Towards Understanding Linear Word Analogies

Kawin Ethayarajh, David Duvenaud, Graeme Hirst

MOTIVATION

Why can vector arithmetic be used to operate on word embeddings generated by non-linear models?

THEORETICAL RESULTS

What conditions have to be satisfied by the training corpus for these linear word analogies to hold in a noiseless space?

COROLLARIES & EMPIRICAL RESULTS

1. We prove the long-standing conjecture (Pennington et al., 2014) that "a is to b as x is to y'' holds iff for every word w,

 $v_{king} - v_{man} + v_{woman} \approx v_{queen}$

Current theories make untenable assumptions about the word frequency distribution or embedding space.

THE STRUCTURE OF **WORD ANALOGIES**

Definitions

A word analogy is an invertible transformation *f* that holds over a set of ordered word pairs iff

 $\forall (x, y) \in S, f(x) = y \land f^{-1}(y) = x$

When f is of the form $\vec{x} \mapsto \vec{x} + \vec{r}$, it is a

Co-occurrence Shifted PMI Theorem

Let the co-occurrence shifted PMI be $csPMI(x, y) = PMI(x, y) + \log p(x, y), W be$ a noiseless SGNS or GloVe word space, *M* be the word-context matrix that is implicitly factorized, and S a set of ordered word pairs.

A linear analogy *f* holds over *S* iff

- csPMI(*x*, *y*) is the same for every word pair in S
- csPMI(x, y) = csPMI(a, b) for any two word pairs in S

• $\{M_{a,\cdot} - M_{v,\cdot}, M_{b,\cdot} - M_{v,\cdot}, M_{x,\cdot} - M_{v,\cdot}\}$ is linearly dependent ("contextually coplanar")

 $\frac{p(w \mid a)}{p(w \mid b)} \approx \frac{p(w \mid x)}{p(w \mid y)}$ $p(w \mid y)$

2. In a noiseless space, the squared Euclidean distance between words is a decreasing linear function of csPMI:

 $\lambda \| \overrightarrow{x} - \overrightarrow{y} \|^2 = -\operatorname{csPMI}(x, y) + \alpha$

Empirically, the correlation is quite strong (Pearson's r = 0.502):

linear word analogy. When linear word analogies hold exactly, they form a parallelogram in the embedding space:

Interpreting Inner Products

GloVe and SGNS implicitly factorize a word-context matrix containing a cooccurrence statistic (Levy and Goldberg, 2014).

• f holds over S in an SGNS or GloVe

Robustness to Noise

In practice, word analogies are quite robust to noise. Why?

- The definition of vector equality is looser in practice: (a, ?) : (x, y) is solved by finding the word vector *closest* to $\overrightarrow{a} + (\overrightarrow{y} - \overrightarrow{x}).$
- Analogies mostly hold over frequent word pairs, which are associated with less noise.

3. The change in mean csPMI mirrors a change in the type of analogy, from geography to verb tense to adjectives:

Analogy	Mean csPMI	Mean PMI
capital-world	-9.294	6.103
capital-common-countries	-9.818	4.339
city-in-state	-10.127	4.003
gram6-nationality-adjective	-10.691	3.733
family	-11.163	4.111
gram8-plural	-11.787	4.208
gram5-present-participle	-14.530	2.416
gram9-plural-verbs	-14.688	2.409
gram7-past-tense	-14.840	1.006
gram3-comparative	-15.111	1.894
gram2-opposite	-15.630	2.897
gram4-superlative	-15.632	2.015
currency	-15.900	3.025
gram1-adjective-to-adverb	-17.497	1.113

4. When the variance in csPMI is lower, analogy solutions are more accurate (Pearson's r = -0.70).

word space iff $g: \vec{x}_c \mapsto \vec{x}_c + \lambda \vec{r}$ holds in the corresponding context space.

REFERENCES

- Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014.
- GloVe: Global vectors for word representation. In Proceedings of
- EMNLP, 1532–1543
- Omer Levy and Yoav Goldberg. 2014. Neural word embedding as
- implicit matrix factorization. In Advances in Neural Information
- Processing Systems, 2177–2185
- Acknowledgements: Thanks to Omer Levy and Yoav Goldberg for
- their comments.

