison of positions
can be considered soft or “fuzzy”, which lead to the name of the kernel. Note also
that setting γ = 0 results in the Set Tree Kernel also defined by [27]. [12], [33], and
[4] also described kernels allowing for the comparison of node labels. However,
they do not pertain to a “soft” comparison of node positions, which is the crucial
point in defining the SoftTK.

The Δ -function of the Soft Tree Kernel is now defined recursively as

ΔS((v,T ),(v′,T ′)) = kΣ (α(v),α ′(v′))+ λΨS((v,T ),(v′,T ′)) (14.4)

with a “convolution part” defined as

ΨS((v,T ),(v′,T ′)) =
n(v)

∑
i=1

n′(v′)

∑
i′=1

kγ (i, i′) ·ΔS((vi,T ),(v′i′ ,T
′)) . (14.5)

ΨS is used for comparing the child tree sequences and can be shown to take the form
of a convolution kernel, see below. λ ∈ [0.0,1.0] is a parameter that controls the
influence of the matches between child trees. Basically, we consider every pair of
child trees, but the contribution of the kernel value for this pair is discounted by
kγ(i, i′).

Specifying a feature space interpretation in terms of pattern trees for this kernel
is difficult for γ > 0, because we have to take kΣ and kγ into account. However,
if kΣ is the identity kernel and if γ = 0 and λ = 1 holds, it can be shown that the
features correspond to paths in the tree. In order to be able to prove that SoftTK is
a kernel also in the general case, it can be shown that it is a convolution kernel - a
class of kernels which was introduced by [29]. A convolution kernel operating on
structures X and X ′ looks at possible mappings of their “parts” which are specified
using a relation R. The general definition of the convolution kernel is given by

kc(X ,X ′) = ∑
R(x1,...,xn,X),R(x′1,...,x′n,X ′)

n

∏
j=1

k j(x j,x
′
j) . (14.6)

The relation R relates the part x = (x1, . . . ,xn) to X , and the part x′ = (x′1, . . . ,x
′
n)

to X ′. Note that the parts can basically be anything: nodes, arcs, label sequences,
degrees, positions, etc. In particular, the parts are allowed to belong to overlapping
structures of X and they do not have to cover all of X . Each such part is characterized
by n attributes.

In the case of the SoftTK, we set X = (v,T ), X ′ = (v′,T ′), and n = 2, and define

R(x,X) =
{(

(i,(vi,T )),(v,T )
)
| 1≤ i≤ n(v)

}

(14.7)
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and

R(x′,X ′) =
{(

(i′,(v′i′ ,T
′)),(v′,T ′)

)
| 1≤ i′ ≤ n′(v′)

}

. (14.8)

n(v) and n′(v′) denote the number of children of v and v′, respectively.
For the proof, we choose k1(x1,x′1) = kγ (i, i′), k2(x2,x′2) = ΔS((vi,T ),(v′i′ ,T

′)).
With these definitions, ΨS((v,T ),(v′,T ′)) = kc(X ,X ′) takes the form of a convolu-
tion kernel (with a grain of salt, because the definition is recursive). According to
the general rules for constructing kernels from kernels [e.g., 11], ΔS and finally kS

are also kernels if ΨS is one. Note, however, that in order to complete the proof, we
actually have to use induction on the maximum depth of trees considered, because
ΨS and ΔS depend on each other. Based on such an induction over tree depth, we
get the proof of the following theorem.

Theorem 1. kS, ΨS and ΔS are proper kernels.

Note that we can use multiplication · instead of + for defining ΔS resulting in
ΔS((v,T ),(v′,T ′)) = c + kΣ (α(v),α ′(v′)) ·λΨS((v,T ),(v′,T ′)). The constant c≥ 0
allows to reward node mappings independent of how well their actual labels fit.
A further variant can be obtained by replacing kγ with the identity kernel ι(i, i′),
which equals to 1 when i = i′, and to 0 for i �= i′. This has the effect of reducing
the complexity of comparing the child tree sequences from quadratic to linear. This
approach will be called Simple Tree Kernel (SimTK).

14.4.1.2 Applying the SoftTK to GTs

We now define two indicator functions ρ−R and ρ+
R for each type of relation (reflex-

ive, lateral, vertical upward and downward arcs). According to the definition of GTs
(Def. 1), the index R is in the set {2,3,4,5}. For a node v ∈ V , ρ−R (v) denotes the
number of outgoing arcs belonging to the respective type, whereas ρ+

R (v) denotes
the respective number of incoming arcs. The original node labeling function α is
now extended to

ᾱ(v) =
(

α(v),ρ−2 (v), . . . ,ρ−5 (v),ρ+
2 (v), . . . ,ρ+

5 (v)
)

. (14.9)

Let Σ̄ be the set of possible labels for the new labeling function ᾱ . The extended
kernel function kΣ̄ is then defined as

kΣ̄ (ᾱ(v), ᾱ ′(v′)) = kΣ (α(v),α ′(v′))+
5

∑
R=2

ρ−R (v)ρ−R (v′)+
5

∑
R=2

ρ+
R j

(v)ρ+
R (v′) .

(14.10)
That is, the new node kernel is a combination of the original one, kΣ , and the scalar
product of the vectors representing the numbers of incoming and outgoing edges
of the different types. Note that it is possible to use other (positive) weights for
combining the two functions.

Given a pair of GTs, we are now able to apply the SoftTK to the pair of kernel
trees. Part of the information given by the other types of arcs is now incorporated
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into the new node kernel kΣ̄ used by SoftTK. In the following section, we describe
a more elaborate variant of the SoftTK, which is called SoftGTK and incorporates
more structural information.

14.4.2 The Soft GT Kernel

Generalized trees correspond to general, labeled graphs for which a rooted spanning
tree has been specified. This means that in addition to the original graph structure,
one node has been designated root of the so-called kernel tree, and the arcs of the GT
have been labeled as kernel arcs (k), downward arcs (d), upward arcs (u), reflexive
arcs (r), and lateral arcs (l). In the following, we describe the Soft GT Kernel
(SoftGTK) which is an extension of the SoftTK described in the last section.

In order to devise a GT kernel, we first note that SoftTK defined in Section 14.4.1
can also be applied to DAGs (directed acyclic graphs) without modification. From
the perspective of a tree kernel, the DAG is (implicitly) transformed into a tree by
“duplicating” those nodes and their sub-DAGs, for which more than one inbound
arc exists. A paper describing the “reverse” idea was published by [1].

The vertical d-arcs in a GT form such DAG arcs, and so do inverse u-arcs. This
means that the tree kernel may follow downward arcs as well as the inverse of up-
ward arcs when computing the respective Δ function. This leaves us reflexive r-arcs
and lateral a-arcs to deal with.

Reflexive arcs can be accounted for by just labeling the respective node using an
additional binary boolean attribute, which is true whenever the node has an reflexive
arc. This feature will be denoted as ρ4(v,T ) in the following (similar to the one used
by SoftTK). Lateral arcs, however, are much harder to handle because just following
them might lead the algorithm into a cycle. In order to prevent such cycles, we
might “deactivate” such an arc after following it by deleting it from the copy of the
generalized tree used in the kernel computation. If (v,v′) is such an l-arc, we denote
the tree without that arc as T(v,v′).

Let us now consider a generalized tree T and a node v in T . In order to define the
kernel, we consider the following node sets, which comprise the direct descendants
of v with respect to the different types of relations.

• A list of descendants K = {(k1,T ), . . . ,(kK ,T )} with respect to the kernel arcs.
The generalized tree T occurs for technical reasons that will become clear later
on.

• A list of descendants D = {(d1,T ) . . . ,(dD,T )} with respect to the downward
arcs. In order to define this set we have to assume an ordering of the d-neighbors
of v which, for instance, might be given by a natural ordering on the set of nodes.
However, this means that for an isomorphism class of generalized trees the value
of the kernel might depend on the specific representative unless we chose a kernel
that neglects ordering information, which is the case for the set tree kernel.

• A list of descendants I = {(i1,T ), . . . ,(iI ,T )}with respect to inverse upward arcs.
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• A list of neighbors L = {(l1,T(v,l1)), . . . ,(lL,T(v,lL))} with respect to lateral arcs.
In this case, we also need the reduced tree structures in order to prevent compu-
tational cycles.

For a node v′ in T ′ we consider the corresponding “primed” definitions.
The generalized tree kernel is defined in the usual manner via

kG(T,T ′) = ∑
v∈V,v′∈V ′

ΔG((v,T ),(v′,T ′)) . (14.11)

Now consider two nodes v and v′ in T and T ′ respectively. Let V and V′ be two sets
that contain the N resp. N′ descendants for one of the relations together with the
potentially modified GTs. We now define the convolution part of the Δ -function as

Ψγ(V,V′) =
N

∑
i=1

N′

∑
i′=1

kγ(i, i′)ΔG
(
(vi,Ti),(v′i′ ,T

′
i′)
)
, (14.12)

which is a slight generalization of the Soft Tree Kernel such that every descendant
vi might come with its own, possibly reduced, structure Ti. Note that in the case
V = L and V′ = L′, the edge leading to the respective child was removed in Ti and
T ′i′ in order to prevent cycles. Note that we obtain the Ψ of the set tree kernel for
γ = 0.

The Δ -function for the generalized tree kernel is defined by

ΔG((v,T ),(v′,T ′)) = 1 + kΣ(α(v),α ′(v′))+ ρ4(v,T ) ·ρ4(v′,T ′)
+
(
λkΨγ(K,K′)+ λdΨ0(D,D′)+ λiΨ0(I,I′)+ λaΨ0(L,L′)

)
(14.13)

λk, λd ,λi, and λl are weights that can be set by the user. γ has to be optimized by
the learning algorithm, e.g., by grid search.

Theorem 2. kG is a kernel for isomorphism classes of ordered generalized trees.
Setting γ = 0 results in a kernel for unordered generalized trees.

Proof: If T and T ′ were trees, then λkΨγ(K,K′) + λdΨ0(D,D′) + λiΨ0(I,I′) +
λaΨ0(L,L′) is a kernel because it is just a sum of convolution kernels in which
each sub-kernel has a positive weight. Although T and T ′ are no trees in general,
we can construct trees τ(v,T ) and τ(v,T ′) such that

ΔG((v,T ),(v,T ′)) = ΔG(τ(v,T ),τ(v,T ′)) . (14.14)

These trees τ(v,T ) and τ(v,T ′) can be obtained from the recursive computation of
ΔG applied to (v,T ) and (v,T ′): we obtain a tree of function calls from it. In this call
tree, we can for instance prefix each node name with the tree position of the call to
ΔG in which the node occurs (positions can be represented as sequences of numbers)
resulting in the GTs expanded into two larger trees. Infinite growth is prevented by
(locally) deactivating lateral arcs after having used them once (see definition of L).
This way, we can extract a suitable pair of trees τ(v,T ) and τ(v′,T ′) from the call
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tree. The construction of the trees is quite cumbersome yet straightforward and we
will leave out the technical details.

Since we have just shown that ΔG((v,T ),(v,T ′)) = ΔG(τ(v,T ),τ(v,T ′)) holds
and also that ΔG is a kernel for trees, we can conclude that kG(T,T ′) = ∑v∈V,v′∈V ′
ΔG(τ(v,T ),τ(v′,T ′)) is also a (convolution) kernel, according to the general rules
for constructing kernels.

It even holds that kG([T ], [T ′]) := kG(T,T ′) is a kernel for isomorphism classes of
ordered, generalized trees, since we chose the γ-values such that ordering informa-
tion is only taken into account for the k-arcs. ��
Note that a lateral arc originating from a certain node might be followed several
times if the respective node is reached via another lateral arc in addition to its in-
coming kernel arc. Modified strategies for dealing with lateral arcs are possible:
complexity can be reduced substantially if we only allow one lateral arc in each
recursion. This strategy further reduces the underlying tree used in the proof of
Theorem 2 and was used in the experiments.

14.4.3 The INDIGO Context and Label Sequence Kernels

In the following, we will define two kernels for labeled graphs, starting with a fea-
ture mapping that was employed in the learning system INDIGO [23, 24, 25, 22].
The advantage of the INDIGO kernels defined in section 14.4.3.1 over most other
graph kernels lies in the fact that the expensive computations are done in the feature
mapping step, whereas the computation of the kernel itself just corresponds to the
standard dot product of vectors (or rather sparse representations). For transforming
the input graphs, INDIGO employed two related sets of attributes:

• Context attributes describe nodes and arcs in their relational context. The context
depth is increased using an iterative re-labeling algorithm to be described later.

• Label sequence attributes describe the label sequences occurring in a graph, and
can be computed from context attributes.

We start by presenting the context kernel.

14.4.3.1 The INDIGO Context Kernel

INDIGO operates on a training set of classified graphs and outputs a graph classifier.
INDIGO was successfully applied to a couple of domains including the prediction
of the mutagenicity of chemical compounds. The output of INDIGO is a so-called
decision tree [31, 6, 55] whose inner decision nodes are labeled with patterns for
graphs–an idea first described by [68, 65]. These patterns are generated by a proce-
dure that will be described in the following. The computed patterns or features form
the basis of the two INDIGO kernels to be described later in this section.
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INDIGO’s procedure for constructing features is based on an algorithm for de-
ciding isomorphism between graphs. This algorithm was described by B. Weisfeiler
in the 1970s [67]. The procedure is based on simultaneously re-labeling nodes and
arcs based on the context of the respective node or arc. In each step of the algorithm,
the new node labels are based on the original node labels and the labels of adjacent
arcs. The new label of an arc is determined by its original label, plus the labels of
the two adjacent nodes, plus the labels of all “triangular” graph structures, which
the respective arc forms a part of (see below).

Note that the new arc and node labels are based on their direct context. By iter-
ating this procedure, the contexts expand exponentially which results in an efficient
procedure for checking non-isomorphism. The procedure fails, for instance, for
non-isomorphic strongly regular graphs, which are unlikely to occur in practice. In
the following, we will described a variant of the procedure, in which the depth of
context grows only linearly in each iteration, which is more suitable for learning.

In the following, we will consider artificial web graphs using the node labels p
(“is a web page”) and r (“has reflexive edge”). The arc label k is used for represent-
ing kernel arcs, and l, u, d denote specific types of non-kernel arcs (lateral, upward,
and downward arcs). Note that these labels can be considered strings of characters
“p”, “r”, “k”, “l”, “u”, and “d”. However, in what follows we left out the quotation
marks. So please distinguish a node u from the arc label u, and a kernel denoted by
k from the label k of kernel edges.

The (symbolic) adjacency matrix of a graph comprises the information of the
graph in compact form, using ε for denoting “no relation”. Let the adjacency matrix
of an example graph be given as

A(G1) =

⎛

⎝
p l ε
l p ε
k + d k + d p

⎞

⎠ (14.15)

This graph represents a website consisting of three webpages 1, 2, and 3, corre-
sponding to three HTML files. All webpages are of type p. Webpage 3 corresponds
to the index page of the website, and is linked to pages 1 and 2 via a kernel arc and
an additional downward arc. Pages 1 and 2 are connected by lateral edges. There are
no upward arcs present in the graph (which would be unusual for an actual website).

The + operator is only used in a formal way. That is, k +d denotes a set consist-
ing of two elements. This notation allows to represent multi-sets as, for instance,
k + +d + d = k + 2d. This means that using adjacency matrices allows the repre-
sentation of labeled multidigraphs. In order to arrive at a unique representation, we
assume that the elements have been sorted lexicographically. The re-labeling pro-
cedure described in the following operates on this symbolic adjacency matrix by
taking formal powers of it.
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14.4.3.2 The Weisfeiler Iteration

We consider an arbitrary graph G together with its adjacency matrix A(G). The
following iteration produces a sequence of formal matrices corresponding to for-
mal powers of the original adjacency matrix A(G). The addition is assumed to be
commutative, whereas the multiplication is non-commutative, but the usual distribu-
tive laws hold. The “+”-operator is used for constructing multi-sets, whereas the
multiplication corresponds to string concatenation.

Definition 1 (Weisfeiler Iteration). We define the Weisfeiler sequence of matrices(
W i(G)

)
i≥0 as

W 0(G) = A(G),W i+1(G) = W i(G) ·A(G) .

For the matrix in Equation (14.15), we get W 1(G1) =
⎛

⎝
(p)(p)+(ε)(k+d)+(l)(l) (p)(l)+(l)(p)+(ε)(k+d) (p)(ε)+(ε)(p)+(l)(ε)
(p)(l)+(l)(p)+(ε)(k+d) (p)(p)+(ε)(k+d)+(l)(l) (p)(ε)+(ε)(p)+(l)(ε)
(p)(k+d)+(k+d)(p)+(k+d)(l) (p)(k+d)+(k+d)(p)+(k+d)(l) (p)(p)+(k+d)(ε)+(k+d)(ε)

⎞

⎠

In order to compute the sequence efficiently (i.e. in polynomial time), it is crucial
to not expand the generated polynomials. The polynomials we get for iteration i
are considered atomic in the next step. This can be achieved by storing the (sorted)
polynomials in a dictionary and using their code for the next iteration. Note that it
is also possible to treat ε as a kind of zero of the formal addition and multiplication,
this way allowing the context to expand only via existing arcs and not via discon-
nected nodes. In this case, it is also reasonable to introduce inverse relations like k′.
This is the approach we used in the experiments.

It can be shown that W i(G)[u,v] is a compact representation of the label se-
quences of all paths5 in graph G that start at node u, terminate at node v and have
a length of exactly i. Each such path results in a specific label sequence. For the
example graph, we get the length 2 label sequences

(p)(l)+ (l)(p)+ (ε)(k+d) = pl + l p + εk + εd (14.16)

leading from node 1 to node 2. The path underlying εk is (1,3,ε),(3,2,k), the
one underlying εd is (1,3,ε),(3,2,d), the one of pl is (1,1, p),(1,2, l), and l p cor-
responds to (1,2, l),(2,2, p). Using the Weisfeiler iteration, we arrive at compact
representations of sets of label sequences that were used as patterns by INDIGO.
These attributes will be called context attributes in what follows.

In the following definition, img W i(G) is used to denote the different entries
(complex labels) of the i-th power of the adjacency matrix of G. In general, img
denotes the set of values of a function. The adjacency matrix is hence considered a
function of {1, . . . ,n}×{1, . . . ,n} to the set of complex labels of nodes and edges.

Definition 2 (Context Attributes). Given a set of graphs, T , we define a sequence
of attribute/feature sets

5 Here and in the following, we use the term path for connected sequences of arcs. Node
labels are treated as labels of loops, i.e., particular arcs. Paths are allowed to contain cycles.
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Fig. 14.3 The node context f2 and the arc context f4. Note that (k′ + u) and (k + d) are
inverse to each other and therefore only represented once. Note that u is used as a label for
upward arcs and also for naming a node.

Fi(T ) =
⋃

G∈T

img W i(G)

with the corresponding feature value for f ∈ Fi(T ) defined as

φ f (G) =
∥
∥
∥
{

(u,v)
∣
∣ 1≤ u,v≤ n∧Wi(G)[u,v] = f

} ∥∥
∥ .

For a context f from the set of all depth i contexts Fi(T ), the value of φ f (G) corre-
sponds to the number of nodes and edges, respectively, that have the label f .

In the example, after the insertion of inverse relations k′ and d′ = u,6 the features
f1 ∈ F0(T ) and f2 ∈ F1(T ) are context attributes characterizing nodes:

f1 = p (14.17)

f2 = (p)(p)+ (k′+u)(k+d)+ (l)(l) (14.18)

Among others, we have the arc attributes

f3 = u (14.19)

f4 = (p)(l)+ (l)(p)+ (k′+u)(k+d). (14.20)

f2 and f4 are depicted in Figure 14.3 in a graphical manner. In the edge attribute f4,
the term (k′+u)(k+d) originates from the arc sequences (1,3)(3,2). The triangular
configuration results from the matrix multiplication in the Weisfeiler iteration, in
which the entries are computed as W i+1(G)[u,v] = ∑wW i(G)[u,w] ·A(G)[w,v].

Definition 3 (Context Kernel). Given a set of graphs, T , two graph G and G′, and
a sequence of non-negative weights wi, the context kernel is defined as

kI(G,G′) =
∞

∑
i=0

wi ∑
f∈Fi(T)

φ f (G)φ f (G′) . (14.21)

For computing the kernel kI , we can employ the following weighting schemes:

1. wi = λ i for some 0≤ λ < 1. In order to be able to compute this kernel, we need
to set an upper limit D for the maximum context depth to be considered.

6 Note that u is used as a symbolic arc label here. This is not to be confused with a node u.
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2. wi = 1 for D1 ≤ i < D2 and wi = 0 for and i < D1 and i ≥ D2. This results in
a mere concatenation of the feature vectors belonging to the specified range of
context depths given by the integers D1 and D2.

Of course, other choices for wi ≥ 0 are possible as long the infinite sums used in the
definition of k result in finite values. The following theorem holds.

Theorem 3. kI is a kernel.

Proof: kI is a sum of scalar products. ��

14.4.3.3 The INDIGO Label Sequence Kernel

In order to derive the second INDIGO kernel, recall that W i(G)[u,v] corresponds
to the set of label sequences of length i from paths from u to v. In order to define
the label sequence kernel, we do not use whole context attributes as patterns, but
rather the label sequences constituting them. The label sequences can be obtained by
expanding the expressions in W i(G) by applying the usual laws of non-commutative
multiplication and commutative summation, e.g., ((p)(l) + (l)(p) + (k+u)(ε)) =
pl + l p+ kε +uε . This can be achieved by using a modified Weisfeiler iteration, in
which the function e denotes the expansion process.

Definition 4 (Modified Weisfeiler Iteration). We define the sequence of matrices
(Mi(G))i≥0 as

M0(G) = A(G), Mi+1(G) = e(Mi(G) ·A(G)) .

Note that the entries in Mi+1(G) represent multi-sets, in which each label sequence
might occur more than once. For a multi-set c let #(l,c) denote the multiplicity of l
in c. #(l,c) = 0 holds exactly when l is not a member of c.

Definition 5 (Label Sequence Attributes). Given a set of graphs, T , we define a
sequence of attribute/feature sets

Li(T ) =
⋃

G∈T

{
l
∣
∣ #(l,c) > 0∧ c ∈ img Mi(G)

}
.

with the corresponding feature value for l ∈ Li(T ) defined as

φl(G) = ∑
1≤u,v≤n

#
(
l,Mi(G)[u,v]

)
.

The expression #(l,c) > 0∧c∈ imgW i(G) states that the label sequence l occurs in
some level i context c of graph G. The expression #(l,Mi(G)[u,v]) is the number
with which l occurs in the respective entry of the expanded i-th power of A(G).

Definition 6 (Label Sequence Kernel). Given a set of graphs, T , two graphs G and
G′, and a sequence of weights wi ≥ 0, the label sequence kernel is defined as
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kL(G,G′) =
∞

∑
i=0

wi ∑
l∈Li(T )

φl(G)φl(G′) .

While the computation of kL(G,G′) is quite straightforward, the number of label
sequences l grows exponentially with i. This means that the computation of kI is
computationally intractable for large i. Using a small context depth, however, this
approach could still be applied successfully for classifying chemical compounds
with INDIGO [22].

Note that we only need the mappings of the common label sequences in order
to compute kL(G,G′). Moreover, we do not need the label sequences themselves
but only the number of those shared between the graphs. These numbers can be
obtained from the so-called product graph X(G,G′) [34, 18]. The nodes of the
product graph correspond to pairs of nodes (u,u′) from the original graphs G and
G′. In the following definition, we directly specify its adjacency matrix. To this
end, each node (u,u′) is mapped to a natural number (u−1) ·m+u′, where m is the
number of nodes of G′.

Definition 7 (Product Graph). Let G and G′ be graphs of degree n and m, re-
spectively, and A(G) and A(G′) their adjacency matrices. Then the (numerical)
adjacency matrix X of the product graph is defined in the following manner:

A(G)[u,v] = A(G′)[u′,v′]→ X [(u−1) ·m+ u′,(v−1) ·m+ v′] = 1

and

A(G)[u,v] �= A(G′)[u′,v′]→ X [(u−1) ·m+ u′,(v−1) ·m+ v′] = 0 .

Note that the product has a size of nm. The index (u− 1) ·m + u′ represents node
(u,u′) in the product graph, whereas (v− 1) ·m + v′ stands for node (v,v′). X has
a value of 1 just when the (arc or node) label of (u,v) in G corresponds to that of
(u′,v′) in G′. The 1-norm of X(G,G′) thus corresponds to the number of mappings
of identical label sequences (length 1) in the two graphs.

It can be shown that the 1-norm of the i-th power, |Xi(G1,G2)|1, corresponds to
the number of mappings of length i paths with identical label sequences in G and
G′ [34, 18] (note that the underlying paths do not have to be isomorphic). We thus
have the following theorem.

Theorem 4. The INDIGO label sequence kernel can be computed as

kL(G,G′) =
∞

∑
i=0

wi |Xi(G,G′)|1 .

With an appropriate choice of the weights wi, the kernel kL can now be computed
in polynomial time. However, the adjacency matrix of the product graph might still
become quite large in practice.

Although the formulation via the product graph is quite elegant, we have to store
the adjacency matrix and its powers in order to compute the kernel. For the corpus
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at hand, we were not able to store the adjacency matrix of the product graph, for
instance, when computing the norm of a graph with more than 1000 nodes, which
leads to 1 Million nodes in the product graph, and an adjacency matrix with 1012

entries. We also tried sparse matrix representations, which slowed down the mul-
tiplication process a lot. Moreover, for some pairs of graphs, the powers of A(G)
become less and less sparse (mainly due to the lateral arcs present in a GT). In the
end it turned out that the INDIGO label sequence kernel is much more efficient to
use and it is also more easy to apply optimizations that discard label sequences,
which are not considered useful as features (e.g., repetitions of the same node label
in a sequence).

14.5 Experiments

In this section we present the learning results for a corpus of websites, which is
described in the next section.

14.5.1 The Corpus

We exemplify the learning of graph structures by means of webgenres [48]. More
specifically, we analyze a corpus of three genres, that is, personal academic home-
pages, conference websites and project websites (see Table 14.1). Each website is
represented as a directed generalized tree whose vertices denote pages and whose
arcs denote hyperlinks between these pages [57]. The vertices are uniquely labeled
by the URL of the corresponding page, while the arcs are typified in terms of di-
rected generalized trees (see Definition 1).

Our central classification hypothesis says that webgenres can be distinguished
by the hypertextual structure of their instances. In this sense, we expect that the
membership of a website to a certain hypertext type is predictable by the topology
of its constituent pages and their hyperlinks. In the present chapter, we consider two
classification hypotheses based on this general assumption.

1. Firstly, we hypothesize that this structure-oriented classification can be per-
formed by a certain class of graph kernels as introduced in Section 14.4.

2. Secondly, we hypothesize that this structural classification can be performed by
means of Quantitative Structure Analysis (QSA) as described in Section 14.3.

Both of these classification hypotheses are motivated by [44] who successfully
classify the webgenres considered here by means of a two-level bag-of-structures
model. This approach integrates two levels of learning as it restricts the genre-
related classification of webpages by the genre-related classification of their con-
stituents where pages are represented as bags of subgeneric constituents – in this
sense, it is called a bag-of-structures model. While this approach shows that
structure-based classifications are in principle possible even with an F-score above
.9, it does so without additionally exploring hyperlinks. In this chapter, we focus on
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Table 14.1 The webgenre corpus of websites of three hypertext types. The minimum, median
and maximum value of the corresponding variable are displayed.

hypertext type number order size

conference websites 1,086 (10; 28; 1,130) (9; 102; 7,547)
academic homepages 177 (10; 35; 1,258) (9; 52; 2,145)
project websites 35 (10; 31; 242) (23; 133; 1,876)

this specific informational resource. That is, we explore hypertext structure as the
sole resource of classification.

As we deal with three target categories, any instance to be classified needs to
be structured in a way that is sufficient to attribute its category membership. Thus,
a website of less than 10 pages hardly provides structural information in order to
decide on its webgenre. Suppose, for example, that we deal with a set of unlabeled
digraphs each of four vertices and 3 arcs. In this case, we could hardly distinguish
three classes as there are likely equally structured graphs that belong to different
classes. Thus, a lower bound of the order of graphs  3 is indispensable. In the
present study, we process websites of at least 10 pages. All these websites were
downloaded and managed by means of the HyGraph system [28, 57].

14.5.2 Quantitative Structure Analysis

In this Section, we experiment with classifying websites per webgenre, where the
sites are represented as generalized digraphs (see Section 14.5.1). Starting from
the corpus described in Section 14.5.1, we evaluate our twofold cluster hypothesis
about the effectiveness of graph-kernel- and QSA-based classifiers.

In order to evaluate our candidate classifiers, we compute the well-known F-
measure, that is, the harmonic mean of recall and precision: let �= {C1, . . . ,Cn} be
the set of target categories to be learnt and X = {x1, . . . ,xm} be a non-empty training
corpus of objects each of which belongs to exactly one category in �. Further,
let � = {L1, . . . ,Ln} be a classification of X according to � such that Li �= /0, i ∈
{1, . . . ,n}, is the non-empty subset of X of true instances of Ci ∈� where |�|= |�|
and X = L1 ∪ . . .∪Ln. Now, let � = {P1, . . . ,Pn} be a computed partitioning of X
with respect to �. Without loss of generality, we call the elements of � clusters.
Then, we compute the recall, precision and F-score of any Pi ∈ � in relation to a
corresponding Lj ∈ � and finally the F-measure of � with respect to � as follows
[30]:
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P(Pi,Lj) = Precision(Pi,Lj) =

{ |Pi∩Lj |
|Pi| : |Pi|> 0

0 : else
(14.22)

R(Pi,Lj) = Recall(Pi,Lj) = Precision(Lj,Pi) (14.23)

F(Pi,Lj) =

{
2P(Pi,Lj)R(Pi,Lj)
P(Pi,Lj)+R(Pi,Lj)

: P(Pi,Lj)+R(Pi,Lj)>0

0 : else
(14.24)

F(�,�) =
n

∑
j=1

|Lj|
|X | max

Pi∈�
F(Pi,Lj) (14.25)

Note that by applying Equation 14.25, it may occur that different categories
Li,Lj are mapped onto the same cluster Pk. Suppose, for example, three categories
C1,C2,C3 such that L1 ⊂ P1, L2 ⊂ P1, P2∪P3 = L3, and |P3| ≥ |P2|. In this case, P1 =
argmaxPi∈�F(Pi,L1), P1 = argmaxPi∈�F(Pi,L2), and P3 = argmaxPi∈�F(Pi,L3).
Thus, we do not get a one-to-one mapping of categories and clusters.

From the point of view of categorization, this scenario is problematic: as we
assume that any object in X belongs to exactly one category in �, we demand that
any candidate classifier unambiguously decides the category membership of any
object in X . We call this scenario the decider scenario. It sets the F-measure of a
classification � to zero in the case that it does not result in a one-to-one mapping
of clusters and categories in the sense of Equation 14.25. Obviously, the decider
scenario is more demanding as it constrains the set of candidate classifiers in the
latter sense. In general, it should be more difficult to perform under the decider
scenario than without this restriction.

As a basis of comparison, we compute four baselines. Three of them randomly
assign objects to the target categories according to the decider scenario: the ran-
dom baseline called known-partition has information about the number of training
instances of the target categories. By knowing that there are 1,086 conference web-
sites, 177 homepages and 35 project websites, it randomly generates three subsets
of the same cardinalities in order to compute the F-measure based on Equation
14.25. Under this regime, it may occur that the target categories are not mapped to
their random analogue of equal cardinality (see above). Therefore, we additionally
compute the random baseline called named partition, which presupposes this one-
to-one-mapping for computing the F-measure. As shown in Table 14.2 and 14.3, the
values of the latter baseline correspond to the values of the former one. This results
from the dominance of conference websites compared to academic homepages and
project websites. Each random baseline is computed 1,000 times so that 14.2 and
14.3 show the corresponding average F-measures.

Obviously, it is a source of favoring that both baselines are informed about the
cardinalities of the target categories. Therefore, we compute a third random base-
line, called equi-partition, that assumes equally sized target categories. As expected
by the skewed distribution of category size, this baseline decays enormously – thus,



14 Learning Methods for Graph Models of Document Structure 289

Table 14.2 Results of learning three webgenres subject to the decider scenario.

model Setting F(CW) F(PA) F(PW) F-measure

QSA[correlation] 11 / 77 .93715 .55285 .18605 .86449
QSA[correlation] 12 / 77 .93715 .55285 .18605 .86449
QSA[correlation] 10 / 77 .93715 .54918 .17778 .86377

QSA[Mahalanobis] 8 / 77 .93483 .525 .051282 .85512
QSA[Mahalanobis] 9 / 77 .93276 .5 .05 .84994
QSA[Mahalanobis] 9 / 77 .93236 .49362 .05 .84874

catchAll(CW) .911074 0 0 .76227

catchAll(PA) 0 .24 0 .032727

catchAll(PW) 0 0 .052513 .001416

baseline known part. .71918
baseline named part. .71911
baseline equi-part. .442872

Table 14.3 Results of classifying personal academic homepages and conference websites
according to the decider scenario.

model Setting F(CW) F(PA) F-measure

QSA[correlation] 12 / 77 .95175 .55285 .89585
QSA[correlation] 15 / 77 .9518 .54918 .89537

QSA[Mahalanobis] 11 / 77 .94954 .53441 .89136
QSA[Mahalanobis] 10 / 77 .94903 .536 .89115

catchAll(cw) .924649 0 .795066

catchAll(PA) 0 .245833 .034452

baseline known partition .75931
baseline equi-partition .584609

we report it for information only.7 This skewness is the starting point for computing
a fourth baseline, which, in the present study, generates the highest baseline val-
ues. According to the dominance of conference websites, it simply assigns each
object to this webgenre. We denote this baseline by the functional catchAll(X),
which takes the “catching” webgenre as its single parameter, that is, CW (con-
ference websites), PA (personal academic homepages), or PW (project websites).
catchAll(CW) results in the highest baseline F-measure of .76227, which even

7 Note that the baseline that randomly guesses the cardinalities of the target classes in order
to randomly select their members basically converges to the equi-partition scenario if being
repeated infinitely.
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outperforms the known-partition baseline (see Table 14.2).8 Due to their small train-
ing set cardinalities, catchAll(PA) and catchAll(PW) result in very small
F-measure values (see Table 14.2). In any event, the values of catchAll(CW),
catchAll(PA) and catchAll(PW) can be used as category-specific baselines.
Thus, it seems natural to demand that a candidate classifier performs above these
baselines of about .91 (in the case of conference websites), .24 (in the case of aca-
demic homepages), and .053 (in the case of project websites). Otherwise it can
hardly be called a classifier of these webgenres when considered in isolation.

14.5.2.1 Discussion

By looking at Table 14.2, the first impression is that QSA solves the classification
task considered here, though not very well. Apparently, .86 is not a very high F-
measure value since we only deal with three target classes. However, if we study
the F-measure values more closely, it is evident that QSA has a classificatory power
in the area of structure-based webgenre learning. The reason is that on the one
hand, the micro-averaged F-measure outperforms the best performing baseline by
at least 10%. If we look at the second best performing baseline, this surplus is
even around 13%. This assessment is confirmed when looking at the category-
specific F-measure values: for each of the target categories considered here, the
best performing instance of QSA outperforms the corresponding baseline value of
the F-measure: 0.937 > 0.91 (CW), 0.55 > 0.24 (PA) and 0.186 > 0.053 (PW).
Thus, there is a classificatory gain of applying QSA, which cannot be reconstructed
by any of the random baselines considered here. However, the absolute value of
the F-measure is rather low for the category of personal academic homepages and
very low for the category of project websites. Thus, one should not overestimate our
findings as they do not show a good classifier but simply the possibility of structural
classifications of websites. In other words: there is an impact of structure-oriented
webgenre classification as measured by QSA, but this impact is not very high. Note
that using the Mahalanobis distance (instead of the correlation coefficient) produces
similar results.

One reason for the smaller impact being observed is certainly given by the highly
skewed distribution of the number of instances of the target categories. In order
to check this, Table 14.3 shows the result of classifying conference websites and
personal academic homepages only. At a first glance, we see that the F-measure
values go up to ca. 90% thereby retaining the difference to the best performing
baseline. In any event, the general picture is retained that the classification could be
better. Thus, we conclude that QSA proves a potential of structural classification,
however to a minor degree.

One reason for our findings is certainly the comparatively small set of training
samples of personal academic homepages and project websites in relation to con-
ference websites. Another reason might be the skewed distribution of the size of the

8 Note that in this scenario, the F-score of PA and CW is 0. The reason is that for these
categories, recall is 0. Thus, according to Equation 14.24, the F-score of these categories
is 0.
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Table 14.4 Results for the different kernel approaches: we highlighted the best performance
values in each CV-column.

F(CW ) F(PA) F(PW ) Acc Fmacro Favg

train CV train CV train CV train CV train CV train CV
SimTree 0.998 0.911 0.989 0.422 0.986 0.154 0.997 0.837 0.991 0.435 0.997 0.782
SoftTree 0.975 0.912 0.823 0.408 0.959 0.194 0.956 0.839 0.919 0.437 0.954 0.779
SimGT 0.998 0.911 0.991 0.416 0.986 0.182 0.997 0.837 0.991 0.437 0.997 0.787
SoftGT 0.994 0.911 0.963 0.418 0.986 0.160 0.989 0.837 0.978 0.435 0.989 0.787
Context 0.998 0.912 0.989 0.407 0.986 0.207 0.996 0.841 0.990 0.464 0.997 0.785
Label S. 0.997 0.913 0.989 0.401 0.986 0.190 0.996 0.841 0.990 0.456 0.996 0.794

websites (i.e., the order of the corresponding graphs), which ranges from websites
of only 10 pages to websites that contain more than 1,000 different pages (as in
the case of conference website and personal academic homepages). In this sense,
it might be useful to partition the training data so that the different bins are more
balanced in terms of the size of their elements.

A third reason for the observed results is certainly that the data model used here
to represent websites needs to be complemented by more elaborated feature models
in order to capture the characteristics of webgenres. As shown by [44], it is not nec-
essary that these additional features are content-based. The reason is that websites
as considered here consist of multiple webpages whose internal structure is informa-
tive about the membership to webgenres. Thus, a combined mode of page-internal
structures (as mapped by Mehler and Waltinger) and page-external structures (as
analyzed here) could be a way to get better classifiers. In any event, the combina-
tion of content- and structure-related features remains an option to be considered by
future work.

14.5.3 Kernel Methods

QSA and the kernel approaches follow different philosophies. The kernel ap-
proaches are used for classical supervised learning, in which a SVM is determined,
which maximizes a certain measure of performance, e.g., the F-measure. In our
experiments, we measured both the performance for the training set and that for the
test set by employing 10-fold cross validation. QSA uses the class information in
the feature selection step and for evaluating the quality of the learned categories by
utilizing unsupervised techniques for finding them. On the one hand, this means
that QSA can be considered “handicapped” during training. On the other hand, the
evaluation is done on the complete set of input objects as there is no distinction of
a training set and test set. Therefore, the performance of QSA can be expected to
lie between the usually better training set performance and the usually worse cross
validation performance of the kernel methods. This turned out to be the case in our
experiments, and we therefore did not undertake a direct comparison.

For the experiments, we used the LibSVM [8], which is able to handle multi-
class problems. Table 14.4 shows the results obtained for the webgraph corpus.
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The values F(CV ), F(PE), F(PR) correspond to the F-measures for the single
classes. Acc is the accuracy, i.e., the proportion of correctly classified examples.
Fmacro corresponds to the standard macro-averaged F-measures, in which each class
is weighted with 1

3 . The value of Favg corresponds to the F-measure according to
Equation (14.25), but with the sets determined by the actual and predicted classes
in the usual manner.

14.5.3.1 Discussion

The main problem for learning is that the data set is highly imbalanced. This means
that it is always a good guess that a website is a “conference website” yielding high
performance values for this class. We also tried weighting the classes according to
their prior probabilities with some, but limited success: A larger weight for class
“project webpages” can only partly compensate for the lack of information about
this class. We also applied kernel normalization and input scaling with no consistent
behavior in terms of performance.

Looking at Table 14.4, we find that the context kernel performs best with re-
spect to the macro-averaged F-measure (cross validation), whereas the INDIGO
label sequence kernel performs best with respect to the averaged F-measure (cross
validation). The differences to the other approaches are small, though. As a general
observation, the values for the training set were excellent, while the CV-estimated
performance values are substantially worse than the training set performance. For
class CW , the estimated F-measures are consistently high, but barely exceed the
baseline given by catch all(CW ) in Table 14.2. Learning mainly took place for the
two smaller classes, with a relatively hight improvement compared to the respective
baselines.

Although most of the differences are not statistically significant, there is a ten-
dency that the INDIGO kernels outperform the tree and GT kernels. We used grid
search for parameter optimization. Since the “Soft”-versions of the tree and GT-
kernel are much more expensive to compute, we could only cover a smaller range
of parameter combinations. In our view, this explains the worse performance of the
“Soft”-version with respect to the “Sim”-Versions.

Since the dataset is so difficult, it is not yet possible to say anything conclusive
about the relative performance of the different kernels. Regarding computational
complexity, however, there is a clear distinction. The INDIGO context kernel is
the most efficient, and it is also possible to attain a high depth of context (see the
Weisfeiler iteration in Def. 1). However, since higher level context attributes tend
to comprise a lot of structural information, they become very graph-specific and
have only little generalization power. Label sequence attributes, in contrast, tend
to be shared among different graphs, but their number tends to grow exponentially
with the level of the Weisfeiler iteration. In our experiments, we therefore had to
rule out certain label sequences in order to limit the length of the feature vectors.
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For SimTree, SoftTree, SimGT, and SoftGT, we use the “pre-computed kernel”
kernel feature of the LibSVM. Still the kernel computations tend to be more rela-
tively complex for the “Soft” variants. SimGT and SoftGT were the most efficient
to compute.

Note that all classes of kernels result in a loss of structural information, because
they only approximate the trees, graphs, and GTs (respectively) in the training set.
A kernel based on a full structural characterization is possible, but computationally
intractable [see, e.g., 18].

14.6 Conclusion

In this chapter, we presented a series of kernel approaches suitable for the classifi-
cation of trees, graphs, and generalized trees. As one of the simplest approaches,
we used the Soft Tree Kernel, which was originally developed for the classification
of trees. It comprises a variant of the well-known parse tree kernel combined with
a modified set kernel for the children of a node. The structural information encoded
in the reflexive, lateral, downward and upward arcs is taken into account via node
attributes indicating the presence of such arcs.

Replacing the RBF kernel for node positions with the identity kernel results in the
Simple Tree Kernel, which changes the complexity of comparing child sequences
from quadratic to linear. Being given graphs with more than 1000 nodes, this turned
out to be crucial for learning classifiers efficiently.

The INDIGO context and label sequence kernels both fall in the class of graph
kernels that use a transformational approach. Node and arc contexts characterize
the relational context of the respective object. The context depth is increased based
on the so-called Weisfeiler iteration. The attribute value corresponds to the number
of nodes and arcs, respectively, of the corresponding type.

We demonstrated that it is possible to compute the label sequences in a graph
from these contexts, albeit changing the complexity (and the number of attributes)
from polynomial to exponential. The resulting label sequence kernel is related to
a version of the random walk kernel, which can be computed from the product
graph of the input graph. For the corpus at hand, however, it was not possible
to use this approach at all, for the size of the product graph just gets too large.
Surprisingly, enumerating (and filtering) the label sequences turned out to be more
practical, partly because the input structures are tree-like.

The Soft GT kernel, which is based on the Soft Tree Kernel, also implicitly trans-
forms GTs into trees. Reflexive arcs are handled using a simple node kernel, which
is plugged into the SoftGTK. In contrast to the SoftTK, downward links and up-
ward links are treated like kernel arcs. The children with respect to these four types
of arcs are handled separately during kernel computation. Lateral arcs are also in-
cluded into the computation of the kernel, but the algorithm follows each lateral arc
only once in each recursion.

Concept learning was possible for the web corpus containing three different
classes of web graphs. Due to the extremely imbalanced nature of the training set,
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the learning problem turned out to be very challenging. We hope to be able to better
clarify their performance in future experiments. A clear result could be obtained
in terms of computational complexity: only the “simple” versions of the kernels,
as well as the INDIGO context and label sequences kernels really scale to larger
graphs.

Comparable to the tree and graph kernels considered here, Quantitative Structure
Analysis (QSA) generates classification results that are in need of improvement: on
the one hand, we observe F-scores above the corresponding baselines. On the other
hand, these F-scores leave plenty room for optimization. Thus, our findings are in
support of a structure-based classification of websites into webgenres. At least in
part, we have shown that one can identify the genre of a website by examining its
hyperlink-based structure. However, our F-scores question the reliability of such
purely hyperlink-based classifiers.

With regard to this finding, both approaches QSA and kernel methods are not
really different. Their difference is rather a methodological one: while the kernel
methods studied here explore similar substructures to assess class membership of
websites, QSA is based on quantitative graph models that focus on local (e.g., vertex
clustering-related) or global (e.g., graph centrality-based) characteristics in order
to derive feature vectors of websites that are input to classifying them. In other
words, kernel methods assess graph similarity more directly, while QSA builds on
numerical representations of the topology of graphs to asses their similarity. Note
that using SVMs in the case of kernel methods in contrast to cluster analysis in the
case of QSA does not manifest a basic difference of these methods. The reason is
that QSA can be combined with SVMs as well [cf. 45]. Thus, our comparison of
QSA and kernel methods hints at the fact that the classification problem studied here
is equally treated by supervised and unsupervised methods.

As a consequence of these findings, we are convinced that additional topological
features will not basically improve the classification of websites when solely explor-
ing their hyperlink-based structure. Rather, we have to think of additional resources
of hypertext formation. In this sense, we plan to build structural classifiers, which
integrate document internal, that is, DOM-based structures with document external,
that is, hyperlink-based structures. In this way, we conceive an integrated model of
structure formation in the web that includes page internal and page external features.
Finally, we plan to explore content- and structure-related features in order to arrive
at an integrated classifier of the topic and function of websites. This will be part of
future work for which the present study has paved the way in regard to hyperlink
structure.
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[42] Mehler, A.: Structure formation in the web. A graph-theoretical model of hypertext
types. In: Witt, A., Metzing, D. (eds.) Linguistic Modeling of Information and Markup
Languages. Contributions to Language Technology, Text, Speech and Language Tech-
nology, pp. 225–247. Springer, Dordrecht (2010)

[43] Mehler, A., Lücking, A.: A structural model of semiotic alignment: The classification
of multimodal ensembles as a novel machine learning task. In: Proceedings of IEEE
Africon 2009, September 23-25. IEEE, Nairobi (2009)

[44] Mehler, A., Waltinger, U.: Integrating content and structure learning: A model of hy-
pertext zoning and sounding. In: Mehler, A., Kühnberger, K.U., Lobin, H., Lüngen, H.,
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Chapter 15
Integrating Content and Structure Learning:
A Model of Hypertext Zoning and Sounding

Alexander Mehler and Ulli Waltinger

Abstract. The bag-of-words model is accepted as the first choice when it comes to
representing the content of web documents. It benefits from a low time complex-
ity, but this comes at the cost of ignoring document structure. Obviously, there is a
trade-off between the range of document modeling and its computational complex-
ity. In this chapter, we present a model of content and structure learning that tackles
this trade-off with a focus on delimiting documents as instances of webgenres. We
present and evaluate a two-level algorithm of hypertext zoning that integrates the
genre-related classification of web documents with their segmentation. In addition,
we present an algorithm of hypertext sounding with respect to the thematic demar-
cation of web documents.

15.1 Introduction

With the advent of the web, a range of linguistic concepts became significant in
research on hypertexts. This includes the multifaceted notion of genre that sup-
ports the classification of textual units with regard to their (pragmatic) function in
addition to their (semantic) content [17, 8, 25]. Webgenre modeling applies this no-
tion to web documents (e.g., webpages or websites) [40, 43, 48] by distinguishing
a range of functionally demarcated document types that are ideally orthogonal to
topic categories (for a recent overview of webgenre modeling see Mehler et al 34).
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The machine learning of such document types, that is, webgenre learning, is
primarily conceived as the task of automatically mapping web pages onto genre
labels [cf. 43]. In this line of research, webgenre learning is performed similarly to
text categorization [47]. That is, instead of textual units, webpages are processed
as target units by means of a bag-of-features model [42], which may but does not
necessarily include hypertextual features such as the number of hyperlinks in a page.
Following this line of thinking, several approaches have been developed that model
content-related structures of webpages. This includes the exploration of so-called
broad topics [11], or thematic clusters of webpages [37] as well as thematic aspects
of page linkage [35]. These approaches – whether topic- or genre-oriented – have
in common that they use the bag-of-words model and related methods.

This chapter presents an integrated model of genre- and topic-based structures
of web documents. The background of this research is reviewed in Section 15.1.1.
In this introduction, we also set the stage for integrating genre with topic modeling
from the point of view of structure formation. This is done in terms of thematic-
generic hypertext zoning, tracking and sounding as illustrated in Section 15.1.2.

15.1.1 Webgenre Learning in a Two-Level Perspective

Webgenre modeling gains from an extensive research on text categorization with its
focus on single texts as the target units of learning [47, 19]. However, by utilizing
this research, webgenre modeling abstracts information from a central characteris-
tic of web documents, that is, their hypertextual structure [14]. On the one hand,
webpages are preferably tagged as correspondents of textual units based on prede-
fined sets of genre labels. This approach disregards both the build-up of websites
by interlinked pages (page-external structure) and their segmentation (page-internal
structure) [9]. That is, webpages are mainly referred to as instances of webgen-
res, which are explored for lexical and markup-related features. Obviously, this
mono-level approach combines a structural indifference on the side of the input of
webgenre learning (webpages) with a structural indifference on the side of its input
(genre labels).

The mono-level approach is problematic for several reasons. [32] show that due
to effects of structural uncertainty, webpages are non-reliable manifestation units
of webgenres. Obviously, pages are layout units that do not necessarily coincide
with the boundaries of webgenre instances, which range from units as complex as
websites to units as small as segments of single pages. Thus, the genre-related
segmentation of pages together with the linkage of the resulting segments is an in-
dispensable ingredient of a multi-level perspective on webgenre learning. The multi-
level approach is shown in Figure 15.1 in relation to its mono-level counterpart.

As the set of webgenre instances does not coincide with the set of webpages,
two scenarios of generic delimitation have to be distinguished. Firstly, in order
to demarcate instances of genres that are distributed over several pages we need to
know the genres’ internal structure since, in this case, pages no longer manifest units
on the genre-, but on the subgenre level. Secondly, these subgenre units may also
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Fig. 15.1 The same outline of the web seen from the point of view of a mono-level approach
(left) and its two-level counterpart (right). Vertices denote webpages while edges stand for
hyperlinks whose direction is omitted. From the point of view of a two-level approach, Page
A raises the question whether it belongs to the project website, to the conference website or
to any other site. Hypertext zoning aims at answering questions of this sort.

Fig. 15.2 Schematic representation of a two-level model of hypertext types or webgenres:
an instance of the webgenre conference website is subdivided into several modules or stages
(e.g., call for papers, programm committee and schedule) each of which may be manifested
by one or more pages.

occur as segments of single pages so that a generic segmentation of pages comes to
the fore. In both cases, webgenre learning goes along the demarcation of subgenre
units or, analogously, the segmentation of subgenre units within single pages. The
present chapter is about this interplay of generic categorization and segmentation,
that is, about a two-level approach. We present a model of hypertext types, and
explore structural modules in order to classify instances of these types. As a result,
a segmentation of web documents is conducted to get generic modules as input to
classifying the documents by their genre. Accordingly, we distinguish two levels of
webgenre modeling (as shown in Figure 15.2):
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1. On level 1, web documents are distinguished as instances of webgenres (e.g., as
conference websites, personal homepages or city websites).

2. On level 2, constituents of these documents are demarcated above, below, or on
the level of pages by mapping them onto genre-related functions that are obliga-
torily or optionally met to manifest the corresponding webgenre [cf. 17].

To implement this approach, we make the classification of documents on level 1 a
function of the segmentation and classification of their constituents on level 2. That
is, we build a classifier that explores sets of structural units as a representation model
of webgenre instances. In this sense, we present a bag of structures approach as an
alternative to the bag of features approach. As we classify documents subject to their
internal structures this means that we integrate the task of hypertext categorization
into the framework of document grammars.

At this stage, one may object that there is already a range of approaches that
explore bags of structural features as, for example, the number of outgoing links
in a page (cf. Lim et al 23, Lindemann and Littig 24, Kanaris and Stamatatos
21). It would seem, from this perspective, that what we are doing is tantamount
to a structure-based classification. However, we respond from a sign-theoretical
perspective that distinguishes between the (explicit) layout structure, the (implicit)
logical structure, the (hidden) thematic and the (hidden) functional structure of a
document [8, 38]. To clarify this distinction, take the example of URLs as can-
didate resources of structural features [45]. Just as we resist to calling the page
structure of a book a reliable indicator of the logical document structure of the un-
derlying text, we do not assume that URLs provide reliable indicators of hypertext
structure. Rather, one has to assume – as is clarified in the Alternative Document
Model of [49] (cf. Lindemann and Littig 24) – an additional reference point of web
document analysis, that is, physical storage that includes file format and directory
structures. It is important to keep these reference points apart as they refer to differ-
ent resources of hypertext categorization. This can be exemplified in the framework
of Amitay et al’s (2003) approach who introduce the notion of a side link that exists
between pages located in the same directory. Apparently, side links are structural
units, but only conditionally. A side link may manifest as, e.g., a hypotactic down
link in terms of the logical document structure, while at the same time manifesting as
a paratactic link according to its physical storage [29]. Any approach that explores
structural features should clarify their origin according to thematic, generic, layout
or physical web document structure before speaking unspecifically of a structure-
based approach.

From this point of view, mono-level approaches are vulnerable to criticism for
their insufficient sign theoretical underpinning as they blur the source of structuring
of webgenre instances. In contrast to this, a sign theoretical notion conceives such
instances as complex signs that have a characteristic structure due to their mem-
bership in a certain genre. As a sign, a web document has a content plane and an
expression plane whose structuring may origin in thematically or functionally based
structures. From the point of view of webgenre modeling, we are interested in those
structures that have a functional provenance. To map these structures, we trans-
fer the notion of logical document structure of textual units [38] onto the level of
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Fig. 15.3 A typical scenario of hypertext zoning that answers the question whether the source
page is continued by the target page generically or thematically.

hypertexts. These structures are logical as they are based neither upon thematic
units, nor on layout units as, for example, webpages. As a consequence, a con-
stituent of the logical web document structure may simultaneously cut across the
borders of thematic units and layout units. We show that with the logical web doc-
ument structure we gain a further reference point of webgenre learning.

15.1.2 Thematic-Generic Tracking, Zoning and Sounding

Our approach would fall short of the complexity of web documents if we ignored
their content. Obviously, document structures may also reflect thematic structures.
The aim of including content modeling is to get a further reference point of hypertext
zoning, that is, the task of automatic hypertext delimitation. This is exemplified by
Figure 15.1 (right), where page A raises the question about its generic-thematic
identity:

• Does page A manifest a constituent of a website as an instance of a webgenre?
• Is page A thematically related to its neighboring pages (with whom together it

forms a thematic cluster) or does it, by being unrelated, change their topics?

In order to answer questions of this sort in face of the thematic openness of the
web, we are in need of an open topic model [52] that grows with the underlying
universe of topics. Together with our two-level webgenre model, such a topic model
allows for the zoning of hypertexts according to their generic and thematic structure.
It starts from the idea that hyperlinks can be characterized by the thematic or generic
relatedness of the pages linked by them. From the point of view of a source page of
a hyperlink in relation to a target page, this scenario can be exemplified as shown in
Figure 15.3. It poses three related questions:

1. Generic continuation: Is the genre of the target page of a hyperlink functionally
related to the genre of the source page? Does the former continue the genre of
the latter, is it similar to it or does it change it?

2. Thematic continuation: Is the topic of the target page semantically related to the
topic of the source page? Does the former continue the topic of the latter, is it
similar to it or does it change it?
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3. Thematic-generic continuation: Is the target both generically and thematically
related to the source?

By answering questions of this sort, we get information about the membership of
the target to the thematic cluster to which the source belongs (thematic delimitation)
or to the webgenre that possibly includes both the source and the target (generic de-
limitation). Answering these and related questions is the task of hypertext zoning
including the delimitation of instances of webgenres, thematic clusters and broad
topics in the web [11]. Hypertext zoning can also be conceived as the task of au-
tomatically delimiting websites as instances of webgenres based on an integrated
functional-thematic model irrespective of the pages’ physical storage. Generally
speaking, hypertext zoning explores the sign character of web documents in order
to delimit websites in terms of their meaning and function.

Now, one might object that zoning is more than identifying interlinked pages or
clustering them thematically. There is structure formation beyond pairwise link-
age in terms of thematic or generic progressions manifested by paths of interlinked
pages. This is also the starting point of our approach, which integrates the notion of
(thematic/generic) zoning with that of (thematic/generic) tracking and sounding.

1. Thematic/generic tracking means that for a stream of documents it is decided to
which given topic/genre category a newly encountered document belongs. This
is a variant of topic tracking [2], where for a stream of news stories one has to
decide whether they are about a given topic or not.

2. Thematic/generic sounding is the task of exploring the thematic/generic continu-
ation or extrapolation starting from a given document. By the thematic sounding
of a document x we get information about how long we keep track with its topic
when following a chain of hyperlinks starting with x. Sounding may also inform
us about topic changes or explorations of x. Other than tracking, sounding looks
ahead by selecting the topic/genre of x and asking how it is developed by docu-
ments (mediately) connected to x. From a user perspective, tracking takes place
after the user has activated a hyperlink starting from x, while sounding is per-
formed before deciding where to go next. In this sense, both tasks are related so
that methods should be sharable for tackling them. However, other than in topic
tracking, sounding does not assume a linearly ordered stream of documents, but a
network of interlinked documents. Note that sounding may also inform us about
what [9] calls genre/topic drift, that is, the specific discontinuation of genre/topic
by interlinked pages.

3. Thematic/generic zoning is the most demanding task. It aims at delimiting docu-
ments in terms of their thematic/functional structure. Other than sounding, zon-
ing explores the structure of the website to which the focal page x belongs. As
exemplified in Figure 15.4, zoning does not only ask what to expect when select-
ing among the links of x. Rather it asks for the structure and, thus, the delimi-
tation of the whole website to which x belongs. Thus, zoning explores both the
direction of pages connected to x and of the pages to which x is connects.

Take the example of an arbitrary article in Wikipedia, say, about nanotechnology.
In this case, thematic tracking means to answer the question whether this article is
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Fig. 15.4 Thematic-generic tracking, zoning and sounding from the point of view of the
vertex tagged as focus. Vertices are divided into two parts where the upper part denotes
thematic continuity by �, while⊥ is used to denote thematic discontinuity. Analogously, the
lower part denotes generic continuity and discontinuity. Note that zoning generally explores
arcs in both directions, that is, outgoing as well as incoming links when using a randomly
chosen unit as a starting point to delimit the web document to which it belongs. Further,
zoning may also include concurrent paths of units that form “siblings” as indicated by the
shaded area.

about the topic that we decided to track. Thematic sounding asks how far we get
when following links that focus on nanotechnology, while thematic zoning means
to delimit the cluster of all Wikipedia articles about nanotechnology. From the
point of view of an application, we may envision a thematic sounder as an add-
on to a browser that allows you to fix the topic of the present article, masks all
hyperlinks that link to thematically unrelated pages and displays for all remaining
links the sounded depth of possible continuations. Obviously, such an add-on may
help to master the problem of getting lost by the plethora of hyperlinks in Wikipedia.
Below, we present such an approach by example of thematic-generic soundings of
webpages.

Facing the dual task of hypertext zoning and sounding, the chapter is organized
as follows: Section 15.2 presents our two-stage model of genre-oriented hypertext
zoning. The model is evaluated by means of a corpus of three webgenres. Section
15.3 presents a model of thematic-generic sounding by focusing on directly linked
webpages. Finally, Section 15.4 estimates the effort of thematic sounding by addi-
tionally regarding indirectly connected webpages. This is done using Wikipedia as
an example.

15.2 A Two-Level Model of Logical Web Document Structures

In this section, we present a two-level model of genre-related hypertext zoning.
Other than mono-level approaches that focus on pages as manifestation units of
web genres, we integrate a genre-related segmentation in order to explore page seg-
ments as manifestation units. Take the example of a personal academic homepage
that usually manifests a number of modules on the subgenre-level such as publi-
cation, teaching, or contact [40]. Obviously, the contact module is also present in
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Fig. 15.5 Overview of the two-level model of logical web document structures.

many conference and project websites. So if we focus on single pages as the target
units of classification, these web genres would hardly be distinguished correctly.
In this example, a unit on the subgenre level (the contact module) is manifested
by a monomorphic page (that does not manifest any other module of the same or
any other genre). Obviously, there are two additional scenarios of manifesting the
contact module: on the one hand, it may be distributed over several pages. On the
other hand, it may occur as a segment of a single page that additionally manifests
different modules of the same or any other genre. In the latter case we speak of a
polymorphic webpage.

The chapter is about a two-level model of genre that integrates a segmentation of
polymorphic webpages in terms of subgenre modules or stages.1 We present and
evaluate a two-level algorithm of hypertext zoning that integrates the genre-related
classification of websites with their segmentation. The idea is to segment pages in
order to classify subgeneric modules (hypertext stage classifier) that, in turn, are
input to classifying sites or pages by their genre (hypertext type classifier).

15.2.1 Hypertext Stage Classifier

The architecture of our two-level classifier is shown in Figure 15.5. It includes
four steps of computing classified segmentations of webpages as input to our
hypertext-type- or webgenre-classifier: in a first step, a layout-based segmentation
of webpages is conducted by means of the Segmenter module, which decomposes
polymorphic pages into monomorphic segments. Secondly, the Tagger module
generates three representations per segment: a tfidf -biased term vector of lexical

1 This term is reminiscent of the notion of staging of Halliday & Hasan’s (1989) genre
model.
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features, a structure vector of structural features in terms of quantitative struc-
ture analysis [31] and a so called tag vector that comprises a quantitative model
of the usage of HTML-Tags within the segments. This feature model is input to
the hypertext-stage-classifier, which uses Support Vector Machines (SVM) for pro-
cessing the feature vectors. As any such classification may result in ambiguities we,
fourthly, integrate a Disambiguation module. Based on a Markov-model of stage
transitions, that is, based on a probabilistic grammar of subgeneric hypertext stages,
this module predicts the most probable stages for ambiguous segments that are fi-
nally input to the hypertext type classifier. Subsequently, we describe these four
working steps of our stage-classifier in detail.

Hypertext Segmentation

Normally, humans have no problem identifying functionally demarcated segments
of webpages such as navigation bars or contact information by exploring their vi-
sual depiction. Our segmenter simulates this behavior in that it decomposes pages
by exploring their visual depiction in terms of structure- and layout-oriented fea-
tures (such as whitespace, font-size or differences in color) [39, 53]. The idea is
to decompose pages into their Logical Document Structure (LDS) by analogy to
texts [38]. Thus, we assume that the logical document structure of a page cor-
relates with its visually separable segments. This separability is indicated, for
example, by highlighting (e.g., headers with an increased font-size or changing
colors), image separators (e.g., logo or animations), or empty sections with no
textual or graphical content. At first glance, this approach seems to be super-
fluous as we may simply explore structure-related HTML tags such as paragraph
markers. However, we face the tag abuse problem [5], which results from the
notorious tendency of writers to overload the functionality of any HTML tag to
explicate any kind of document structure. Take the example of highlighting head-
lines. On the one hand, we may use structure-related tags for annotating them
(e.g., <h1>headline</h1>). However, we may also utilize document-external
stylesheet (e.g., .myHeader { font-size: 20px;}) or internal stylesheet
information (<span style=’font-size:15px;’>). As these cases can be
mixed, we face a huge range of alternatives that can nevertheless be disambiguated
by their visual depiction.

Thus, in order to circumvent the tag abuse problem, we extract the LDS of pages
by additionally exploring their cascaded style sheets (CSS), whether internally or
externally embedded. To do this, we have selected a set of frequent indicators of
segment boundaries (e.g. <div>, <h1>, <h2>, <a>, font-size that exceeds a cer-
tain threshold and font-color information). This set is denoted by SF (see Algorithm
1). For each detected candidate of a segment boundary, a document decomposi-
tion is performed that results in a set of consecutive segments denoted by SV (see
Segment Cutting in Algorithm 1). In a second step, we perform a Segment Re-
Connection that amalgamates consecutive segments, which, because of their size,
are unlikely real segments. This step is needed since the initial segmentation of-
ten extracts segments that are too small such as navigational items, single headings
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Require: String H as the input website
String C as the stylesheet information
SF as the set of predefined segment features
SV as the set of output segments
minl as the minimum threshold (string length)

Parse website H and stylesheet information C;
// Segment Cutting
p:=0; m:=0;
for each occurrence of f ∈ SF in H at p do

add substring H[m, p] to SV ;
m:=p;

end for
// Segment Re-Connection
for each entry in SV as i do

if ilength < minl then
connect SV [i] with SV [i+1];

end if
end for
return SV

Algorithm 1. Segmenting webpages by means of their visual depiction.

or images. Thus, we use a threshold minl to indicate the minimal allowable size
of a segment. This threshold corresponds to the number of characters within the
candidate segment, where HTML tags and scripts are excluded. As an output of
page segmentation, we get a set of possibly monomorphic stages on the subgenre
level, which are further used for feature extraction and classification. Figure 15.6
exemplifies a page segmentation as generated by Algorithm 1.

Hypertext Stage Representation

In a typical scenario of text classification, feature selection focuses on lexical units
[47]. In our approach, we additionally integrate two levels of feature extraction.
This includes structural features and HTML-related features.

In a first step, we build a term vector per input segment based on lexical fea-
tures by processing the textual content of the segments. All textual data are passed
through a linguistic preprocessing module [33, 51] that includes a tokenizer, lemma-
tizer and stemmer as well as modules for language identification, sentence bound-
ary detection, Named Entity Recognition (NER) and Part-of-Speech (PoS) tagging.
Note that the detection of named entities is of great importance in webgenre anal-
ysis as certain stages of academic webgenres (e.g., the publication stage) are easily
detected by frequent occurrences of proper nouns. The resulting term vectors are
based on nouns, verbs, adjectives, adverbs, numerals, punctation marks and named
entities. In order to arrive at a second segment-related feature vector, we explore
the frequencies of 91 HTML tags (e.g. <div>, <p>, <img>, <span>, . . . ). This
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Fig. 15.6 A sample segmentation of a webpage as part of a personal academic website.

follows the idea that the usage of certain tags correlates with the instantiation of cer-
tain generic stages. For example, list-items (e.g. <li>, <ul>) tend to occur more
often in FAQ- or publication-sections than in about- or contact-sections. As a third
feature vector, we explore quantitative characteristics of the logical document struc-
ture of the textual content of the input segments. We compute μ and σ of the length
of sections, paragraphs and sentences. The idea is that, e.g., the average sentence
and segment length of an about- or publication-section differs significantly from a
contact- or link-section. The three-part stage representations (see Table 15.2) are
finally input to classifying stages as described subsequently.

Hypertext Stage Classification

The stage classifier is based on support vector machines [50], which are efficient
in classifying texts [19] as well as web documents [20, 44]. The classification of
stages operates in two phases. In the first phase, we train separate SVMs for each
subgeneric stage of each targeted webgenre on the basis of manually annotated,
pre-classified training data. In the case of personal academic homepages, we dis-
tinguish, for example, the stages publications, contact, events, and objectives. This
is described in Section 15.2.3, which includes an evaluation of the stage classi-
fier. The second phase consists of disambiguating multiply categorized stages (see
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Section 15.2.2). Note that the stage classifier combines the three-part stage repre-
sentation vectors into single vectors as input to the SVMs. Note also that the stage
classifier does not provide information about the webgenre of the input page, but
classifies its segments in terms of generic modules.

15.2.2 Hypertext Stage Grammar and Type Classifier

The stage classifier labels each segment of an input page by one or more stage la-
bels. This classifier has access to any stage of the underlying set of webgenres to
be learnt. Thus, it may assign the labels of stages of different webgenres to the
same segment. It may also occur that ambiguous labels are assigned as, for exam-
ple, publication that names the corresponding stage in project sites and in personal
academic homepages. Thus, we need to resolve such ambiguities. This is done
in two steps: in the training step, the transition probabilities of the stages are pre-
dicted separately per targeted webgenre. In this sense, we calculate, for example,
the probability by which a publication segment is followed by a contact segment in
the context of personal academic homepages. Thus, stage sequences are explored
subject to the underlying webgenre so that we arrive at a probabilistic grammar of
stages. The disambiguation is performed by computing the accumulated transition
probability of this first-order Markov model [6], where the stage labels are obtained
from the stage classifier. Finally, the most probable sequence of stage labels is used
to categorize the segments of the input page.

The hypertext type classifier, that uses the output of the Disambiguation module,
is implemented in two variants: on the one hand, we implement a classical bag-
of-features model based on the tripartite feature vectors of the Preprocessor (see
Figure 15.5) as input to three webgenre-related SVMs. Henceforth, we call this
approach the bag-of-features-classifier. As an alternative, we build a classifier that
explores the set of stage labels of input pages. In this sense, we speak of a bag-of-
structures-classifier as it analyzes multisets of stage labels instead of the tripartite
feature vectors to represent input pages. The bags-of-structures are once more input
to SVMs that explore the frequencies of the stages as an additional feature. That
is, while the bag-of-features-classifier is directly based on the HTML, structure-
related and lexical features (see Table 15.2), the bag-of-structures-model is a two-
level classifier, which uses the latter features to classify subgeneric stages that in the
next step define the focal feature units of the webgenre-related classification. In this
sense, we speak of a two-level approach.

15.2.3 Experiments

As explained above, we expect that differences between webgenres will correlate
with differences in their staging on the subgenre level. That is, we expect that bags
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of sub-generic modules of a page will reveal its genre. In this sense, we classify
webgenres by segmenting and classifying their modules first.

Previous studies [36, 44, 21] of webgenre learning focus on classifying webpages
as a whole by disregarding the latter type of structuring. This is reflected by a
focus on functionally as well as thematically well-separated genres such as web
shops in contrast to FAQs or search pages. Obviously, such genres are separable
on the level of lexical features. In contrast to this, we focus on a palette of rather
closely related webgenres whose instances may intersect in terms of their content:
conference websites, personal academic homepages, and academic project websites.
Because of overlaps we expect that these webgenres are more difficult to learn than
related palettes reflected in the literature.

The evaluation of our two-level webgenre model is threefold: firstly, we evaluate
the performance of the page segmenter in order to show how well it endows the
subsequent classifiers with segmentations. Secondly, we analyze the stage classi-
fier in order to measure how well we perform on the subgenre level. Finally, we
comparatively evaluate the webgenre classifier based on the bag-of-features- and
the bag-of-structures-model.

Corpus

Although there are few reference corpora [36, 44] for webgenre learning [41], a
stage segmentation as needed in the present context has not been done so far. There-
fore, we compiled a new reference corpus of instances of conference websites, per-
sonal academic homepages, and academic project websites as typical webgenres in
the academic domain. The preparation of this training corpus, which is henceforth
called the WebgenreStageCorpus (WSC)2, has been done by selecting and down-
loading 50 German websites for each of these webgenre. Each of the pages within
the WSC has been segmented manually in terms of its genre-related staging (see
Table 15.1). The aim of this annotation is to segment monomorphic stages within
the pages regarding the stage labels of Table 15.1. The WSC includes 3 webgenres
each of 50 websites for which 150 webpages were annotated so that we finally got
1,339 annotations of subgeneric stages.

Regarding the representation model of page segments, we evaluated our feature
selection by means of the GSS coefficient [47]. Interestingly, with the GSS-based
feature selection, the categorization neither improved nor deteriorated. In order to
implement the SVM-based stage classifier, we used SVMlight [19]. For each stage,
a separate SVM was trained in a one-against-all setting. Based on a leave-one-out
cross-validation, we report the F1-measure, that is, the harmonic mean of preci-
sion and recall. Regarding the evaluation of the page segmenter, we removed all
manually annotated identifiers and used the entire page as an input to segmenta-
tion. The evaluation is based on a correlation analysis that compares the manual
annotation with its computed counterpart. Each segment identifier had to be set at
exactly the same (character) position in a page in order to be counted as a true pos-
itive. As a baseline scenario, we computed a segmentation based on tags of headers

2 The WebgenreStageCorpus can be accessed at http://www.webgenrewiki.org/.

http://www.webgenrewiki.org/
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Table 15.1 Overview of the WebgenreStageCor-
pus by webgenre (type) and subgeneric stage
(segment).

Type Conference Personal Project

Segment about contact contact
accommodation personal events
call publications framework
committees research links
contact teaching news
disclaimer objectives
organizer project
program publications
registration staff
sightseeing
sponsors

#Pages 50 50 50

Table 15.2 Overview of the num-
ber of structure-related (STR), tag-
related (HTM), and token-related
(TOK) features by webgenre. The
last column shows the number of
stage-related features (SEG) that
were used by the bag-of-features-
and the bag-of-structures-model.

Webgenre STR HTM TOK SEG

Project 29 91 11,734 435
Conference 29 91 56,994 292
Personal 29 91 10,260 612

(<h1>,<h2>,<h3>,<h4>,<h5>), paragraphs (<p>), divisions (<div>) and
tables (<table>).

Table 15.3 Results of evaluating the Seg-
menter module (see Figure 15.5).

Model Recall Precision F-score

Segmenter .936 .625 .745

Baseline .263 .446 .331

Table 15.4 Results of evaluating the
stage classifier for personal academic
website.

Classes Recall Precision F-score

contact .947 .857 .899
links .583 .636 .608
personal .661 .709 .684
publications .795 .720 .756
research .485 .800 .604
teaching .581 .643 .610

Average .675 .728 .694

Baseline .280

15.2.3.1 Results

Table 15.3 shows the results of evaluating the page segmenter. It can be observed
that with an F1-score of .745 we clearly outperform the baseline scenario of .331.
This is a promising result, since we used a very strict evaluation setup. Note that the
computed identifiers of segment boundaries had to be placed at the same position as
their counterparts tagged by the human annotators. In any event, the segmentation
of pages into possibly monomorphic units is in about three-quarters of all cases
successful.
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Table 15.5 Results of evaluating the
stage classifier for conference websites.

Classes Recall Precision F-score

about .578 .703 .634
accommodation .680 .700 .690
call .350 .389 .368
committees .609 .609 .609
contact .581 .720 .643
disclaimer .706 .667 .686
organizer .455 .417 .435
program .692 .838 .758
registration .729 .771 .749
sightseeing .708 .739 .723
sponsors .542 .650 .591

Average .603 .655 .626

Baseline .200

Table 15.6 Results of evaluating the
stage classifier for project websites.

Classes Recall Precision F-score

contact .823 .869 .849
events .525 .636 .575
framework .447 .568 .500
links .471 .421 .444
news .539 .560 .549
objectives .603 .734 .662
project .799 .789 .794
publications .761 .761 .761
staff .500 .807 .617

Average .608 .683 .639

Baseline .240

Table 15.7 Results of evaluating the bag-
of-features-model.

Classes Recall Precision F-score

conference .640 .640 .640
personal .618 .627 .622
project .620 .608 .614

Average .626 .625 .625

Baseline .428

Table 15.8 Results of evaluating the bag-
of-structures-model.

Classes Recall Precision F-score

conference .894 .919 .906
personal .917 .941 .929
project .930 .923 .927

Average .914 .928 .920

Baseline .428

Tables 15.4–15.6 show the results of evaluating the stage classifier. Using the
tripartite stage representation model (see Table 15.2) as input to the SVM-based
classifier, we achieve an F1-score of .653 on average. As a baseline scenario, we
computed a random clustering to get a lower-bound of evaluation. It randomly
assigned each segment to one of the stage labels of Table 15.1. Although we clearly
outperform this baseline, our results indicate that the classification of subgeneric
stages is a challenge. The average F1-scores range between .626 and .694 for the
webgenres. This is certainly not yet an efficient classifier. One reason may be the
small number of training examples. In any event, we also observe several stages that
are classified with an F1-score of more than 70%. For example, publication sections
within personal academic homepages, program sections of conference websites or
contact sections of project websites are segmented efficiently.

Table 15.7 shows the results of evaluating the webgenre classifier based on
the bag-of-features-model. With an F1-score of .625 we outperform once more
the corresponding baseline, however to a minor degree. Obviously, by inferring the
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webgenre directly from classical feature vectors, the classifier does not perform very
well. Now, look at Table 15.8, which shows the results of the bag-of-structures-
model. It outperforms the baseline scenario with an average F1-score of .92 per
webgenre. This is a very promising result in terms of our two-level model of we-
bgenre learning. It shows that the threefold feature vectors do not reliably indicate
genre membership – at least in the case of the genres considered here. What is more
important for categorizing pages correctly is the kind of stages and their frequency
as reflected by the bag-of-structures-model. In this sense, our findings support a
structure-oriented approach. Note that our experiment considers overlapping web-
genres and, therefore, goes beyond classical approaches to hypertext categorization
with their focus on categories that hardly overlap.

15.3 Thematic-Generic Sounding in the Web

In this section we address the task of thematic-generic sounding by means of open
topic models [52]. The basic idea of the algorithm is that hyperlinks can be char-
acterized by the thematic and generic relatedness of the pages linked by them. We
focus on a dynamic, content-related categorization and topic labeling of webpages
by using a topic-oriented ontology as a reference point. This task is challenging for
two reasons:

1. The topic universe is in a state of permanent flux so we cannot presuppose a fixed
set of topic labels as demanded by supervised learning. Thus, we need access to
a dynamically growing ontology as a knowledge resource for topic labeling [30].

2. Document-centered tasks such as topic labeling or text categorization suffer from
the bottleneck of knowledge acquisition [7]. This means that documents that
are thematically related may nevertheless differ in their vocabulary. Thus, over-
lapping lexical features do not sufficiently indicate the thematic relatedness of
documents.

There are several approaches that try to overcome this problem by means of latent
semantic analysis, SVM-based semantic spaces or WordNet and related resources
[18, 22, 10]. In contrast to this, we utilize Explicit Semantic Analysis (ESA) [15]
by mapping any input text onto a given concept hierarchy as an explicit knowl-
edge resource [12, 16, cf.]. More specifically, we utilize the concept hierarchy to
represent the content of input texts by categories that are not directly manifested
within them, that is, categories as generalizations of concepts, which are directly
manifested within the document.

One resource that meets both requirements (hierarchical explicitness and concep-
tual openness) is given by social ontologies as instantiated by Wikipedia’s category
system [52]. Based on the collaboration of a multitude of users, who are constantly
creating, editing and classifying Wikipedia’s article collection, this resource ensures
the dynamic aspect in topic labeling in that it provides a category system in terms
of a generalized tree [28].
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Our algorithm of thematic sounding of web documents is based on two stages:
each input document is mapped onto an article-based semantic space in order to as-
sess the similarity of Wikipedia articles and input documents. Then we use the cat-
egory information within articles that are similar to the input to access Wikipedia’s
category system. This allows us to retrieve thematically related categories as topic
labels for the input documents. Both stages are explained subsequently.

Wikipedia-Based Semantic Spaces

We utilize ESA [15] to explore Wikipedia as a knowledge resource. More specifi-
cally, we explore Wikipedia’s article network in conjunction with its category sys-
tem to map input documents onto two semantic spaces: the one being spanned
by means of Wikipedia’s article network (network A), the other being spanned by
means of Wikipedia’s category system (network C).

We start from the link-content conjecture [35] according to which a web doc-
ument shares content with those documents to which it is linked. In terms of
Wikipedia, this means that if we link an input document x into network A, we can
explore the categories c of the neighboring articles of x within A as entry points to
network C (i.e., category system of Wikipedia). The idea is that the categories c
would likely have been used to categorize x, if this text were part of Wikipedia’s
article network. Obviously, this is a way to solve the knowledge bottleneck problem
as, now, we have access to categories that are not necessarily manifested within x,
but categorize its content. Because of this feature, we speak of network A and C as a
two-level semantic space. Note that both concept spaces A and C are minimized in
terms of their size. Basically, all articles are deleted with an in-degree of less than 5
links, while all categories are deleted that categorize less than 10 articles.

In order to introduce this model, we need several definitions: we define Cart as the
set of all titles of Wikipedia articles (network A) and Ccat as the set of all category
labels within network C. Each Wikipedia article x is represented by a vector cart(x)
of all properly selected lexical features that occur in x and are additionally biased
according to the tfidf scheme of [42]. Any input document y, whose content has to
be computed, is represented the same way by a feature vector cart(y). Finally, each
category c ∈ Ccat is represented by a vector ccat(c) ∈ {0,1}|Cart | whose dimensions
define whether the corresponding article is categorized by c or not.

Now, a given input document x is mapped onto the semantic space A by the
function

fart : {cart(x) |x ∈�}→ [Cart ]10 (15.1)

which retrieves the top 10 titles of those articles y that by their vector representa-
tions cart(y) are most similar (i.e., least distant) to cart(x) in terms of the cosine
measure.3 � is the (open) corpus of input documents. Next, x is mapped onto the
semantic space C by the vector cresult(x) ∈ �|Cart | whose dimensions accord to the
cosine similarity of the vector representations of x and the corresponding article y,
supposing that the title of y belongs to fart(cart(x)). Otherwise, if the corresponding

3 Note that for any set X , [X ]k is the set of all subsets of X of exactly 10 elements.
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Table 15.9 Initial and generalized topic labels by means of the German Wikipedia taxonomy.

Input Text: “Das Grösste Kursplus seit 1985 wurde an den acht hiesigen Börsen im
vergangenen Jahr erzielt. Beispielsweise zog der Deutsche Aktienindex um 47 Prozent
an (vgl. SZ Nr. 302). Trotz Rezession und Hiobsbotschaften von der Unternehmensfront
hatten sich zunächst britische und amerikanische Fondsverwalter [...]”
Output:
Related Article: Anlageklasse / Bundesanleihe / Nebenwert / Bullen- und Bärenmarkt /
Börsensegment
Initial Topics: Unternehmen nach Wirtschaftszweig / Unternehmen / Unternehmensart /
Deutscher Finanzmarkt / Investmentgesellschaft
Generalized Topics: Finanzierung / Finanzmarkt / Ökonomischer Markt / Wirtschaft /
Rechnungswesen

article does not belong to fart (cart(x)), the dimension’s value is zero. This allows us
to apply the function

fcat : {cresult(x) |x ∈ �}→ [Ccat ]10 (15.2)

which retrieves the top 10 labels of those categories y that by their vector represen-
tations ccat(y) are most similar (i.e., least distant) to cresult(x) – once more in terms
of the cosine measure.4

Category-Based Topic Labeling

The next step is to process Wikipedia’s category system to retrieve node labels (of
a certain scale of generalization) as topic labels for the input document x. We call
this procedure concept generalization. Since Wikipedia’s category system spans a
sort of generalized tree rather than a directed tree [28], it has to be preprocessed.
That is, starting from the root category Category:Contents, we explore the category
system by a breadth-first search to transform it into a directed tree. Next, we use the
category labels of fresult(ccat(x)) as starting points of a hill-climbing search. That is,
we move upwards through the tree structure of the taxonomy to enter more general
categories. Since the category taxonomy is structured from general categories to
specific ones, we derive a topic generalization on the way up. We use a threshold
L, that is, the number of edges to be moved upwards, to restrict the scope of gen-
eralization. The higher L, the more general the retrieved categories. In the present
study, we set L = 4.

See the tables 15.9–15.10 for a sample output of this algorithm. So called initial
topics denote categories that are closely related to the content of the input document.
This holds, for example, for olympic athlete or basketball player. In contrast to
this, so called generalized topics label the topic of the input document in a more
generalized manner. This holds, for example, for the categories sport, Germany,

4 For more details on this approach and its evaluation see [51].
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Table 15.10 Initial and generalized topic labels by means of the English Wikipedia
taxonomy.

Input Text: “Nowitzki’s performance this year has vaulted him past the late Petrovic as
the NBA’s best-ever European import. But the Bavarian Bomber is fast becoming one of
the NBA’s best players, period. [...]”
Output:
Related Article: Dirk Nowitzki / Dallas Mavericks / Avery Johnson / Jerry Stackhouse /
Antawn Jamison
Initial Topics: basketball player / basketball / athlete / olympic athlete / basketball league
Generalized Topics: sport / United States / basketball / Germany / sport by country

and sport by country, which are closer to the root node of Wikipedia’s category
system (note that [Dirk] Nowitzki is a German basketball player).

Thematic-Generic Sounding by Means of the ThematicGenericLinker

Now we are in a position to utilize our Wikipedia-based semantic space together
with our two-level model of webgenres to implement a thematic-generic sounder,
the so called ThematicGenericLinker, for directly linked web pages. Based
on the idea that hyperlinks target at pages that are likely related to their source
in terms of genre or topic, we automatically process the target of a page in two
ways: firstly, we map its content on the category system of Wikipedia in order to
label its topic. This gives us information about whether the source of the link is
thematically similar to its target (see Figure 15.3 and Section 15.1.2). Secondly, we
segment and classify the target by means of our two-level model of webgenres. This
gives us information about the subgeneric staging of the target page and about the
genre manifested by it. Currently, the genre-related sounder is implemented only
for German and here only for the webgenres analyzed above, while its topic-related
counterpart works for German pages as well as for English pages. Figure 15.7
exemplifies the ThematicGenericLinker by an explicitly entered URL. In its
working mode, the ThematicGenericLinker uses a context menu to provide
a look ahead on the genre and topic of the page targeted by the corresponding link.5

The ThematicGenericLinker may be seen as a proof of concept of how
to integrate genre with topic modeling. By this approach we pave a way to go
beyond the narrow focus of webgenre modeling on the one side and text or web
categorization on the other. The reason is that by the zoning and sounding of web
documents, we establish new tasks in web mining.

5 See http://api.hucompute.org/semantic-linker/ for a download of the
ThematicGenericLinker.

http://api.hucompute.org/semantic-linker/
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Fig. 15.7 Thematic-generic sounding by means of the ThematicGenericLinker by
example of a project website.

15.4 Bounds of Thematic Sounding in Wikipedia

In the previous section, we presented an algorithm for thematic-generic sounding
that focuses on directly linked pages. In this section, we overcome this limitation
by studying the thematic sounding of immediately and mediately connected pages.
More specifically, we ask for an upper bound of the depth and breadth of thematic
sounding by starting from any randomly chosen start page. The reason to do this is
that without such knowledge, algorithms of thematic sounding are doomed to fail
when facing the sheer amount of interlinked pages in the web. Therefore, we need
to know the number of pages that have to be processed “on average” by a sounding
algorithm. Such a bound tells the application where to stop even in cases of complex
document networks. In this section, we present an approach for calculating such a
bound.

Generally speaking, the web is a scale-free small world [1, 4, 54]. This also
holds for embedded web networks such as Wikipedia and special wikis [55, 26].
Formally speaking, from the point of view of thematic sounding, this characteristic
results in too many vertices that belong to the cumulative j-sphere of the start vertex
of sounding. By the j-sphere [13] S j(v) of a vertex v ∈ V of a digraph D = (V,A)
we denote the set S j(v) = {w∈V |δ (v,w) = j} of all vertices w∈V whose geodesic
distance δ (v,w) from v to w is j. By the cumulative j-sphere of a vertex v we denote
the set

Ŝ j(v) = ∪ j
i=0Si(v) (15.3)
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Fig. 15.8 Left: the article subgraph of the German Wikipedia that is induced by the set of 306
articles that are directly linked by the article Barack Obama. Right: selection of 1,000 articles
of the article subgraph of the German Wikipedia that is induced by the set of 32,244 articles
that are either linked by one or two links to the entry article Barack Obama (downloaded by
February, 2009).

The problem with scale-free small worlds is that even for small values of j (e.g.,
j = 3±1) Ŝ j gets too large such that |Ŝ j| ≈ |D|. In Wikipedia, for example, |Ŝ3| ≈ |D|
if the article graph is represented as an undirected graph – there are just too many
neighbors in the 3-sphere of a Wikipedia article (see Figure 15.8 for an example).

This characteristic is a direct consequence of the short average geodesic distance
in small-world networks. One reason for this distance is the existence of hubs that
link to a multitude of vertices of the same network [4]. Obviously, it is bad advice
to disregard such hubs with a high degree of centrality when computing thematic
soundings, as the network gets disconnected by deleting them. Thus, we need to
follow another approach when performing thematic sounding in scale-free docu-
ment networks. That is, we need to focus on some appropriately selected subset
of vertices that are connected with the chosen start vertex of sounding. In order to
provide a model of subset selection that is well-founded in terms of semiotics, we
utilize the notion of so-called 1-dominator sets of [46].

Generally speaking, for a start vertex v ∈ V of a digraph (V,A), [46] selects a
subset Dv ⊂ V of vertices w ∈ Dv that are solely reachable from vertices on some
path between v and w. In terms of our application scenario, Dv subsumes all articles
that are thematically related to v as the entry point of all paths by which these articles
can be reached. It will be shown that this model is too restrictive to be used for
thematic sounding. However, Saunders’ approach can be extended to get a first
model of thematic sounding in document graphs. This can be done by restricting
the process of sounding to those vertices that are triggered by v in a sense to be
defined subsequently, while excluding thematically polymorphic vertices, which are
reachable from vertices of different thematic provenance.



320 A. Mehler and U. Waltinger

In order to implement this concept, we complement Saunders’ model by the no-
tion of successor sets. Thereafter, we introduce the notion of trigger sets as a sort
of subset in a certain range, using Saunders’ 1-dominator sets as a lower bound and
successor sets as an upper bound of subset selection. Finally, we compute statisti-
cal moments of the distribution of trigger sets in Wikipedia to get insights into the
bounds of thematic sounding in complex document networks.

15.4.1 Dominator, Successor and Trigger Sets

[46] defines the 1-dominator set D(D) of a digraph D = (V,A) as a family of sub-
graphs of D:

D(D)={Dv =(VDv ,ADv)|v∈V∧∀w∈V : Dv �=Dw =(VDw ,ADw)⇒VDv �⊆VDw} (15.4)

where for each v ∈V the subdigraph Dv of D is recursively computed as follows:

D(0)
v =

(
{v},A(0)

v

)
, . . . , D(i+1)

v =
(

V (i+1)
v ,A(i+1)

v

)
(15.5)

such that for IN(v) = {w ∈V |∃a ∈ A : in(a) = w ∧ out(a) = v} we define:

V (i+1)
v = {w ∈V | IN(w)∩D(i)

v �= /0 ∧ IN(w)⊆ D(0,...,i)
v = ∪i

k=0D(k)
v } (15.6)

A(i+1)
v ⊆ A is the arc set of the subgraph of D induced by V (i+1)

v . Finally, we set

Dv← D(|D|)
v (15.7)

Dv is called acyclic in the sense that the subdigraph Dv−v induced by VDv \{v} is
acyclic [46]. Each vertex v for which there exists an acyclic structure Dv ∈ D(D) is
called the trigger vertex of D as it is the root of a maximally acyclic component of D.
In this sense, D(D) is a decomposition of D into acyclic components of the digraph
D [46]. In this paper, we call any graph Dv defined according to Formula 15.7 the
dominator graph induced by v and its vertex set the corresponding dominator set.
Further, we compute this set for any vertex v ∈V , whether it is maximal in the latter
sense or not. Finally, we compute the set

D̂(D) = {Dv |v ∈V} ⊇ D(D) (15.8)

and call it the dominator set of the digraph D.
The vertex set of any dominator graph Dv is restricted to vertices w of the digraph

D that are incident to arcs whose tail lies on a path from v to w. In this way, Dv

excludes every other vertex even if it is reachable from v. In order to capture the set
of all vertices that are reachable from the “trigger vertex” v, we introduce the notion
of a successor set. Formally speaking,

S(D)={Sv =(VSv ,ASv) |v∈V ∧ ∀w∈V : Sv �= Sw =(VSw ,ASw)⇒VSv �⊆VSw} (15.9)
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Fig. 15.9 A schematic example of a generalized tree triggered by vertex v1. By spanning a
dominator graph starting from v1, vertices v2, . . . ,v9 are excluded though being (mediately)
connected to v1. If we alternatively span a trigger graph, vertices v2, . . . ,v6 are included.
Further, if we allow that vertices are linked from the outside of the successor set of v1 sup-
posed that these outside vertices are directly connected to v1, then vertices v2, . . . ,v8 are also
included. Thus, only vertex v9 is excluded since it is dominated by vertex y, which is con-
nected by a path of length 2 to v1.

is the set of all maximum successor graphs of vertices v ∈ V , where the successor
set VSv is the set of all vertices that lie on a path starting from v, and ASv ⊆ A is the
arc set of the subgraph of D induced by VSv . Finally, we define

Ŝ(D) = {Sv = (VSv ,ASv) |v ∈V} (15.10)

by analogy to D̂(D) as the successor set of the digraph D (whether it is maximal
or not). Note that for any vertex v ∈ V , Dv is a subgraph of the successor graph
Sv. Note also that Sv = CD(v) (the component of v in D, that is, the subgraph of D
induced by the set of all vertices that are reachable from v).

Based on these preliminaries we can now introduce the notion of (generalized)
trigger sets of a digraph D that we use to estimate some bounds of thematic sounding
in document networks. From the point of view of thematic sounding, successor sets
induce oversized subgraphs, while dominator sets generate undersized component
graphs. In the former case, vertices may be selected that are thematically dissimilar
to the trigger vertex v, while in the latter case vertices may be excluded that actually
fit the topic of v. Thus, we need a notion of a trigger set in the range of these extreme
cases. This can be exemplified as follows.

1. In Figure 15.9, v1 is used as a trigger vertex. In this scenario, vertex x is di-
rectly connected to v1 from the outside of the successor graph Sv1 induced by
v1. According to the link-content conjecture [35], which states that the content
of a page is similar to the content of the pages that link to it, we can assume a
thematic relation between x and v1. However, x may also link to v1 by serving
an organizational function as in, for example, the main page of Wikipedia. Both
cases (of a thematic and organizational tie) apply if x is the entry page of a portal
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to which v1 is thematically related. Note that a geodesic distance of 1 (as cov-
ered by the link-content conjecture) is significantly below the average geodesic
distance in Wikipedia, that is, 3 + x, 0 < x < 1, for the undirected case [55]. In
any of these scenarios, a link from x to v7 does not interfere with the claim that
v7 is thematically triggered by v1 independently from any vertex outside of Sv1 .
Thus, we can disregard x when evaluating v7 as an element of the trigger graph
induced by v1. This does not hold for vertex y, which is two arcs away from
v1. A distance of 2 is close to the expected value of the geodesic distance in a
scale-free graph so we assume that v9 is thematically more related to y than to
v1. By this consideration, we get a rule to include vertices in the trigger set of a
vertex even if they are triggered from outside its successor set.

2. Now, look at vertex v2 in Figure 15.9. This vertex is excluded from the dominator
graph Dv1 as it is incident to an arc that starts from v3. However, v3 belongs to the
successor set Sv1 in a way that all tails of arcs that end in v2 also belong to Sv1 . In
this case, v2 can be seen to be thematically triggered by v1 supposing that all tails
of all arcs ending at v2 are triggered the same way (irrespective of whether they
lie on a path from v1 to v2 or not). By this consideration, we get a rule to include
vertices into the trigger set of a vertex v even if it is excluded from the dominator
set Dv. Note that this rule is trivially met in part by Saunders as demonstrated by
the arc from v3 to v1: by definition, v1 is an element of Dv.

In order to implement a notion of trigger graphs that meet these two rules, we
utilize the notion of a Directed Generalized Tree (DGT) [27]. Directed general-
ized trees are digraphs with a kernel hierarchical structure that is superimposed by
graph-inducing upward, downward and lateral arcs as exemplified in Figure 15.9.
Obviously, these types of arcs do not interfere with evaluating whether vertices are
being triggered or not. That is, a vertex does not lose its status as being triggered if
it is, for example, incident with a lateral arc in the DGT spanned by the successor
set Sv of the trigger vertex v. Based on these considerations, we can now define the
set of all maximum trigger sets T(D) of a digraph D = (V,A) as

T(D)={Tv =(VTv ,ATv) |v∈V∧∀w∈V : Tv �=Tw =(VTv,ATv)⇒VTv �⊆VTw} (15.11)

By analogy to maximum dominator sets, Tv is recursively defined as follows:

T [0]
v = ({v},A[0]

v ), . . . , T [i+1]
v = (V [i+1]

v ,A[i+1]
v ) (15.12)

where

V [i+1]
v = {w ∈V | IN(w)∩V [i]

v �= /0 ∧ IN(w)⊆VSv ∪ IN(v)} (15.13)

and A[i+1]
v ⊆ A is the arc set of the subgraph of D induced by V [i+1]

v . Finally, we set

Tv← T [|D|]
v (15.14)
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Fig. 15.10 The range of dominator, trigger and successor graphs and their vertex sets, re-
spectively.

By analogy to D(D) and S(D), any Tv ∈ T(D) is maximal in the sense that there
is no graph Tw ∈ T(D) such that Tv is a subgraph of Tw. As before, this view is too
restrictive. In Wikipedia, for example, any article may be used as an entry point
to compute thematic soundings. The reason is that users may directly access them
from the outside, for example, via a search engine. In order to capture this scenario,
we define the trigger set of a digraph as follows:

T̂(D) = {Tv |v ∈V} ⊇ T(D) (15.15)

It is easy to see that any Tv ∈ T̂(D) spans a directed generalized tree in the sense
of [27]. In order to prove this we need to show two things:

• Firstly, we need to show that for all vertices w ∈ V [|D|]
v there exists at least one

simple path from v to w in T [|D|]
v .

• Secondly, we need to show that there is no arc a ∈ A[|D|]
v such that in(a) = u and

out(a) = v for some u �∈VSv as the vertex set of the successor set Sv.

This follows directly from the definition of Tv. Further, for any vertex v ∈ V it
holds that

VDv ⊆VTv ⊆VSv for Dv = (VDv ,ADv),Tv = (VTv ,ATv),Sv = (VSv ,ASv) (15.16)

Thus, trigger sets as defined by Tv span subgraphs in the range of dominator
and successor sets. This defines a range of selected subsets of vertices as input to
thematic sounding as depicted by Figure 15.10: in cases where Dv ≈ Tv �≈ Sv, the
trigger set of a vertex is restricted to its dominator set. That is, Tv mainly contains
vertices that are strictly triggered by v as captured by Dv, while the remainder of
its successor nodes are thematically triggered from outside of Sv. Conversely, if
Dv �≈ Tv ≈ Sv, most vertices that are reachable from v are thematically triggered by
v only. In this case, Sv is thematically unambiguously traversable from the point of
view of v. This scenario is exemplified by an article in the periphery of Wikipedia
that serves as an entry point to articles that further specify the topic of v and only
of v.

An algorithmic specification of trigger sets is provided by Algorithm 2. Its time
complexity is estimated by the following corollary.

Corollary 1. For an input digraph D = (V,A), the time complexity of Algorithm 1
is in the order of O(|V |+ |A|).
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input : a digraph D = ({v1, . . . ,vm},A) together with a vertex v = v j ∈V
output: the trigger graph Tv = (VTv ,ATv) induced by v over D

compute Sv = (VSv ,ASv);1

n← |Sv|; VY ←VSv = {vi1 , . . . ,vin}; AY ← ASv ; Yv← (VY ,AY );2

�←VSv ∪ IN(v);3

for w = vi1 ..vin do4

if IN(w) �⊆� then5

Yv←Yv−w;6

end7

end8

Tv←CYv (v);9

Algorithm 2. An algorithm for computing trigger sets Tv. Note that for any digraph
X , CX (v) is the component (subgraph) of v in X .

Proof. Sv =CD(v) can be computed by a breadth-first search in the order of O(|V |+
|A|). In the worst case, VSv = V . Thus, the for loop is in the same order. CYv(v)
can be computed by a breadth-first search, too, so that, finally, O(3(|V |+ |A|)) =
O(|V |+ |A|).

15.4.2 Statistical Moments of Trigger and Dominator Sets

D̂(D), T̂(D) and Ŝ(D) define three reference points for specifying candidate scopes
of thematic sounding. Each of these sets defines a distribution of graphs that can
be characterized by statistical moments. We describe any such distribution {Xv =
(VXv ,AXv) |v ∈V} by the mean eccentricity of the vertices v in conjunction with the
mean order of Xv. This gives estimates of the mean depth and breadth of thematic
sounding in the underlying document network when starting from any vertex v.
We compute the arithmetic mean of these distributions and consider the standard
deviation as an dispersion parameter. Since ∀v ∈V : VDv ⊆VTv ⊆VSv , Dv and Sv can
be used to compute lower and upper bounds of thematic sounding, while Tv focuses
on the corresponding mean effort.

Figure 15.11 shows the box and whisker plots of these indices computed by ex-
ample of 66 Wikipedias of a size in the range of 10,000-150,000 articles. These 66
networks (in 66 different languages) have been taken from a corpus of 263 releases
of Wikipedia that were downloaded in November/December 2008 [28]. In this sub-
corpus, the mean of the distribution of mean eccentricity values of trigger graphs is
approximately 7, while the corresponding mean order is around 114. Analogously,
the mean of the distribution of mean eccentricity values of successor sets is 24 and
the corresponding mean order is 35,137 – obviously, the latter number is beyond
what can be processed in the course of thematic sounding, while a bound of 114
vertices gives a manageable number.
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Fig. 15.11 Left: box plots of the distribution of mean eccentricity values in trigger sets (1)
and successor sets (2). Right: box plots of the distribution of mean order values in trigger sets
(1) and successor sets (2). All distributions are computed based on 66 releases of Wikipedia.

By the results shown in Figure 15.11, we get estimators of the depth and breadth
of thematic sounding in document networks as exemplified by Wikipedia. From
the point of view of these results, we get first hints on how to restrict the scope of
thematic sounding in Wikipedia in a meaningful way even if the start vertex is ran-
domly chosen. More specifically, starting from Algorithm 2, we can use the mean
depth and breadth as stop conditions: whenever Algorithm 2 has spanned a graph
whose eccentricity exceeds the bound of 7 vertices or whose order exceeds the num-
ber of 114 vertices, it stops. This twofold stop condition guarantees that Algorithm
2 processes in a reasonable time without considering too many articles for thematic
sounding. Further, this approach opens the door to extending the findings of Section
15.3 beyond the scope of immediately linked web pages. The reason is that we can
now prevent a complete expansion of vertices by restricting the set of documents
to be considered in terms of the latter bounds. The present section is a first step to
paving the way for making this task a manageable endeavor.

15.5 Conclusion

In this chapter, we tackled two related tasks in web mining: thematic-generic zon-
ing, that is, delimitating websites as instances of webgenres, and thematic-generic
sounding, that is, checking the continuity of interlinked pages in terms of topic or
genre. In this way, we provided a framework for integrating content and structure
modeling in web mining that goes beyond mono-level classification models with a
focus on single pages. Further, we computed estimators for the expected depth and
breadth of thematic sounding that can be used as stop conditions in corresponding
sounding algorithms. Future work will deal with extending this approach to provide
thematic-generic sounders as browser add-ons.
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Chapter 16
Learning Semantic Relations from Text

Gerhard Heyer

Abstract. The paper presents a co-occurrence based approach to extracting seman-
tic relations from text. We concentrate on Semantic Relations as relations among
concepts, and instances of such relations, as used in taxonomies and ontologies. We
show how typed semantic relations can be derived from association networks by fil-
ters based on linguistic and non-linguistic knowledge. The main point of the paper
is to argue that there is no single step derivation of knowledge about semantic re-
lations. Learning semantic relations from text requires linguistic and non-linguistic
knowledge sources of different kinds and quality that need to iteratively interact in
order to derive high quality knowledge about semantic relations.

16.1 Introduction

Learning Semantic Relations (SR) from Text is increasingly important to content
engineering, in particular text mining, knowledge management and ontology gen-
eration. While the notion of SR is a key notion to all approaches that attempt to
automatically process semantic information in texts, the very notion of SR in the
literature covers a broad range of topics, including

• relations among concepts, e.g. superordinates, subordinates, synonyms, antonyms
etc. (taxonomies, ontologies),

• instances of such relations,
• type restrictions in syntactic constructs such as N-V, A-V, N Conjunction N etc.

(dependency grammars, syntactic patterns),
• instances of such relations, and
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• untyped associations among concepts and wordforms (semantic networks, co-
occurrence graphs).

Pattern matching techniques, including Hearst patterns [20] and systems such as
OntoLearn [26], KnowItAll [18], and SRES (Self-Supervised Relation Extraction
System) [19], figure prominently in extracting semantic relations from text. Other
approaches document subsumption and sequence modeling [28] and systems based
on hidden Markov models (HMM) and conditional random fields (CRF) [14], as
well as classification with rich features and kernel methods [33, 13, 10]. Pattern
matching techniques, including Hearst patterns [20] and systems such as OntoLearn
[26], KnowItAll [18], and SRES (Self-Supervised Relation Extraction System) [19],
figure prominently in extracting semantic relations from text. Other approaches
include document subsumption and sequence modeling [28] and systems based on
hidden Markov models (HMM) and conditional random fields (CRF) [14], as well
as classification with rich features and kernel methods [33, 13, 10].

In what follows, we shall concentrate on Semantic Relations as relations among
concepts, and instances of such relations, as used in taxonomies and ontologies, and
attempt to present a unified view on learning semantic relations from text by show-
ing how SR can be derived by co-occurrence networks generated from instances of
words (wordforms for short) encountered in text. Typed semantic relations can be
derived from such association networks by filters based on linguistic and non lin-
guistic knowledge, see [21, 22]. Complementary to these results, the main point of
this paper is to argue that there is no single step derivation of knowledge about se-
mantic relations. Rather, we claim, learning semantic relations from text requires an
architecture for integrating linguistic and non linguistic knowledge of different kind
and quality. These knowledge sources need to iteratively interact in order to derive
high quality knowledge about semantic relations. In what follows, this architecture
will be based on a web service oriented architecture for iteratively generating SR
for different domains.

We begin by discussing the structuralist foundations of learning semantic rela-
tions. We then elaborate on filters on co-occurrence networks, in particular word
sense disambiguation (WSD), and so-called higher order co-occurrences, and finally
sketch an architecture for integrating different knowledge sources that are needed
for deriving semantic relations.

16.2 How Is It Possible to Automatically Process Meaning?

Language is not a random concatenation of words. Following the famous Swiss
linguist Ferdinand de Saussure, meaning (and other notions of linguistic descrip-
tion) can be defined only on the basis of structural relations amongst the words of
a language [29]. Linguistic Structuralism was developed and applied to understand
hitherto unknown languages. In contrast to other approaches, however, reference is
not the key notion for explaining and computing meaning. Following Saussure, the
fundamental structural relations are syntagmatic and paradigmatic relations. In what
follows we take up that idea and reconstruct it in a formal way. As a general proviso
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to the reader it should be pointed out, however, that by this reconstruction we are
always talking about statistical distributions of wordforms, and hence a reinterpreta-
tion of the original Saussurian notions that only partially corresponds to the usage of
these notions among linguists. In particular, the basis of our reconstruction are statis-
tically significant co-occurrences of wordforms that we call the *global context* of
a wordform. Such global contexts contain *statistically significant syntagmatic*1

relations that are then used to compute *statistically significant paradigmatic*
relations. Hence, by our reconstruction, *statistically significant paradigmatic*
relations are based on, and are not complementary to, *statistically significant syn-
tagmatic* relations, which may deviate from some linguists expectations.

Let L = (W,S) be a language with W the set of wordforms of this language, and
S the set of sentences actually encountered in a text corpus.2

Each sentence si ∈ S from L then represents a set of wordforms, si = {w1, . . . ,wn},
assuming that all words belong to the set of wordforms of L, i.e. for each wi : wi ∈W .

Now, the *local context* of a wordform wi comprises the set of all wordforms
occurring together in a sentence (or text window) with wi less wi itself:

Ks(wi) = {w1, . . . ,wi, . . . ,wn}\{wi} (16.1)

Syntagmatic and paradigmatic relations of two wordforms wi and wk can then be
derived by considering the joint appearance and joint context, respectively.

The *syntagmatic* relation, SYN(wi,wj) , which is symmetrical, holds if and
only if there exists a local context for one of the wordforms in which the other
appears:

∃Ks(wi)(wj ∈ Ks(wi)↔ SYN(wi,wj)) (16.2)

Statistically significant co-occurrences of wordforms will be reflected in terms of
frequency. Hence, there will be an expectation value X that states the absolute num-
ber of joint occurrences that must have been observed in relation to the number of
all local contexts. To define this value, parameters like the frequency of wordforms,
their Zipf-Distribution, the size of the text corpus etc. can be taken into account, see
for example [17, 12, 30]. In effect, for any wordform wi that is part of the local
contexts of another wordform w it can be decided whether or not wi is a significant
constituent of these contexts based on the number of such contexts, SIG(wi,K(w)):

SIG(wi,K(w))↔| {K(wi)|wi ∈ K(w)} |> X (16.3)

1 We use asterisks in addition to bold print to indicate that the term put between asterisks
has a technical meaning as defined in this paper that may be deviant from its common or
intuitive meaning in a way as Lyons has done in his books on semantics [25].

2 Notice that we do not make any presumptions here on the syntactic or semantic validity of
the sentences. A sentence is any sequence of wordforms that we wish to mark as sentence.
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A *statistical syntagmatic* relation SYNS(wi,w) between two wordforms wi,
w ∈W holds if and only if the wordform wi is a significant constituent of the local
contexts of the wordform w:

SYNS(wi,w)↔ SIG(wi,K(w)) (16.4)

We compute *statistical syntagmatic* relations of a wordform by computing
the set of its co-occurrences. In the literature, co-occurrences are being computed
using statistical measures like Tanimoto-similarity (proportion of joint occurrence
versus single occurrence), mutual information (deviance from statistical indepen-
dence, degree of surprise), and the Poisson Measure (probability of simultaneous
rare events), see [5] for a comprehensive survey and comparison.

*Statistical syntagmatic* relations typically comprise syntactic phenomena like

dependencies (dog barks, Professor teaches, . . . ),
enumerations (Faculty of Mathematics and CS, . . . ), and
idioms (with kind regards, . . . ).

When the distance of words related by the *statistical syntagmatic* relation is
restricted to the immediate left or right neighbors of a word, the relation also covers

multiwords (Royal Air Force, . . . ),
head-modifier relations (automatic indexing, . . . ), and
category and function descriptions (president Obama, . . . ).

By the global context KG(w) of a wordform w we now refer to the set of all word-
forms wi with which the wordform w stands in *statistical syntagmatic* relation
SYNS(wi,w):

KG(w) = {wi|SYNS(wi,w)} (16.5)

In effect, the global context of a wordform is a set of wordforms that is equivalent
to the set of its co-occurrences computed on all sentences of a corpus.

Hence, by this reconstruction, when computing the co-occurrences, or *statis-
tical syntagmatic* relations, of a wordform, we compute the global context of a
wordform.

Now, the global context of a wordform comprises both, the set of wordforms
with which it statistically significant co-occurs, i.e. the set of *statistical syntag-
matic* relations, as well as the set of wordforms that share a similar context and
therefore sometimes co-occur. Figure 16.1, depicting the most significant elements
of the global context of “Dublin” based on British newspaper text3, may illustrate
the point.4 While “Dublin Castle”, “City (of) Dublin”, “Dublin Co.”, or “Trinity
College Dublin” can be considered typical *statistical syntagmatic* relations of

3 Textual data based on Leipzig Corpora Collection 2007,
http://www.corpora.uni-leipzig.de

4 Computation of co-occurrences based on Poisson Measure, visualization based on simu-
lated annealing, see [16]. Line thickness represents the significance of the co-occurrence.

http://www.corpora.uni-leipzig.de
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Fig. 16.1 Global context of “Dublin”, British newspaper text.

“Dublin”, “Belfast”, “Cork”, and “Galway”, being other Irish cities, represent co-
hyponyms to “Dublin” that must have co-occurred in the sentences of the corpus on
which the co-occurrences have been computed, e.g. by coordination or compound
constructions.

As one might expect, the global context of a wordform crucially depends on the
text input that is used for computing it. Figures 16.2 and 16.3 exemplify different
global contexts of “Dublin” with respect to different collections of text data as input.
Figure 16.2 is computed based on German newspaper text, while Figure 16.4 is
based on German Wikipedia links.

Although global contexts of wordforms sometimes include other wordforms that
they are related to in a paradigmatic way, such as co-hyponyms, for the computation
of *statistical paradigmatic* relations we need to exploit the fact that wordforms
that stand in a paradigmatic relation share similar contexts. Given a corpus and
a set of wordforms for which we have computed their global contexts, *statisti-
cal paradigmatic* relations among these wordforms can now be derived when we
compare their global contexts with regard to similarity. We assume a comparison
operator SIM(KG(wi),KG(wj)) that compares global contexts and yields the value
1 in all those cases where the similarity is “similar enough”, and 0 in all other cases.
In what follows, for simplicity’s sake we write SIM(KG(wi),KG(wj)) in the case the
similarity operation on two contexts yields the value 1. Two wordforms wi wj can
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Fig. 16.2 Global context of “Dublin”, German newspaper text.

then be said to stand in a *statistical paradigmatic* relation PARAS(wi,wj) if and
only if their global contexts are similar to each other:

SIM(KG(wi),KG(wj))↔ PARAS(wi,wj) (16.6)

Examples of comparison operator instances include known similarity measures
like the Tanimoto measure, the cosine (global contexts can be interpreted as vec-
tors), Euclidian distance, and many more. The question which measure is the “best”
one, cannot be answered easily. On the one hand, this is due to evaluation diffi-
culties, on the other hand it is also important to ask for the desired results – which
*statistical paradigmatic* relations are to be calculated by some instance of a sim-
ilarity measure. Details of this discussion are not crucial for the model introduced
here, and are left open for further research. It should be noted, however, that there
is no uniform usage of the notion of similarity in the literature. Quite often ‘word
similarity’ is used to refer to a comparison of the global contexts of a given word,
whereas sometimes it is also – misleadingly – used to refer to the co-occurrence
measure of *statistical syntagmatic* relations, as similar words are returned by
such a computation [cf. 31, 15, 8, 32].

The set of wordforms that are related to a word by way of a *statistical paradig-
matic* relation varies depending on the similarity relation that we use to compare
the global contexts. As a basic step we can consider wordforms that belong to the
same syntactic category CAT :

KG(wi)CAT = {w|wi,w ∈W &SYNS(wi,w)&CAT (w) = CAT (wi)} (16.7)
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Fig. 16.3 Global context of “Dublin”, German Wikipedia links.

SIM(KG(wi)CAT ,KG(w)CAT )↔ PARASCAT (wi,w) (16.8)

The categories used can either be taken from a dictionary as an external source of
linguistic knowledge, or derived by supervised or unsupervised tagging. In effect,
this filter yields lists of words sharing the same distributional classes [23, 24]:

{w|CAT (w) = CAT (wi)&PARACAT (wi,w)} (16.9)

Logical relations like superordinate, and synonym, or other relations used in tax-
onomies and ontologies, can be derived from global contexts by admitting only
those elements that fulfill a certain logical condition LOG:

KG(wi)LOG = {w|wi,w ∈W&SYNS(wi,w)&LOG(w) = LOG(wi)} (16.10)

SIM(KG(wi)LOG,KG(w)LOG)↔ PARASLOG(wi,w) (16.11)

Again, the particular logical relations used and their instantiations in the domain
of application may either be based on external knowledge sources, such as a domain
specific thesaurus, or derived by an iterative process of supervised or unsupervised
learning. In effect, the set of wordforms related to a word by way of a *statistical
paradigmatic* relation is filtered with respect to predefined logical relations:



340 G. Heyer

{w|LOG(w) = LOG(wi&PARASLOG(wi,w)} (16.12)

In general, we propose that different kinds of semantic relations can be recon-
structed as *statistical paradigmatic* relations using constraints, or filters, on the
similarity measure employed to compare global contexts. Hence, even for *statis-
tical paradigmatic* relations, *statistical syntagmatic* relations form the basis.
When it comes to computing particular semantic relations, this reconstruction also
gives a hint on how to proceed: Start with the computation of co-occurrences as
*statistical syntagmatic* relations and iteratively add more linguistic and non lin-
guistic knowledge in order to filter out the semantic relations that are of interest
in a particular content engineering application. Logical relations in this process of
filtering *statistical syntagmatic* relations then are the result of high quality re-
finements, and require numerous linguistic and non linguistics knowledge sources.

16.3 Some Filters for Semantic Relations

In order illustrate the idea of iteratively filtering and refining textual data by com-
paring the global context of words in order to derive semantic relations, let us look
in detail at an approach to word sense disambiguation, and the clustering of seman-
tically similar words.

Taking up the above definitions, let us consider the global context of the word
space. This word is ambiguous. It covers at least the areas of computers, real es-
tate, and physics. As the global context of a wordform also contains the linguistic
contexts in which the word is being used, the visualization of an ambiguous word’s
global context should make these different contexts transparent. This is indeed the
case, as can be seen from Figure 16.4. We clearly recognize the three different
meanings real estate, computer hardware, and missiles, where the connection be-
tween address and memory results from the fact that address again is a polysemous
concept.

Based on the co-occurrences of word forms and the small-world property of their
co-occurrences graph, an approach to solve the polysemy problem has been in-
troduced by [4, 7]. The algorithm is based on the assumption that if three words
are semantically homogenous, they share all, or most, of their global context, and
hence are located in the same cluster of the graph. It proceeds by taking the first
15 co-occurrences of a wordform w, ordered by co-occurrence significance, and
generating all combinations of w and any two of its 15 co-occurrences (i.e. in total
105 different triples of words). The intersections of co-occurrences are retrieved
and clustered by a hierarchical agglomerative clustering. This is repeated until no
co-occurrences are left above a predefined threshold.

As a result, for a given word one or more sets of semantically homogeneous
words are found along with a set of words which are either semantically unrelated
to the input word (although they are co-occurring with it), or they do not pass the
threshold to allow for a reliable decision. Problems occur when the text corpus does
not reflect specific contexts, or is unbalanced with respect to certain sub-languages.
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Fig. 16.4 Co-occurrence Graph for space.

The following Figure 16.5 depicts the result of the disambiguation filter for the word
space:

A second example is the idea of co-occurrences of higher order [2, 7]. When
considering *statistical syntagmatic* relations, we compute the set of wordforms
that significantly often co-occur in sentences. These sentence-based co-occurrences
of wordforms are called first order co-occurrences. Second-order co-occurrences of
wordforms are sets of wordforms that significantly often co-occur in first order co-
occurrence sets. In general, co-occurrences of nth order are sets of wordforms that
significantly often co-occur in co-occurrence sets of (n− 1)th order. When calcu-
lating a higher order, the significance values of the preceding order are not relevant.
A co-occurrence set consists of the n highest ranked co-occurrences of a wordform
(calculated by a particular co-occurrence measure). In general, the sets of higher or-
der co-occurrences remain more or less stable after some iterations. While the sets
are somewhat semantically homogeneous, they sometimes have nothing to do with
the reference word. If two wordforms iteratively share similar global contexts, the
elements of the iterated co-occurrence sets will overlap to a high degree. Figure 16.6
shows the intersection of higher-order co-occurrences for two selected wordforms
in German taken as start set:5

5 Thanks to Chris Biemann for providing me with these examples.
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Fig. 16.5 Automatic disambiguation of space.

16.4 An Architecture for Learning Semantic Relations

The general architecture that we propose now for learning semantic relations is open
to iteratively integrate different knowledge sources, internal as well as external ones,
and allows different tools to iteratively interact. It takes a modular approach to
language data and algorithms and is based on

1. a strict detachment of language processing algorithms from particular linguistic
data and languages, thus encouraging the collection of language data and cor-
pora, and the development of processing algorithms independently from each
other;

2. language independent processing algorithms, thus allowing for a comparison of
languages with respect to certain statistical parameters and other computed fea-
tures; and

3. a modular software design, thus enabling algorithms to enrich language data and
to re-use enriched data and features as well as adding new algorithms.

Figure 16.7 illustrates the key elements. After preprocessing a text input, text is
iteratively being processed using linguistic processing tools, external linguistic and
non-linguistic knowledge bases, and machine learning tools.

From a software engineering point of view, the increasing availability of statisti-
cal natural language processing methods and large text corpora for many languages
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Fig. 16.6 Intersections of higher-order co-occurrences.

has lead to the somewhat paradoxical situation that more than ever language data
and algorithms for processing them are available, but most of them are incompati-
ble with each other in terms of data structures and interfaces. We surpass this obsta-
cle by taking an implementation approach based on service-oriented architectures
(SOA). SOA can be defined as an application oriented architecture within which all
functions are defined as independent services with well-defined invocable interfaces
[11, 27]:

1. all functions are defined as services,
2. all services are independent, i.e., they return the expected result without external

components needing to make any assumptions of their ‘inner workings’; and
3. the interfaces of a service can be invoked, i.e., at an architectural level, it is irrel-

evant whether the interfaces are local or remote, or what interconnect protocol is
used to effect the invocation, or what infrastructure components are required to
make the connection.

An application is represented as a set of services that communicate through the
exchange of messages. There now are widely accepted standards for describing
service interfaces such as WSDL and the transfer of those messages using SOAP.
The general architecture sketched above has been implemented based on a service
oriented architecture by making language resources and language processing tools
available as a service. As data we use linguistic resources from the Leipzig Corpora
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Fig. 16.7 General architecture for interactively learning semantic relations.

Collection (LCC), a collection of text corpora based on a set size and format6, and
other data provided within the CLARIN7 network of linguistic resources. Algo-
rithms for linguistic processing and machine learning for textual data are provided
by the ASV Toolbox8, a modular tool to explore statistical properties of natural lan-
guages, and a framework to combine and integrate algorithms for natural language
processing [3]. A web service access to these digital text and lexical data as well
as NLP algorithms and tools is running very reliably since 2004 [9]9. The services
are based on a very large frequency sorted dictionary of German word forms includ-
ing POS information, sample sentences and co-occurrence statistics. For learning
semantic relations from text, tools for automatic terminology extraction, synonyms
and similar words computed on a word’s co-occurrence profiles, as well as graph
based clustering are being offered to the scientific community that allow for an iter-
ative application of the different tools and knowledge sources.

6 Leipzig Corpora Collection, see
http://corpora.informatik.uni-leipzig.de/

7 CLARIN is a large-scale pan-European collaborative effort to create, coordinate and make
language resources and technology available and readily usable, see
http://www.clarin.eu/

8 ASV Toolbox, see
http://www.asv.informatik.uni-leipzig.de/asv/methoden

9 Leipzig Linguistic Services (LLS), see
http://wortschatz.uni-leipzig.de/Webservices/

http://corpora.informatik.uni-leipzig.de/
http://www.clarin.eu/
http://www.asv.informatik.uni-leipzig.de/asv/methoden
http://wortschatz.uni-leipzig.de/Webservices/
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Chapter 17
Modelling and Processing Wordnets in OWL

Harald Lüngen, Michael Beißwenger, Bianca Selzam, and Angelika Storrer

Abstract. In this contribution, we discuss and compare alternative options of mod-
elling the entities and relations of wordnet-like resources in the Web Ontology Lan-
guage OWL. Based on different modelling options, we developed three models of
representing wordnets in OWL, i.e. the instance model, the class model, and the
metaclass model. These OWL models mainly differ with respect to the ontological
status of lexical units (word senses) and the synsets. While in the instance model
lexical units and synsets are represented as individuals, in the class model they are
represented as classes; both model types can be encoded in the dialect OWL DL.
As a third alternative, we developed a metaclass model in OWL FULL, in which
lexical units and synsets are defined as metaclasses, the individuals of which are
classes themselves. We apply the three OWL models to each of three wordnet-style
resources: (1) a subset of the German wordnet GermaNet, (2) the wordnet-style do-
main ontology TermNet, and (3) GermaTermNet, in which TermNet technical terms
and GermaNet synsets are connected by means of a set of “plug-in” relations. We
report on the results of several experiments in which we evaluated the performance
of querying and processing these different models: (1) A comparison of all three
OWL models (class, instance, and metaclass model) of TermNet in the context of
automatic text-to-hypertext conversion, (2) an investigation of the potential of the
GermaTermNet resource by the example of a wordnet-based semantic relatedness
calculation.
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17.1 Research Context and Motivation

Wordnets are lexical resources that follow the design principles of the English
Princeton WordNet [16]. Many applications of natural language processing and
information retrieval use wordnets not only as a lexical database but also as an
ontological resource representing conceptual knowledge. In order to make use of
this conceptual knowledge in the context of semantic-web-related research, several
approaches have been put forward that aim at representing the English Princeton
WordNet1 in the Web Ontology Language OWL or RDFS (cf. Section 17.3.2).

The goal of this paper is to discuss and compare different options to repre-
sent the basic entities and relations of wordnets using OWL. For this purpose,
we developed alternative OWL models on three wordnet-style resources which we
have been using as lexical resources in the context of two projects of the DFG
research group 437 “Text-Technological Modelling of Information” (http://www.
text-technology.de): (1) a subset of the German wordnet GermaNet2, (2) the
wordnet-style thesaurus TermNet [5] representing technical terms from the domains
of text-technology and hypertext research, and (3) the GermaTermNet representing
relations between TermNet technical terms and GermaNet synsets. In Section 17.2,
we briefly describe these resources; in Section 17.3 we present the alternative OWL
models that we created for these resources. The main difference between these mod-
els lies in the ontological status of the two main entity types of wordnets: the lexical
units (LU) (words) and the synsets (collections of synonymous or near-synonymous
lexical units).

In Section 17.4, we compare and evaluate the three models w.r.t. their perfor-
mance in a set of querying tasks as occurring in the text-technological applications
that we envisage. We report the results of several experiments regarding the per-
formance of the three OWL models (1) in the context of automatic hyperlinking
and (2) in the context of calculating semantic relatedness measures on the Ger-
maTermNet metaclass model. In particular, we are interested in how easy or how
complicated it is to formulate the queries for each model using nRQL and Prolog
as query languages, and in whether and how the processing time in calculating the
answers differs. In addition, we test the performance and feasibility of our plug-in
approach that connects the general language resource GermaNet with the domain-
specific TermNet. On the basis of the results reported in Section 17.4 we discuss the
advantages and drawbacks of the three model types in the application contexts. The
paper should thus help readers who deal with a similar ontological modelling task
to choose the model that is most suitable for their project.3

1 http://wordnet.princeton.edu
2 http://www.sfs.uni-tuebingen.de/GermaNet/
3 The OWL resources are available for download on the website
http://www.wordnets-in-owl.de

http://wordnet.princeton.edu
http://www.sfs.uni-tuebingen.de/GermaNet/
http://www.wordnets-in-owl.de
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Fig. 17.1 E-R graph for GermaNet.

17.2 Resources

17.2.1 GermaNet

GermaNet is a lexical-semantic wordnet for German which was developed and is
maintained at the University of Tübingen [cf. 21]. It was designed largely accord-
ing to the principles of the Princeton WordNet [PWN, cf. 16] and covers the most
important and frequent general language concepts and relations between the con-
cepts and lexical units like hyponymy, meronymy and antonymy.

The central unit of representation in a wordnet is the synonym set (synset), in
which those synonymous lexical units that are interchangeable in a given context
are combined. The synset {öffnen, aufmachen}, by example, is represented as a
concept node with a number of relational links: to its hyperonym synset {wandeln,
verändern}, and to its several hyponym synsets e.g. {aufstoßen}. Moreover, a cau-
sation relation with the synset {(sich) öffnen, aufgehen} holds. Finally, the lexical
unit öffnen is related to its antonym schließen.

The data model for GermaNet is shown in the entity-relationship graph in
Figure 17.14. The lexical objects are shown in rectangles, and the attributes that
characterise them are shown in ellipses. Relations between the objects are marked
as diamonds: conceptual relations (CR) like hyponymy hold between synsets, and
lexical-semantic relations (LSR) like antonymy hold between lexical units, and the
lexicalisation relation (“member”) holds between lexical units and synsets.

GermaNet 5.0 contains about 53000 synsets and 76000 lexical units. Although
we have converted the whole GermaNet 5.0 into the OWL instance model, we em-
ployed a subset of GermaNet containing 54 synsets and 104 lexical units to develop
the different OWL models for wordnets and the query implementations described in
this chapter.

4 From [22].
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17.2.2 TermNet

TermNet [5] is a lexical resource that was developed in the HyTex project on auto-
mated text-to-hypertext conversion5. TermNet represents technical terms occurring
in a German corpus on the domains “text-technology” and “hypertext research”6.
The two basic entities of the TermNet model are terms and termsets. The entity type
term corresponds to the entity type lexical unit in GermaNet: terms denote well-
defined concepts in the above-mentioned domains – in many cases they are part
of a taxonomy in which more specific terms are defined as subclasses of broader
terms. Termsets collect terms that denote similar concepts in different taxonomies.
Termsets, thus, correspond to the entity type synset in GermaNet with one signifi-
cant difference: lexical units in the same synsets are regarded as near-synonyms –
they are interchangeable in at least one context. Such an interchange is not possible
for different technical terms in a termset because the semantics of technical terms
is defined by their position in the taxonomy. Different authors or scientific schools
may develop different and non-isomorphic taxonomies for the same domain. There-
fore, it is not possible to exchange a technical term in a document for a technical
term defined in a different taxonomy, even if the two terms denote quite similar
concepts and therefore belong to the same termset. Termsets represent categorical
correspondences between terms of competing taxonomies.7 Modelling categorical
correspondence, thus, opens up two modes for searching for term occurrences in a
corpus: (1) the narrow search mode (based on the entity type term) for occurrences
of a term in a specific taxonomy, and (2) the broader search mode (based on the
entity type termset) for all occurrences of terms that denote a similar concept in the
domain.

Apart from these specific characteristics of termsets, the TermNet data model
builds on the entity and relation types of the Princeton WordNet model and the
GermaNet model. Whereas lexical semantic relations (LSR) are defined between
terms, termsets are related by conceptual relations (CR). The following LSR and
CR are used in the TermNet data model:

• LSR: isAbbreviationOf (inverse: isExpansionOf )
• CR: isHyponymOf (inverse: isHypernymOf ), isMeronymOf, isHolonymOf

In addition, we introduced a symmetrical relation isDisjointWith to describe the
relation between terms with disjoint extensions (which is the case with terms which
denote contrary subconcepts of one and the same superconcept, e.g., externer Ver-
weis and interner Verweis).

5 See http://www.hytex.info and [36].
6 The current version of TermNet contains 423 technical terms in 206 termsets.
7 A concrete example: in German hypertext research, the terms externer Verweis and ex-

tratextuelle Verknüpfung both denote hyperlinks leading to other “external” websites. The
definition of extratextuelle Verknüpfung is opposed to two disjunctive terms (intertextuelle
Verknüpfung, intratextuelle Verknüpfung) whereas externer Verweis is opposed to only one
disjunctive term (interner Verweis). The concept of the termset is described in detail in [5].

http://www.hytex.info
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Fig. 17.2 E-R graph for TermNet.

In order to represent the relation between terms and termsets, we furthermore
introduced a membership-relation which relates terms that denote the same category
in different taxonomies with the respective termset (isMemberOf ) and, inversely, the
termset with one or several terms (hasMember).

As an extension to the standard WordNet model, TermNet represents subclass
relations between terms of the same taxonomy. The data model is illustrated by the
ER-diagram in Figure 17.2; further details are described in [6].

17.2.3 GermaTermNet

GermaTermNet connects the two above-described resources – the GermaNet sub-
set and TermNet – following an approach inspired by [26]. The basic idea of this
approach is to supplement GermaNet and TermNet by so-called plug-in relations8.
The “plug-in” metaphor is motivated by the fact that these relations connect entities
from the one with entities from the other resource without the necessity of modify-
ing or merging the two resources. The strength of such a “plug-in” approach, thus,
lies in the fact that resources which are independent of one another can be linked in
order to process them in combination.

The current version of GermaTermNet distinguishes three types of plug-in rela-
tions which describe particular correspondences between general language concepts
and their terminological counterparts:

1. attachedToNearSynonym: This relation describes correspondences between
TermNet terms and GermaNet synsets; e.g. between the TermNet term Link
and the GermaNet synset Link. Since we do not assume pure synonymy for a

8 This approach has been developed in close cooperation with Claudia Kunze and Lothar
Lemnitzer of the GermaNet group, see [22] and [25] for details.
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corresponding term-synset pair, attachedToNearSynonym is the closest sense-
relation between entities of the two resources.

2. attachedToGeneralConcept: This relation is used to relate TermNet terms to Ger-
maNet synsets which stand in an attachedToNearSynonym relation with a super-
ordinate term.9 The attachedToGeneralConcept relations serve to reduce the path
length between semantically similar concepts for applications in which semantic
distance measures are calculated.

3. attachedToHolonym: This relation is used to relate a TermNet term t1 to a synset
s1 in GermaNet when the following conditions are fulfilled: (1) t1 is a member of
a termset A, (2) this termset is a meronym of termset B, and (3) the members of B
(i.e., a collection of terms t2, t3, . . . , tn) are connected with s1 through the relation
attachedToNearSynonym. An example: the term arc, a member of the termset
Kante, is linked to the GermaNet synset link by an attachedToHolonym relation
because Kante is a meronym of the termset Link, and one of its members, the
term link, is attached to the GermaNet synset link via attachedToNearSynonym.

The current version of GermaTermNet represents 150 plug-in relation instances:
27 attachedToNearSynonym, 103 attachedToGeneralConcept, and 20 attachedTo-
Holonym instances.

17.3 Modelling Wordnet-Like Resources in OWL

Modelling lexical-semantic and ontological resources in the Web Ontology Lan-
guage OWL is a requirement for making them available on the semantic web i.e.
enables developers to include them in their semantic web applications. Besides, the
representation of knowledge sources in a formalism that has the status of a W3C
recommendation contributes to making them truly interoperable. The benefit of the
basic interoperability of two OWL resources is e.g. exploited in our conception of
linking of GermaNet and TermNet to form GermaTermNet (cf. Section 17.3.3.3).

17.3.1 Basic Options

17.3.1.1 OWL Dialects

In the line of [17], [35] characterise an ontology as a “formal explicit specification
of a shared conceptualisation for a domain of interest”. It is controversial whether
wordnets constitute proper ontologies; according to [14], a wordnet may count as a
light-weight ontology, i.e. an “ontology primarily consisting of a schema (a concept
taxonomy with attribute and relation definitions)” [14, p. 27, original in German].
[34] mentions PWN as an example of a “terminological ontology”, i.e. an ontology
that is not completely formalised.

9 An example: the term externer Verweis is connected to the GermaNet synset Link by an
attachedToGeneralConcept relation because it is a subclass of the term Verweis which
itself is connected to Link by an attachedToNearSynonym relation.
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The Web Ontology Language OWL is an XML application for the representation
of ontologies in the semantic web, a standard created by the W3C Web Ontology
working group. OWL comes in three sublanguages (dialects), OWL Full, OWL
DL, and OWL Lite, which differ in their expressive power. When only constructs
from the sublanguage OWL DL are used in an ontology, its semantics correspond
to description logic [4]. Most available reasoning software is based on description
logic, and reasoners such as Racer [18] support consistency checking and inferring
new facts and relations, i.e. automatically extending OWL DL ontologies. As a
consequence, most ontologies for the semantic web are encoded in OWL DL.

OWL Full is known to be undecidable. Probably no reasoning services will ever
be implemented for ontologies that make full use of the expressive power of OWL
Full. One important difference between OWL DL and OWL Full is that in an OWL
DL ontology, the sets of the classes, individuals, and properties must be disjunct,
e.g. an entity in the ontology may not be a class and an individual at the same time.
This, however, is permitted in an OWL Full ontology.

17.3.1.2 Synsets and Lexical Units as Classes or Individuals?

A fundamental decision which has to be made when representing Wordnet-like re-
sources in OWL concerns the question whether synsets and lexical units are to be
described as classes or as individuals. From a linguistic point of view, synsets are
concepts (classes) whose instances are discourse entities, and lexical units are types
of linguistic expressions whose instances can be interpreted as the token occurrences
of these expressions in documents. The decision to treat synsets and lexical units as
OWL individuals conceives a wordnet primarily as a lexicon describing properties
of individual lexical units while disregarding that nouns, in the traditional view of
lexical semantics, denote concept classes, with concept classes being ordered hierar-
chically, superclasses including subclasses and subclasses in some cases (especially
in terminologies) being pairwise disjoint.

Treating synsets and lexical items as individuals implies that the subconcept-
superconcept relation and disjointness can only be described by non-standard in-
dividual-to-individual relations. An individual representing a subconcept does not
automatically inherit the properties defined for the individual representing the su-
perconcept.

Treating synsets and lexical items as classes allows for describing them as con-
cepts and word senses, with entities of the real world or word occurrences in doc-
uments being described as their individuals. The “class model” of a Wordnet-like
resource thus describes an ontology, whereas the “instance model” – much like a
lexicon – describes synsets and lexical units as instances of linguistic categories
such as NounSynset or NounWordSense.
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17.3.2 Related Work

What OWL models of wordnets have been designed previously, and how are these
related to the ones presented in this chapter? In 2006, the Semantic Web Best Prac-
tices and Deployment Working Group issued a working draft for a standard conver-
sion of the PWN in an RDF/OWL (in fact OWL DL) representation that can be used
by semantic web applications [2, 3]. Its top-level classes are Synset, WordSense, and
Word, where Synset represents synsets and has the subclasses NounSynset, Verb-
Synset, AdjectiveSynset, and AdverbSynset. The individual synsets are individuals
of these classes. CRs are defined over the synset class, e.g. the OWL object property
hyponymOf has Synset as its domain and its range. Likewise, the class WordSense
has the subclasses NounWordSense, AdjectiveWordSense, VerbWordSense, and Ad-
verbWordSense. Lexical units are modelled as the individuals of these classes. LSRs
like antonymOf are OWL object properties with WordSense as their domain and
their range. The lexicalisation relation is an OWL object property called synsetCon-
tainsWordSense and has the Synset as its domain and WordSense as its range. The
third top-level class, Word, represents a purely formal unit, i.e. not associated with
a meaning. It is connected with the class WordSense via the OWL object property
word, which has WordSense as its domain and Word as its range. Properties with
an attribute-like character including lexicalForm or synsetId are rendered as OWL
datatype properties with XML Schema datatypes such as xsd:string as their range.

There are two earlier approaches to representing wordnets in OWL, the “Neu-
châtel” approach [10, 9] and the “Amsterdam” approach [1]. Neuchâtel has been
explicitly acknowledged by [3], and Amsterdam and W3C partly have identical au-
thors. The W3C approach is fairly close to Neuchâtel; one difference is that the
StemObject class in Neuchâtel which corresponds to the Word class in the W3C ap-
proach is only introduced in a wordnet-external ontology for a document retrieval
application. In the Amsterdam model, a different top-level structure of the ontology
is specified, mostly in that lexical units are neither classes nor individuals but lit-
eral values of the OWL datatype property wordForm with the domain Synset. As a
consequence, the encoding of LSRs is achieved by a different mechanism.

We took the W3C approach to convert PWN into OWL as a model for a first
GermaNet representation in OWL [22], which is briefly described below in Section
17.3.3.1 as the “OWL DL Instance Model” for GN. The W3C approach was also
adopted by [13] for a conversion of EuroWordNet [38] into OWL.

In [3], an alternative model is briefly discussed. For some purposes it might
be useful to treat the hyponymy relation as a class hierarchy by declaring Synset a
subclass of rdfs:class (thus make each individual synset a class and an individual at
the same time) and hyponymOf a subproperty of rdfs:subClassOf as suggested in
[40].
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17.3.3 OWL Models for GermaNet, TermNet, and GermaTermNet

In this section, we describe the three alternative models that we developed for en-
coding wordnets in OWL, namely the OWL DL Instance Model, the OWL DL class
model, and an OWL Full Model. They are based on different outcomes for the fol-
lowing modelling decisions:

1. the representation of synsets and lexical units as OWL classes, individuals, or
both

2. the encoding of relation instances in OWL as property restrictions or assignments
of individuals as property values (as a consequence of 1.)

3. the conformance with the dialect OWL DL or OWL Full (as a consequence of 1.
and 2.)

4. the way of linking word occurrences in XML documents to lexical units (strictly
speaking not part of the ontology)

We describe the implementation of the three models for GermaNet in Section
17.3.3.1 and for TermNet in 17.3.3.2. OWL Models for GermaTermNet are de-
scribed in Section 17.3.3.3.

17.3.3.1 GermaNet

For GermaNet, the top-level hierarchy of classes is defined using the <owl:class>

and <rdfs:subClassOf> statements and is the same in all three models. It cor-
responds to the indented list representation shown in Figure 17.3, and is similar to
the class hierarchy of the W3C model.

LexicalObject

�������������������������
����������

������������������

Example Synset

�����������������
�������

������ LexicalUnit

�����������
											

NounSynset VerbSynset AdjectiveSynset NounUnit VerbUnit AdjectiveUnit

ProperName

Fig. 17.3 Class hierarchy for OWL models of GN.

The GN relations shown as diamonds in the data model in Figure 17.1 are mod-
elled as OWL object properties. To capture the commonalities of CRs and LSRs, we
introduced the two superproperties conceptualRelation (domain and range: Synset)
and lexicalSemanticRelation (domain and range: LexicalUnit).

Listing 17.1 shows the OWL code introducing the lexicalisation relation has-
Member as an OWL inverse functional property (a special type of object property).
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Table 17.1 Characteristics of the ObjectProperties for GermaNet.

Property Domain Range Characteristics Inverse Local
Property Restrictions

Conceptual relations (CR)
conceptualRelation Synset Synset
isHypernymOf Synset Synset transitive isHyponymOf pos-related
isHolonymOf NounSynset NounSynset
isMeronymOf NounSynset NounSynset
isAssociatedWith Synset Synset
entails VerbSynset VerbSynset
causes VerbSynset � VerbSynset

AdjectiveSynset

Lexical-semantic relations (LSR)
lexicalSemanticRelation LexicalUnit LexicalUnit
hasAntonym LexicalUnit LexicalUnit symmetric hasAntonym pos-related
hasPertonym LexicalUnit LexicalUnit
isParticipleOf VerbUnit AdjectiveUnit

lexicalisation relations
hasMember Synset LexicalUnit inverse- memberOf pos-related

-functional

Listing 17.2 shows the code for introducing isHypernymOf as an OWL transitive
property (also a special type of object property). All other object properties are
declared similarly in OWL. Most attributes in the data model of GermaNet (the el-
lipses in the E-R-graph in Figure 17.1) are represented as OWL datatype properties
[cf. 25].

<owl:InverseFunctionalProperty rdf:about="#hasMember">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#Synset"/>
<rdfs:range rdf:resource="#LexicalUnit"/>
<owl:inverseOf rdf:resource="#memberOf"/>

</owl:InverseFunctionalProperty>

Listing 17.1 OWL code introducing the lexicalisation relation hasMember for GermaNet.

<owl:TransitiveProperty rdf:about="#isHypernymOf">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
<rdfs:subPropertyOf rdf:resource="#conceptualRelation"/>
<rdfs:domain rdf:resource="#Synset"/>
<rdfs:range rdf:resource="#Synset"/>
<owl:inverseOf>

<owl:TransitiveProperty rdf:about="#isHyponymOf"/>
</owl:inverseOf>

</owl:TransitiveProperty>

Listing 17.2 OWL code introducing the hypernymy relation isHypernymOf for GermaNet.

OWL DL Instance Model. Our first modelling variant closely follows the prin-
ciples of the W3C approach to converting PWN to OWL: the individual synsets
and lexical units are modelled as OWL individuals and the encoding of CRs, LSRs
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and the lexicalisation relation as an assignment of individuals as property values.
In the Instance Model for GN, there is an additional class LUOccurrence, the indi-
viduals of which have (pseudo-) URIs as IDs to simulate the token occurrences of
lexemes in documents. LUOccurrence is related to its LU individual through the
object property isOccurrenceOf (domain: LUOccurrence, range: LexicalUnit).10

In Listing 17.3, OWL code examples of assignments for CRs (isHypernymOf )
and the lexicalisation relation (hasMember) are shown for the synset vVeraen-
derung.119. Examples of assignments for LSRs and datatype properties are shown
for the lexical unit vVeraenderung.199.wandeln. Finally, there is the occurrence in-
dividual URI LUnitInstance vVeraenderung.119.wandeln 1 with an assignment of
its LU for the property isOccurrenceOf.

<VerbSynset rdf:ID="vVeraenderung.119">
<hasMember rdf:resource="#vVeraenderung.119.wandeln"/>
<hasMember rdf:resource="#vVeraenderung.119.ändern"/>
<hasMember rdf:resource="#vVeraenderung.119.mutieren"/>
<hasMember rdf:resource="#vVeraenderung.119.verändern"/>
<isHypernymOf rdf:resource="#vVeraenderung.421"/>
<isHypernymOf rdf:resource="#vVeraenderung.517"/>

</VerbSynset>

<VerbUnit rdf:ID="vVeraenderung.119.wandeln">
<hasOrthographicForm

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
wandeln</hasOrthographicForm>

...
</VerbUnit>

<LUOccurrence rdf:ID="URI_LUnitInstance_vVeraenderung.119.wandeln_1">
<isOccurrenceOf rdf:resource="#vVeraenderung.119.wandeln"/>

</LUOccurrence>

Listing 17.3 OWL code for a synset, lexical unit, and occurrence individual in the instance
model for GN. Note the encoding of the hasMember and isHypernymOf relation instances.

OWL DL Class Model. For the reasons discussed in Section 17.3.1.2, we alter-
natively devised an OWL DL Class Model for GermaNet. In the class model, each
individual synset and lexical unit is a subclass of one of the top-level classes Noun-
Synset, VerbSynset, NounUnit etc. Since within OWL DL property value assign-
ments can only be defined between individuals, the GermaNet relation instances
are modelled as property restrictions over the single synset or unit classes using
owl:Restriction in combination with the owl:allValuesFrom construct. This holds
for CRs, LSRs, as well as the lexicalisation relation, cf. the example of hyponym
declarations for the synset vVeraenderung.119 in Listings 17.4 and 17.5.

10 Although we think that LUOccurrence and TermOccurrence (see Section 17.3.3.2) and
their properties are strictly speaking not part of wordnets or the lexicon, we have included
them in our ontologies for the purpose of linking our annotated text corpora to them.
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<owl:Class rdf:ID="vVeraenderung.119">
<rdfs:subClassOf rdf:resource="#VerbSynset"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>
<owl:TransitiveProperty rdf:about="#isHypernymOf"/>

</owl:onProperty>
<owl:allValuesFrom>
<owl:Class>

<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#vVeraenderung.421"/>
<owl:Class rdf:about="#vVeraenderung.517"/>

</owl:unionOf>
</owl:Class>

</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Listing 17.4 OWL code for the isHypernymOf relations in the class model for GN using
restrictions

In the class model, the place of individuals of the LU classes can be straightfor-
wardly taken by their textual occurrences. Unlike in the case of the instance model,
the GN top-level ontology does not need to be extended to accommodate them.

<vVeraenderung.119.verändern
rdf:ID="URI_LUnit_Instance_vVeraenderung.119.verändern_1"/>

Listing 17.5 Occurrence individual in the class model

OWL Full Model. In [24], we put forward some criticism of the instance model
for wordnets in OWL (summarised in Section 17.3.1.2 above). In the class model,
on the other hand, the relation assignments via property restrictions seem counter-
intuitive; moreover, although occurrence instances of LUs are conveniently included
as individuals of their LU classes, it does not seem adequate that they inherit all
property specifications by virtue of their instancehood (CRs and LSRs are lexical
relations and are not supposed to hold between word occurrences in a document).

Thus, as a third option we converted the OWL instance model of GermaNet into
an OWL Full Metaclass Model by adding the following line to the definitions of the
classes Synset and LexicalUnit.

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

This makes Synset and LexicalUnit metaclasses, i.e. their individuals, the single
synsets and lexical units, are also classes. Consequently, an LU class can be popula-
ted with occurrence individuals that do not inherit lexical properties, and CRs, LSRs
and the lexicalisation relation can be added as simple property value assignments
(the code for which looks just like that for the instance model in Listing 17.3).
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Unfortunately, the ontology now lies outside the scope of OWL DL, i.e. is in OWL
Full [cf. 33], and DL-based reasoners cannot be applied to it.

A point of criticism one could formulate against the OWL Full model is that when
single synsets (and LUs) are classes besides being individuals, then one would also
expect these classes to be part of another (second) class hierarchy. In fact, in [29],
[28], and in the third example in [31], a major motivation for introducing meta-
classes is the fact that certain individuals of an ontology should be subclasses in a
second class hierarchy, e.g. an ArchetypalOrangUtan individual should be an indi-
vidual of an Archetype class and at the same time subclass of an OrangUtan class.
On the other hand, in the meta-modelling examples in [31] (first two examples) and
in [30] (dealing with the PWN), there is no such second hierarchy; the motivation
given is simply that some entities are both a class and an individual. In [3], where
a metaclass approach to modelling the PWN in OWL is proposed as a variant, the
motivation is to interpret the hyponym relation as a (second) class hierarchy.

17.3.3.2 TermNet

For each one of the three modelling options of TermNet a separate top-level hier-
archy of classes is defined using the ¡owl:class¿ and ¡rdfs:subclassOf¿ statements.
The hierarchy for the OWL DL instance model is shown in Figure 17.4, the hierar-
chy for the OWL DL class model and the OWL Full model in Figure 17.5.

As in our GermaNet models, the CRs and LSRs in TN (diamonds in the data
model in Figure 17.2) are defined as OWL object properties. Listing 17.6 shows the
OWL code defining the isMemberOf relation between the term concept TermCon-
cept Relation and the termset TermSet Link in the OWL DL class model. All other
object properties in our TN models (as listed in Table 17.2) are declared similarly.

<owl:Class rdf:ID="TermConcept_Relation">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>

<owl:ObjectProperty rdf:ID="isMemberOf"/>
</owl:onProperty>
<owl:allValuesFrom>

<owl:Class rdf:ID="TermSet_Link"/>
</owl:allValuesFrom>

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>

Listing 17.6 OWL code describing the relation between the term concept TermCon-
cept Relation and the termset TermSet Link in the OWL DL class model of TermNet

OWL DL Instance Model. Following the principles of the W3C approach to con-
verting PWN to OWL, the term concepts and termsets of the TN instance model
are realised as OWL individuals of the top-level classes TermConcept and TermSet,
and all of the relations mentioned in Table 17.2 are described as object properties
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Table 17.2 Characteristics of the ObjectProperties for TermNet; CM = OWL DL class model,
IM = OWL DL instance model, MM = OWL Full metaclass model.

Property Domain Range Characteristics Inverse Property CM IM MM

Membership relations
hasMember TermSet TermConcept isMemberOf X X X
Type/token relations
isTypeOf TermForm TermOccurrence isTokenOf X X X
Lexicalisation relations
lexicalizes TermForm TermConcept isLexicalizedAs X
Occurrence relations
occursIn TermConcept TermOccurrence isOccurrenceOf X
Lexical-semantic relations (LSR)
isAbbreviationOf TermConcept TermConcept isExpansionOf X X X
Disjointness
isDisjointWith TermConcept TermConcept symmetric isDisjointWith X
Conceptual hierarchy between term concepts
isNarrowerTermOf TermConcept TermConcept transitive isBroaderTermOf X
Conceptual relations (CR) between termsets
isHyponymOf TermSet TermSet transitive isHypernymOf X X X
isMeronymOf TermSet TermSet X X X
isHolonymOf TermSet TermSet X X X
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Fig. 17.4 Class hierarchy for the OWL DL Instance Model of TermNet

between instances. Occurrences of technical terms in documents from our corpus
are given as URI references and are described as individuals of the top-level class
TermOccurrence, and the mutually inverse object properties occursIn – isOccur-
renceOf are used to link individuals of term occurrences with individuals of the
TermConcept class. In order to describe the lexicalisation relation between term
forms and term concepts, we additionally introduced the relations isLexicalizedAs –
lexicalizes which relate instances of TermConcept with instances of TermForm (cf.
Figure 17.4).

In order to represent the further class hierarchy below the top-level class Term-
Concept, inclusion between general and more specific terminological concepts is
described through the mutually inverse relations isBroaderTerm – isNarrowerTerm.
Since modelling individual terminological concepts as individuals does not allow
for using the OWL construct ¡owl:disjointwith¿, disjointness between instances of
TermConcept was described through the object property isDisjointWith.

OWL DL Class Model. The OWL DL Class Model of TermNet was created due
to the same reasons as its GermaNet counterpart (see Section 17.3.3.1). In the class
model, each individual term concept and termset is a subclass of one of the top-
level classes TermConcept and TermSet. Given that two concepts A and B belong
to one and the same terminological system with the extension of B representing
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Fig. 17.5 Class hierarchy for the OWL DL Class Model and OWL Full Model of TermNet.

a subclass of the extension of A, the classes representing A and B are connected
through a superclass-subclass relation. Given that two subclasses of TermConcept
can be regarded as being disjoint, we labelled A and B with the OWL construct
<owl:disjointwith>.

URI references to occurrences of individual technical terms in our corpus are
described as OWL individuals of the corresponding specific TermConcept classes.

The top-level class TermForm bundles the entirety of orthographic forms with
which the terminological concepts can be instantiated when used in discourse (in our
case in one of our corpus documents). TermForm has no subclasses; instead, every
single form is described as an individual of this class. Each individual is linked to
an occurrence of the respective form in the corpus using a type/token relation.

Since in OWL DL classes cannot be assigned as property values for classes,
CRs, LSRs, and membership relations could be established only indirectly using
owl:Restriction in combination with the <owl:allValuesFrom> construct (cf. List-
ing 17.6). Even though restrictions are defined for classes, they do not describe a
pair of classes as an instance of a relation. Instead, they determine that the indi-
viduals of the respective classes may be connected by OWL object property value
assignments. Modelling relation instances between classes would imply a transi-
tion to OWL Full. The restrictions in the class model are thus rather workarounds,
mainly serving consistency purposes.

OWL Full Model. By adding the line of code mentioned in Section 17.3.3.1 into the
definitions of the classes TermConcept and TermSet, the OWL DL instance model
of TermNet was converted into the OWL Full Metaclass Model. Through this mod-
ification, TermConcept and TermSet become metaclasses which means that their
instances (the individual term concepts and termsets) are both instances and classes
at the same time. As a consequence and in contrast to the OWL DL class model, re-
lation instances between subclasses of TermConcept and TermSet could be explicitly
described as property value assignments between classes. Nonetheless and as men-
tioned in Section 17.3.1.1, OWL Full ontologies cannot be queried and processed by
reasoning services which are based on description logics, but e.g. by using a logic
programming language such as Prolog.
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17.3.3.3 GermaTermNet

Theoretically, based on the three OWL models of GermaNet and TermNet de-
scribed above, 3 x 3 = 9 differing OWL models for GermaTermNet may be de-
rived. In the following, we describe the implementation of the plug-in relations of
GermaTermNet for:

• the combinations of the respective OWL DL instance models (henceforth re-
ferred to as the GermaTermNet instance-instance model);

• the combinations of the respective OWL DL class models (henceforth referred to
as the GermaTermNet class-class model);

• the combination of the OWL DL instance model of GermaNet with the OWL DL
class model of TermNet (henceforth referred to as the GermaTermNet “hybrid
model”);

• the combinations of the respective OWL Full models.

In the instance-instance model, the plug-in relations described in Section 17.2.3
as well as their inverses have been established directly between individuals of
TermNet and GermaNet (cf. Listing 17.7, below). In the class-class model these
relations and their inverses have been indirectly realised through establishing al-
lValuesFrom-restrictions which apply to the TermNet subclasses of TermConcept
and the GermaNet subclasses of Synset.

<rdf:Description
rdf:about="http://www.owl-ontologies.com/TermNet.owl#TermConcept_Knoten">
<rdfs:subClassOf>

<owl:Restriction>
<owl:hasValue
rdf:resource=
"http://www.owl-ontologies.com/GermaNet-instances.owl#nArtefakt.5816"/>

<owl:onProperty rdf:resource="#attachedToNearSynonym"/>
</owl:Restriction>

</rdfs:subClassOf>
</rdf:Description>

<rdf:Description
rdf:about="http://www.owl-ontologies.com/TermNet.owl#TermConcept_Knoten">
<attachedToNearSynonym

rdf:resource=
"http://www.owl-ontologies.com/GermaNet-instances.owl#nArtefakt.5816"/>

</rdf:Description>

Listing 17.7 Connecting resources: Instance of the attachedToNearSynonym-relation in the
“hybrid model” (above) and in the “instance-instance model” (below); in both examples the
TermNet term concept Knoten is linked to the GermaNet synset individual nArtefakt.5816
which comprises the lexical unit Knoten.

The plug-in relations of the “hybrid model” [22] have been realised through es-
tablishing hasValue-restrictions which link subclasses of TermConcept with individ-
uals of Synset (cf. Listing 17.7, above). Since OWL DL does not allow for specify-
ing inverse relations between classes and instances, the restrictions are defined only
one-way from classes to instances, and not vice-versa. The plug-in relations of the
OWL Full model have been modelled in the same way as in the instance-instance
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model, namely by establishing direct relations between TermConcept and Synset
individuals.

17.4 Processing WordNet-Like Resources in OWL

In this section, we will discuss the advantages and drawbacks of the three OWL
models for wordnets described above when it comes to using them as lexical-
semantic resources in the context of hypermedia applications (Section 17.4.1) and
in the context of semantic relatedness calculations (Section 17.4.2). Section 17.4.1
describes, with the example of the different models of the TermNet resource, how
the decision for a certain OWL sublanguage as well as for one of the three models
leads to different conditions for querying the resource. We discuss which of the
three OWL models can be processed more efficiently and compare three sample
queries with respect to the complexity of the query terms needed to implement them
on the resource and with respect to the elapsed time between sending the query
to the server and receiving the query results. In Section 17.4.2, we firstly inves-
tigate ways to process OWL Full models of wordnets and secondly the potential
of a connection of a general language with a specialised wordnet within OWL by
the example of wordnet-based semantic relatedness calculation. The queries that
we use do involve reasoning, but not logically complex reasoning with the purpose
of drawing inferences or deriving theorems over individuals and concepts in our
knowledge base. Instead, they represent certain text-technological tasks motivated
by our project contexts of text parsing and automatic hypertextualisation.

17.4.1 Processing the OWL Models of TermNet

Application scenario: For the comparison of the three OWL models of the TermNet
resource, we defined three sample queries. The queries have been defined with re-
spect to the application scenario of the HyTex project, which describes a hypermedia
application that supports the selective reading of and the intellectual information re-
trieval from documents from a corpus of scientific texts [36]. The application is
designed especially with respect to users who are not experts in the scientific do-
main – instead, it is meant to support especially those users who only have basic
knowledge of the concepts which are relevant to the domain (user groups such as
e.g. students, journalists, or scholars from other scientific disciplines) and provide
them with all information that they need for a proper understanding when selectively
browsing through the documents.

This support may be given on the one hand by providing the readers with hyper-
links to definitions of the respective technical terms given in other hypertext nodes
or in a glossary which are relevant for the understanding of the occurrence of the
respective term in the hypertext nodes currently being read. In addition, the com-
prehension of a terminological concept often requires not only the availability of a
definition of the respective technical term but also at least a rudimentary knowledge
of its lexical-semantic or conceptual neighbourhood. Readers with a non-expert
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status therefore also need support for the exploration of the conceptual structure of
the respective domain and its representation in the terminologies used in the scien-
tific community.

In our application scenario, TermNet serves as a resource to provide users with
the possibility to explore the terminological context of a given technical term (e.g.
after having found this term in one of the hypertext nodes) as well as to explore
the conceptual structure of the domain irrespective of a specific terminological rep-
resentation of it (e.g. as given in the terminological system of a certain author or
scientific paradigm). Our three sample queries represent needs which can be con-
sidered typical for non-expert users when selectively browsing through scientific
documents:

User scenario 1: Making use of the TermNet component of the application is driven
by the motivation to view all text passages in the corpus that have to do with one
particular terminological concept.

Sample scenario: A lexicographer who has to compose the entry “Hyperlink” for a
specialised dictionary on information technology should not only be provided with
all text passages in which the TermForm(s) hyperlink and link (as lexicalised forms
of the TermConcept Link) occur, but in addition with all text passages in which other
TermForms occur that do not lexicalise the TermConcept Link, but one of its sub-
concepts (e.g., bidirektionaler Link, 1:1-Link, Inhalts-Link).

→ Query 1: “Search for all term occurrences in the corpus which denote a given
term concept or a more specific one.” (e.g., “Search for all URIs that have to do
with links.”).

User scenario 2: Making use of the TermNet component of the application is driven
by the motivation to view all text passages in the corpus that have to do with a par-
ticular scientific category.

Sample scenario: A student who has to write a term paper on the hyperlink concept
in hypermedia research should not only be provided with all text passages in which
the TermForm(s) hyperlink and link occur, but in addition with all text passages in
which different TermForms occur that relate to the same category, but do not lexi-
calise the same TermConcept (e.g., also text passages which contain occurrences of
the TermForms Verknüpfung and Kante as well as of TermForms which lexicalise
subconcepts of the TermConcepts Verknüpfung and Kante).

→ Query 2: “Search for all URIs that relate to TermConcepts which belong to a
given termset.” (e.g., “Search for all term occurrences in the corpus that have to do
with links or similar concepts.”).

User scenario 3: While browsing the hypertext nodes of the application, a non-
expert user is suddenly faced with the occurrence of a term which seems to be fun-
damental for the comprehension of the text; s/he decides that s/he should learn more
about the category to which this term refers, in order to improve his/her knowledge
prerequisites for a proper understanding.
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Sample scenario: A student who is planning to attend a course “Introduction to
Hypermedia Research” in the upcoming semester wants to get a first overview of
the field of hypermedia research. He browses some hypertext nodes of the appli-
cation and is faced with an occurrence of the TermForm link. He already has an
intuitive concept of link from his everyday internet use but has the intuition that
in the scientific literature, the concept area associated with the form link might be
more differentiated. He thus wants to view other hypertext nodes that have to do
with links. Since he is motivated to gather information about a certain conceptual
area, or category, he should not only be led to hypertext nodes that contain further
occurrences of the TermForm link, but also nodes that contain occurrences of differ-
ent TermForms which are not associated with the same TermConcept Link but with
TermConcepts which are members of the same termset to which the TermConcept
Link belongs.

→ Query 3: “Start from a given term occurrence in the corpus and search for oc-
currences of any technical terms which denote the same or a similar concept.” (e.g.,
“Search for all URIs that have to do with the same or a similar concept as the term
occurrence link in node #127.”).

Implementation: For the OWL DL models (TN-IM, TN-CM), we implemented
the queries using the query language nRQL in combination with RacerPro11 for
processing. Due to the different models, the complexity of the queries vary between
TN-CM and TN-IM (as can be seen from the examples in Listing 17.8 which give
the nRQL expressions for query 1). This is, on the one hand, due to the lack of
class hierarchies between term concepts in TN-IM: since in TN-IM no superclass-
subclass relations with implicit class inclusion are available, the inclusion of specific
concepts under general concepts can only be considered by explicitly querying the
object property isNarrowerTermOf. On the other hand, URIs in TN-IM are mod-
elled as individuals of a top-level class TermOccurrence and not as individuals of
term concepts. This is due to the fact that term concepts are already individuals
themselves and, thus, in OWL-DL can not have further individuals.

Reasoners such as RacerPro are based on description logics and cannot be ap-
plied to OWL Full ontologies. However, OWL Full ontologies can be parsed and
queried using the Thea OWL Library for SWI Prolog [37] which in turn utilises
the SWI-Prolog Semantic Web Library [39]. We thus used Prolog for querying
the OWL Full Metaclass model (TN-MM).12 The Prolog predicates for query 1 are
given in Listing 17.8. It searches for all term occurrences of a certain concept or
one of its subconcepts.

11 The acronym RacerPro stands for Renamed ABox and Concept Expression Rea-
soner Professional and has been developed by Racer Systems GmbH & Co. KG
(http://www.racer-systems.com). In Racer, knowledge bases can be queried
using the new Racer Query Language (nRQL) which is described in [19].

12 Another reason why we are particularly interested in using Prolog to access our resources
is that we potentially want to interface the relational discourse parser which was developed
in one of the projects involved in this research and which has been coded in Prolog (see
[23] in this volume).

http://www.racer-systems.com
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(retrieve
(?x)
(?x |TermConcept_Link|)

)

(retrieve
(?x)
(or

(and
(?x |TermOccurrence|)
(|TermConcept_Link| ?x |occursIn|)

)
(and

(?y |TermConcept|)
(?y |TermConcept_Link| |isNarrowerTermOf|)
(?x |TermOccurrence|)
(?y ?x |occursIn|)

)
)

)

termOccurrenceForConceptOrSubConcept(Concept, URI):-
termOccurrenceForConcept(Concept, URI).

termOccurrenceForConceptOrSubConcept(Concept, URI):-
transitive_subclassOf(SubConcept, Concept),
termOccurrenceForConcept(SubConcept, URI).

findOccurrencesForConceptOrSubconcept(Concept, L):-
findall(URI, termOccurrenceForConceptOrSubConcept(Concept, URI), L).

Listing 17.8 Query 1 as expressed for the different TermNet models: in nRQL for TN-CM
(above), in nRQL for TN-IM (middle), and the Prolog predicates for TN-MM (below).

(retrieve
(?x)
(and

(?x |http://www.owl-ontologies.com/TermNet.owl#TermConcept|)
(?x |http://www.owl-ontologies.com/TermNet.owl#TS_Link|

|http://www.owl-ontologies.com/TermNet.owl#isMemberOf|)
)

)

(retrieve
(?x)
(and

(?x |http://www.owl-ontologies.com/TermNet.owl#TermOccurrence|)
(?y |http://www.owl-ontologies.com/TermNet.owl#TermConcept|)
(?y |http://www.owl-ontologies.com/TermNet.owl#TermSet_Link|

|http://www.owl-ontologies.com/TermNet.owl#isMemberOf|)
(?y ?x |http://www.owl-ontologies.com/TermNet.owl#occursIn|)

)
)

termOccurrenceForSet(Set, URI):-
termConceptForSet(Set, Concept),
termOccurrenceForConcept(Concept, URI).

findOccurrencesForSet(Set, L):-
findall(URI, termOccurrenceForSet(Set, URI), L).

Listing 17.9 Query 2 as expressed for the different TermNet models: in nRQL syntax
for TN-CM (above), in nRQL for TN-IM (middle), and the Prolog predicates for TN-MM
(below).
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In order to evaluate the efficiency with which the three models can be processed,
we compared the queries 1 and 2 according to (a) the complexity of the query ex-
pression and (b) the average time elapsed between sending the query and receiving
its answer. We defined “query complexity” as the number of conjuncts, i.e. the
number of atoms which are connected through AND-relations, in the query body.
We measured the average elapsed time by averaging over the results from execut-
ing each query one hundred times per model on one and the same machine. This
experiment was conducted on a 32-bit Windows XP machine (AMD Turion 64 X2
2.2 GHz with 2.4 GB RAM). As a reasoner, we used RacerPro 1.9.0 running at lo-
calhost. The Prolog queries had been processed with SWI Prolog13 in combination
with the semweb.pl and Thea libraries for parsing and querying OWL documents.

Table 17.3 shows the results of the evaluation of TN-CM, TN-IM, and TN-MM
with the two queries. The results show that the nRQL expressions needed to query
TN-IM are significantly more complex than the expressions needed for TN-CM.
Concerning the time needed to process the queries, the findings are converse: al-
though the query expressions for TN-CM are less complex than the expressions for
TN-IM, the elapsed time between sending the query and receiving the answer is
46.7% higher at average for TN-CM than for TN-IM. Since the TN-CM resource
consists of 72% axioms and 28% facts whereas the TN-IM resource consists of 1%
axioms and 99% facts (cf. Table 17.4), this may be due to the fact that axioms have
to go through several preprocessing steps before being able to be handled by a rea-
soner (cf. [32]) so that knowledge bases with large numbers of axioms may degrade
performance while being queried [20].

The complexity of the queries to TM-MM in Prolog+Thea measured by the num-
ber of conjunct predicates called is higher because Thea does not store the OWL
facts as simple triples of atoms but uses a list representation for the types of an
individual. Besides, a predicate for namespace expansion needs to be called sev-
eral times, and the transitivity of the subclass needed to be implemented and called
specifically. The number in brackets in Table 17.3 shows the complexity when the
member, namespace expansion, and transitivity calls are subtracted and is suppos-
edly better comparable with the nRQL/SWRL complexities given for the TM-IM
and TM-CM. Even though they are more complex than the nRQL queries for TN-
CM, the Prolog queries for TN-MM are processed faster than the queries for TN-
CM. While SWI Prolog needed 0.95 s per conjunction for processing the TN-MM
queries, Racer Pro needed 3.19 s (query 1) and 1.52 s (query 2) per conjunction for
processing the TN-CM queries. Nevertheless, the best results were obtained for the
TN-IM queries (0.35 s and 0.5375 s per conjunction) which might be due to the fact
that when generating TN-MM from TN-IM, class inclusion between term concept
classes had been re-introduced so that TN-MM contains 56 times more axioms than
TN-IM (cf. Table 17.4).

Besides the processing speed, TN-MM has the advantage that Prolog is a much
more powerful querying device than nRQL. This can be illustrated by means of
query 3: While it is no problem to express this query in Prolog, the nRQL syntax

13 http://www.swi-prolog.org/

http://www.swi-prolog.org/
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Table 17.3 Differences in processing the three TN models with queries 1 and 2 according to
query complexity and elapsed time.

Query Model Complexity
Elapsed time

average (seconds) variance standard deviation

1
CM 1 3.19 0.0428 0.20688
IM 6 2.10 0.0027 0.05196

MM 7 (3) 2.85 0.0016 0.04000

2
CM 2 3.04 0.0031 0.05568
IM 4 2.15 0.0014 0.03742

MM 11 (3) 2.85 0.0014 0.03742

Table 17.4 Number of axioms and facts in the different TN models (for TN-CM and TN-IM
before and after applying the SWRL rules given in Listing 17.10).

TN-CM TN-CM (expanded) TN-IM TN-IM (expanded) TN-MM
Axioms 5,511 5,516 82 87 4,595

Facts 2,145 2,754 6,153 7,814 5,459

is restricted to the definition of simple inference patterns on the basis of class inclu-
sion, superclass-subclass relations, or object properties. In order to define an nRQL
expression to process this query for the two OWL DL models with RacerPro, we
therefore first had to expand our resources by a new symmetrical object property
which connects URI individuals which are occurrences of term concepts that are
members of one and the same termset. For this purpose, we used the Semantic Web
Rule Language14 (SWRL) in order to automatically infer instances of a new object
property named instantiatesSimilarConceptAs into TN-CM and TN-IM. SWRL al-
lows for the augmentation of ontologies by inferring new facts (information about
individuals) through the definition of implications between antecedents and conse-
quents.

For the definition of our SWRL rule, we used the Rules Tab module15 of the
Protégé editor. For the application of SWRL rules to OWL resources, Rules Tab uses
the Jess reasoner16. The application of the SWRL rule then automatically added new
facts (information about individuals) to the resources, namely 609 instances of the
property to TN-CM and 1,661 instances to TN-IM (cf. Table 17.4). The difference
in the number of properties added to TN-CM and to TN-IM is due to the different
modelling of term concepts and termsets as described in Section 17.3.3. In order
to test querying relatedness between classes in TN-CM anyway, we added dummy
instances to some (but not all) of our TermSet classes. Thus, the number of object
properties added by applying the SWRL rule is less for TN-CM than for TN-IM.
The SWRL rule for TN-CM and TN-IM is given in Listing 17.10.

14 http://www.w3.org/Submission/SWRL/
15 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab
16 http://herzberg.ca.sandia.gov/jess/

http://www.w3.org/Submission/SWRL/
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab
http://herzberg.ca.sandia.gov/jess/
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TermConcept(?y) ∧ TermSet(?z) ∧ isMemberOf(?y, ?z) ∧ TermConcept(?a) ∧
hasMember(?z, ?a) → instantiatesSimilarConceptAs(?y, ?a)

TermOccurrence(?x) ∧ TermConcept(?y) ∧ occursIn(?y, ?x) ∧ TermSet(?z) ∧
isMemberOf(?y, ?z) ∧ TermConcept(?a) ∧ isMemberOf(?a, ?z) ∧
TermOccurrence(?b) ∧ occursIn(?a, ?b) → instantiatesSimilarConceptAs(?x, ?b)

Listing 17.10 SWRL rules used for query 3 as specified for TN-CM (above) and TN-IM
(below).

17.4.2 Processing the OWL Full Version of GermaTermNet

Previously, we implemented a set of basic queries to the GermaNet OWL Full model
in Prolog on top of Thea, reported in [24]. That implementation mostly allowed
for querying hyponym sets and could be applied as well to the OWL DL instance
model of GN. For the present study we aimed at a more complex querying scenario
for wordnets. It should

• include different kinds of elementary queries and ways of combining them
• utilise genuine OWL Full features, i.e. the class+individual status of lexical units

in GN and of term concepts in TN
• utilise GermaTermNet, i.e. analyse the plug-in relations connecting the general

language GN with the domain-specific TN
• start from or involve the occurrence individuals which emulate word token oc-

currences in documents
• constitute a component in a typical text-technological application

We chose the area of wordnet-based calculation of semantic distance/related-
ness for querying the GermaTermNet OWL Full model. Determining the semantic
relatedness of words/concepts is a task in many computational linguistic and text-
technological applications. Lexical Chains, for example, are computed for a given
text by identifying semantically related content words on the basis of a lexical-
semantic resource [11]. In automatic hypertextualisation, they can be exploited to
establish whether two sections of a text are thematically related or unrelated and
thus whether they should end up in one hypertext module or in separate hypertext
modules. Other applications of semantic relatedness are word sense disambiguation,
discourse parsing, or information retrieval.

According to [7] and also cited in [11], semantic relatedness should be distin-
guished from semantic similarity. Two concepts (or via lexicalisation, lexemes) are
semantically similar only if a synonymy or hypernymy relation holds between them.
W.r.t the concepts and relations defined for TermNet and the plug-in relations de-
fined for GermaTermNet in this chapter, we suggest to also count membership in one
TermSet and an attachedToNearSynonym link as a sufficient criterion for semantic
similarity. Examples of this are the pairs aufgehen-sich öffnen, Gewässer-Meer,
Link-Relation, and Dokument (GN)-Dokument (TN).

Two concepts are semantically related if any systematic relation such as syn-
onymy, antonymy, hypernymy, holonymy, or any unsystematic, functional relation
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or frequent association holds, as in day-night, tree-branch, or flower-gardener
[cf. 7, 11]; see also [12] in this volume. Semantic similarity is thus a subconcept of
semantic relatedness.

How best to approximate semantic relatedness computationally is an area of cur-
rent research. Several semantic relatedness measures have been defined, partly using
WordNet (or more general, a wordnet) as a lexical resource. Overviews and evalu-
ations of semantic relatedness measures are included in the recent publications by
[7, 8], and [11]. To test the queriability of our OWL Full model of (merged) word-
nets, we implemented Wu and Palmer’s conceptual similarity [41]. It is defined as
in the following notation found in [8].

wp(c1,c2) =
2 ∗ depth(lcs(c1,c2))

len(c1, lcs(c1,c2))+ len(c2, lcs(c1,c2))+ 2depth(lcs(c1,c2))
(17.1)

where c1,2 are concepts in a wordnet, lcs is their lowest common superconcept, len
is the length of a path along the hypernymy hierarchy, and depth is the length of the
path to a given concept from the root node of the hypernymy tree.

Consequently, the implementation of wp in Prolog using the Thea library consists
of three main functions: first, the construction of the hypernymy (or more general,
superconcept) tree; second, the calculation of the depth of one concept node; and
third, the calculation of the lcs of two concept nodes.

Generating the superconcept tree consists of inserting a root node and connecting
it to those concepts that had no superconcepts in the first place. In GermaTermNet,
the superconcept hierarchy is formed by four different path types:

1. the usual isHyponymOf relation between synsets in GermaNet
2. the subclassOf relation between term concepts in TermNet
3. the plug-in relation attachedToNearSynonym between term concepts in TN and

synsets in GN
4. the plug-in relation attachedToGeneralConcept between term concepts in TN

and synsets in GN

We implemented the calculation of depth and path lengths (len) in the wp formula
such that an attachedToNearSynonym link counts 0, and the other three types of link
count 1 (cf. Listing 17.11).

Concerning the subclassOf links between term concepts in TN, only those below
the attachment points to GN are taken into account, i.e. the upper part of the term
concept hierarchy is “eclipsed” in this application [cf. 26, 24]; otherwise, certain
specialised terms would become situated too close to the root node and distort wp
calculation.

Because the superconcept hierarchy includes multiple inheritance, there may be
multiple depth values for one concept. We disambiguate this naturally by consid-
ering only the minimum depth in the calculation of wp. For the same reason, two
concepts may have more than one lcs; in the implementation, we choose the one that
is found first. Furthermore, the Thea OWL parser does not seem to be able to deal
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with owl:import specifications, so we worked with a version where the components
of GermaTermNet were merged in one file.

The present implementation has some limitations: the GermaTermNet OWL Full
ontology that we tested does not contain the complete GermaNet but only the rep-
resentative subset mentioned in Section 17.2.1. The complete GermaNet could not
be parsed and loaded into Prolog in reasonable time on the type of PCs that we
used. We also noticed that the multiple owl:disjointWith specifications of TermNet
delayed the parsing of GermaTermNet considerably. We thus removed them for wp
calculation.

% direct_isSubConceptOf_GTN/3

direct_isSubConceptOf_GTN(A, B, 1):-
direct_isHyponymOf_S(A, B).

direct_isSubConceptOf_GTN(A, B, 1):-
attachedToGeneralConcept(A, B).

direct_isSubConceptOf_GTN(A, B, 0):-
attachedToNearSynonym(A, B).

direct_isSubConceptOf_GTN(A, B, 1):-
subclassOf(A, B).

%---
attachedToGeneralConcept(S, T):-

individual(S, _, _, PrValueList),
member(value(’attachedToGeneralConcept’, T), PrValueList).

Listing 17.11 Prolog code for calculating relatedness. subclassOf/2, individual/4, and val-
ue/2 are predicates from the Thea library.

The Prolog coding of wp was straightforward using the OWL predicates that are
made available by Thea. Examples of queries for a Wu-Palmer calculation of a
concept pair and an occurrence pair are given in Listing 17.12.

?- wp(’tn:TermConcept_extensional_definierter_Verweis’,
’tn:TermConcept_Beziehung’, W).

W = 0.571429

?- wpo(’tn:URI_TermInstance_extensional_definierter_Verweis_1’,
’gn:URI_LUnit_Instance_aVerhalten.239.arrogant_2’, W).

W = 0.222222.

Listing 17.12 Semantic relatedness queries in Prolog, wp = query with concepts, wpo =
query with occurrences.

Thus, the OWL Full model of a wordnet merged in OWL according to the plug-in
approach can be processed in the Prolog-plus-semantic-web-libraries framework. A
number of further interesting observations was made as well:
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In the implementation, it is fairly easy to extend or reduce the set of link types
used for the calculation of the superconcept hierarchy and to specify their respective
distance counts. This allows for e.g. including other relations like the holonymy
relation in the calculation of the superconcept hierarchy or for a different weighting
of plug-in links as opposed to GermaNet links as opposed to TermNet links.

It was also straightforward to “eclipse” a part of the GermaTermNet ontology
dynamically as part of the wp application (eclipse was originally described as a
static effect in the merger of a general with a specialised wordnet in [26]).

Furthermore, wp calculation for a pair of concepts could be projected to wp cal-
culation for a pair of occurrences easily by making reference to the properties that
represented occurrence in Prolog. This is not an advantage of the OWL Full model,
though, as the implementation would be similar for the instance model. However,
processing property value specifications in the OWL Full model is a true advantage
over processing the OWL class restrictions of the class model.

17.5 Conclusion

In this paper, we discussed modelling and processing issues of wordnets represented
in the web ontology language OWL. We introduced the features of an Instance
Model, a Class Model, and a Metaclass Model for rendering wordnets in OWL
by the example of the three resources that we have been working with in the context
of two projects of the DFG research group 437 “Text-Technological Modelling of
Information”, namely GermaNet, TermNet, and GermaTermNet.

In the Instance Model, which is favoured for the Princeton WordNet for English
by the W3C Semantic Web Best Practices and Deployment Group, synsets and
lexical units are rendered as OWL individuals, and the links representing lexical-
semantic relations are rendered as simple property assignments. A drawback of this
model is that occurrence individuals cannot be modelled as instances of their lexical
units. Instead, an additional occurrence class must be introduced, and occurrences
are linked in a distinguished occursAs relation. Moreover, the class/individual dis-
tinction in OWL cannot be used to model wordnet instances as introduced for PWN
2.1 (cf. [27]).

In the Class Model, on the other hand, synsets and lexical units are rendered as
OWL classes. Many domain ontologies or terminologies in OWL are represented
according to this model (e.g. the GOLD ontology for linguistic description, cf. [15],
or TermNet, cf. [25]). With regard to lexical-semantic networks, the Class Model is
best compatible with the traditional view of lexical semantics according to which a
noun semantically denotes a concept class. That means that even wordnet instances
as described in [27] could be incorporated naturally as OWL individuals of synset
classes. However, lexical-semantic and conceptual relations as well as the lexi-
calisation relation and the plug-in relations of GermaTermNet must all be encoded
using OWL property restrictions on synset and LU classes, which is a less than ideal
solution when modelling simple wordnet relation assignments. Moreover, when in-
troducing occurrence individuals of lexical unit classes (Section 17.3.3.2), it seems
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inadequate that these also inherit all the lexical properties of the LUs such as style
marking or the lexical-semantic relations relation assignments.

Thus, in view of the drawbacks of the Instance and Class Models, we introduced
the Metaclass Model for wordnets in OWL. It offers a combination of the advantages
of the Class and Instance Model because synsets and lexical units are viewed as
classes and individuals at the same time. On the other hand, it introduces a new
practical problem as a wordnet encoded according the Metaclass Model is in the
dialect OWL Full and thus not processable by most standard DL-based reasoning
software.

In Section 17.4, we examined ways to process the different models for wordnets
in OWL in two scenarios. In the first scenario, we evaluated the performance of
queries for related term occurrences in documents such as they are typically queried
on TermNet in the hypertextualisation application. For querying the Class Model
and the Instance Model, we employed the query language nRQL with the DL rea-
soner software RacerPro, and the rule language SWRL with the java-based rule
engine Jess. The rules and queries for the Metaclass Model were all formulated in
Prolog, using SWI Prolog and the semweb.pl and Thea libraries.

In general, the formulation of queries in nRQL was less complex on the Class
Model than on the Instance Model, mainly due to the rendering of occurrence indi-
viduals as instances of lexical unit classes in the Class Model. However, it turned
out that the Class Model still had to be extended by dummy individuals to get the
desired results for our queries. Also the processing of all three queries took about
one-third longer than processing the corresponding queries on the Instance Model.

For querying the Metaclass Model, DL reasoners such as RacerPro could not be
employed; thus we used Prolog and its Semantic Web Library as a rule and query
language. Formulating the queries in the first scenario was straightforward but still
somewhat more complex than querying the Class Model in nRQL due to the way
property assignments are stored in Prolog facts for individuals by the Thea OWL
parser. The time it took to execute the queries lay between the times for querying
the Class Model and the Instance Model using nRQL and RacerPro.

In the second scenario, we evaluated the feasibility of implementing the more
complex text-technological task of calculating semantic similarity on the combined
ontology GermaTermNet in the Instance+Instance Model (using SWRL rules) and
the Metaclass+Metaclass Model (using SWI Prolog and its semantic web libraries).

Unlike in the Class Model (where OWL property restrictions must be checked,
cf. [24]), combinations of path types can easily be analysed on the Thea representa-
tion of the Metaclass+Metaclass Model of GermaTermNet in Prolog (and the same
would hold for the Instance+Instance Model).

Although SWRL is a logical rule language based on Horn logic like Prolog and
also includes a built-in function library, it was impossible to approximate semantic
similarity calculation on the Instance+Instance Model using only SWRL. The rea-
son is that SWRL lacks all the general programming language features of Prolog,
such as binding temporary results to a variable and changing the variable content,
or a maximum function, which is needed in the calculation of semantic similar-
ity. To implement this on the basis of SWRL, one would have to embed the OWL
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ontology+SWRL rules in a programming language environment as well, e.g. a Java
application using the SWRL-Java API17.

Based on the findings of the experiments reported in this chapter, we favour the
Metaclass Model for wordnets in OWL and process them using the Prolog semantic
web libraries semweb and Thea. However, one has to keep in mind that Thea is
not a W3C-endorsed effort and that the semantics of pure Prolog differ from the
semantics of OWL in various respects, such as Prolog’s closed world assumption
vs. an open world assumption for OWL.

Using SWRL, on the other hand, may be more sustainable as it has the status
of a W3C member submission and is more easily combinable with OWL. More and
more implementations of SWRL features and APIs are likely to emerge in the future
so that it might become easier to integrate OWL+SWRL ontologies into procedural
programming applications as well.
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allgemeinsprachlicher und terminologischer Wortnetze in OWL. Zeitschrift für Sprach-
wissenschaft 26(2) (2007)
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Chapter 18
Exploring Resources for Lexical Chaining:
A Comparison of Automated Semantic
Relatedness Measures and Human Judgments

Irene Cramer, Tonio Wandmacher, and Ulli Waltinger

Abstract. In the past decade various semantic relatedness, similarity, and distance
measures have been proposed which play a crucial role in many NLP-applications.
Researchers compete for better algorithms (and resources to base the algorithms
on), and often only few percentage points seem to suffice in order to prove a new
measure (or resource) more accurate than an older one. However, it is still unclear
which of them performs best under what conditions. In this work we therefore
present a study comparing various relatedness measures. We evaluate them on the
basis of a human judgment experiment and also examine several practical issues,
such as run time and coverage. We show that the performance of all measures – as
compared to human estimates – is still mediocre and argue that the definition of a
shared task might bring us considerably closer to results of high quality.

18.1 Motivation

The computation of semantic relatedness (SR) has become an important task in
many NLP-applications such as spelling error detection, automatic summarization,
word sense disambiguation, and information extraction. In recent years a large
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variety of approaches in computing SR has been proposed. However, algorithms
and results differ depending on resources and experimental setup.

It is obvious that SR plays a crucial role in the lexical retrieval of humans. In
various priming experiments it could be shown that semantically related terms in-
fluence the semantic processing of each other (e.g. if “street” is primed by “car” it
is recognized more quickly). Moreover, many theories of memory are based on the
notion of SR. The spreading activation theory of Collins & Loftus [12] for example
groups lexical items according to their SR in a conceptual graph. Similar ideas can
be found in Anderson’s Adaptive Control of Thought (ACT) theory [1].

The question that we want to discuss here is, how this kind of relatedness can
be determined by automatic means. In the literature the notion of SR is often con-
founded with semantic similarity [5, pp 3]. There is however a clear distinction
between these terms. Two terms are semantically similar if they behave similarly in
a given context and if they share some aspects of meaning (e.g. in the case of syn-
onyms or hypernyms). On the other hand two terms can be semantically strongly
related without behaving similarly. For example they can show a strong associative
relationship (e.g. ball - goal), and they can be related over different linguistic cate-
gories (e.g. milk - white, dog - bark). That is, semantic similarity can be seen as a
special case of semantic relatedness [37]. With respect to the automatic computa-
tion of SR, however, many research questions remain unanswered. As stated above,
many algorithms were presented in the past decade, but thorough evaluations and
comparisons of their ability to capture SR in a human-like manner are still rare.

In this work we therefore present a study comparing various SR measures. We
evaluate sixteen different algorithms involving four different resources based on a
human judgment experiment, and we analyze the algorithms from a theoretical and
practical point of view.

We perform this evaluation in the context of lexical chaining, a task that aims
to determine sequences of terms which are semantically interrelated in a given text.
Such term sequences (or chains) represent an important intermediate structure for
purposes involving higher-order semantic analysis.

The following sections are organized as follows: The principle concepts of lex-
ical chaining are introduced in Section 18.2. Section 18.3 outlines related work by
means of two different human judgment experiments. The various SR measures
used in our experiment are described in Section 18.4. An evaluation experiment
and its results are presented in Section 18.5. Conclusions and suggestions for future
work are given in Section 18.6.

18.2 Lexical Chaining

Based on the notion of lexical cohesion, as described by Halliday and Hasan in
1976 [20], computational linguists, e.g. Morris and Hirst [32], developed in the
1990s a method to compute partial text representations: lexical chains. To illustrate
the idea of lexical chains, an annotated text passage is given in Figure 18.1. These
chains (e.g. sit down - rest - tired - fall asleep) consist of semantically related terms,
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and they describe the cohesive structure of a given text. They can be constructed
automatically by linking lexical items with respect to the SR holding between them.
Many approaches of lexical chaining employ a lexical-semantic resource such as
Princeton WordNet (cf. [16], which has been used in the majority of cases, e.g. [21],
[18], [44]), Roget’s Thesaurus (e.g. [32]), or the open encyclopedia Wikipedia and
its offshoot Wiktionary1 (e.g. [52]).

However, since the construction of lexical chains does not necessarily depend on
explicit relation types, distributional SR measures (such as PMI or LSA, cf. Section
18.4.2) represent an alternative resource for the calculation of lexical chains.

Fig. 18.1 Chaining example adapted from Halliday and Hasan’s work [20]

A variety of NLP-applications, namely text summarization (e.g. [3], [42]), mala-
propism recognition (e.g. [21]), automatic hyperlink generation (e.g. [18]), question
answering (e.g. [35]), and topic detection or tracking (e.g. [8]), benefit from lexical
chaining as a valuable resource and preprocessing step.

In order to formally evaluate the performance of a lexical chaining system, a stan-
dardized test set would be required. However, the output of a chainer is normally
assessed with respect to an application; although in several works more general eval-
uation criteria have been proposed (e.g. [6], [14]), no consensus among researchers
could yet be achieved, and, consequently, the different sets of criteria have not yet
been systematically applied.

18.3 Related Work

Semantic Relatedness constitutes a phenomenon, which can be observed practically
in every text or discourse; while it is easy to approach intuitively, it is rather difficult

1 http://www.wikipedia.org

http://www.wikipedia.org
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to detect and analyze in a formal manner. Although many researchers of different
scientific communities have proposed various approaches intended to formalize and
compute structures of semantic relatedness, there are nevertheless only few promi-
nent strands of research which differ especially with respect to the names attributed
to the phenomenon, the features and types of relations subsumed, and last but not
least the methods to deal with it. We argue that all these works might best be split
into two groups: firstly, research intended to understand, describe, and finally for-
malize the underlying concepts (cf. [33]), and secondly, studies mainly focused on
technical aspects, namely efficient algorithms (cf. [42]) and promising resources (cf.
[52]). In the following we describe in depth one prominent work of each of the two
strands of research, in order to illustrate the central issues under discussion.

18.3.1 Budanitsky and Hirst

Budanitsky and Hirst’s work [6] aims at an extensive comparison of the performance
of various SR measures, i.e. different algorithms. For this purpose, Budanitsky &
Hirst indicate three evaluation methods: firstly, the theoretical examination (of e.g.
the mathematical properties of the respective measure); secondly, the comparison
with human judgments; thirdly, the evaluation of a measure with respect to a given
NLP-application. In their opinion the second and third method are the most appro-
priate ones; they therefore focus on them in the empirical work presented. As a
basis for the second evaluation method, i.e. the comparison between SR measures
and human judgments, they use two lists of word pairs: the first has been com-
piled by Rubenstein and Goodenough [38] and contains 65 word pairs2, while the
second, containing 30 word pairs, has been created by Miller and Charles [30]. In
order to evaluate the performance of five different measures, Budanitsky and Hirst
[6] compute respective relatedness values for the word pairs, and they compare them
with the human judgments. In this way they determine the correlation coefficients
summarized in Table 18.1.

Table 18.1 Correlation Coefficients by Budanitsky and Hirst

Leacock- Hirst- Jiang-
r Chodorow St-Onge Resnik Conrad Lin

M&C 0.816 0.744 0.774 0.850 0.82
R&G 0.838 0.786 0.779 0.781 0.819
mean 0.83 0.77 .78 0.82 0.82

2 Rubenstein & Goodenough [38] investigated the relationship between ’similarity of con-
text’ and ‘similarity of meaning’. They asked 51 subjects to rate on a scale of 0 to 4 the
similarity of meaning for the 65 word pairs. Miller and Charles [30] selected 30 out of the
65 original word pairs (according to their relatedness strength) and asked 38 subjects to
rate this list. They used the same experimental setup as [38].
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In examining the results of this comparison, Budanitsky and Hirst identify sev-
eral limitations of this evaluation method: i.e. they stress that the amount of data
available (65 word pairs) is inadequate for real NLP-applications, however, the de-
velopment of a large-scale data set would be time-consuming and expensive (cf.
Section 18.5.1). Moreover, they argue that the experiments by Rubenstein and
Goodenough [38] as well as Miller and Charles [30] focus on relations between
words rather than word-senses (concepts), which would be more appropriate for
most NLP-applications. Nevertheless, they consider it difficult to trigger a specific
concept without biasing the subjects.

18.3.2 Boyd-Graber et al.

In contrast to the above-mentioned experiments by Budanitsky and Hirst [6], the
research reported by Boyd-Graber et al. [4] strives for the development of a new,
conceptually different layer of word net relation types and is motivated by three
widely acknowledged, yet unsolved challenges:

• The lack of cross-POS links connecting the noun, verb, and adjective sub-graphs
respectively.

• The lack of systematic relation types (such as “actor” or “instrument”), causing
a low relation density of relations, especially in the subgraphs.

• The absence of weights assigned to the relations, i.e. representing the degrees of
semantic distance.

Unlike Rubenstein and Goodenough [38] or Miller and Charles [30], Boyd-
Graber et al. do not restrict themselves to systematic relation types but introduce
the concept of evocation3. While systematic relations are well defined4 , evocation
seemingly represents a diffuse accumulation of various aspects, which intuitively
account for semantic relatedness but can only in parts be precisely characterized.

Table 18.2 Correlation Coefficients by Boyd-Graber et al. [4].

r Lesk Path LC LSA
all 0.008

verbs 0.046
nouns 0.013 0.013
closest 0.131

3 Boyd-Graber et al. define this term in a rather loose sense as “how much one concept
evokes or brings to mind the other”.

4 Relations which can be extrinsically defined and verified, e.g. by replacement tests. Word-
Net and other lexical-semantic resources normally comprise systematic relations, such as
synonymy or antonymy, only.
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In their experiment, Boyd-Graber et al. asked 20 subjects to rate evocation in
120,000 pairs of words (these pairs form a random selection of all possible word
pairs stemming from 1000 core synsets in WordNet). The subjects were given a
detailed manual explaining the task, and they were trained on a sample of 1000 (two
sets of 500) randomly selected pairs. Although the research objective of their work
is to construct a new layer of relations for WordNet rather than to evaluate SR mea-
sures, Boyd-Graber et al. compare the results of their human judgment experiment
with the relatedness values of four different semantic measures. The correlation
coefficients of this comparison are summarized in Table 18.2.

Boyd-Graber et al. arrive at the conclusion that – given the obvious lack of cor-
relation (cf. Table 18.2) – evocation constitutes an empirically supported semantic
relation type which is still not captured by the semantic measures (at least not by
those considered in this experiment).

While the first work mentioned above discusses in detail various SR algorithms,
provides a survey of evaluation methods, and finally presents their applicability from
a technical point of view, the second additionally sheds light on the linguistic and
psycholinguistic aspects of the set-up of a human assessment experiment and the
comparison between relatedness values and human judgments.

18.4 Semantic Relatedness Measures

18.4.1 Net-Based Measures

The following eight SR measures draw on a lexical-semantic net like Princeton
WordNet or its German counterpart GermaNet [26]. Although all of these mea-
sures are based on the same resource, they use different features (some additionally
rely on a word frequency list5) and therefore also cover different aspects of SR.

Most of the relatedness measures mentioned in this section are continuous, with
the exception of Hirst-StOnge, Tree-Path, and Graph-Path which are discrete.

All of the measures range in a closed interval between 0 (not related) and a max-
imum value (mostly 1), or they can be normalized: the distance value calculated by
the three distance measures (Jiang-Conrath, Tree-Path, and Graph-Path) is mapped
into a closed range relatedness value by subtracting it from the theoretical maximum
distance.

The first four measures use a hyponym-tree induced from a given lexical-
semantic net, i.e. all other edges except the hyponym links are disregarded. The
resulting unconnected trees are subsequently reconnected by an artificial root in or-
der to construct the required hyponym-tree.

5 We used a word frequency list computed by Dr. Sabine Schulte im Walde on the basis of
the Huge German Corpus (see
http://www.schulteimwalde.de/resource.html).
We thank Dr. Schulte im Walde for kindly permitting us to use this resource in the frame-
work of our project.

http://www.schulteimwalde.de/resource.html
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• Leacock-Chodorow [25]: Given a hyponym-tree, this measure computes the
length of the shortest path between two synonym sets and scales it by the depth
of the complete tree.

relLC(s1,s2) =− log
2 · sp(s1,s2)

2 ·DTree
(18.1)

s1 and s2: the two synonym sets examined; sp(s1,s2): length of shortest path
between s1 and s2 in the hyponym-tree; DTree: depth of the hyponym-tree

• Wu-Palmer [49]: Given a hyponym-tree, the Wu-Palmer measure utilizes the
least common subsumer in order to compute the similarity between two syn-
onym sets. The least common subsumer is the deepest vertex which is a direct or
indirect hypernym of both synonym sets.

relWP(s1,s2) =
2 ·depth(lcs(s1,s2))

depth(s1)+ depth(s2)
(18.2)

depth(s): length of the shortest path form root to vertex s; lcs(s): least common
subsumer of s

• Resnik [37]: Given a hyponym-tree and the frequency list mentioned above, the
Resnik measure utilizes the information content in order to compute the similar-
ity between two synonym sets. As typically defined in information theory, the
information content is the negative logarithm of the probability. Here the proba-
bility is calculated on the basis of subsumed frequencies. A subsumed frequency
of a synonym set is the sum of frequencies of the set of all words which are in
this synonym set, or a direct or indirect hyponym synonym set.

p(s) :=
∑w∈W(s) freq(w)

TotalFreq
(18.3)

IC(s) :=− logp(s) (18.4)

relRes(s1,s2) = IC(lcs(s1,s2)) (18.5)

freq(w): frequency of a word within a corpus; W (s): set of the synonym set s and
all its direct/indirect hyponym synonym sets; TotalFreq: sum of the frequencies
of all words in the respective lexical-semantic net; IC(s): information content of
the synonym set s

• Jiang-Conrath [22]: Given a hyponym-tree and the frequency list mentioned
above, the Jiang-Conrath measure computes the distance (as opposed to simi-
larity) of two synonym sets. The information content of each synonym set is
included separately in this distances value, while the information content of the
least common subsumer of the two synonym sets is subtracted.

distJC(s1,s2) = IC(s1)+ IC(s2)−2 · IC(lcs(s1,s2)) (18.6)
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• Lin [28]: Given a hyponym-tree and the frequency list mentioned above, the Lin
measure computes the SR of two synonym sets. As the formula clearly shows,
the same expressions are used as in Jiang-Conrath. However, the structure is
different, as the expressions are divided and not subtracted.

relLin(s1,s2) =
2 · IC(lcs(s1,s2))
IC(s1)+ IC(s2)

(18.7)

• Hirst-StOnge [21]: In contrast to the four above-mentioned methods, the Hirst-
StOnge measure computes the semantic relatedness on the basis of the whole
graph structure. It classifies the relations considered into the following four
classes: extra strongly related (the two words are identical), strongly related (the
two words are e.g. synonym or antonym), medium strongly related (there is a rel-
evant path between the two), and not related (there is no relevant path between
the two). The relatedness values in the case of extra strong and strong relations
are fixed values, whereas the medium strong relation is calculated based on the
path length and the number of changes in direction.

• Tree-Path (Baseline 1): Given a hyponym-tree, the simple Tree-Path measure
computes the length of a shortest path between two synonym sets. Due to its
simplicity, the Tree-Path measure serves as a baseline for more sophisticated
similarity measures.

distTree(s1,s2) = sp(s1,s2) (18.8)

• Graph-Path (Baseline 2): Given the whole graph structure of a lexical-semantic
net, the Graph-Path measure calculates the length of a shortest path between
two synonym sets in the whole graph, i.e. the path can make use of all relations
available. Analogous to Tree-Path, the Graph-Path measure gives us a very rough
baseline for other relatedness measures.

distGraph(s1,s2) = spGraph(s1,s2) (18.9)

spGraph(s1,s2): Length of a shortest path between s1 and s2 in the graph

In the task of determining SR, humans do not seem to distinguish between sys-
tematic relations (e.g. synonymy or hyponymy) and unsystematic ones: either a pair
of words is (more or less) related or it is not (cf. [30] and [34]). However, a net like
GermaNet only models systematic relations such as hyponymy or meronymy. Un-
systematic (i.e. associative) connections are not directly taken into account in any
of the measures mentioned above. We therefore expect all of them to produce many
false negatives, i.e. low relation values for word pairs which are judged by humans
to be (strongly) related.
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18.4.2 Distributional Measures

A recent branch of lexical semantics aims to exploit statistics of word usage to
derive meaning. Based on the assumption that words with similar distributional
properties have similar meanings, such approaches infer semantic relatedness from
the co-occurrence of words in text corpora. Distributional similarity can be defined
in (at least) two ways: One group of measures establishes relatedness on direct co-
occurrence in text (1st order relatedness); many of these measures can be related to
standard statistical tests. The other group aims to compare the similarity of contexts
in which two terms occur (2nd order relatedness); such measures usually operate on
the vector space. In the following an overview of the different 1st and 2nd order
measures is given:

• Pointwise Mutual Information: A typical representative of a 1st order measure
is pointwise mutual information (PMI) [10]. Here, the co-occurrence probability
of two terms is set in relation to the probability of the singular terms. In [36] and
[46] it could be shown that 1st order measures are able to determine semantically
related terms, even though the relations tend to be of syntagmatic nature.

relPMI(wi,wj) = log
P(wi,wj)

P(wi)×P(wj)
(18.10)

Where P(wi), P(wi,wj) is the probability estimate of a key word wi or a word
pair wi,wj . Since the reliability of the collected parameters usually grows with
the size of the training corpus (cf. for example [7]), it was also proposed to use
the web as a corpus [45]. In such settings hit counts, as the number of pages
found by search engine for a given query, are used as the probability parameter.

• Normalized Search Distance (NSD) [11]: This measure is inherently based
upon the idea of using hit counts from a search engine. As the web-based PMI
measure, NSD is calculated from the singular (hc(wi)) and the joined (hc(wi,wj))
hit counts as well as the total number of pages M.

relNSD(wi,wj) =
max[loghc(wi) loghc(wj)]− loghc(wi,wj)

logM−min[loghc(wi), loghc(wj)]
(18.11)

• Google Quotient: Another measure has been proposed by [14], the Google quo-
tient. It is defined as follows:

relGQ(wi,wj) =
2 ·hc(wi,wj)

hc(wi)+ hc(wj)
(18.12)

Again, hc(wi), hc(wi,wj) are the hit counts of a key word wi or a word pair
wi,wj .
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• Latent Semantic Analysis (LSA) [15]: Among the 2nd order approaches Latent
Semantic Analysis has obtained particular attention, due to its success in a large
variety of tasks involving semantic processing. When it was first presented by
Deerwester et al. [15], it aimed mainly at improving the vector space model in
information retrieval (cf. [39]), but in the meantime it has become a helpful tool
in NLP as well as in cognitive science (cf. [24]). As the vector space model,
LSA is based on a term×context matrix A, displaying the occurrences of each
word in each context. When only term relationships are considered, a slightly
different setting, as described by Schütze [41] and Cederberg & Widdows [9] is
more appropriate; here the original matrix is not based on occurrences of terms in
documents, but on other co-occurring terms (term×term-matrix). We thus count
the frequency with which a given term occurs with others in a predefined context
window (±10−100 words).
The decisive step in the LSA process is then a singular value decomposition
(SVD) of the matrix, which enhances the contrast between reliable and unreliable
relations. The high-dimensional input matrix is hereby reduced to a subspace of
k dimensions (k≈ 100 to 300 ). After applying SVD, each word is represented as
a k-dimensional vector, and for every word pair wi, wj of our vocabulary we can
calculate a relatedness value relLSA(wi,wj), based on the cosine measure. The
cosine of the angle between any two vectors wi and wj of dimensionality m with
components wik und wjk, k≤ m is defined as follows:

cos(wi,wj) =

m
∑

k=1
wikwjk

√
m
∑

k=1
w2

ik

m
∑

k=1
w2

jk

(18.13)

Since the denominator normalizes the vector length, frequency influences are lev-
eled out. In addition, the result becomes standardized ([−1;1]), which facilitates
further comparisons.

• Semantic Vectors (Sem.Vec.) [47]: The open source Semantic-Vectors pack-
age6 creates a word space model from a term-document matrix using a random
projection algorithm. It is supposed to perform similarly to techniques like LSA
but it does not rely on complex procedures such as SVD, making it a more scal-
able technique. Word similarity is performed by producing a query vector and
calculating its distance to the term vectors (using the cosine).

The important advantage of 2nd order approaches is that they are better able to
capture paradigmatic relations such as synonymy or hyponymy, since paradigmat-
ically similar words tend to occur in similar contexts. However, they also have
a disadvantage with respect to direct co-occurrence measures, because the matrix
computations are computationally demanding, so that they cannot be performed on-
line. This means that usually far smaller training corpora must be used.

6 http://code.google.com/p/semanticvectors/

http://code.google.com/p/semanticvectors/
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18.4.3 Wikipedia-Based Measures

With regard to Wikipedia-based SR computation, some approaches have been pro-
posed which mainly focus either on the hyperlink structure [31], the vector space
model (VSM), or on category concepts for graph related measures [43, 51]. We have
implemented three different algorithms using Wikipedia as a resource in computing
semantic relatedness:

• Explicit Semantic Analysis (ESA) [17]: This method represents term similar-
ity by an inverted term-document index in a high-dimensional space of concepts
derived from Wikipedia. In this case, concepts are defined as Wikipedia arti-
cles. Each concept is represented as an attribute vector of terms occurring in the
corresponding article (weighted by a tf.idf scheme [39]). Semantic relatedness
of a pair of terms is computed by comparing their respective concept vectors
using the cosine metric (cf. equation 18.13). We have adopted the approach of
Gabrilovich and Markovitch [17] to the German Wikipedia data (lemmatized).
We have also removed small and overly specific concepts (articles having fewer
than 100 words and fewer than 5 hyperlinks), leaving 126,475 articles on which
the inverted index was built.

• Wikipedia Graph-Path: This measure operates on the Wikipedia hyperlink
graph Gw = (V,E), where Wikipedia articles denote a set of vertices V , and hy-
perlinks between articles denote a set of edges E ⊆ V 2. The Wikipedia Graph-
Path distance calculates the length of the shortest path (sp) between two articles
in Gw.

distWGw(v1,v2) = spGw(v1,v2) (18.14)

• Category Concept Analysis (CCA): For this measure an inverted concept-term
matrix is constructed on the full Wikipedia corpus (lemmatized). In contrast to
[17], concepts are defined as Wikipedia categories, i.e. we assigned each article
to its categories in Wikipedia. For term weighting the tf.idf scheme was used.
Small articles have been removed using a threshold value for a minimum length
of the termvector (more than 400 lemmata). The relatedness computation was
performed using the cosine metric, the dice coefficient, and the jaccard similarity
coefficient.

18.5 Evaluation

18.5.1 Method

In order to evaluate the quality of a SR measure, a set of pre-classified word pairs
is needed. As mentioned above, in previous work on English data, most researchers
used the word-pair list by Rubenstein and Goodenough [38] as well as the list by
Miller and Charles [30] as an evaluation resource. For German there are — to our
knowledge — two research groups, who have compiled lists of word-pairs with



388 I. Cramer, T. Wandmacher, and U. Waltinger

respective human judgment: Gurevych et al. constructed three lists (a translation of
Rubenstein and Goodenough’s list [19], a manually generated set of word pairs, and
a semi-automatically generated one [50]).

Cramer and Finthammer (cf. [14], [13]) compiled two lists of word pairs for
which they obtained human judgments.7 We make use of these two lists by Cramer
and Finthammer, since they cover a wide range of relatedness types, i.e. systematic
and unsystematic relations, and relatedness levels, i.e. various degrees of relation
strength. However, they only include nouns, since cross-part-of-speech (cross-POS)
relations can be considered to be an additional challenge8. In order to better under-
stand the impact (and the potentially included bias) of the construction method of a
list, two different methods were applied for the compilation of the word pairs.

For the first list nouns were collected manually from diverse semantic classes,
e.g. abstract nouns, such as Wissen (engl. knowledge), and concrete nouns, such
as Bügeleisen (engl. flat-iron; cf. [14] and [13] for further information). This
list of 100 word pairs represents our test set A.

A different method was applied for the second list (set B): firstly, word pairs
which are part of collocations were again manually collected, i.e. the two nouns
Rat and Tat (mit Rat und Tat helfen; “to help with words and deeds”)
or Qual and Wahl (die Qual der Wahl haben; “to be spoilt for choice”).
Secondly, word pairs featuring association relations were assembled, i.e. Afrika
(’Africa’) and Tiger (’tiger’) or Weihnachten (’christmas’) and Zimt (’cin-
namon’). Thirdly, a list of random word pairs was automatically constructed using
the Wacky corpus [2] as a resource; adhoc constructions were manually excluded.
Finally, out of these three resources a set of 500 pairs of words was compiled with
no more than 20% of the collocation and association word pairs.

Subjects were asked to rate the word pairs on a 5-level scale (0=not related to
4=strongly related). The subjects were instructed to base the rating on their intuition
about any kind of conceivable relation between the two words. Thus, in contrast to
the experimental set-up by Boyd-Graber et al., subjects had no manual, and they
were not trained beforehand. Set A was rated by 35 subjects and set B was rated
by 75 subjects. For each word pair a human judgment score was calculated by
averaging the singular judgments of all subjects. Secondly, the Pearson correlation
coefficients were calculated comparing the human scores with each of the measures
on the test sets A and B.

7 Cramer and Finthammer actually worked on 6 separate lists; we merged them into two
according to their method of compilation.

8 Since in most word nets cross-POS relations are very sparse, researchers currently inves-
tigate relation types able to connect the noun, verb, and adjective sub-graphs (e.g. [29] or
[27]). However, these new relations are not yet integrated on a large scale and therefore
should not (or even cannot) be used in SR measures. Furthermore, calculating SR be-
tween words with different POS might introduce additional challenges potentially as yet
unidentified, which calls for a careful exploration.
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18.5.2 Results

Net-Based Measures

The net-based measures were calculated on GermaNet v. 5.0 using GermaNet
Pathfinder v. 0.839. Table 18.3 lists the correlations (Pearson) for test sets A and
B, as well as the coverage (percentage of word pairs for which a measure could be
calculated) and the average processing time per word pair10.

Table 18.3 Correlations (Pearson coefficient to human estimates), coverage, and processing
time per pair of the GermaNet-based measures tested

WordNet-based measures
Test Leacock & Wu & Jiang & Hirst & Tree Graph
set Chodorow Palmer Resnik Conrath Lin St-Onge path path

r Set A 0.48 0.36 0.44 0.46 0.48 0.47 0.41 0.42
r Set B 0.17 0.21 0.24 0.25 0.27 0.32 0.11 0.31

Coverage 86.9% 86.9% 86.9% 86.9% 86.9% 86.9% 86.9% 86.9%
t/pair (ms) <10 <10 <10 <10 <10 1110 <10 3649

Distributional Measures

The three web-based (first order) measures obtained their hit counts via the Google
API; all counts were calculated beforehand and stored in a repository. The LSA
word space was calculated using the Infomap toolkit11 v. 0.8.6 on a newspaper cor-
pus (Süddeutsche Zeitung) of 145 million words, which had been lemmatized. The
co-occurrence matrix (window size: ±75 words) comprised 80,000×3,000 terms
and was reduced by SVD to 300 dimensions. For the vector comparisons the co-
sine measure was applied. Table 18.4 shows the results (correlation, coverage and
processing time) for all distributional measures tested.

Wikipedia-Based Measures

The calculation of the Wikipedia measures is based upon the German version of
Wikipedia (October 2007). The Semantic Vector package12 utilizes the Apache
Lucene library. ESA and Graph Path are implemented in C++ using Trolltech Qt.
For both CCA and ESA we had to reduce the matrices on the lemma-dimension for
computational reasons, i.e. when building the matrix we excluded those lemmata
whose corpus frequency did not exceed a certain threshold (>300). Building the

9 http://www.hytex.info/030_ergebnisse/030_tools/index_eng_html
10 The computation was performed on an AMD Athlon XP 2400+, 2.0 GHz and 1GB of

RAM.
11 http://infomap-nlp.sourceforge.net/
12 http://code.google.com/p/semanticvectors/

http://www.hytex.info/030_ergebnisse/030_tools/index_eng_html
http://infomap-nlp.sourceforge.net/
http://code.google.com/p/semanticvectors/
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Table 18.4 Correlations (Pearson coefficent to human estimates), coverage, and processing
time per pair of the distributional measures tested

Test PMI Google NSD LSA
set Google Quotient Google (newspaper)

r Set A 0.37 0.27 0.37 0.64
r Set B 0.34 0.31 0.36 0.63

Coverage 100% 100% 100% 87.0%
t/pair (ms) <10 <10 <10 <10

NSD measures, we have directly connected to the special page search of Wikipedia
(http://de.wikipedia.org/wiki/Spezial:Suche).

Furthermore, we calculated an LSA word space on Wikipedia, again on an
80,000×3,000-matrix using a window of±75 terms; however, due to computational
limitations we had to use only a subcorpus, by taking the first 800 words of each
article (148 mill. tokens in total). Table 18.5 lists the results for all Wikipedia-based
measures.

Table 18.5 Correlations (Pearson coefficient to human estimates), coverage and processing
time per pair of the Wikipedia-based measures tested

Test NSD Sem. Vec. Wiki Graph LSA
set (Wiki) CCA (Wiki) ESA Path (Wiki)

r Set A 0.69 0.57 0.51 0.52 0.49 0.65
r Set B 0.61 0.36 0.28 0.44 0.37 0.57

Coverage 100% 79.8% 99.1% 75.9% 92.0% 83.8%
t/pair (ms) 850 <10 1299 240 2301 <10

Comparing the correlation results shown in Tables 18.3, 18.4, and 18.5, it can
be observed that the net-based measures show rather low coefficients (r = 0.11−
0.48); interestingly they score quite similarly within one test set, despite their rather
different calculation. For the distributional measures a clear difference can be seen
between the three web-based techniques (0.27−0.37) and the LSA results (scoring
up to 0.64); this may either be due to the fact that LSA is a 2nd order approach,
being able to establish more paradigmatic relations, or the hit counts, obtained from
Google are insufficiently precise indicators of co-occurrence. Among the Wikipedia
measures the WikiSearch Distance scores significantly better than the others (up
to 0.69).

http://de.wikipedia.org/wiki/Spezial:Suche
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A second observation of the results concerns the differences between the corre-
lations of the test sets A and B. Especially the net-based measures, but also most
of the Wikipedia-based show significantly worse correlations for set B. Recalling
that set B contains a large fraction of random word pairs (80%), a probable expla-
nation is that such measures tend to overestimate relatedness, i.e. they cannot well
discriminate between related and unrelated word pairs.

The differences between the approaches tested clearly show how important the
influence of the resource is. One conclusion that may be drawn from our results
is that a small, hand-crafted and structured resource such as a word net is clearly
inferior to a large and semi-structured (Wikipedia) or even completely unstructured
resource such as plain text.

With respect to coverage, the web-based measures (including the WikiSearch Dis-
tance clearly outperform all other approaches. This is not astonishing, given the fact
that they operate on the largest vocabulary available. The off-line approaches on the
other hand are not as sparse as one might have imagined; the lowest scores are still
over 75%, and the net-based as well as the LSA approach achieve a coverage of
approximately 87%.

The processing time (per word pair) however differs quite strongly. It is also to be
taken with a grain of salt, since it depends strongly on the implementation chosen.
Most of the approaches show almost negligible processing times (<10 ms), however
if complex tree or graph traversals are involved (e.g. GermaNet or Wiki graph path),
the processing time can reach up to several seconds per calculation.

In general, we observed that the distributional measures, especially LSA, perform
better than the net-based measures and those using explicit categorial information
(ESA, CCA). We therefore conclude that the use of explicit structural information,
in the form of semantic links, categories, or of hyperlink graphs, does not establish
SR as well as distributional information.

Secondly we could clearly see, that the choice of the resource plays an important
role. Interestingly, those measures using the web as a corpus were inferior to distri-
butional or Wikipedia-based measures that operate on a smaller but better controlled
training corpora (cf. particularly the important difference between the web-based
and the Wikipedia-based NSD). In this context and with respect to corpus choice
we can conclude that quality is more important than quantity, an observation which
is in line with [23]).

A factor that we disregarded in our study is the influence of context. It is quite
obvious that SR is not a static and independent size. On the contrary, it is dynam-
ically interrelated with the current lexical, syntactic, and semantic context, and a
proper theory of (or algorithm computing) SR will have to take this into account.

Considering all the results above, it can be stated that the calculation of semantic
relatedness is far from being solved in a satisfying manner. Each of the resources
that we used certainly captures an important part of lexical meaning; however, it
seems that this is not yet sufficient for describing the complex nature of SR between
any two terms.
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18.5.3 Meta-level Evaluation

Given the statistical spread shown in Table 18.3 to Table 18.5 as well as the obvi-
ous discrepancies of the various experimental results exposed by Cramer [13], we
argue that the calculation of SR should be considered a continuous problem. We
suspect that (no fewer than) the following aspects influence the results of the hu-
man judgment experiments and thus the correlation between humans and semantic
measures:

• Research objective: Seemingly, most studies intend to model the same, i.e. a
phenomenon observable in natural language which accounts for lexical cohesion
and which is called – depending on the specific research community – semantic
similarity/relatedness, association (e.g. [40]), evocation, or semantic distance.
However, practically none of these concepts is well defined; there is no consensus
among researchers as to which types of relation are to be included and whether
these are to be established between words, any kind of lexical unit, concepts etc.

• Setting of the human judgment experiment: The studies summarized above
differ with respect to the subjects asked to participate, their background and train-
ing, as well as the manuals used to explain the task. The different experimental
set-ups therefore represent an uncontrolled parameter and might seriously influ-
ence the results.

• Construction of experimental data: As mentioned above, different methods
may be employed in order to construct the experimental data, i.e. randomly se-
lected word-/concept-pairs vs. analytically constructed ones. In addition, data
sets might considerably vary with respect to their size, i.e. only a few hand-
picked vs. several thousand pairs.

• Evaluation method: Finally, the results might be influenced by the specific sta-
tistical methods, i.e. different correlation coefficient algorithms, drawn on to
determine the correlation between humans and semantic measures, the inter-
subject, and the intra-subject correlation13.

Furthermore, it is – in our opinion – an unsettled issue whether the three types of
semantic relations at hand, thus the relations

1. represented in a word net, ontology, corpus etc. (computed via semantic mea-
sure),

2. existing between any given word pair in a text (which is mostly relevant for NLP-
applications),

3. and the one assigned by subjects in a human judgment experiment

correspond at all. In principle, word nets, ontologies, corpus statistics, and human
judgments should represent the (at least partially) shared lexical semantic system
encoding the collective knowledge of humans. While the relations between words
in a concrete text represent more than just an instantiation of this semantic system.

13 The inter-subject as well as the intra-subject correlation depends on various parameters,
e.g. the complexity of the task, the subjects (and their background, age, etc.) as well as the
experimental setup (task definition, training phase, etc.).
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That means, the individual comprehension while reading a text might considerably
alter the relation strength perceived by the reader between a pair of words. Thus, a
(in the sense of the semantic system) moderately related word pair, might be strongly
related given a specific context. And consequently, there are at least two aspects
which need to be considered in order to model and successfully compute lexical
cohesion: firstly, the shared knowledge of the relations in principle, secondly, the
concrete relations in a given context. Thus, it is – in our opinion – vital to distinguish
between the first step, that is the calculation of SR, for which, as mentioned above,
controlled but unstructured resources and distributional (2nd order) methods seem
to perform best, and the second, that is the calculation of lexical cohesion, for which
additional text-grammatical features also need to be taken into account (q.v. [34]).

18.6 Conclusions and Future Work

We presented a study comparing sixteen different semantic relatedness measures on
various lexical resources, which we classified into WordNet-based, distributional
and Wikipedia-based SR measures. The algorithms implemented and resources em-
ployed were analyzed with respect to practical issues, e.g. run time and coverage.
Furthermore, we conducted an extensive evaluation on the basis of a human judg-
ment experiment using Pearson’s coefficient to measure correlation. We found that
the distributional measures perform best – in terms of coverage and correlation.
However, our experiments also show that none of the algorithms, proposed in the
literature and implemented for this study, performs outstanding. Taking our exper-
imental results into account, we conclude that the less structure (e.g. semantically
typed relations or links) a resource exhibits and the more controlled (e.g. in terms of
quality of the documents, language and so forth) it is, the better seem to be the cor-
relation coefficients. In the future, we therefore argue that the research should con-
tinue on three different levels: firstly, the concept of semantic relatedness should be
stated more precisely, which also means that research results of psycholinguistics,
linguistics, cognitive science, and computational linguistics should be integrated.
Secondly, on the basis of the thus elaborated concept of semantic relatedness, one
or more resources can be determined which best fit the requirements at hand; if more
than one resource needs to be considered, a method to combine them needs to be de-
vised in addition. Thirdly, given a substantiated concept of SR and the most suitable
resources, an (or a family of) algorithm(s) need to be developed, adapted corre-
spondingly, and evaluated again e.g. on the basis of a human judgment experiment.
Hence, we propose the definition of a shared task which might bring the research
community interested in SR considerably closer to results of high performance. In
addition to this, we plan to experiment with a combination of the above-mentioned
relatedness measures; more precisely, we intend to feed the various elements of the
measures in Sections 18.4.1 to 18.4.3 into a machine learning toolkit such as Weka
(cf. [48]). A pilot study already demonstrated that it is thus possible to enhance the
performance by at least 10% compared with the currently best performing measure
mentioned in Section 18.5.1.
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