
Method

• Calculate a formality score for each text in Toronto Corpus

• Average formality of all words in the text

• Divide texts into groups by social factors

• Calculate averages and significance (t-test) 

Results for Age

• Formality increases with age

• Young and old significantly different (p < 0.001)

• Children and young adults significantly different  (p < 0.01)

• Key words: like, yeah, just, stuff, okay, weird

Results for Work

• Students omitted

• White collar workers more formal (p < 0.001)

• Key words: gotta, stuff, guy, very, were

Results for Gender

• Women are slightly less formal

• Difference not significant

• Men say: gonna; women say: oh-my-god

Discussion

• Results correspond to our intuitions 

• But which came first: the style, or the social group?
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Idea

• Assign every word a number indicating its level of formality

• Use corpus co-occurrence starting from a small set of seeds

• Inspired by methods for sentiment lexicons (Turney and Littman, 2003)

Seed sets

• 138 informal, slang (e.g. wuss) and interjections (e.g. yikes)

• 105 formal, discourse cues (e.g. hence) and adverbs (e.g. adroitly) 

Corpus

• ICWSM Spinn3r Dataset (Burton et al. 2009)

• Mixed register

• 7.5 million blogs 

• 1.3 billion word tokens

• Filtering of rare words and short documents

Latent Semantic Analysis (Landauer and Dumais 1997)

• Similar to factor analysis as used for MD analysis (Biber 1988)

• Create word–document matrix

• Collapse word–document matrix to k dimensions

• For each word vector,  calculate cosine similarity to seed words

Normalization

• Normalize to –1 to 1 range 

• –1 is most informal, 1 is  most formal

• Core vocabulary generally near zero

• Neutral word and is taken as absolute zero

Our Goals

• Evaluate a formality lexicon based on co-occurrence (Brooke et al., 2010)

• Investigate a sociolinguistic corpus (Tagliamonte, 2006b)

Questions

• Is our formality lexicon, derived from writing, applicable to speech?

• Is formality in speech indicative of underlying social factors?

• Will the direction of formality differences correspond to our intuitions?

Background: Quantificational Approaches to Stylistic Variation

• Multidimensional analysis of register (Biber 1988)

• Variationist sociolinguisitics (Labov 1972; Tagliamonte, 2006a)

• Lexicalized computuational stylistics (Argamon et al., 2007)

• Relevant tasks in NLP (Garera and Yarowsky, 2009; Peterson et al., 2011)
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Cosine similarity in two dimensions

• 135 transcribed interviews with Toronto residents (Tagliamonte, 2006b)

• Collected  by Sali Tagliamonte and colleagues between 2002 and 2004

• (Now) machine readable, automatically part-of-speech tagged

• Marked with social factors:

• Age (9-85)

• Work (blue collar, white collar, or student)

• Gender
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Brooke et al., 2010

• Over 80% accuracy on near-synonym relative formality task

• Leave-one-out testing with seed words give nearly perfect accuracy

• LSA method better than word length and frequency-based metrics

Brooke et al., 2011

• Lexicon applied to word choice (prediction of clipping, e.g. doc/doctor)

• Results similar to both word choice system and human performance

3. Previous Experiments


