
The Use of Syntax in Word Completion Utilities

by

Afsaneh Fazly

A thesis submitted in conformity with the requirements

for the degree of Master of Science

Graduate Department of Computer Science

University of Toronto

Copyright c 2002 by Afsaneh Fazly

Abstract

The Use of Syntax in Word Completion Utilities

Afsaneh Fazly

Master of Science

Graduate Department of Computer Science

University of Toronto

2002

Current word-prediction utilities rely on little more than word unigram and bigram

frequencies. Can part-of-speech information help? To answer this question, we �rst

built a testbench for word prediction; then introduced several new prediction algorithms

which exploit part-of-speech tag information. We trained the prediction algorithms using

a very large corpus of English, and in several experiments evaluated them according to

several performance measures. All the algorithms were compared with WordQ, a com-

mercial word-prediction program. Our results con�rm that strong word unigram and

bigram models, collected from a very large corpus, give accurate predictions. All predic-

tors, including that based on word unigram statistics, outperform the WordQ prediction

algorithm. The predictor based on word bigrams works surprisingly well compared to

the syntactic predictors. Although two of the syntactic predictors work slightly better

than the bigram predictor, the ANOVA test shows that the di�erence is not statistically

signi�cant.

ii

Dedication

To my parents,

my brother and sisters, Amir, Farzaneh, and Azadeh,

and my husband, Reza

For their true love and support.

iii

Acknowledgements

I would like to extend my gratitude to several people whom without their help and

support, accomplishment of this thesis would not have been possible.

First and foremost, my supervisor, Graeme Hirst, for providing great insights, detailed

comments and tireless support through the development of this thesis. I also would like

to give my special thanks to him for his availabiliy for discussions all the time. I am also

very grateful to my second reader, Fraser Shein, for his help and his useful comments.

I would like to extend my appreciation to Suzanne Stevenson for her support and for

the enlightening conversations she shared with me. I also want to thank Gerald Penn

and Sam Roweis for their great help.

My special thanks goes to Tom Nantais, who has always been ready to answer my

questions about WordQ, and has helped me with porting WordQ prediction module from

Windows to Linux.

I also want to thank my friends in Computer Science Department, and especially

those in Computational Linguistics group for their time, support and friendship during

the past two years. Melanie Baljko, Alex Budanitsky, Bowen Hui, Diana Inkpen (Ziau),

and Vivian Tsang for answering my questions and being always ready to help.

I am grateful for the �nancial support to the University of Toronto, and Communi-

cations and Information Technology Ontario (CITO).

iv

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Alternative and augmentative communication 3

1.2.1 Alternative access methods . 3

1.2.2 Augmentative communication systems 5

1.3 Outline of the Study . 9

2 Related work 11

2.1 Introduction . 11

2.2 Statistical letter prediction . 13

2.2.1 Predictive keyboards . 13

2.3 Statistical word prediction . 15

2.3.1 Existing N -gram predictors . 16

2.4 Syntactic word prediction . 20

2.4.1 Existing syntactic predictors . 21

2.5 Summary . 26

3 Prediction algorithms 27

3.1 Unigram predictor: the baseline . 28

3.2 Bigram predictor . 28

3.3 Syntactic predictors . 29

v

3.3.1 Part-of-speech tags only . 31

3.3.2 Previous word and two previous part-of-speech tags: Tags-and-words 32

3.3.3 Linear combination . 34

3.4 Adaptation . 35

4 Data collection 37

4.1 The British National Corpus . 37

4.1.1 CLAWS part-of-speech tagger . 38

4.1.2 Pre-processing the corpus . 39

4.2 Training: collecting the statistics . 41

4.2.1 Statistical Language Modeling toolkit 43

4.2.2 N -gram models for words . 43

4.2.3 N -gram models for part-of-speech tags 44

4.2.4 Word-given-tag probabilities . 45

5 Evaluation 46

5.1 Experimental methodology . 46

5.1.1 Test data . 46

5.1.2 Test procedure . 47

5.1.3 Test parameters . 51

5.1.4 Performance measures . 53

5.2 Results . 55

5.2.1 Major performance measures . 55

5.2.2 Discussion . 57

5.2.3 Statistical signi�cance tests . 58

5.2.4 Observations . 59

5.2.5 Parameters . 61

5.2.6 Other measures . 65

vi

5.3 Summary . 69

6 Conclusions 70

6.1 Contributions . 70

6.2 Future work . 73

Bibliography 76

vii

List of Tables

4.1 BNC text domains . 38

4.2 C5 tagset . 39

4.2 C5 tagset . 40

4.3 The ambiguity tags . 42

4.4 Size of word and part-of-speech tag n-gram models 44

5.1 Test texts, a subset of the BNC . 47

5.2 Hit rate, keystroke savings, and keystrokes until prediction for all predictors 55

5.3 E�ect of maximum prediction list size on performance of the Tags-and-

words predictor . 63

5.4 E�ect of prohibiting repeated predictions on performance of the Tags-and-

words predictor . 65

5.5 Accuracy, average size of prediction list, and average length of suggestions

for all predictors . 67

viii

List of Figures

1.1 Gemini device while is being used by a user with disabilities 3

1.2 Vanguard screen display with its semantic concepts as icons 6

1.3 An example of sentence compansion . 7

1.4 An example of word prediction by WordQ 8

2.1 The standard 12-key telephone keypad 14

2.2 Sample predictions given by WordQ . 17

3.1 Sample predictions given by the Unigram predictor 29

3.2 Sample predictions given by the Bigram predictor 30

3.3 A bayesian network showing interdependencies among words and PoS tags 32

3.4 Sample predictions given by the Tags-and-words predictor 34

5.1 Architecture of the word-prediction testbench 48

5.2 Sample predictions given by the Tags-and-words predictor in two conditions 52

5.3 Comparison of the prediction algorithms 56

5.4 Keystroke savings of the Tags-and-words predictor for di�erent values of � 62

5.5 E�ect of maximum prediction list size on performance of the Tags-and-

words predictor . 64

5.6 E�ect of prohibiting repeated predictions on performance of the Tags-and-

words predictor . 66

ix

5.7 Comparison of the accuracy, average prediction list size, and average lenght

of suggestions . 68

6.1 Probability distribution of dictionary words 75

x

Chapter 1

Introduction

1.1 Introduction

Many people with learning, physical or cognitive disabilities have to cope with the phys-

ical and psychological problems imposed upon them. One of the problems that these

people may have to overcome is their inability to communicate normally. The human's

ability to communicate allows them to exchange ideas and concepts with each other, and

the inability to communicate can lead people to several problems.

Therefore, computer-based technologies, also called Assistive Technology (AT), have

become an essential support for many people with disabilities. Assistive technology refers

to the use of technology to assist individuals with physical or cognitive disabilities to

improve their abilities in performing functions that may be diÆcult or even impossible for

them without help. Assistive technology consists of a broad range of technologies, such

as wheelchairs, augmentative communication devices and alternative computer access

hardware and software. Each individual needs a speci�c type of technology, depending

on their impairments, and in order to make best use of the potential bene�ts of each

assistive device, some products exploit adaptive interfaces to meet the speci�c needs of

their users.

1

Chapter 1. Introduction 2

Communication is one of the activities that can be assisted using these technologies.

People who have diÆculty in movement or speaking may use computers as their writing or

communicating tools. However, many people with severe speech and motor impairments

face diÆculties when using computer interfaces to communicate. For many of them, it

is diÆcult to use the standard keyboards or any other computer input devices, due to

physical, cognitive, or learning disabilities, and hence the rate of sentence composition

can be very low.

Augmentative and Alternative Communication (AAC) systems are alternatives for

such people. They attempt to facilitate the communication of the people with disabilities

by increasing the communication rate and decreasing the e�ort. They help to enhance an

individual's communication abilities, and may include an integrated group of strategies

and techniques, such as symbols and picture boards, pencil and paper, and electronic

communication devices.

In Figure 1.1 an example of an AAC device, called Gemini, is shown. In the picture, a

handicapped user is using an input device specially designed to �t the needs of a user with

disabilities. Gemini is a full-featured Macintosh computer, developed by Gemini Assistive

Technology, Inc. It is a dedicated device to help people with learning, communication,

or computer access diÆculties.

Word prediction, the task of predicting words which are likely to follow a given seg-

ment of text, is a technique commonly used in AAC systems, which uses the inherent re-

dundancy in natural language to enhance the sentence composition rate. Word-prediction

systems have been in use as writing aids since the early 1980's. They were originally used

by people with physical disabilities in order to reduce the amount of e�ort needed to enter

a text, but later they were found to be also useful for people with learning or language

impairments, such as people with diÆculty in speaking, spelling, or grammar. A detailed

description of a word-prediction system can be found in Section 1.2.2.

Our goal is to introduce more eÆcient word-prediction algorithms by incorporating

Chapter 1. Introduction 3

Figure 1.1: Gemini device while is being used by a user with disabilities (picture from Assistive

Technology, Inc. www.assistivetech.com)

additional information into existing word-prediction systems. We evaluate an existing

word-prediction software, WordQ. We also design, implement, and evaluate several pre-

dictors that use di�erent sources of linguistic and statistical information in order to

suggest words to the user.

1.2 Alternative and augmentative communication

Augmentative communication refers to the use of a method or device to supplement a

person's ability to communicate. This may be a dedicated device or a software solution.

Dedicated devices range from simple systems, such as single-message voice output prod-

ucts to large, complex systems able to handle comprehensive communication needs. In

the following sections, several examples of AAC devices are explained.

1.2.1 Alternative access methods

Alternative access refers to the use of a method other than the regular computer input

devices to operate a computer, such as speech recognition and synthesis, eye-tracking,

direct-brain, and row-column scanning interfaces.

Chapter 1. Introduction 4

Alternative and virtual keyboards are keyboards with special and/or extra options.

An alternative keyboard consists of a physical device and a language set, and maps the

input entered by a user through the physical device into selections from the language set.

An example of such keyboards is an on-screen keyboard, which appears as an image on

the screen, and the user can use a pointing device to move the cursor and make keyboard

selections. Row-column scanning devices are also examples of such keyboards. In these

devices, the users control their computers by pressing a switch to make choices as items

are highlighted one after the other. This highlighting of choices is called scanning.

Many alternative input devices can be augmented with additional processing, such

as adding predictive capabilities, using speech recognition and synthesis software. Many

AAC systems use speech recognition or synthesis software to allow their users to type by

using their voice. Programs are di�erent depending on whether or not they are completely

hands-free, their ability to customize to meet individual needs, whether or not they give

feedback or corrections to the user, and the method they use to correct recognition errors.

There are several AAC systems that exploit speech to help their users, for example

a screen reader provides auditory feedback to a blind user about what is happening on

the screen. Another type of a reading system may allow an individual who is blind or

has low vision to use a scanner to scan documents, bills or books into the computer.

The computer then reads the material aloud and aids the user to store it in specialized

categories for later retrieval.

There is also software that can be used by individuals with learning disabilities. Word

processing software such as talking word-processing or word-prediction programs help the

users write by providing auditory feedback or suggestions for the current position of the

sentence. This is useful for individuals who have diÆculty typing letter by letter but who

can recognize words. This is also useful for individuals with physical disabilities, since it

reduces keystrokes.

Chapter 1. Introduction 5

1.2.2 Augmentative communication systems

The ability to communicate e�ectively is a very important issue to users of AAC and AT;

and communication rate is a salient characteristic of e�ective communication. To help

people with diÆculties in speech or writing, various AAC devices have been designed, but

all of them are much slower than the standard ones. Therefore, the text composition rate

for these people is too low to maintain a normal conversation, usually less than 15 words

per minute, see (Alm et al., 1992), compared to the average rate of normal conversations

which is between 150 and 200 words per minute, see (Foulds, 1980). There are several

rate-enhancement techniques available to AAC/AT users, such as abbreviation expansion,

semantic encoding, sentence compansion, and word prediction, see (Demasco and McCoy,

1992). These methods are described in the following paragraphs.

Abbreviation expansion Abbreviation expansion is a simple and e�ective method to

increase the communication rate of AAC devices. It helps the user produce words with

relatively few keystrokes. Early systems exploited a lookup table maintaining the words

and phrases and their corresponding abbreviations. Although this method allows the

users to compose words with few keystrokes, it requires the user to memorize a large set

of codes for accessing the words and the system to maintain the abbreviation database.

Some of the systems are rule-based, and hence do not maintain a prede�ned lookup

table. These systems are more exible, since the users can create their own abbreviations,

but they need to remember the rules. An example of such systems is the one developed by

Moulton et al. (1999), which requires the user to follow two intuitive rules to create their

own abbreviations. The rules are simple, and help the system to �nd the user's intended

words for input abbreviations. For example, one rule may be that an abbreviation should

start with the same letter as the word itself.

Chapter 1. Introduction 6

Figure 1.2: Vanguard screen display with its icons for semantic concepts (picture from Aroga

Technologies www.aroga.com).

Semantic coding In this method, the vocabulary set consists of semantic primitives

that can be used to form words. Each word is generated from a sequence of two or three

semantic primitives. Semantic coding is a useful technique, but it also requires the user

to remember a large number of sequences of semantic concepts for creating sentences.

Minspeak is an example of a semantic compaction system developed by Baker (1982),

see also (Cross et al., 2001). The users of the system can produce complete sentences

without having to choose letters, phonemes, or words. A number of simple, reusable

sentences are stored within Minspeak; each one can be accessed by a short code.

The semantic concepts can be represented as icons, for example. Therefore, the keys

on the keyboard bear images that stand for semantic concepts. Each key can have

di�erent meanings depending on the context. Vanguard is a communication device that

combines a dynamic display screen with the Minspeak semantic coding system. A picture

of this device is shown in Figure 1.2.

Chapter 1. Introduction 7

Mary teaches Philosophy at the University of Toronto.

Mary Teach Philosophy University Toronto.

System’s output

User’s input

Figure 1.3: An example of sentence compansion.

Sentence compansion A sentence compansion system takes a compressed message as

input and expands it into a well-formed grammatical sentence. It has a vocabulary set

of uninected content words that the user can choose from. One such system has been

developed by Demasco and McCoy (1992). This system exploits a semantic parser that

produces a semantic representation of the input words. A representation translator then

translates this semantic representation into a deep structure, which is used as input for

the natural language generator to produce grammatical sentences. An example is shown

in Figure 1.3.

Word prediction Word prediction is the problem of guessing which words are likely

to follow a given segment of a text. A word-prediction system typically operates by

displaying a list of most likely words or phrases for the current position of the sentence

being typed by the user. As the user continues to enter letters, the system updates the

prediction list according to the new context. At any time, the user may select one of the

suggestions with a single keystroke or mouse click. An example of word prediction by

WordQ is shown in Figure 1.4.

Word prediction has applications other than being used as a communication aid for

the people with disabilities. Word prediction, or in general predicting a missing word,

part-of-speech tag, or any other token given its context, is one of the important tasks in

most Natural Language Processing (NLP) applications such as part-of-speech tagging,

speech recognition, word-sense disambiguation, context-sensitive spelling correction, and

Chapter 1. Introduction 8

Figure 1.4: An example of word prediction by WordQ (picture courtesy of Fraser Shein).

machine translation.

It is known that all these methods impose a cognitive load on their users, resulting

in little improvement in text composition rate. It is also indicated that although these

techniques reduce the number of keystrokes, and the amount of users' e�ort as a result,

they do not necessarily reduce the time needed to enter a text. In a word-prediction

system, visually searching the list of suggestions and deciding whether or not the list

contains the desired word, changing the point of gaze from the keyboard to the display

and vice versa, are activities that increase the cognitive load on the user. Therefore,

although a considerable number of keystrokes can be saved by using such a program,

there is not always an improvement in overall text generation rate.

However, among various methods for enhancing the communication rate of AAC

systems, word prediction is one of the most successful ones, and has been widely used.

Chapter 1. Introduction 9

Exploiting prediction techniques in an AAC system has several advantages: it can reduce

the amount of physical e�ort; it helps the users spell words correctly and save e�ort by

saving keystrokes; and it improves the quality and quantity of written work. Moreover,

the increased cognitive loads may decrease over time as the user becomes familiar with

the system.

1.3 Outline of the Study

Although word prediction might have other applications in the domain of computational

linguistics, word prediction as a writing aid for people with disabilities is the focus of

our study. In this study, various types of statistical information are added to a baseline

prediction system to improve the accuracy of predictions, resulting in higher keystroke

savings, and a corresponding reduction in the physical e�ort needed by the user. There-

fore, our aim is to �nd prediction techniques that result in more accurate predictions.

So far most of the existing predictors do not consider the syntactic structure of the

sentence. We hypothesize that if a word-prediction system uses syntactic information in

addition to the other statistical information such as word unigram and bigram statistics,

the predictions would be more accurate.

To test our hypothesis, we collect data from a large corpus of English. Various statis-

tics about words and their part-of-speech tags are collected from the corpus, such as word

unigram and bigram statistics, part-of-speech tag unigram, bigram and trigram statis-

tics, and word-tag probabilities. Using this data, we will conduct several experiments in

order to �nd out the e�ect of including more statistical information in a word-prediction

system.

In Chapter 2, we provide a survey of related work in word prediction, and their ad-

vantages and disadvantages. Our proposed algorithms for the task of word prediction are

presented in Chapter 3. In Chapter 4, we show how statistics are collected on our selected

Chapter 1. Introduction 10

n-grams. The experimental methodologies and the results are reported in Chapter 5.

Our results con�rm that a strong word unigram or word bigram model, collected from

a large corpus, is a good predictor. However, it seems that there is an overlap between the

information embedded in a word bigram model and the information which can be found

in a part-of-speech tag trigram model. Thus, adding part-of-speech tag information to

word bigrams and attempting to predict using both information sources is not as helpful

as we expected.

In the �nal chapter, we conclude by discussing the contributions and limitations of

the current work, and suggest possible future extensions.

Chapter 2

Related work

2.1 Introduction

Statistical Natural Language Processing (NLP) aims to do statistical inference for the

�eld of NLP. Statistical inference consists of taking some data for training and mak-

ing inferences about unseen data in general, on the basis of the distribution and other

statistical information of the training data.

An example of statistical estimation is the task of language modeling, where the

problem is to predict the next word given the previous words. However, the methods

developed for this task can be used in other applications such as word sense disambigua-

tion, probabilistic parsing, part-of-speech tagging, etc., see (Jurafsky and Martin, 2000;

Manning and Sch�utze, 1999).

Word prediction can be stated as attempting to estimate the probability of having a

word in a desired sentence position, given the sequence of all its previous words in the

context. Since there is not always enough data to consider each textual history separately,

we need a method to group similar histories in order to give reasonable predictions for

the next position in the sentence. One possible way is making a Markov assumption,

which says that only the last n � 1 words of the history a�ect the next word. This is

11

Chapter 2. Related work 12

called an (n�1)th order Markov model or an n-gram word model. Therefore, we estimate

the probability of each word, wn, considering only n� 1 previous words: w1; w2; :::; wn�1.

The probability is de�ned to be P (wn jw1; w2; :::; wn�1).

Usually, we would like the n in an n-gram model to be suÆciently large to include most

of the sequences that might happen in the language under consideration. Unfortunately,

even if we have a large corpus as training data, there is always the problem of data

sparseness for large values of n. Therefore, current systems mostly use unigrams (n = 1),

bigrams (n = 2), and sometimes trigrams (n = 3).

Most of the existing word-prediction systems exploit statistical prediction algorithms.

The information that is mostly used in such algorithms is word frequency statistics.

Several systems incorporate syntactic information, by adding word category statistics or

grammar rules, in order to improve the accuracy of word prediction. Other programs may

use semantic information along with other information sources. There are also systems

that adapt to the user's language by using speci�c vocabulary or through learning.

The general approach of any statistical word-prediction algorithm, regardless of the

information sources it exploits, is as follows:

� Find a subset of the lexicon, called W , which contains all words starting with the

word pre�x entered so far by the user.

� For each candidate word wi 2 W , compute the probability of this word being in

the desired sentence position. This probability is usually computed from various

statistical information that is maintained along with every word in the lexicon.

� Suggest the top n words of the candidate word list, according to the probability

computed for each word in the previous step.

In Sections 2.2 and 2.3 several existing letter-prediction and word-prediction systems

are introduced. Section 2.4 describes some other word-prediction systems that incorpo-

Chapter 2. Related work 13

rate syntactic information into their prediction algorithms, either by using word category

information or grammatical rules.

2.2 Statistical letter prediction

There are several letter-prediction systems that attempt to help people with disabilities.

Although our aim in this study is to improve the performance of word prediction, looking

at the ideas of letter prediction might also be useful. In the following section, three such

systems are described in detail.

2.2.1 Predictive keyboards

Foulds et al. (1987) have developed a communication model to reduce the number of keys

representing the English alphabet, from 27 (a { z, and space) to 11. On the new keyboard,

each key represents a cluster of three letters; therefore a disambiguation process is needed

to determine which letter the user wants to type when pressing a key. It is possible that

the disambiguation process fails to predict the user's desired letter correctly; therefore,

one key on the keypad is used for error correction.

The model exploits the letter-quadgram transitional probabilities to predict the ap-

propriate letter without using a lexicon of English words. The statistical information

has been derived from the Brown Corpus. This letter-prediction system, or predictive

keyboard, can be used by users with disabilities as a speci�c device. The authors claim

that since the user does not have to choose among 27 keys, but only 11 keys, the e�ort

and cognitive load imposed on the user is decreased compared to when the user works

with a standard keyboard.

Such a device can be useful only if the number of keystrokes per character is not large.

In this system, the �nal keystrokes per character achieved in one of the experiments, was

about 1:14 for English.

Chapter 2. Related work 14

Figure 2.1: The standard 12-key telephone keypad (picture from Eatoni Ergonomics, Inc.

www.eatoni.com).

There are other similar text entry methods and devices, developed to decrease the

number of keystrokes. Most of these techniques are used on mobile phone keypads.

Although the purpose of developing such systems is di�erent from those which are used

as AAC devices, the ideas are similar. An example of such keypads is shown in Figure 2.1

LetterWise is such a technique, developed by MacKenzie et al. (2001), and is used to

enter text using a phone keypad. This technique is used to decrease the total number of

keystrokes needed to enter a text by using the conventional text entry methods using a

12-key keypad, consisting of number keys 0 { 9 and two additional keys. Letters a { z

and space character are spread over keys 0 { 9; thus, three or four letters are grouped on

each key resulting in ambiguity.

In this method, each keypress is disambiguated according to the previously typed

letters. In one implementation of LetterWise, up to three previous letters are considered

in disambiguation. Thus, LetterWise includes databases of probabilities of letter quad-

grams in the target language. Keystrokes per character for LetterWise in an experiment

was 1:15 for English. There are also commercial systems, such as T9 (www.t9.com), that

work on the keypress disambiguation for mobile phones.

The Reactive Keyboard, developed by (Darragh et al., 1990), see also (Darragh and

Chapter 2. Related work 15

Witten, 1992) is another alternative interface for physically people with disabilities who

have diÆculty using a regular keyboard. It is embedded in an editor, and generates

predictions from a text model that is created and maintained adaptively from previously

entered text.

The Reactive Keyboard works by attempting to predict what the user might want

to select next, on the basis of preceding input. It uses an n-gram model for characters,

created from text samples and from the user's input. The model is stored in a special

tree structure that allows partial matches between context and model to be found eco-

nomically. The idea is to use the n� 1 previous characters to predict the nth one, where

possible. If matches cannot be found, the context is shortened by one character, and the

process continues.

As a result of the prediction process at each point, a list of up to 128 likely characters

for the next position of the current sentence is found. In the next step, a list of predictions,

each beginning with one of the predicted characters, is displayed to the user. The user

can choose one of them and click at a point; characters up to that point are inserted

into the editing window. The prediction window is scalable and always contains 128

predictions ordered by a score assigned to them according the probability of their �rst

letters being the next letter. Predictions beginning with the most likely next letter are

in the highest position of the list.

2.3 Statistical word prediction

Language statistics are a useful information source for most of the existing commercial

and academic word-prediction systems. The statistical information used in prediction

systems is mostly n-gram language models.

Most of the early word-prediction programs, especially those that were developed as

writing aids for people with disabilities in the early 1980s, used word frequency informa-

Chapter 2. Related work 16

tion, i.e., a word unigram model, to predict words for current or next position. These

predictors ignore all the previous context, and use only word frequency information in

their prediction process. In order to improve the accuracy of predictions, some predic-

tors consider a larger context and use word sequence statistics, such as word bigram or

trigram models.

A major drawback of both unigram and bigram predictors is that they do not consider

the syntactic and semantic structure of the sentence, and therefore there is a possibility

of predicting words which are syntactically and/or semantically inappropriate for the

desired sentence position. Another disadvantage of such predictors is that they consider

only a small context.

2.3.1 Existing N-gram predictors

WordQ software is a writing tool that was developed at the Bloorview MacMillan Centre,

Toronto, Canada, with support from the Ontario Rehabilitation Technology Consortium

(Nantais et al., 2001; Shein et al., 2001). WordQ can be used along with standard

Windows word-processing software; it has a word-prediction module that suggests words

to the user, and a speech module that provides spoken (text-to-speech) feedback.

The WordQ prediction module uses word unigram and word bigram statistics along

with optional customization to each user's vocabulary in order to suggest appropriate

words. Wherever the bigram probability exists, the WordQ prediction algorithm sug-

gests words according to that. In this case, the predictor suggests words whose bigram

probabilities according to the given previous word are higher. Otherwise, it uses the

unigram language model to predict the next word, i.e., it ignores the previous word and

predicts only according to the words' frequency of use. A few examples of prediction by

WordQ are shown in Figure 2.2.

WordQ is adaptive, and thus the vocabulary used for prediction is customizable de-

pending on the user's level and the speci�c topic selected by the user. The system

Chapter 2. Related work 17

SENTENCE: There are numerous hill towns in central Italy.

There are numerous hill t_

tower
town

toward
towardsThere are numerous hill tow_There are numerous hill to_

and
to
side
that
road

There are numerous hill _(a)

(c)

(b)

(d)to
to the
towards
toward
top

towards

that
to

to the

they

towns

ALGORITHM : WordQ prediction algorithm

Figure 2.2: Sample predictions given byWordQ: (a) predictions after completion of the previous

word hill; (b) predictions after entering the �rst letter of the current word; (c) the second letter

of the word towns has been entered; (d) after entering the third letter, the user's desired word

is predicted.

captures new words and adds them to the user's lexicon. Thus, there is a large back-

ground lexicon used to check the spelling of the new words before adding them to the

user's lexicon, in order to prevent wrong words from entering the system's lexicons. It

also dynamically changes its frequency information to adapt to the users' frequencies. A

user frequency is assigned to each candidate word along with the unigram and bigram

probabilities. The user frequency changes dynamically according to the use of the word

by the user. This frequency a�ects the �nal probability of choosing a word for the desired

position.

(Nantais et al., 2001) did several experiments on WordQ in which the keystroke

savings of WordQ was measured on three test texts, 116,579 words in total. The predictor

achieved between 37% and 53:1% keystroke savings, depending on the type of text,

adaptation, and the type of frequency information used. In all experiments, the size of

the prediction list is 5.

Predictive Adaptive Lexicon (PAL) is a computer program developed by Arnott et al.

Chapter 2. Related work 18

(1984), see also (SwiÆn et al., 1985), which assists users in composing text by suggesting

a list of words which are appropriate for the desired position of the sentence. The user

can choose from the list by an appropriate key press or continue typing their own words.

The prediction system consists of some standard lexicons; each is constrained to a

maximum size of the order of 1000 words. But it is possible to create a new lexicon for

a speci�c user, either online, by creating the lexicon while the user types in words, or

o�ine, by creating the lexicon from an existing text written by the user. The lexicons

contain statistical information for each word, such as word frequency and recency of use.

The prediction module uses word-frequency information and predicts words according

to the current pre�x. It is also adaptive, i.e., it uses words' recency information to suggest

words. The lexicon and the statistical information used by the system are both adaptive

and hence change according to their use by the user. PAL also automatically captures

new words, and adds them to the lexicon for future predictions. In order to prevent

wrongly spelled words going into the master lexicon, PAL is supplemented with a spelling

corrector program.

The predictor was tested using a number of texts, including a technical manual, several

newspaper articles, and the transcript of a TV program. With 10 words in the prediction

list, the predictor achieved keystrokes savings between 30% and 46%, depending on the

type of text.

Another word-prediction system, developed by Bentrup (1987), uses both the fre-

quency of occurrence of individual words and the knowledge of their sequential dependen-

cies, i.e., the transitional probabilities between words, in order to make better predictions.

The system incorporates the n-gram models of language to make predictions.

Using a corpus, a lexicon is constructed containing the frequency of words and word

sequences. The lexicon contains words and phrases of two to seven words. Since there

are phrases of up to seven words in the master lexicon, an initial key of six previous

words is used to retrieve words and phrases to suggest to the user. The transitional

Chapter 2. Related work 19

probabilities of words are used to �nd the most likely suggestions. If enough matches

cannot be found using the initial key, the key is shortened by one word. The process

of retrieving words and phrases that match the key is continued until either the desired

number of words or phrases are found, or the key is an empty string. At this time, if there

are not enough predictions in the list, a number of words and phrases are considered as

suggestions according to their individual frequency of use, i.e., all the previous words are

ignored in the prediction process.

Communication rate, the number of characters entered by user in one minute, and

communication eÆciency, the number of movements to enter one character, were used

as measures of performance. The system was tested by �ve users with motor impairment

who transcribed articles into the predictor. The e�ect of using specialized dictionaries was

also measured for these users. On average, the communication rate was 18:1 characters

per minute, and the communication eÆciency was 1:98 movements per character (when

no specialized dictionaries were used).

Profet is a statistical and adaptive word-prediction program for Swedish, developed

by Carlberger et al. (1997a,b), and has been used as a writing aid since mid-1980s. When

users are typing with Profet, a list of up to 9 likely words is presented to them and they

can either accept a suggestion if their intended word appears in the list or continue typing,

otherwise.

An old version of the program is strictly frequency-based and exploits three informa-

tion sources, one at a time: the word unigram lexicon, the word bigram lexicon, and the

user lexicon used for adaptation purposes. The word unigram and bigram lexicons are

created from a subset of the Stockholm-Ume�a Corpus (SUC).

The predictor uses a bigram lexicon in order to predict the next word when the user

completes a word, but after the user enters letters from the new word, the system ignores

any previously typed words, and considers only word unigram probabilities. Profet uses

recency information to adapt to the user's typing behaviour. Therefore, the recently used

Chapter 2. Related work 20

words are more likely to be predicted when they match.

A text segment of about 200 words was used to measure the performance of the

predictor. Profet achieved a keystroke savings of around 33%, when �ve suggestions and

no adaptation were used.

To summarize: PAL does not consider the previous word; it uses only word frequency

information and the word pre�x entered so far. Both WordQ and Profet attempt to

take the previous word into account by using word bigram statistics. But the bigram

probabilities are not always available; therefore, they do not always use the information

about the previous word. Another problem with these systems is that they do not

consider the syntactic structure of the sentence.

2.4 Syntactic word prediction

Statistical prediction systems that do not consider syntactic information may suggest

words which are not grammatically appropriate. Therefore, they impose an extra cog-

nitive load on the user, decreasing the text composition rate. Also, it has been found

in various studies that removing the syntactically inappropriate words from the list of

suggestions improves the comfort of user, even if the actual saving in physical e�ort does

not change much , see (Hunnicutt, 1987; Woods, 1970).

Therefore, various prediction systems have been developed that attempt to include

syntactic information in their prediction process. The goal of syntactic prediction is to

ensure that the system does not suggest grammatically inappropriate words to the user.

Some of these systems consider part-of-speech tag information of words as syntactic

information, while others use a parser to build the syntactic structure of the whole

sentence.

However, an important issue is that the prediction system is required to be as fast

as possible. But the more information sources the predictor uses to suggest words, the

Chapter 2. Related work 21

slower the system is. Also, it is found in some experiments that by including syntactic

information in prediction, appropriate words are removed from the prediction list almost

as often as inappropriate words are prohibited from appearing to the list, see (Hunnicutt,

1987).

Another possible drawback of a syntactic predictor is that it cannot adapt itself to

the user's vocabulary easily since all the words in the lexicon need to be tagged with

their syntactic category and some other grammatical features.

2.4.1 Existing syntactic predictors

The Predictive Program is a program used as a writing aid for people with disabilities. It

has been developed at the University of Washington, see Treviranus and Norris (1987).

When the user of the system enters the �rst letter of the desired word, the system presents

6 to 10 possible completions for the existing word pre�x. The predictions are presented

according to grammatical information of the preceding word(s) and the frequency of

English words. Unfortunately, it is not clear how the grammatical information is used

by the prediction algorithm. The system was tested by two persons with cerebral palsy.

They had used the system for 6 and 9 months, respectively, and found the system useful

for their writing needs.

Syntax PAL is a version of PAL that incorporates some grammar rules into its pre-

diction module to o�er more appropriate predictions. A set of 16 basic syntactic classes

is used to tag the words in the lexicon and in the sentence being entered; each word is

assigned its most common syntactic class. To predict words, the word frequency and the

syntactic category bigrams are used, i.e., the following probability is assigned to each

candidate word:

F (w) � P (syncat2 j syncat1),

where F (w) is the frequency, or the unigram probability, of the candidate word w, and

Chapter 2. Related work 22

P (syncat2 j syncat1) is the �rst-order syntax transition probability, or the syntactic cat-

egories' bigram probability, in which syncat2 is the possible syntactic category of the

current word, and syncat1 is the syntactic category of the previous word. The syntax

transition matrix, containing all these bigram probabilities for syntactic categories, is

calculated from a tagged training corpus in which every word is tagged with its most

common syntactic category.

Syntax PAL also maintains a list of English function words along with a transition

matrix indicating the possibility of occurrence of a particular function-word pair. This

information is used to remove unlikely combinations from the prediction list, see (Booth

et al., 1992; SwiÆn et al., 1987, 1988).

Three texts of 3; 500 words each were used to test Syntax PAL. Syntactic information

gives an improvement between 0:5% and 2%, depending on the text and the number of

predictions o�ered.

The prediction system developed by VanDyke (1991) uses a grammar of English to

provide the user with a list of grammatical suggestions. The predictor works by traversing

the search space produced by constructing the parse tree of the input sentence. The parser

holds all possible structures for the partial sentence entered so far, and thus at each point

in the sentence, it knows what syntactic categories can be in the next position. This

eliminates a number of words to choose from, resulting in more appropriate predictions,

but it requires a considerable amount of work to partially parse the input sentence every

time a new word is completed by the user. There is no evidence of testing the system to

see whether the use of grammar helps improve the prediction performance.

In the prediction system developed by Wood (1996), Windmill, a context-free gram-

mar (CFG) along with augmented phrase structure rules are employed to improve pre-

diction performance through grammatical processing. At each point in the sentence, all

possible continuations are considered for prediction purposes. In this way, all the possi-

ble syntactic categories for the current position can be used to extract appropriate words

Chapter 2. Related work 23

from the lexicon. This list of words is then sorted according to their likelihood using the

statistical information stored along with the words. The �rst few words in the list are

then o�ered to the user as suggestions.

Three pieces of text were used to test Windmill: an article, a scienti�c paper, and

a set of transcripts of several conversations. The system was evaluated according to hit

rate, keystroke savings and the position of the desired word in the prediction list. The

predictor achieved average keystroke savings of between 30:44% and 55:10%, depending

on the type of text, and the prediction algorithm: whether it uses syntactic information

or not.

Garay-Vitoria and Gonz�alez-Abascal (1997) have developed a syntactic word-prediction

system that exploits a chart parser to analyze the syntactic structure of the sentence.

The chart-parsing technique is used to determine the most probable syntactic category

which is appropriate for each position. The predictor uses a lexicon containing statis-

tical, syntactic, and morphological information for each word. The system also uses a

set of grammar rules, each of which is assigned a weight according to its frequency of

use. Within a rule, information about gender and number are de�ned and can be used

in addition to morphological information to properly adapt gender and number of the

proposals, if necessary.

The system is also adaptive, meaning that the lexicon changes dynamically to adapt

to the user's vocabulary, and the weights assigned to the grammar rules change according

to their frequency of use by a speci�c user. Whenever a user enters a word that cannot

be found in the lexicon, the system asks the user about the syntactic category of the new

word and then adds it to the lexicon.

When the number of predictions proposed to the user is 5, the system achieved

keystroke savings of about 58%, compared to those of a baseline which only uses fre-

quency information, 56% (both predictors are adaptive). There is no more information

about their experimental methodology: whether they tested their system in a real envi-

Chapter 2. Related work 24

ronment with real users or they used a test corpus for doing so.

Even-Zohar and Roth (2000) have incorporated additional information into the learn-

ing process of their word-prediction system, in order to learn better language models in

comparison to prediction systems that use n-gram models. In the proposed prediction

system, the local context information along with the global sentence structure are con-

sidered. For this purpose, a very large set of features characterizing the syntactic and

semantic context in which the word tends to appear has been used, a representation is

learned for each word in terms of the features, and a learning method that is capable

of handling the large number of features is used. A language for introducing features in

terms of the available information sources is also de�ned.

Each sentence is represented as a list of predicates, called the Information Source

(IS) of the sentence. Features are de�ned as relations over the information source, or

aspects of the structure of the sentence. A few examples of features are the adjacency

relation between words, word collocations, and the part-of-speech tag assigned to each

word. There are also complex features such as the dependency relation between words

and role of each word or phrase inside the sentence, i.e., if it is a subject, object, etc.

The Wall Street Journal of the years 1988 { 89, about one million words, is used

for training and testing. Two di�erent feature sets and three di�erent classi�ers are

used in order to compare the results. For testing purposes, a list of confusion sets is

constructed, each including two di�erent verbs whose occurrence is equally likely in the

training corpus. In the test set, every occurrence of verbs v1 and v2 is replaced by the

set fv1; v2g. A classi�er then attempts to predict the appropriate verb for each position.

This work is di�erent from other word-prediction systems, in three ways: First, the

predictor assumes that the entire sentence is available, except for one word, which is being

predicted. Therefore, it can use the context before and after the prediction position in the

sentence. Second, the verb prediction task, as a speci�c application of word prediction,

is implemented for evaluation purposes. Third, the prediction is limited to choosing from

Chapter 2. Related work 25

two possible verbs for each position. Therefore, the method might not be applicable to

prediction systems that are used as writing aids for people with disabilities.

Hunnicutt (1989) conducted a number of experiments to measure the e�ect of adding

syntactic and semantic information to a Swedish word-prediction system. To include

syntactic information, a lexicon of about 10; 000 Swedish words was used, in which every

word was marked by its part-of-speech tag. The predictor considers some of the syntactic

classes to be unlikely for the current positions. Words which are from these classes are

then removed from the prediction list.

In an early version of the system that did not include syntactic and semantic infor-

mation sources, the predictions were chosen either according to their frequency of use

stored in the lexicon, or on the basis of their usage in the text being typed by the user,

taking both frequency and recency information of the words into account. Results of the

experiments showed a small improvement in keystroke savings for syntactic information.

In order to enhance the accuracy of Profet, a new version of it has been developed. In

the new system, developed by Carlberger et al. (1997a), the scope is extended to include

part-of-speech tag trigrams and word bigrams at each prediction point. The new predic-

tion algorithm exploits two interacting Markov Models: a second-order Markov Model

for part-of-speech tags, and a �rst-order Markov Model for words, which is modi�ed to

consider the conditional probability of a word given the probability estimation of the tag

obtained by the tag Markov Model.

The idea of the prediction algorithm is to �rst obtain a probability estimation for

the tag of the next word, using the tag Markov model. In the next step, a probability

estimation is found for the next word using the word Markov model. The tag probability

estimation from the previous step is used to promote rank of the words with the most

likely tag. The tag unigram, bigram, and trigram lexicons are created from the same

corpus (SUC) used to build word unigram and bigram language models.

Three texts of about 10,000 words each, have been used for evaluation. The system

Chapter 2. Related work 26

achieved a keystroke savings of about 43:2%, when �ve suggestions and no adaptation

were used.

2.5 Summary

Most of the systems introduced in this chapter have not been evaluated using a complete

set of experiments that capture di�erent aspects of performance of word prediction. Some

of them have used very small test texts, and most of them have only used keystroke sav-

ings as a performance measure. Some of them were tested by real users with disabilities,

but not on a test set.

Our goal have been to design and implement a testbench in which we can plug any

word-prediction algorithm and can work with large training and test data. We have also

introduced several prediction algorithms, some of them exploited syntactic information.

A number of performance measures have been introduced, and several experiments on

large corpora have been conducted to evaluate each one of the prediction algorithms, and

compare them according to the measures.

Chapter 3

Prediction algorithms

Suppose the user is typing a sentence and the following sequence of words has been

entered so far:

� � � ppw pw cwpre�x ,

where ppw and pw are the last two completed words, or the two previous words of the

current position, and cwpre�x is a pre�x of the current word that the user has typed so

far. We de�ne W to be the set of all lexicon words beginning with the pre�x cwpre�x . A

predictor attempts to choose the n (usually between 1 and 10) most appropriate words

from the set of candidate words, W , according to the context, i.e., the sequence of words

and the current pre�x.

Each prediction algorithmmay incorporate di�erent types of information about words

and the context. In the following sections, we will introduce several prediction algorithms

that we have implemented and tested. Some of them use only statistical information

about the words in the sequence, such as Unigram predictor and Bigram predictor, which

are explained in more detail in Section 3.1 and Section 3.2. Others may also include

syntactic information about the words through the use of part-of-speech tags. These

predictors are introduced in Section 3.3.

27

Chapter 3. Prediction algorithms 28

Most of the word-prediction programs that are used by individuals with disabilities

attempt to adapt to the user's behaviour in di�erent ways, in order to improve the

accuracy of the predictions. In Section 3.4, some of the adaptation techniques used in

word-prediction systems, especially in WordQ and our predictors, are described.

3.1 Unigram predictor: the baseline

We have implemented a baseline word-prediction algorithm that uses only word unigram

statistics to do prediction. The Unigram predictor sorts all lexicon words that match

the word pre�x entered so far, according to their frequency of use. Word frequency

information, i.e., word unigram statistics, is gathered from a training corpus, which is

a subset of the British National Corpus (see Chapter 4). The predictor then presents

the top n words, according to their frequency, as suggestions to the user. An example of

words suggested by the Unigram predictor is shown in Figure 3.1. It can be seen that in

any of the prediction steps, only a few of suggestions are grammatically acceptable for

the desired position.

3.2 Bigram predictor

The Bigram predictor expands the context and takes the previous word into account, in

addition to the word pre�x entered so far. The predictor �rst looks for all the lexicon

words that match the existing word pre�x. It then retrieves the bigram probability,

P (wi j pw), for each candidate word wi. In the next step, the predictor selects the top n

words in the candidate list according to their bigram probability. These high-probability

words create a list of suggestions for the user. An example of words suggested by the

Bigram predictor is shown in Figure 3.2. Compared to prediction given by the Unigram

predictor, most of the suggestions given by the Bigram predictor are more appropriate

for the desired position.

Chapter 3. Prediction algorithms 29

(d)(c)

(b)(a)

SENTENCE : Two pilots lost their lives in a crash.

Two pil_Two pi_

pictures

Two _ the Two p_

part.
,

of
to put

place

per
people

pieces

piece
picked

picture pilot

pillow
piled
pile

ALGORITHM : Unigram

pilots

Figure 3.1: Sample predictions given by the Unigram predictor: (a) predictions after comple-

tion of the previous word Two; (b) predictions after entering the �rst letter of the current word;

(c) the second letter of the word pilots has been entered; (d) after entering the third letter, the

user's desired word is predicted.

The WordQ prediction algorithm, described in Chapter 2, is similar to our Bigram

predictor. The most important di�erence between these two predictors is that in WordQ,

when the bigram probability does not exist, the system backs o� to the unigram proba-

bility. However, we use a backo� weight together with the unigram probability wherever

the bigram does not exist. Backo� n-gram models were proposed by (Katz, 1987). If

the n-gram of concern (here bigram) has not appeared or appeared k times or less (k is

normally set to 0 or 1, in our case 0) in the training data, then an estimate from a shorter

n-gram (here unigram) is used (for more details see Chapter 4, Sections 4.2.2 and 4.2.3).

3.3 Syntactic predictors

Our syntactic predictors make use of syntactic information by considering the part-of-

speech tags assigned to the words by a part-of-speech tagger. Using part-of-speech tag

information has two major advantages: �rst, it considers the syntax of the sentence,

Chapter 3. Prediction algorithms 30

(a) (b)

(c)

SENTENCE : Two pilots lost their lives in a crash.

Two _

ALGORITHM : Bigram

weeks

of
days

other

years
Two p_ points

people
pairs
particular
patients

Two pi_

pictures
pilot
pilots
pints
pieces

Figure 3.2: Sample predictions given by the Bigram predictor

since the tagger has to look at all the previous words and their tags to tag each word in

the sentence; secondly, since the trigram model for part-of-speech tags is much smaller

than the trigram model for words, the syntactic predictor can look at the tags of the two

previous words when suggesting words to the user, resulting in a larger context.

A syntactic predictor assumes that a part-of-speech tagger tags the sentence words

as the user types them, i.e., the tagger tags the sentence from the beginning every time

a new word is entered by the user. A tagger that can tag each new word without having

to tag the whole sentence from the beginning is of course a better choice.

Some part-of-speech taggers, such as the Brill's tagger, have to look at the context

around each word several times to decide about the �nal tag assignment of the word.

Thus, these taggers are not appropriate for the application of word prediction. Others

may be looking at a minumum number of surrounding words and especially only the

words prior to the current word to assign a tag. These taggers (with slight changes) can

be used in word-prediction environments.

A syntactic predictor has access to the following sequence of words and part-of-speech

tags to predict the current word:

Chapter 3. Prediction algorithms 31

� � � ppw=tppw pw=tpw cwpre�x ,

where tppw and tpw are the part-of-speech tags of the previous words ppw and pw, respec-

tively.

There are di�erent ways of incorporating the part-of-speech tag statistical information

into the predictor. Some of these approaches are explained in the following sections.

Our experiments and the results achieved by each of the approaches are explained in

Chapter 5.

3.3.1 Part-of-speech tags only

In this method, we assume that the part-of-speech tag is suÆcient for prediction. There-

fore, we can assign a probability to each candidate word wi by estimating the probability

of having this word in the current position, given that the most likely tags for the two

previous words are tppw and tpw, respectively. This probability can be estimated as fol-

lows:

P (wi j tppw; tpw) =
X

tij2T (wi)

fP (wi j tij)� P (tij j tppw; tpw)g ; (3.1)

where tij is the jth tag for wi in which j varies from 1 to jT (wi)j; T (wi) is the set of

all possible part-of-speech tags that may be assigned to wi; P (tij j tpw ; tppw) is the part-

of-speech tag trigram probability; and P (wi j tij) is the conditional probability of having

word wi as the current word of the sentence given tij as its part-of-speech tag. This

probability can be calculated by Bayes's formula as follows:

P (wi j tij) =
P (tij jwi)� P (wi)

P (tij)
;

where P (wi) and P (tij) are unigram probabilities of English words and part-of-speech

tags, respectively; and the conditional probability P (tij jwi) is calculated from a corpus

for each word of the lexicon and all of its possible part-of-speech tags.

Chapter 3. Prediction algorithms 32

t

t

t

pw

wpw

ppw

i ij

Figure 3.3: A bayesian network showing interdependencies among words and part-of-speech

tags.

3.3.2 Previous word and two previous part-of-speech tags: Tags-

and-words

Another approach to incorporating part-of-speech tag statistics into the prediction algo-

rithm, is to estimate the probability of each candidate word wi, given the previous word,

pw, its part-of-speech tag, tpw, and the part-of-speech tag of its preceding word, tppw; i.e.,

P (wi j pw; tpw; tppw). The probability P (wi j pw; tpw; tppw) can be estimated as follows:

P (wi j pw; tpw; tppw) =
X

tij2T (wi)

fP (wi; tij j pw; tpw; tppw)g ; (3.2)

where P (wi; tij j pw; tpw; tppw) is calculated as follows:

P (wi; tij j pw; tpw; tppw) = P (wi j pw; tij; tpw; tppw)� P (tij j pw; tpw; tppw) (3.3)

In Figure 3.3 a simple Bayesian network is shown, in which the direct conditional depen-

dencies among tppw, tpw, pw, tij, and wi are speci�ed. Using the conditional independence

assumptions, as can also be seen in the Bayesian network, we can assume that if the most

likely tag for the current word has been found according to the two previous tags, we

do not need to know the previous tags themselves. Therefore, P (wi j pw; tij; tpw; tppw)

can be rewritten as P (wi j pw; tij). Also we can assume that the tag of the current word

is conditionally independent of the previous word itself, knowing its part-of-speech tag.

Chapter 3. Prediction algorithms 33

Thus, P (tij j pw; tpw; tppw) can be rewritten as P (tij j tpw; tppw). As a result of the above

independence assumptions and using Bayes rule, the above probability can be estimated

as follows:

P (wi j pw; tij)� P (tij j tpw; tppw) (3.4)

=
P (pw; tij jwi)� P (wi)� P (tij j tpw; tppw)

P (pw; tij)

=
P (pw jwi; tij)� P (tij jwi)� P (wi)� P (tij j tpw; tppw)

P (pw; tij)
(3.5)

�
P (pw jwi)� P (tij jwi)� P (wi)� P (tij j tpw; tppw)

P (pw; tij)

=
P (wi j pw)� P (pw)

P (wi)
�
P (tij jwi)� P (wi)� P (tij j tpw; tppw)

P (tij j pw)� P (pw)

=
P (wi j pw)� P (tij jwi)� P (tij j tpw; tppw)

P (tij j pw)
(3.6)

According to the Bayesian network, neither of tij and pw are directly dependent on the

other, and therefore we can replace P (tij j pw) (the denominator in line 3.6) by P (tij),

and P (pw jwi; tij) (line 3.5) by P (pw jwi). Thus, the probability P (wi; tij j pw; tpw; tppw)

(Equation 3.3 above) can be estimated by the following formula:

P (wi; tij j pw; tpw; tppw) �
P (wi j pw)� P (tij jwi)� P (tij j tpw; tppw)

P (tij)

Therefore, we can assign a probability to each candidate word according to the following

formula (see Equation 3.2 above):

P (wi j pw; tpw; tppw) =
X

tij2T (wi)

fP (wi; tij j pw; tpw; tppw)g

�
X

tij2T (wi)

P (wi j pw)� P (tij jwi)� P (tij j tpw; tppw)

P (tij)

= P (wi j pw)�
X

tij2T (wi)

P (tij jwi)� P (tij j tpw; tppw)

P (tij)
(3.7)

An example of predictions given by the Tags-and-words predictor is given in Fig-

ure 3.4.

Chapter 3. Prediction algorithms 34

(b)(a)

(c)

SENTENCE : Two pilots lost their lives in a crash.

Two _

Two pi_

Two p_ people
patients
points
pairs
pieces

pieces
pints
pilots
pipes
pits

of
years
days
weeks
men

ALGORITHM : Tags−and−words

Figure 3.4: Sample predictions given by the Tags-and-words predictor.

3.3.3 Linear combination

The main idea of the linear combination approach is that the predictor �rst attempts

to �nd the most likely part-of-speech tag for the current position according to the two

previous part-of-speech tags. Then, it attempts to �nd words that have the highest

probability of being in the current position according to the predicted part-of-speech tag.

It then combines this probability with the probability of the word given the previous word.

The two predictors, one that predicts the current tag according to the two previous part-

of-speech tags, and the one that incorporates bigram probability to �nd the most likely

word, are combined using a linear combination with a coeÆcient 0 � � � 1:

� � P (wi j pw) + (1� �)� [P (wi j tcw)� P (tcw j tpw ; tppw)] ; (3.8)

in which P (wi j pw) is the bigram probability, tcw is the most likely part-of-speech tag

for the current position that can be associated with the candidate word, wi, and can be

found using the following formula:

tcw = argmaxtij fP (tij j tpw ; tppw)� P (wi j tij)g :

One of the important issues in this approach is to determine the value of �. It is not

Chapter 3. Prediction algorithms 35

very easy to determine what weight should be assigned to any of the prediction factors.

Therefore, we �nd the value of � experimentally (see Chapter 5).

3.4 Adaptation

No matter what algorithm a prediction system uses, there are techniques for making

predictions more accurate and more appropriate. These e�ective techniques are generally

called adaptation and can be used along with any prediction algorithm to improve the

accuracy of predictions.

There are various approaches to incorporate adaptation in a word-prediction system.

Some of the systems may use an adaptive lexicon, which updates the words' frequency

information according to the user's typing behaviour; i.e., the statistics collected from

the training corpus are considered as basic frequency information that can be changed

for every speci�c user. One way to update the statistics about words is to associate a

user frequency to each word or sequence of words. The user frequency of a word or word

sequence is increased each time the user enters that word (or word sequence). Words with

higher user frequencies are preferred to those with lower frequencies. Di�erent prediction

systems may have di�erent algorithms to decide how to choose the words according to

both their base frequency (collected from the training corpus) and user frequency.

For example, WordQ prediction module assigns a user frequency to each word, in

addition to the frequencies collected from a training corpus. The user frequency is zero

for all words at the beginning. Every time the user uses a word, its user frequency is

incremented. In a similar way, a user frequency is also associated with each word pair.

Words or word pairs with non-zero user frequency are preferred over words with zero

user frequency.

An adaptive lexicon may also use recency information. Recency information indicates

how recently a word has been used and therefore increases or decreases the likelihood of

Chapter 3. Prediction algorithms 36

it being used again in a similar context. Incorporating the recency information into the

prediction module may be accomplished in di�erent ways. One way to do this is to have

a recency count for each word (or word sequence), and increment it each time a word is

used within the desired context. Each document or each sequence of N words within the

document may be considered as new contexts. An algorithm is also needed to determine

how words should be selected according to both their base frequency and recency count.

For example, the dictionary of WordQ adapts to the users' vocabulary. Each user

begins with a small dictionary of words. As the user enters new words, which are not in

this lexicon, the system adds them as long as they can be found in the master dictionary

in order to check the spelling. In this way, the predictions are adapted to the user's

preferences, resulting in more appropriate predictions for the user.

Another way to adapt to the user's preferences is to include several topic-oriented

lexicons other than the base lexicon, each containing vocabulary related to a speci�c

topic. The users can then choose their desired topic. The advantage of having several

lexicons is that it restricts the range of words to choose from and therefore increases the

possibility of predicting the appropriate words. In WordQ it is possible for the users to

select a topic of their preference, which also helps the predictions to be more appropriate

for the users.

In our prediction algorithms we do not implement any of the above methods, but

they can easily be incorporated into our system. The only adaptation technique that we

implement is to remove repeated predictions. In this way, we do not predict those words

that have been already rejected by the user for the same position. More details about

this technique and the results achieved by incorporating it into the prediction system can

be found in Chapter 5.

Chapter 4

Data collection

4.1 The British National Corpus

We used the World Edition of the British National Corpus (BNC) to train and test

our word-prediction algorithms. This corpus was also used to test WordQ and compare

its performance with the performance of other proposed predictors. BNC is a corpus

composed of text samples from di�erent eras and di�erent genres, generally no longer

than 45; 000 words. It contains a mixture of both spoken and written language, which

are substantially the product of the speakers of British English. It includes about 100

million words, in total: 10% spoken and 90% written language, see (BNC manual, 2000).

Table 4.1 presents the domains and the percentage of texts in each domain in BNC.

The BNC texts use the reference concrete syntax of SGML in which the beginning and

the end of each element are marked by appropriate labels. The corpus consists of word

labels, <w>, and punctuation labels, < c >, grouped into segment elements speci�ed

by segment labels, < s >. Each segment contains a portion of written or spoken text,

more or less equivalent to a sentence, identi�ed by the CLAWS segmentation scheme, a

part-of-speech tagger used to tag the BNC.

37

Chapter 4. Data collection 38

Table 4.1: Domains and the percentage of BNC texts in each.

Domain texts words percent

Applied Science 370 7,104,635 8.14

Arts 261 6,520,634 7.47

Belief and thought 146 3,007,244 3.44

Commerce and �nance 295 7,257,542 8.31

Imaginative 477 16,377,726 18.76

Leisure 438 12,187,946 13.96

Natural and pure science 146 3,784,273 4.33

Social science 527 13,906,182 15.93

World a�airs 484 17,132,023 19.62

4.1.1 CLAWS part-of-speech tagger

The Constituent Likelihood Automatic Word-tagging System (CLAWS), is a part-of-

speech tagger for English with accuracy of around 96 { 97%. The latest version of the

tagger, CLAWS4, and the C5 tagset were used to tag the BNC World Edition. C5 is a

small tagset of 61 tags. This tagset is small because it was developed to annotate very

large corpora. The description of each tag in the tagset is presented in Table 4.2.

A word labeled by the markup label, < w >, is a grammatical word according to the

CLAWS de�nition of a word. An attribute, called type, is assigned to each word by the

CLAWS tagger, and determines the word syntactic category according to CLAWS tag

set. A punctuation character is also speci�ed by a type attribute, which indicates the

class assigned to it by the CLAWS system.

There are 30 special tags generated by the CLAWS tagger when annotating the BNC

texts. These are called ambiguity tags, since each of them is a combination of two basic

tags. CLAWS assigns an ambiguity tag to a word when it cannot decide which one is the

correct tag. A list of the ambiguity tags and their interpretation is presented in Table 4.3.

Chapter 4. Data collection 39

4.1.2 Pre-processing the corpus

In each of the training or test steps, a speci�c format for the training texts is required by

utility programs collecting statistical information or calculating performance measures.

Therefore, various �ltering are needed on the original BNC texts to make them appropri-

ate as input to each one of the utility programs. The pre-processing steps are explained

in the following sections.

Table 4.2: C5 tagset used to tag the BNC

Tag Description

PUN punctuation: general separating mark, i.e., ..., !, . : ; , - ?

PUQ punctuation: quotation mark, i.e., ' or "

PUL punctuation: left bracket, i.e., [or (

PUR punctuation: right bracket, i.e.,] or)

AJ0 adjective (unmarked) (e.g. GOOD, OLD)

AJC comparative adjective (e.g. BETTER, OLDER)

AJS superlative adjective (e.g. BEST, OLDEST)

AT0 article (e.g. THE, A, AN)

AV0 adverb (unmarked) (e.g. OFTEN, WELL, LONGER, FURTHEST)

AVP adverb particle (e.g. UP, OFF, OUT)

AVQ wh-adverb (e.g. WHEN, HOW, WHY)

CJC coordinating conjunction (e.g. AND, OR)

CJS subordinating conjunction (e.g. ALTHOUGH, WHEN)

CJT the conjunction THAT

CRD cardinal numeral (e.g. 3, FIFTY-FIVE, 6609) (excl ONE)

DPS possessive determiner form (e.g. YOUR, THEIR)

DT0 general determiner (e.g. THESE, SOME)

DTQ wh-determiner (e.g. WHOSE, WHICH)

EX0 existential THERE

ITJ interjection or other isolate (e.g. OH, YES, MHM)

NN0 noun (neutral for number) (e.g. AIRCRAFT, DATA)

NN1 singular noun (e.g. PENCIL, GOOSE)

NN2 plural noun (e.g. PENCILS, GEESE)

NP0 proper noun (e.g. LONDON, MICHAEL, MARS)

NULL the null tag (for items not to be tagged)

ORD ordinal (e.g. SIXTH, 77TH, LAST)

PNI inde�nite pronoun (e.g. NONE, EVERYTHING)

PNP personal pronoun (e.g. YOU, THEM, OURS)

PNQ wh-pronoun (e.g. WHO, WHOEVER)

Chapter 4. Data collection 40

Table 4.2: C5 tagset used to tag the BNC

PNX reexive pronoun (e.g. ITSELF, OURSELVES)

POS the possessive (or genitive morpheme) 'S or '

PRF the preposition OF

PRP preposition (except for OF) (e.g. FOR, ABOVE, TO)

TO0 in�nitive marker TO

UNC \unclassi�ed" items which are not words of the English lexicon

VBB the \base forms" of the verb \BE" (except the in�nitive), i.e. AM, ARE

VBD past form of the verb \BE", i.e. WAS, WERE

VBG -ing form of the verb \BE", i.e. BEING

VBI in�nitive of the verb \BE"

VBN past participle of the verb \BE", i.e. BEEN

VBZ -s form of the verb \BE", i.e. IS, 'S

VDB base form of the verb \DO" (except the in�nitive), i.e.

VDD past form of the verb \DO", i.e. DID

VDG -ing form of the verb \DO", i.e. DOING

VDI in�nitive of the verb \DO"

VDN past participle of the verb \DO", i.e. DONE

VDZ -s form of the verb \DO", i.e. DOES

VHB base form of the verb \HAVE" (except the in�nitive), i.e. HAVE

VHD past tense form of the verb \HAVE", i.e. HAD, 'D

VHG -ing form of the verb \HAVE", i.e. HAVING

VHI in�nitive of the verb \HAVE"

VHN past participle of the verb \HAVE", i.e. HAD

VHZ -s form of the verb \HAVE", i.e. HAS, 'S

VM0 modal auxiliary verb (e.g. CAN, COULD, WILL, 'LL)

VVB base form of lexical verb (except the in�nitive)(e.g. TAKE, LIVE)

VVD past tense form of lexical verb (e.g. TOOK, LIVED)

VVG -ing form of lexical verb (e.g. TAKING, LIVING)

VVI in�nitive of lexical verb

VVN past participle form of lex. verb (e.g. TAKEN, LIVED)

VVZ -s form of lexical verb (e.g. TAKES, LIVES)

XX0 the negative NOT or N'T

ZZ0 alphabetical symbol (e.g. A, B, c, d)

Step one: removing unnecessary SGML markup The only elements from the

BNC texts needed in our experiments are words, punctuation marks, and their part-of-

speech tags. Therefore, before starting any training we remove unnecessary elements from

Chapter 4. Data collection 41

the texts. These include all SGML markup other than word, punctuation, and sentence

boundary labels. Output of this �ltering process includes words and punctuation marks

and their part-of-speech tags. In the resulting texts, each sentence is delimited between

two SGML labels, < s > and < =s >, and is written on a separate line.

Step two: removing part-of-speech tag information In order to build n-gram

models for words, we need BNC texts which contain only words, but not their part-of-

speech tags. Therefore, we remove all part-of-speech tag information from the previously

�ltered texts. The output of this step is used as input by programs that collect n-gram

statistics for words.

Step three: removing the words The syntactic predictors introduced in Chapter 3

use part-of-speech tag statistics in order to suggest a list of words to the user. In order to

collect n-gram statistics for part-of-speech tags, we need another version of the training

texts in which the words are removed, but their part-of-speech tags remain. We have

written a script that reads in the training texts and extracts all part-of-speech tags.

4.2 Training: collecting the statistics

A portion of the BNC, about 81 million words chosen from the written-language section,

is used to train the Unigram, Bigram and the syntactic predictors. The training data

used for training WordQ is a text sample of around 5.8 million words collected from

the Internet. The training phase mostly includes collecting various types of statistical

information used by the predictors.

Di�erent predictors use di�erent statistical information to give suggestions to the

user. As explained in Chapter 3, the predictors exploit both word and part-of-speech tag

language models, along with word-given-tag probabilities.

Chapter 4. Data collection 42

Table 4.3: List of the ambiguity tags.

Ambiguity tag Ambiguous between More probable tag

AJ0-NN1 AJ0 or NN1 AJ0

AJ0-VVD AJ0 or VVD AJ0

AJ0-VVG AJ0 or VVG AJ0

AJ0-VVN AJ0 or VVN AJ0

AV0-AJ0 AV0 or AJ0 AV0

AVP-PRP AVP or PRP AVP

AVQ-CJS AVQ or CJS AVQ

CJS-AVQ CJS or AVQ CJS

CJS-PRP CJS or PRP CJS

CJT-DT0 CJT or DT0 CJT

CRD-PNI CRD or PNI CRD

DT0-CJT DT0 or CJT DT0

NN1-AJ0 NN1 or AJ0 NN1

NN1-NP0 NN1 or NP0 NN1

NN1-VVB NN1 or VVB NN1

NN1-VVG NN1 or VVG NN1

NN2-VVZ NN2 or VVZ NN2

NP0-NN1 NP0 or NN1 NP0

PNI-CRD PNI or CRD PNI

PRP-AVP PRP or AVP PRP

PRP-CJS PRP or CJS PRP

VVB-NN1 VVB or NN1 VVB

VVD-AJ0 VVD or AJ0 VVD

VVD-VVN VVD or VVN VVD

VVG-AJ0 VVG or AJ0 VVG

VVG-NN1 VVG or NN1 VVG

VVN-AJ0 VVN or AJ0 VVN

VVN-VVD VVN or VVD VVN

VVZ-NN2 VVZ or NN2 VVZ

Chapter 4. Data collection 43

N -gram language models, both for words and part-of-speech tags, are provided for

the experiments by using the Carnegie Mellon University-Cambridge Statistical Language

Modeling toolkit. Word-tag statistics are collected by a utility Perl program developed for

this project. Both the statistical language modeling toolkit and the utility Perl program

are explained in the following sections.

4.2.1 Statistical Language Modeling toolkit

The CMU-Cambridge Statistical Language Modeling toolkit is a suite of Unix software

tools developed to make the task of language modeling easier, see (SLM documentation,

2001; Clarkson and Rosenfeld, 1997). Some of the programs are used to process general

textual data into word frequency lists and vocabularies, word bigram and trigram counts,

various backo� bigram and trigram language models, etc. Some others can be used to

compute some measures over the resulting language models, such as perplexity and Out

Of Vocabulary (OOV) rate.

We use the toolkit to collect the frequency of English words, word sequences, part-

of-speech tags, and tag sequences from the training texts.

4.2.2 N-gram models for words

The vocabulary produced by the SLM toolkit programs contains about 65,000 most-

frequent words. Using this vocabulary and the original texts, unigram and bigram models

for words are constructed. The output �le contains 65,001 unigrams (65,000 vocabulary

words, and one symbol for all OOVs), and 7,053,433 bigrams (see Table 4.4). It also

includes the backo� unigram and bigram models used in cases when one of the probabil-

ities does not exist. According to the model created by the SLM toolkit, the conditional

probability of a word given its previous word is de�ned to be:

Chapter 4. Data collection 44

P (w2 jw1) =

8>><
>>:

P (w2; jw1) if bigram exists

Pbacko� (w1)� P (w2) otherwise
,

where Pbacko� (w1) is the backo� probability of the word w1, collected from the training

corpus by the SLM toolkit.

Using the toolkit options, we created an open-vocabulary model which allows for

OOVs to occur, but all of them are mapped to the same symbol. In our training, we

treat this symbol the same way as any other word in the vocabulary. The Good-Turing

estimator is used as a discounting strategy to smooth the probabilities collected from the

training data.

Table 4.4: Size of word and part-of-speech tag n-gram models.

Model Size (elements)

word unigram 65,001

word bigram 7,053,433

tag unigram 80

tag bigram 5,257

tag trigram 132,285

4.2.3 N-gram models for part-of-speech tags

The same toolkit programs are used to build unigram, bigram, and trigram models for

part-of-speech tags. The vocabulary in this case contains 79 part-of-speech tags, 61 basic

tags along with 18 of the 30 ambiguity tags. The other 12 ambiguity tags have been

replaced by the most probable tag (the �rst tag). These are mostly the ones that are

frequently repeated in the training corpus and/or the two tags are in two di�erent part-

of-speech categories, such as VVZ-NN2. The output �le includes 80 part-of-speech tag

unigrams, 5,257 bigrams, and 132,285 trigrams (see Table 4.4). The discounting strategy

is the same as the one exploited in building word language models, i.e., Good-Turing.

Chapter 4. Data collection 45

Similar to the n-gram models for words, the conditional probability of a part-of-speech

tag given its two previous tags is de�ned to be:

P (t3 j t1; t2) =

8>>>>>><
>>>>>>:

P (t3; j t1; t2) if trigram exists

Pbacko� (t1; t2)� P (t3 j t2) if bigram(t1; t2) exists

P (t3 j t2) otherwise

where Pbacko� (t1; t2) is the backo� probability of the part-of-speech tag pair (t1; t2),

collected from the training corpus by the SLM toolkit.

4.2.4 Word-given-tag probabilities

The prediction module of the syntactic predictors exploits word and part-of-speech tag

n-gram statistics, along with word-given-tag probabilities. We de�ne word-given-tag

probability to be the probability of having the word w, given that the tag of the word

is t, i.e., P (w j t). We also de�ne the tag-given-word probability to be the probability of

assigning the tag t to the word w by a part-of-speech tagger, in our case, the CLAWS part-

of-speech tagger. Using Bayes's formula, we can compute each one of these probabilities,

having the other one:

P (w j t) = P (t jw) �
P (w)

P (t)
,

in which P (w) and P (t) are the word unigram and tag unigram probabilities, respectively.

Therefore, we compute the tag-given-word probability from our training data. Since we

have the unigram probabilities both for words and part-of-speech tags, if we have tag-

given-word probabilities, we can calculate word-given-tag probabilities at the time of

need. In order to collect tag-given-word probabilities, we have written a Perl script that

reads through training texts, and computes the desired probabilities for every word which

is in the vocabulary constructed by SLM.

Chapter 5

Evaluation

5.1 Experimental methodology

We conducted several experiments to see how accurate the predictions are that are pro-

vided by each of the word-prediction algorithms introduced in Chapter 3, and to compare

them with WordQ.

In order to do a thorough test of various aspects of the algorithms, we needed to select

appropriate test data (Section 5.1.1), a test procedure (Section 5.1.2), a set of parameters

that may a�ect the results (Section 5.1.3), and a number of performance measures for

evaluation purposes (Section 5.1.4).

5.1.1 Test data

A small subset of the BNC (see Chapter 4), around 27 text �les and around one million

words, was chosen for evaluation. In selecting texts, our attempt was to choose texts

from various domains. The name, size, and the domain of these texts are presented in

Table 5.1. Most of the �les contain between 30,000 and 40,000 words (the average is

around 35,256), but there are some which contain less or more than this.

All the test texts were pre-processed and converted to the required format. The pre-

46

Chapter 5. Evaluation 47

processing steps were very similar to those exploited for the training data (see Chapter 4).

Table 5.1: List of the BNC texts used for testing the prediction algorithms.

Filename Words Domain

AR3 36433 Imaginative

AS0 30887 Applied science

AT8 34669 Commerce and �nance

ARF 37153 Natural and pure science

ARG 35217 Belief and thought

BN3 34758 World a�airs

BP0 40588 Imaginative

BPK 39983 Social science

CS2 38443 Belief and thought

CS6 33887 World a�airs

CS7 32413 Social science

CTX 49013 Applied science

EX0 33825 Leisure

EW6 32327 Natural and pure science

EWA 43998 Arts

FUA 34467 Social science

FYS 36799 Commerce and �nance

FYX 39109 Applied science

GX1 14792 Belief and thought

GX8 14365 Natural and pure science

HWB 42841 Arts

HWE 33001 Imaginative

HX8 41219 Leisure

HX4 32091 Commerce and �nance

J2K 36715 Arts

J2L 37959 World a�airs

K2U 34980 Leisure

Total 951,932

5.1.2 Test procedure

We designed and implemented a prediction testbench in order to perform various tests with

di�erent prediction algorithms and di�erent values for the test parameters. The testbench

Chapter 5. Evaluation 48

Bigram
Predictor

Predictor(s)

Predictor
Unigram

WordQ

Syntactic
Algorithms
Prediction

Simulated typist

Test
Texts

Prediction program

Results

Statistics

Collected

Texts

Statistics

Collected

Training

Training

Training
WordQ

Texts

Figure 5.1: Architecture of the word-prediction testbench used in the experiments.

has three major components: a simulated user that is used to inject the characters into the

prediction algorithm, a prediction program that can use any of the prediction algorithms

to suggest appropriate words to the user, and a database of statistics collected from the

training corpus. In Figure 5.1 the general architecture of the prediction testbench is

shown.

In each experiment, the virtual user types in one of test texts letter by letter. The

prediction program then suggests n words (usually between 1 and 10 in our experiments)

to the user. The next step is to determine whether the user's desired word (in our case

the correct prediction according to the test text) is among the predictions, and calculate

the measures accordingly.

The virtual user is actually a program that simulates a user who types in the text,

and is described in more detail in the following section. The prediction program is the

program that gives suggestions to the user according to the given context, the prediction

algorithm incorporated, and the statistical information. This module is explained in

more detail in Section 5.1.2.2.

Chapter 5. Evaluation 49

5.1.2.1 User simulation

The virtual or simulated user is a Perl program that reads in each test text letter by letter.

After reading each letter, it determines what the correct prediction for the current (or

next) position is. The prediction program then is called and a list of suggestions is

returned to the user. The user searches the prediction list for the correct prediction. If it

is found in the list, the user increases the number of correct predictions by the predictor,

and calculates some other measures accordingly. The correctly predicted word is then

completed and the user continues to read the rest of the text. If the correct word is not

in the list of predictions, the user increments the number of cases in which the predictor

cannot predict the correct word, and types in the next letter. This process continues

until either the word is predicted by the predictor or the user completes the word.

The user is assumed to be a perfect user, i.e. if the correct word is in the prediction

list, the user does not miss it. This is not always true in the real world when a prediction

system is used by an individual with disabilities. There might be times when the users

do not �nd their desired words in the list although they are among the suggestions. This

depends on various factors, such as the number of words in the prediction list, the amount

of cognitive load imposed on the user by the system, and the type and level of the users'

disabilities.

5.1.2.2 Prediction program

The prediction program is a C program which is implemented in the Linux environment

and in which any one of the prediction algorithms (or any other new algorithm) can

easily be plugged for evaluation purposes.

Each time the user calls the prediction program, the prediction algorithm attempts to

�nd the requested number of suggestions according to the given contextual information,

such as previous words and/or their part-of-speech tags. It then gives a list of suggestions

to the user. After entering each new letter from the test text, the prediction program

Chapter 5. Evaluation 50

updates the prediction list according to the new context. This program uses the statistics

database, described in the next section, for the prediction task.

As mentioned in previous paragraphs, the prediction program is implemented in the

Linux environment. In order to test each of the prediction algorithms, they should

be plugged into the prediction program one by one. Thus, in order to measure the

performance of the WordQ prediction algorithm, we needed to port WordQ fromWindows

into Linux. WordQ has several modules other than the prediction module, such as

speech synthesis which we did not port. Therefore, it was also required to make small

modi�cations to WordQ (without changing the prediction algorithm, of course) to make

it work consistently with our prediction program.

5.1.2.3 Statistics database

A large amount of statistical information is used by the word-prediction algorithms. This

information includes word and part-of-speech tag n-gram probabilities collected from the

training data, and also a dictionary of word-tag probabilities. Our training data is very

large (around 81 million words). Therefore, as can be seen in Table 4.4, n-gram models

(especially the word bigram model) are large as well. This makes it diÆcult to store and

access the information by the prediction program. In order to enhance the eÆciency of

the prediction program, several data structures have been used, which are explained in

more detail in the following paragraphs.

Hash tables As mentioned in the previous paragraph, the statistical information used

by the prediction algorithms is very large. The access rate to this information is high,

especially because the test texts contain around one million words, in total. Also, we

know that both in our experiments and in a real-world prediction system, the process of

suggesting words to the user needs to be as fast as possible. Therefore, the statistical

information used by the prediction algorithm should be maintained in main memory.

Chapter 5. Evaluation 51

Due to the large size of data that is used during the prediction process and the fact

that all data should be stored in main memory, it is necessary to �nd an eÆcient method

of storing them, both in terms of memory space and memory access time. The data

structures that we have used to manipulate the statistical information are a number of

hash tables, one for each n-gram model.

Caches Since we test the predictors on a large test data, the running time of each ex-

periment is an important factor. Thus, we use several caches to store previous predictions

and use them wherever possible. The caches are good specially because they prevent us

from repeating the time-consuming prediction process, when we can just retrieve the sug-

gestions from a cache. This idea can also be applied to real-world prediction systems, in

which it is important to provide the users with predictions within a reasonable response

time.

5.1.3 Test parameters

There are three parameters that may a�ect the performance of the predictors. These

parameters are explained in more detail in the following paragraphs. In order to measure

the e�ect of each parameter on the performance, several experiments were conducted.

The results of these experiments can be found in Section 5.2.5.

� CoeÆcient �

� is the coeÆcient of the linear combination of two predictors in Formula 3.8 (see

Chapter 3). Choosing a value for this parameter is not an easy task. It can range

from 0 to 1, giving more weight to either of the predictors. The best value for this

parameter must be found experimentally (see Section 5.2.5.1).

� Repetition of suggestions in consecutive predictions

According to the assumption of having a perfect user, we can avoid repeating

Chapter 5. Evaluation 52

(b)

(c)

(a)

(c)

(b)

SENTENCE : Two pilots lost their lives in a crash.

CONDITION : May repeat predictions from previous stages.

Two pilots_ ,
.

who
and
were

(a)

Two pilots lo_

lower

looking
long
looked
longer

Two pilots l_

(d) Two pilots los_ lost
losing
lose
loss
losses

looking
leaked
like
later
learned

SENTENCE : Two pilots lost their lives in a crash.

Two pilots_

Two pilots lo_

Two pilots l_

lost
lower
longer
looked
long

were
and
who

,
.

looking
leaked
like
later
learned

CONDITION : Does not repeat predictions from previous stages.

ALGORITHM : Tags−and−words ALGORITHM : Tags−and−words

Figure 5.2: Sample predictions given by the Tags-and-words predictor when n = 5 for both

conditions: repeating previously predicted words or not.

suggestions that have been previously rejected by the user for the same position.

We hypothesize that if we avoid predicting the same words, the likelihood of having

the appropriate word in the future suggestion lists will be higher.

An example of predictions by the Tags-and-words predictor in each situation is

shown in Figure 5.2.

In order to evaluate the e�ect of this factor, we leave it as a test parameter. Thus,

we can compare the results in both conditions: avoiding repetition, or not doing

so. The results can be found in Section 5.2.5.3.

� Maximum number of words in the prediction list (n)

It is clear that the higher the number of words in the prediction list, the higher

the probability of having the appropriate prediction among the suggestions. But,

larger values for n impose a cognitive load on the user since it makes the search

time for the correct word longer. Therefore, it is more likely that the user misses

the correct prediction. In a real-world prediction system, this parameter can be

introduced as an option for the user. We selected the values 1, 5, and 10 for n to

Chapter 5. Evaluation 53

measure the e�ect of this parameter on the performance of prediction algorithms.

The results can be found in Section 5.2.5.2.

5.1.4 Performance measures

In order to measure the performance of each word-prediction algorithm and compare them

with each other, a number of measures are needed. The measures should be selected such

that they consider various aspects of the performance in a prediction system. Hit rate,

keystroke savings, and keystrokes until prediction are the three main measures that are

explained in the following paragraphs.

� Hit rate

Hit rate is the percentage of the times that the correct word appears in the predic-

tion list. The algorithm that has a higher hit rate is a better algorithm compared

to the others.

� Keystroke savings

Keystroke savings refers to the percentage of the keystrokes that the user saves by

using a word-prediction tool. The number of keystrokes that a user saves for each

correctly predicted word is equal to the number of remaining letters in the word

plus a space that is automatically inserted after the word by the predictor, minus

one keystroke needed for choosing the appropriate prediction. According to this

measure, the better algorithm is the one that results in higher keystroke savings.

� Keystrokes until prediction

Keystrokes until prediction is de�ned to be the average number of keystrokes that

the user must enter before the appearance of the correct word in the prediction list.

The algorithm that gives a lower value for this measure is considered to be a better

algorithm.

Chapter 5. Evaluation 54

There are also other measures that are calculated during the experiments and can be

used for speci�c purposes. These measures are as follows:

� Percentage of the words predicted at some point (accuracy)

This measure shows the proportion of words that could be predicted by the pre-

dictor before they were completed by the user. This measure may also be called

accuracy of the predictor. This cannot be used as a major measure to compare

two prediction algorithms by itself, because a good predictor is one that not only

predicts most of the words, but also can predict them in early stages. For example,

a predictor that predicts all of the words right before the last letter of the word is

entered by the user has an accuracy of 100%, but its hit rate and keystroke savings

are small.

� Average number of suggestions at each position

This measure can be used to determine whether a prediction algorithm can pro-

vide the user with a suÆcient number of predictions at each position. The closer

the average to n (the maximum number of predictions in the list), the better the

algorithm. This measure can be used to �nd an appropriate value for n. If the

average is much less than the maximum, then it means that this value of n is too

high, such that the algorithm cannot even �nd suÆcient words to suggest.

� Average length of predicted words

This measure shows whether the predictor is able to predict very long words only,

words of average length, or also short words. It helps in building dictionaries to

enhance the performance of word prediction according to the algorithm and the

users' needs.

Chapter 5. Evaluation 55

5.2 Results

The remainder of this chapter contains the results of various experiments, comparisons,

and discussion. For comparison purposes, several series of experiments were conducted.

In each of them, either the prediction algorithm was varied among WordQ, Unigram,

Bigram, and syntactic predictors, or one of the parameters was given di�erent values to

see the e�ect.

5.2.1 Major performance measures

In this section, the three major performance measures, i.e., hit rate, keystroke savings,

and keystrokes until prediction, are analyzed. First, for a general comparison between

the algorithms, we set n = 5 and we assume that the predictions may be repeated in

consecutive positions. The results are shown in Table 5.2 and Figure 5.3.

Table 5.2: Values of hit rate, keystroke savings, and keystrokes until prediction for n = 5 when

predictions may be repeated.

Algorithm %Hit rate %Keystroke Keystrokes

savings until prediction

WordQ 27.10 42.54 2.09

Unigram predictor 32.14 45.70 1.92

Bigram predictor 37.43 52.90 1.55

Part-of-speech tag predictor 34.93 49.80 1.72

Linear predictor(� = :8) 37.78 53.14 1.54

Tags-and-words predictor 37.49 53.30 1.53

Chapter 5. Evaluation 56

WordQ Unigram Bigram PoS tag Linear Tags-and-words
23

28

33

38

%
H

it
 r

a
te

WordQ Unigram Bigram PoS tag Linear Tags-and-words
30

35

40

45

50

55

%
K

ey
st

ro
k

e
sa

v
in

g
s

WordQ Unigram Bigram PoS tag Linear Tags-and-words
Prediction algorithms

1.20

1.40

1.60

1.80

2.00

2.20

K
ey

st
ro

k
es

 u
n

ti
l

p
re

d
ic

ti
o
n

Figure 5.3: Comparison of hit rate, keystroke savings, and keystrokes until prediction among

all prediction algorithms when n = 5 and predictions may be repeated).

Chapter 5. Evaluation 57

5.2.2 Discussion

Although the WordQ prediction algorithm is similar to the Bigram predictor, it has the

lowest value for hit rate and keystroke savings, even lower than the Unigram predictor,

and the highest value for keystrokes until prediction. There are two major problems in

comparing WordQ with other algorithms according to the results of experiments only.

� As mentioned in Chapter 4, the training data used for training WordQ is a text

sample of around 5.8 million words collected from the Internet, while the training

data we used in training all the other �ve algorithms is a subset of the BNC (around

81 million words). The word unigram model used by the WordQ prediction module

contains 62,669 words, and the bigram table includes 1,302,731 entries. Thus, the

word bigram models that are used by the WordQ prediction and the ones we used

in our testbench, are very much di�erent in terms of size.

� The training and the test data for WordQ are not necessarily from the same genres,

but in all other algorithms the training and test data are distinct subsets of the

BNC.

The above factors, i.e., the di�erences in size and genres of the two training sets used

for training WordQ and the other predictors, may lead to some scenarios that cause

the performance of WordQ to be worse than our Unigram and Bigram predictors. The

WordQ prediction module uses word frequency (unigram) wherever the required bigram

does not exist. Since the bigram model of WordQ is small and because the training and

test data are not strongly similar, this scenario might happen quite often, resulting in

using the unigram model for �nding suggestions in most cases. If we accept that the

unigram model in our predictors is more accurate than the unigram model of WordQ

(both in terms of general coverage and similarity between training and test), it would be

clear why WordQ works even worse than our Unigram predictor.

Chapter 5. Evaluation 58

The training data used in training WordQ is a corpus of Canadian English in which

a number of words have di�erent spelling compared to their spellings in the BNC. Also,

there are a number of local words, such as names of people and places, in the corpus

which might be completely useless for testing on the BNC.

Therefore, we cannot actually compare the results of other prediction algorithms

with the results of WordQ prediction algorithm without using the same or at least sim-

ilar training data. Several experiments were accomplished by (Nantais et al., 2001) in

which the keystroke savings of WordQ were measured on three test texts similar to the

ones used for training. The results show that without adaptation and for n = 5, the

average keystroke savings of WordQ is 45.3% (2.76% higher compared to 42.54% in our

experiments).

The Part-of-speech tag predictor, which uses only part-of-speech tag information to

predict words (see Chapter 3, Formula 3.1), performs better than the Unigram predictor,

but worse than the Bigram predictor. This means that two previous part-of-speech tags

are more predictive than the frequency of individual words only, but less predictive than

the word bigram.

When we combine the Bigram predictor and a slightly di�erent version of the Part-

of-speech tag predictor by linear combination (see Chapter 3, Formula 3.8), the predictor

outperforms both the Part-of-speech tag and the Bigram predictors.

The Tags-and-words predictor (see Chapter 3, Formula 3.7) outperforms all other

predictors with a slight improvement in keystroke savings and keystrokes until prediction

(but not hit rate).

5.2.3 Statistical signi�cance tests

We used MATLAB to perform a one-way ANOVA test with Tukey-Kramer post-test and

a 95% con�dence interval (con�dence level of 0:05) on the results of all predictors for the

keystroke savings measure, when n = 5 and predictions may be repeated in consecutive

Chapter 5. Evaluation 59

positions.

Our test data consists of 27 text segments (each segment is simply a BNC text). We

ran each experiment on all texts and calculated the mean and standard deviation for

keystroke savings for the purpose of ANOVA test. The test shows that:

� All the improvements over WordQ are statistically signi�cant at p < 0:001.

� Among the three algorithms Bigram, Linear, and Tags-and-words, the di�erence is

not statistically signi�cant (p > 0:05).

� All other improvements are statistically signi�cant (Unigram compared to Bigram

and all syntactic predictors; Part-of-speech tag predictor compared to Bigram, Lin-

ear, and Tags-and-words predictors).

5.2.4 Observations

Large word bigram model As mentioned in previous sections, we used a very large

set of training data to build n-gram models for words and part-of-speech tags. Thus,

the word bigram model that is used by the Bigram predictor is a very strong model

that also captures the syntax of the word pairs. The sentences in the training data are

mostly grammatically and syntactically correct sentences. Therefore, if we build a model

that contains the probabilities of word pairs appearing in these texts, it would partially

capture the syntactic relationship of the word pairs as well. For example, the probability

of having a past-tense verb (VVD) after another of the same category is low. Thus,

the bigram probability of having a sequence of two tags of this form is low. Similarly,

every word bigram containing two past-tense verbs (such as took, lived) would have a low

probability.

Banko and Brill (2001) have shown that for the speci�c task of confusion set disam-

biguation, using a very large corpus (around 1 billion words) has a higher e�ect than

using a smarter and stronger classi�er.

Chapter 5. Evaluation 60

Thus, the overlap between the quantity of the information included in the word bigram

model and the part-of-speech tag trigrams might be high. It is possible to do some

experiments with a smaller subset of the BNC as training data to see if adding part-

of-speech tag information would help when the word bigram model is not suÆciently

large.

Conditional independence assumptions In Chapter 3, Section 3.3.2, we made some

independence assumptions to be able to calculate the probability P (wi j pw; tpw; tppw) by

using the basic n-gram models for words and part-of-speech tags. Some of the random

variables that we assumed to be conditionally independent of others might not be actually

independent in reality.

For example, in estimating the above probability, we have assumed that tij and pw

are conditionally independent given the tag of the previous word, tpw (see the Bayesian

network is Figure 3.3). Although this is a reasonable assumption to make, it is not clear

how it may a�ect the results. If we did not make this independence assumption, it would

have been necessary to calculate the probabilities P (tij j pw) and P (pw jwi; tij) directly

from the corpus.

Errors in the CLAWS tagger The accuracy of the CLAWS tagger, used for tagging

the BNC (see Chapter 4), is claimed to be around 96 { 97% (3 { 4% error). Also, we can

see in the tagged corpus that there are many cases in which the tag associated with a

word is ambiguous between two part-of-speech tags. This means that although we add a

new source of information to the prediction algorithm (through addition of part-of-speech

tags), at the same time we add more uncertainty to the predictions made using this new

information source.

Granularity of the part-of-speech tags The C5 tagset used by the CLAWS tagger

to tag the BNC contains around 61 tags. Looking at Table 4.2 reveals that there are

Chapter 5. Evaluation 61

distinctions between word classes that might not be important for the task of word

prediction. It is possible that if we cluster the existing tags into a small number of

categories (for example verbs, nouns, etc.) and use a coarser-grained set of tags, the

part-of-speech tags would be more useful for prediction.

Separate n-gram models for words and part-of-speech tags All the prediction

algorithms introduced in Chapter 3 use a combination of the basic word and/or part-of-

speech tag n-gram models. If we can build n-gram models for word and tag together, it

is possible that they would be more accurate predictors. For example, we might want

to calculate the joint probability of having a word wi and its part-of-speech tag ti in the

current position, given the previous words and their associated part-of-speech tags.

5.2.5 Parameters

In this section we investigate the impact of changing our test parameters on the per-

formance of the selected algorithms. We tried to prune the potentially huge space of

various experiments, since otherwise it would take too long to test all the predictors with

di�erent values of all the parameters. Thus, only one of the predictors is selected for

most of the experiments in which the test parameters are involved: the Tags-and-words

predictor. Only for determining the best value for coeÆcient �, the Linear predictor is

chosen.

5.2.5.1 CoeÆcient

We performed several experiments with di�erent values for � to choose the best value for

it. A small set of development texts, around 36,000 words, was used in these experiments.

The diagram in Figure 5.4 shows changes in keystroke savings when � ranges from 0 to

1. The changes for the other two measures, hit rate and keystrokes until prediction, were

very similar to this (not shown). According to the experiments, the best value for � is

C
h
a
p
t
e
r
5
.
E
v
a
l
u
a
t
io
n

62

0:8.
T
h
u
s,
w
e
h
ave

set
�
to

0:8
in

all
of
th
e
ex
p
erim

en
ts
in

w
h
ich

th
e
L
in
ear

p
red

ictor
is

in
volved

.

H
ow

ever,
ch
o
osin

g
a
con

stan
t
valu

e
for

�
m
ay

n
ot

b
e
th
e
b
est

w
ay.

T
h
e
valu

e
of
th
is

p
aram

eter
m
ay

ch
an
ge

d
ep
en
d
in
g
on

th
e
d
istrib

u
tion

of
w
ord

u
n
igram

or
b
igram

freq
u
en
-

cies.
It
m
igh

t
b
e
th
e
case

th
at

for
som

e
w
ord

s,
w
ith

som
e
d
istrib

u
tion

of
w
ord

u
n
igram

or
b
igram

freq
u
en
cies,

th
e
p
art-of-sp

eech
tag

h
as

m
ore

e�
ect.

T
h
erefore,

th
e
valu

e
of

�

sh
ou
ld

b
e
su
ch

th
at

it
gives

m
ore

w
eigh

t
to

th
e
secon

d
p
red

ictor
(see

F
orm

u
la
3.8).

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

alp
h

a

45 46 47 48 49 50

%Keystroke savings

F
igu

re
5.4:

K
ey
strok

e
sav

in
gs

of
th
e
T
ags-an

d
-w
ord

s
p
red

ictor
for

d
i�
eren

t
valu

es
of

�
an
d

n
=
5
w
h
en

p
red

iction
s
m
ay

b
e
rep

eated
.

5
.2
.5
.2

S
iz
e
o
f
p
r
e
d
ic
tio

n
list

T
h
e
T
ags-an

d
-w
ord

s
p
red

ictor
h
as

th
e
b
est

valu
es

for
key

stroke
sav

in
gs

an
d
key

strokes

u
n
til

p
red

iction
m
easu

res
(b
u
t
n
ot

th
e
b
est

valu
e
for

h
it
rate).

T
h
erefore,

w
e
selected

th
is
algorith

m
for

an
ex
p
erim

en
t
in

w
h
ich

w
e
m
easu

re
th
e
e�
ect

of
m
ax
im
u
m

p
red

iction

list
size,

n
,
on

th
e
p
erform

an
ce.

In
th
is
ex
p
erim

en
t,
w
e
ch
ose

th
ree

d
i�
eren

t
valu

es,
1,
5,

an
d
10,

for
n
an
d
com

p
ared

th
e
resu

lts.
T
h
e
valu

es
for

th
e
th
ree

m
easu

res
can

b
e
fou

n
d

in
T
ab
le
5.3.

C
om

p
arison

s
can

b
e
seen

in
F
igu

re
5.5.

Chapter 5. Evaluation 63

The results show that if the number of words in the prediction list size increases, the

accuracy of the predictions will increase as well, resulting in higher hit rate and keystroke

savings. However, choosing the right value for this parameter, especially in real-world

prediction systems, depends on the type of users' disabilities. If the users have learning

or cognitive disabilities, it is better to suggest fewer words to them. But if saving physical

e�ort, i.e., saving as many keystrokes as possible, is a major gain for the user, suggesting

more words (e.g., n = 10) would be a better choice. However, the best value of n depends

on other factors, such as the average number of predictions in the list. If this average is

considerably lower than the maximum, it shows that this is probably a high value for n.

For example, in our experiment with the Tags-and-words predictor, the average size of

the list is 9:28 which is close to maximum, i.e., 10.

Table 5.3: E�ect of maximum prediction list size on performance of the Tags-and-words pre-

dictor when predictions are not repeated.

Size of %Hit rate %Keystroke Keystrokes

prediction list savings until prediction

n = 1 26.10 40.95 2.20

n = 5 38.50 54.37 1.47

n = 10 43.17 58.63 1.24

5.2.5.3 Repetition of previous predictions

We conducted an experiment using the Tags-and-words predictor as the prediction al-

gorithm, with two di�erent options for predictions: one with repeated predictions, an-

other one without. The results for the three measures, hit rate, keystroke savings, and

keystrokes until prediction, can be found in Table 5.4. A comparison of the values is

represented in Figures 5.6.

Chapter 5. Evaluation 64

n = 1 n = 5 n = 10
10

20

30

40

50

60

%
H

it
 r

at
e

n = 1 n = 5 n = 10
10

20

30

40

50

60

%
K

ey
st

ro
k

e
sa

vi
n

gs

n = 1 n = 5 n = 10
Maximum number of words in the prediction list

0.0

0.5

1.0

1.5

2.0

2.5

3.0

K
ey

st
ro

k
es

 u
n

ti
l p

re
d

ic
ti

on

Figure 5.5: E�ect of maximum prediction list size on hit rate, keystroke savings, and keystrokes

until prediction of the Tags-and-words predictor when predictions are not repeated.

Chapter 5. Evaluation 65

Table 5.4: E�ect of prohibiting repeated predictions on performance of the Tags-and-words

predictor when n = 5.

Experimental condition %Hit rate %Keystroke Keystrokes

savings until prediction

Repeated predictions are not removed 37.49 53.30 1.53

Repeated predictions are removed 38.50 54.37 1.47

Looking at the values for the three measures reveals that if the system does not repeat

the same predictions for the same position, the likelihood of predicting the appropriate

word will increase. Although the increase in the measures is not much, usually giving

more accurate predictions decreases the amount of cognitive load imposed on the user

and increases the level of the users' con�dence in the system.

Although this might be true in most cases, it is not what we always want. For some

individuals with learning or cognitive disabilities, it is not easy to scan the prediction

list and therefore they may miss the correctly predicted word which is in the list. In

real-world prediction systems, this parameter is often an option for the user.

5.2.6 Other measures

Table 5.5 contains the exact values for the three measures, accuracy, average number of

predictions at each point, and average length of predicted words, for all of the prediction

algorithms. Also in Figure 5.7 three bar-graphs are given for comparison purposes.

WordQ predicts 77:09% of the words at some point before the word is completed by

the user. This means that around 23% of the words cannot be predicted by WordQ at

all. Our Unigram predictor works much better and can predict around 90% of the words.

The other four predictors, Bigram, Part-of-speech tag, Linear and Tags-and-words, have

accuracy ranging from around 91% to 92:75%. The highest accuracy is that of the Linear

predictor.

Chapter 5. Evaluation 66

Not removed Removed
0

10

20

30

40

50

%
H

it
ra

te

Not removed Removed
35

45

55

%
K

ey
st

ro
ke

 sa
vi

ng
s

Not removed Removed
Predictions from previous stages

1.0

1.2

1.4

1.6

K
ey

st
ro

ke
s u

nt
il

pr
ed

ic
tio

n

Figure 5.6: E�ect of prohibiting repeated predictions on hit rate, keystroke savings, and

keystrokes until prediction for the Tags-and-words predictor when n = 5.

Chapter 5. Evaluation 67

Table 5.5: Accuracy, average number of words in the prediction list, and average length of

predicted words for all prediction algorithms when n = 5 and predictions may be repeated.

Algorithm %Accuracy Average size of Average length

prediction list of predicted words

WordQ 77.09 4.11 4.81

Unigram predictor 90.34 4.82 4.47

Bigram predictor 92.07 4.73 4.41

Part-of-speech tag predictor 91.74 4.75 4.42

Linear predictor(� = :8) 92.75 4.73 4.39

Tags-and-words predictor 91.09 4.73 4.44

WordQ has the lowest value for the average size of the prediction list, considerably

less than 5 (around 4:11). This means that the prediction algorithm cannot always �nd

many words to suggest to the user. The reason might be the small word unigram and

bigram models, or the small number of words in the working dictionary. The Unigram

predictor has the highest value, 4:82; however this algorithm is not the best one according

to the major performance measures. The word unigram and bigram models used in all

the predictors (except WordQ) are suÆciently large; therefore, the value of this measure

should depend on other factors as well. The Unigram predictor applies the fewest restric-

tions on the candidate words to �nd appropriate suggestions, and most probably that is

the reason for its high average prediction list size.

Adding more information through part-of-speech tag n-gram models or considering

larger context causes a small decrease in the average size of the prediction list. The

reason is that there are more restrictions on the candidate words to choose from, and

thus there are more cases in which the number of words that can match the restrictions

is less than the number of words required.

WordQ has the largest value for the average length of words that were predicted

correctly at some point before being completed by the user. This means that the predictor

needs a longer pre�x on average to predict the appropriate word.

Chapter 5. Evaluation 68

WordQ Unigram Bigram PoS tag Linear Tags-and-words
50

55

60

65

70

75

80

85

90

95

100

%
 A

cc
u

ra
cy

WordQ Unigram Bigram PoS tag Linear Tags-and-words
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

A
ve

ra
ge

 l
en

gt
h

 o
f

p
re

d
ic

te
d

 w
or

d
s

WordQ Unigram Bigram PoS tag Linear Tags-and-words
Prediction algorithms

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

A
ve

ra
ge

 s
iz

e
of

 p
re

d
ic

ti
on

 l
is

t

Figure 5.7: Comparison of the accuracy, average prediction list size, and average lenght of

suggestions among all prediction algorithms.

Chapter 5. Evaluation 69

Of course, as the length of the pre�x entered by the user increases, the set of candidate

words to choose from will be smaller. Thus, it is more likely to choose the correct word.

As more information is added to the predictor, the average length of the predicted words

should be less, which is what we can see in Table 5.5. However, the average length for

all prediction algorithms except WordQ is very close (between 4:39 and 4:47).

5.3 Summary

In this chapter, we explained our experimental methodology, and presented the results of

several experiments. The results show that our prediction algorithms outperform WordQ

with a statistically signi�cant di�erence. Also, it is con�rmed that a word bigram model

is more accurate than a word unigram model in predicting words.

The addition of part-of-speech tag information to the bigram model did not improve

the performance of the predictor. The results show a small improvement in the perfor-

mance measures of two of the syntactic predictors (Tags-and-words and Linear predictors)

over the Bigram predictor. However, the ANOVA test shows that the di�erence is not

statistically signi�cant.

Chapter 6

Conclusions

Our goal in this work has been to investigate how we can improve the performance of

word prediction by incorporating extra information in existing prediction systems, such

as WordQ. We have implemented a number of existing prediction algorithms, such as the

Unigram predictor, and introduced, designed, and implemented several new ones.

We have also performed a number of experiments to evaluate each of the prediction

algorithms, to compare them with each other, and to measure the impact of various

factors on the performance of the algorithms. In this chapter, we discuss contributions

and limitations of our work and several possible extensions to it.

6.1 Contributions

A generic prediction testbench We have designed and implemented a generic word-

prediction testbench that works with a large amount of statistical data. The testbench

is designed to be fast since it was required to test each algorithm (with di�erent values

for each parameter) using a large set of test texts. Thus, several useful data structures,

such as speci�c hash tables and caches, have been implemented to make this possible.

The testbench is designed in a way that it is possible to plug any of the prediction

algorithms into it for test purposes. Any new prediction algorithm can easily be tested

70

Chapter 6. Conclusions 71

by being plugged into this generic testbench. Thus, for any further experiments in future

we can use this generic testbench without any changes.

Prediction algorithms In order to test WordQ within the same environment as the

other prediction algorithms, its prediction module has been ported from Windows to

Linux. A Unigram predictor has been implemented that uses the word unigram model,

only. These two algorithms are used as baselines in our comparisons.

Another prediction algorithm that has been implemented for test purposes is the

Bigram predictor that uses the word bigram model created from the training corpus.

Three di�erent prediction algorithms that make use of syntactic information (through

part-of-speech tags) have also been designed and implemented. These algorithms use the

part-of-speech tag information in three di�erent ways to see the impact of each method

on the accuracy of the predictions.

Large training corpus A very large data set, the British National Corpus, is used

both for training and testing. The corpus has been divided into three di�erent parts: a

training set, a development set and a test set. We have collected statistical information

for words and part-of-speech tags from the training corpus by using a toolkit (SLM) and

several other utility programs written for this speci�c purpose.

Adaptation As mentioned in Chapter 3, adaptation techniques can be exploited in

any prediction system, no matter what prediction algorithm it uses. Adaptation helps a

prediction system to improve the accuracy of the predictions and the level of the user's

con�dence in the system.

We have implemented one adaptation technique in our prediction testbench. The

main idea of the technique is to avoid repeating the same suggestions that have already

been rejected by the user for the same position. This technique has been implemented

and the e�ect of adding it to the prediction process has been tested by testing the Tags-

Chapter 6. Conclusions 72

and-words predictor in both conditions: using the adaptation technique or not using

it.

Experiments An extensive number of experiments have been conducted to measure

the performance of each algorithm and to compare them with each other. The exper-

iments have been designed so that they test various aspects of a prediction algorithm,

and the e�ect of di�erent factors and parameters on the accuracy of the suggestions.

Comparison and statistical signi�cance test The results show that we can build

strong and accurate word unigram and word bigram predictors that outperform WordQ

by using a very large amount of training data. It is con�rmed that other prediction

algorithms that make use of part-of-speech tag information, outperform WordQ as well.

We have also presented results showing that the addition of part-of-speech tag information

to the bigram model does not improve the accuracy of the predictions much.

We have also performed a statistical test (ANOVA) to �nd whether any of the algo-

rithms is signi�cantly di�erent from the other ones. Although, there is a small improve-

ment in the performance measures of two of the syntactic predictors (the Tags-and-words

and the Linear predictors) compared to the Bigram predictor, the ANOVA test shows

that the di�erence is not statistically signi�cant.

Because of our positive and negative results, it is diÆcult to make a general statement

regarding the use of part-of-speech tag information in prediction algorithms. There are

many areas that deserve further investigation, and many new experiments to be done. For

instance, our attempt has been to build prediction models using n-gram models for words

and/or part-of-speech tags. However, it might be useful if we can investigate creating

models using probabilities of sequences of words and part-of-speech tags together. In

Section 6.2 several possible extensions to this work are discussed.

Chapter 6. Conclusions 73

6.2 Future work

Combined n-gram models As mentioned in Chapter 5, adding part-of-speech tags

to word bigrams does not improve the performance signi�cantly. One of the reasons is

that we have built separate n-gram models for words and part-of-speech tags; i.e., word

unigram and bigram, part-of-speech tag unigram, bigram, and trigram. In light of this

observation, we believe that we can bene�t from a model that captures the probabilities

of words and part-of-speech tags together. It is possible that if we use combined n-gram

models, i.e., probabilities of sequences of words and part-of-speech tags together, we

would have more accurate models and accordingly more accurate predictions.

A coarse-grained tagset As mentioned in Chapter 5, the C5 tagset contains 61 dis-

tinct syntactic categories. This number of distinct classes might not be needed for the

prediction task. Thus, we think that if we combine some of the classes and create a

coarse-grained tagset, it would be possible to have a decrease in the tagging error as well

as an increase in the prediction accuracy.

Semantics Even if the predictions are syntactically and grammatically appropriate for

the desired position, they might not as well be semantically appropriate. Therefore, one

interesting extension to the current work is to add semantic information of the words

and/or the context the word appears in to the predictor. There are several ways to add

semantic information to the prediction algorithms. One is using a lexical resource such

as WordNet, see (Fellbaum, 1998) together with a semantic similarity measure to make

sure that the words suggested by the prediction algorithm are semantically relevant (by

some degree) to the context, see (Hirst and Budanitsky, 2001). Another way is to use

lexical chains, see (Morris and Hirst, 1991) to keep the semantic relevance of the context

prior to the position for which predictions are required. Thus, the prediction algorithm

can remove the words which are not semantically relevant to the context from the list of

Chapter 6. Conclusions 74

candidate words.

Adaptation We have only implemented and tested one adaptation technique in our

prediction testbench. It is possible to easily add other techniques to our testbench and

test them with any of the prediction algorithms. An extension to our work can be to

�nd other adaptation techniques which might be worth implementing. In this way, we

would be able to see the impact of using those adaptation techniques with our prediction

algorithms.

CoeÆcient and the dictionary Figure 6.1 shows the probability distribution func-

tion of the dictionary words. As mentioned in previous chapters, the dictionary contains

65; 000 of the most-frequent words occuring in the training texts. It can be seen that

the 250 most-frequent words, mostly function words, have about 60% of the probabil-

ity distribution, and the 7; 100 most-frequent words have about 90% of the probability

distribution.

Thus, there are many words in the dictionary that altogether account for a very

small portion of the probability distribution. It is possible for a word-prediction system

to suggest high-frequency words more often than they are really needed by the user,

preventing the appropriate (probably less frequent) words from being predicted.

One of the experiments that can be done is to remove the high-frequency function

words and/or short words (which do not have much e�ect in keystroke savings) to see

how the performance changes. Also, it might be the case that for high-frequency words,

the part-of-speech tag information helps more. Thus, instead of removing these words,

it is possible to �nd a di�erent value for � for every set of words according to their

frequency.

Real users We have introduced six performance measures in Chapter 5. However, one

important factor in the success of a prediction system is its acceptability by the users.

Chapter 6. Conclusions 75

1 10 20 30 40 50 60 65
Number of words (1000 words)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
m

u
la

ti
ve

 u
n

ig
ra

m
 f

re
q

u
en

cy

Figure 6.1: The probability distribution function of the dictionary words.

This means that even if a prediction algorithm has high values for those performance

measures, it does not guarantee that the system is considered a good one by the users

as well, especially since every user with disabilities might have di�erent concerns and

di�erent problems to be solved by the system. It would be good to create an interface for

the testbench, so that we can test the performance of the predictors by asking real users

to use it for a period of time. Thus, we can evaluate the prediction algorithms according

to the users' opinions as well as the selected performance measures.

Bibliography

Alm, N., Arnott, J. L., and Newell, A. F. (1992). Prediction and conversational mo-

mentum in an augmentative communication system. Communications of the ACM,

35(5):46{57.

Arnott, J. L., Pickering, J. A., SwiÆn, A. L., and Battison (1984). An adaptive and

predictive communication aid for the disabled exploits the redundancy in natural lan-

guage. In Proceedings of the 2nd International Conference on Rehabilitation Engineer-

ing, pages 349{350, Ottawa.

Baker, B. R. (1982). Minspeak. Byte, 9:186{202.

Banko, M. and Brill, E. (2001). Scaling to very very large corpora for natural language

disambiguation. In Proceedings of the 39th Annual Meeting and 10th Conference of

the European Chapter of the Association for Computational Linguistics, pages 26{33,

Toulouse, France. ACL.

Bentrup, J. A. (1987). Exploiting word frequencies and their sequential dependencies. In

Proceedings of the 10th Annual Conference on Rehabilitation Technology, pages 121{

123. RESNA.

BNC manual (2000). Reference Guide for the British National Corpus (World Edition).

www.hcu.ox.ac.uk/BNC, second edition.

Booth, L., Morris, C., Ricketts, I., and Newell, A. F. (1992). Using a syntactic word

76

BIBLIOGRAPHY 77

predictor with language impaired young people. In Proceedings of the CSUN 7th Annual

Conference on Technology for Persons with Disabilities, pages 57{61, USA.

Carlberger, A., Carlberger, J., Magnuson, T., Hunnicutt, S., Palazuelos-Cagigas, S. E.,

and Navarro, S. A. (1997a). Profet, a new generation of word prediction: An evaluation

study. In Copestake, A., Langer, S., and Palazuelos-Cagigas, S., editors, Natural

language processing for communication aids, Proceedings of a workshop sponsored by

ACL, pages 23{28, Madrid.

Carlberger, A., Magnuson, T., Carlberger, J., Wachtmeister, H., and Hunnicutt, S.

(1997b). Probability-based word prediction for writing suport in dyslexia. In Ban-

nert, R., Heldner, M., Sullivan, K., and Wretling, P., editors, Proceedings of Fonetik'97

Conference, volume 4, pages 17{20.

Clarkson, P. and Rosenfeld, R. (1997). Statistical language modeling using the cmu-

cambridge toolkit. In Proceedings of the ESCA Eurospeech 97.

Cross, R. T., Baker, B. R., Klotz, L. V., and Badman, A. L. (2001).

Static and dynamic keyboards: semantic compaction in both worlds.

www.prentrom.com/aacassessment/assessmentindex.html.

Darragh, J. J. and Witten, I. H. (1992). The Reactive Keyboard. Cambridge University

Press.

Darragh, J. J., Witten, I. H., and James, M. L. (1990). The reactive keyboard: A

prediction typing aid. IEEE Computer, 23(11):41{49.

Demasco, P. W. and McCoy, K. F. (1992). Generating text from compressed input: An

intelligent interface for people with severe motor impairments. Communications of the

ACM, 35(5):68{78.

BIBLIOGRAPHY 78

Even-Zohar, Y. and Roth, D. (2000). A classi�cation approach to word prediction. In

Proceedings of the Conference, 2nd Meeting of the North American Chapter of the

Association for Computational Linguistics. ACL.

Fellbaum, C., editor (1998). WordNet, An Electronic Lexical Database. The MIT Press.

Foulds, R. (1980). Communication rates for non-speech expression as a function of

manual tasks and linguistic constraints. In Proceedings of the International Conference

on Rehabilitation Engineering, pages 83{87, Toronto. RESNA.

Foulds, R., Soede, M., van Balkorm, H., and Boves, L. (1987). Lexical prediction tech-

niques applied to reduce motor requirements for augmentative communication. In

Proceedings of the 10th Annual Conference on Rehabilitation Technology, pages 115{

117. RESNA.

Garay-Vitoria, N. and Gonz�alez-Abascal, J. (1997). Intelligent word prediction to en-

hance text input rate (a syntactic analysis-based word prediction aid for people with

severe motor and speech disability). In Proceedings of the Annual International Con-

ference on Intelligent User Interfaces, pages 241{244.

Hirst, G. and Budanitsky, A. (2001). Correcting real-world spelling errors by restoring

lexical cohesion. MS, Submitted for publication.

Hunnicutt, S. (1987). Input and output alternatives in word prediction. Technical Report

STL-QPSR 2-3, Department of Speech Communication and Music Acoustics, KTH.

Hunnicutt, S. (1989). Using syntactic and semantic information in a word prediction aid.

In Proceedings of Eurospeech 1989, volume 1, pages 191{193.

Jurafsky, D. and Martin, J. H. (2000). Speech and Language Processing. Prentice Hall.

Katz, S. M. (1987). Estimation of probabilities from sparse for the language model

BIBLIOGRAPHY 79

component of a speech recognizer. IEEE Transactions on Acoustics, Speech and Signal

Processing ASSP, 35:400{401.

MacKenzie, S., Kober, H., Smith, D., Jones, T., and Skepner, E. (2001). Letterwise:

pre�x-based disambiguation for mobile text input. In Proceedings of the ACM Sympo-

sium on User Interface Software and Technology | UIST 2001, New York. ACM.

Manning, C. D. and Sch�utze, H. (1999). Foundations of Statistical Natural Language

Processing. The MIT Press.

Morris, J. and Hirst, G. (1991). Lexical coherence computed by thesaural relations as an

indicator of the structure of text. Computational Linguistics, 17(1):21{42.

Moulton, B. J., Lesher, G. W., and Higginbotham, J. (1999). A system for automatic

abbreviation expansion. In Proceedings of the RESNA 22nd Annual Conference, pages

55{57. RESNA.

Nantais, T., Shein, F., and Johansson, M. (2001). EÆcacy of the word prediction al-

gorithm in WordQ. In Proceedings of the 24th Annual Conference on Technology and

Disability. RESNA.

Shein, F., Nantais, T., Nishiyama, R., Tam, C., and Marshall, P. (2001). Word cueing

for persons with writing diÆculties: WordQ. In Proceedings of CSUN 16th Annual

Conference on Technology for Persons with Disabilities.

SLM documentation (2001). The CMU-Cambridge Sta-

tistical Language Modeling Toolkit HTML Documentation.

http://svr www.eng.cam.ac.uk/ prc14/toolkit documentation.html.

SwiÆn, A. L., Arnott, J. L., and Newell, A. F. (1987). The use of syntax in a predictive

communication aid for the physically handicapped. In Proceedings of the 10th Annual

Conference on Rehabilitation Technology, pages 124{126. RESNA.

BIBLIOGRAPHY 80

SwiÆn, A. L., Arnott, J. L., Newell, A. F., and Brophy, B. (1988). Function and content

words in a predictive system. In Proceedings of ICAART Conference, pages 70{71,

Montreal.

SwiÆn, A. L., Pickering, J. A., Arnott, J. L., and Newell, A. F. (1985). PAL: An e�ort

eÆcient portable communication aid and keyboard emulator. In Proceedings of the 8th

Annual Conference on Rehabilitation Technology, pages 197{199. RESNA.

Treviranus, J. and Norris, L. (1987). Predictive programs: Writing tools for severely

physically disabled students. In Proceedings of the 10th Annual Conference on Reha-

bilitation Technology, pages 130{132. RESNA.

VanDyke, J. A. (1991). A syntactic predictor to enhance communication for disabled

users. Technical Report 92-03, Department of Computer and Information Sciences,

University of Delaware.

Wood, M. E. (1996). Syntactic pre-processing in single-word prediction for disabled people.

PhD thesis, Department of Computer Science, University of Bristol.

Woods, W. A. (1970). Transition network grammars for natural language analysis. Com-

munications of the ACM, 13(10):591{606.

