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Abstract

We present a computational model of usage-based learn-
ing of verb argument structure in young children. The
model integrates Bayesian classification and prediction
to learn from utterances paired with appropriate seman-
tic representations. The model balances item-based and
class-based knowledge in language use, demonstrating
appropriate word order generalizations, and recovery
from overgeneralizations with no negative evidence or
change in learning parameters.

Argument Structure Acquisition

Verb argument structure is a complex aspect of language
for a child to master, as it requires learning the rela-
tions of arguments to a verb, and how those arguments
are mapped into valid expressions of the language. Chil-
dren, however, learn to correctly use common verbs quite
early. Moreover, they grasp argument structure regular-
ities at a young age, producing novel utterances that
obey the mapping of arguments to syntactic positions
in their language (Demuth et al., 2002; MacWhinney,
1995). Children even “correct” experimenters’ non-SVO
(subject-verb-object) usage of novel verbs to fit the SVO
order of their ambient language as early as age 3 (Akhtar,
1999).

The ability to generalize observed argument structure
patterns to novel situations sometimes leads to overgen-
eralization (Bowerman, 1982). For example, children of-
ten use an intransitive-only verb such as fall in a transi-
tive construction, as in:

Adam fall toy. [Adam 2;3, CHILDES MacWhinney (1995)]

Such usages are not arbitrary errors, but rather general-
izations of the association between causative action and
transitive form, to an intransitive action verb.

Thus, acquisition of argument structure exhibits a U-
shaped learning curve seen in other areas of language
learning (Marcus et al., 1992): correct use of a verb may
be followed by a period containing incorrect (overgener-
alized) usages, before convergence on adult behaviour.
Moreover, negative evidence (corrective feedback) plays
little to no role in this process; only additional positive
evidence of correct usages is necessary for “unlearning”
of overgeneralized rules (Marcus, 1993).

Learning in this domain has been suggested to rely
on rich innate knowledge of argument structure regu-
larities (Pinker, 1989). However, recent psycholinguistic
evidence has questioned this assumption, and a number
of usage-based proposals have argued that children learn
such regularities from the input alone (Bowerman, 1982;

Akhtar, 1999; Tomasello, 2000; Demuth et al., 2002). In
support of this view is evidence that children initially
learn verb-argument patterns on an item-by-item (verb-
by-verb) basis, before forming a conceptualization of
more general syntactic structures (Tomasello, 2000). In-
deed, Goldberg (1999) claims that it is the form-meaning
mappings, or constructions, of a set of high-frequency
verbs that serve as the basis for generalization of their
associated forms to other verbs. Moreover, experimental
evidence has shown that the frequency of an individual
verb influences the likelihood that children accept it in
an overgeneralized usage (Theakston, 2004).

To further test these ideas, explicit usage-based mod-
els must be explored, both of the underlying learning
mechanisms and of the use of the acquired knowledge.
Here, we present a computational model that elaborates
a specific mechanism for how children learn the argument
structure of individual items, and how this knowledge is
generalized to new forms in language use.

Generalization in our model is achieved through a
Bayesian classifier that groups similar argument struc-
ture frames. Each frame represents a combination of
semantic and syntactic properties of a verb and its argu-
ments in a particular usage. Frames with shared syntax
are grouped according to probabilities over their seman-
tic properties. The result is that the semantic primitives
most frequently used across all frames in a class have
the highest probabilistic association with the syntactic
form. The emergent classes capture form-meaning pair-
ings that generalize over the fine-grained semantics of
both the verb and its arguments. While the resulting
classes have a similar function to the constructions of
Goldberg (or the event structure templates of Rappa-
port Hovav and Levin (1998)), in our case, the syntactic
pattern is associated with a range of verb and argument
meanings probabilistically.

A key property of our computational model is the in-
teraction between item-based and class-based informa-
tion, and how it plays a role in language use—both com-
prehension and production. Here, we focus on simula-
tions of the child in utterance production and demon-
strate how the classes of argument structure frames en-
able the model to generalize over observed forms. Exam-
ples of the model experiencing a period of overgeneral-
ization illustrate that the probabilistic balance of item-
based and class-based information may shift toward class
knowledge when knowledge of particular verbs is infre-
quent. Subsequent recovery occurs with additional posi-
tive evidence due to the increased strength of item-based



Scene-Utterance Input Pair
TAKE[cause,move](TIM〈agent〉, BOOKS〈theme〉, TO[](SCHOOL〈goal〉))

Tim took books to school.

Extracted Frame
head verb take
semantic primitives of verb 〈cause, move〉
arguments roles 〈agent, theme, goal〉

categoriesa 〈human, concrete, dest-pred〉
syntactic pattern arg1 verb arg2 arg3

aExtracted from a representation of the child’s ontology.

Figure 1: An input pair and its corresponding frame.

knowledge in the probability formulas (not due to ex-
plicit negative evidence, nor any change in the learning
parameters).

Overview of the Computational Model

Learning Argument Structure Knowledge

We assume that the input to the argument structure ac-
quisition process consists of pairs of representations, one
for the perceived utterance (what the child hears), and
one for the relevant aspect of the observed scene (the
semantics described by the utterance).1 The first step
for our learning model is to extract the corresponding
argument structure frame for the main verb of the ut-
terance.2 Each frame contains a set of features drawn
from the scene-utterance pair, as shown in Figure 1.

Each observed frame is stored in the lexical entry of
the verb. If the current extracted frame has been pre-
viously observed with the verb, then the frequency of
the stored frame is increased, otherwise a new frame is
inserted. Some of the frames of a verb may merge to
form a more general one (e.g., if two frames are identical
except that the semantic types of the arguments of one
frame are more general than the other).

Any new frame (whether newly observed or the out-
put of a merging process) is input to the incremental
Bayesian classifier, which groups the new frame together
with an existing class of frames that probabilistically has
the most similar properties to it. If none of the existing
classes has sufficiently high probability, then a new class
is created. The probability of each class is determined
by both syntactic and semantic features. Currently, a
class with a different syntactic pattern from that of the
frame, or a different set of argument roles, would have a
very low probability. The probability of semantic primi-
tives is determined by how frequently those of the frame
occur across the frames of the candidate class. The prob-
ability of semantic categories of arguments is calculated
similarly, taking into account the relationship of cate-
gories in the ontology.

The overall learning process of the model is summa-
rized in Algorithm 1.

1Picking out the specific semantic descriptor that matches
an utterance from the full scene representation is itself a chal-
lenge for the child. We assume that this “word-meaning map-
ping” has been performed, e.g., as in Siskind (1996).

2Here, we focus on verb argument structure, but our
model applies to other predicates as well.

Algorithm 1 Learning an argument structure frame

1. Extract frame F from a scene-utterance pair (see Figure 1),
and access lexical entry L of the head verb of F .

2. If F is incomplete, then use both the frame structure of
L and the information stored in the classes to predict the
best value for the missing part(s) of F .

3. Update the lexicon:

(a) If L already contains a matching frame F ′, then increase
the frequency of both F ′ and its parent class;

(b) Else add F to L, and find the best class for F (creating
a new class if needed).

Using the Acquired Knowledge

As mentioned, both item-based and more general class-
based information are updated with the processing of
each input. A key property of our model is how these
two sources of information interact in the use of language
during the course of acquisition. We formalize a number
of tasks in language use as different versions of a predic-
tion problem. For example, sentence production is seen
as predicting the syntactic pattern of a frame based on
its semantic components; in comprehension, argument
roles may be assigned, or partial meaning of a verb or
noun induced, based on the participants in the scene
and the syntax of the utterance. Hand in hand with our
Bayesian classifier is a Bayesian prediction process for
use in such language tasks.

The prediction process integrates item-based and
class-based information to make probabilistic predictions
about argument structure information based on available
frame features. If the child’s knowledge of a particular
use of a verb is sufficiently complete and frequent to have
become entrenched , then that information will be used
in both comprehension and production. On the other
hand, by generalizing over known frames, classes enable
predictions about missing or low-confidence item-based
information. For example, in production, such predic-
tions allow the child to use a verb in a novel (for that
verb) syntactic pattern, as long as semantically similar
verbs have been observed in that usage.

Bayesian Classification and Prediction

The Bayesian Classifier

The model we use for classification is an adaptation of
a model of human categorization proposed by Ander-
son (1991).3 This model has desirable properties for our
domain. Its use of probabilities over observed informa-
tion captures the emphasis on item frequencies in child
language acquisition. Also, the classification model is
incremental, enabling us to classify frames as they are
observed.

Classification of a frame F is formalized as a process
of maximizing the probability of class k given the frame:

BestClass(F ) = argmax
k

P (k|F ) (1)

3Our classes are not pre-defined, as is often intended by
the term in machine learning. Our classes/classification pro-
cess could as well be termed clusters/clustering.



where k ranges over the indices of all classes, including
an index of 0 to represent creation of a new class. Using
Bayes rule, this probability can be rewritten as:

P (k|F ) =
P (k)P (F |k)

P (F )
=

P (k)P (F |k)∑
k′ P (k′)P (F |k′)

(2)

The prior probability of a class k is given by:4

P (k) =
nk

n + 1
(3)

where n is the total number of observed frames; nk is
the number of frames in class k, for k > 0; and n0 = 1.
Thus, the estimation of the prior probability of an ex-
isting class is proportional to the frequency of frames in
that class, and the probability of a new class is inversely
proportional to the number of observed frames overall.

The probability of a frame F is expressed in terms of
the individual probabilities of its features (shown above
in Figure 1). Although these features in reality interact
(e.g., the role of an argument and the syntactic position
it occurs in are interrelated), we adopt an independence
assumption to make the calculation feasible. Thus, the
conditonal probability of a frame F is the product of the
conditional probabilities of its features:

P (F |k) =
∏

i∈FrameFeatures

Pi(j|k) (4)

where j is the value of the ith feature of F , and Pi(j|k) is
the probability of displaying value j on feature i within
class k. This probability is estimated using a smoothed
maximum likelihood formulation.

The Corresponding Prediction Model

Once the child learns the information above—i.e., the
individual frames stored with each verb, along with the
class structure over them—we must consider how this
knowledge is used. An important aspect of our model
is that essentially the same Bayesian framework can be
employed in using the knowledge as that which acquires
it. We formulate a language task as a prediction prob-
lem, in which missing feature values in a frame are filled
in based on the most probable values given the available
features. Following Anderson (1991):

BestValuei(F ) = argmax
j

Pi(j|F ) (5)

where F is the partial frame, i is the missing feature,
and j ranges over the possible values of i.

In Anderson’s model, the classes are used in the calcu-
lation of Pi(j|F ) to determine the most probable value
for the missing feature. However, the structure of our
acquired knowledge is more complex than that of his cat-
egory structures. In addition to the groupings of frames
into classes, we also have the groups of frames associated
with each particular verb. Thus there are two potential
levels of generalization, rather than one—over the frames
associated with a single verb (item-based), and over all
frames, through the full class structure (class-based).

4This formula is the same as that used by Anderson (1991)
with his “coupling probability” set to the mid value of 0.5.

One option is to limit generalization to only the frames
associated with the verb:

Pi(j|F ) =
∑

kv∈classes(v)

P (kv |F )Pi(j|kv) (6)

where classes(v) is the set of indices of the classes of
the frames learned for verb v, such that kv is a class
containing a frame of verb v. Thus we use the classes
associated with a verb to probabilistically predict miss-
ing values (Pi(j|kv)), and weight those predictions by the
likelihood of the class given the partial frame (P (kv |F )).

However, this formulation ignores the information em-
bedded in the class structure more generally, unnecessar-
ily restricting the child when a partial frame for a verb
does not match well with any frames seen previously
for that verb. We require a model in which prediction
of missing features takes into account both the knowl-
edge of likely values across the frames associated with
the given verb, as well as the knowledge of likely values
associated with any class compatible with the partial
frame. That is, we must balance item-based knowledge
with class-based knowledge.

Interestingly, we can achieve the item- and class-based
integration by incorporating the classification process
into our probability model for prediction. Essentially,
we classify a partial frame F using equation (1) as if it
were a new frame, and treat it during prediction as if it
were inserted into the lexical entry for v with a frequency
of 1. The best class kF (across all classes) for F may or
may not be a class already linked to by a frame of v, so
we must modify equation (6) by extending (if necessary)
classes(v), over which kv takes its values, to include kF .
This ensures that both the overall best class, as well as
the classes associated with the verb, are taken into con-
sideration in predicting values for a partial frame.

The probability P (kv |F ) in equation (6) is rewritten
using Bayes rule (cf. equation (2)):

P (kv |F ) =
P (kv)P (F |kv)

P (F )
=

P (kv)P (F |kv)∑
k′

v

P (k′
v)P (F |k′

v)
(7)

The factor P (F |kv) is calculated as in equation (4), us-
ing a uniform probability distribution over the possible
values of the missing feature. The prior probability of
the class, P (kv), is calculated taking into account only
the classes in classes(v) (including kF ), not the full class
structure. In calculating P (kv), the frequency of each
class (its total number of frames) is weighted by the fre-
quency of the frame for v which points to it, balancing
the overall likelihood of the class with the likelihood that
it is a class for v.

If kF was not previously a class for v, then the weight
from the frame frequency is only 1. Thus, a “new” class
(new to v) for F has more influence the less often the
verb has been seen overall; if the verb has been seen
frequently, then the weight from its observed frames to
their classes will outweigh the influence of the single par-
tial frame to its “new” class. (Cf. the influence of a new
class achieved by equation (3).) Thus, class information
outside the verb is always a factor in prediction, but
will have decreased influence with increased item-based
frequency.



Experimental Set-Up

Basic Properties of the Input

We focus on learning the argument structure of a small
group of verbs (and prepositions) whose semantic prim-
itives are largely detectable by the child from the scene.
We assume that a small number of nouns have been pre-
viously learned by the child, forming a simple ontology
that indicates their semantic category. As illustrated in
Figure 1, we use a simple logical form for representing an
observed scene. We assume that at the stage of learning
being modelled, the child has reliable hypotheses about
the assignment of roles to arguments.

In the current implementation, a syntactic pattern is
limited to the order of the arguments with respect to the
predicate term. Also, for now we do not address learning
of morphology; all words appear only in their root forms.

The Input Corpora

We create input lists of scene-utterance pairs that con-
form to the distributional characteristics of the data
children receive from their parents. We extracted from
CHILDES the 20 most frequent verbs in mother’s speech
to each of Adam (2;3–4;10), Eve (1;6–2;3), and Sarah
(2;3–5;1). The 13 verbs in common across these three
lists were added to an input-generation lexicon, along
with their frequency and a unique semantic symbol. We
also assign each verb a set of possible argument structure
frames and associated frequencies, which are manually
compiled by examination of all uses of a verb in all con-
versations of the same three children. Prepositions used
in these conversations were also added to the lexicon.

For each simulation in our experiments, an input cor-
pus of scene-utterance pairs is automatically created
from this input-generation lexicon, using the frequencies
to determine the probabilities of selecting a particular
verb and argument structure for each input. Arguments
of verbs are also probabilistically selected, constrained to
conform to the indicated semantic category of the argu-
ment. Arguments which are predicates (such as prepo-
sitional phrases) are constructed recursively.

To simulate noise, every third input pair in every gen-
erated corpus has one of its features randomly removed.
During a simulation, each missing feature is replaced
with the most probable value predicted at that point in
learning, corresponding to a child learning from her own
inferred knowledge. The resulting input data is noisy,
especially in the initial stages of learning.

Experimental Results

We focus on results of our model on the sentence pro-
duction task, for comparison to actual child data on verb
use. The simulations we report all use the same param-
eter settings; only the randomly generated input corpus
differs. We first describe the learning curves displayed
by our model for some example verbs. We then exam-
ine some interesting stages in the generally observed U-
shaped curve in more detail: imitation, generalization,
overgeneralization and recovery.
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go come eat fall

Figure 2: Sample learning curves for different verbs. X-
axis is time (# of inputs); y-axis is cumulative accuracy.

The Learning Curve

As an item-based model that incorporates a generaliza-
tion mechanism, we expect an overall U-shaped learning
curve from our system, but also expect variation among
individual verbs. For each verb, we ran eight separate
simulations of our model over 800 input pairs: 200 se-
quences of 4 complete input pairs followed by a 5th test
input (using the target verb) in which the utterance was
removed. Our prediction model was used to find the
syntactic pattern with the highest probability for the re-
sulting partial frame. After each test input, we measured
the cumulative accuracy of the model by counting the
total number of times the predicted pattern was exactly
the same as that used in the removed utterance.

Figure 2 shows a sample learning curve for each of the
verbs go, come, eat and fall . Since the input corpora
are randomly generated, the performance of the model
varies across simulations in the early stages. For frequent
verbs with a variety of argument structures, such as go
and come, a U-shaped curve is often observed. A verb
with fewer types of frames, such as eat , is less often
overgeneralized. The learning curve for fall , which is
less frequent, shows a delay compared to more frequent
verbs.5

Imitation and Generalization

To study generalization in our model, we examine its
behaviour when presented with a novel verb for which
it must produce a sentence. After training the model,
we present it with only a scene representation, whose
main predicate corresponds to a verb, gorp, which has
not been seen in an utterance:

GORP[cause,act](KITTY〈agent〉, DOGGY〈theme〉)
Since this semantics resembles the typical transitive con-
struction, we expect the model to predict the transitive
pattern, “arg1 verb arg2”, despite its lack of knowledge
of this verb. To observe the pattern of responses over
the course of acquisition, we test the model after vary-
ing amounts of training data. Averaging over 100 sim-
ulations on different input corpora, the model predicts
this pattern with 68% probability after 5 input pairs, but
with 99% probability after processing 50 input pairs.

More interesting is the varying influence of item-based
and class-based knowledge over the course of acquisition,
which is a key feature of our model. To explore this,
we mimic the conditions of an experiment by Akhtar

5In addition to classical overgeneralization errors, other
errors reflected in the learning curves include incorrect learn-
ing from noisy input, or from the model simply not having
learned the required usage.



# Input Pairs
50 100 150

Generated observed (SOV) 0.98 0.53 0.11
Pattern “corrected” (SVO) 0.02 0.47 0.89

Table 1: Average probability of the predicted patterns.

(1999), in which English-speaking children aged 2 to 4
were taught novel verbs used in non-standard (SOV or
VSO) orders. In productions of these verbs, 2- and 3-
year-olds matched the observed patterns roughly half the
time and “corrected” the order to SVO roughly half the
time. The 4-year-olds rarely matched the observed order,
almost always correcting to SVO order.

We trained our model using different numbers of in-
put pairs to simulate differing amounts of exposure to
the language. We then provided to the model a train-
ing input pair with a novel verb used in a non-standard
(SOV) order (kitty doggy gorp for the scene representa-
tion above). Next, we presented the same scene represen-
tation to the model, without the utterance, and recorded
the syntactic pattern predicted by the model. We per-
formed 100 simulations for each number of training input
pairs, and averaged the probability of predicting each of
the SOV (observed) and SVO (“corrected”) patterns. As
can be seen in Table 1, the model, like children, shows
a shift from imitation, where it repeats even an unusual
form, to generalization, where it relies on the ubiquitous
patterns, the more exposure it has to the language.

Overgeneralization and Recovery

We noted that use of general knowledge sometimes leads
children to overgeneralize, but they eventually recover
with only additional positive evidence. A typical over-
generalization is when a non-causative verb is used as
causative, e.g., Don’t you fall me down (Bowerman,
1982). We tracked the usage of fall by our model to
see if we can detect a similar pattern to that in children.

The entry for fall in the input-generation lexicon al-
lows only an intransitive syntactic pattern (as in The
blocks fell). However, the scene representation for a use
of fall may include the agent who caused the falling (e.g.,
if Adam pushed the blocks over). Each use of fall in
these simulations includes a causal agent in the scene
description with a 0.5 probability. We therefore expect
the semantic similarity of the scene to that of a transitive
construction to sometimes lead to overgeneralization—
i.e., the prediction of a transitive pattern with fall in a
scene with a causal agent.

In these simulations, we test the behaviour of the
model in producing a syntactic pattern for fall over the
course of acquisition. Every 5 training input pairs was
followed by a semantic representation with fall as its
main predicate, and the prediction model chose the best
syntactic pattern for it. (Any place-holders for argu-
ments that were not present in the scene were left blank.)
Over 10 such simulations, the probability of receiving
a training pair containing fall varied from 0–0.02, and
the probability of receiving an instance of the transi-

tive construction was between 0.14–0.21. In 7 out of 10
simulations, the model showed a pattern of overgeneral-
ization and recovery—using the transitive syntax for fall
at some point, and eventually producing only correct in-
transitive forms as it saw more examples of fall .

The first 8 uses of fall for Adam in CHILDES (at 27
months) are given below, with the first 8 sentences gener-
ated by our model in one of the simulations, illustrating
the mix of the two patterns at this stage:

Adam Our model
go fall! kitty fall
no no fall no! Mary fall
no fall! Mary fall toy
oh Adam fall. doggy fall spoon
Adam fall toy. apple fall
Adam fall toy. book fall
oh fall. John fall ball
I not fall. ball fall

By the age of 31 months, the causative (transitive) uses
of fall gradually disappear from Adam’s conversations.
Over the 7 simulations in our model showing the pattern
of overgeneralization and recovery, causative sentences
were no longer output after processing an average of 136
training inputs.

Summary of Results

Taken together, these experiments show an impressive
match between the general behaviour of the model and
that of children concerning the interplay between item-
based and class-based knowledge in acquisition of ar-
gument structure. Imitation of observed forms occurs
early in acquisition, but as evidence of general patterns
increases, so does the tendency to generalize. This ten-
dency can even overwhelm infrequent verbs used in less
common constructions, such that a period of overgen-
eralization may set in. However, simply receiving ad-
ditional examples of the verb in its correct usage can
guide the model to recovery from overgeneralization.
The model achieves this range of behaviour across the
course of acquisition with no explicit negative evidence,
nor even changes in the learning parameters, which are
held constant. The results are simply the consequence
of the Bayesian classification model and the unique in-
teraction of class-based and item-based knowledge in the
corresponding Bayesian prediction process.

Related Work

A number of recent computational models take an item-
based approach to language acquisition. Niyogi (2002)
proposes a Bayesian model that shows how syntactic
and semantic features of verbs interact to support learn-
ing. However, in contrast to our model, the structure
of the verb classes and their probabilities, as well as the
probabilities of verbs showing particular features, are all
fixed. Chang’s (2004) model successfully learns multi-
word constructions (form-meaning pairs) from child data
annotated with scene representations, but relies on noise-
free input and extensive prior knowledge, and construc-
tions are not generalized across verbs. The connectionist
model of Allen (1997) is able to make interesting general-
izations over argument structure syntax and semantics.



However, learning of general constructions is implicit,
and the acquired knowledge cannot be used in any lan-
guage task other than limited comprehension.

Existing models also deal with other aspects of the
problem we discuss here. The connectionist model of
Desai (2002) learns a miniature language from a set of
scene-sentence pairs, but prediction is limited to a com-
ponent of the meaning of a novel word based on its
syntactic context. Buttery (2003) is focused on learn-
ing syntax and addresses the learning of meaning only
at the word level. Onnis et al. (2002) present evidence
that child-directed input has statistical properties that
enable the learner to recover from overgeneralization of
argument structure patterns, given the selection of the
“simplest” grammar, but they do not develop an actual
model of grammar learning.

Conclusions and Future Work

Our computational model demonstrates the feasibility
of learning argument structure regularities from exam-
ples of verb usage, and suggests acquisition mechanisms
underlying this process in children. The model exploits
item frequencies within a Bayesian classification process;
the explicit use of classes allows the model to capture
relevant generalizations without having to consider all of
the lexical frames learned to that point. A novel formula-
tion views language use as a Bayesian prediction process;
a single probability formula smoothly integrates item-
based and class-based information in predicting needed
argument structure properties. This probabilistic ap-
proach makes the model robust against noisy input and
low-confidence information. Furthermore, the model can
apply its acquired knowledge across a variety of language
tasks. Here we have focused on the task of sentence pro-
duction. Our simulations of the model over the course
of acquisition show a promising match with child data in
terms of the observed stages of imitation, generalization,
possible overgeneralization, and eventual convergence on
correct argument structure usage.

The model in its current form makes simplifying as-
sumptions that must be addressed in future work. For
example, the input includes the semantic primitives for
the coarse-grained semantics of the verbs, as well as the
assignment of roles to arguments. A full usage-based ac-
count of argument structure acquisition must show how
these are learnable from the input—indeed, a more likely
scenario is that acquisition of such aspects is interleaved
with the learning of the properties discussed here. We
believe that using a distributed representation of roles,
e.g., as in Allen (1997), will begin to address this issue by
enabling the model to assign roles probabilistically. We
also need to further develop our acquisition mechanism
to account for learning of collocations, idiomatic phrases
and fine-grained selectional preferences. One approach
might begin by maintaining a probability distribution
over the words that participate in each argument posi-
tion of a frame, raising additional interesting issues in
generalization of knowledge.
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