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The quantification of lexical semantic relatedness has many applications in NLP, and many
different measures have been proposed. We evaluate five of these measures, all of which use
WordNet as their central resource, by comparing their performance in detecting and correcting
real-word spelling errors. An information-content–based measure proposed by Jiang and
Conrath is found superior to those proposed by Hirst and St-Onge, Leacock and Chodorow, Lin,
and Resnik. In addition, we explain why distributional similarity is not an adequate proxy for
lexical semantic relatedness.

1. Introduction

The need to determine semantic relatedness or its inverse, semantic distance, be-
tween two lexically expressed concepts is a problem that pervades much of natural
language processing. Measures of relatedness or distance are used in such applica-
tions as word sense disambiguation, determining the structure of texts, text sum-
marization and annotation, information extraction and retrieval, automatic indexing,
lexical selection, and the automatic correction of word errors in text. It’s important
to note that semantic relatedness is a more general concept than similarity; similar
entities are semantically related by virtue of their similarity (bank–trust company), but
dissimilar entities may also be semantically related by lexical relationships such as
meronymy (car–wheel) and antonymy (hot–cold), or just by any kind of functional rela-
tionship or frequent association (pencil–paper, penguin–Antarctica, rain–flood). Computa-
tional applications typically require relatedness rather than just similarity; for example,
money and river are cues to the in-context meaning of bank that are just as good as
trust company.

However, it is frequently unclear how to assess the relative merits of the many
competing approaches that have been proposed for determining lexical semantic re-
latedness. Given a measure of relatedness, how can we tell whether it is a good
one or a poor one? Given two measures, how can we tell whether one is bet-
ter than the other, and under what conditions it is better? And what is it that
makes some measures better than others? Our purpose in this paper is to compare
the performance of a number of measures of semantic relatedness that have been
proposed for use in applications in natural language processing and information
retrieval.
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1.1 Terminology and Notation

In the literature related to this topic, at least three different terms are used by differ-
ent authors or sometimes interchangeably by the same authors: semantic relatedness,
similarity, and semantic distance.

Resnik (1995) attempts to demonstrate the distinction between the first two by way
of example. “Cars and gasoline”, he writes, “would seem to be more closely related
than, say, cars and bicycles, but the latter pair are certainly more similar.” Similarity
is thus a special case of semantic relatedness, and we adopt this perspective in this
paper. Among other relationships that the notion of relatedness encompasses are the
various kinds of meronymy, antonymy, functional association, and other “non-classical
relations” (Morris and Hirst 2004).

The term semantic distance may cause even more confusion, as it can be used
when talking about either just similarity or relatedness in general. Two concepts are
“close” to one another if their similarity or their relatedness is high, and otherwise
they are “distant”. Most of the time, these two uses are consistent with one another,
but not always; antonymous concepts are dissimilar and hence distant in one sense,
and yet are strongly related semantically and hence close in the other sense. We would
thus have very much preferred to be able to adhere to the view of semantic distance
as the inverse of semantic relatedness, not merely of similarity, in the present paper.
Unfortunately, because of the sheer number of methods measuring similarity, as well
as those measuring distance as the “opposite” of similarity, this would have made
for an awkward presentation. Therefore, we have to ask the reader to rely on context
when interpreting what exactly the expressions semantic distance, semantically distant,
and semantically close mean in each particular case.

Various approaches presented below speak of concepts and words. As a means of
acknowledging the polysemy of language, in this paper the term concept will refer to a
particular sense of a given word. We want to be very clear that, throughout this paper,
when we say that two words are “similar”, this is a short way of saying that they denote
similar concepts; we are not talking about similarity of distributional or co-occurrence
behavior of the words, for which the term word similarity has also been used (Dagan
2000; Dagan, Lee, and Pereira 1999). While similarity of denotation might be inferred
from similarity of distributional or co-occurrence behavior (Dagan 2000; Weeds 2003),
the two are distinct ideas. We return to the relationship between them in Section 6.2.

When we refer to hierarchies and networks of concepts, we will use both the terms
link and edge to refer to the relationships between nodes; we prefer the former term
when our view emphasizes the taxonomic aspect or the meaning of the network, and
the latter when our view emphasizes algorithmic or graph-theoretic aspects. In running
text, examples of concepts are typeset in sans-serif font, whereas examples of words
are given in italics; in formulas, concepts and words will usually be denoted by c
and w, with various subscripts. For the sake of uniformity of presentation, we have
taken the liberty of altering the original notation accordingly in some other authors’
formulas.

2. Lexical Resource–based Approaches to Measuring Semantic Relatedness

All approaches to measuring semantic relatedness that use a lexical resource construe
the resource, in one way or another, as a network or directed graph, and then base the
measure of relatedness on properties of paths in this graph.
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2.1 Dictionary-based Approaches

Kozima and Furugori (1993) turned the Longman Dictionary of Contemporary English
(LDOCE) (Procter 1978) into a network by creating a node for every headword and
linking each node to the nodes for all the words used in its definition. The 2851-
word controlled defining vocabulary of LDOCE thus becomes the densest part of the
network: the remaining nodes, which represent the headwords outside of the defining
vocabulary, can be pictured as being situated at the fringe of the network, as they are
linked only to defining-vocabulary nodes and not to each other. In this network, the
similarity function simKF between words of the defining vocabulary is computed by
means of spreading activation on this network. The function is extended to the rest
of LDOCE by representing each word as a list W = {w1, . . . , wr} of the words in its
definition; thus, for instance,

simKF(linguistics, stylistics)

= simKF({the, study, of, language, in, general, and, of, particular,

languages, and, their, structure, and, grammar, and, history},

{the, study, of, style, in, written, or, spoken, language})

Kozima and Ito (1997) built on this work to derive a context-sensitive, or dynamic,
measure that takes into account the “associative direction” of a given word pair. For
example, the context {car, bus} imposes the associative direction of vehicle (close words
are then likely to include taxi, railway, airplane, etc.), whereas the context {car, engine}
imposes the direction of components of car (tire, seat, headlight, etc.).

2.2 Approaches Based on Roget-structured Thesauri

Roget-structured thesauri, such as Roget’s Thesaurus itself, the Macquarie Thesaurus
(Bernard 1986), and others, group words in a structure based on categories within which
there are several levels of finer clustering. The categories themselves are grouped into
a number of broad, loosely defined classes. However, while the classes and categories
are named, the finer divisions are not; the words are clustered without attempting to
explicitly indicate how and why they are related. The user’s main access is through
the index, which contains category numbers along with labels representative of those
categories for each word. Polysemes are implicitly disambiguated, to a certain extent,
by the other words in their cluster and in their index entry. Closely related concepts
might or might not be physically close in the thesaurus: “Physical closeness has some
importance . . . but words in the index of the thesaurus often have widely scattered
categories, and each category often points to a widely scattered selection of cate-
gories” (Morris and Hirst 1991). Methods of semantic distance that are based on Roget-
structured thesauri therefore rely not only on the category structure but also on the
index and on the pointers within categories that cross-reference other categories. In
part as a consequence of this, typically no numerical value for semantic distance can
be obtained: rather, algorithms using the thesaurus compute a distance implicitly and
return a boolean value of ‘close’ or ‘not close’.

Working with an abridged version of Roget’s Thesaurus, Morris and Hirst (1991)
identified five types of semantic relations between words. In their approach, two words
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were deemed to be related to one another, or semantically close, if their base forms
satisfy any one of the following conditions:

1. They have a category in common in their index entries.

2. One has a category in its index entry that contains a pointer to a category
of the other.

3. One is either a label in the other’s index entry or is in a category of the
other.

4. They are both contained in the same subcategory.

5. They both have categories in their index entries that point to a common
category.

These relations account for such pairings as wife and married, car and driving, blind and
see, reality and theoretically, brutal and terrified. (However, different editions of Roget’s
Thesaurus yield somewhat different sets of relations.) Of the five types of relations,
perhaps the most intuitively plausible ones — the first two in the list above — were
found to validate over 90% of the intuitive lexical relationships that the authors used as
a benchmark in their experiments.

Jarmasz and Szpakowicz (2003) also implemented a similarity measure with Roget’s
Thesaurus; but because this measure is based strictly on hierachy rather than the index
structure, we discuss it in Section 2.4 below.

2.3 Approaches Using WordNet and Other Semantic Networks

Most of the methods discussed in the remainder of Section 2 use WordNet (Fellbaum
1998), a broad coverage lexical network of English words. Nouns, verbs, adjectives,
and adverbs are each organized into networks of synonym sets (synsets) that each
represent one underlying lexical concept and are interlinked with a variety of relations.
(A polysemous word will appear in one synset for each of its senses.) In the first versions
of WordNet (those numbered 1.x), the networks for the four different parts of speech
were not linked to one another.1 The noun network of WordNet was the first to be richly
developed, and most of the researchers whose work we will discuss below therefore
limited themselves to this network.2

The backbone of the noun network is the subsumption hierarchy (hyponymy/
hypernymy), which accounts for close to 80% of the relations. At the top of the hier-
archy are 11 abstract concepts, termed unique beginners, such as entity (‘something
having concrete existence; living or nonliving’) and psychological feature (‘a feature of
the mental life of a living organism’). The maximum depth of the noun hierarchy is
16 nodes. The nine types of relations defined on the noun subnetwork, in addition to
the synonymy relation that is implicit in each node are: the hyponymy (IS-A) relation,

1 We began this work with WordNet 1.5, and stayed with this version despite newer releases in order
to maintain strict comparability. Our experiments were complete before WordNet 2.0 was released.

2 It seems to have been tacitly assumed by these researchers that results would generalize to the network
hierarchies of other parts of speech. Nonetheless, Resnik and Diab (2000) caution that the properties of
verbs and nouns might be different enough that they should be treated as separate problems, and recent
research by Banerjee and Pedersen (2003) supports this assumption: they found that in a word-sense
disambiguation task, their gloss-overlap measure of semantic relatedness (see Section 6.1 below)
performed far worse on verbs (and slightly worse on adjectives) than it did on nouns.
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and its inverse, hypernymy; six meronymic (PART-OF) relations — COMPONENT-OF,
MEMBER-OF and SUBSTANCE-OF and their inverses; and antonymy, the COMPLEMENT-
OF relation.

In discussing WordNet, we use the following definitions and notation:

� The length of the shortest path in WordNet from synset ci to synset cj
(measured in edges or nodes) is denoted by len(ci, cj). We stipulate a
global root root above the 11 unique beginners to ensure the existence
of a path between any two nodes.

� The depth of a node is the length of the path to it from the global root,
i.e., depth(ci) = len(root, ci).

� We write lso(c1, c2) for the lowest super-ordinate (or most specific
common subsumer) of c1 and c2.

� Given any formula rel(c1, c2) for semantic relatedness between two
concepts c1 and c2, the relatedness rel(w1, w2) between two words w1
and w2 can be calculated as

rel(w1, w2) = max
c1∈s(w1),c2∈s(w2 )

[rel(c1, c2)] (1)

where s(wi) is “the set of concepts in the taxonomy that are senses of word
wi” (Resnik 1995). That is, the relatedness of two words is equal to that of
the most-related pair of concepts that they denote.

2.4 Computing Taxonomic Path Length

A simple way to compute semantic relatedness in a taxonomy such as WordNet is to
view it as a graph and identify relatedness with path length between the concepts:
“The shorter the path from one node to another, the more similar they are” (Resnik
1995). This approach was taken, for example, by Rada and colleagues (Rada et al. 1989;
Rada and Bicknell 1989), not on WordNet but on MeSH (Medical Subject Headings),
a semantic hierarchy of terms used for indexing articles in the bibliographic retrieval
system Medline. The network’s 15,000 terms form a nine-level hierarchy based on the
BROADER-THAN relationship. The principal assumption of Rada and colleagues was
that “the number of edges between terms in the MeSH hierarchy is a measure of
conceptual distance between terms”. Despite the simplicity of this distance function,
the authors were able to obtain surprisingly good results in their information retrieval
task. In part, their success can be explained by the observation of Lee, Kim, and
Lee (1993) that while “in the context of . . . semantic networks, shortest path lengths
between two concepts are not sufficient to represent conceptual distance between
those concepts . . . when the paths are restricted to IS-A links, the shortest path length
does measure conceptual distance.” Another component of their success is certainly
the specificity of the domain, which ensures relative homogeneity of the hierarchy.
Notwithstanding these qualifications, Jarmasz and Szpakowicz (2003) also achieved
good results with Roget’s Thesaurus by ignoring the index and treating the thesaurus
as a simple hierarchy of clusters. They computed semantic similarity between two
words as the length of the shortest path between them. The words were not explicitly
disambiguated.
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Hirst and St-Onge (1998; St-Onge 1995) adapted Morris and Hirst’s (1991) seman-
tic distance algorithm from Roget’s Thesaurus to WordNet.3 They distinguished two
strengths of semantic relations in WordNet. Two words are strongly related if one of
the following holds:

1. They have a synset in common (for example, human and person).

2. They are associated with two different synsets that are connected by the
antonymy relation (for example, precursor and successor).

3. One of the words is a compound (or a phrase) that includes the other and
“there is any kind of link at all between a synset associated with each
word” (for example, school and private school).

Two words are said to be in a medium-strong, or regular, relation if there exists an
allowable path connecting a synset associated with each word (for example, carrot and
apple). A path is allowable if it contains no more than five links and conforms to one
of eight patterns, the intuition behind which is that “the longer the path and the more
changes of direction, the lower the weight”. The details of the patterns are outside of
the scope of this paper; all we need to know for the purposes of subsequent discussion
is that an allowable path may include more than one link and that the directions of
links on the same path may vary (among upward (hypernymy and meronymy), downward
(hyponymy and holonymy) and horizontal (antonymy)). Hirst and St-Onge’s approach may
thus be summarized by the following formula for two WordNet concepts c1 �= c2:

relHS(c1, c2) = C − len(c1, c2) − k × turns(c1, c2) (2)

where C and k are constants (in practice, they used C = 8 and k = 1), and turns(c1, c2) is
the number of times the path between c1 and c2 changes direction.

2.5 Scaling the Network

Despite its apparent simplicity, a widely acknowledged problem with the edge-
counting approach is that it typically “relies on the notion that links in the taxonomy
represent uniform distances”, which is typically not true: “there is a wide variability
in the ‘distance’ covered by a single taxonomic link, particularly when certain sub-
taxonomies (e.g., biological categories) are much denser than others” (Resnik 1995).
For instance, in WordNet, the link rabbit ears IS-A television antenna covers an intuitively
narrow distance, whereas white elephant IS-A possession covers an intuitively wide one.
The approaches discussed below are attempts undertaken by various researchers to
overcome this problem.

2.5.1 Sussna’s Depth-relative Scaling. Sussna’s (1993, 1997) approach to scaling is
based on his observation that sibling-concepts deep in a taxonomy appear to be more
closely related to one another than those higher up. His method construes each edge

3 The original ideas and definitions of Hirst and St-Onge (1998) (including those for the direction of
links — see below) were intended to apply to all parts of speech and the entire range of relations featured
in the WordNet ontology (which include cause, pertinence, also see, etc.). Like other researchers, however,
they had to resort to the noun subnetwork only. In what follows, therefore, we will use appropriately
restricted versions of their notions.
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in the WordNet noun network as consisting of two directed edges representing inverse
relations. Each relation r has a weight or a range [minr; maxr] of weights associated with
it: for example, hypernymy, hyponymy, holonymy, and meronymy have weights between
minr = 1 and maxr = 2.4 The weight of each edge of type r from some node c1 is
reduced by a factor that depends on the number of edges, edgesr, of the same type
leaving c1:

wt(c1 →r) = maxr −
maxr − minr

edgesr(c1) (3)

The distance between two adjacent nodes c1 and c2 is then the average of the weights
on each direction of the edge, scaled by the depth of the nodes:

distS(c1, c2) = wt(c1 →r) + wt(c2 →r′ )
2 × max{depth(c1), depth(c2)} (4)

where r is the relation that holds between c1 and c2 and r′ is its inverse (i.e., the relation
that holds between c2 and c1). Finally, the semantic distance between two arbitrary
nodes ci and cj is the sum of the distances between the pairs of adjacent nodes along
the shortest path connecting them.

2.5.2 Wu and Palmer’s Conceptual Similarity. In a paper on translating English verbs
into Mandarin Chinese, Wu and Palmer (1994) introduce a scaled metric for what they
call conceptual similarity between a pair of concepts c1 and c2 in a hierarchy as

simWP(c1, c2) =
2 × depth(lso(c1, c2))

len(c1, lso(c1, c2)) + len(c2, lso(c1, c2)) + 2 × depth(lso(c1, c2))
(5)

Note that depth(lso(c1, c2)) is the “global” depth in the hierarchy; its role as a scaling
factor can be seen more clearly if we recast equation 5 from similarity into distance:

distWP(c1, c2) = 1 − simWP(c1, c2)

= len(c1, lso(c1, c2)) + len(c2, lso(c1, c2))
len(c1, lso(c1, c2)) + len(c2, lso(c1, c2)) + 2 × depth(lso(c1, c2))

(6)

2.5.3 Leacock and Chodorow’s Normalized Path Length. Leacock and Chodorow
(1998) proposed the following formula for computing the scaled semantic similarity
between concepts c1 and c2 in WordNet:

simLC(c1, c2) = − log len(c1, c2)
2 × max

c∈WordNet
depth(c) (7)

Here, the denominator includes the maximum depth of the hierarchy.

4 Sussna’s experiments proved the precise details of the weighting scheme to be material only in
fine-tuning the performance.
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2.6 Information-based and Integrated Approaches

Like the methods in the preceding subsection, the final group of approaches that we
present attempt to counter problems inherent in a general ontology by incorporating an
additional, and qualitatively different, knowledge source, namely information from a
corpus.

2.6.1 Resnik’s Information-based Approach. The key idea underlying Resnik’s (1995)
approach is the intuition that one criterion of similarity between two concepts is “the
extent to which they share information in common”, which in an IS-A taxonomy can
be determined by inspecting the relative position of the most-specific concept that
subsumes them both. This intuition seems to be indirectly captured by edge-counting
methods (such as that of Rada and colleagues; section 2.4 above), in that “if the minimal
path of IS-A links between two nodes is long, that means it is necessary to go high in the
taxonomy, to more abstract concepts, in order to find a least upper bound”. An example
given by Resnik is the difference in the relative positions of the most-specific subsumer
of nickel and dime — coin — and that of nickel and credit card — medium of exchange, as
seen in Figure 1.

In mathematical terms, for any concept c in the taxonomy, let p(c) be the probabil-
ity of encountering an instance of concept c. Following the standard definition from
information theory, the information content of c, IC(c), is then − log p(c). Thus, we can
define the semantic similarity of a pair of concepts c1 and c2, as

simR(c1, c2) = − log p(lso(c1, c2)). (8)

Notice that p is monotonic as one moves up the taxonomy: if c1 IS-A c2 then p(c1) ≤ p(c2).
For example, whenever we encounter a nickel, we have encountered a coin (Figure 1),
so p(nickel) ≤ p(coin). As a consequence, the higher the position of the most-specific
subsumer for given two concepts in the taxonomy (i.e., the more abstract it is), the lower
their similarity. In particular, if the taxonomy has a unique top node, its probability
will be 1, so if the most-specific subsumer of a pair of concepts is the top node, their
similarity will be − log(1) = 0, as desired.

Figure 1
Fragment of the WordNet taxonomy, showing most-specific subsumers of nickel and dime and of
nickel and credit card. Solid lines represent IS-A links; dashed lines indicate that some intervening
nodes have been omitted. Adapted from Resnik (1995).
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In Resnik’s experiments, the probabilities of concepts in the taxonomy were esti-
mated from noun frequencies gathered from the one-million-word Brown Corpus of
American English (Francis and Kučera 1982). The key characteristic of his counting
method is that an individual occurrence of any noun in the corpus “was counted as
an occurrence of each taxonomic class containing it”. For example, an occurrence of
the noun nickel was, in accordance with Figure 1, counted towards the frequency of
nickel, coin, and so forth. Notice that, as a consequence of using raw (non-disambiguated)
data, encountering a polysemous word contributes to the counts of all its senses. So in
the case of nickel, the counts of both the coin and the metal senses will be increased.
Formally,

p(c) =

∑
w∈W(c) count(w)

N (9)

where W(c) is the set of words (nouns) in the corpus whose senses are subsumed by
concept c, and N is the total number of word (noun) tokens in the corpus that are also
present in WordNet.

Thus Resnik’s approach attempts to deal with the problem of varying link distances
(see Section 2.5) by generally downplaying the role of network edges in the determi-
nation of the degree of semantic proximity: Edges are used solely for locating super-
ordinates of a pair of concepts; in particular, the number of links does not figure in any
of the formulas pertaining to the method; and numerical evidence comes from corpus
statistics, which are associated with nodes. This rather selective use of the structure
of the taxonomy has its drawbacks, one of which is the indistinguishability, in terms of
semantic distance, of any two pairs of concepts having the same most-specific subsumer.
For example, in Figure 1, we find that simR(money, credit) = simR(dime, credit card), be-
cause in each case the lso is medium of exchange, whereas, for an edge-based method
such as Leacock and Chodorow’s (Section 2.5.3), clearly this is not so, as the number of
edges in each case is different.

2.6.2 Jiang and Conrath’s Combined Approach. Reacting to the disadvantages of
Resnik’s method, Jiang and Conrath’s (1997) idea was to synthesize edge- and node-
based techniques by restoring network edges to their dominant role in similarity com-
putations, and using corpus statistics as a secondary, corrective factor. A complete
exegesis of their work is presented by Budanitsky (1999); here we summarize only their
conclusions.

In the framework of the IS-A hierarchy, Jiang and Conrath postulated that the
semantic distance of the link connecting a child-concept c to its parent-concept par(c)
is proportional to the conditional probability p(c | par(c)) of encountering an instance of
c given an instance of par(c). More specifically,

distJC(c, par(c)) = − log p(c | par(c)) (10)

By definition,

p(c | par(c)) =
p(c&par(c))

p(par(c)) (11)
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If we adopt Resnik’s scheme for assigning probabilities to concepts (Section 2.6.1),
then p(c&par(c)) = p(c), since any instance of a child is automatically an instance of
its parent. Then,

p(c|par(c)) =
p(c)

p(par(c)) (12)

and, recalling the definition of information content,

distJC(c, par(c)) = IC(c) − IC(par(c)) (13)

Given this as the measure of semantic distance from a node to its immediate parent,
the semantic distance between an arbitrary pair of nodes was taken, as per common
practice, to be the sum of the distances along the shortest path that connects the nodes:

distJC(c1, c2) =
∑

c∈Path(c1,c2 )�lso(c1,c2 )

distJC(c, par(c)) (14)

where Path(c1, c2) is the set of all the nodes in the shortest path from c1 to c2. The node
lso(c1, c2) is removed from Path(c1, c2) in (14)), because it has no parent in the set. Ex-
panding the sum in the right-hand side of equation (14), plugging in the expression for
parent–child distance from equation (13), and performing necessary eliminations results
in the following final formula for the semantic distance between concepts c1 and c2:

distJC(c1, c2) = IC(c1) + IC(c2) − 2 × IC(lso(c1, c2)) (15)

= 2 log p(lso(c1, c2)) − (log p(c1) + log p(c2)) (16)

2.6.3 Lin’s Universal Similarity Measure. Noticing that all of the similarity measures
known to him were tied to a particular application, domain, or resource, Lin (1998b)
attempted to define a measure of similarity that would be both universal (applicable
to arbitrary objects and “not presuming any form of knowledge representation”) and
theoretically justified (“derived from a set of assumptions”, instead of “directly by a
formula”, so that “if the assumptions are deemed reasonable, the similarity measure
necessarily follows”). He used the following three intuitions as a basis:

1. The similarity between arbitrary objects A and B is related to their
commonality; the more commonality they share, the more similar they are.

2. The similarity between A and B is related to the differences between them;
the more differences they have, the less similar they are.

3. The maximum similarity between A and B is reached when A and B are
identical, no matter how much commonality they share.

Lin defined the commonality between A and B as the information content of “the
proposition that states the commonalities” between them, formally

IC(comm(A, B)) (17)
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and the difference between A and B as

IC(descr(A, B)) − IC(comm(A, B)) (18)

where descr(A, B) is a proposition describing what A and B are.
Given these assumptions and definitions and the apparatus of information theory,

Lin proved the following:

Similarity Theorem: The similarity between A and B is measured by the ratio between
the amount of information needed to state their commonality and the information
needed to fully describe what they are:

simL(A, B) =
log p(comm(A, B))
log p(descr(A, B)) (19)

His measure of similarity between two concepts in a taxonomy is a corollary of this
theorem:

simL(c1, c2) =
2 × log p(lso(c1, c2))
log p(c1) + log p(c2) (20)

where the probabilities p(c) are determined in a manner analogous to Resnik’s p(c)
(equation (9)).

3. Evaluation Methods

How can we reason about and evaluate computational measures of semantic related-
ness? Three kinds of approaches are prevalent in the literature.

The first kind (Wei 1993; Lin 1998b) is a (chiefly) theoretical examination of a pro-
posed measure for those mathematical properties thought desirable, such as whether
it is a metric (or the inverse of a metric), whether it has singularities, whether its
parameter-projections are smooth functions, and so on. In our opinion, such analyses
act at best as a coarse filter in the comparison of a set of measures and an even coarser
one in the assessment of a single measure.

The second kind of evaluation is comparison with human judgments. Insofar as
human judgments of similarity and relatedness are deemed to be correct by definition,
this clearly gives the best assessment of the “goodness” of a measure. Its main drawback
lies in the difficulty of obtaining a large set of reliable, subject-independent judgments
for comparison — designing a psycholinguistic experiment, validating its results, and so
on. (In Section 4.1 below, we will employ the rather limited data that such experiments
have obtained to date.)

The third approach is to evaluate the measures with respect to their performance
in the framework of a particular application. If some particular NLP system requires a
measure of semantic relatedness, we can compare different measures by seeing which
one the system is most effective with, while holding all other aspects of the system
constant.

In the remainder of this paper, we will use the second and the third methods
to compare several different measures (Sections 4 and 5 respectively). We focus on
measures that use WordNet (Fellbaum 1998) as their knowledge source (to keep
that as a constant) and that permit straightforward implementation as functions in a
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programming language. Therefore, we select the following five measures: Hirst and
St-Onge’s (Section 2.4), Jiang and Conrath’s (Section 2.6.2), Leacock and Chodorow’s
(Section 2.5.3), Lin’s (Section 2.6.3), and Resnik’s (Section 2.6.1).5 The first is claimed as
a measure of semantic relatedness because it uses all noun relations in WordNet; the
others are claimed only as measures of similarity because they use only the hyponymy
relation. We implemented each measure, and used the Brown Corpus as the basis for
the frequency counts needed in the information-based approaches.6

4. Comparison with Human Ratings of Semantic Relatedness

In this section we compare the five chosen measures by how well they reflect human
judgments of semantic relatedness. In addition, we will use the data that we obtain
in this section to set closeness thresholds for the application-based evaluation of each
measure in Section 5.

4.1 Data

As part of an investigation into “the relationship between similarity of context and
similarity of meaning (synonymy)”, Rubenstein and Goodenough (1965) obtained
“synonymy judgements” from 51 human subjects on 65 pairs of words. The pairs
ranged from “highly synonymous” to “semantically unrelated”, and the subjects were
asked to rate them, on the scale of 0.0 to 4.0, according to their “similarity of mean-
ing” (see Table 1, columns 2 and 3). For a similar study, Miller and Charles (1991)
chose 30 pairs from the original 65, taking 10 from the “high level (between 3 and
4. . . ), 10 from the intermediate level (between 1 and 3), and 10 from the low level
(0 to 1) of semantic similarity”, and then obtained similarity judgments from 38 sub-
jects, given the same instructions as above, on those 30 pairs (see Table 2, columns 2
and 3).7

4.2 Method

For each of our five implemented measures, we obtained similarity or relatedness scores
for the human-rated pairs. Where either or both of the words had more than one synset
in WordNet, we took the most-related pair of synsets. For the measures of Resnik, Jiang
and Conrath, and Lin, this replicates and extends a study by each of the original authors
of their own measure.

5 We also attempted to implement Sussna’s (1993, 1997) measure (Section 2.5.1), but ran into problems
because a key element depended closely on the particulars of an earlier version of WordNet; see
(Budanitsky 1999) for details. We did not include Wu and Palmer’s measure (Section 2.5.2) because Lin
(1998b) has shown it to be a special case of his measure in which all child–parent probabilities are equal.

6 In their original experiments, Lin and Jiang and Conrath used SemCor, a sense-tagged subset of the
Brown Corpus, as their empirical data; but we decided to follow Resnik in using the full and untagged
corpus. While this means trading accuracy for size, we believe that using a non-disambiguated corpus
constitutes a more-general approach, as the availability and size of disambiguated texts such as SemCor
is highly limited.

7 As a result of a typographical error that occurred in the course of either Miller and Charles’s actual
experiments or in its publication, the Rubenstein–Goodenough pair cord–smile became chord–smile.
Probably because of the comparable degree of (dis)similarity, the error was not discovered and the
latter pair has been used in all subsequent work.
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Table 1
Human and computer ratings of the Rubenstein–Goodenough set of word pairs (part 1 of 2).

# Pair Humans relHS distJC simLC simL simR

1 cord smile 0.02 0 19.6 1.38 0.09 1.17
2 rooster voyage 0.04 0 26.9 0.91 0.00 0.00
3 noon string 0.04 0 22.6 1.50 0.00 0.00
4 fruit furnace 0.05 0 18.5 2.28 0.14 1.85
5 autograph shore 0.06 0 22.7 1.38 0.00 0.00
6 automobile wizard 0.11 0 17.8 1.50 0.09 0.97
7 mound stove 0.14 0 17.2 2.28 0.22 2.90
8 grin implement 0.18 0 16.6 1.28 0.00 0.00
9 asylum fruit 0.19 0 19.5 2.28 0.14 1.85

10 asylum monk 0.39 0 25.6 1.62 0.07 0.97
11 graveyard madhouse 0.42 0 29.7 1.18 0.00 0.00
12 glass magician 0.44 0 22.8 1.91 0.07 0.97
13 boy rooster 0.44 0 17.8 1.50 0.21 2.38
14 cushion jewel 0.45 0 22.9 2.28 0.13 1.85
15 monk slave 0.57 94 18.9 2.76 0.21 2.53
16 asylum cemetery 0.79 0 28.1 1.50 0.00 0.00
17 coast forest 0.85 0 20.2 2.28 0.12 1.50
18 grin lad 0.88 0 20.8 1.28 0.00 0.00
19 shore woodland 0.90 93 19.3 2.50 0.13 1.50
20 monk oracle 0.91 0 22.7 2.08 0.18 2.53
21 boy sage 0.96 93 19.9 2.50 0.20 2.53
22 automobile cushion 0.97 98 15.0 2.08 0.27 2.90
23 mound shore 0.97 91 12.4 2.76 0.49 6.19
24 lad wizard 0.99 94 16.5 2.76 0.23 2.53
25 forest graveyard 1.00 0 24.5 1.76 0.00 0.00
26 food rooster 1.09 0 17.4 1.38 0.10 0.97
27 cemetery woodland 1.18 0 25.0 1.76 0.00 0.00
28 shore voyage 1.22 0 23.7 1.38 0.00 0.00
29 bird woodland 1.24 0 18.1 2.08 0.13 1.50
30 coast hill 1.26 94 10.8 2.76 0.53 6.19
31 furnace implement 1.37 93 15.8 2.50 0.18 1.85
32 crane rooster 1.41 0 12.8 2.08 0.58 8.88
33 hill woodland 1.48 93 18.2 2.50 0.14 1.50
34 car journey 1.55 0 16.3 1.28 0.00 0.00
35 cemetery mound 1.69 0 23.8 1.91 0.00 0.00
36 glass jewel 1.78 0 22.0 2.08 0.14 1.85
37 magician oracle 1.82 98 1.0 3.50 0.96 13.58
38 crane implement 2.37 94 15.6 2.76 0.27 2.90
39 brother lad 2.41 94 16.3 2.76 0.23 2.53
40 sage wizard 2.46 93 22.8 2.50 0.18 2.53
41 oracle sage 2.61 0 26.2 2.08 0.16 2.53
42 bird crane 2.63 97 7.4 3.08 0.70 8.88
43 bird cock 2.63 150 5.4 4.08 0.76 8.88
44 food fruit 2.69 0 10.2 2.28 0.22 1.50
45 brother monk 2.74 93 19.2 2.50 0.20 2.53
46 asylum madhouse 3.04 150 0.2 4.08 0.99 15.70
47 furnace stove 3.11 0 20.5 2.08 0.13 1.85
48 magician wizard 3.21 200 0.00 5.08 1.00 13.58
49 hill mound 3.29 200 0.00 5.08 1.00 12.08
50 cord string 3.41 150 2.2 4.08 0.89 9.25
51 glass tumbler 3.45 150 5.9 4.08 0.79 11.34
52 grin smile 3.46 200 0.0 5.08 1.00 10.41
53 serf slave 3.46 0 19.8 2.28 0.34 5.28
54 journey voyage 3.58 150 5.2 4.08 0.74 7.71
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Table 1
(cont.)

# Pair Humans relHS distJC simLC simL simR

55 autograph signature 3.59 150 2.4 4.08 0.92 14.29
56 coast shore 3.60 150 0.8 4.08 0.96 11.12
57 forest woodland 3.65 200 0.0 5.08 1.00 11.23
58 implement tool 3.66 150 1.1 4.08 0.91 6.20
59 cock rooster 3.68 200 0.0 5.08 1.00 14.29
60 boy lad 3.82 150 5.3 4.08 0.72 8.29
61 cushion pillow 3.84 150 0.7 4.08 0.97 13.58
62 cemetery graveyard 3.88 200 0.0 5.08 1.00 13.76
63 automobile car 3.92 200 0.0 5.08 1.00 8.62
64 midday noon 3.94 200 0.0 5.08 1.00 15.96
65 gem jewel 3.94 200 0.0 5.08 1.00 14.38

4.3 Results

The mean ratings from Rubenstein and Goodenough’s and Miller and Charles’s original
experiments (labeled ‘Humans’) and the ratings of the Rubenstein–Goodenough and
Miller–Charles word pairs produced by (our implementations of) the Hirst–St-Onge,
Jiang–Conrath, Leacock–Chodorow, Lin, and Resnik measures of relatedness are given
in Tables 1 and 2, and in Figures 2 and 3.8

4.4 Discussion

When comparing two sets of ratings, we are interested in the strength of the linear asso-
ciation between two quantitative variables, so we follow Resnik (1995) in summarizing
the comparison results by means of the coefficient of correlation of each computational
measure with the human ratings; see Table 3. (For Jiang and Conrath’s measure, the
coefficients are negative because their measure returns distance rather than similarity;
so for convenience, we show absolute values in the table.)9

4.4.1 Comparison to Upper Bound. To get an idea of the upper bound on perfor-
mance of a computational measure, we can again refer to human performance. We
have such an upper bound for the Miller and Charles word pairs (but not for the
complete set of Rubenstein and Goodenough pairs): Resnik (1995) replicated Miller and

8 We have kept the original orderings of the pairs: from dissimilar to similar for the Rubenstein–
Goodenough data and from similar to dissimilar for Miller–Charles. This explains why the two groups
of graphs (Figures 2 and 3) as wholes have the opposite directions. Notice that because distJC measures
distance, the Jiang–Conrath plot has a slope opposite to the rest of each group.

9 Resnik (1995), Jiang and Conrath (1997), and Lin (1998b) report the coefficients of correlation between
their measures and the Miller–Charles ratings to be 0.7911, 0.8282, and 0.8339, respectively, which differ
slightly from the corresponding figures in Table 3. These discrepancies can be explained by possible
minor differences in implementation (e.g., the compound-word recognition mechanism used in collecting
the frequency data), differences between the versions of WordNet used in the experiments (Resnik), and
differences in the corpora used to obtain the frequency data (Jiang and Conrath, Lin). Also, the
coefficients reported by Resnik and Lin are actually based on only 28 out of the 30 Miller–Charles pairs
because of a noun missing from an earlier version of WordNet. Jarmasz and Szpakowicz (2003) repeated
the experiment, obtaining similar results to ours in some cases and markedly different results in others; in
their experiment, the correlations obtained with their measure that uses the hierarchy of Roget’s Thesaurus
exceeded those of all the WordNet measures.
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Table 2
Human and computer ratings of the Miller–Charles set of word pairs.

# Pair Humans relHS distJC simLC simL simR

1 car automobile 3.92 200 0.0 5.08 1.00 8.62
2 gem jewel 3.84 200 0.0 5.08 1.00 14.38
3 journey voyage 3.84 150 5.2 4.08 0.74 7.71
4 boy lad 3.76 150 5.3 4.08 0.72 8.29
5 coast shore 3.70 150 0.9 4.08 0.96 11.12
6 asylum madhouse 3.61 150 0.2 4.08 0.99 15.70
7 magician wizard 3.50 200 0.0 5.08 1.00 13.58
8 midday noon 3.42 200 0.0 5.08 1.00 15.96
9 furnace stove 3.11 0 20.5 2.08 0.13 1.85

10 food fruit 3.08 0 10.2 2.28 0.22 1.50
11 bird cock 3.05 150 5.4 4.08 0.76 8.88
12 bird crane 2.97 97 7.4 3.08 0.70 8.88
13 tool implement 2.95 150 1.1 4.08 0.91 6.20
14 brother monk 2.82 93 19.2 2.50 0.20 2.53
15 lad brother 1.66 94 16.3 2.76 0.23 2.53
16 crane implement 1.68 94 15.7 2.76 0.27 2.90
17 journey car 1.16 0 16.3 1.28 0.00 0.00
18 monk oracle 1.10 0 22.7 2.08 0.18 2.53
19 cemetery woodland 0.95 0 25.0 1.76 0.00 0.00
20 food rooster 0.89 0 17.4 1.38 0.10 0.97
21 coast hill 0.87 94 10.9 2.76 0.53 6.19
22 forest graveyard 0.84 0 24.6 1.76 0.00 0.00
23 shore woodland 0.63 93 19.3 2.50 0.13 1.50
24 monk slave 0.55 94 18.9 2.76 0.21 2.53
25 coast forest 0.42 0 20.2 2.28 0.12 1.50
26 lad wizard 0.42 94 16.5 2.76 0.23 2.53
27 chord smile 0.13 0 20.2 1.62 0.18 2.23
28 glass magician 0.11 0 22.8 1.91 0.07 0.97
29 rooster voyage 0.08 0 26.9 0.91 0.00 0.00
30 noon string 0.08 0 22.6 1.50 0.00 0.00

Charles’s experiment with 10 subjects and found that the average correlation with the
Miller–Charles mean ratings over his subjects was 0.8848. While the difference between
the (absolute) values of the highest and lowest correlation coefficients in the “M&C”
column of Table 3 is of the order of 0.1, all of the coefficients compare quite favorably
with this estimate of the upper bound; furthermore, the difference diminishes almost
twofold as we consider the larger Rubenstein–Goodenough dataset (column “R&G” of
Table 3).10 In fact, the measures are divided in their reaction to increasing the size of
the dataset: the correlations of relHS, simLC, and simR improve but those of distJC and
simL deteriorate. This division might not be arbitrary: the last two depend on the same
three quantities, log p(c1), log p(c2), and log p(lso(c1, c2)) (see equations (16) and (20)).
(In fact, the coefficient for simR, which depends on only one of the three quantities,
log p(lso(c1, c2)), improves only in the third digit.) However, with the present paucity of
evidence, this connection remains hypothetical.

10 None of the differences in either column are statistically significant at the .05 level.
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4.4.2 Differences in the Performance and Behavior of the Measures. We now examine
the results of each of the measures and the differences between them. To do this, we will
sometimes look at differences in their behavior on individual word pairs.

Looking at the graphs in Figures 2 and 3, we see that the discrete nature of the
Hirst–St-Onge and Leacock–Chodorow measures is much more apparent than that of
the others: i.e., the values that they can take on are just a fixed number of levels. This is,
of course, a result of their being based on the same highly discrete factor: the path length.
As a matter of fact, a more substantial correspondence between the two measures can
be recognized from the graphs and explained in the same way. In each dataset, the
upper portions of the two graphs are identical: namely, the sets of pairs affording the
highest and second-highest values of the two measures (relHS ≥ 150, simLC > 4). This
happens because these sets are composed of WordNet synonym and parent-child pairs,
respectively.11

Further down the Y-axis, we find that for the Miller–Charles data, the two graphs
still follow each other quite closely in the middle region (2.4–3.2 for simLC and 90–100 for
relHS). For the larger set of Rubenstein and Goodenough’s, however, differences appear.
The pair automobile–cushion (#22), for instance, is ranked even with magician–oracle (#37)
by the Hirst–St-Onge measure but far below both magician–oracle (#37) and bird–crane
(#42) by Leacock–Chodorow (and, in fact, by all the other measures). The cause of such
a high ranking in the former case is the following meronymic connection in WordNet:

automobile/. . . /car HAS-A suspension/suspension system (‘a system of springs or shock
absorbers connecting the wheels and axles to the chassis of a wheeled vehicle’)
HAS-A cushion/shock absorber/shock (‘a mechanical damper; absorbs energy of sudden
impulses’).

Since relHS is the only measure that takes meronymy (and other WordNet relations
beyond IS-A) into account, no other measure detected this connection — nor did the hu-
man judges, whose task was to assess similarity, not generic relatedness; see Section 4.1).

Finally, at the bottom portion of these two graphs, the picture becomes very dif-
ferent, because relHS assigns all weakly-related pairs the value of zero. (In fact, it is this
cut-off that we believe to be largely responsible for the relatively low ranking of the
correlation coefficient of the Hirst–St-Onge measure.) In contrast, two other measures,
Resnik’s and Lin’s, behave quite similarly to each other in the low-similarity region. In
particular, their sets of zero-similarity pairs are identical, because the definitions of both
measures include the term log p(lso(c1, c2)), which is zero for the pairs in question.12 For
instance, for the pair rooster–voyage (M&C #29, R&G #2), the synsets rooster and voyage
have different “unique beginners”, and hence their lso — in fact their sole common
subsumer — is the (fake) global root (see Section 2.5.3), which is the only concept
whose probability is 1:

cock/rooster (‘adult male chicken’) IS-A . . . IS-A domestic fowl/. . . /poultry IS-A . . . IS-A
bird IS-A . . . IS-A animal/animate being/. . . /fauna IS-A life form/. . . /living thing (‘any living
entity’) IS-A entity (‘something having concrete existence; living or nonliving’) IS-A
global root,

11 More generally, the inverse image of the second highest value for simLC is a proper subset of that for
relHS, for the latter would also include all the antonym and meronym–holonym pairs. The two datasets
at hand, however, do not contain any instances from these categories.

12 Again (cf. footnote 11), the former set actually constitutes a proper subset of the latter, as simL(c1, c2)
will also be zero if either concept does not occur in the frequency-corpus (see equation (20)). However,
no such instances appear in the data.
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Figure 2
Human and computer ratings of the Rubenstein–Goodenough set of word pairs, with sparse
bands marked (see text). From left to right and top to bottom: The word pairs rated by
(a) Rubenstein and Goodenough’s subjects; (b) by the Hirst–St-Onge similarity measure;
(c) by the Jiang–Conrath distance measure; (d) by the Leacock–Chodorow similarity measure;
(e) by the Lin similarity measure; and (f) by the Resnik similarity measure.
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Figure 3
Human and computer ratings of the Miller–Charles set of word pairs, with sparse bands marked
(see text). From left to right and top to bottom: The word pairs rated by (a) Miller and Charles’s
subjects; (b) by the Hirst–St-Onge similarity measure; (c) by the Jiang–Conrath distance measure;
(d) by the Leacock–Chodorow similarity measure; (e) by the Lin similarity measure; and (f) by
the Resnik similarity measure.
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Table 3
The absolute values of the coefficients of correlation between human ratings of similarity (by
Miller and Charles and by Rubenstein and Goodenough) and the five computational measures.

Measure M&C R&G
—————————————————————
Hirst and St-Onge, relHS .744 .786
Jiang and Conrath, distJC .850 .781
Leacock and Chodorow, simLC .816 .838
Lin, simL .829 .819
Resnik, simR .774 .779

voyage IS-A journey/journeying IS-A travel/. . . /traveling IS-A change of location/. . . /motion IS-A
change (‘the act of changing something’) IS-A action (‘something done (usually as
opposed to something said)’) IS-A act/human action/human activity (‘something that
people do or cause to happen’) IS-A global root.

Analogously, although perhaps somewhat more surprisingly for a human reader, the
same is true of the pair asylum–cemetery (R&G #16):

asylum/insane asylum/. . . /mental hospital IS-A hospital/infirmary IS-A medical building
(‘a building where medicine is practiced’) IS-A building/edifice IS-A . . . IS-A artifact/
artefact (‘a man-made object’) IS-A object/inanimate object/physical object (‘a nonliving
entity’) IS-A entity IS-A global root,

cemetery/graveyard/. . . /necropolis (‘a tract of land used for burials’) IS-A site (‘the piece
of land on which something is located (or is to be located)’) IS-A position/place (‘the
particular portion of space occupied by a physical object’) IS-A . . . IS-A location (‘a point
or extent in space’) IS-A global root.

Looking back at the high-similarity portion of the graphs, but now taking into con-
sideration the other three measures, we can make a couple more observations. First, the
graphs of all of the measures except Resnik’s exhibit a “line” of synonyms (comprising
four points for the Miller–Charles dataset and nine points for Rubenstein–Goodenough)
at the top (bottom for Jiang and Conrath’s measure). In the case of Resnik’s measure,
simR(c, c) = − log p(lso(c, c)) = − log p(c) (see equation (8)), and hence the similarity of
a concept to itself varies from one concept to another. Second, these “lines” are not
continuous, as one might expect from the graphs of the human judgments: For the
Miller–Charles set, for instance, the line includes pairs 1, 2, 7, and 8, but omits pairs
3–6. This peculiarity is due entirely to WordNet, according to which gem and jewel (#2)
and magician and wizard (#7) are synonyms, whereas journey and voyage (#3), boy and lad
(#4), and even asylum and madhouse (#6) are not, but rather are related by IS-A:

voyage (‘a journey to some distant place’) IS-A journey/journeying (‘the act of traveling
from one place to another’),

lad/laddie/cub/sonny/sonny boy (‘a male child (a familiar term of address to a boy)’) IS-A
boy/male child/child (‘a young male person’),

madhouse/nuthouse/. . . /sanatorium (‘pejorative terms for an insane asylum’) IS-A
asylum/insane asylum/. . . /mental hospital (‘a hospital for mentally incompetent or
unbalanced persons’).
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Although, as we saw above, already for two measures the details of their medium-
similarity regions differ, there appears to be an interesting commonality at the level of
general structure: in the vicinity of sim = 2, the plots of human similarity ratings for
both the Miller–Charles and the Rubenstein–Goodenough word pairs display a very
clear horizontal band that contains no points. For the Miller–Charles data (Figure 3),
the band separates the pair crane–implement (#16) from brother–monk (#14),13 and for the
Rubenstein-Goodenough set (Figure 2), it separates magician–oracle (#37) from crane–
implement (#38).

On the graphs of the computed ratings, these empty bands correspond to regions
with at most a few points—no more than two points for the Miller–Charles set and
no more than four for the Rubenstein–Goodenough set. These regions are shown in
Figures 3(b)–(f) and 2(b)–(f). This commonality among the measures suggests that if
we were to partition the set of all word pairs into those that are deemed to be related
and those that are deemed unrelated, the boundary between the two subsets for each
measure (and for the human judgments, for that matter) would lie somewhere within
these regions.

4.4.3 The Limitations of this Analysis. While comparison with human judgments is the
ideal way to evaluate a measure of similarity or semantic relatedness, in practice the tiny
amount of data available (and only for similarity, not relatedness) is quite inadequate.
But constructing a large-enough set of pairs and obtaining human judgments on them
would be a very large task.14

Even more importantly, there are serious methodological problems with this ap-
proach. It was implicit in the Rubenstein–Goodenough and Miller–Charles experiments
that subjects were to use the dominant sense of the target words or mutually triggering
related senses. But often what we are really interested in is the relationship between the
concepts for which the words are merely surrogates; the human judgments that we need
are of the relatedness of word-senses, not words. So the experimental situation would
need to set up contexts that bias the sense selection for each target word and yet don’t
bias the subject’s judgment of their a priori relationship, an almost self-contradictory
situation.15

5. An Application-based Evaluation of Measures of Relatedness

We now turn to a different approach to the evaluation of similarity and relatedness
measures that tries to overcome the problems of comparison to human judgments that
were described in the previous section. Here, we compare the measures through the

13 For some reason, Miller and Charles, while generally ordering their pairs from least to most similar, put
crane–implement (#16) after lad–brother(#15), even though the former was rated more similar.

14 Evgeniy Gabrilovich has recently made available a dataset of similarity judgments of 353 English word
pairs that were used by Finkelstein et al. (2002). Unfortunately, this set is still very small, and, as Jarmasz
and Szpakowicz (2003) point out, is culturally and politically biased. And the scarcely larger set of
synonymy norms for nouns created by Whitten, Suter, and Frank (1979) covers only words with quite
closely related senses, and hence is not useful here either.

15 In their creation of a set of synonymy norms for nouns, Whitten, Suter, and Frank (1979) observed
frequent artifacts stemming from the order of presentation of the stimuli that seem to be due to the
practical impossibility of forcing a context of interpretation in the experimental setting.
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performance of an application that uses them: the detection and correction of real-word
spelling errors in open-class words, i.e., malapropisms.

While malapropism correction is also a useful application in its own right, it is
particularly appropriate for evaluating measures of semantic relatedness. Naturally
occurring coherent texts, by their nature, contain many instances of related pairs of
words (Halliday and Hasan 1976; Morris and Hirst 1991; Hoey 1991; Morris and Hirst
2004). That is, they implicitly contain human judgments of relatedness that we could
use in the evaluation of our relatedness measures. But, of course, we don’t know in
practice just which pairs of words in a text are and aren’t related. We can get around
this problem, however, by deliberately perturbing the coherence of the text — that is,
introduding semantic anomalies such as malapropisms — and looking at the ability of
the different relatedness measures to detect and correct the perturbations.

5.1 Malapropism Detection and Correction as a Testbed

Our malapropism corrector (Hirst and Budanitsky 2005) is based on the idea behind that
of Hirst and St-Onge (1998): Look for semantic anomalies that can be removed by small
changes to spelling.16 Words are (crudely) disambiguated where possible by accepting
senses that are semantically related to possible senses of other nearby words. If all senses
of any open-class, non–stop-list word that occurs only once in the text are found to be
semantically unrelated to accepted senses of all other nearby words, but some sense of
a spelling variation of that word would be related (or is identical to another token in the
context), then it is hypothesized that the original word is an error and the variation is
what the writer intended; a user would be warned of this possibility. For example, if no
nearby word in a text is related to diary but one or more are related to dairy, we suggest
to the user that it is the latter that was intended. The exact window size implied by
“nearby” is a parameter to the algorithm, as is the precise definition of spelling variation;
see Hirst and Budanitsky (2005).

This method makes the following assumptions:

� A real-word spelling error is unlikely to be semantically related to the
text.17

� Frequently, the writer’s intended word will be semantically related to
nearby words.

� It is unlikely that an intended word that is semantically unrelated to all
those nearby will have a spelling variation that is related.

While the performance of the malapropism corrector is inherently limited by these
assumptions, we can nonetheless evaluate measures of semantic relatedness by com-
paring their effect on its performance, as its limitations affect all measures equally.
Regardless of the degree of adequacy of its performance, it is a “level playing field” for

16 Although it shares underlying assumptions, our algorithm differs from that of Hirst and St-Onge in its
mechanisms. In particular, Hirst and St-Onge’s algorithm was based on lexical chains (Morris and Hirst
1991), whereas our algorithm regards regions of text as bags of words.

17 In fact, there is a semantic bias in human typing errors (Fromkin 1980), but not in the malapropism
generator to be described below.
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comparison of the measures. Hirst and Budanitsky (2005) discuss the practical aspects
of the method and compare it with other approaches to the same problem.

5.2 Method

To test the measures in this application, we need a sufficiently large corpus of
malapropisms in their context, each identified and annotated with its correction. Since
no such corpus of naturally occurring malapropisms exists, we created one artificially.
Following Hirst and St-Onge (1998), we took 500 articles from the Wall Street Journal
corpus and, after removing proper nouns and stop-list words from consideration,
replaced one word in every 200 with a spelling variation, choosing always WordNet
nouns with at least one spelling variation.18 For example, in a sentence beginning
To win the case, which was filed shortly after the indictment and is pending in Manhattan
federal court . . . , the word case was replaced by cage. This gave us a corpus with 1,408
malapropisms among 107,233 candidates.19 We then tried to detect and correct the
malapropisms by the algorithm outlined above, using in turn each of the five measures
of semantic relatedness. For each, we used four different search scopes, i.e., window sizes:
just the paragraph containing the target word (scope = 1); that paragraph plus one
or two adjacent paragraphs on each side (scope = 3 and 5); and the complete article
(scope = MAX).

We also needed to set a threshold of “relatedness” for each of the measures. This
is because the malapropism-detection algorithm requires a boolean related–unrelated
judgment, but each of the measures that we tested instead returns a numerical value
of relatedness or similarity, and nothing in the measure (except for the Hirst–St-Onge
measure) indicates which values count as “close”. Moreover, the values from the dif-
ferent measures are incommensurate. We therefore set the threshold of relatedness of
each measure at the value at which it separated the higher level of the Rubenstein–
Goodenough pairs (the near-synonyms) from the lower level, as we described in Sec-
tion 4.4.2.

5.3 Results

Malapropism detection was viewed as a retrieval task and evaluated in terms of preci-
sion, recall, and F-measure. Observe that semantic relatedness is used at two different
places in the algorithm — to judge whether an original word of the text is related to
any nearby word and to judge whether a spelling variation is related — and success in
malapropism detection requires success at both stages. For the first stage, we say that
a word is suspected of being a malapropism (and the word is a suspect) if it is judged
to be unrelated to other words nearby; the word is a correct suspect if it is indeed a
malapropism and a false suspect if it isn’t. At the second stage, we say that, given a
suspect, an alarm is raised when a spelling variation of the suspect is judged to be
related to a nearby word or words; and if an alarm word is a malapropism, we say
that the alarm is a true alarm and that the malapropism has been detected; otherwise,
it is a false alarm. Then we can define precision (P), recall (R), and F-measure (F) for

18 Articles too small to warrant such a replacement (19 in total) were excluded from further consideration.
19 We assume that the original Wall Street Journal, being carefully edited text, contains essentially no

malapropisms of its own.

34



Budanitsky and Hirst Lexical Semantic Relatedness

suspicion (S), involving only the first stage, and detection (D), involving both stages,
as follows:

Suspicion:

PS =
number of correct suspects

number of suspects (21)

RS =
number of correct suspects

number of malapropisms in text (22)

FS = 2 × PS × RS
PS + RS

(23)

Detection:

PD = number of true alarms
number of alarms (24)

RD = number of true alarms
number of malapropisms in text (25)

FD = 2 × PD × RD
PD + RD

(26)

The precision, recall, and F values are computed as the mean values of these
statistics across our collection of 481 articles, which constitute a random sample from
the population of all WSJ articles. All the comparisons that we make below, except
for comparisons to baseline, are performed with the Bonferroni multiple-comparison
technique (Agresti and Finlay 1997), with an overall significance level of .05.

5.3.1 Suspicion. We look first at the results for suspicion — just identifying words that
have no semantically related word nearby. Obviously, the chance of finding some word
that is judged to be related to the target word will increase with the size of the scope of
the search (with a large enough scope, e.g., a complete book, we would probably find
a relative for just about any word). So we expect recall to decrease as scope increases,
because some relationships will be found even for malapropisms (i.e., there will be more
false negatives). But we expect that precision will increase with scope, as it becomes
more likely that (genuine) relationships will be found for non-malapropisms (i.e., there
will be fewer false positives), and this factor will outweigh the decrease in the overall
number of suspects found.

Table 4 and Figure 4 show suspicion precision, recall, and F for each of the 5 × 4
combinations of measure and scope. The values of precision range from 3.3% (Resnik,
scope = 1) to 11% (Jiang–Conrath, scope = MAX), with a mean of 6.2%, increasing with
scope, as expected, for all measures except Hirst–St-Onge. More specifically, differences
in precision are statistically significant for the difference between scope = 5 and scope =
MAX for Leacock–Chodorow and between 1 and larger scopes for Lin, Resnik, and
Jiang–Conrath; there are no significant differences for Hirst–St-Onge, which hence ap-
pears flat overall. The values of recall range from just under 6% (Hirst–St-Onge, scope =
MAX) to more than 72% (Resnik, scope = 1), with a mean of 39.7%, decreasing with
scope, as expected. All differences in recall are statistically significant, except between
scope = 3 and scope = 5 for all measures other than Resnik’s. F ranges from 5% (Hirst–
St-Onge, scope = MAX) to 14% (Jiang–Conrath, scope = 5), with a mean of just under
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Table 4
Precision (PS), recall (RS), and F-measure (FS) for malapropism suspicion with five measures of
semantic relatedness, varying the scope of the search for related words to 1, 3, or 5 paragraphs
or the complete news article (MAX).

Measure Scope PS RS FS——————————————————————
Hirst–St-Onge 1 .056 .298 .091

3 .067 .159 .089
5 .069 .114 .079
MAX .051 .059 .049

Jiang–Conrath 1 .064 .536 .112
3 .086 .383 .135
5 .097 .326 .141
MAX .111 .233 .137

Leacock–Chodorow 1 .042 .702 .079
3 .052 .535 .094
5 .058 .463 .101
MAX .073 .356 .115

Lin 1 .047 .579 .086
3 .062 .421 .105
5 .067 .350 .110
MAX .078 .253 .110

Resnik 1 .033 .727 .063
3 .038 .589 .070
5 .039 .490 .072
MAX .043 .366 .075

10%. Even though values at the lower ends of these ranges appear small, they are
still significantly (p < .001) better than chance, for which precision, recall, and F are
all 1.29%. Moreover, the value for precision is inherently limited by the likelihood
that, especially for small search scopes, there will be words other than our deliberate
malapropisms that are genuinely unrelated to all others in the scope.

Because it combines recall and precision, we focused on the results for FS by
measure and scope to determine whether the performance of the five measures was
significantly different and whether scope of search for relatedness made a significant
difference.

Scope differences. For Jiang–Conrath and Resnik, the analysis confirms only that
these methods perform significantly better with scope 5 than scope 1; for Lin, that
scope 3 is significantly better than scope 1; for Leacock–Chodorow, that 3 is significantly
better than 1 and MAX better than 3; and for Hirst–St-Onge, that MAX is significantly
worse than 3. (From the standpoint of simple detection of unrelatedness (suspicion in
malapropism detection), these data point to overall optimality of scopes 3 or 5.)

Differences between measures. Jiang–Conrath significantly outperforms the others in
all scopes (except for Leacock–Chodorow and Lin at scope MAX, where it does better
but not significantly so), followed by Lin and Leacock–Chodorow (whose performances
are not significantly different from each other), in turn followed by Resnik. Hirst–St-
Onge, with its irregular behavior, performs close to Lin and Leacock–Chodorow for
scopes 1 and 3 but falls behind as the scope size increases, finishing worst for scope MAX.
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Figure 4
Precision (PS), recall (RS), and F-measure (FS) for malapropism suspicion by measure and scope.
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Thus the Jiang–Conrath measure does best for the suspicion phase (and is optimal with
scope = 5).

5.3.2 Detection. We now turn to the results for malapropism detection. During the
detection phase, the suspects are winnowed by checking the spelling variations of each
for relatedness to their context. Since (true) alarms can only result from (true) suspects,
recall can only decrease (or, more precisely, not increase) from that for suspicion (cf.
equations (22) and (25)). However, if a given measure of semantic relatedness is good,
we expect the proportion of false alarms to reduce more considerably — far fewer false
suspects will become alarms than correct suspects — thus resulting in higher precision
for detection than for suspicion (cf. Equations 21 and 24).

Table 5 and Figure 5 show precision, recall, and F for each of the 5 × 4 measure–
scope combinations, determined by the same method as those for suspicion. The
values of recall range from 5.9% (Hirst–St-Onge, scope = MAX) to over 60% (Leacock–
Chodorow, scope = 1). While these values are, as expected, lower than those for suspi-
cion recall — RD for each measure–scope combination is from 1 to 16 percentage points
lower than the corresponding RS — the decline is statistically significant for only 3
out of the 20 combinations.

The values of precision range from 6.7% (Hirst–St-Onge, scope = MAX) to just under
25% (Jiang–Conrath, scope = MAX), increasing, as expected, from suspicion precision;
each combination increases from 1 to 14 percentage points; the increase is statistically
significant for 18 out of the 20 combinations. Moreover, the increase in precision out-
weighs the decline in recall, and thus F, which ranges from 6% to 25%, increases by 7.6%
on average; the increase is significant for 17 out of the 20 combinations. Again, even the

Table 5
Precision (PD), recall (RD), and F-measure (FD) for malapropism detection with five measures of
semantic relatedness, varying the scope of the search for related words to 1, 3, or 5 paragraphs
or the complete news article (MAX).

Measure Scope PD RD FD——————————————————————
Hirst–St-Onge 1 .105 .286 .145

3 .107 .159 .117
5 .101 .114 .096
MAX .067 .059 .056

Jiang–Conrath 1 .184 .498 .254
3 .205 .372 .245
5 .219 .322 .243
MAX .247 .231 .211

Leacock–Chodorow 1 .111 .609 .184
3 .115 .499 .180
5 .118 .440 .178
MAX .132 .338 .177

Lin 1 .125 .514 .195
3 .145 .398 .201
5 .150 .335 .197
MAX .168 .242 .176

Resnik 1 .088 .562 .150
3 .087 .512 .146
5 .088 .454 .145
MAX .093 .344 .140
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Figure 5
Precision (PD), recall (RD), and F-measure (FD) for malapropism detection by measure and scope.
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lower ends of the precision, recall, and F ranges are significantly (p < .001) better than
chance (which again is 1.29% for each), and the highest results are quite good (e.g.,
18% precision, 50% recall for Jiang–Conrath at scope = 1, which had the highest FD,
though not the highest precision or recall), despite the fact that the method is inherently
limited in the ways described earlier (Section 5.1). (See Hirst and Budanitsky (2005) for
discussion of the practical usefulness of the method.)

Scope differences. Our analysis of scope differences in F shows a somewhat different
picture for detection from that for suspicion: There are significant differences between
scopes only for the Hirst–St-Onge measure. The F graphs of the other four methods thus
are not significantly different from being flat — that is, scope doesn’t affect the results.
(Hence we can choose 1 as the optimal scope, since it involves the least amount of work,
and Jiang and Conrath’s method with scope = 1 as the optimal parameter combination
for the malapropism detector.)

Differences between measures. The relative position of each measure’s precision,
recall, and F graphs for detection appears identical to that for suspicion, except for
the precision and F graphs for Hirst–St-Onge, which slide further down. Statistical
testing for F confirms this, with Jiang–Conrath leading, followed by Lin and Leacock–
Chodorow together, Resnik, and then Hirst–St-Onge.

5.4 Interpretation of the Results

In our interpretation, we focus largely on the results for suspicion; those for detection
both add to the pool of relatedness judgments on which we draw and corroborate what
we observe for suspicion.

The Resnik measure’s comparatively poor precision and good recall suggest that the
measure simply marks too many words as potential malapropisms—it “under-relates”,
being far too conservative in its judgments of relatedness. For example, it was the only
measure that flagged crowd as a suspect in a context in which all the other measures
found it to be related to house: crowd IS-A gathering / assemblage SUBSUMES house /
household / family / menage.20 Indeed, for every scope, Resnik’s measure generates more
suspects than any other measure—e.g., an average of 62.5 per article for scope = 1,
compared to a range of 15 to 47, with an average of 37, for the other measures. The
Leacock–Chodorow measure’s superior precision and comparable recall (the former
difference is statistically significant, the latter is not), which result in a statistically-
significantly better F-value, indicate its better ability at discerning relatedness.

The same comparison can be made between the Jiang–Conrath and Lin measures.
Even though both use the same information-content–based components, albeit in differ-
ent arithmetic combinations, and show similar recall, the Jiang–Conrath measure shows
superior precision and is best overall (see above). The Lin and Leacock–Chodorow
measures, in turn, have statistically indistinguishable values of F and hence similar
ratios of errors to true positives.

Finally, the steady downward slope that distinguishes the F-graph of Hirst–St-Onge
from those of the other four measures in Figure 4 evidently reflects the corresponding

20 It is debatable whether this metonymic sense of house should appear in WordNet at all, though given that
it does, its relationship to crowd follows, and, as it happens, this sense was the correct one in the context
for this particular case.
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difference in precision behavior: The Hirst–St-Onge suspicion precision graph is statis-
tically flat, unlike the others. Ironically, given that this measure is the only one of the
five that promises the semantic relatedness that we want rather than mere similarity,
this poor performance appears to be a result of the measure’s “over-relating” — it is
far too promiscuous in its judgments of relatedness. For example, it was the only
measure that considered cation (a malapropism for nation) to be related to group:
cation IS-A ion IS-A atom PART-OF molecule HAS-A group / radical (‘two or more atoms
bound together as a single unit and forming part of a molecule’). Because of its
promiscuity, the Hirst–St-Onge measure’s mean number of suspects for scope = 1 is
15.07, well below the average, and moreover it drops to one-ninth of that, 1.75, at
scope = MAX; the number of articles without a single suspect grows from 1 to 93. By
comparison, for the other measures, the number of suspects drops only to around a
third or a quarter from scope = 1 to scope = MAX, and the number of articles with no
suspect stays at 1 for both Leacock–Chodorow and Resnik and increases only from 1 to
4 for Lin and from 1 to 12 for Jiang–Conrath.

6. Related Work

6.1 Other Applications of WordNet-based Measures

Since the first publication of the initial results of this work (Budanitsky and Hirst 2001),
Pedersen and his colleagues (Pedersen, Patwardhan, and Michelizzi 2004) have made
available a Perl implementation of the five WordNet-based measures (plus Wu and
Palmer’s and their own; see below) that has been used by a number of researchers in
published work on other NLP applications. Generally, these results are consistent with
our own. For example, Stevenson and Greenwood (2005) found Jiang–Conrath to be the
best measure (out of “several”, which they do not list) for their task of pattern induction
for information extraction. Similarly, Kohomban and Lee (2005) found Jiang–Conrath
the best (out of “various schemes”, which they do not list) for their task of learning
coarse-grained semantic classes. In word-sense disambiguation, Patwardhan, Banerjee,
and Pedersen (2003) found Jiang–Conrath to be clearly the best of the five measures
evaluated here, albeit edged out by their own new “Lesk” measure based on gloss
overlaps;21 and McCarthy et al. (2004) found that the Jiang–Conrath and Lesk measures
gave the best accuracy in their task of finding predominant word senses, with the results
of the two being “comparable” but Jiang–Conrath being far more efficient. On the other
hand, Corley and Mihalcea (2005) found little difference between the measures when
using them in an algorithm for computing text similarity.

6.2 Measures of Distributional Similarity as Proxies for Measures
of Semantic Relatedness

In Section 1.1, we mentioned that the lexical semantic relatedness or similarity that
we have dealt with in this paper is a notion distinct from that of lexical distributional

21 Patwardhan et al.’s measure is based on the idea, originally due to Lesk (1986), of measuring the degree
of relatedness of two words by the number of string overlaps in their dictionary definitions or glosses.
Patwardhan et al. extend this idea by also including overlaps with definitions of words that are one
WordNet edge away from the comparison words. It is thus a hybrid method, with characteristics of
both dictionary-based and network-based methods (see Sections 2.1 and 2.3 above).
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or co-occurrence similarity. However, a number of researchers, such as Dagan (2000),
have promoted the hypothesis that distributional similarity can act as a useful proxy
for semantic relatedness in many applications because it is based on corpus-derived
data rather than manually created lexical resources; indeed, it could perhaps be used
to automatically create (first-draft) lexical resources (Grefenstette 1994). It is therefore
natural to ask how distributional-similarity measures compare with the WordNet-based
measures that we have looked at above.

Formally, by distributional similarity (or co-occurrence similarity) of two words
w1 and w2, we mean that they tend to occur in similar contexts, for some definition of
context; or that the set of words that w1 tends to co-occur with is similar to the set that
w2 tends to co-occur with; or that if w1 is substituted for w2 in a context, its “plausibility”
(Weeds 2003; Weeds and Weir 2005) is unchanged. The context considered may be a
small or large window around the word, or an entire document; or it may be a syntactic
relationship. For example, Weeds (2003; Weeds and Weir, 2005) (see below) took verbs
as contexts for nouns in object position: so they regarded two nouns to be similar to
the extent that they occur as direct objects of the same set of verbs. Lin (1998b, 1998a)
considered other syntactic relationships as well, such as subject–verb and modifier–
noun, and looked at both roles in the relationship.

Given this framework, many different methods of measuring distributional similar-
ity have been proposed; see Dagan (2000), Weeds (2003), or Mohammad and Hirst (2005)
for a review. For example, the set of words that co-occur with w1 and those that co-occur
with w2 may be regarded as a feature vector of each and their similarity measured as
the cosine between the vectors; or a measure may be based on the Kullback–Leibler di-
vergence between the probability distributions P(w |w1) and P(w |w2), as, for example,
Lee’s (1999) α-skew divergence. Lin (1998b) uses his similarity theorem (equation (19)
above) to derive a measure based on the degree of overlap of the sets of words with
which w1 and w2, respectively, have positive mutual information.22

Words that are distributionally similar do indeed often represent semantically re-
lated concepts, and vice versa, as the following examples demonstrate. Weeds (2003),
in her study of 15 distributional-similarity measures, found that words distributionally
similar to hope (noun) included confidence, dream, feeling, and desire; Lin (1998b) found
pairs such as earnings–profit, biggest–largest, nylon–silk, and pill–tablet. It is intuitively
clear why these results occur: if two concepts are similar or related, it is likely that
their role in the world will be similar, so similar things will be said about them, and so
the contexts of occurrence of the corresponding words will be similar. And conversely
(albeit with less certainty), if the contexts of occurrence of two words are similar, then
similar things are being said about each, so they are playing similar roles in the world
and hence are semantically similar — at least to the extent of these roles. Nonetheless,
the limitations of this observation will become clear in our discussion below.

Three differences between semantic relatedness and distributional similarity are
immediately apparent. First, while semantic relatedness is inherently a relation on con-
cepts, as we emphasized in Section 1.1, distributional similarity is a (corpus-dependent)
relation on words. In theory, of course, if one had a large-enough sense-tagged corpus,
one could derive distributional similarities of word-senses. But in practice, apart from
the lack of such corpora, distributional similarities are promoted exactly for applications

22 Do not confound Lin’s distributional similarity measure with his semantic relatedness measure, simL,
which has been discussed in earlier sections of this paper; but observe that both are derived from the
same theorem.
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such as various kinds of ambiguity resolution in which it is words rather than senses
that are available (see Weeds (2003) for an extensive list).

Second, whereas semantic relatedness is symmetric, distributional similarity is a
potentially asymmetrical relationship. If distributional similarity is conceived of as
substitutability, as Weeds and Weir (2005) and Lee (1999) emphasize, then asymme-
tries arise when one word appears in a subset of the contexts in which the other
appears; for example, the adjectives that typically modify apple are a subset of those that
modify fruit, so fruit substitutes for apple better than apple substitutes for fruit. While
some distributional similarity measures, such as cosine, are symmetric, many, such as
α-skew divergence and the co-occurrence retrieval models developed by Weeds and
Weir, are not. But this is simply not an adequate model of semantic relatedness, for
which substitutability is far too strict a requirement: window and house are semantically
related, but they are not plausibly substitutable in most contexts.

Third, lexical semantic relatedness depends on a pre-defined lexicographic or other
knowledge resource, whereas distributional similarity is relative to a corpus. In each
case, matching the measures to the resource is a research problem in itself, as this
paper and Weeds (2003) show, and anomalies can arise.23 But the knowledge source
for semantic relatedness is created by humans and may be presumed to be (in a weak
sense) “true, unbiased, and complete”. A corpus, on the other hand, is not. Imbalance
in the corpus and data sparseness is an additional source of anomalous results even
for “good” measures. For example, Lin (1998b) found “peculiar” similarities that were
“reasonable” for his corpus of news articles, such as captive–westerner (because in the
news articles, more than half of the “westerners” mentioned were being held captive)
and audition–rite (because both were infrequent and were modified by uninhibited).

We now turn to the hypothesis that distributional similarity can usefully stand in for
semantic relatedness in NLP applications such as malapropism detection. Weeds (2003)
considered the hypothesis in detail. She carried out a number of experiments using data
gathered from the British National Corpus on the distribution of a set of 2000 nouns
with respect to the verbs of which they were direct objects, comparing a large number
of proposed measures of distributional similarity. She applied ten of these measures to
the Miller and Charles word-pairs (see Section 4.1 above); the absolute values of the
correlations with the Miller and Charles human judgments was at best .62 (and at worst
.26), compared with .74 to .85 for the semantic measures (Table 3 above). Weeds also
compared these measures on their ability to predict the k words that are semantically
closest to a target word in WordNet, as measured by Lin’s semantic similarity measure,
simL. She found performance to be “generally fairly poor” (page 162), and undermined
by the effects of varying word frequencies.

Last, Weeds experimented with distributional measures in real-word spelling cor-
rection, much as we have defined it in Hirst and Budanitsky (2005) and in Section 5.1
above, but replacing the semantic relatedness measures with distributional similarity
measures. However, she varied the experimental procedure in a number of ways, with
the consequence that her results are not directly comparable to ours: her test data was
the British National Corpus; scope was measured in words, not paragraphs; and relat-
edness thresholds were replaced by considering the k words most similar to the target
word (and k was a parameter). The most significant difference, however, arose from the

23 We have already remarked in Section 5.4 above on the promiscuity of the Hirst–St-Onge measure
and its tendency to find connections such as cation–group. Similarly, one of the poorer measures that
Weeds experimented with returned this list as the ten words most distributionally similar to hope:
hem, dissatisfaction, dismay, scepticism, concern, outrage, break, warrior, optimism, readiness.
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limitations due to data sparseness that are inherent in methods based on distributional
similarity: the very small size of the set of words that could be corrected. Specifically,
only malapropisms for which both the error and the correction occurred in the set of
2,000 words for which Weeds had distributional data could be considered; and the abil-
ity to detect and correct the malapropism depended on other members of that set also
being within the scope of the target word. It is therefore not surprising that the results
were generally poor (and so were results for simL run under the same conditions). This
severe limitation on the data means that this was not really a fair test of the principles
underlying the hypothesis; a fair test would require data allowing the comparison of
any two nouns (or better still, any two words) in WordNet, but obtaining such data for
less-frequent words (possibly using the Web as the corpus) would be a massive task.

7. Conclusion

Our goal in this paper has been to evaluate resource-based measures of lexical semantic
distance, or, equivalently, semantic relatedness, for use in natural language processing
applications. Most of the work, however, was limited to the narrower notion of mea-
sures of similarity and how well they fill the broader role, because those measures are
what current resources support best and hence what most current research has focused
on. But ultimately it is the more-general idea of relatedness, not just similarity, that we
need for most NLP methods and applications, because the goal, in one form or another,
is to determine whether two smaller or larger pieces of text share a topic or some kind
of closeness in meaning, and this need not depend on the presence of words that denote
similar concepts. In word sense disambiguation, such an association with the context
is frequently a sufficient basis for selecting or rejecting candidate senses (Banerjee
and Pedersen 2003); in our malapropism corrector, a word should be considered non-
anomalous in the context of another if there is any kind of semantic relationship at all
apparent between them. These relationships include not just hyponymy and the non-
hyponymy relationships in WordNet such as meronymy but also associative and ad hoc
relationships. As mentioned in the introduction, these can include just about any kind
of functional relation or frequent association in the world.24

For the last century, many researchers have attempted to enumerate these kinds
of relationships. Some elements from a typical list (that of Spellman, Holyoak, and
Morrison (2001)) are shown in Table 6. Morris and Hirst (2004, 2005) have termed these
non-classical lexical semantic relationships (following Lakoff’s (1987) non-classical cat-
egories), and Morris has shown in experiments with human subjects that around 60%
of the lexical relationships that readers perceive in a text are of this nature (Morris
2006). There is presently no catalogue of instances of these kinds of relationships let
alone any incorporation of such relationships into a quantification of semantic distance.
Nonetheless, there are clear intuitions to be captured here, and this should be a focus
for future research.

But lists of such relationships can never be exhaustive, as lexical relationships can
also arise ad hoc in context (Barsalou 1983, 1989) — in particular, as co-membership
of an ad hoc category. For example, Morris’s subjects reported that the words sex,
drinking, and drag racing were semantically related, by all being “dangerous behaviors”,
in the context of an article about teenagers emulating what they see in movies. Thus

24 Don’t confound “frequent association in the world” with the lexical co-occurrences that underlie the
distributional similarity of Section 6.2.
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Table 6
From Spellman, Holyoak, and Morrison’s (2001) list of associative semantic relations.

Name Example
———————————————–
IS-USED-TO bed–sleep
WORKS-IN judge–court
LIVES-IN camel–desert
IS-THE-OUTSIDE-OF husk–corn

lexical semantic relatedness is sometimes constructed in context and cannot always be
determined purely from an a priori lexical resource such as WordNet.25 It’s very unclear
how ad hoc semantic relationships could be quantified in any meaningful way, let alone
compared with prior quantifications of the classical and non-classical relationships.
However, ad hoc relationships accounted for only a small fraction of those reported
by Morris’s subjects (Morris 2006). The fact of their existence does not undermine
the usefulness of computational methods for quantifying semantic distances for non–
ad hoc relationships, and the continued development of such methods is an important
direction for research.

Acknowledgments
This research was supported financially by
the Natural Sciences and Research Council of
Canada, the Ontario Graduate Scholarship
Program, and the University of Toronto. For
discussions, comments, and advice, we are
grateful to Mark Chignell, Stephen Green,
Jay Jiang, Keith Knight, Claudia Leacock,
Dekang Lin, Saif Mohammad, Jane Morris,
Radford Neal, Manabu Okumura, Gerald
Penn, Philip Resnik, David St-Onge, Suzanne
Stevenson, Michael Sussna, and some of the
anonymous reviewers of Computational
Linguistics.

References
Agresti, Alan and Barbara Finlay. 1997.

Statistical Methods for the Social Sciences.
Prentice Hall, Upper Saddle River, NJ,
3rd edition.

Banerjee, Satanjeev and Ted Pedersen. 2003.
Extended gloss overlaps as a measure of
semantic relatedness. In Proceedings of the
Eighteenth International Joint Conference on
Artificial Intelligence, Acapulco, Mexico,
pages 805–810, August.

Barsalou, Lawrence W. 1983. Ad hoc
categories. Memory and Cognition,
11:211–227.

Barsalou, Lawrence W. 1989. Intra-concept
similarity and its implications for inter-

concept similarity. In Stella Vosniadou and
Andrew Ortony, editors, Similarity and
Analogical Reasoning. Cambridge
University Press, pages 76–121.

Bernard, J. R. L., editor. 1986. The Macquarie
Thesaurus. Macquarie Library, Sydney,
Australia.

Budanitsky, Alexander. 1999. Lexical
semantic relatedness and its application
in natural language processing. Technical
Report CSRG-390, Computer Systems
Research Group, University of Toronto,
August.

Budanitsky, Alexander and Graeme
Hirst. 2001. Semantic distance in
WordNet: An experimental,
application-oriented evaluation of five
measures. In Workshop on WordNet and
Other Lexical Resources, Second Meeting
of the North American Chapter of the
Association for Computational Linguistics,
Pittsburgh, PA, pages 29–34.

Corley, Courtney and Rada Mihalcea. 2005.
Measuring the semantic similarity of texts.
In Proceedings of the ACL Workshop on
Empirical Modeling of Semantic Equivalence
and Entailment, Ann Arbor, MI, June,
pages 13–18.

Dagan, Ido. 2000. Contextual word similarity.
In Robert Dale, Hermann Moisl, and
Harold Somers, editors, Handbook of

25 Indeed Murphy (2003) has suggested that semantic relations (of all types) are best conceived of as
metalexical: derived from a (pre-existing) lexicon, but not part of it.

45



Computational Linguistics Volume 32, Number 1

Natural Language Processing. Marcel
Dekker, pages 459–475.

Dagan, Ido, Lillian Lee, and Fernando C. N.
Pereira. 1999. Similarity-based models of
word cooccurrence probabilities. Machine
Learning, 34(1–3):43–69.

Fellbaum, Christiane, editor. 1998. WordNet:
An Electronic Lexical Database. The MIT
Press, Cambridge, MA.

Finkelstein, Lev, Evgeniy Gabrilovich, Yossi
Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin. 2002. Placing
search in context: The concept revisited.
ACM Transactions on Information Systems,
20:116–131.

Francis, Winthrop Nelson and Henry Kučera.
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