
Failing to Find Paraphrases Using PNrule

Benjamin Bartlett∗

Department of Computer Science, University of Toronto
Toronto, Ontario, Canada M5S 3G4

bb@cs.toronto.edu

January 14, 2007

Abstract

In this paper, we attempt to detect clause-level paraphrases in cases where they are
extremely rare, using a combination of lexical and syntactic measures along with a machine
learning algorithm designed specifically for detecting rare classes: PNrule. When our
method fails, we examine the probable causes of this failure, and what they mean for
future work.

1 Introduction

A paraphrase is a restatement of a text, giving the same meaning as the original text in a
different form. Recently, there has been a lot of work in computational linguistics towards
developing systems that can automatically detect paraphrases. There are a number of ways
in which such a system could be useful; some examples include: as part of an automatic
summarization system, removing multiple instances of the same information; looking for the
recurrence of an idea within a particular body of work; detecting talking points; or creating a
dataset that can be used by a system that automatically learns how to generate paraphrases.

Most of the work up to this point has dealt primarily with paraphrases that occur within
parallel or comparable corpora—situations in which paraphrases occur relatively frequently,
and are often lexically similar to the text unit they paraphrase. Shinyama et al. (2002) use a
combination of information extraction techniques and a similarity value based on named en-
tities to find paraphrases in two news articles about the same event. Barzilay and Lee (2003)
also look at news articles about the same event; they replace dates and proper nouns with
generic tokens, then cluster sentences and induce word lattices that can be used to generate
paraphrases. Barzilay and Elhadad (2003) first match similar paragraphs in comparable cor-
pora, and then use sentence alignment between those paragraphs to find sentences containing
clauses that paraphrase one another. Quirk et al. (2004) also use sentence alignment, and then
use a phrasal decoder to generate new paraphrases.

∗Current Address: Language Weaver, Marina Del Rey, CA 90292

1

It’s also worth mentioning a related, but different, research area: that of entailment detec-
tion. Textual entailment is a directional relationship between two units of text: given two text
units, t1 and t2, we say that t1 entails t2 if we can infer t2 from the information given to us by
t1. This is relevant to us because, by the definition of entailment, if a text t2 is a paraphrase
of a text t1, it must also be entailed by t1.

Much of the recent work on entailment has come about due to the Recognizing Textual En-
tailment Challenge, put out by the PASCAL Network of Excellence (Dagan et al., 2005). This
challenge consists of a dataset of 567 development examples and 800 test examples that has
been designed to reflect the occurrence of entailment within several common NLP tasks. These
tasks are: question answering, information extraction, machine translation, paraphrase acqui-
sition, information retrieval, comparable documents (this was the authors’ term; “sentence
alignment of comparable documents” might be more accurate), and reading comprehension.
An example consists of a text unit t and a hypothesis unit h; the text is one or two sentences
(usually one), while the hypothesis is a shorter sentence. Systems submitted to the challenge
must determine whether t entails h. This challenge is different from our goal not only in that
it attempts to detect a different, albeit related, relationship, but also in that the examples are
chosen so that there is a 50/50 split between positive and negative examples; thus rare classes
do not come into play.

While these approaches have led to useful systems, we feel the next obvious step is to
attempt to detect paraphrases in situations where they occur rarely, and are not necessarily
lexically similar to the text unit they paraphrase. We attempt to do just that, using a machine
learning technique in combination with a set of simple lexical and syntactic measures to detect
clause-level paraphrases.

2 Motivation for this approach

2.1 Why machine learning?

There are several reasons we believe machine learning is a good approach to detecting para-
phrases. First, there’s the fact that machine-learning approaches have been used successfully
to solve many other natural-language-processing problems. Màrquez (2000) lists many of
these problems, including: sense discrimination, word sense disambiguation, text classifica-
tion, speech recognition, part-of-speech tagging, text summarization, dialog act tagging, co-
reference resolution, cue phrase identification, machine translation, homograph disambiguation
in speech synthesis, accent restoration, PP-attachment disambiguation, phonology, morphol-
ogy, and spelling correction.

Second, and more importantly, machine learning has been used, with some success, to solve
a very similar problem: Hatzivassiloglou et al. (1999) use it to match similar pairs of small
textual units (in particular, paragraphs, although in theory their technique could be applied
to sentences as well). They consider two textual units to be similar if they share the same
focus on a common concept, actor, object, or action, and if that common actor or concept
either performs or is the subject of the same action. This definition includes paraphrases, but
it includes other sorts of relationships as well.

2

Now we can explain why machine learning should be used. Our reasoning is basically
this: while ideally, we’d like to simply look at the semantics of two textual units (in our case,
clauses) and decide whether or not they are the same, at this time, we simply do not have the
resources to do so. Instead, we must rely on syntactic and lexical clues to decide whether or
not one textual unit is a paraphrase of another. While some clues may be the same across the
English language, others likely vary depending upon the corpus, both due to different styles of
writing, and due to different contexts. In addition, even if a clue does exist across the entire
language, it may be more important within some corpora than within others. Because we
don’t believe that it is currently possible to develop a system that can, out of the box, detect
paraphrases in any corpus, we feel that it is best to develop a system that can be easily trained
to deal with a new situation.

This leads us to our final point: simplicity. Machine-learning algorithms are much easier to
adapt to new situations than are finely-tailored solutions. While the latter may be preferable
in some cases, what we’d like to see is a machine-learning algorithm combined with a toolbox
of syntactic and lexical features which could easily be trained on new corpora. This has the
added benefit of allowing people to easily add new features to the toolbox (there are any
number of features we have not tried yet, some of which could prove quite useful). There is, of
course, one weakness to our approach: because it’s a supervised method, we need annotated
corpora, the production of which can be quite time consuming. Nevertheless, we firmly believe
the benefits of our approach outweigh this weakness.

Why rule-based machine learning?

The main reason we feel that rule-based machine learning should be used for this task is that,
as mentioned by Mitchell (1997) and Joshi (2002), a rule-based method is easily interpretable
by humans. We believe this to be particularly important in the domain of paraphrase iden-
tification. Human beings have some intuition as to what attributes are likely to indicate the
occurrence of paraphrases. Using a rule-based approach, they can see how well their intu-
ition fits with what’s discovered by the machine learning algorithm. This is advantageous for
several reasons: first, we are more likely to catch errors in the software we use to obtain the
attribute-value pairs, since such errors will cause situations where the results do not match
our expectations. For example, if we find that the presence of matching trigrams between two
sentences indicates that they are not paraphrases of one another, we know that we should take
a second look at our trigram-matching algorithm. Second, in the case where the differences are
not caused by an error, we may learn something new about the problem. Finally, because we
can associate a record with the rule that classified it, we can look at false positives and discover
both what attributes are indicating that these examples are positive, and, by looking at the
sentences themselves, what additional attributes might allow us to distinguish between false
and true positives. These are opportunities that less easily understood classification methods
might not afford us.

A second reason for focusing on rule-based machine learning is that, compared to some
other approaches, the parameters to the algorithm are relatively intuitive. One has a sense
of what it means to have an upper bound on the length of a rule, or a lower bound on its
accuracy. Compare this with, for example, support vector machines, where one has to decide
between using a radial or an exponential kernel space. It’s much more difficult to understand

3

what the latter “means” in terms of the problem one is trying to solve.

2.2 Why simple lexical and syntactic measures?

There are two reasons to try simple lexical and syntactic measures. First, they have been
used with success in solving similar problems. Hatzivassiloglou et al. (1999) have used simple
lexical and syntactic measures quite successfully in the system mentioned above. In addition,
Barzilay and Elhadad (2003) have rather successfully detected paraphrases at the clausal level
in comparable corpora using sentence alignment based on the cosine similarity of sentences and
their containing paragraphs. While we anticipated that our task would be more difficult than
theirs—they were able to obtain a precision of 57.9% at 55.8% recall just using a threshold on
the cosine similarity between the sentences—nevertheless, our hypothesis was that paraphrases
in our corpus would be similar enough to paraphrases in comparable corpora that this approach
would work.

The other reason to try simple lexical and syntactic measure is the very fact they are
simple. As a general rule, it is best to start with simple measures: if they work, then one
avoids a lot of unnecessary work; if they fail, then at least one has learned something about
the problem.

3 The problem with rare classes

Joshi (2002) lists three issues that arise in the context of a rare class that make learning
difficult (note that we have simply borrowed Joshi’s terms for these problems):

Low Separability Occasionally, one encounters a case where the data is noise-free and the
examples can be classified using only one or two attributes. In this case, the data
has a high degree of separability, and only a very simple classification model is needed.
Usually, however, the records of class C are distributed in small clusters throughout
various subspaces of the attribute space. This makes it difficult to find a large cluster
containing records of class C that does not also contain a number of examples of class
NC. This low degree of separability makes classification more difficult, and thus a more
complicated model is required.

Multi-modality of the classes Related to separability is the fact that C and, in particular,
NC may consist of different subclasses with different characteristics. It may be easy to
separate C from some of those subclasses, but very difficult to separate it from others.
We will see an example of this later in the chapter.

Rarity The rarity of the class is itself a problem. In particular, it’s very difficult to avoid
over-fitting the model to C: since the set of records in C is so much smaller than the set
of records in NC, it’s easy to find a model that fits those few positive examples exactly,
but then doesn’t generalize well. Thus, it performs well on the training data, but not on
the testing data.

4

In addition to these problems, which arise regardless of the machine learning method used,
rare classes pose two other problems to the most common method of rule induction, sequential
covering (Agarwal and Joshi, 2000; Mitchell, 1997). In brief, sequential covering works as
follows: there are two loops. In the inner loop, the algorithm begins with an empty rule, and
then at each iteration tries all possible attribute tests, picks the one that most improves the
performance of the rule over the training data, and adds it to the rule. It does this until the
rule reaches an acceptably high level of accuracy. In the outer loop, the algorithm begins with
an empty set of rules. Each time a new rule comes out of the inner loop, it removes from the
training set all examples covered by the rule. The next rule is then learned over the remaining
training set. This is repeated until the model has reached a satisfactory overall accuracy, or
until there are no positive examples left. (Mitchell, 1997)

The two problems that arise when this method is used on rare classes are the problem of
small disjuncts and the problem of splintered positives. The problem of small disjuncts was
first identified by Holte et al. (1989). A small disjunct is one that correctly classifies only a
few training cases. They are much more error-prone than large disjuncts (Holte et al., 1989).
However, they collectively cover a significant percentage of examples, and thus cannot simply
be ignored (Weiss, 1995). This is particularly true when dealing with rare classes, where even a
few missed examples can lead to far lower recall for a particular class. Unfortunately, because
there are few positive training examples, a rare class tends to create small disjuncts—because
there aren’t that many examples to begin with, a rule targeting a rare class probably will
correctly classify only a few training cases, even if it is highly accurate. For example, if there
are only 10 records in class A, out of perhaps a total of 1000 records, a rule R which predicts A
and covers 4 of those examples and no other examples is highly accurate and covers a significant
percentage of the examples of class A, but is still a small disjunct. To make matters worse,
sequential covering removes some of those already-few examples at each iteration (Weiss, 1995;
Joshi, 2002).

The second problem, that of splintered positives, was identified by Agarwal and Joshi
(2000) and Joshi (2002). This problem arises when the signature for the target class is a
composite of attributes that indicate the presence of the target class, and attributes that
indicate the absence of the non-target class. Since we’re dealing with paraphrases in this
paper, let us consider an example in that domain: imagine that we have a number of pairs of
sentences, most of which have nothing to do with one another. On the other hand, a few pairs
of sentences will look like this:

a. The elephant sitting on the dock was very large.

b. The elephant sitting on the dock was huge.

It would thus seem that a high lexical similarity between a pair of sentences would be a
good indication of the presence of our target class. However, remember that earlier we men-
tioned the multi-modality of classes. Although pairs of unrelated sentences make up a large
subclass of the non-target class, there also could be a subclass that contains pairs of sentences
with opposite meanings. This subclass might contain such pairs as:

a. The horse next to the barn was very large.

5

b. The horse next to the barn was very small.

Like the first pair, this pair would have a very high lexical similarity. However, clearly it is
not a paraphrase. Instead, we need some other attribute, such as the presence of an antonym,
to indicate the presence of the non-target class.

We should emphasize that the problem is not that an algorithm using sequential covering
couldn’t create a model that accounted for the presence of such an attribute; the problem
is with how it would do so. Because of its high accuracy constraints, a sequential covering
approach would refine its current rule, adding another conjunctive condition to it (in the case
of our example, it might refine the rule “HighLexicalSimilarity =⇒ Paraphrase” to
“HighLexicalSimilarity ∧ ¬Antonym =⇒ Paraphrase”). However, if the current
rule didn’t cover very many negative examples, the algorithm might not correctly learn the
signature of the non-target class—the additional condition might only apply to the few negative
examples covered by the rule, instead of to the non-target class as a whole—and again we’d
end up with generalization error (Joshi, 2002).

For prevalent classes, these two problems are not very likely to arise. During its early
iterations, the algorithm is likely to discover rules that cover large numbers of positive exam-
ples, which means that the problem of small disjuncts will only arise in later iterations, when
less-significant rules are discovered; these can simply be dropped. In addition, because the
early-discovered rules would cover many positive examples, the rules which had to be refined to
account for the presence of a non-target class would cover a large number of negative examples
as well; if they did not, their accuracy would be high enough that they would not need to be
refined. Thus the problem described in the previous paragraph would be avoided.

However, for rare classes, it is incredibly likely that both problems will occur. For one thing,
there aren’t very many positive examples to begin with, so the problem of small disjuncts will
pop up very early, even in the most significant rules. For another, the signatures of rare classes
tend to be very impure, and because of the high accuracy constraints, the sequential covering
method is likely to create a large number of very detailed rules that cover very few examples.

Because in most situations paraphrases will be rare phenomena, sequential-covering rule-
induction machine-learning algorithms are not very useful to us. Fortunately, Agarwal and
Joshi have developed a rule-induction machine-learning algorithm called PNrule (Joshi, 2002;
Agarwal and Joshi, 2000; Joshi et al., 2001) meant specifically to model cases where the target
class is rare. Although they had in mind more systems-oriented uses such as data mining for
network-intrusion detection (Joshi et al., 2001), we believe PNrule could be equally useful for
cases within computational linguistics where one is trying to model rare phenomena, such as
paraphrases. We will give a brief overview of PNrule below.

4 Detecting rare classes with PNrule

PNrule uses two innovations to deal with the problem of modeling rare classes: two-phase rule
induction, and a scoring mechanism. Two-phase rule induction takes the place of sequential
covering as the method by which the model is built, while the scoring mechanism is a post-
processing step that adds additional flexibility to the model. We will discuss both of these

6

innovations, beginning with two-phase rule induction.

4.1 Two-Phase Rule Induction

Agarwal and Joshi’s hypothesis is that sequential-covering algorithms have the problems men-
tioned above because they attempt to achieve both high recall and high precision at the same
time. While this works well when the target class is prevalent, it does not work as well in
situations where the target class is rare, for the reasons mentioned previously. Their solution
is to model the class in two stages: in the first stage, they attempt to obtain high recall, and
in the second, they attempt to obtain high precision (Joshi, 2002).

In order to understand these stages, it’s important to understand two concepts: rule-
accuracy and support. Let us say we have a rule R. A rule is a set of conditions on some set
of attributes. If the attributes of a particular record meet the conditions of that rule, then we
can say that the record satisfies that rule. Each rule predicts that the records that satisfy it
will be of a particular class. Now, let there be some training set T , let S ⊆ T be the set of
records that satisfy R, and let S′ ⊆ S be the set of records in S that are from the class that
R is trying to predict. Then the support of R is |S|, and the rule-accuracy of R is |S′|/|S|.
In other words, support is the number of records that a rule covers, whereas rule-accuracy is
the percentage of the records covered by a rule that are in the class that rule predicts (Joshi,
2002).

Now we can explain the two stages. The first stage is called the P-stage, and the rules
discovered within it are called P-rules. In some ways, it works much the same way as sequential
covering: at each iteration, a rule is formed, and the records covered by that rule are then
removed from consideration. However, instead of simply using a high-accuracy constraint, P-
rules are discovered using a fitness function that balances accuracy with support. This leaves
us with more false positives (and thus lower accuracy) than in a sequential-covering algorithm,
but without rules that cover only a tiny number of examples. The idea is that in this stage,
the algorithm should maximize recall at the expense of precision.

The second stage is called the N-stage, and the rules discovered within it are called N-
rules. This stage operates on the union of the sets of records covered by the P-rules. The
point of this stage is to learn rules that will remove some of the false positives from the last
stage; that is, the N-rules predict the absence of the target class. The problem is that these
rules can also remove true positives; Agarwal and Joshi call this introducing false negatives
(Joshi, 2002; Agarwal and Joshi, 2000). Aside from the fact that the training data is now the
records covered by the P-rules, and that the target class is now in effect the non-target class,
the N-stage works basically the same way the P-stage did. The idea is that in this stage, the
algorithm should attempt to maximize precision.

We should take a moment to describe what, precisely, a rule looks like in PNrule. PNrule
allows for two types of attributes: categorical and continuous. Given a categorical attribute
Acat and a value v, PNrule allows for two conditions: Acat = v and Acat 6= v. For a continuous
attribute Acont and two values, vl and vr, where vl ≤ vr, PNrule allows for three conditions:
Acont > vl, Acont ≤ vr, and vl < Acont ≤ vr. A rule is a conjunction of these conditions.

Each stage, then, can be thought of as an outer and inner loop. The inner loop finds

7

the best rule it can, according to some evaluation measure and input parameters. The outer
loop looks at the rule produced by the inner loop, and, again according to certain parameters,
decides whether or not to add it to the set of rules in the model. In other words, the inner
loops refine the rules, while the outer loops add new rules; it’s similar to running two sequential
covering algorithms, with the second algorithm being fed as input the set of data covered by
the rules output from the first algorithm.

Each of the four loops has its own stopping criteria. The P-stage rule refinement loop stops
when further refinement of the rule would drop the support of that rule below an acceptable
level, or when adding a new condition to the current rule will not yield an improvement
according to some evaluation metric. The N-stage rule refinement loop stops when the model,
including the current rule, has a high-enough recall, and when adding a new condition to
the current rule will not yield an improvement according to some evaluation metric. Note
that the stopping criteria for P-stage rule refinement form a disjunction—either no further
improvements can be made, or to do so would drop support below an acceptable level—
while those for N-stage rule refinement form a conjunction—the model’s recall has reached an
acceptable level and no further improvements to the rule can be made.

Like the N-stage rule-refinement loop, the stopping criteria for the P-stage rule-adding loop
form a conjunction. First, the current set of rules must cover a minimum number of examples.
Once this is satisfied, the accuracy of the rule is checked: if it is above a certain threshold, it is
added to the set of P-rules; if it is below that threshold, it is discarded and the P-stage ends.
The N-stage rule-adding loop has only one stopping condition. It checks to see if adding a
new N-rule would increase the minimum description length of the model—the number of bits
it would take to encode the model, plus the number of bits it would take to encode the errors
made by the model—by more than some threshold. If it would, the rule is discarded and the
N-stage is ended.

All of the thresholds that are used in the stopping conditions are parameters set by the
user. Through some experimentation we set them to what seemed to be reasonable values.

Evaluation metric

As mentioned above, rule refinement in both stages relies on some evaluation metric to deter-
mine whether a refinement is an improvement over a current rule or not. According to Joshi
(2002), this metric should capture three things: the ability of a rule to distinguish members
of the target class from those records not in the target class, the support of that rule, and the
accuracy of that rule. Naturally, a rule with high support and high accuracy should be given
a high score by the metric. Joshi notes that there are several possible metrics, including Gini
index, information gain, gain-ratio, and chi-square statistics. However, the one that Agarwal
and Joshi define, and that we implement, is called Z-number, and is based on the z-test in
statistics.

Let there be some rule R, with accuracy aR and support sR. Let S be the current training
data (which, as mentioned earlier, changes over each iteration) and let SC ⊆ S be the examples
in S that are in the target class. Then aC = |SC |

|S| is the mean of the target class. Since this

is a binary problem, σC =
√

aC(1− aC) gives us the standard deviation of the target class.

8

Using this, Z-number is:

ZR =
√

sR(aR − aC)
σC

There are two things going on in this measure. First, it’s measuring the number of standard
deviations the mean of the rule is away from the mean of the target class. A large positive Z-
number indicates that the rule predicts the presence of the target class with high confidence,
while a large negative Z-number indicates the rule predicts the absence of the target class
with high confidence. Second, the Z-number is weighted by the square root of the rule’s
support. This gives preference to rules with high support, and also allows for a trade-off
between accuracy and support.

4.2 Scoring mechanism

The second important innovation in PNrule is the scoring mechanism. Without the scoring
mechanism, the model would simply predict that a record is in the target class if it satisfies
some P-rule while satisfying none of the N-rules. However, recall that the N-rules were trained
on the union of the examples covered by the P-rules. Thus, while we have a good sense of the
effect an N-rule has on the overall number of false positives, we do not have any sense on how
well it works towards removing the false positives caused by a particular P-rule. Let’s assume
we have a P-rule and two N-rules. One N-rule does an excellent job of removing the types of
false positives the P-rule causes; the other does not. It stands to reason that a record that is
covered by the P-rule and the first N-rule is less likely to be in the target class than one that
is covered by the P-rule and the second N-rule.

Furthermore, it’s possible that for a particular P-rule, a particular N-rule introduces a large
number of false negatives. If one could give such a P-rule/N-rule combination a low score, one
could recover those false negatives.

Thus, Agarwal and Joshi develop a scoring mechanism that estimates the posterior prob-
ability of a record belonging to the target class given the particular P-rule and the particular
N-rule it satisfies, and assigns a score to each record accordingly. The algorithm then deter-
mines a threshold th, where a record is in the target class if its score is ≥ th, that maximizes
F1.

Due to space constraints, we won’t go into detail about the scoring method. In brief, for
each P-rule/N-rule pair (Pi, Nj), a score is assigned, which is the Laplacian-smoothed accuracy
of the pair according to the examples it covers in the test set. However, if (Pi, Nj) covers too
few examples, or if its accuracy does not differ significantly from that of (Pi, Nj−1), then it
is given the same score as (Pi, Nj−1). In addition, each P-rule is assigned a score in the case
that no N-rules apply. The scoring mechanism then goes through the training set, testing each
P-rule, and, for those examples covered by a P-rule, each N-rule, in order, and assigns each
example a score accordingly. It then uses the labeled examples to find the threshold that gives
the highest F1 score. The minimum coverage required and the minimum amount of difference
between accuracy scores are both parameters set by the user; again, we set these through
experimentation to some reasonable values.

9

4.3 Changes to PNrule

During development, we noticed that, despite its focus on rare cases, PNrule was vastly over-
fitting its model to the training data: during the rule-refinement stage, it would often discover
rules that covered only a single positive example. The problem was that, despite their low
support, these rules would often have a higher Z-number than the alternatives. We also no-
ticed that these rules usually consisted of a single range condition. In order to combat this
overfitting problem, we made two changes to PNrule.

First, we removed PNrule’s ability to treat a range as a single condition of a rule. You’ll
recall that in its original formation, PNrule was capable of discovering conditions such as 0 ≤
v1 < 1, where v1 is some attribute. However, we noticed that this allowed PNrule to discover
highly accurate rules by using range conditions to cover a very small number of examples.
It was our hypothesis that the problem was that, because ranges were treated as a single
condition, PNrule was examining these before it could find potentially better combinations of
conditions. Note that we did not remove the ability of PNrule to discover ranges—only that
now a range is treated as two conditions of a rule instead of a single condition (i.e., 0 ≤ v1 < 1
becomes v1 ≥ 0 ∧ v1 < 1). Thus, PNrule compares a given range to all other possible pairs of
conditions, instead of comparing it to unary conditions.

Second, we added Laplacian smoothing during the calculation of the Z-number. The advan-
tage of using Laplacian smoothing in this manner is that it significantly lessens the accuracy
value assigned to rules with low coverage without significantly affecting the accuracy value
assigned to rules with high coverage. For instance, if a rule covered one positive example and
no negative examples, its accuracy value would be reduced from 1.0 to 1+1

1+2 = 0.66, whereas if
a rule covered 100 positive examples and no negative examples, its accuracy value would only
be reduced to 100+1

100+2 = 0.99.

Although, as we will see in the results, PNrule was still unable to find a particularly
good model, it did begin to make reasonable choices given the training data, and ceased to
drastically overfit the data. Note that this reflects one of the great advantages of rule-based
machine learning: because we were able to understand the model that PNrule was outputting,
we were able to make adjustments to improve its performance.

In addition to these changes, we also created a second version of PNrule, wherein we
substituted a new measure, signature clarity, for the Z-number during the rule-building stage,
and changed the stopping condition for rule building during both the P-stage and the N-stage
to a less than 0.05 increase in the clarity value of the rule. We call this measure signature
clarity, because it reflects the amount of noise added to the class signature to create the
hypothesis signature. A clear signature (which would have a value of 1 with this measure)
would be one that 1) covered all of the target class examples, and 2) covered none of the non-
target class examples. Thus, we felt our measure should reflect two things: 1) how strongly
the presence of the target class indicates the presence of the signature, and 2) to what degree
the signature has been polluted by the signature of the non-target class. We refer to 1) as the
signature’s strength, and to 2) as the signature’s purity. Recall is an excellent measure of the
former. But how do we measure the latter? It seems to us that this should be determined by
how well the signature covers the target class, versus how well it covers the non-target class.

10

Thus, we arrive at the following measure for purity:

PS =
RC

RC + RNC

where RC is the recall of the target class, and RNC is the recall of the non-target class. A
signature’s clarity is the product of its purity and its recall; thus

ClS = RC ·
RC

RC + RNC
=

R2
C

RC + RNC

Since in effect a model is simply a hypothesis signature, we can measure the signature clarity
of a model.

Signature clarity differs from F1 in that it measures how well a model identifies a target
class, but is unaffected by the relative sizes of the target and non-target classes. For example,
in a data set where there are 99 positive examples and 1 negative example, simply picking
the null hypothesis and covering all of the examples gives a very high F1 measure, while if
there are 99 negative examples and 1 positive example, the null hypothesis gives a very low
F1 measure. In contrast, the signature clarity of the null hypothesis in each case would be 0.5,
because in each case it perfectly covers both classes.

Signature clarity has a property that makes it particularly useful for PNrule. When the
target class is significantly smaller than the non-target class, the purity of the rule quickly
approaches 1. Thus, in order to obtain a high clarity in this situation, an algorithm will focus
on maximizing recall. By contrast, if the target class is significantly larger than the non-target
class, covering only a few of the non-target examples will cause the purity value—and thus the
clarity value—to be very low; in such a situation, an algorithm will focus more on precision.
This is precisely the behavior we’d like to see in PNrule. Note, however, that while a large
disparity between the sizes of the target and non-target class can cause the purity value to
approach 1 very quickly, the same is not true for recall. Thus, at the very least, PNrule must
always balance recall with precision, while in some cases it can nearly ignore the latter in favor
of the former. This asymmetry is important; if it were possible to nearly ignore recall, we’d
end up with a model containing a large number of rules, each of which would cover only a
small number of examples; this would mean the model was overfitting the data.

5 Our corpus

For our corpus, we used a set of reviews from Epinions.com (www.epinions.com). In particular,
we used reviews of the movie Spider-Man 2. While we used all 99 reviews available for latent
semantic indexing (which we’ll get to later), we used five of these articles to create our training
and testing sets. First, we paired the articles with each other, giving us a total of 10 pairs of
articles, with a total of 74,204 pairs of sentences. Then, we had two judges annotate each article
pair, marking those sentence pairs that had a clause-paraphrase relationship. Originally, the
kappa agreement was only 0.388. According to Landis and Koch (1977), this indicates only
fair agreement. However, due to the annotation method we used, it was entirely possible that
some of the “disagreement” was actually caused by one annotator spotting a paraphrase that
the other had missed. Because paraphrases are very rare in our corpus, it would both be easy

11

to overlook them, and would severely affect the kappa score were a few to be overlooked. To
distinguish between actual disagreement and overlooked paraphrases, we had the annotators
take a second look at the pairs upon which they disagreed. The new labels resulted in a kappa
value is 0.792, which indicates substantial agreement. This indicates that much of the original
disagreement was indeed due to overlooked paraphrases, as opposed to actual disagreement
over what constitutes a paraphrase.

Discarding the examples the annotators disagreed on, this gave us a total of 90 positive
examples and 74,067 negative examples: we are indeed dealing with a very rare class.

The rareness of this class made determining our testing and training sets somewhat difficult.
We wanted to keep the article pairs either entirely in the training set, or entirely in the testing
set; this way, it would be as though the system were seeing entirely new pairs of articles during
training.1 There were two reasons for this: first, we use information about the paragraphs in
which the sentences are embedded in our system, and thus it’s more realistic to assume the
system is looking at pairs of articles; second, and more importantly, it may be that several
types of paraphrasing occur within an article, and thus, we want a sample that would include
all such types. In theory, were we simply to treat all of the pairs as one big bag, it might
be possible that we’d only end up with one type of paraphrasing in our test set—particularly
since there are so few positive examples.

However, while using entire articles, we still wanted to make sure we ended up with some-
thing close to 80% of the positive examples in the training set, and 20% of the positive examples
in the testing set. This was potentially difficult, as the article pairs ranged from having 23
sentence pairs sharing a clause-paraphrase relationships, to having only 1 sentence pair sharing
such a relationship. We managed to find two pairs of articles, one with 7 positive examples,
and the other with 12, and we used these two pairs for our testing set. This gave us a total of
71 positive examples in the training set, and 19 in the testing set, which means we ended up
with approximately 79% of the positive examples in the training set, and 21% of the positive
examples in the testing set.

Preprocessing

Our preprocessing consists of the following steps:

1. Expanding contractions

2. Part-of-speech tagging

3. Removing auxiliary verbs

4. Removing certain parts of speech

We use a small set of heuristics to expand contractions back into their component words.
For instance, we replace can’t with can not, and won’t with will not. We do this so that phrases

1Although our system would’ve seen both of these articles before individually, we don’t see this as an issue,
as our method looks at each pair of sentences individually, without retaining any information about a particular
article. Thus, whether the system has trained on a particular article is not an issue; it’s whether the system
has trained on a particular pair of articles that matters.

12

such as can’t go will match with phrases such as can not go.

In order to tag our data, we use the rule-based part-of-speech tagger developed by Eric
Brill (Brill, 1994), and trained on the Brown corpus. Although it would’ve been preferable to
retrain the tagger on data more similar to our own, we simply did not have a large enough
tagged corpus available to do so. We examined our data after it had been tagged, however,
and the Brill tagger seemed to do a reasonable job; its most common mistake was to mis-tag
adjectives as nouns.

Because it’s possible for auxiliary verbs to cause a pair of sentences to have a higher
similarity measure than that pair ought to have—for example, the pair of sentences I am
running and I am dancing will have a higher similarity measure than the pair of sentences I
dance and I run—we want to remove any auxiliary verbs from our corpus. We do this as best
we can by removing any form of the verbs to have or to be that is followed by another verb.
The reason we don’t simply remove all to have or to be verbs is because in cases where they
are not auxiliary, they are potentially important indicators of paraphrasing.

In many applications similar to this one, function words are removed from the corpus.
However, we found that in many lists of function words, words that were useful to our measures
(such as forms of the verb to be) were included. Thus, instead of removing function words,
we decided to try to remove words with certain parts of speech that seemed to indicate that
they did not carry much semantic meaning. With that in mind, we remove words with the
following parts of speech from the tagged versions of our corpus: determiner (all, an, etc.),
preposition or subordinating conjunction (astride, among, etc.), modal auxiliary (can, cannot,
etc.), pre-determiner (all, both, etc.), and interjection (golly, gosh, jeepers, etc.).

6 Measures

There were two overarching, and conflicting, concerns when we were developing our measures.
The first was that for any measure we might use that relies on matching lexical units, two
long sentences are much more likely to have a number of matches, regardless of what we are
trying to match, than are two shorter sentences. Thus, it would appear that regularization is
key. However, we are interested in matching clauses, not sentences. So, for instance, take two
pairs of sentences:

1. a. The boy jumped the fence.

b. The boy hopped the barrier.

2. a. Susan walked to the store, and the boy jumped the fence.

b. As impossible as it may seem, the boy hopped the barrier.

Both of these should be positive examples, as they both contain clauses with a paraphrase
relationship. However, due to regularization, the latter pair would score lower than the former.

We thus use a series of measures, of two types: continuous and binary. We try to combine
measures that look at the whole sentence with others that we hope will help to pinpoint clauses
with a paraphrase relationship.

13

Method Recall Precision F1

Cosine Threshold 0.042 0.1 0.059
PNrule 0.211 0.268 0.236
PNrule (clarity) 0.253 0.122 0.165
PNrule (3 measures) 0.127 0.130 0.129

Table 1: Precision, recall, and F1 of the models learned on the training data.

The continuous measures we tried included: matching word stems; matching hypernyms
using WordNet; matching synsets using WordNet; again matching hypernyms and synsets, but
matching verbs based on their Levin classes from VerbNet; matching bigrams and trigrams
of word stems, hypernyms, synsets, and Levin classes; matching bigrams but allowing every
second word to be skipped in the creation of those bigrams (skip-one bigrams); matching word
stems, hypernyms, synsets, and Levin classes within windows of 4–7 words; latent semantic
indexing; cosine similarity of the paragraphs containing the sentences; and latent semantic
indexing of the same. All continuous measures except for LSI and cosine similarity were
regularized using a method taken from Hatzivassiloglou et al. (2001): given two textual units,
A and B, where A contains |A| features and B contains |B| features, we divide these measures
by

√
|A| · |B|.

Our binary measures primarily check to see if the two sentences share some combination
of lexical and syntactic features. These features take the form of pairs of words with different
parts of speech, within a range of 1–5 words of one another. These pairs include: noun-verb,
verb-noun, verb-adverb, be-adj, noun-noun, and noun-adjective. The noun-verb, verb-noun,
and be-adj pairs must appear in that order; the others are order-independent. In addition,
we look for cases where a word from each sentence has the same stem, but a different part of
speech from the other word. The idea is to look for transformations from one part of speech
to another. The matches we attempt are noun-to-verb, noun-to-adjective, verb-to-adjective,
and adjective-to-verb.

7 Results

First, we had to create a baseline against which our results could be compared. Since (Barzilay
and Elhadad, 2003) were also looking for sentences sharing clause-paraphrase relationships,
we decided that, like them, we would use a cosine similarity threshold to create our baseline.
To do so, we found the cosine similarity of all of our examples, then took the threshold that
gave us the best F1 value on the training data and applied it to the testing data. The results
can be seen in Figure 1 (for the training data) and Figure 2 (for the testing data). We then
collected the measures listed in the previous section and ran PNrule on them.

As we can see from Table 1, the model found by PNrule over our lexical measures was
predicted to do better than the model developed using a cosine threshold. It’s worth discussing
the model that PNrule came up with, as it had some interesting qualities. An example is
potentially labeled as positive if one of two P-rules apply to it, and none of the N-rules do.

14

Method Recall Precision F1

Cosine Threshold 0 0 0
PNrule 0 0 0
PNrule (clarity) 0.053 0.045 0.049
PNrule (3 measures) 0.210 0.235 0.222

Table 2: Precision, recall, and F1 of the models applied to the testing data.

The two P-rules were:

1. The skip-one-bigram word-stem-matching measure is greater than 0.115 and the latent-
semantic-indexing measure is greater than 0.586.

2. The latent-semantic-indexing measure is greater than 0.949.

There were other P-rules, but none of them had a confidence score over the threshold, so
in effect we can ignore them. The N-rules that could apply to the two P-rules are listed in
Figure 1. The N-rules are complicated and do not show any clear pattern, which demonstrates
that there isn’t any obvious way to divide the true positives from the false positives.

The confidence levels for rules covered by one of the two P-rules, and by none of the N-
rules, were 0.421 and 0.428, respectively. This is clearly what gives us our precision: if one
of these two rules covers an example, there’s a nearly 50% chance that the example will be
positive (not bad, given the difficulty of our problem). Also interesting to note: even when
covered by an N-rule, an example covered by the first P-rule would still have a confidence level
of 0.4; by contrast, one covered by the second P-rule could have a confidence level of as low
as 0.182. This demonstrates that a combination of measures is (perhaps unsurprisingly) likely
to lead to a better result than use of a single measure.

Unfortunately, in the training set, P-rule 1 covered only 7 positive examples, and P-rule
2 covered only 4—even worse, as we can see in Table 2, they covered no positive examples
in the testing data, which means that our method did no better than cosine threshold. Thus
while we have a couple of rules that appear to be reasonable indicators, relatively speaking,
of a clause-paraphrase relationship, they cover far too few examples to be useful in and of
themselves.

We include the results of our clarity-measure-based version of PNrule as well. As we can
see, it unfortunately doesn’t perform any better than PNrule. However, the model it arrived at
was far simpler. This model consisted of a single one-condition P-rule, and two one-condition
N-rules. In fact, the entire model can be summed up in one line:

F HYP PoS > 0.137 ∧ ¬(LSI ≤ 0.531) ∧ ¬(F HYP WIN5 ≤ 0.5)

where F HYP PoS is the regularized most-frequent hypernym count, where the hypernyms must
have the tagged part-of-speech; LSI is the latent semantic indexing measure; and F HYP WIN5
is the regularized most-frequent hypernym count taken within a 5-word window. The P-rule
covers 63 out of 90 of the positive examples, giving it a fairly high recall, but it also covers

15

1. F HYP PoS ≤ 0.137 ∧ SYN PoS ≤ 0.213 ∧ MATCH N ADJ = false ∧ ORDERED N V = false ∧ WORD ≤ 0.133 ∧ PCOS ≤ 0.181

2. SYN ≤ 0.26 ∧ WORD WIN4 ≤ 0.25 ∧ HYP POS > 0.146 ∧ F HYP > 0.118 ∧ LSI ≤ 0.789 ∧ PCOS > 0

3. F HYP PoS ≤ 0.166 ∧ F SYN WIN7 ≤ 0.286 ∧ RANGED3 BE ADJ = false ∧ SYN PoS WIN7 ≤ 0.429 ∧ F HYP ≤ 0.218 ∧
F SYN PoS ≤ 0.144

4. PCOS ≤ 0.081 ∧ ORDERED N V = false ∧ LSI ≤ 0.991 ∧ HYP > 0.171

5. BISKIP SYN ≤ 0.02 ∧ PCOS NOPROP > 0.072 ∧ ORDERED RANGED5 N V = false ∧ F HYP PoS > 0.141 ∧ PCOS ≤ 0.225

6. PCOS ≤ 0.122 ∧ HYP ≤ 0.476 ∧ ORDERED RANGED5 V N = false ∧ SYN PoS > 0.178 ∧ PCOS NOPROP > 0 ∧ HYP PoS ≤
0.6 ∧ PCOS > 0.056

Figure 1: The N-rules discovered by PNrule over our measures. SYN is the regularized synonym
count, HYP is the regularized hypernym count, and WORD is the regularized word count. If
preceded by F , only the most-frequent synonyms or hypernyms are matched. If followed by
PoS, only synonyms or hypernyms with the tagged part of speech are matched. If followed

by WIN#, the count was obtained within a window of size #. If preceded by BI , TRI , or
BISKIP , the measure is of regularized bigrams, trigrams, or skip-one bigrams, respectively.
PCOS is the cosine similarity of the containing paragraphs, PCOS NOPROP is the same measure
without proper nouns, and LSI is the latent semantic indexing measure. MATCH , ORDERED ,
and RANGED# followed by two parts of speech indicate our stem-matching, ordered-matching,
and ranged-matching measures, along with the parts-of-speech that have to be matched.

15674 negative examples, giving it a terrible precision. The N-rules remove 24 and 12 positive
examples, respectively, but also remove 14248 and 1292 negative examples. This gives us 18
out of 90 positive examples, and 134 negative examples, which, while not a stunning result,
is the sort of behavior we’d want to see in PNrule. In particular, the use of the LSI measure,
which in our data has low coverage but is highly precise, as an N-rule instead of a P-rule makes
considerably more sense. Thus, while the performance of this version of PNrule on our data is
not ultimately any better than the performance of the original version, it does leave us with a
much simpler model, and behaves in a manner closer to what we’d expect in PNrule.

As an experiment for further analysis, we decided to try running PNrule with small subsets
of the measures. Of these, the best performance on the testing data was obtained by training
on three measures: the cosine similarity of the containing paragraphs (ignoring proper nouns),
the noun-noun ranged measure with a range of 3, and noun-adjective ranged measure with
a range of 4. We label this PNrule (3 measures) in Figure 1 and Figure 2. As we can see,
despite doing better on the testing data, it’s still not a strong result—in fact, because it does
no better on the training data, it’s likely that it does better on the testing data due purely to
chance.

8 Results on RTE dataset

Because its goal was similar to ours, we decided to also try our method on the first PASCAL
RTE challenge dataset. In order to do so, we dropped all paragraph similarity measures (since
the data didn’t contain paragraphs), retrained the LSI model on the Reuters-21578 corpus

16

(Lewis, 1999) (since we’re now dealing with news articles, not movie reviews), and added a
task category to our measures. In addition, we set the minimum recall for the N-stage to
0.02—since we’re not dealing with a rare class, there’s no real need to worry about minimum
recall. For the purpose of comparison, we’ve included the results of the systems submitted to
the challenge, along with our own results, in Table 3.

As we can see, our results are in line with those of the other systems, with the comparable
documents task causing most of the overall accuracy improvement. The F1 score we obtained
was 0.67, a basically insignificant improvement over simply labeling every example as positive,
which obtains a score of 0.666. We don’t know precisely what the F1 scores of the other
systems were, but we do know from Dagan et al. (2005) that none of them do significantly
better than this.

9 Analysis

Now that we have discussed our results, we are left with two questions: how reliable are these
results, and, if they are reliable, why didn’t our approach work?

We anticipate that one criticism of these results might be the small number of positive
examples in our training and testing data. While it’s true that the number of positive examples
is small, given the proportion of positive to negative examples, we’d need a very clear signature
to achieve reasonable results—clear enough that it should be obvious even given those few
positive examples. Our method is clearly unable to find such a clear signature.

The question that remains, then, is why was our method unable to find a clear signature?
Two possibilities exist, and the answer may in fact be a combination of these: our measures
are inadequate, or rule-based models are inadequate.

Barzilay and Elhadad (2003) demonstrate that when using comparable corpora, it is pos-
sible to classify such sentence pairs with a good deal of success, using simple lexical measures.
Assuming, as we did, that the paraphrases within our corpus were like those found in com-
parable corpora, the problem is that lexical measures at best provide only an approximation
of semantic measures. In cases where the two classes are close in size, a reasonably good
approximation will suffice. However, in rare cases, the approximation must be nearly perfect,
because, as we discussed earlier, even a small amount of noise can lead to a large amount of
error. It is probably not a coincidence that the most accurate rules were those using the LSI
measure—of all our measures, this comes closest to approximating the underlying semantics
of the sentences. Unfortunately, those rules do not have a particularly high recall.

All of that said, our results both on our own corpus and on the RTE dataset, in combination
with the results of the other systems, suggest two things: first, that the paraphrases found
in our corpus are not necessarily of the same sort found in comparable corpora, and second,
that simple lexical measures are not sufficient when dealing with paraphrases outside of the
comparable documents domain. To see why this is so, let’s look at a few examples. First,
here’s an example of the sort of paraphrase we anticipated would be prevalent:

a. The red dog ran across the street.

17

System
C

overage
A

ccuracy
B

y
T
ask

O
verall

IR
C

D
R

C
Q

A
IE

M
T

P
P

A
khm

atova
100%

0.511
0.587

0.521
0.477

0.508
0.492

0.520
0.519

A
ndreevskaia,

et
al.

(thresh=
1)

100%
0.52

0.64
0.51

0.45
0.51

0.47
0.50

0.52
A

ndreevskaia,
et

al.
(thresh=

3)
100%

0.53
0.63

0.48
0.45

0.52
0.47

0.50
0.52

B
ayer,

et
al.

(system
1)

73%
0.516

B
ayer,

et
al.

(system
2)

100%
0.586

B
os,

et
al.

(system
1)

100%
0.555

B
os,

et
al.

(system
2)

100%
0.563

B
raz,

et
al.

100%
0.522

0.773
0.514

0.500
0.500

0.533
0.500

0.561
D

elm
onte,

et
al.

100%
0.622

0.687
0.521

0.585
0.583

0.467
0.800

0.593
Fow

ler,
et

al.
100%

0.478
0.780

0.514
0.485

0.483
0.542

0.450
0.551

G
lickm

an,
et

al.
100%

0.500
0.833

0.529
0.492

0.558
0.567

0.520
0.586

H
errera,

et
al.

100%
≤

0
.558

0.787
≤

0.558
≤

0.558
≤

0.558
≤

0.558
≤

0
.558

0.548
Jijkoun,

et
al.

100%
0.533

0.847
0.493

0.423
0.550

0.467
0.420

0.553
N

ew
m

an,
et

al.
(w

/
task)

100%
0.446

0.747
0.571

0.515
0.558

0.475
0.520

0.563
N

ew
m

an,
et

al.
(w

/out
task)

100%
0.544

0.740
0.529

0.539
0.492

0.508
0.560

0.565
P
azienza,

et
al.

(m
anual

param
s)

100%
0.444

0.765
0.486

0.395
0.467

0.521
0.540

0.525
P
azienza,

et
al.

(SV
M

-tuned
param

s)
100%

0.489
0.644

0.521
0.457

0.492
0.479

0.500
0.518

R
aina,

et
al.

(single
w

eight)
100%

0.567
0.793

0.529
0.485

0.475
0.467

0.580
0.562

R
aina,

et
al.

(m
ultiple

w
eights)

100%
0.556

0.840
0.507

0.439
0.550

0.475
0.540

0.552
W

u
(w

/
stoplist)

100%
0.478

0.700
0.450

0.446
0.517

0.392
0.520

0.505
W

u
(w

/out
stoplist)

100%
0.467

0.713
0.471

0.408
0.550

0.400
0.560

0.513
P

N
ru

le
100%

0.511
0.793

0.507
0.500

0.500
0.533

0.500
0.563

T
able

3:
T

he
perform

ance
of

the
various

system
s

subm
itted

for
the

PA
SC

A
L

R
T

E
challenge,

plus
P

N
rule’s

perform
ance,

included
in

bold.
W

here
results

w
ere

unavailable,
w

e
have

left
the

cells
blank.

18

b. The dog ran across the street.

As we can see, the only difference is that an adjective, red, has been dropped; this does not
fundamentally change the meaning of the sentence. However, let us look at another example:

a. Osaka is the gastronomic capital of Japan.

b. Osaka is the capital of Japan.

Like the first example, the two sentences are lexically and syntactically very similar, and
only an adjective, gastronomic has been dropped; however, this has fundamentally altered the
meaning of the sentence. The difference is that gastronomic completely changes the meaning
of the word capital, whereas red has no effect whatsoever on the meaning of the word dog. In
cases such as this, measures such as mutual information may be able to help.

However, let’s look at another pair of examples. For the first example, while the second
text unit is both lexically and syntactically similar to the first, it is not a paraphrase of the
first:

a. The event was a gastronomic delight.

b. The event was a delight.

Now, let’s compare that to a second example:

a. The event was a gastronomic delight.

b. The food at the event was absolutely delicious.

The second sentence in this example is far less similar both lexically and, particularly, syn-
tactically to the first sentence than is the second sentence in the previous example; however,
we would argue that this is a paraphrase of the first sentence. What’s more, outside of the
comparable document domain, there are likely to be a number of negative examples that are
equally or more lexically and syntactically similar to this first sentence than is our paraphrase.
This turns out to be a far more prevalent problem than we had anticipated, particularly in
our own corpus—due to the prevalence of negative examples—but also in the RTE corpus,
where due to the annotation approach, it’s more immediately obvious.2 We hypothesize that
due to the fact that two comparable documents are, in effect, descriptions of the same object
or event, lexical similarity has a far higher correspondence with paraphrasing than in other
domains.

This is not to say that lexical measures are entirely useless—in fact, when detecting para-
phrases in cases where they are rare, most negative examples can be weeded out using simple
lexical measures. For example, using our testing set, if we use a model where examples are
labeled as positive if their LSI values are greater than or equal to 0.4, over half of the positive

2Due to the annotation process, many of the negative hypotheses in the RTE corpus are still very lexically
similar to the texts.

19

examples (57%) are marked as true, whereas only around 900 of the negative examples (less
than 10%) are marked as true. However, that still leaves us with a 90-to-1 ratio of negative to
positive examples, and the remaining negative examples cannot be easily distinguished from
the positive ones using simple lexical measures. Thus it’s clear that, whatever the weaknesses
of PNrule, we need more sophisticated measures for this task.

The other possibility as to why PNrule couldn’t find a clear signature in the hypothesis
space is the limits of using a rule-based model: it has a difficult time discovering relationships
between measures. For example, imagine we have two measures, m1 and m2, as well as a target
class C. The signature for the target class could be something like m1 + m2 > 1. While a
number of statistical machine-learning techniques could model this signature directly, a rule-
based approach can only approximate it. For instance, it could come up with the following
series of rules:

1. m1 > 1

2. m2 > 1

3. m2 > 0.75 ∧ m1 > 0.25

4. m1 > 0.5 ∧ m2 > 0.5

5. m1 > 0.75 ∧ m2 > 0.25

Even in cases where the target class was not rare, there’s a difficulty in finding this ap-
proximation: in order to find one of the rules with two conditions, the first condition must do
better than all other possible first conditions. If, for instance, there was some measure, m3,
and m3 > 0.3 gave better results than m2 > 0.75, rule 2 would not be discovered. This problem
arises because the rule-refinement stage uses a greedy search; replacing it with, for example,
a beam search might ameliorate this problem, but there’s no computationally-friendly way to
eliminate it entirely.

In addition, there is another difficulty that is specific to cases in which the target class is
rare. By approximating the signature using several different rules, we split up an already-small
pool of positive examples; each rule will, at best, cover only a tiny number of these examples.
What’s worse, we almost inevitably add error, either because the rules cover examples they
shouldn’t, or because they miss examples. For example, imagine we had an example where
m1 = 0.35 and m2 = 0.7. This example would be covered under the original signature, as
0.35 + 0.7 > 1. However, it’s not covered by any of the rules in our approximation.

So, then, we are attempting to detect a semantic relationship with a set of measures that
can at best only approximate semantics, and with a model that, in all likelihood, is only able
to approximate the target-class signature. This, combined with the fact that, when dealing
with a rare target class, even a few errors can lead to terrible results, likely explains why our
method failed. The only question that remains is to what degree each of the two problems
contributed to our method’s failure—a question that will have to be answered in future work.

20

10 Future Work

Clearly, a lot of work still has to be done toward solving this problem. Roughly speaking, we
can separate future work into four groups: preprocessing, methodology, method, and measures.

10.1 Preprocessing

One obvious thing to try is to use a partial parser (Abney, 1996; Abney, 1997) to split the
sentences in our corpus into simplex clauses, and then attempting to match those clauses. The
danger here is that misparsing sentences might add an unacceptable amount of error; on the
other hand, if the parsing is good, it would reduce noise.

Another preprocessing step that would be worth trying would be to identify any multiword
WordNet entries that might appear in the corpus (e.g., German shepherd. Of course, then one
might want to deal with such multiword entries both as a single unit and as separate words
(since, in theory, a German shepherd could refer to a German who herds sheep).

10.2 Methodology

In hindsight, and in particular after reviewing the systems submitted for the RTE challenge,
it has become clear to us that one mistake we have made in our methodology is to treat an
asymmetric relationship as though it were a symmetric one. Imagine we have two sentences, s1

and s2. Currently, we use symmetric measures in an attempt to detect whether one sentence
contains a paraphrase of the other. It would be better if instead we dealt with each pair twice:
first check to see if s1 contained a paraphrase of a clause in s2, and then vice versa. This
would allow us to use asymmetric measures: for example, if s1 contains a hypernym of a word
in s2, that increases its chance of containing a paraphrase—however, it does not increase the
chance that s2 contains a paraphrase of a clause in s1, and in fact may decrease that chance.
Currently, our measures cannot reflect that distinction; this change would fix that.

10.3 Methods

As we can see from the submissions to the Pascal RTE challenge, there are a number of
potential approaches to the problem of entailment (and thus paraphrasing). Limiting ourselves
to approaches using machine learning, there are several things that could be tried. First, we
could attempt to make changes to PNrule that might improve its performance. For example,
we could try fitness functions other than Z-number or signature clarity. Another idea would
be to start with a pseudo N-stage: this stage would find strong indications that examples were
negative, and then create N-rules accordingly. Why focus on negative examples first? Three
reasons:

1. because there’s a large number of negative examples, noise is less likely to be a factor;

2. the strongest indicator that an example is negative is not necessarily the complement of
the strongest indicator that an example is positive; and

21

3. it’s possible for the strongest indicator that an example is negative to be obscured once
examples have been chosen based on the likelihood that they are positive.

Of course, the pseudo N-stage would be required to keep recall at one: the idea would be to
remove obvious negative examples; less obviously labeled examples would be dealt with in the
normal P- and N-stages.

Second, we could adapt a different machine-learning technique to deal with rare classes,
either by redesigning the technique, or by penalizing false negatives much more severely than
false positives. Preferably, we’d pick a method that does not have the weaknesses of a rule-
based system mentioned earlier. Alternatively, if we gathered far more data, we might be able
to use something like k-nearest-neighbor unaltered; one advantage of that method is that it
can handle small “clusters” of positive examples surrounded by negative examples within a
vector space.

Finally, related to this second option, we could combine multiple learners, using a method
such as a mixture of experts. These learners could be different machine-learning systems
trained on the same measures, copies of the same machine-learning system trained on different
measures, or different systems trained on different measures. We’d want each system to obtain
near-perfect recall, but not necessarily good precision. The idea would be that each system
would cover the same true positives, but different false positives. Assuming this is, in fact,
the case, the combination of systems will outperform the individual systems.

In addition, any future system should be modified to handle negation and numbers; some
of the systems submitted to the Pascal RTE provide ideas as to how this can be done.

10.4 Measures

The Pascal RTE challenge has provided a number of other measures to try; in particular, we
feel that measures based on lexical chains might be helpful, given that this would allows us
to add more contextual information to our measures. Another measure we’d like to try is one
based on latent Dirichlet allocation (Blei et al., 2002), since it is similar in some ways to LSI
(which was one of our strongest measures), but may offer some advantages over the former.
That said, given the results of both our and other systems on the Pascal RTE data, it seems
as though paraphrase detection (as well as entailment detection) will require innovative new
measures; a major part of any future work will be finding these measures—for example, using
mutual information to decide which adjectives are important and which can be dropped. In
addition, it would be worthwhile to research methods to select which measures to use, since
including some measures does nothing more than introduce noise.

Clearly, there’s still a great deal of work to be done, both on our specific task, and on
detecting entailment in general. We hope that this paper contributes some ideas to that
future research, as well as perhaps highlighting some pitfalls to avoid.

22

Acknowledgements

I’d like to thank my supervisor, Graeme Hirst, and the Natural Sciences and Research Council
of Canada. Much of this paper is taken from my Master’s thesis (Bartlett, 2006), to which the
reader can refer for further details.

References

Steven Abney. 1996. Partial parsing via finite-state cascades. Natural Language Engineering,
2(4):337–344.

Steven Abney. 1997. The SCOL manual, version 0.1b. http://www.vinartus.net/spa/.

Ramesh Agarwal and Mahesh V. Joshi. 2000. PNrule: A new framework for learning classi-
fier models in data mining. Technical Report 00-015, Department of Computer Science,
University of Minnesota.

Benjamin Bartlett. 2006. Finding Paraphrases Using PNrule. Master’s thesis, University of
Toronto.

Regina Barzilay and Noemie Elhadad. 2003. Sentence alignment for monolingual comparable
corpora. In Proceedings of the 2003 Conference on Empirical Methods in Natural Language
Processing (EMNLP-03).

Regina Barzilay and Lillian Lee. 2003. Learning to paraphrase: An unsupervised ap-
proach using multiple-sequence alignment. In Proceedings of the 2003 Conference of
Human Language Technology/North American Association for Computational Linguistics
(HTL/NAACL).

D. Blei, A. Ng, and M. Jordan. 2002. Latent Dirichlet allocation. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems
14, Cambridge, MA. MIT Press.

E. Brill. 1994. Some advances in rule-based part of speech tagging. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, pages 722–727, Seattle, WA. Amer-
ican Association for Artificial Intelligence.

Ido Dagan, Oren Glickman, and Bernando Magnini. 2005. The pascal recognizing textual
entailment challenge. In Proceedings of the Pattern Analysis, Statistical Modelling, and
Computational Learning (PASCAL) Challenges Workshop on Recognising Textual Entail-
ment.

Vasileios Hatzivassiloglou, Judith L. Klavans, Melissa L. Holcombe, Regina Barzilay, Min-
Yen Kan, and Kathleen R. McKeown. 2001. Simfinder: A flexible clustering tool for
summarization. In Workshop on Automatic Summarization, North American Association
for Computational Linguistics, Pittsburg (PA), USA.

23

V. Hatzivassliloglou, J. Klavans, and E. Eskin. 1999. Detecting text similarity over short
passages: exploring linguistic feature combinations via machine learning. In Proceedings
of Empirical Methods in Natural Language Processing, MD, USA.

R. C. Holte, L. E. Acker, and B. W. Porter. 1989. Concept learning and the problem of
small disjuncts. In Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, pages 813–818, Detroit, Michigan.

Mahesh V. Joshi, Ramesh C. Agarwal, and Vipin Kumar. 2001. Mining needles in a haystack:
classifying rare classes via two-phase rule induction. SIGMOD Record (Association for
Computing Machinery Special Interest Group on Management of Data), 30(2):91–102.

Mahesh Vijaykumar Joshi. 2002. Learning Classifier Models for Predicting Rare Phenomena.
Ph.D. thesis, University of Minnesota.

R.J. Landis and G.G. Koch. 1977. The measurement of observer agreement for categorical
data. Biometrics, 133:159–174.

D. D. Lewis. 1999. Reuters-21578 text categorization test collection distribution 1.0. http:
//www.research.att.com/∼lewis.

Llúıs Màrquez. 2000. Machine learning and natural language processing. Technical Report
LSI-00-45-R, Departament de Llenguatges i Sistemes Informàtics (LSI), Universitat Po-
litecnica de Catalunya (UPC), Barcelona, Spain.

Tom M. Mitchell. 1997. Machine Learning. McGraw-Hill.

Chris Quirk, Chris Brockett, and William Dolan. 2004. Monolingual machine translation for
paraphrase generation. In Dekang Lin and Dekai Wu, editors, Proceedings of Empirical
Methods in Natural Language Processing (EMNLP) 2004, pages 142–149, Barcelona, Spain,
July. Association for Computational Linguistics.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman. 2002. Automatic paraphrase acquisition
from news articles. In Proceedings of the Human Language Technology (HLT) Conference,
San Diego, USA.

G. M. Weiss. 1995. Learning with rare cases and small disjuncts. In Proceedings of the Twelfth
Joint International Conference on Artificial Intelligence, pages 558–565.

24

