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Abstract
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Statistical parsers that simultaneously generate both phrase-structure and lexical depen-

dency trees have been limited in two important ways: the detection of non-projective

dependencies has not been integrated with other parsing decisions, or the constraints

between phrase-structure and dependency structure have been overly strict. I develop

context-free filtering grammar as a generalization of the more restrictive lexicalized fac-

tored parsing model, and I develop for the new grammar formalism a scoring model to

resolve parsing ambiguities. I demonstrate the flexibility of the new model by implement-

ing a statistical parser for German, a freer-word-order language exhibiting a mixture of

context-free and non-projective behaviours.
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ix



List of Tables

2.1 Comparison of some common statistical modeling techniques. . . . . . . . 25

3.1 Dependency edge scoring features. . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Governor selection for immediate children of clausal constituents. . . . . 78

4.2 Parser configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 PCFG tuning: perfect scores. . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 PCFG tuning: coverage of development sentences. . . . . . . . . . . . . . 92

5.3 PCFG tuning: micro-averaged labeled constituent precision and recall. . 93

5.4 PCFG tuning: crossing brackets. . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Dependency tuning: perfect scores. . . . . . . . . . . . . . . . . . . . . . 94

5.6 Dependency tuning: non-root governor precision and recall. . . . . . . . . 95

5.7 Lexical-heads tuning: perfect scores. . . . . . . . . . . . . . . . . . . . . 95

5.8 Lexical-heads tuning: non-root governor precision and recall. . . . . . . . 96

5.9 Lexicalized parser tuning: perfect scores. . . . . . . . . . . . . . . . . . . 96

5.10 New model parser tuning: perfect scores. . . . . . . . . . . . . . . . . . . 97

5.11 Mixed parser tuning: phrase structure results. . . . . . . . . . . . . . . . 97

5.12 New model tuning: dependency results. . . . . . . . . . . . . . . . . . . . 97

5.13 Final results: perfect scores. . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.14 Final results: dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.15 Final results: phrase structure. . . . . . . . . . . . . . . . . . . . . . . . 99

x



5.16 Comparison of labeled and unlabeled constituent results on test set data. 100

5.17 Breakdown of constituent precision and recall by constituent label. . . . . 102

5.18 Comparison of co-ordination accuracies on test set data. . . . . . . . . . 102

5.19 Comparison of clause-level dependency precision and recall. . . . . . . . . 103
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Chapter 1

Introduction

1.1 Overview

If we are ever to realize the dream of natural language interaction with computational

systems, or of automatic manipulation of the highly structured information encoded in

natural language resources, we must first find a way to automatically determine the

semantic content of sentences. As a first approximation to determining the structural

aspects of semantics (which entities relate to which others, and how), many researchers

have looked at the problem of discovering the syntactic structure of sentences.

Stepping back from the lofty goal of semantic analysis, we can also imagine appli-

cations of parsers that already seem within our grasp: parsing is directly applicable to

the automatic detection of grammatical errors, and may be useful in machine translation

systems. Automatic parsers can also be useful tools for computational linguists desiring

approximately correct structural annotations of raw text.

One could also argue that automatic parsing projects are a testing-bed for linguistic

theory. The process of encoding any formal model in the rigorously logical languages

currently required by computers is bound to uncover many of the ambiguities and con-

tradictions inherent in a product of human imagination. Successes in parser development

1



Chapter 1. Introduction 2

can also be seen as supporting the claims that their underlying linguistic models provide

a basis for feasibly analyzing syntax (a claim that is frequently not amenable to direct

mathematical proof.)

Early parsing research aimed (ultimately) to provide a complete model of syntax:

one capable of making all possible syntactic distinctions, capable of determining when

sentences were in or not in a given language, and capable of determining the syntactic

structure of all sentences in the language. The immensity of this task has led to a

branching of research, each branch focusing on different aspects of the problem (often at

the expense of others.) The particular branch with which I identify this work is statistical

parsing.

Statistical parsers focus on disambiguation and coverage: determining one syntactic

structure for each of as many sentences in a language as possible. They usually abandon

all other elements of syntactic analysis: in particular they assume that every sentence is

grammatical and make no attempt to flag ungrammatical input. The output of a sta-

tistical parser is often ‘mostly correct’, but frequently includes some errors. Statistical

parsers generally rely on very simplistic linguistic models, and derive most of their capa-

bility from machine learning algorithms trained over large human-annotated corpora.

Within the statistical parsing community, two kinds (broadly speaking) of syntactic

analysis are done: phrase structure analysis, often based on context-free grammar; and

dependency analysis. Phrase structure analysis aims to group words together in progres-

sively larger units (constituents) until one unit is found that contains the entire sentence.

In principle, each of the constituents formed in this process has a complete corresponding

semantic interpretation, though parsers rarely go so far as to analyze the semantics. De-

pendency analysis, on the other hand, builds a directed tree of binary relations over the

words of a sentence. Each relation encodes precisely the role of a dependent word with

respect to its governing word. Dependency analyses can be either projective (disallowing

crossing dependencies) or non-projective (permitting crossing dependencies.)
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The semantic meaning of a dependency tree is perhaps less intuitive than that of a

phrase structure tree, but phrase structure analysis has a critical weakness: it is compu-

tationally challenging in languages with freer word order and discontinuous constituents.

Even the relatively fixed word order of English poses problems for statistical systems aim-

ing to produce trees for semantic analysis (addressing constituent movement has spawned

a number of papers on its own.) Non-projective dependency analysis does not have this

weakness. It is therefore desirable for a system to be able to do both a simplified phrase

structure analysis and a full dependency analysis at the same time.

The primary contribution of this work is a grammar formalism and a statistical parsing

system that permit simultaneous context-free phrase structure parsing and non-projective

dependency parsing. The system is derived from the factored parsing model introduced

by Klein and Manning (2002). Their model is essentially a lexicalized context-free parsing

model, except that the lexical statistical model is independent of the rest of the phrase

structure model. By relaxing their requirements of correspondence between lexical re-

lations and phrase structure, I am able to propose a model permitting a much broader

range of dependency analyses. Ultimately, I combine a phrase structure parser like that

of Klein and Manning (2003) with a non-projective dependency parser based on that of

McDonald et al. (2005b).

I evaluate the combined parser on the TüBa-D/Z treebank of German newspaper

text. The experiment demonstrates that forcing a certain level of agreement between

the phrase structure analysis of a sentence and its dependency analysis does not degrade

the accuracy of either. The absolute values of the accuracies achieved by all parsers in

the study confirm the claim of Kübler et al. (2006) that German newspaper text is just

as easily parsed as English newspaper text, provided that the target annotation is well

chosen.
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1.2 Thesis Statement

I take the position that phrase structure analysis and dependency analysis of the syntax

of a sentence are complementary. Both analyses can be performed simultaneously, with

reasonable efficiency and accuracy, in a statistical parsing framework.

The specific formalism I propose for relating the two analyses is context-free filtering

grammar, a CFG-like grammar formalism that specifies which words of a constituent are

available to enter into dependency relations with the rest of a sentence.

The specific statistical model I propose is a factored model in the style of Klein

and Manning (2002) which combines an unlexicalized context-free model with a non-

projective maximum-spanning-tree dependency model (McDonald et al., 2005b).

1.3 Outline of Study

In support of this thesis are the following chapters:

Chapter 2: Related Work This chapter surveys much of the main-stream statistical

parsing work of the late 1990s, along with more recent work of relevance to the

thesis. The survey pays particular attention to statistical phrase structure parsing

in German, to non-projective unlabeled dependency parsing, and to the machine

learning techniques used in parsing systems.

Chapter 3: Context-Free Filtering Grammar This chapter defines context-free fil-

tering grammar, examines its relationship to the factored lexicalized parsing frame-

work of Klein and Manning (2002), and provides a parsing algorithm. The chapter

also describes the statistical parametrization and A* scoring heuristic used in the

implementation of my parser.

Chapter 4: Experimental Design This chapter describes the set-up of an experiment

to test the hypothesis that the new model can outperform existing models.
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Chapter 5: Experimental Results This chapter provides the results of the experi-

ment. The experiment clearly demonstrates that phrase structure and dependency

analysis can be combined without sacrificing accuracy, but does not establish that

the new model can outperform older ones.

Chapter 6: Conclusions The final chapter reviews the contributions of this work, re-

iterates the limitations of this research, proposes some applications of context-free

filtering grammar, and highlights some opportunities for refinements of the frame-

work.

1.4 Summary of Contributions

This thesis project contributes the following to the field of computational linguistics:

context-free filtering grammar: The new grammar formalism provides a framework

in which to analyze the interaction between phrase structure and dependency struc-

ture. It may be of use on its own or, more likely, as an inspiration for more nuanced

formalisms.

a parsing algorithm for context-free filtering grammar: The existence of a chart-

parsing algorithm for the new type of grammar makes the grammar more accessible

to the research community than it might otherwise be, and permits an intuitive

understanding of the properties of the new grammar.

an implementation of a parser using context-free filtering grammar: I imple-

mented the parsing system described in this thesis, demonstrating its feasibility.

a TüBa-D/Z -derived dependency treebank: The heuristically extracted depen-

dency treebank used for my experiment could be an excellent starting point for a

manually annotated/verified dependency treebank of German.
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an evaluation of a context-free filtering grammar model: The results of Chapter

5 demonstrate that the new parsing model is capable of generating phrase structure

and dependency analyses that are (independently of one another) just as good as

those produced by pure phrase structure or pure dependency parsers.

1.5 Terminology

In order to carefully explain the grammar formalism introduced in this thesis, I will

have to make reference to a large number of concepts used by the statistical parsing

community. The terminology for some of these concepts is not always consistent between

publications, so I would like to define here the terms I use.

Context-free grammar (CFG) and context-free grammar parsing are consistently de-

fined concepts in the parsing literature. The trees of nested labeled constituents produced

by context-free parsers, I call context-free phrase structure trees, or simply phrase struc-

ture trees.

The statistical variant of context-free parsing to which I will make reference in this the-

sis is probabilistic context-free grammar parsing (PCFG parsing). A probabilistic context-

free grammar is a CFG that assigns to each production rule a probability, conditional

on the label of the rule’s left-hand-side symbol. A phrase structure tree derivable by the

grammar is defined to have a probability equal to the product of all of the production

rules in the tree’s derivation.

A refinement on PCFG parsing is lexicalized PCFG parsing. The trees output by a

lexicalized PCFG parser are called lexicalized phrase structure trees. A lexicalized PCFG

is a PCFG in which each non-terminal is augmented with a lexical head token. I will also

use the term lexical head to denote the token marked as the head of a constituent in a

lexicalized phrase structure tree. The lexical head of the left-hand-side of a preterminal

rule must match the terminal on the right-hand-side. The lexical head of the left-hand-
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side of each other production rule must match the lexical head of one of the right-hand-

side symbols of the rule.

Klein and Manning (2002) define a parsing model that also produces lexicalized phrase

structure trees, but that does not use a lexicalized PCFG. Instead it uses a PCFG and

a separate lexical dependency model. This kind of parser I will call the factored parser

of Klein and Manning (2002). This factored parsing model is the starting point for my

work.

A lexical dependency tree, or simply dependency tree, is a directed tree over the tokens

of a sentence. Each edge in a dependency tree represents a relation between two tokens.1

The tail of the edge is the governor.2 The destination of the edge is the dependent. Labeled

dependency trees have edges labeled with syntactic functions, unlabeled dependency trees

omit this information. I use unlabeled trees in this thesis.

A token x in a dependency tree dominates another token y if x is the governor of y,

or if x is the governor of x′ and x′ dominates y.

In a tree over an ordered sequence of tokens, a dependency edge from token x to y

is projective, if for each token z between x and y, x dominates z; otherwise the edge is

non-projective. If all of the edges of a dependency tree are projective, then the tree is

called projective, otherwise it is called non-projective. The definitions of this paragraph

are adapted from Kahane et al. (1998).

In discussing parsing strategies, I will differentiate between a number of closely related

ideas. A grammar is a formal set of rules defining the allowable syntactic structures of a

language (and by association, the allowable utterances of the language.) In some cases

a grammar may be nearly trivial, permitting for instance ‘all directed trees over any set

1The term edge should not be confused with the term arc. I will use edge to refer to dependency
relations, and arc to refer to partial-parse data-structures in chart parsers.

2Some writings refer to the governor as the ‘parent’ or ‘head’, but this leads to confusion with the
term lexical head which I reserve to denote the head of a constituent in a lexicalized phrase structure
tree. I will also not speak of governing with respect to phrase structure; I will only use the term when
writing about dependency structure.
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of words in the language’.

A statistical model, or scoring model, is a function mapping a vector of model param-

eters and a syntactic structure to a real number (a score).

A parsing system is an implementation of a search algorithm that finds the best-

scoring syntactic structure that matches an utterance (provided as input) according to

a grammar, a scoring model and a vector of model parameters values. Although I will

use the term parser fairly loosely, in principle it applies to the combination of a specific

parsing-system with a specific grammar, a specific scoring model and a specific vector of

model parameter values.

Parameter-estimation or training is the process of selecting a vector of model param-

eters that can be expected to maximize the accuracy of a parser.



Chapter 2

Related Work

2.1 Overview

Statistical systems that learn to parse sentences of a particular language (and genre) by

training on large manually-parsed corpora have been a topic of interest to the natural

language processing community for over a decade. The bulk of the earlier statistical

parsing work focused on retrieving phrase structure analyses of the syntax of sentences.

In this chapter we will review:

• the models used in these phrase structure parsers;

• some of the problems with statistical phrase structure analysis, particularly with

respect to German, a freer-word-order language;

• some models used more recently in dependency parsers; and

• general statistical techniques that have been adapted to parsing.

Finally, I will summarize and highlight those themes that are especially relevant to this

thesis.

9
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2.2 Probabilistic Context-Free Parsing

Rather than reviewing in detail several projects, I have elected to describe one system

in particular, and to point out its relation to a number of others. I have done this

primarily to avoid repeating the many similarities between these systems, and to provide

as coherent a narrative as I can.

2.2.1 Themes in Probabilistic Phrase Structure Parsing

The Collins parser (Collins, 1999, 2003) is among the best-known statistical parsing

projects. We will review the contributions of Collins (2003) (a re-examination of some of

his previous work) to phrase structure parsing: his results remain close to state-of-the-art

and design themes similar to his arise in other projects.

The Collins parser takes as input part of speech labeled text sentences. The parts

of speech are ignored except for words unknown by the parser’s language model. The

parser outputs phrase structure parse trees that reflect the annotation patterns of the

treebank on which the model was trained. Development of the initial models was done

on the Penn treebank (Marcus et al., 1993).

The Collins models (Collins proposes 3 of them) can be related to two main tra-

ditions: probabilistic context-free grammar (PCFG) parsing and history-based parsing.

PCFG parsers model language as a stochastic branching process that produces different

sentences with different probabilities. The series of decisions leading to the final result

encode the corresponding parse tree. Parsing in this paradigm is a matter of discov-

ering the most probable canonical derivation for a given input sentence (maximizing

P (derivation, sentence), where sentence is fixed.) PCFG models can be created auto-

matically by stripping a context free grammar from a treebank corpus, and estimating

rule probabilities by straight-forward arithmetic; the performance of this näıve approach

is shown by Charniak (1996) to be surprisingly good. To achieve better results the
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model can be enhanced by considering dependencies between lexical heads assigned to

all constituents (for example Charniak, 1997).

History-based parsing sees a parse as a sequence of decisions made in the course of

mapping a sentence to a parse tree (Black et al., 1993; Jelinek et al., 1994; Magerman,

1995; Ratnaparkhi, 1997). These decisions can either be sentence generation decisions

(as in PCFG) or sentence-specific parsing decisions (i.e. maximizing P (tree|sentence).)

Decisions are not considered independently: any decision made earlier in the course of

a process can be used as part of a conditioning context for decisions made later. The

advantage of history-based models over PCFG models is their ability to make use of a

broader range of features.

The Collins models, like PCFG-derived models, concern themselves with top-down

language generation decisions rather than with left-to-right parsing decisions, and are

history-based in that they do not model choices independently but rather as a sequence.1

In particular, Collins sees the generation of a sentence as a top-down head-outward

stochastic process that, given a phrase category P and its head word h:

1. generates a phrase category H for the head child, with probability P (H|P, h). H

is then recursively expanded.

2. generates each child category Li and head word li to the left of the head child,

from the head outward, with probability P (Li(li)|P, h,H, cli), where cli provides

access to historical information about previous decisions. Each child is recursively

expanded before the next child is generated.

3. generates each child category Ri and head word ri to the right of the head child,

from the head outward, with probability P (Ri(ri)|P, h,H, cri), where cri provides

access to historical information about previous decisions. Each child is recursively

1I address here only the abstract fundamentals of the Collins models. I do not mention the sep-
arate language model for ‘base’ noun-phrases, the handling of punctuation or the nuanced smoothing
techniques, all of which contribute significantly to the high accuracies that Collins achieves.
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Figure 2.1: Top-down head-outward generation of the sentence “the company acknowl-

edges some problems”, from the Penn treebank II (Marcus et al., 1994)

.

expanded before the next child is generated.

This head-driven language generation model is illustrated in figure 2.1.

In model 1, cli and cri consist of ‘distance’ information about whether the current

child is immediately adjacent to the head and whether it is separated from the head by

a verb. In model 2, cli and cri can include subcategory information for predicate phrase

structures. Model 3 will be mentioned below in section 2.3. Parsing sentences of the

Penn treebank (of 40 words or less), Model 2 achieves labeled bracketing precision and

recall both over 88% with fewer than 0.95 crossing brackets per sentence (these are the

commonly used Parseval metrics, Black et al., 1991).
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2.2.2 Analyses of Probabilistic Parsing Models

In addition to research that builds up complex generative models like those of Collins,

other work has been done to evaluate the weaknesses and critical components of these

systems. Gildea (2001) argues that with most of the parsing work being done on Wall-

street Journal text, researchers are getting a skewed sense of how useful their statistics

can be: the Collins model 1 isn’t nearly as good on the broader-domain Brown corpus,

for instance. Gildea also raises a surprising question about whether or not modeling

lexical dependencies is really achieving all that much (removing bilexical dependencies

from model 1 impacts precision and recall by less than 0.5%.) Bikel (2004), in his careful

analysis of the Collins models, explains this by pointing out that sparse data almost

always forces the models to back off to probability estimates that don’t encode bilexical

dependencies. He notes, however, that lexical heads are useful for predicting the child

categories of a constituent.

Work by Johnson (1998) and Klein and Manning (2003) explores the idea of grammar

transformation to improve the accuracy of unlexicalized PCFG-like models. This tech-

nique involves automatically applying transformations to a treebank before extracting a

grammar from it, parsing according to the transformed grammar, and then reversing the

transformations to acquire trees in the original format. Both works find parent-encoding

(relabeling each constituent to include the original label of its parent, or even grand-

parent) to be highly beneficial. In addition to parent-encoding and a number of more

fine-grained relabeling schemes, Klein and Manning (2003) also investigate the impact

of so-called Markovization, the technique of generating child constituents from a head

outward (as in the Collins models described above) rather than relying on fixed treebank

grammar rules. They found Markovization to be beneficial, but to a lesser extent than

parent-encoding. All in all, Klein and Manning are able to achieve an 86.3% F1 score

without resorting to lexicalization, to references to arbitrary elements of generation his-

tory (unlike the Collins models), or even to probability estimate smoothing for syntax
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rules.

2.2.3 Factored Parsing, an Important Digression

The Stanford Parser is strongly based on two papers, the second of which (Klein and

Manning, 2003) we have just looked at. In the first paper, Klein and Manning (2002)

propose splitting (or factoring) the probability models for phrase structure and lexical

dependencies (figure 2.2; figure 2.3 represents the same two trees, emphasizing the con-

straints between them.2) An unlexicalized PCFG model can assign a score to all possible

phrase structure trees, a projective lexical dependency model can assign a score to all pos-

sible dependency trees, and the optimally scoring combined tree (a phrase structure tree

with lexical heads) can be recovered exactly by means of an A* search. The present work

builds heavily on this idea of a factored model, but loosens the structural correspondence

between constituents and lexical heads in the combined tree.

The factored model of Klein and Manning (2002) is in some sense similar to topo-

logical parsing models, such as those of Duchier and Debusmann (2001) and Penn and

Haji-Abdolhosseini (2003), in that it represents syntax as two parse trees for the same

sentence. Topological parsing sees a (freer-word-order) language as abiding by the con-

straints of two grammars: a tecto-grammar encoding constituent ordering rules and a

pheno-grammar encoding restrictions on relations between constituents (including verb-

argument structure and all morphological agreement constraints). The factored model

differs from topological parsing by relying on very simple constraints between the trees,

and by its heavy dependence on statistical knowledge. Moreover Klein and Manning mix

phrase structure and dependency structure, unlike the topological models, which commit

entirely to either dependency grammar (Duchier and Debusmann, 2001) or phrase struc-

2In this representation, which will be used in figures throughout the document, dependency structure
is represented in the usual way and constituency is represented by nested ‘bubbles’. Constituents with
solid outlines have their contents hidden from the rest of the tree, except immediate siblings. Constituents
with dashed outlines have their contents exposed to the rest of the tree, up to their closest hiding ancestor.
For the moment, the reader can think of exposed constituents as head constituents.
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Figure 2.2: The factored language model analysis of the sentence “the company acknowl-

edges some problems”, from the Penn treebank II (Marcus et al., 1994).
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Figure 2.3: Constraints between tree representations in a factored model, in an example

built from the sentence “the company acknowledges some problems”, from the Penn

treebank II (Marcus et al., 1994).
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ture grammar (Penn and Haji-Abdolhosseini, 2003). The purpose of the model differs as

well: Klein and Manning aim primarily to produce a modular statistical model, while the

topological schemes are designed to leverage known word order regularities to assist pars-

ing in freer-word-order languages, something completely beyond the scope of the work by

Klein and Manning (2002). Nonetheless, links between factored statistical parsing and

topological parsing, in particular as envisioned by Penn and Haji-Abdolhosseini (2003),

are a primary inspiration for this thesis.

There is also some resemblance between the factored model and synchronous grammar

(early variants by Shieber and Schabes, 1990; Wu, 1997; Alshawi et al., 2000). A syn-

chronous grammar is actually two grammars, that generate two independent sentences

(or, as originally proposed by Shieber and Schabes, 1990, a sentence and a semantic

representation thereof). The grammars are synchronized by linking production rules (or

elementary trees in a tree-adjunction or tree-substitution grammar): each derivation step

by one grammar entails a specific corresponding derivation step by the other grammar.

In a companion to the proposal of Shieber and Schabes (1990), Abeillé et al. (1990)

demonstrate the promise of synchronous grammar for machine translation. This applica-

tion of the framework has recently become both fashionable and successful, especially for

languages of freer-word-order (Eisner, 2003; Chiang, 2005; Ding and Palmer, 2005, for in-

stance). The model of Klein and Manning (2002) can be seen as a synchronous grammar

generating two different parse trees constrained to have the same terminal yield. This

will not be very helpful in the present study, however, because we will begin by relaxing

the constraints between phrase structure and dependency structure, and in doing so we

will lose any plausible one-to-one correspondence between rules in both grammars.

2.2.4 Deriving Other Annotations from Context-Free Trees

A variety of approaches have been used to recover some of the ‘deeper’ annotations

of Penn treebank-style corpora. The Collins model 3 (revisited in Collins, 2003), for
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instance, takes advantage of the history-based architecture of his models 1 and 2 to

express WH-movement as an element of a generative language model: whenever a WH-

constituent is generated in the language model, its generation is encoded in the history

of future decisions as a ‘gap’ which at some point must be discharged as an empty

‘trace’ constituent. Collins argues that the handling of movement properly belongs in

the core parsing model, and not in a subsequent annotation stage. He is concerned that

movement impacts predicate subcategorization modeling (which is of value both in terms

of improving accuracy and in terms of providing a basis for semantic analysis.)

Dienes and Dubey (2003) follow Collins in his approach to recovering information

about traces: they use the same ‘gap’/discharge mechanism in their language model, but

they help the parser by explicitly marking the position of empty ‘trace’ constituents in

the parser’s input. This pre-processing step is accomplished by a trace-tagger trained

to predict the position of empty constituents in raw (unparsed) text. By using a pre-

processor, Dienes and Dubey (2003) abandon the idea of a single unified model, advocated

by Collins. Competitive with these systems are approaches such as those of Johnson

(2001) and Levy and Manning (2004) who prefer to recover movement annotations (and

other ‘deep’ annotations involving empty constituents) in a post-processing step after a

full parsing process. The present thesis can be seen as siding with Collins, preferring

that as much analysis as possible be done by a single language model, thus permitting

all grammatical elements to be weighed against one another rather than giving some

elements (local relations) priority over others (long-range relations.)

2.2.5 Probabilistic Phrase Structure Parsing of German

While the nested phrase structure representation is seemingly appropriate for the analysis

of English syntax, challenges arise when dealing with languages of freer-word-order, such

as German. In German, two issues in particular need to be highlighted:

1. constituents may be broken up: in particular arguments or modifiers of a head
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word may be dislocated from the rest of the phrase; and

2. the ordering of verbal arguments is far less predictive of their grammatical roles

than it is in English.

In the German statistical phrase structure parsing community, annotators of gold-standard

phrase structure treebanks such as NEGRA (Skut et al., 1997) and TüBa-D/Z (Telljo-

hann et al., 2005), in an effort to stay theory-neutral, abandon efforts to represent all

syntactic relations with deeply nested constituents. Phrase structure trees are flattened,

reducing (but not always eliminating) constituent discontinuities, and constituents are

labeled with detailed grammatical roles to compensate for information lost by the elimi-

nation of deep nesting.

Phrase structure parsing of German had a rocky start. Fissaha et al. (2003), Dubey

and Keller (2003), Dubey (2005) and Schiehlen (2004) try to apply PCFG-based parsers

to the NEGRA treebank, and are not able to achieve results comparable to those on

English corpora.

Fissaha et al. (2003) use a simple unlexicalized PCFG model on the NEGRA treebank,

providing correct part of speech tags as input. They observe the effects of varying the

amount of training data (increasing coverage, but decreasing accuracy until coverage

exceeds 85%), of labeling constituents with grammatical function (modest improvement

in coverage and accuracy), and of parent encoding (modest improvement in accuracy, but

significant penalty to coverage.) Their goal is to explore the parameter-space, rather than

to provide an experimental baseline, but their results on development data are similar to

those of other studies of statistical NEGRA parsing.

Dubey and Keller (2003) begin by comparing a reimplementation of Collins (1997)

with an unlexicalized and a lexicalized PCFG parser, both realized by the LoPar system

of Schmid (2000) (the lexicalized model is based on Carroll and Rooth, 1998). They

find that the lexicalized PCFG model and the Collins model do not achieve constituent

precision and recall superior to that of the unlexicalized parser. It may be worth noting
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that the Collins model does have quite substantially the best crossing bracket scores,

although this anomaly is not explored. Dubey and Keller (2003) set aside the idea of

conditioning children on their parent’s lexical head, but do not abandon lexicalization

entirely: they report their best results from a parser that conditions each child on the

head of its immediately preceding sibling. This best result is no better than 71% labeled

constituent precision and recall, up to 74% with perfect part of speech input.

Dubey (2005) ignores lexicalization entirely, and focuses on unlexicalized PCFG gram-

mar (with Markov rules.) Probability smoothing combined with grammatical function

labeling, supported by suffix analysis of unknown and uncommon words in pre-terminal

rules, brings labeled constituent F-score up to 76%. Error analysis indicates that perfect

part of speech tagging (including grammatical function!) brings this up to 85%.

Schiehlen (2004) reproduces the experiments of Klein and Manning (2003) on NE-

GRA, but finds that the parent encoding and Markovization used by Klein and Manning

(2003), while improving constituent precision and recall, are actually detrimental to re-

covering syntactic dependency structure in NEGRA. He argues that excessive attention

to English phrase structure might have led to models compromised in their ability to

recover dependencies in other languages. His highest labeled constituent F-score of 71%

is similar to that of Dubey and Keller (2003). His highest labeled dependency F-score

of 82% is produced by a parser that does not achieve his best constituent scores. This

parser relies on a number of detailed corpus-specific grammar re-writes.

Many of these negative results in German are called into question by Kübler (2005)

and Kübler et al. (2006), who are able to achieve much better accuracies using the

Stanford Parser (Klein and Manning, 2002, 2003) on the TüBa-D/Z treebank (Telljohann

et al., 2005). These authors specifically examine the differences in performance between

NEGRA and TüBa-D/Z , using the same parsing model, and find TüBa-D/Z easier to

parse both in terms of phrase structure and in terms of verb-argument structure. While

the Stanford Parser only achieves a labeled constituent F-score of 70% on NEGRA, it
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Figure 2.4: The NEGRA treebank analysis of an example from Kübler et al. (2006),

graphically reformatted.

achieves a much more impressive 89% on TüBa-D/Z . They conclude that the improved

results are because of differences in the annotation scheme (both treebanks were derived

from newspaper text.) The NEGRA corpus groups constituents together by their roles in

verb-argument structure, permits discontinuous phrases, and does not specify much of the

structure internal to noun and prepositional phrases (figure 2.4.) By contrast, TüBa-D/Z

groups constituents in topological fields defined by the positions of finite and non-finite

verbs, does not use discontinuous phrases3 and does specify structure internal to noun

and prepositional phrases (figure 2.5.) Nonetheless, even on the TüBa-D/Z corpus, verb

argument structure and noun-phrase modifiers cannot be recovered as reliably as they

can in English (Kübler et al., 2006; Kübler and Prokić, 2006).

2.3 Statistical Dependency Parsing

Arguably, the problems encountered in German could be caused by flaws in the phrase

structure representation of syntax, flaws that are not inherent to the older tradition

of dependency representation (this argument is made, for instance, by Mel’čuk, 1988).

3Although the encoding of TüBa-D/Z trees does not explicitly represent discontinuous phrases, they
can be reconstructed using edge labels and, where necessary, secondary links provided with the annota-
tion.
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Figure 2.5: The TüBa-D/Z treebank analysis of an example from Kübler et al. (2006),

graphically reformatted.

Dependency trees are labeled directed trees over the tokens of a sentence: the specific role

of a token is encoded by the governing token assigned to it and by the syntactic label

assigned to that governance relationship (figure 2.6 shows an unlabeled4 dependency

tree.) Critically, a dependency tree can be interpreted without reference to the relative

order of tokens. It was unclear for some time, however, how dependency trees could be

automatically extracted from sentences efficiently and accurately. In discrete parsing,

general purpose constraint solvers can be bent to the task of parsing (see for instance

Duchier, 1999; Duchier and Debusmann, 2001). In statistical parsing, however, very

few constraints are employed, and most designers of parsing systems opt to implement

their own search algorithms (some of which are discussed below), that are specific to the

scoring model of their parsers.

2.3.1 Dependencies from Phrase Structure

Most of the work discussed above in section 2.2 treats only phrase structure analysis. The

work of Levy and Manning (2004) is an exception, in that they evaluate their algorithm

according to how well it is able to provide the basis for a dependency analysis (with

4Without labeling, dependency trees can fail to rule-out many syntactic ambiguities. Despite this,
researchers (McDonald et al., 2005a; Yamada and Matsumoto, 2003; Eisner, 1996b) have often focused on
the problem of finding governors while ignoring labeling. In this thesis, we will consider only unlabeled
trees.
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He does it naturally

Figure 2.6: Unlabeled dependency analysis of an example adapted from Mel’čuk (1988),

ambiguously representing the syntax of either “he does it naturally” or “he does it,

naturally”.

respect to both the English PTB and the German NEGRA corpora.) Schiehlen (2004)

also focuses on extracting dependency trees from phrase structure analyses (and does

so on NEGRA data), but argues that the statistical models he uses are biased toward

producing good results on phrase based metrics and are not optimal with respect to

dependency-based metrics.

Perhaps the most extreme example of using phrase structure analysis to recover de-

pendency trees is provided by Collins et al. (1999). The authors parsed sentences from

the Prague Dependency Treebank using a modified version of the Collins model 1 parser

(Collins, 1997). They mapped the lexicalized phrase structure output of this parser to

dependency trees, by assigning the head word of each child constituent as a dependent of

the head word of its parent constituent. Training the model was less straight-forward: the

training data were in dependency format, and lacked phrase structure. It was therefore

necessary to use heuristic rules to map the dependency treebank to a phrase structure

treebank as a preprocessing step before training.

2.3.2 Directly Finding Dependencies

Efforts to extract dependency trees from phrase structure trees are somewhat surpris-

ing in light of early work done by Eisner (1996b) and Eisner (1996a) to directly build

dependency parsers from dependency-based probabilistic language models. In addition

to providing an algorithm for efficiently computing Viterbi dependency parses (projec-
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tive only), he also reports results very competitive with a state of the art phrase based

parser of the time. But the idea seems to have persisted that statistical dependency pars-

ing cannot be done accurately without the help of a phrase structure parser: Yamada

and Matsumoto (2003), for instance, repeatedly point out that their dependency parser

cannot be as accurate as one using a phrase based model, because it lacks information

about phrase structure. Likewise, McDonald et al. (2005a) state: “It is well known that

dependency trees extracted from lexicalized phrase structure parsers typically are more

accurate than those produced by pure dependency parsers.”

Arguably this belief in the superiority of phrase structure parsers over dependency

parsers arose out of the fact that much more work had been done on statistical phrase

structure parsers. A state-of-the art dependency parser (McDonald and Pereira, 2006)

can now beat phrase structure parsers at producing dependency trees for some datasets.

Given recent advances in statistical dependency modeling, more such results can be

expected (consider for instance submissions to the CoNLL-X Shared Task on Multilingual

Dependency Parsing, Buchholz and Marsi, 2006).

Two dependency parsers in particular deserve our attention. The first (Nivre, 2003;

Nivre et al., 2004, 2006; Nilsson et al., 2006) is a deterministic shift/reduce-style parser,

that scores trees based on the cost of their left-to-right derivations. The parser is inter-

esting to us because of its approach to handling non-projective dependencies (sometimes

referred to as crossing dependencies.) Lifting (Kahane et al., 1998) is the process of elim-

inating non-projectivity in dependency trees by assigning new governors to some tokens.

If a token is chosen to be lifted, then its new governor (called linear governor) must be

an ancestor of its original governor. What Nivre et al. (2006) do is to convert each tree in

their training corpus of non-projective trees into a projective tree by lifting. They leave

lift-path information in the converted trees to allow for recovery of the original trees,

and train their parser to find projective trees with associated lift traces. After finding

such a tree, their parser is then able to reconstruct the correct non-projective parse, by
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The
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Figure 2.7: Maximum spanning tree parsing of the sentence “the company acknowledges

some problems”, from the Penn treebank II (Marcus et al., 1994) (the weights of all edges

have been omitted from this diagram.)

un-lifting some children. There is a strong similarity between the idea of lifting and the

ideas we will develop in this thesis. In particular, our parser effectively licenses some lifts,

but not others, using a phrase structure grammar (the lifts are not explicitly performed

by our parser, however.)

The second dependency parser of interest to us (McDonald et al., 2005a,b; McDon-

ald and Pereira, 2006) uses an explicit language model. Early versions of the system

exploit what is (to a computer scientist) one of the most elegant intuitions ever used in a

statistical parser: given a sentence, the system scores every possible dependency edge be-

tween any two tokens (this is the contribution of the language model) and simply returns

the maximum-spanning-tree (MST) of the complete graph of potential edges (this is the

parsing algorithm.) This model is depicted in figure 2.7. The system inherently handles

non-projectivity without having to treat it as a special case. McDonald and Pereira (2006)

abandon the earlier MST parsing model in favour of an approximate method: trading

the elegance of MST parsing for greater flexibility in the language model.



Chapter 2. Related Work 25

model scope interpretation feature interdependence training

generative probability local decision probability feature interdependence
must be explicitly man-
aged by model designer

the ratio p(x, c)/p(c)
computed for each
decision type

local max-entropy local decision probability feature interdependence
can be exploited by train-
ing algorithm

iterative-scaling or re-
lated method

random fields up to entire solution probability feature interdependence
can be exploited by train-
ing algorithm

iterative-scaling or re-
lated method, involves
expensive normalization

large-margin up to entire solution artificial score feature interdependence
can be exploited by train-
ing algorithm

best-fit of boundaries be-
tween different values of
x, or perceptron-based

Table 2.1: Comparison of some common statistical modeling techniques.

2.4 Statistical Pattern Recognition Techniques in Pars-

ing

I now review some of the ‘statistics’ behind statistical parsing. This section is not meant

to explore in depth all of the techniques used, and I do not claim to necessarily even be

touching on the most important works relating to the topic. In these few paragraphs I aim

to highlight the relationships between a number of common techniques (see the summary

in table 2.1) and to note that the grammatical formalism adopted by a parsing system

can be independent of the mathematical modeling approach used by the system. For

instance, generative probability models have been used for both phrase structure parsers

(e.g. Collins, 1999) and dependency parsers (e.g. Eisner, 1996b), as have perceptron-style

models (e.g. Collins and Roark, 2004; McDonald et al., 2005a) and maximum-margin

models (Taskar et al., 2004; Yamada and Matsumoto, 2003).

The tried and tested method (Collins, 1999, 2003; Eisner, 1996b; Charniak, 1996,

1997, 2000)5 for scoring parse trees is a generative probabilistic model: each parsing

decision (for a parsing model) or generation decision (for a language model) is assigned a

probability conditioned on some limited context. Probabilities are estimated using ratios

of feature co-occurrence frequencies extracted from a training corpus. The probability

of a parse tree is the product of the probabilities of all the decisions that would have to

be made to produce that tree. The advantages of this model are that it is intuitive and
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that training is fast. Modeling is limiting however: as new features are added, the model

must be manually re-arranged. Furthermore, data-sparsity can rapidly become crippling

as new interdependent features are added to a model based on frequency ratios.

An alternative approach to parsing uses maximum entropy modeling (Ratnaparkhi,

1997). Individual decisions are still assigned probability scores, but these probabilities

are estimated not by taking ratios of frequencies, but by maximizing the entropy of

a log-linear probability model, subject to the constraint that the model must exactly

predict the frequency of all model features over the training corpus (for a more detailed

mathematical description see Ratnaparkhi, 1998.) The advantage of this approach is

flexibility: a relatively large number of features can be used to condition each decision,

and the designer can add or remove model features without worrying about whether

or not they are statistically independent. Training the model, however, can be rather

time-consuming.

While Ratnaparkhi (1997) uses maximum-entropy estimates of probabilities for in-

dividual parsing decisions, Abney (1997) proposes using a maximum-entropy estimate

of the probability of entire parse trees. Abney is particularly concerned with attribute

grammars, where decomposing probabilities over full parse trees into probabilities over

local decisions is difficult, because information about decisions relating to each attribute

must be propagated as conditioning context to all other decisions constraining or con-

strained by the attribute. The proposed modeling framework, called random fields, while

taking account of features relevant to individual decisions, does not estimate a normal-

ized distribution for each decision, but rather normalizes only over complete solutions.

Lafferty et al. (2001) provide an interesting discussion of the advantages of this ap-

proach in dealing with sequences of decisions. Exactly training such models for parsing

is, however, infeasible, because of the need to normalize over all possible complete parse

5This last work, despite its title (A maximum-entropy-inspired parser) and opening discussion on
the advantages of maximum entropy models, describes a model that relies on ratios of frequencies for
parameter estimation.
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trees. Abney (1997) addresses this challenge by resorting to random sampling. Johnson

et al. (1999) point out that it isn’t necessary to normalize over all possible parse trees to

get reasonable results: it is far more practical to normalize over all parse trees of those

sentences actually in the training set. This remains prohibitive for highly ambiguous

grammars.

To find a model that is capable of handling large numbers of mutually dependent

features, that is capable of handling sequences of mutually dependent decisions, and

that is feasibly trainable, some researchers have adopted methods that do not produce

probability models (in other words, the scores of all possible solutions do not sum to 1.)

Arithmetically, these look a lot like log-linear probability models, except that they are

normalized differently, if at all. They derive their predictive power not from accurately

approximating a probability distribution, but from establishing a boundary (generally

a hyperplane) in the model’s feature space between correct structures (e.g. the desired

parse) and incorrect structures (all other parses.)

The language model used by McDonald et al. (2005a) is an excellent example of this

approach. Merging the Margin Infused Relaxed Algorithm (MIRA) of Crammer and

Singer (2003) and Crammer et al. (2004) with the Averaged Perceptron concept, intro-

duced to natural language processing by Collins (2002) and Collins and Roark (2004),

they are able to very quickly train a linear model over a huge number of varied and par-

tially redundant features, resulting in state-of-the-art parsing accuracy. A notable aspect

of their work is that, although their algorithm aims to discriminate between correct parses

and incorrect parses by as large a margin as possible, it does not go to great lengths to

enforce the margin between each example’s correct solution and all possible alternative

solutions (this can be compared against Taskar et al., 2004), but rather enforces the mar-

gin only against the best-k alternative solutions. A practical consequence of this method

is that large portions of the search space can be completely ignored during parameter

estimation. McDonald and Pereira (2006) are not the only ones advocating this direc-
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tion; they celebrate the kinship of their work with the Learning as Search Optimization

paradigm of Daumé and Marcu (2005).

2.5 Summary

We have reviewed some of the major elements of statistical parsing, focusing in turn on

phrase structure parsing, on dependency parsing and on statistical modeling. I now wish

to highlight some aspects of this review.

Firstly, the lexicalized probabilistic context-free parsers of the late 1990’s have not

been substantially surpassed by newer systems in the task of English phrase structure

parsing. This may speak to the need for better parsing benchmarks (for instance evalua-

tion of parsers according to their suitability for integration into larger applications), but

it can also be seen as evidence for the (relative) strength of the lexicalized PCFG model.

These parsers have not, however, fared as well in the domain of German parsing.

Part of the problem here is a lack of clarity about what German phrase structure analysis

should look like, and to what extent it is even a good idea. On the other hand, dependency

parsers have been showing better and better results, and the dependency representation

of syntax is at a particular advantage in the analysis of freer-word-order languages such

as German.

It is in this light that I would like to point out an as-yet-unexploited opportunity

provided by Klein and Manning (2002). Their idea of building a factored parser that

simultaneously performs both phrase structure parsing and dependency parsing, using

separate language models for each, may allow systems to be built that can combine a

constituent analysis of phrases with a robustness to freer-word order. This view is the

starting point of my thesis.

Finally, it is interesting to note the huge variety of statistical tools that have been

brought to bear on statistical treebank parsing. If anything, the feverish exploration
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of techniques has intensified in the last five years, and it is to be hoped that these

explorations will result in exciting new developments in parsing and in natural language

processing generally.



Chapter 3

Context-Free Filtering Grammar

3.1 Overview

The factored parsing model of Klein and Manning (2002) provides an interesting frame-

work in which phrase structure and dependency parsing can be performed in an in-

terleaved manner. Unfortunately, the framework as initially presented by Klein and

Manning (2002) does not permit the use of linguistically plausible dependency trees:

the dependency trees are constrained to match the phrase structure very closely, one

consequence of which is that the dependency trees must be projective.

In this chapter I present an extension to their model based on a new grammar formal-

ism, context-free filtering grammar. The new style of grammar provides more flexibility

than the original by permitting more than one token of a constituent to behave like a

head (in particular, to govern any token within the constituent and to be dependent on

tokens outside the constituent.)

After a discussion of the new grammar formalism, I present a chart-parsing algo-

rithm and a statistical model to score the algorithm’s output. The model uses PCFG

to score phrase structure trees and the linear model of McDonald et al. (2005a) to score

dependency trees; combined trees are scored by summing the log PCFG score and the

30
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dependency score.

Like Klein and Manning (2002), I use an A* search to find the best combined parse

under the model. A* requires an admissible and monotonic scoring heuristic to predict

the optimal score of any full solution incorporating any particular partial result. I use

outside scores to build a heuristic for the PCFG model and a maximum-weight incident

edge heuristic for the dependency model.

3.2 Grammar for Factored Model Parsing

I begin this section by defining the new grammar formalism: context-free filtering gram-

mar. The formalism is inspired by the factored parsing model of Klein and Manning

(2002), and I show that the formalism implied by their work is a special case of context-

free filtering grammar. I discuss the representational advantages of the new formalism, its

potential for use in dynamic programming algorithms and an extension of the formalism

to handle dependency structures that are not fully connected.

3.2.1 Context-Free Filtering Grammar

Informally, a context-free filtering grammar defines a set of syntactic structures, each of

which consists of a dependency tree and a phrase structure tree. The grammar defines

the allowable phrase structures, and the dependency trees that can co-occur with each

phrase structure. Phrase structures are licensed in roughly the same way that they are

by a CFG, with the addition that the grammar must mark each child of each constituent

with an exposure, either Exposed or Hidden. At least one child per constituent must be

marked Exposed.

In a corresponding dependency tree, tokens contained in Exposed children may act

as governors to tokens of sibling constituents and may be dependents of tokens outside

the parent constituent. Tokens contained in Hidden children may act as governors of
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tokens only within the same child and may be dependents only of tokens within the

parent constituent. As we will see in section 3.2.3, the label Exposed can be thought of

as a generalization of the label Head from more traditional lexicalized phrase structure

formalisms.

In devising this framework, I found it useful to think of dependency trees as ‘skeletons’

and phrase structure trees as ‘shells’. The phrase structure trees ‘contain’ the dependency

trees, and restrict possible attachments.

Formally, a context-free filtering grammar G is a 4-tuple 〈N , T ,P , S〉, where:

• N is a set of non-terminal symbols ;

• T is a set of pre-terminal symbols (parts of speech);

• P is a set of production rules ;

• S ∈ N is the start symbol.

Each production rule in P has the form:

L← Re0
0 Re1

1 ...Ren
n

where L ∈ N , Ri ∈ N ∪ T and ei ∈ {Hidden, Exposed},∀i from 0..n. At least one of

e0, e1, ..., en must have the value Exposed.

Informally, (L ← Re0
0 Re1

1 ...Ren
n ) is the same as a context–free grammar production

(L← R0R1...Rn), except that each right–hand–side symbol is marked as either exposing

or hiding its tokens.

An example of a context–free filtering grammar is shown in figure 3.1. This simple

grammar will be used in most of the illustrative examples of this chapter. A larger

grammar fragment for German (sufficient to generate the example in figure 3.10) is shown

in figure 3.2, and will be used for some motivational examples.

Since G is essentially a context-free grammar, we will adopt the familiar notation for

phrase structure derivations: we can speak of a derivation (D : S →∗
G σ) of the string



Chapter 3. Context-Free Filtering Grammar 33

T = {C}
N = {A, B}
S = A
P = {

A← BExposedBExposed,
A← BExposedAHidden,
B ← BHiddenBExposed,
B ← C

}

Figure 3.1: Sample context-free filtering grammar. The pre-terminal C will expand to
terminals a, b, c.

σ from S according to G. If we restrict ourselves to considering left-most depth-first

derivations, then we can also speak of the (labeled) phrase structure tree P induced by

D.

To formally describe the constraints imposed by the phrase structure on dependency-

structure, we will need some notation to discuss relationships between constituents of a

phrase structure tree P . If constituent C1 is contained within C2 (and C1 6= C2), we will

write that C2 strictly dominates C1 (C2 . C1). In an abuse of notation, we will say that

a pre-terminal constituent dominates its matching terminal, despite the fact that G (in

its role as a CFG) only generates the pre-terminals.

If two constituents C1 and C2 are in P , then we will refer to their closest common

ancestor C∗ as the join of C1 and C2 (C∗ = C1 tP C2).

If p is a phrase structure tree with terminal x in its yeild, then let envelopep(x) be

the smallest Hidden constituent in p that dominates x, or the root constituent if x is not

contained in any Hidden constituent.

We will represent dependency trees as connected directed acyclic graphs, in which each

vertex is labeled with a terminal (word token), pre-terminal and linear position (from

the string σ), and edges represent dependencies. As is traditional in work on dependency
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T = {NN,PRELS, PIDAT, V MFIN, V AFIN, ADV, PIS, V V INF, PPER, V V FIN}
N = {NX, V F, SIMPX,MF, C, V XFIN,LK,ADV X, V XINF, R SIMPX, V C,NF}
S = SIMPX
P = {

SIMPX ← V FHiddenLKExposedMFExposedV CExposedNFHidden,
R SIMPX ← CHiddenMFHiddenV CExposed,
C ← NXExposed,
V F ← NXExposed,
LK ← V XFINExposed,
MF ← NXExposed,
MF ← ADV XExposedNXExposed,
MF ← NXExposedNXExposed,
V C ← V XFINExposed,
V C ← V XINFExposed,
NF ← R SIMPXExposed,
NX ← NXExposedR SIMPXHidden,
NX ← NNExposed,
NX ← PRELSExposed,
NX ← PPERExposed,
NX ← PIDATHiddenNNExposed,
V XFIN ← V MFINExposed,
V XFIN ← V AFINExposed,
V XFIN ← V V FINExposed,
V XINF ← V V INFExposed,
ADV X ← ADV Exposed

}

Figure 3.2: Context-free filtering grammar fragment for German.
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grammar, the edge will point from the governor to the dependent. One vertex, designated

the root, has no incoming edges, all other vertices have exactly one incoming edge. In

figures, the root will be denoted by an incoming edge from outside the graph. We will

call all such trees dependency trees of σ.

Let σ be a string and let G be a context-free filtering grammar. Let p be the parse

tree induced by a left-most depth-first derivation D : S →∗
G σ, and let g = {V , E} be a

dependency tree of σ.

Then, together, p and g are a parse of σ if and only if:

1. (u, v) ∈ E ⇒ envelopep(u) . v (this enforces the constraint that tokens in Hidden

constituents may only be governors of tokens within the same constituent, by stat-

ing that dependency edges may not leave a constituent marked Hidden);

2. (u, v) ∈ E ⇒6 ∃i such that u tp v . i . envelopep(v) (this enforces the constraint

that a token in a Hidden constituent may only be a dependent of a token within

its immediate parent constituent, by stating that dependency edges may not enter

a constituent marked Hidden from anywhere other than within the parent con-

stituent).

Figure 3.3 demonstrates condition 1 in an example, and figure 3.4 demonstrates con-

dition 2.

3.2.2 Sample Derivation Using a Context-Free Filtering Gram-

mar

There are a variety of ways to construct a syntactic structure according to a context-free

filtering grammar. One can first derive a phrase structure, and then look for a compatible

dependency tree; one can first choose a dependency tree, and then look for a compatible

phrase structure; or one can assemble both structures at once, bottom up. Foreshadowing

the parsing algorithm I will introduce, I provide an example of the last approach. To
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B(0)

A(1)

A(0)

B(1) B(2)

C(0) C(1) C(2)

a b c

Figure 3.3: Demonstration of constraint 1: hidden tokens cannot govern.

In this example, the A(0) constituent is hidden and all others are either exposed or are

the root. If we look at the terminal b, it may govern c in a dependency relation, but may

not govern a, because a does not lie within b’s envelope A(0).

B(1)

C(1)

ba c

C(0) C(2)

B(0)

B(3) B(2)

A(0)

Figure 3.4: Demonstration of constraint 2: hidden tokens can only be seen from parent.

In this example, the B(0) constituent is hidden and all others are either exposed or are

the root. If we look at the terminal a, it may depend on b, but may not depend on c,

because the nearest common ancestor of a and c is A(0), which strictly dominates the

immediate parent of a’s envelope.
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emphasize the role of the constraints, I show all allowable dependency edges permitted by

each constituent that is built, highlighting in bold the edges of one particular dependency

tree as it is built, bottom-up.

The grammar used in this derivation is in figure 3.1. The derivation is shown in figure

3.5. Each ‘chunk’ of the diagram represents one passive chart arc in a chart parse. Only

those chart arcs contributing directly to the final parse are included in the diagram.

Upward blocky arrows indicate which chart arcs have been combined into each larger

construction. Thin arrows within each chart arc indicate allowable dependency edges in

that arc; thick arrows indicate committed dependency edges.

Attached subconstituents are enclosed either with a solid line (to indicate that their

contents have been hidden by their parent) or a dashed line (to indicate that their contents

have been exposed by their parent.) Unattached subconstituents are drawn with a dotted

line: a constituent’s exposure is only defined in relation to its parent constituent.

3.2.3 Factored Lexicalized PCFG as a Special Case

The context-free filtering grammar approach is best seen as a generalization of a simpler

approach, the factored parsing model of Klein and Manning (2002).

Klein and Manning (2002) propose the factored model in an effort to disentangle the

statistical models of phrase structure and of lexical headedness in lexicalized phrase struc-

ture parsers. They recommend simultaneously searching for a phrase structure tree and

a compatible dependency tree, using an A* search. Because the starting point for their

model is lexicalized PCFG parsing, their notions of ‘dependency tree’ and ‘compatibility’

are fairly limited. In particular:

• each phrase structure constituent must have exactly one head child, and the lexical

head of the constituent is equal to the lexical head of that child; and

• the lexical heads of all other children of a constituent must be immediately governed
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Figure 3.5: Example derivation of a string using a the toy grammar from figure 3.1

.
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S(drove)

V(drove)

VP(drove)NP(John)

NP(Alana) PP(to)

TO(to) NP(school)

Figure 3.6: A simple lexicalized parse tree.

by the head child’s lexical head.

Consider the following grammar, in which head symbols are marked with a *:

T = {V, NP, TO}

N = {S, VP, PP}

P = {

S← NP VP∗

VP← V∗ NP PP

PP← TO∗ NP

}

With this grammar, we can find a lexicalized parse tree for “John/NP drove/V

Alana/NP To/TO School/NP” as shown in figure 3.6. We can trivially express this

grammar (and any context-free grammar with one marked head child per rule) as a

context-free filtering grammar, according to the following observations.

Recall that context-free filtering grammar marks at least one child of each constituent

as Exposed (others may be marked Hidden) and imposes the following constraints on

dependency structure:

1. an edge may only leave exposed constituents;
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2. an edge may enter a hidden constituent if it is the first constituent that the edge

enters;

The class of grammars of the factored model of Klein and Manning (2002) is precisely

the subset of context-free filtering grammars in which only one child is exposed in each

constituent. In particular:

• the one exposed child in each constituent is the head child of the factored model;

• only one token is exposed within each constituent (provable by induction on the

height of the phrase structure); this token is the lexical head of the constituent

under the factored model;

• since only one token is exposed within a constituent, that one token is the only

candidate governor for the lexical heads of the other children, and it follows that

the lexical heads of the other children will all be immediate dependents of that

token (the head child’s lexical head.)

The context-free filtering grammar version of the example grammar from above is:

T = {V, NP, TO}

N = {S, V P, PP}

P = {

S ← NPHiddenV PExposed

V P ← V ExposedNPHiddenPPHidden

PP ← TOExposedNPHidden

}

The corresponding parse tree for “John/NP drove/V Alana/NP To/TO School/NP”

is shown in figure 3.7.
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John drove Alana to school

VP

S

V

NP

NP PP

TO NP

Figure 3.7: A simple lexicalized parse tree shown in a factored representation.

3.2.4 Properties of Context-Free Filtering Grammar

Additional Flexibility

Figure 3.8 provides an example of a phrase structure annotation that does not admit

a linguistically plausible dependency structure (such as figure 3.9) under the factored

model of Klein and Manning (2002).

A number of problems are evident.

• Topological fields don’t have lexical heads. The Mittelfeld (MF) constituent in par-

ticular contains two tokens properly in dependency relations with tokens from other

fields.

• Although the main clause can be said to have a head (‘würden’), not all tokens

exposed within the clause are properly dependents of it (e.g. ‘jemanden’ ought to

be governed by ‘finden’.)

• A good dependency tree for this sentence is not projective: in particular, the relative

clause is governed by the token ‘jemanden’, and this dependency must cross the

relation between ‘würden’ and ‘finden’.

All of these problems can be overcome with a context-free filtering grammar. The parse
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Frauen, die solche Pillen wollten, würden immer finden, der sie ihnen gebe.jemanden

SIMPX

VF LK MF VC NF

R−SIMPX

C MF VC

NX

NX

NN

R−SIMPX

C

NX

PRELS

MF VC

NX

PIDAT NN

VXFIN

VMFIN

VXFIN

VAFIN

ADVX

ADV PIS

NX

VVINF

VXINF

NX

PRELS

NX NX

PPER PPER

VXFIN

VVFIN

Figure 3.8: A phrase structure / dependency structure pair in the style of Klein and

Manning (2002).

NN
Frauen,

PRELS PIDAT NN VMFIN VAFIN ADV PIS VVINF PRELS PPER PPER VVFIN
die solche Pillen wollten, würden. immer jemanden finden, der sie ihnen gebe.

Figure 3.9: A better dependency tree.

tree shown in figure 3.10 is derived from the example grammar of figure 3.2; the derivation

is shown in figure 3.11.

Hidden Structure

The additional flexibility of the new formalism comes at a cost of greater ‘interconnect-

edness’ within its parse trees. In a traditional lexicalized phrase structure tree, each

constituent is characterized by a phrase category label and a single exposed token. Con-

stituents with the same category and head are interchangeable syntactically. This inter-

changeability permits the development of efficient parsing algorithms based on dynamic

programming. In a syntactic structure licensed by a grammar of the new formalism,

each constituent is characterized by a phrase category label and a set of exposed tokens.

Constituents are interchangeable syntactically only if their category and entire set of ex-
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Frauen, die solche Pillen wollten, würden immer finden, der sie ihnen gebe.jemanden

SIMPX

VF LK MF VC
NF

NX
NX

NN PRELS

NX

C

R−SIMPX

MF

NX

PIDAT NN

VC

VXFIN

VMFIN

VXFIN

VAFIN

ADVX NX

ADV PIS

VXINF

VVINF

R−SIMPX

VCMFC

NX NX NX VXFIN

PRELS PPER PPER VVFIN

Figure 3.10: A phrase-filtered dependency tree.

posed tokens match. If a grammar permits the creation of constituents with arbitrarily

large exposed sets, then dynamic programming can no longer be relied upon to produce

efficient parsing algorithms.

Fortunately it is possible, within the framework, to limit this production of arbitrarily

large exposed sets to a small group of phrase categories. A phrase of category L can

expose more than one token only if either:

• a rule with L in its left-hand-side marks more than one right-hand-side symbol as

exposed, or

• a rule with L in its left-hand-side marks as exposed a symbol of another category

that can expose more than one token.

It is therefore possible to construct a grammar for which many phrase categories are

as ‘well-behaved’ complexity-wise as they would have been under a stricter lexicalized

grammar framework, but for which a small number of categories have the greater freedom

required to license plausible linguistic structures.

In the case of the German TüBa-D/Z treebank that will be used for the experiment

in chapter 4, it is the case that phrase constituents (such as noun-phrases) will only ever

expose a single head-token, whereas some field constituents (notably the Mittelfeld) will
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Figure 3.11: Example derivation of a string using a the toy grammar from figure 3.2.
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need to expose multiple tokens. Clauses will also need to expose multiple tokens, to allow

tokens from more than one field to act as governors within the clause, but the clauses

themselves will normally be Hidden when embedded in other constituents, thus limiting

the proliferation of exposed tokens.

Insufficiency for Discrete Analysis

The constraints imposed on dependency structure by context-free filtering grammar are

not particularly discriminating: they serve to relate the dependency structure and the

phrase structure to one another, but are not sufficient to rule out implausible depen-

dency structures. A grammar formalism relying heavily on discrete logical constraints

could benefit from using this formalism as a starting point, but would require additional

constraints on dependency relations.

The formalism is adequate, however, for statistical parsing, in which the plausibility of

syntactic structure is ultimately decided by the weight assigned to a structure according

to a statistical model.

3.2.5 Handling Unconnected Dependency Trees

The experiment described later in this thesis is conducted on a modified version of the

TüBa-D/Z treebank. The original corpus is a phrase structure treebank, in which some

trees contain disconnected constituents. The phrase structure can be re-connected by

means of simple heuristics, but it is unclear how to design simple and accurate heuristics

for automatically creating a fully connected dependency tree from a disconnected phrase

structure. In the derived corpus I will use, therefore, the phrase structure of an utter-

ance is connected, but the dependency structure can be disconnected. In other words,

there may be multiple root governors in the dependency structure. To permit these un-

connected dependency structures, the context-free filtering grammar definition must be

modified slightly.
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T = {C}
N = {A′, A,B}
S = A′

P = {
A′ ← AUnlinked,
A← BExposedBExposed,
A← BExposedAHidden,
B ← BHiddenBExposed,
B ← C

}

Figure 3.12: Sample context-free filtering grammar, modified from figure 3.1 to ensure
that the start symbol always has Unlinked children.

In particular, we can extend the set of available exposures ({Exposed,Hidden}) with

a third value, Unlinked. When a rule assigns the exposure Unlinked to a child, each

token exposed within that child must either be governed by another token exposed within

the child, or must be ungoverned (a root.) Tokens from an Unlinked constituent may

not take part in dependency relations with tokens from sibling constituents.

To simplify parsing, we will want that only tokens of Unlinked constituents be allowed

as roots. The easiest way to achieve this is to require that the start symbol S never

expose any of its children. Instead of having at least one Exposed child, an S constituent

must have at least one Unlinked child. Because it does not expose any tokens, the start

symbol should never appear in the right-hand-side of a production rule. If this restriction

poses a problem for a grammar, then the old start symbol S can be replaced by a new

start symbol S ′, and the rule S ′ ← SUnlinked can be added to the grammar (example

transformed grammar in figure 3.12.)

In the remainder of this thesis, context-free filtering grammar is to be understood as

including this extension.
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3.3 Parsing

How do we parse with a context-free filtering grammar? As with traditional lexicalized

grammars we can use a bottom-up chart parser.

Passive arc signatures in this parser will consist of a phrase-label and a set of tokens

exposed within the constituent spanned by the arc. Passive arcs will store both the

internal phrase structure of the constituent, and all of the dependency relations involving

hidden tokens spanned by the arc.

Active arcs will match lists of passive arcs to prefixes of production rule right-hand-

sides. This matching will include an assignment of exposure to each passive arc.

3.3.1 Chart Arc Definitions

Strings can be parsed according to a context-free filtering grammar using a modified

chart parser (chart parsing is sufficiently ubiquitous that introductions to the approach

can be found in textbooks, such as Allen, 1994). We will assume that the input string is

a sequence of terminal/pre-terminal pairs (i.e. another algorithm performs part of speech

tagging beforehand.)

All chart parser arcs have the following components:

• lhs label: the left-hand-side label of the matching production rule;

• lpos: the position of the first token covered by the arc;

• rpos: the position after the last token covered by the arc;

• rhs: the sequence of non-terminals (annotated with exposure) specified by the

matching rule;

• children: the sequence of passive arcs matching the members of rhs (so far);

• exposed set: the set of all positions exposed within this arc; and
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• inverse dep fun: a partial function mapping positions in D = {lpos, ..., rpos− 1}

to other positions in D, this function is interpreted as mapping dependents to

governors in a dependency structure, and the corresponding dependency structure

must be acyclic.

The chart parser builds arcs of two forms.

• Active arcs have the additional components:

– rule pos: the index of the left-most member of rhs not matched by this arc

(note: while rpos is an index into the sentence, rule pos is an index into the

current rule);

– hidden sets: the set of exposed sets from the passive arcs in children marked

Hidden;

– unlinked sets: the set of exposed sets from the passive arcs in children

marked Unlinked;

In an active arc, inverse dep fun is defined for all elements of:

DA = {t ∈ {lpos, ..., rpos− 1}|

t 6∈ exposed set

and ∀hs ∈ hidden sets, t 6∈ hs

and ∀us ∈ unlinked sets, t 6∈ us

}
.

• Passive arcs have no additional components and, in a passive arc, inverse dep fun

is defined for all elements of DP = {lpos, ..., rpos− 1} \ exposed set.

3.3.2 Parsing Actions

The modified chart parser behaves like a normal chart parser except in its assignment

to arcs of exposed set, hidden sets, unlinked sets and inverse dep fun, and in its gen-
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eration of multiple passive arcs for each rule completion (one passive arc per allowable

inverse dep fun.)

An active arc resulting from rule prediction (i.e. having no children) assigns the

empty set to each of exposed set, hidden sets, unlinked sets and an empty domain to

inverse dep fun.

When an active arc a is formed from a smaller active arc aa and an adjacent passive

arc ap, information from the two child arcs are incorporated into a, but no new decisions

are made (i.e. no additional dependency relations are committed to.) More formally, the

following assignments are made (the symbol ‘.’ is used here to access components of

arcs):

a.inverse dep fun(t) =



aa.inverse dep fun(t)

if t ∈ dom(aa.inverse dep fun)

ap.inverse dep fun(t)

if t ∈ dom(ap.inverse dep fun)

a.exposed set =



aa.exposed set

if rhs symbol matching ap is not exposed

aa.exposed set ∪ ap.exposed set

if rhs symbol matching ap is exposed

a.hidden sets =



aa.hidden sets

if rhs symbol matching ap is not hidden

aa.hidden sets ∪ {ap.exposed set}

if rhs symbol matching ap is hidden

a.unlinked sets =



aa.unlinked sets

if rhs symbol matching ap is not unlinked

aa.unlinked sets ∪ {ap.exposed set}

if rhs symbol matching ap is unlinked

Passive arcs can be generated in two ways: as a result of scanning one element of the
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input sequence, and as a result of passivizing an active edge with a fully matched rhs.

Passive arcs generated by scanning have exposed set = {lpos} and an inverse dep fun

defining no mappings, but are otherwise uninteresting.

When an active arc aa has an element of aa.children matching each element of aa.rhs,

it can be passivized. Passivization involves generating a new passive arc p for each

possible assignment of dependency relations with dependent tokens:

t ∈ {aa.lpos, ..., aa.rpos− 1} \ aa.exposed set

.

Each new passive arc p inherits all of its component values from aa, except for the

inverse dep fun. The component p.inverse dep fun may take on any mapping that

satisfies the following constraints:

• The dependency graph represented by p.inverse dep fun is acyclic;

• aa.inverse dep fun(t) is defined

implies p.inverse dep fun(t) = aa.inverse dep fun(t)

(no dependencies assigned in children of aa are altered);

• For each t ∈ {p.lpos, ..., p.rpos − 1} that is also in some hs ∈ aa.hidden sets,

p.inverse dep fun(t) ∈ hs ∪ p.exposedset

(tokens exposed within a hidden child must be dependent on tokens in the same

child, or on tokens exposed within an exposed child);

• For each t ∈ {p.lpos, ..., p.rpos − 1} that is also in some us ∈ aa.unlinked sets,

p.inverse dep fun(t) ∈ us ∪ {NO GOVERNOR}

(tokens exposed within an unlinked child must be dependent on tokens in the same

child, or must be defined to have no governor);

A passive arc spanning the entire input and having a label matching the grammar’s

start symbol is a full parse of the input. Because a rule forming a constituent bearing
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h:()
u:()

A <− B[e] * A[h]
e:(a)

a b c

a b c

a b c

a b c

a b c

A <− * B[e] A[h]
e:()
h:()
u:()

a b c
B <− * C[e] B <− * C[e] B <− * C[e]
e:()
h:()
u:()

e:()
h:()
u:()

e:()
h:()
u:()

B <− C[e] *
e:(a)
h:()
u:()

B <− C[e] *

h:()
u:()

e:(b)
B <− C[e] *

h:()
u:()

e:(c)

a b c

b

u:()
h:()
e:(b)
A <− B[e] * B[e]

a b

u:()

A <− B[e] B[e] *
e:(b,c)
h:()

b c

C(b)C(a) C(c)

A(b,c)

b c

u:()

A <− B[e] A[h] *

h:( (b,c) )
e:(a )

A(a)

e:()
h:()

A’ <− A[u] *

u:( (a) )

A’()

A’ <− * A[u]
e:()
h:()
u:()

B(a) B(b) B(c)

a c

e:()
h:()
u:()

A <− * B[e] B[e]

Figure 3.13: Chart parsing.

Passive arcs are in solid boxes, active arcs in dashed boxes. In active arcs, ‘e:’ denotes

the exposed set, ‘h:’ the hidden sets and ‘u:’ the unlinked sets. Only chart arcs

contributing to a single parse are shown.



Chapter 3. Context-Free Filtering Grammar 52

the start label has no exposed children (recall the extension of section 3.2.5), we know

that the entire dependency structure is assigned. A diagrammatic representation of a

few steps of parsing with the grammar from figure 3.12 is given in figure 3.13.

Because of the inclusion of sets of tokens as components of arcs, it should be clear that

the worst case time and space complexity of the modified chart parser will be exponential

in the size of the input, even if we use a dynamic programming algorithm for greater

efficiency. In my implementation, I aim to overcome this weakness by manipulating

search order and by pruning.

3.4 Statistical Parametrization

I now turn to the question of how we can apply a statistical model to context-free filtering

grammar. I address two questions at once: how to find the best parse according to the

model (the decoding problem), and how to choose the model parameter values (the

training problem.)

I begin by reviewing the approach to decoding using A* search, introduced by Klein

and Manning (2002) for their factored model, which we also use with the new grammar

formalism. The search requires an admissible heuristic for both bottom-up dependency

parsing and bottom-up phrase structure parsing.

I describe the dependency scoring model, its heuristic and its training process. The

dependency model that I use is a reimplementation of McDonald et al. (2005b). I follow

with a description of the phrase structure model, its heuristic and its training process,

based on the work of Klein and Manning (2003).

Finally, I describe a process for training the dependency model to take advantage

of the information provided by the phrase structure model, leading to an anticipated

improvement in the accuracy of the factored parser.
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3.4.1 Factored Model Search

Following the work of Klein and Manning (2002), I propose a factored scoring model for

context-free filtering grammar parses: a function gp maps each possible phrase structure

tree to a numerical score, another function gd maps each possible dependency tree to a

numerical score, and the total score of a pair of trees is composed from the values of gp

and gd by a third function h. In our case h simply adds its two arguments together, but

more complex arrangements are conceivable.

For this factored model to be of any use, we need a search method that will find the

best combined score over all allowed pairs of phrase structure and dependency trees. As

pointed out at the end of section 3.3, the search space of our chart parser is potentially

exponential in size, so an exhaustive search is not feasible. Fortunately, chart parsers are

quite flexible about the order in which they explore the space, and Klein and Manning

(2002) have demonstrated that factored parsing models can be amenable to A* search.

A* search is a very general and well known algorithm used in artificial intelligence

(and is therefore described in AI textbooks such as Russell and Norvig, 2003). Given

any admissible and monotonic scoring heuristic, the A* search is guaranteed to find the

model-optimal goal (a maximum in our case.) A scoring heuristic is a function that,

given a partial solution S ′ (in our case, a chart arc) predicts the best possible score of a

full solution derived from S ′. A scoring heuristic is admissible if its prediction is never an

underestimate, and monotonic if filling in more detail in a partial solution never leads to

an increase in its predicted score. The amount of the search space that must be explored

to find the solution is largely determined by the accuracy of this scoring heuristic.

Since our factored scoring model simply adds together gp and gd, we can design

independent admissible and monotonic heuristics for both functions, and the sum of the

heuristics will be an admissible and monotonic heuristic for the combined model.
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3.4.2 Dependency-Structure Model

Linear Scoring Model

McDonald et al. (2005a) and McDonald et al. (2005b) introduce a highly effective model

for scoring non-projective dependency trees, which we use as the gd component of our

factored model. Each tree is assigned a score that is the sum of the independent scores

of the individual dependency edges in the tree. For the sake of uniformity, root tokens

will be scored as if they were dependent on a special hidden ‘ROOT’ node: this means

that in every tree there are effectively as many dependency edges as there are tokens.

The score of an individual edge e is given by the formula:

scoree = fe ·w

where fe is a vector of binary feature values (each value is 1 if the dependency has the

feature, 0 if not) and w is a vector of feature weights. There are millions of features in

McDonald et al.’s model, but only a few of them are expressed for any given edge. The

features will be described below, under the heading Feature Set.

The total score of a dependency tree T is given by:

gd(T ) = fT ·w

where fT =
∑

e∈T fe

Scoring Heuristic

It is quite feasible to devise a prediction heuristic for the value of gd, to be used by our A*

chart parser. Recall that our dependency scoring model assumes exactly one dependency

edge per token position: each token will be the destination of one edge. Each chart arc

includes a partial dependency function, so the edges (and their scores) associated with

some positions may already be known exactly. The score of the edge associated with
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each position x among the remaining positions can be bounded above by choosing the

maximum score over all possible edges from any position in the sentence to x.1

Feature Set

The base set of feature patterns used is given in table 3.1. Every combination of values

seen in the training data that matches the fields of a feature pattern is considered one

feature. So, for example (p w = haben, c p = PPER, dist = −1) could be a feature

matching the pattern (p w, c p, dist), as could be (p w = Mai, c p = APPRAT, dist =

−2).

The features used in our model differ from those used by McDonald et al. in that we

use only a subset of their features: in particular McDonald et al. use not only word-based

fields (pw, cw) in the construction of patterns, but also 5-character-prefix-based fields.

Training

To estimate the values in the weight vector for dependency scoring, we could use the

single-best MIRA training technique used by McDonald et al. (2005b). MIRA was intro-

duced for online large-margin learning over a general set of problems by Crammer and

Singer (2003); Crammer et al. (2004).

Briefly, the method works as follows. The weight vector is initialized to the zero

vector. A sentence from the training data is parsed using the non-projective maximum

spanning tree (MST) method of McDonald et al. (2005b). If the resulting tree (T ) does

not match the gold standard tree (T ∗) for the sentence, the weight vector is adjusted so

that the correct tree T ∗ would have outscored T by a value at least as large as the number

of wrong dependency edges in T (other margins are possible, this one is referred to as the

hinge loss.) Of all possible adjustments establishing the desired margin, the adjustment

1Tighter heuristics are possible, for instance taking the maximum spanning tree over unattached
tokens, but I will use this simple one for my experiments.
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base features

dist, p-w, p-p, c-w, c-p

dist, p-w, p-p, c-w

dist, p-w, p-p, c-p

dist, p-w, p-p,

dist, p-w

dist, p-p

dist, p-p, c-w, c-p

dist, p-w, c-w, c-p

dist, c-w, c-p

dist, c-w

dist, c-p

dist, p-w, c-w

dist, p-w, c-p

dist, p-p, c-w

dist, p-p, c-p

between features

dir, p-p, b-p, c-p

context features

dir, p-p, p-p+1, c-p, c-p+1

dir, p-p-1, p-p, c-p, c-p+1

dir, p-p, p-p+1, c-p-1, c-p

dir, p-p-1, p-p, c-p-1, c-p

Table 3.1: Dependency edge scoring features:
c-w is the child (dependent) word type, c-p is child part of speech, p-w, p-p are parent
(governor) word and part of speech, dist is the position of the child minus the position
of the parent, dir is the sign of dist, b-p is the part of speech of a token between the
parent and child, p-p+1, p-p-1, c-p+1, c-p-1 are the parts-of-speech of the tokens
(immediately) after the parent, before the parent, after the child and before the child.
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with the smallest Euclidean norm is chosen; this is fundamental to maintaining the

theoretical properties of MIRA. In other words, given an original weight vector w, we

find an updated vector w′ that is the solution to the optimization problem:

minimize: |w′ −w|

subject to: w′ · fT ∗ −w′ · fT ≥ NumDifferentEdges(T, T ∗)

After the weight vector is adjusted, the next training sentence is parsed and the process is

repeated. Training continues over the full set of samples in multiple passes until parsing

accuracy on a development test set stabilizes.

The final weight vector output by this process may fail to provide good results on

new data, because updates made on later examples may have led to a model no longer

capable of correctly parsing earlier examples. Collins (2002) demonstrates that using the

average of the weight vector over the full course of training can improve the generality

of a discriminative model trained incrementally. This technique was carried over in the

work of McDonald et al. (2005a) and McDonald et al. (2005b), and I also use it.

3.4.3 Phrase Structure Model

PCFG with Treebank Transformation

The phrase structure scoring function (gp) is based on a probabilistic context-free gram-

mar (PCFG) model (a rapid introduction to PCFG can be found in textbooks such as

Manning and Schütze, 1999). Each production rule is assigned a probability of being

chosen to expand its left-hand-side symbol, and the score of each tree T is the base-10

log of the probability of T being generated stochastically by the grammar from the start

symbol S. The main difference between our model and traditional PCFG lies in what

constitutes a production rule. In context-free filtering grammar each rule has the form:

L← Re0
0 Re1

1 ...Ren
n
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where L ∈ N , Ri ∈ N ∪ T and ei ∈ {Hidden, Exposed, Unlinked},∀i from 0..n. The

exposures are an integral part of the rule, and otherwise identical rules with differing

exposure labellings may be generated with different probabilities.

Scoring Heuristic

Since gp is essentially a PCFG score, we can use the same heuristic for the phrase structure

component as Klein and Manning (2002): the (log) joint probability of the production

rules used in the derivation of the chart arc plus the outside score of the arc’s constituent.

All possible outside scores can be precomputed using the CKY algorithm before starting

the chart parser.

Rule Scoring Details

To improve the scoring function’s granularity, parent encoding is used. Parent encoding

is the practice of labeling every non-terminal constituent not only with its category, but

also with the category of its parent. Thus the non-terminal set of the PCFG is the set of

all child cat∧parent cat pairs seen in the training data. The substantial benefits of parent

encoding for pure PCFG models are pointed out by Johnson (1998), and elaborated upon

by Klein and Manning (2003). The number of ancestors to consider is a parameter that

can be tuned against a development corpus.

The Klein and Manning (2003) study describes parent annotation as taking advan-

tage of vertical history to make constituent generation decisions, to distinguish it from

taking advantage of the horizontal history of decisions. The horizontal history refers

to the siblings generated between a current decision point and the head child of a con-

stituent. Both Johnson (1998) and Klein and Manning (2003) point out that PCFGs

stripped näıvely from corpora encode too great a dependence on horizontal history (i.e.

probabilities are defined over complete right-hand-sides of production rules), resulting in

sparse data problems.
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This issue can be alleviated by Markovizing the model, so that children are generated

individually (conditioned on their head and nearby inward siblings), rather than en-

masse.2 The Markovization of productions is also used in this study. The number of

siblings to consider in a Markovized model is a parameter tunable against a development

corpus. To illustrate the model used in this study, I will describe it in the particular case

where up to one sibling is considered. Given a parent constituent of category L:

1. the model generates a head child of category H with probability Pr(H|L);

2. the exposure of the head is pre-determined (Unlinked if L = S, Exposed other-

wise);

3. on the left side of the head, no siblings may be generated, with probability

Pr(STOP LEFT|H, L);

4. if an inner-most sibling is generated, its category C1 and exposure e1 are chosen

with probability Pr(C1, e1|H, L);

5. before generating each additional ith sibling, the process may stop with probability

Pr(STOP LEFT|Ci−1, H, L);

6. each ith additional sibling with category Ci and exposure ei is generated with

probability Pr(Ci, ei|Ci−1, H, L);

7. symbols to the right of the head are generated in the same manner as those to the

left.

Although context-free filtering grammar permits multiple exposed right-hand-side

children, the Markovized PCFG model assumes one distinguished head. In any rule with

2Note that Markovization of rules can be implemented as a grammar transformation. This was in
fact done in my parser implementation. The new grammar has only binary rules and has more general
coverage than the original, but remains a PCFG. If Markovization by grammar transformation is used,
then parse-trees generated according to the new grammar need to be detransformed back into the original
format to eliminate the ‘rule-internal’ non-terminals that were not present in the original grammar.
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exactly one exposed child, that child is the head, otherwise we take the leftmost exposed

child to be the head (or for top-level rules, the leftmost unlinked child.)

Grammar Extraction

The production rules can be stripped from a parallel corpus of phrase structure and de-

pendency trees, in essentially the same way as with normal context-free grammars. The

only complicating factor is that each right-hand-side symbol of a rule needs to be anno-

tated with an exposure, and treebanks do not come annotated with constituent exposures.

We therefore need to be able to perform this annotation ourselves, automatically, before

extracting the grammar.

This annotation decision is simple to make for each constituent. Consider all tokens

in the yield of a constituent c:

• if no token is dependent on a token outside c, then constituent must be Unlinked;

• if any token governs a dependent outside c, then c must be Exposed;

• if any token is the dependent of another token not in the immediate parent of c,

then c must be Exposed;

• otherwise c is Hidden.

In some cases, it may be preferable to assign exposures based on linguistic knowledge

about the category of c. In the experiment done as part of this research, the TüBa-

D/Z corpus was used, which includes topological field constituents. I choose to mark all

children of each topological field as Exposed, and rely on the more complicated heuristic

just described for all other categories of constituent.

As with regular PCFGs, we count the number of occurrences of each rule (keeping

in mind that rules may be distinguished by differing exposures, even if the right-hand-

side symbols are otherwise identical), and use the counts to compute estimates for all

Markovized rule generation probabilities.
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3.4.4 Factored Model Training

The base training method for the dependency-scoring weight vector does not take advan-

tage of phrase structure information: the weight vector is trained as if the model had to

be able to choose from among all possible dependency trees. In our factored model, how-

ever, the weight vector will only really have to choose among dependency trees licensed

by high-scoring phrase structure trees.

The approach taken in this work in order to exploit the reduced responsibility of the

dependency model, is to modify both the selection of the training tree T and the update

procedure used in training. In the base training process, T is chosen using an MST

dependency parser. In the factored trainer, T is chosen using A* search over the full

factored scoring model. The update procedure will work differently for two cases:

1. if the phrase structure (call it P ) returned with T licenses the correct dependency

tree T ∗, or is outscored by a phrase structure P ∗ that does, then the original update

procedure is used;

2. otherwise we find the highest scoring phrase structure (call it Ph) that does license

the tree T ∗ and we update by solving the optimization problem:

minimize: |w′ −w|

subject to: w′ · fT ∗ −w′ · fT ≥ 1.0 + gp(P )− gp(Ph)

In the first case, the phrase structure found by the factored parse is correct — gp has

contributed as much as it can. In the second case, gp predicted the wrong phrase struc-

ture, and gd must be modified to compensate for the error. The constant factor of 1.0

ensures that the new classifier will give a better score to the correct tree than the found

tree, rather than simply an equal score.
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3.5 Summary

In this section I have presented context-free filtering grammar, a generalization of the

grammar required by the factored model of Klein and Manning (2002). The generalization

works by permitting more than a single token to be ‘exposed’ by each constituent. I

demonstrated some of the representational advantages of the new model using an example

from the German TüBa-D/Z corpus. I extended the generalization to handle potentially

unconnected dependency structures and I outlined a chart-parsing method to recover

parse trees according to a context-free filtering grammar.

Having provided a new mechanism for encoding the constraints between phrase struc-

ture and dependency structure, I proposed a statistical model and parsing method derived

from Klein and Manning (2002). The new model combines the dependency model of Mc-

Donald et al. (2005b) with a PCFG model similar to that of Klein and Manning (2003).

I provided an admissible and monotonic heuristic for the new factored model, suggesting

that the A* search that works so well for Klein and Manning (2002) will also work for the

new model. Finally, I introduced a method for training the new model to take advantage

of the interaction between phrase structure and dependencies.
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Experimental Design

4.1 Overview

In this chapter, I describe my approach to testing whether or not the potential strength of

a factored-model statistical parser built on context-free filtering grammar (henceforth the

experimental model) actually manifests itself when parsing real-world data; in particular

sentences of the German TüBa-D/Z treebank.

Context-free filtering grammar can be argued to be of potential interest in future

research projects on one of two grounds:

1. the new formalism permits a parser to reliably generate more useful syntactic anal-

yses than was previously possible; or

2. the new formalism improves parsing reliability on tasks of which already-existing

systems are capable.

The experiment outlined here aims to establish 2. We should not forget 1, however.

Context-free filtering grammar does allow a simultaneous and complementary phrase

structure and dependency analysis that is not possible in previous statistical parsing

systems. As the experimental results of the next chapter demonstrate, the new system

63
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provides this enhanced output without compromising accuracy compared to either pure

phrase structure or pure dependency parsers.

We would expect the experimental model to ‘outperform’ a pure phrase based parser

or a pure dependency parser. This expectation is based on the original finding of Klein

and Manning (2002) that their factored model outperforms its component phrase and

dependency models on the Penn treebank, and on the finding by Kübler et al. (2006)

that the same factored model outperforms its phrase structure component on the TüBa-

D/Z treebank. This latter result comes despite the fact that the factored model used

by Kübler et al. is not modified to handle topological field constituents differently from

phrase constituents: each field is treated as a headed phrase in which the left-most child

is the head (personal communication with the authors.) Since these ‘heads’ are not

systematically linguistically justifiable, their relations to their dependents and governors

are possibly quite arbitrary and unpredictable. The experimental model does not restrict

field constituents to having only one token in dependency relations with other parts of

the sentence, and can model more realistic dependency relations as a result. We can hope

that the improved dependency modeling will lead to a further improvement in accuracy

by the experimental model over the original factored model.

The essence of the experiment is as follows:

1. I do some preliminary tests to tune a number of parameters, on a development set

drawn from the German TüBa-D/Z treebank;

2. I run tuned versions of a pure phrase structure parser, a pure dependency parser,

a factored parser in the style of Klein and Manning (2002), and a factored parser

with the experimental model, on a test set drawn from the German TüBa-D/Z

treebank;

3. I determine whether the experimental model outperforms the other three.
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4.2 Hypotheses

The parsing system outlined in the previous chapter aims to combine the strengths of

context-free parsers and dependency parsers. Accordingly, we would expect the following.

1. The experimental model will produce better phrase structure trees than a well-

tuned unlexicalized PCFG parser.

2. The experimental model will produce better dependency trees than a well-tuned

dependency parser.

3. The experimental model will produce better phrase structure trees than a well-

tuned (but context-free) lexicalized parser.

In each case, the null hypothesis is that the experimental model will either under-

perform the other parser, or that any improvement shown by the experimental model

can likely be attributed to chance.1 Although demonstrating that the null hypothesis can

likely be rejected is arguably due diligence in any experiment, in this case we are more

interested in being able to conclude that the new system is better than existing systems

to a degree large enough to justify its additional complexity.

In the remainder of this chapter, I flesh out what I mean by ‘better’ and I address more

clearly how the parsers are tuned and how their performance is measured. Unfortunately,

comparisons between parsers will have to rely on simplistic quantitative measures of their

ability to reproduce gold-standard data. Comparisons based on a deeper analysis of

results are difficult to justify except in relation the specific needs of an application, and

this work was not carried out in the context of any particular application (industrial or

academic.)

1What ‘chance’ actually means in this context is an interesting question, and one that will be partially
addressed in section 4.3.4.
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4.3 Challenges

The experiments of this chapter were designed under a number of constraints that po-

tentially reduce our ability to spot meaningful differences between the parsing strategies.

Many of these constraints are imposed by mismatches in the representational assump-

tions of the TüBa-D/Z corpus annotation and of the parsers. In principle, the parsers

could be augmented to the point where all of the information available from the corpus

can be used, but the development effort might not be warranted if we can detect obvious

failures or successes of the models without these enhancements.

4.3.1 Oversimplifications in the Syntactic Representation

A source of concern in this study is that syntactic representations used by all of the

parsers admit some ambiguities. The phrase structure parsers produce context-free out-

put matching the node-labels of the TüBa-D/Z corpus, but do not output the edge-labels

of the corpus. These edge labels encode grammatical functions, especially verb-argument

structure. The labels also encode dependencies between phrases in different topological

fields. In their absence we are unable to directly evaluate the parsers’ sensitivity to these

linguistic features.

The dependency trees used in this experiment are unlabeled, so again there is signif-

icant ambiguity in the grammatical relations represented in a single tree. Furthermore,

co-ordination is notoriously problematic to represent in dependency trees, and the lack

of labels only worsens this problem.

We might expect, however, that models that better capture information about gram-

matical function will be able to outperform models that do not, even according to parsing

metrics that do not directly measure a parser’s ability to report these relationships. A

classic example of this is the use of lexicalization in PCFG-parsing: a parsing model

leveraging lexical information (an indirect source of knowledge about grammatical func-
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tion) can score better on constituent precision and recall than a model that does not,

even though constituent precision and recall do not measure a model’s ability to recover

lexical dependencies.

4.3.2 Lack of Gold-Standard Dependency Trees

There are no published dependency trees for the TüBa-D/Z corpus (although Kübler

and Prokić, 2006, recently generated their own). We are therefore constrained to using

trees produced from the phrase structure treebank using heuristic rules. Since these

automatically generated dependency trees have not been assembled (or even verified!) by

trained linguists, their usefulness is at best hypothetical. We can, however, retroactively

impute some degree of validity to these trees if a parser having access to them can

outperform a parser that does not, when evaluated with respect to the gold standard

phrase structure trees.

4.3.3 Measuring Performance

What it means for one parser to outperform another is a troubling question. Ideally,

we would want to be able to compare the suitability of different parsers as components

in a variety of user applications. But it is often the case, as it is here, that statistical

parser development is undertaken independently of any larger application. Under these

conditions, it is necessary to speculate as to what behavioural properties of a parser could

be of interest to an application developer and to measure these properties. Traditionally,

the Parseval metrics of Black et al. (1991) have been used to evaluate phrase struc-

ture parsers, and governor identification accuracy has been used to evaluate unlabeled

dependency parsers (if a governor is assigned to every terminal except the one root, then

precision and recall are the same.)

I report phrase structure parsing accuracies according to the following metrics:
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coverage: the proportion of sentences for which the parser produced a parse tree.

perfect: the proportion of gold-standard sentences for which the parser produced exactly

the correct tree.

mean crossing brackets: the number of crossing brackets (defined according to Black

et al., 1991) divided by the number of sentences parsed.

0 crossing brackets: the proportion of sentences parsed that contain zero crossing

brackets.

micro-averaged labeled constituent precision: the total number of constituents cor-

rectly found by the parser (over the entire test corpus) divided by the total number

of constituents output by the parser. The special root constituent and the pre-

terminal constituents are not included in the counts.

micro-averaged labeled constituent recall: the total number of constituents cor-

rectly found by the parser (over the entire test corpus) divided by the total number

of constituents in the gold-standard results. The special root constituent and the

pre-terminal constituents are not included in the counts.

Of these metrics, I pay special attention to the perfect score: although it is a harsh metric,

there can be no question of what it means. An exact match with a gold-standard parse is

as useful to an application as the gold-standard parse would have been. Partial sentence

matches, that receive points under other metrics, may be more or less useful, depending

on the needs of the application and on the precise nature of the error made. The perfect

score also shows a large amount of variability between different parser configurations,

and relying on it for tuning reduces the odds of having to resolve a tie.

One problem that the perfect score does have is that it will tend to emphasize per-

formance on shorter sentences (which are easier to parse correctly) and will not reflect

the reasonableness or unreasonableness of behaviour on longer sentences.
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I report dependency parsing accuracies according to these metrics:

perfect: the proportion of gold-standard sentences for which the parser produced exactly

the correct tree.

micro-averaged non-root attachment precision: the total number of correct de-

pendency edges produced by the parser (over the entire test corpus, and excluding

dependencies incident to the special Root token) divided by the total number of

dependency edges produced by the parser (excluding those incident to the Root

token.)

micro-averaged non-root attachment recall: the total number of correct depen-

dency edges produced by the parser (over the entire test corpus, and excluding

dependencies incident to the special Root token) divided by the total number of

dependency edges in the ‘gold-standard’ results (excluding those incident to the

Root token.)

Again, I pay special attention to the perfect score. I elect to ignore edges incident to

the Root token, because a large number of the tokens dependent on the Root are

punctuation symbols, and attaching them correctly is trivial. An alternative approach

would be to ignore punctuation explicitly. Ideally the punctuation would not be in the

trees at all, but it is included in the phrase structure trees and treating every punctuation

mark as ‘just another token’ simplifies the task of gathering model features sensitive to

punctuation.

As a final note, rather than comparing parsers, we might consider comparing models.

Two probabilistic models can be compared according to the likelihood that they assign

to previously unseen correct parse trees. The dependency component of my parser,

however, is not a probabilistic model. It would still be possible to compare the average

rank assigned to each unseen correct parse tree (in relation to other parse trees considered
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by the model for the same input sentence), were it not for the pruning performed by my

search algorithm.

4.3.4 Establishing Statistical Significance

In comparing the metrics of results from two parsers, A and B, where we wish to claim

that the results of B are better than those of A, and having seen sample results in which

B does outperform A, we wish to be able to determine how likely it is that B’s results

were better than A’s results simply ‘by chance’.

But what do we mean by ‘chance’? In the statistical parsing community, parsers are

developed, trained and evaluated against an annotated corpus. The corpus is seen to

have been created by an unknown random process R. Before development and training

of the parsers, a test set is put aside from this corpus, to be ignored until the time comes

to evaluate the parser. If this sample is not examined until after the parsers have been

developed and trained, then we claim to be able to treat the unseen sentences as having

been newly generated by R.

Suppose we expect parser B to produce better results than parser A. We attempt a

proof by contradiction: we assume that the results of A are as good as the results of B

over the distribution of the random process R. We ask what the likelihood is of seeing

the results we achieved, over a random sample generated by R. If the answer is “not very

likely at all,” we conclude that the assumption must have been false, and that B really is

better than A. This conclusion comes with the caveat that it isn’t strictly impossible for

us to have seen the results that we did, and we report an upper bound on the probability

that we could have been wrong (the significance.)

Establishing significance values over some of the metrics outlined above in section

4.3.3 is difficult to do analytically. Instead of trying to find a well understood distribution

for these values, and approximating significance based on this distribution, I have opted

to use a paired permutation test (designed according to Good, 2000, p.25). In brief,
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the permutation test works by estimating the distribution of results over R under the

assumed hypothesis that A is as good as B. If we assume:

1. that the expected value of per-sentence evaluation scores of A parsing sentences

from R is the same as the expected value of the per-sentence evaluation scores of

B parsing sentences from R (the null hypothesis);

2. that the results on different sentences are independent; and

3. that the results of A parsing sentences from R have the same distribution (differing

in mean, possibly, but not in shape or variability) as of B parsing sentences from

R;

then we can estimate the distribution of the difference in the statistics between A and

B over different samples from R by looking at all possible rearrangements of the results

over the sample we have.

Consider the results we have for a single sentence. If the results for that sentence

generated by A and generated by B are random and drawn from the same distribution

(which we are assuming), then they differ only by a random error term. The error

generated by A could just as easily have been generated by B, and visa versa. We can

ask what the overall statistics for A and B would have been if the errors had been drawn

in reverse. If we ask this question for every subset of sentences in the test set, then

we wind up 2n new samples differing only in their assignments of random measurement

errors. Computing the difference in statistics over all of these new samples gives an

estimate of the behaviour of the difference in statistics over any sample from R, under

the assumptions above.2 We can estimate the significance of the original finding as the

proportion of differences, over the permuted results, in which B beats A by more than

it did in the original results.

2In practice, I will sample permutations at random 10,000 times, rather than trying all possible
permutations.
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The first assumption above is the null hypothesis that we hope to contradict, with

an upper bound on the significance of the conclusion. But we can only rely on the

significance of the conclusion if we can be certain that the other two assumptions hold.

In most statistical parsing research, the test set consists of a contiguous block of

text, and it is widely believed that measurements of syntactic parsing performance on

sentences from such a block will not be entirely independent. I am not aware of any

quantification of how bad this problem is: how large a sample would be required for an

uninformed observer to be able to detect the dependence? Given that I drew my sample

at random from the corpus, any dependence will be even further diluted, but the fact

remains that the independence assumption cannot be justified.

We also have no reason to believe that the third assumption holds. Perhaps parser A

consistently achieves some degree of correctness, while B either gets a sentence all right

or all wrong. Perhaps one parser is more sensitive to the length of a sentence than the

other. This problem is potentially quite damaging. In the case of simple means (e.g.

the perfect score), we can wrest some solace from the result cited in Good (2000) on

pg. 212 (Theorem 7): that as the sample size runs to infinity, the significance value

produced by the permutation test will asymptotically approach the exact value, even

if the distributions from the two parsers are not of the same shape (independence of

measurements must still hold, however.)

In sum, the ‘significance’ values that I will be computing can only be treated as a

rough approximation of the probability that we can reject a null hypothesis. A skeptic

(or a statistician) would probably go so far as to call these values entirely worthless and

misleading, but I am aware of no better process for detecting whether or not the results

have any potential validity.
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4.4 Corpus Data

The treebank corpus used in any experiment involving statistical parsers is of critical

importance: the treebank is needed both to train the parsers and to evaluate their

output. In the following paragraphs I will review briefly the properties of the corpus

used in this experiment, the TüBa-D/Z corpus, and a number of additional resources we

can derive from this data.

4.4.1 TüBa-D/Z Description

The TüBa-D/Z treebank corpus contains just over 22,000 sentences of German newspaper

(‘die Tageszeitung’) text, for a total of over 380,000 tokens, including punctuation marks.

Each sentence is annotated with context-free phrase structure. Constituent annotations

within noun phrases and prepositional phrases will appear familiar to users of earlier Penn

treebank-style corpora, with the addition of edge-labels to mark which constituents are

head constituents. It is immediately below the clause-level where significant differences

are to be found: rather than being divided into a subject and verb-phrase, TüBa-D/Z

clauses decompose into topological fields which contain the various verbal constructs,

arguments and adjuncts. In a main declarative clause, one can expect to find the following

fields (in order):

Vorfeld: the first field contains one phrase, often the subject;

linke Satzklammer: the left sentence bracket contains the finite verb of the clause or

an auxiliary;

Mittelfeld: the middle field can contain any number of phrases, usually arguments and

adjuncts of the verb;

Verbkomplex: the right sentence bracket, also known as the verb complex, contains a

finite verb, one or more participles or a verb particle;
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Nachfeld: the final field, if present, often contains longer phrases, especially relative or

subordinate clauses (some clause types can only occur in the Nachfeld.)

Since verb-argument structure is not explicit in the nesting of these phrases, grammatical

functions are indicated by means of the edge-labels on all constituents immediately below

the field level.

The TüBa-D/Z annotation is unusual in the number and kinds of sources of con-

stituent labels. In many corpora, terminal nodes are labeled with part of speech tags,

while internal nodes are labeled with phrase types (e.g. noun phrase, prepositional

phrase.) This is also true with TüBa-D/Z , but in addition to internal nodes bearing

phrase labels, there are also nodes bearing topological field names. It is worth keeping

in mind that although the parsers will be evaluated on their ability to retrieve ‘correctly

labeled constituents’, the labels do not represent one property of syntax but rather three:

part of speech, semantically coherent phrase type, and topological field. Performance on

these three kinds of properties could be evaluated independently (indeed, part of speech

is handled separately: it is excluded from consideration.)

An example parse tree from TüBa-D/Z is shown in figure 4.1. For a fuller account of

the treebank annotation, please refer to Telljohann et al. (2005).

The treebank has one peculiarity which must be addressed: parse trees are not always

connected (the tree in figure 4.1 is disconnected, for example.) Each punctuation mark is

represented by a free-floating token with no parent constituent. A parenthetical element

may likewise be left unattached, with no parent. Multiple independent clauses, if not

explicitly co-ordinated, may be represented as disconnected constituents. I eliminate this

disconnection by adding a top-level root constituent to every sentence, and by projecting

all unattached constituents (including punctuation) upward as far as possible until each

one is embedded in some higher-level parent (example in 4.2.)

To the reader unfamiliar with TüBa-D/Z , it might be helpful to take in a few of

the quantitative properties of the corpus (the following were all computed over the ex-
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Figure 4.1: A disconnected phrase structure tree from TüBa-D/Z .
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Figure 4.2: A connected phrase structure tree derived from TüBa-D/Z .

periment’s training set.) The average sentence is 17.2 tokens long, 14.7 tokens long if

punctuation is omitted. 87.0% of sentences have at least one clause.3 42.1% of sentences

have more than one clause. 18.8% of sentences contain a clause without a subject and

10.9% of sentences, a clause without its own finite verb.4 31.5% of sentences contain

some form of co-ordination, and in 8.2% of sentences entire fields or groups of fields are

co-ordinated.5 In the dependency trees derived from the corpus (see section 4.4.3, below)

12.5% of sentences contain at least one non-projective dependency.

3what I have been calling a sentence is more accurately called an utterance, since it includes short
non-sentential phrases appearing in the newspaper text.

4note, however, that a clause formed by the co-ordination of two other clauses will be included in
this count.

5co-ordinated fields occur when two ‘clauses’ share field elements, especially the Vorfeld.
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4.4.2 Corpus Split

Before development of the parsers begins, the TüBa-D/Z treebank is split into three sub-

sets: a training set comprising roughly 90% of sentences (19,856 of them), a development

set comprising roughly 5% of sentences (1,109 of them) and an test set comprising roughly

5% of sentences (1,126 of them.) Because of computing resource (memory) limitations,

only sentences with 40 or fewer tokens, including punctuation, are used in evaluation

(1,070 in the development set and 1,086 in the test set.) The same limitations apply to

the factored model training, which is only performed on sentences of 40 or fewer tokens.6

The grammars extracted for this experiment are extracted from the full set of training

sentences and the pure dependency models are also trained over the full set of training

sentences.

The dependency tree extraction scripts, grammatical formalism and parser implemen-

tations are all developed in consultation with the training set. The statistical models are

trained on the training set; the development set is used for debugging the parser imple-

mentations. Further uses of the development and test sets are described in the remainder

of this chapter.

The split is done randomly, each sentence being assigned to one of the three subsets

independently of all other sentences. If we were intending to evaluate the performance

of a parser in absolute terms, this split potentially gives an artificial boost to scores by

including in the test set sentences that come from the same documents and paragraphs

on which the parser was trained and tuned. Of course, this is but an exacerbation of

the fact that we are training and evaluating on text derived from the same underlying

publication (‘die Tageszeitung’.) I should not expect this to negatively reflect on an

effort to compare the parsers within this study however: they all have the same potential

advantage.

6The table of precomputed outside scores used in the phrase-structure scoring heuristic is the main
user of memory and the primary reason for a limit on input length.
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Moreover, drawing test set examples at random from the entire TüBa-D/Z corpus

increases our chances of achieving representative coverage of the full range of linguis-

tic phenomena in the treebank. The selection method may also have implications for

computing the significance of differences between parsers (see section 4.3.4.)

4.4.3 Dependency Tree Extraction

The dependency treebank used in this experiment is extracted from the TüBa-D/Z phrase

structure corpus by a rule-based script. As much as possible, I try to rely directly on

information provided by the phrase structure and by the edge-labels from the original

data.

In broad terms, the script works bottom-up. Each terminal node takes its lexical item

as its head. Each non-terminal node, once its children have been assigned heads, finds

the child with edge-label ‘HD’ and takes that child’s lexical head as its own lexical head;

all other children have their lexical heads assigned as dependents to this parent head.

This general strategy is not applicable in a number of circumstances (and thankfully

too, since this is what makes the dependency trees valuable.) A clausal constituent

(‘SIMPX’, ‘R-SIMPX’ or ‘P-SIMPX’) requires the most interesting treatment. Recall

that the immediate children of a clause are field constituents. The script first processes

those fields containing verbal elements (the linke Klammer ‘LK’ and the Verbkomplex

‘VC’): the finite verb (or auxiliary) is selected as the verb-head, and any remaining verbs

are chained together according to the annotation available in the Verbkomplex. The final

dependent in this chain of verbs is the main verb of the clause. The verb-head and main

verb could be the same token, if there is only one verbal token in the clause. The script

next looks at the phrases within the remaining fields in the clause. Each of these phrases

has one lexical head and an edge-label that marks its grammatical function. The script

uses this grammatical function to find the governor of the head according to table 4.1.

The verb-head is then taken to be the head of the clause.
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child label potential governor labels
ES verb-head
ON (nominative-object) verb-head
OD (dative-object) main verb
OA (accusative-object) main verb
OG (genitive-object) main verb
OS (sentential-object) main verb
OPP (prepositional-object) main verb
OADJP (adverbial-object) main verb
OADVP (adjectival-object) main verb
PRED (predicate) main verb
FOPP (passivized subject) main verb
MOD (modifier) verb-head
ON-MOD ON

OA-MOD OA

OD-MOD OD

OG-MOD OG

OPP-MOD OPP

OS-MOD OS

PRED-MOD PRED

FOPP-MOD FOPP

OADJP-MO OADJP

OADVP-MO OADVP

V-MOD main verb
MOD-MOD MOD,X-MOD

Table 4.1: Governor selection for the immediate children of a clausal constituent. In some
cases the labels may not be sufficient to disambiguate dependency attachments. When
this happens the TüBa-D/Z corpus supplies the attachment information explicitly.
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The dependency representation I use for co-ordination is based on Mel’čuk (1988):

the head of the first conjunct is the head of the co-ordinated phrase, the conjunction

itself is a dependent of this first head, and all conjuncts after the first are dependents of

the conjunction. In the case of co-ordinated fields, the phrases within the first conjunct

field are available to participate in relations with other elements of the enclosing clause,

but phrases in subsequent conjuncts are not. The conjunction is a dependent of the

most dominant verb in the first conjunct (usually a finite verb) if the conjunct contains

any verbs, otherwise the conjunction is a dependent of the head of the first phrase of

the first conjunct. Subsequent conjuncts are processed as if they were clauses, and then

linked to the conjunction. Treating later conjuncts as clauses leads to relatively intuitive

structures, unless these conjuncts contain no verb, in which case the results can be

arbitrarily bad (this, thankfully, is a relatively rare occurrence.)

As mentioned above, the original TüBa-D/Z trees may be unconnected. As with

the phrase structure trees I use for this experiment, I eliminate the disconnectedness in

the dependency trees by adding a special Root token. The heads of all free-floating

constituents are treated as dependents of this special token (this includes, for instance,

all punctuation symbols.)

Figure 4.3 shows an example of the final result of the dependency extraction process.

4.4.4 Phrase-Head Tree Extraction

In addition to the proper dependency trees used in the experiment, we also need trees

of linked phrase heads. These phrase-head trees are required to train the Klein-and-

Manning-styled (2002) factored lexicalized parser, against which the experimental model

is to be compared.

The phrase-head trees are formed by assigning to each constituent a head token. The

head token must be the head of one of the constituent’s children, and the heads of all

other children are linked directly to this one head token.
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Figure 4.3: Extraction of a dependency tree from a TüBa-D/Z tree.

Each terminal node takes its lexical item as its head. Phrasal non-terminals have a

head child marked in the original corpus. Fields do not have heads marked, so the head

of the first child of each field is taken as that field’s head. The head of a clause is one

of: the finite verb, the first verb in the Verbkomplex, or the head of the first child of the

clause (in descending order of priority.) In the case of co-ordination, the head of the first

conjunct is taken as the head of the co-ordinated phrase.

Free-floating constituents are handled in the same manner as with the dependency

trees: the heads of all free-floating constituents are linked as dependents to a special

Root token.

Figure 4.4 shows an example of the final result of the lexical heads extraction process.

4.5 Parsing System

The parsing system used in this experiment is written specifically for this experiment,

although in principle, given enough massaging of input formats, it could be used on any
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Figure 4.4: Extraction of a lexical heads tree from a TüBa-D/Z tree. Note in particular

that the head of ‘Revisoren’ is ‘Geschäftsführer’, because ‘Geschäftsführer’ was chosen

to be the head of the Mittelfeld, and that the co-ordination near the end of the sentence

is handled differently than in figure 4.3.
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paired phrase structure/dependency-structure treebank. In total, three parsing modes

are supported: a pure phrase structure parser, a pure dependency parser, and a factored

parser. The latter two modes can be used either to generate output for evaluation or to

train a dependency model, as described in sections 3.4.2 and 3.4.4. The phrase structure

mode only generates output for evaluation. In order to limit as much as possible the

differences between the algorithms of the different parsing modes, the factored mode

re-uses as many of the components of the two pure modes as possible.

All of the parsers require part of speech annotated input, and in this experiment I

provide gold-standard parts of speech in the input. This will boost absolute scores above

what would be possible if the parts of speech had to be determined automatically. If

some parsing configurations are more robust to noisy part of speech input than others,

then these differences may compromise my results.

The search algorithm that I use for the factored system is not a pure A* algorithm.

The basic search is the same, but the system prunes arcs to avoid running out of memory

on difficult sentences: I limit to 500 the number of arcs considered for each possible span

and for each left-hand-side category.7Active and passive arcs are considered together, not

separately. This pruning technique has two negative consequences: the algorithm is no

longer guaranteed to find a solution if one exists, and even if a solution is found it is

not guaranteed to be model-optimal. On sentences that are easily parsed, I expect the

pruning to have little effect, but it will come into play when the dependency model and

the phrase structure model cannot agree on an interpretation. It may be possible to

greatly reduce the need for pruning by adopting a tighter scoring heuristic, in particular

for the dependency portion of the model.

None of the parsing systems employ smoothing for parameter estimation.

7In runs against development data, subsequent to this experiment, I find that a limit of 500 arcs is
unnecessarily aggressive. A limit of 800 arcs leads to significantly improved results, without incurring
large increases in memory requirements.
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base grammar filtering grammar no phrase structure

dependency trees experimental parser dependency parser
lexical heads lexicalized parser lexical heads parser
no dependencies PCFG parser

Table 4.2: Parser configurations.

4.6 Grammars

Two context-free filtering grammars are used in the experiment. They are both built

according to the grammar extraction algorithm proposed in section 3.4.3, but each with

respect to a different dependency tree.

The first grammar is effectively a context-free grammar with one marked head per

constituent: it is built using the lexical head trees as a dependency source. This grammar

includes only one exposed child per rule, but may permit multiple unlinked children. If

the grammar is used without a dependency model, I call the resulting parser a (pure)

PCFG parser. If the grammar is used with a dependency model trained on the lexical

head trees, I call the parser a lexicalized parser.

The second grammar takes full advantage of the flexibility of context-free filtering

grammar: it is built using the proper dependency trees as a dependency source. This

grammar permits multiple exposed children per rule, as well as multiple unlinked children.

A parser run using this second grammar I call the experimental parser. This grammar is

always used with a dependency model trained on the proper dependency trees.

I will sometimes refer to both the experimental and the lexicalized parsers as mixed

parsers, since they use both a phrase-structure model and a dependency model.

A parser can also be run as a pure dependency parser without a phrase-structure

grammar, in this case I call it either a lexical heads parser or a (pure) dependency parser,

depending on which source of dependencies was used for training.

A summary of the possible configurations is given in table 4.2
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4.7 Method

Finally, I am in a position to fully describe the experiment. The first stage of the

experiment is to determine good values for the parameters left unspecified for the basic

parsers in section 3.4. The second stage is to determine good values for the parameters

used in the two factored parsers. The third stage, the only stage to be performed on the

test set, is to generate results for all of the tuned parsers and to compare them.

For tuning purposes, I run a parser with a range of parameter values, and choose the

parameter value for which the parser achieves the highest perfect score on the develop-

ment data. I choose the perfect score for its simplicity and because during development

it showed a relatively large variability across parsers.

All stages of the experiment use exclusively the TüBa-D/Z corpus, and the depen-

dency trees heuristically extracted from it, as described in section 4.4.3. This corpus is

first split into a training set, a development set and an test set, as described in section

4.4.2.

In the first stage, I choose the following parameter values.

• For the phrase structure parser:

– the amount of vertical context to use in rule generation (values considered are

none, parent encoding and grandparent encoding);

– the amount of horizontal context to use in rule generation (values considered

are 0, 1, 2, 3 and infinity.)8

• For the dependency parser:

– the minimum number of times a feature must occur in training data before it

is included in the model (values considered are 1, 5 and 10);

8Unlike Klein and Manning (2003), the model used here does not make left children dependent on
right children, so a horizontal context size of infinity does not correspond exactly to an un-Markovized
PCFG model.
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– the number of learning passes through the training data (values considered

are 1 through 8.)

• For the lexical heads parser:

– the minimum number of times a feature must occur in training data before it

is included in the model (values considered are 1, 5 and 10);

– the number of learning passes through the training data (values considered

are 1 through 8.)

Although the lexical heads parser will not be directly part of the evaluation, it must

nonetheless be tuned so that it can participate in the second stage tuning of the lexicalized

parsing model.

In the second stage, I choose the following parameter values, using the best parame-

ters of stage one in the underlying phrase structure and dependency components of the

factored system.

• For the lexicalized parser:

– whether to train the dependency portion of the model from scratch, or from

the best lexical heads model;

– how many learning passes to make through the training data (values consid-

ered are 0, 1, 2 and 3: higher values might be more beneficial, but training is

slow for the factored models.)

• For the experimental parser:

– whether to train the dependency portion of the model from scratch, or from

the best dependency model;

– how many learning passes to make through the training data (values consid-

ered are 0, 1, 2 and 3; training is slow for the factored models.)
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In the final stage, I run the following on the test set :

1. the best stage-one phrase structure parser;

2. the best stage-one dependency parser;

3. the best stage-two lexicalized parser; and

4. the best experimental-model parser from stage two.

I then compare the result from 1 with 4, according to the phrase structure metrics; the

result from 2 with 4, according to the dependency metrics; and the result from 3 with 4,

according to the phrase structure metrics.

4.8 Summary

In this chapter, I have described an experiment to test whether the new parsing model

based on context-free filtering grammar can outperform its underlying phrase structure

and dependency parsing components, as well as a factored lexicalized parser in the style

of Klein and Manning (2002).

I discussed some of the challenges in designing this experiment: the ambiguities in

the syntactic representations I have used; the lack of gold-standard dependency trees;

the difficulty in measuring parser performance; and the need for custom significance

tests. I described the German TüBa-D/Z treebank used with the experiment, and the

preprocessing that I performed on this corpus, including the extraction of a dependency

tree for each phrase structure tree in the treebank. I reviewed briefly some of the more

important decisions made while implementing the parsing system used in the experiment,

and explained the means by which I generated grammars for the parser.

Finally, I described how the experiment would be run:

1. I would begin with some preliminary tests to tune a number of parameters, on a

development set drawn from the German TüBa-D/Z treebank;
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2. I would then run tuned versions of a pure phrase structure parser, a pure depen-

dency parser, a factored parser in the style of Klein and Manning (2002), and a

factored parser with the experimental model, on a test set drawn from the German

TüBa-D/Z treebank;

3. I would determine whether the experimental model outperforms the other three.

The results of this experiment are presented in the following chapter.



Chapter 5

Experimental Results

5.1 Overview

The previous chapter described in detail the design of the experiment and the corpus of

German parse trees used. This chapter is a report on the results and an analysis thereof.

Anyone considering taking seriously the significance values reported in this chapter

is cautioned to first read section 4.3.4 (Establishing Statistical Significance), because the

assumptions of the test used are not entirely justifiable.

5.2 Review of Hypotheses

The parsing system outlined in the previous chapter aims to combine the strengths of

context-free parsers and dependency parsers. Accordingly, we would expect the following.

1. The experimental model will produce better phrase structure trees than a well-

tuned unlexicalized PCFG parser.

2. The experimental model will produce better dependency trees than a well-tuned

dependency parser.

88
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3. The experimental model will produce better phrase structure trees than a well-

tuned (but context-free) lexicalized parser.

In each case, the null hypothesis is that the experimental model will either under-

perform the other parser, or that any improvement shown by the experimental model

can likely be attributed to chance. Although demonstrating that the null hypothesis can

likely be rejected is arguably due diligence in any experiment, in this case we are more

interested in being able to conclude that the new system is better than existing systems

to a degree large enough to justify its additional complexity.

5.3 Review of Method

The first stage of the experiment is to determine good values for the parameters left

unspecified for the basic parsers in section 3.4. The second stage is to determine good

values for the parameters used in the two factored parsers. The third stage, the only

stage to be performed on the test set, is to generate results for all of the tuned parsers

and to compare them.

For tuning purposes, I run a parser with a range of parameter values, and choose the

parameter value for which the parser achieves the highest perfect score on the develop-

ment data. I choose the perfect score for its simplicity and because during development

it showed a relatively large variability across parsers.

All stages of the experiment use exclusively the TüBa-D/Z corpus, and the depen-

dency trees heuristically extracted from it, as described in section 4.4.3. This corpus is

first split into a training set, a development set and an test set, as described in section

4.4.2.

In the first stage, I choose the following parameter values.

• For the phrase structure parser:



Chapter 5. Experimental Results 90

– the amount of vertical context to use in rule generation (values considered are

none, parent encoding and grandparent encoding);

– the amount of horizontal context to use in rule generation (values considered

are 0, 1, 2, 3 and infinity.)

• For the dependency parser:

– the minimum number of times a feature must occur in training data before it

is included in the model (values considered are 1, 5 and 10);

– the number of learning passes through the training data (values considered

are 1 through 8.)

• For the lexical heads parser:

– the minimum number of times a feature must occur in training data before it

is included in the model (values considered are 1, 5 and 10);

– the number of learning passes through the training data (values considered

are 1 through 8.)

Although the lexical heads parser will not be directly part of the evaluation, it must

nonetheless be tuned so that it can participate in second stage tuning of the lexicalized

parsing model.

In the second stage, I choose the following parameter values, using the best parame-

ters of stage one in the underlying phrase structure and dependency components of the

factored system.

• For the lexicalized parser:

– whether to train the dependency portion of the model from scratch, or from

the best lexical heads model;
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– how many learning passes to make through the training data (values consid-

ered are 0, 1, 2 and 3: higher values might be more beneficial, but training is

slow for the factored models.)

• For the experimental parser:

– whether to train the dependency portion of the model from scratch, or from

the best dependency model;

– how many learning passes to make through the training data (values consid-

ered are 0, 1, 2 and 3, training is slow for the factored models.)

In the final stage, I run the following on the test set :

1. the best stage-one phrase structure parser;

2. the best stage-one dependency parser;

3. the best stage-two lexicalized parser; and

4. the best experimental-model parser from stage two.

I then compare the result from 1 with 4, according to the phrase structure metrics; the

result from 2 with 4, according to the dependency metrics; and the result from 3 with 4,

according to the phrase structure metrics.

5.4 Parser Tuning

I first describe the results of the first two tuning stages. Although only the values of

the perfect metric were used to select parameter values, I report the other metrics for

completeness.
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horizontal context base parent grandparent
0 0.213 0.339 0.365
1 0.267 0.380 0.388
2 0.269 0.388 0.397
3 0.266 0.390 0.396

infinity 0.275 0.382 0.394

Table 5.1: PCFG tuning: perfect scores.

horizontal context base parent grandparent
0 1.000 1.000 1.000
1 1.000 1.000 1.000
2 1.000 0.999 0.997
3 0.999 0.999 0.997

infinity 0.999 0.999 0.997

Table 5.2: PCFG tuning: coverage of development sentences.

5.4.1 PCFG Parser

The perfect scores for all phrase structure parameter settings are shown in table 5.1.

We see that the best result is achieved for grandparent encoding and two siblings worth

of horizontal context. This result is consistent with the findings of Klein and Manning

(2003), on the English Penn treebank. For a sense of perspective, consider that the

95% confidence interval on the perfect score of the best parser in this table is (0.368,

0.427).1Roughly half the results in the table fall within this interval.

All other scores are shown in tables 5.2, 5.3 and 5.4. These results compare favourably

to those published by Kübler et al. (2006), who worked with an earlier (smaller) version

of the TüBa-D/Z corpus.

5.4.2 Dependency Parser

The perfect scores for all dependency parameter settings are shown in table 5.5. We see

that the best result is achieved for 5 training passes using all features seen at least once

1The perfect score is treated here as a binomially distributed variable, and is approximated as nor-
mally distributed.
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context crossing brackets base parent grandparent

0 precision 0.851 0.887 0.898
recall 0.812 0.881 0.889

1 precision 0.887 0.911 0.914
recall 0.854 0.898 0.905

2 precision 0.888 0.914 0.916
recall 0.854 0.900 0.904

3 precision 0.887 0.914 0.915
recall 0.854 0.901 0.903

infinity precision 0.886 0.909 0.911
recall 0.851 0.895 0.899

Table 5.3: PCFG tuning: micro-averaged labeled constituent precision and recall.

context crossing brackets base parent grandparent

0 average 1.31 1.03 0.98
sents without 0.525 0.583 0.590

1 average 1.02 0.88 0.85
sents without 0.590 0.616 0.627

2 average 1.00 0.85 0.83
sents without 0.587 0.625 0.628

3 average 1.00 0.84 0.85
sents without 0.579 0.628 0.627

infinity average 1.02 0.90 0.90
sents without 0.580 0.614 0.613

Table 5.4: PCFG tuning: mean crossing brackets per (parsed) sentence, and proportion
of (parsed) sentences without any crossing brackets.
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passes 1+ instances 5+ instances 10+ instances
1 0.337 0.325 0.313
2 0.357 0.336 0.321
3 0.369 0.337 0.326
4 0.372 0.342 0.328
5 0.375 0.346 0.336
6 0.371 0.346 0.333
7 0.367 0.342 0.332
8 0.368 0.343 0.330

Table 5.5: Dependency tuning: perfect scores by number of training passes and minimum
number of feature instances in training data.

in the training data. For a sense of perspective, consider that the 95% confidence interval

on the perfect score of the best parser in this table is (0.346,0.404).2 Most of the results

over the same set of features fall within this interval.

All other dependency scores are shown in table 5.6.

The perfect scores for all lexical heads parameter settings are shown in table 5.7. A

few things are worth noting. Firstly the scores are considerably higher than they are

for the dependency parser. This suggests that the task is quite a bit easier. While it

is true that the lexical heads parser does not need to generate non-projective trees, the

size of the difference is still surprising. Secondly, there does not seem to be any pattern

relating the number of training passes to the accuracy of the resulting model. This is

a concern, but I nonetheless carry through with the original method of simply choosing

the parameter-set with the best results. The best combination is to train for 8 passes

using all features seen at least once in the training data.

All other lexical heads scores are shown in table 5.8.

Both versions of the dependency parser perform best with the maximum number

of features. This is perhaps surprising, because of the potential for over-fitting if rare

features are too highly weighted in the model. On the other hand, the weighting of rare

2The perfect score is treated here as a binomially distributed variable, and is approximated as nor-
mally distributed.
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passes 1+ instances 5+ instances 10+ instances

1 precision 0.879 0.871 0.864
recall 0.880 0.874 0.870

2 precision 0.883 0.876 0.871
recall 0.883 0.879 0.874

3 precision 0.886 0.877 0.871
recall 0.886 0.880 0.874

4 precision 0.887 0.877 0.871
recall 0.885 0.880 0.874

5 precision 0.887 0.877 0.871
recall 0.885 0.879 0.874

6 precision 0.887 0.876 0.870
recall 0.885 0.879 0.873

7 precision 0.887 0.876 0.870
recall 0.885 0.878 0.872

8 precision 0.888 0.875 0.870
recall 0.885 0.878 0.873

Table 5.6: Dependency tuning: non-root governor precision and recall.

features may be entirely irrelevant if these hardly ever occur in the test set. If this is in

fact the case, then the extra features may be improving the score not by being relevant,

but rather by serving as ‘slack’ variables that absorb some of the noise in the training

corpus.

passes 1+ instances 5+ instances 10+ instances
1 0.422 0.417 0.401
2 0.437 0.423 0.405
3 0.441 0.417 0.409
4 0.447 0.416 0.415
5 0.452 0.415 0.415
6 0.446 0.414 0.408
7 0.455 0.415 0.411
8 0.457 0.418 0.407

Table 5.7: Lexical-heads tuning: perfect scores by number of training passes and mini-
mum number of feature instances in training data.
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passes 1+ instances 5+ instances 10+ instances

1 precision 0.880 0.875 0.871
recall 0.884 0.880 0.876

2 precision 0.887 0.879 0.875
recall 0.889 0.883 0.880

3 precision 0.889 0.880 0.875
recall 0.890 0.884 0.879

4 precision 0.890 0.880 0.876
recall 0.890 0.885 0.880

5 precision 0.889 0.880 0.875
recall 0.880 0.884 0.879

6 precision 0.890 0.880 0.874
recall 0.889 0.884 0.878

7 precision 0.891 0.880 0.875
recall 0.890 0.884 0.878

8 precision 0.892 0.880 0.874
recall 0.890 0.884 0.878

Table 5.8: Lexical-heads tuning: non-root governor precision and recall.

parser perfect phrase coverage
trained init, 0 mixed passes 0.382 0.996
trained init, 1 mixed passes 0.379 0.995
trained init, 2 mixed passes 0.388 0.996
trained init, 3 mixed passes 0.376 0.996

clean init, 1 mixed pass 0.375 0.995
clean init, 2 mixed pass 0.387 0.994
clean init, 3 mixed pass 0.388 0.994

Table 5.9: Lexicalized parser tuning: perfect scores by number of training passes and
lexical heads model initialization.

5.4.3 Combined PCFG-Dependency Parser

In the second tuning phase, I combine the best of the dependency parsers with the best

phrase structure parser. The perfect scores for the lexicalized model are shown in table

5.9, and for the experimental model are shown in table 5.10. Additional phrase structure

metrics are shown in table 5.11, and additional dependency metrics, in table 5.12.

The phase 2 tuning results are troubling. From the point of view of the experimental

hypothesis, the experimental model is not obviously doing significantly better than the
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parser perfect phrase perfect dependency coverage
trained init, 0 mixed passes 0.389 0.387 0.997
trained init, 1 mixed passes 0.390 0.386 0.997
trained init, 2 mixed passes 0.396 0.394 0.997
trained init, 3 mixed passes 0.398 0.393 0.996

clean init, 1 mixed pass 0.383 0.360 0.996
clean init, 2 mixed pass 0.393 0.379 0.994
clean init, 3 mixed pass 0.394 0.375 0.992

Table 5.10: New model parser tuning: perfect scores by number of training passes and
dependency model initialization.

parser precision recall x-brackets 0 x-brackets

lexicalized
trained init, 0 mixed passes 0.914 0.904 0.822 0.638
trained init, 1 mixed passes 0.914 0.901 0.801 0.649
trained init, 2 mixed passes 0.914 0.903 0.792 0.647
trained init, 3 mixed passes 0.910 0.901 0.831 0.639

clean init, 1 mixed pass 0.914 0.901 0.799 0.645
clean init, 2 mixed pass 0.913 0.898 0.823 0.650
clean init, 3 mixed pass 0.914 0.901 0.805 0.659
experimental model

trained init, 0 mixed passes 0.914 0.904 0.842 0.640
trained init, 1 mixed passes 0.915 0.904 0.815 0.649
trained init, 2 mixed passes 0.916 0.906 0.802 0.655
trained init, 3 mixed passes 0.916 0.905 0.796 0.655

clean init, 1 mixed pass 0.912 0.900 0.864 0.640
clean init, 2 mixed pass 0.913 0.897 0.833 0.647
clean init, 3 mixed pass 0.914 0.894 0.827 0.651

Table 5.11: Mixed parser tuning: labeled constituent precision and recall, mean crossing
brackets per sentence and proportion of sentences with no crossing brackets.

parser precision recall
trained init, 0 mixed passes 0.889 0.879
trained init, 1 mixed passes 0.884 0.881
trained init, 2 mixed passes 0.884 0.882
trained init, 3 mixed passes 0.884 0.881

clean init, 1 mixed pass 0.872 0.868
clean init, 2 mixed pass 0.877 0.869
clean init, 3 mixed pass 0.879 0.867

Table 5.12: New model tuning: Non-root governor precision and recall.
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competition. From the point of view of tuning, different configurations are winning

on different metrics (for instance, the best lexicalized configuration for mean crossing

brackets is not the best lexicalized configuration for ‘proportion of sentences with 0

crossing brackets’, table 5.11.) Since I choose the best configuration based solely on the

perfect score, it will likely be the case that significant differences will only be meaningful

for comparisons of perfect score. Had I tuned for different metrics, I might have seen

different final results.

In terms of perfect score, the best lexicalized configuration initializes the dependency

model to the best weights from phase one (8 training passes on all features) and applies

the mixed training for 2 additional passes.3 The best experimental model configuration

initializes the dependency model weights from phase one (5 training passes on all features)

and applies the mixed training for 3 additional passes.

5.5 Experimental Results

The final perfect results of the four tuned parsers on the test set are shown in table 5.13.

The dependency results are in table 5.14 and the phrase structure results in table 5.15.

The experimental model does not significantly outperform the best dependency parser,

nor does it outperform the lexicalized parser. The experimental model does improve sig-

nificantly (p < .01) and substantially over the PCFG parser with respect to the two

crossing brackets measures. The lexicalized parser does similarly well on crossing brack-

ets (there is no significant difference between the lexicalized and the experimental parser

on these measures.)

Of interest is the failure of either the experimental model or the lexicalized model to

noticeably outperform the unlexicalized PCFG parser, except on the crossing brackets

3A review of the results on development data, after the completion of the experiment, revealed that
the 2 additional passes of mixed training had a very detrimental impact on the dependency model of
the lexicalized parser. The precision and recall dropped to roughly 70%, down from over 88% before the
mixed training.
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parser dependency perfect phrase perfect phrase coverage
best PCFG parser – 0.361 0.998

best dependency parser 0.355 – –
best lexicalized parser – 0.359 0.998

best experimental parser 0.366 0.359 0.998

Table 5.13: Final results: proportion of completely correct parses, and coverage.

parser precision recall
best dependency parser 0.885 0.884

best experimental parser 0.883 0.883

Table 5.14: Final results: non-root governor precision and recall.

measures.

5.6 Detailed Comparison of Results

Aspects of the final results are not surprising. That the lexicalized parser and the ex-

perimental parser should have very similar results is probably because both use almost

exactly the same lexical dependency structure within phrases below the field/clause level

(the only difference being in handling of co-ordination.)

The disappointing result that neither the lexicalized parser nor the experimental

parser are able to outperform an unlexicalized PCFG parser on labeled constituent pre-

cision and recall is consistent with some previous findings. Gildea (2001) finds bilexical

dependencies (in the model 1 of Collins, on the English Penn treebank) to be of very

little import, and Dubey and Keller (2003) (also, Dubey, 2005) find lexical head-modifier

dependencies to be unhelpful on the German NEGRA treebank. Kübler et al. (2006) do

parser precision recall x-brackets 0 x-brackets
best PCFG parser 0.909 0.900 0.963 0.590

best lexicalized parser 0.912 0.906 0.832 0.624
best experimental parser 0.912 0.906 0.851 0.632

Table 5.15: Final results: labeled constituent precision and recall, mean crossing brackets
per sentence and proportion of sentences with no crossing brackets.
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PCFG parser lexicalized experimental
unlabeled precision 0.925 0.932 0.932
unlabeled recall 0.916 0.926 0.926
labeled precision 0.909 0.912 0.912
labeled recall 0.900 0.906 0.906

Table 5.16: Comparison of labeled and unlabeled constituent results on test set data.

find lexicalization to be useful with TüBa-D/Z , but only on labeled constituent precision

and recall, not on unlabeled precision and recall.4 Table 5.16 tells a different story for

our experiment: here unlabeled scores improve more noticeably than the labeled scores.

This may highlight a weakness of the model I have used, namely that the lexical head of

each constituent is not directly tied to constituent labeling.

The improvement in the crossing-brackets metrics, seen with the experimental and

the lexicalized model, is interesting. This suggests that the factored lexicalized models

generate parse trees that have better ‘shape’, but that this is not reflected in some of

the metrics. It is difficult to find comparable suggestions in the literature: constituent

precision and recall are almost always reported in statistical parsing publications, but

crossing-brackets measures are frequently omitted. Dubey and Keller (2003) report an

experiment comparing an unlexicalized PCFG model, a lexicalized PCFG model and an

implementation of the Collins model 1 in which the Collins model has a similar advantage

in avoiding crossing brackets on German NEGRA trees, but the cause is unclear.

A further question we can ask about the parsing results is which structures are easi-

est to parse. There are a number of things to note in table 5.17. Firstly, with all of the

parsers, some constituents are extremely easy to identify: the finite and non-finite verb

‘phrases’ (which are almost always unit constituents); the sentence bracketing fields (LK

and VC); and the field containing complementizers in subordinate clauses (C.) Generally

4Moreover, the best result they report is with an unlexicalized run of the Stanford parser using parent
encoding and rule Markovization. It would be interesting to see if lexicalization could also improve that
parser configuration, or if lexicalization is only effective when combined with a weaker unlexicalized
model.
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the common fields (VF,LK,MF,VC) and phrases (ADJX,NX,ADVX,VXINF,VXFIN)

are relatively easy to spot. Prepositional phrases (PX), apparently, are somewhat more

difficult to identify, which is a bit puzzling. Also surprising is that the final field (NF)

is difficult to find. Although the Nachfeld is not as common as the other main-clause

fields, we might expect a model to consider very few competing hypotheses to cover a

span following the (very identifiable) VC of a clause.

For the most part, the lexicalized and unlexicalized parsers display the same pattern

of success and failure with respect to different kinds of constituents. The differences

that do exist are mostly on relatively infrequent constructions, where chance probably

plays a substantial role. Of some concern, however, is the degradation of performance by

the more complex models on co-ordinated fields (FKONJ, the fields being co-ordinated;

FKOORD, the result of the co-ordination.) The decline in performance on EN-ADD

constituents is less alarming: arguably these labels should all have been replaced by NX

prior to training and testing.

The poor performance on co-ordinated fields by the factored models raises the ques-

tion of whether these models are failing on all co-ordinated structures, or just on co-

ordinated fields. Most co-ordinated structures are not distinguished by their node labels,

so there is nothing in the output of the parsers that allows us to identify them. Calculat-

ing co-ordination precision is therefore impossible. The gold-standard parses, however, do

distinguish co-ordinated structures: the edge-labels of conjuncts have the value KONJ.

Table 5.18 shows the recall of conjuncts, and the recall of parents of conjuncts, as pro-

duced by the three parsers that can generate phrase structure. If anything, we note

a modest improvement with the factored models, so it would appear that parsing of

co-ordination in general has not been compromised by lexicalization.

Another concern that we might have is whether or not the dependency trees produced

by the experimental model are usable. Although the accuracies over all dependencies

are the same with the pure dependency parser and the experimental model parser, is
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label description* count PCFG parser lexicalized experimental
NX noun phrase 6855 (0.891/0.869) (0.912/0.878) (0.911/0.876)
PX prepositional phrase 1825 (0.815/0.808) (0.835/0.824) (0.840/0.828)
ADJX adjectival phrase 1632 (0.913/0.912) (0.942/0.928) (0.930/0.922)
VXFIN finite verb phrase 1496 (1.000/0.999) (1.000/0.999) (1.000/0.999)
ADVX adverbial phrase 1161 (0.963/0.948) (0.956/0.942) (0.961/0.945)
VXINF non-finite verb phrase 735 (0.999/0.997) (0.999/0.997) (0.999/0.997)
EN-ADD proper noun or named entity 307 (0.793/0.687) (0.712/0.700) (0.699/0.704)
FX foreign language phrase 33 (0.897/0.788) (0.900/0.818) (0.900/0.818)
DP determiner phrase 13 (0.429/0.692) (0.700/0.538) (0.900/0.692)
MF Mittelfeld 1577 (0.912/0.916) (0.893/0.921) (0.899/0.923)
LK Linke (Satz-)Klammer 1136 (0.994/0.996) (0.994/0.994) (0.994/0.993)
VF Vorfeld 1072 (0.950/0.951) (0.936/0.949) (0.935/0.949)
VC Verbkomplex 964 (0.987/0.989) (0.987/0.990) (0.986/0.988)
C complementizer field 368 (0.989/0.978) (0.986/0.976) (0.986/0.978)
NF Nachfeld 351 (0.770/0.783) (0.738/0.795) (0.738/0.882)
FKONJ conjunct containing fields 151 (0.662/0.662) (0.606/0.602) (0.573/0.649)
FKOORD coordinated fields 79 (0.553/0.532) (0.455/0.506) (0.440/0.506)
KOORD field for coordinating particles 53 (0.712/0.906) (0.783/0.887) (0.774/0.906)
PARORD field for non-coord particles 13 (0.000/0.000) (0.500/0.077) (0.500/0.077)
LV resumptive construction 9 (0.500/0.667) (0.455/0.556) (0.364/0.444)
VCE Verbkomplex with the split finite

verb of Ersatzinfinitiv constructions 1 (1.000/1.000) (1.000/1.000) (1.000/1.000)
SIMPX simplex clause 1494 (0.874/0.892) (0.856/0.897) (0.862/0.898)
R-SIMPX relative clause 135 (0.871/0.852) (0.892/0.859) (0.906/0.859)
DM discourse marker 17 (0.688/0.647) (0.667/0.588) (0.786/0.647)
P-SIMPX paratactic construction of

simplex clauses 6 (0.333/0.167) (0.250/0.167) (0.250/0.167)

Table 5.17: Breakdown of constituent (precision/recall) by constituent label. *descrip-
tions adapted (shortened) from Telljohann et al. (2005).

PCFG parser lexicalized experimental
conjunct recall 0.747 0.763 0.750
parent of conjunct recall 0.629 0.645 0.655

Table 5.18: Comparison of co-ordination accuracies on test set data.
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pure dependency parser experimental parser
clause-level precision 0.852 0.849
clause-level recall 0.854 0.854
overall precision 0.885 0.883
overall recall 0.884 0.883

Table 5.19: Comparison of clause-level dependency precision and recall, where ‘clause-
level’ means either the governor or dependent token is a verb.

it possible that the two models are getting different aspects of the parses correct? In

particular, the context-free filtering grammar used by the experimental model enforces

a tight correspondence between dependency and phrase structure within arguments and

adjuncts, but allows a great deal more flexibility at the level of verb-argument structure.

Is it possible that the experimental model is doing much better at one of these levels than

the other? To examine this possibility, we can compute the dependency precision and

recall of relations in which the governing or dependent token is a verb: this essentially

amounts to looking only at the accuracy of chains of verbs, of attachments of arguments

and adjuncts to verbs, and of attachments of subordinate clauses into their parent clauses.

We can see from table 5.19 that although the accuracies of this restricted group of

dependencies are lower than accuracies in general, the experimental model parser and

the pure dependency parser perform almost identically on both metrics. The filtering

grammar has not damaged the experimental model’s ability to identify dependencies at

the clause level.

As a final sanity check, how do the parsers of this experiment compare with similar

studies on this corpus? Unfortunately, there have been almost no publications of full

statistical parsing work on the TüBa-D/Z corpus. The most comparable paper of which

I am aware is that of Kübler et al. (2006). Even with this paper, a direct comparison can

be misleading: the available training corpus sizes are different, the evaluation sampling

methods differ and it is not clear whether the gold standard trees are the same. Kübler

et al. use an earlier version of the corpus, one which only has 15,000 sentences; our
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Kübler (2006) PCFG parser experimental parser
unlabeled precision 0.923 0.925 0.932
unlabeled recall 0.909 0.916 0.926
labeled precision 0.899 0.909 0.912
labeled recall 0.885 0.900 0.906

Table 5.20: Comparison of results with Kübler (2006).

version has 22,000. Kübler et al. report results of 10-fold cross-validation over the whole

corpus, using all sentences with 40 or fewer words ; I select separate training, development

and test sentences only once, at random, and use all sentences with 40 or fewer tokens

(including punctuation.) Kübler et al. do not state how they deal with disconnected

subtrees in TüBa-D/Z , and this may impact constituent precision and recall.

Both studies provide gold standard part of speech tags as input, and Kübler et al. use

the Stanford parser, which instantiates many of the same statistical parsing techniques

behind my PCFG parser and lexicalized parser.

Table 5.20 compares the best results of Kübler et al. (2006) with my results, according

to precision and recall on labeled and unlabeled constituents. Comparing against the

best results of Kübler et al. is not entirely fair to my parser, since choosing one parser

configuration from among several is a form of tuning that ideally ought to be validated

by a further run against a test set.5 On the other hand, my results are also likely to

be inflated by my drawing of samples at uniform from the entire corpus, by my shorter

sentence length restrictions, and by my larger training set.

The absolute scores of the phrase structure parsers in this experiment do not look

unreasonable.

The dependency results cannot be compared with other studies, because the heuris-

tically extracted trees have only ever been used for this experiment.

5Note, however, that Kübler et al. do not themselves do any tuning: they use parsers out-of-the-box
that have been developed by others, on a different corpus. Since they do no tuning and jump directly
to evaluating hypotheses about the relative strengths of their parsers, they can treat the entire corpus
as unseen data and their use of cross-validation is justified.
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5.7 Conclusion

The experimental hypothesis, that the experimental model would improve upon pure

phrase structure and pure dependency analysis, is not supported by the evaluation. The

experimental model does, at least, hold its own.

5.8 Summary

We have reviewed an experiment designed to demonstrate that the constraints between

dependency structure and phrase structure, imposed by context-free filtering grammar,

can improve phrase structure and dependency parsing accuracy beyond what is possible

with specialized phrase structure or dependency parsers. A experimental parser, based on

the models and algorithms of the previous chapter, was compared on German TüBa-D/Z

data against a pure PCFG parser, a pure dependency parser (in the style of McDonald

et al., 2005b) and a factored lexicalized phrase structure parser. All parsers were tuned

on development data, then compared on test set data, where few significant differences

were found between the performances of any of the parsers.

Although the result of the experiment is disappointing, the experimental model at

least did not underperform the other models. Since the experimental model permits

a co-ordinated analysis of phrase structure and dependency structure, it may still be

useful in contexts where a context-free phrase structure analysis is inadequate (e.g. in

applications relating to freer-word-order languages) but a pure dependency analysis is

undesirable (e.g. because a commitment has been made to a constituent-based semantic

analysis of sentences.)
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Conclusion

As we have seen in Chapter 2, the phrase structure analysis of freer-word-order languages

is problematic. Early statistical parsing work on German (Dubey and Keller, 2003;

Dubey, 2005; Schiehlen, 2004), relying on the NEGRA treebank (Skut et al., 1997), did

not show very promising results. More recent work (Kübler, 2005; Kübler et al., 2006),

on the TüBa-D/Z treebank (Telljohann et al., 2005), has shown much better results, but

the TüBa-D/Z corpus does not encode verb-argument structure in a way that can be

accurately modeled by existing PCFG-based parsers.

On the other hand, statistical dependency parsers, long ago left in the dust by CFG-

based parsers, are making a comeback (Nivre et al., 2006; McDonald and Pereira, 2006;

Yamada and Matsumoto, 2003; Buchholz and Marsi, 2006). The newest of these parsers

can handle with relative ease the non-projective dependencies characteristic of freer-word-

order languages.

This thesis aims to provide a statistical method for the comprehensive syntactic anal-

ysis of freer-word-order languages by co-ordinating phrase structure parsing with depen-

dency parsing. The foundation of this analysis (Chapter 3) is context-free filtering gram-

mar, a generalization of context-free grammar, inspired by the factored parsing model of

Klein and Manning (2002). Context-free filtering grammar specifies for each constituent,
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through annotated production rules, which tokens within the constituent can take part

in dependency relations with tokens outside the constituent. I provide a chart-parsing

algorithm to recover all of the syntactic structures matching a given sentence, a statistical

parametrization to resolve structural ambiguities, and scoring heuristics that allow A*

search to be used to find the model-optimal parse for a sentence.

Chapter 4 describes an experiment to test the hypothesis that the new parser can

outperform other parsers that do not use the new grammar formalism. The competing

parsers are an unlexicalized PCFG parser, a maximum-spanning-tree dependency parser

and a factored parser using a grammar restricted to one exposed token per constituent.

All parsers are tuned on development data and then tested on evaluation data.

All of the parsers turn out to have similar performance (Chapter 5), with the two

factored parsers (the restricted model and the new model) beating the PCFG parser only

on crossing bracket measures. The only positive conclusion that can be drawn from the

experiment is that the new model does not lag behind the others.

6.1 Summary of Contributions

context-free filtering grammar: The new grammar formalism provides a framework

in which to analyze the interaction between phrase structure and dependency struc-

ture. It may be of use on its own or, more likely, as an inspiration for more nuanced

formalisms.

a parsing algorithm for context-free filtering grammar: The existence of a chart-

parsing algorithm for the new type of grammar makes the grammar more accessible

to the research community than it might otherwise be, and permits an intuitive

understanding of the properties of the new grammar.

an implementation of a parser using context-free filtering grammar: I imple-

mented the parsing system described in this thesis, demonstrating its feasibility.
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a TüBa-D/Z -derived dependency treebank: The heuristically extracted depen-

dency treebank used for my experiment could be an excellent starting point for a

manually annotated/verified dependency treebank of German.

an evaluation of a context-free filtering grammar model: The results of Chapter

5 demonstrate that the new parsing model is capable of generating phrase structure

and dependency analyses that are (independently of one another) just as good as

those produced by pure phrase structure or pure dependency parsers.

6.2 Limitations

the new parser combines heterogeneous models: The parser implemented with

this thesis combines a Bayesian probabilistic model with a linear large-margin

model. The result, while practically effective, has unclear mathematical proper-

ties. The use of a heterogeneous factoring may explain why the factored models

fail to outperform the base models in my experiment.

unlabeled dependency parsing: Unlabeled dependency parsing, while challenging,

is not particularly useful on its own. Unlabeled dependency trees encode syntactic

relations very ambiguously, and are not adequate as input to a (hypothetical) se-

mantic analysis process. McDonald et al. (2006) adds labels to dependency trees

as a post-processing step, and this should be feasible with my parser as well.

unvalidated dependency treebank: The dependency treebank required by the ex-

periment is heuristically extracted from the TüBa-D/Z corpus, but has not been

validated by qualified linguists. Better results may be possible with a more consis-

tently correct dependency treebank.

no error analysis: No attempt was made in this work to differentiate between errors
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made because of flaws in the models, because of pruning and because of inconsis-

tencies in the corpus annotation.

6.3 Future Work

fully large-margin factored model: An exciting project is to apply the online large-

margin learning method used by McDonald et al. (2005a) to a phrase structure

parser. Taskar et al. (2004) have already shown that features can be chosen for

such a model, but they did not use a computationally efficient learning approach,

such as that of McDonald et al. (2005a), to learn the model weights. With a

linear large-margin model for both phrase structure and dependency structure, a

homogeneous factored model would be immediately feasible. The training of such

a model would be far less awkward than that of the model used in this thesis.

tecto-grammatical phrase structure analysis: An inspiration for this thesis was

the paper of Penn and Haji-Abdolhosseini (2003), which aimed to use topological

field analysis as a guide for a semantically motivated phrase structure analysis of

freer-word-order languages. The problem addressed in that paper was to efficiently

search for the correct phrase structure without making the rigid ordering and con-

tiguity assumptions of CFG. The problem of how to determine the constraints

on ordering and contiguity that ought to exist in a freer-word-order grammar re-

mains unsolved, however. A labeled dependency analysis combined with a phrase

structure analysis (produced by a filtering grammar parser) in the TüBa-D/Z style

could provide ‘hints’ to a tecto-grammatical parser as to which parse derivations

are worth exploring for a sentence.

eliminating the need for pruning: Investigation subsequent to the experiment in

this thesis suggests that the pruning of arcs during A* search is having a significant

impact on parsing accuracy. It would be beneficial to reduce the memory require-
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ments of the parser, both by optimizing the CKY outside-score precomputation

and by using a tighter dependency scoring heuristic.

extending the error analysis: It would be valuable to differentiate between errors

made because of flaws in the models, because of pruning and because of inconsis-

tencies in the corpus annotation.
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Anne Abeillé, Yves Schabes, and Aravind K. Joshi. 1990. Using lexicalized TAGs for ma-

chine translation. In Proceedings of the 13th conference on Computational linguistics,

pages 1–6, Helsinki, Finland. Association for Computational Linguistics.

Steven P. Abney. 1997. Stochastic attribute-value grammars. Computational Linguistics,

23(4):597–618.

James Allen. 1994. Natural language understanding. Benjamin-Cummings Publishing

Co., Inc., Redwood City, CA, USA, second edition.

Hiyan Alshawi, Shona Douglas, and Srinivas Bangalore. 2000. Learning dependency

translation models as collections of finite-state head transducers. Computational Lin-

guistics, 26(1):45–60.

Daniel M. Bikel. 2004. Intricacies of Collins’ parsing model. Computational Linguistics,

30(4):479–511.

E. Black, S. Abney, S. Flickenger, C. Gdaniec, C. Grishman, P. Harrison, D. Hindle,

R. Ingria, F. Jelinek, J. Klavans, M. Liberman, M. Marcus, S. Roukos, B. Santorini, and

T. Strzalkowski. 1991. Procedure for quantitatively comparing the syntactic coverage

of English grammars. In Human Language Technology ’91: Proceedings of the workshop

on Speech and Natural Language, pages 306–311, Pacific Grove, California. Association

for Computational Linguistics.

111



BIBLIOGRAPHY 112

Ezra Black, Fred Jelinek, John Lafferty, David M. Magerman, Robert Mercer, and Salim

Roukos. 1993. Towards history-based grammars: using richer models for probabilistic

parsing. In Proceedings of the 31st annual meeting of the Association for Computational

Linguistics, pages 31–37, Columbus, Ohio. Association for Computational Linguistics.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X shared task on multilingual depen-

dency parsing. In Proceedings of the Tenth Conference on Natural Language Learning,

New York, NY.

Glenn Carroll and Mats Rooth. 1998. Valence induction with a head-lexicalized PCFG.

In Proceedings of the Third Conference on Empirical Methods in Natural Language

Processing, Granada, Spain.

Eugene Charniak. 1996. Tree-bank grammars. In Proceedings of the 8th annual conference

on Innovative Applications of Artificial Intelligence, Vol. 2, pages 1031–1036, Portland,

Oregon. American Association for Artificial Intelligence.

Eugene Charniak. 1997. Statistical parsing with a context-free grammar and word statis-

tics. In Proceedings of the 9th annual conference on Innovative Applications of Artifi-

cial Intelligence, pages 598–603, Providence, Rhode Island. American Association for

Artificial Intelligence.

Eugene Charniak. 2000. A maximum-entropy-inspired parser. In Proceedings of the

first conference of the North American chapter of the Association for Computational

Linguistics, pages 132–139, Seattle, Washington. Morgan Kaufmann Publishers Inc.

David Chiang. 2005. A hierarchical phrase-based model for statistical machine transla-

tion. In Proceedings of the 43rd Annual Meeting of the Association for Computational

Linguistics, pages 263–270, Ann Arbor, Michigan. Association for Computational Lin-

guistics.



BIBLIOGRAPHY 113

Michael Collins. 1997. Three generative, lexicalised models for statistical parsing. In Pro-

ceedings of the 35th annual meeting of the Association for Computational Linguistics,

pages 16–23, Madrid, Spain. Association for Computational Linguistics.

Michael Collins. 1999. Head-Driven Statistical Models for Natural Language Parsing.

Ph.D. thesis, University of Pennsylvania.

Michael Collins. 2002. Discriminative training methods for hidden markov models: theory

and experiments with perceptron algorithms. In Proceedings of the ACL-02 conference

on Empirical methods in natural language processing, pages 1–8, Morristown, NJ, USA.

Association for Computational Linguistics.

Michael Collins. 2003. Head-driven statistical models for natural language parsing. Com-

putational Linguistics, 29(4):589–637.

Michael Collins, Lance Ramshaw, Jan Hajic̆, and Christoph Tillmann. 1999. A statistical

parser for Czech. In Proceedings of the 37th annual meeting of the Association for

Computational Linguistics on Computational Linguistics, pages 505–512, College Park,

Maryland. Association for Computational Linguistics.

Michael Collins and Brian Roark. 2004. Incremental parsing with the perceptron algo-

rithm. In Proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics, page 111, Barcelona, Spain. Association for Computational Linguistics.

Koby Crammer, Ofer Dekel, Yoram Singer, and Shai Shalev-Shwartz. 2004. Online

passive-aggressive algorithms. In Sebastian Thrun, Lawrence Saul, and Bernhard

Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press,

Cambridge, MA.

Koby Crammer and Yoram Singer. 2003. Ultraconservative online algorithms for multi-

class problems. Journal of Machine Learning Research, 3:951–991.



BIBLIOGRAPHY 114
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Sandra Kübler, Erhard W. Hinrichs, and Wolfgang Maier. 2006. Is it really that difficult

to parse German? In Proceedings of the 2006 Conference on Empirical Methods in

Natural Language Processing, pages 111–119, Sydney, Australia, July. Association for

Computational Linguistics.



BIBLIOGRAPHY 117
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