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Abstract
Numerous studies have shown that language impairments, particularly semantic deficits, are evident in the narrative speech of people
with Alzheimer’s disease from the earliest stages of the disease. Here, we present a novel technique for capturing those changes, by
comparing distributed word representations constructed from healthy controls and Alzheimer’s patients. We investigate examples of
words with different representations in the two spaces, and link the semantic and contextual differences to findings from the Alzheimer’s
disease literature.
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1. Introduction

Vector space models of semantics have become an increas-
ingly popular area of research in computational linguistics,
with notable successes on tasks such as query expansion
for information retrieval (Manning et al., 2008), synonym
identification (Bullinaria and Levy, 2012), sentiment anal-
ysis (Socher et al., 2012), machine translation (Zou et al.,
2013), and many others. Here we present a preliminary
study on how we can use vector space models to detect se-
mantic changes that may occur with Alzheimer’s disease
(AD).

The general idea is simple: if we construct two semantic
spaces from two different corpora, we expect the differ-
ences between the spaces to be related to the differences
between the corpora. If we generate word vectors from
a corpus of text about cars, and another set of word vec-
tors from a corpus about wildlife, we expect that the word
jaguar will have two very different representations in these
two spaces. If the dimensions are the same, we can mea-
sure the distance between the two vectors for jaguar, and
we would expect to find that it is non-zero.

In this study, we fix the topic of the two corpora to be the
same: each document in the two corpora is a description of
the “Cookie Theft” picture shown in Figure 1. Rather, the
difference is that the documents in one corpus were pro-
duced by people with AD, and the documents in the other
corpus were produced by healthy, older controls. We sug-
gest that differences in the vector representations trained on
the two corpora will be due, at least in part, to the semantic
impairment that often occurs with AD.

In the following sections, we first present a brief summary
of the literature on language in AD as well as related com-
putational work. We then describe our data and procedure,
examine the differences between the two corpora using a
simple vector representation, and present three methods
to help interpret these differences, with specific examples
from the narratives. We also discuss the limitations of this
study and suggest ways to build on these preliminary re-
sults.

2. Background
A great deal of work has been undertaken studying the
degradation of semantic processing in AD, of which we will
only begin to scratch the surface in this discussion.
Semantic memory deficits have been widely reported, with
AD patients having difficulty on naming tasks and often
substituting high-frequency hypernyms or semantic neigh-
bours for target words which cannot be accessed (Kempler,
1995; Giffard et al., 2001; Kirshner, 2012; Reilly et al.,
2011). Numerous studies have reported a greater impair-
ment in category naming fluency (e.g., naming animals or
tools) relative to letter naming fluency (e.g., naming words
that start with the letter R) (Salmon et al., 1999; Monsch
et al., 1992; Adlam et al., 2006). As a result of word-
finding difficulties and a reduction in working vocabulary,
the language of AD patients can seem “empty” (Ahmed et
al., 2013) and lacking coherence (Appell et al., 1982). In
the famous “Nun Study” (Snowdon et al., 1996), it was
shown that decreased idea density in writing produced in
early life was associated with developing Alzheimer’s dis-
ease decades later.
Specifically with regards to the “Cookie Theft” picture de-
scription task that we consider here, AD patients tend to
show a reduction in the amount of information that is con-
veyed (Giles et al., 1996; Croisile et al., 1996; Lira et al.,
2014). That is, they do not mention all the expected facts
or inferences about the picture. Furthermore, these impair-
ments are noticeable from a very early stage in the disease
(Forbes-McKay and Venneri, 2005). Nicholas et al. (1985)
found that AD patients mentioned roughly half of the ex-
pected information units, and produced a large number of
deictic terms and indefinite terms (e.g. pronouns without
antecedents). Ahmed et al. (2013) found that AD patients
made fewer references to the people and their actions de-
picted in the picture than controls.
Recently, there has been some progress on automatically
determining the information content of picture description
narratives using computational techniques. Pakhomov et
al. (2010) generated a list of expected information units
and some of their lexical and morphological variants, then
searched for matches. Hakkani-Tür et al. (2010) scored
picture descriptions using information retrieval techniques



to match the narratives with a list of 35 key concepts.
In previous work, we used a combination of keyword-
spotting and dependency parsing to identify relevant infor-
mation units in “Cookie Theft” narratives (Fraser et al.,
2015). However, accurately identifying atypical speech
patterns will require accounting for not just what words are
used, but how they are used. A better understanding of the
semantic space and the different senses in which words are
used will be a first step towards better models for detecting
AD from speech.

3. Data
The narrative speech data were obtained from the Pitt cor-
pus in the DementiaBank database1 (MacWhinney, 2007).
These data were collected between 1983 and 1988 as part
of the Alzheimer Research Program at the University of
Pittsburgh. Detailed information about the study cohort is
available from Becker et al. (1994), and demographic infor-
mation is given in Table 1. Unfortunately, the patient and
control groups are not matched for age and education; the
AD patients tend to be both older (p < 0.01) and less ed-
ucated (p < 0.01), which is one limitation of this data set.
There is no significant difference on sex (p = 0.8).
The language samples were elicited using the “Cookie
Theft” picture description task from the Boston Diagnos-
tic Aphasia Examination (BDAE) (Goodglass and Kaplan,
1983), in which participants are asked to describe every-
thing they see going on in a picture. The stimulus picture
is shown in Figure 1. The data were manually transcribed
following the CHAT transcription protocol (MacWhinney,
2000).
Patients in the Pittsburgh study were diagnosed on the basis
of their clinical history and their performance on neuropsy-
chological testing, and the diagnoses were updated in 1992,
taking into account any relevant information from the inter-
vening years. Autopsies were performed on 50 patients,
and in 43 cases the AD diagnosis was confirmed (86.0%)
(Becker et al., 1994). A more recent study of clinical di-
agnostic accuracy in AD found that of 526 cases diagnosed
as probable AD, 438 were confirmed as neuropathological
AD post-mortem (83.3%) (Beach et al., 2012), suggesting
that the DB diagnoses are generally as reliable as diagnoses
made using present-day criteria.
We include 240 narratives from 167 participants diagnosed
with possible or probable AD (average number of narra-
tives per participant is 1.44, median is 1.0), and 233 narra-
tives from 97 healthy, elderly controls (average 2.40, me-
dian 2.0). As shorthand throughout the paper, we refer to
the set of narratives from participants with AD as the “AD
corpus”, and the set of narratives from healthy controls as
the “CT corpus.” In total, the AD corpus contains 31,906
words, and the CT corpus contains 27,620 words.

4. Differences in word representations
between AD patients and controls

To compare the vector spaces directly, we require that the
dimensions be identical (in interpretation as well as num-
ber). For this reason, we do not consider popular neural

1https://talkbank.org/DementiaBank/

Figure 1: The Cookie Theft Picture (Goodglass and Ka-
plan, 1983).

AD Controls
n = 240 n = 233

Age 71.8 (8.5) 65.2 (7.8)
Education 12.5 (2.9) 14.1 (2.4)
Sex (M/F) 82/158 82/151
MMSE 18.5 (5.1) 29.1 (1.1)

Table 1: Demographic information (mean and standard de-
viation).

network models such as skip-gram and CBOW (Mikolov
et al., 2013), whose resulting dimensions are not easily in-
terpretable. Instead we consider a simple word-word co-
occurrence model, in which the rows and columns repre-
sent words from the vocabulary, and the value of (ri,ci) is
the number of times context word ci appears near the given
word ri. We use a window size of three words on each side
of the target word, with the exception of words at the be-
ginning and end of narrative samples (i.e. the window is
not permitted to overlap with the end of one sample and the
beginning of the next). To reduce data sparsity, we con-
sider only words that occur a minimum of 10 times in both
the CT and AD corpora, and we lemmatize the words using
NLTK’s WordNet lemmatizer, after first tagging the words
to increase lemmatization accuracy (Bird et al., 2009). Af-
ter examining the frequency distribution of words in the two
corpora, we decided not to remove any stop-words, as many
of the highest frequency words are actually content words
(e.g. cookie). Furthermore, we predict that common words
such as prepositions and pronouns might show some varia-
tion in usage between the groups.
We stated above that the most likely reason for differences
between the vector representations would be differences be-
tween the language of people with AD and healthy con-
trols. Of course, another reason for differences could sim-
ply be random variation in word choice and speaking style
between individuals, which may be a factor here given the
relatively small size of the data set. To mitigate this effect,
we adopt the following procedure:

1. First, split the CT corpus in half, create two co-
occurrence matrices, and measure the cosine distance



Figure 2: Cosine distances within the control group, and between the control and AD groups. Words marked in bold on the
horizontal axis were selected for analysis in the next section (the difference between groups was greater than the error).

between the vector for word w in the first and the vec-
tor for word w in the second. This gives us an idea of
the expected variation that occurs for each word.

2. Then, measure the cosine distance between the rep-
resentation of word w trained on the CT corpus and
trained on the AD corpus. This represents the varia-
tion of the word across the two groups.

3. Finally, only select a word for analysis if the distance
across groups is greater than the distance within the
control group; that is, if the variation between AD pa-
tients and controls is greater than the normal variation
within healthy speakers. (Note that we do not consider
the variation within the AD group in this calculation,
as we want to measure whether the across-group vari-
ation is greater than typical variation.)

One difficulty that we encountered in performing this cal-
culation was choosing an appropriate metric for measur-
ing statistical significance in cosine differences. We exper-
imented with partitioning the data into several folds, ob-
taining observations from each fold, and then testing for
significance (as in Bullinaria and Levy (2012)), but con-
cluded that our data set is simply too small for this method
to be feasible. For lack of a better option, and given the
close relationship between cosine similarity and correlation
(Van Dongen and Enright, 2012), we instead computed the
standard error for each cosine distance (treating each word
as an observation). Figure 2 shows the cosine distances and

errors for a subset of vectors, including all of those which
were selected for analysis in the following section.

5. Interpretation of the differences
The method described above leaves us with a fairly small
set of vectors that differ notably between the groups (i.e.
only those 11 features shown in bold in Figure 2). The next
question is: in what way are they different, and how does
this relate to our knowledge of Alzheimer’s disease? This
proved to be a more difficult question to answer. In the
following sections we present three different approaches,
with illustrative examples for each.

5.1. Contextual differences
As a first step, we examined those dimensions which were
non-zero in one group and zero in the other (i.e. context
for a given word that appeared in one group but not the
other). In the selected words, two different scenarios were
observed: In the first case, the control participants used a
number of context words not used by the AD participants.
An example of this is shown in Figure 3a, for the word an-
other. Two context words which occur fairly often with
another in the control group are he and window. Some ex-
amples of these words in context (words inside the context
window are italicized) are:

• And he’s getting another one out of the cookie jar

• He’s handing another one to the little girl

• And there’s another window and some trees apparently



(a) another

(b) put

Figure 3: Differences in context for the words another and put. Counts above the horizontal axis indicate context words
that occurred only in the control group; counts below the horizontal axis indicate words that occurred only the AD group.

• You can see beyond that another window and um

These examples demonstrate a certain attention to detail —
to say that the boy is getting another cookie, one must first
observe that he already has a cookie in his hand; the sec-
ond window referenced in another window is a minor de-
tail seen through the first, more prominent window. They
also reflect an element of cohesion, in that another win-
dow makes reference to an earlier window mentioned by
the speaker, and clarifies to the listener that this new refer-
ence to a window is distinct from the previous one. Prior
work has shown that attention is often one of the first areas
of cognition (after memory) to be affected in AD (Perry and
Hodges, 1999), and that the narratives of people with AD
tend to show a lack of cohesion (Chenery and Murdoch,
1994).
In the second case, the AD participants use a number of
context words that do not occur in the CT corpus. An exam-
ple of this is illustrated in Figure 3b, for the word put. One
of the most frequent context words in the figure is put itself.
Control participants rarely repeat the same word within the
6-word context window, but it is not uncommon in the AD
group. Another interesting context word is in. The controls
do not tend to describe any of the actions in the Cookie
Theft picture as putting something in something else. They
use put to describe the action of the girl (e.g. the little girl is
putting her finger to her mouth). On the other hand, some
examples from the AD corpus include:

• he’s trying to put put put food in that in that crocker
jar

• has a cookie jar up there he’s putting cookies in and

the thing’s falling over

These errors are similar to the “implausible details” that
Croisile et al. (1996) found to occur more frequently in AD
narratives than controls. The underlying explanation is un-
clear, although it could represent a breakdown in logic and
understanding. It also demonstrates a potential pitfall of the
keyword-spotting approach to scoring — a participant may
mention the boy and the cookie jar, but the action connect-
ing the two is also fundamentally important.

5.2. Vectors shifting in space
Another way of looking at these differences is to see how
the words in question have moved in the vector space.
To visualize the space in two dimensions, we use the
method of t-distributed stochastic neighbor embedding (t-
SNE) (Van der Maaten and Hinton, 2008). The t-SNE
method was proposed as a solution to the problem of visual-
izing high-dimensional data in two or three dimensions. It
is capable of producing visualizations that reveal structure
at both the local and global level, although the resulting
dimensions are not generally interpretable (and therefore
not labelled in the figures). The example word we consider
here is getting. (Note that verbs ending in -ing are subject to
a consistent issue in the tagging and lemmatizing pipeline
which results in them not being reduced to the base form.)
Figure 4 shows part of the two-dimensional representation
of the word vector space. In many cases, the word rep-
resentations in the AD and CT corpora lie very close to
each other. However, in the case of getting, the vectors lie
much further apart. Examining the surrounding vectors, it
appears that getting is closer to running, overflowing, and



Figure 4: Two-dimensional visualization of the vector space using t-SNE. Word representations from the AD corpus are
labelled with filled, green circles and lowercase labels; words from the CT corpus are labelled with open, orange circles
and uppercase labels.

falling in the AD corpus, and closer to words like reaching
and ask in the CT corpus. This is confirmed by comparing
the cosine distances (Table 2).
The nearest neighbours of the vectors suggest that in the
AD corpus, getting is used more in the context of the sink
overflowing, while in the CT corpus getting is used in the
context of the cookie theft. This is borne out in the data
itself, as there is only one example in the control group of
using getting in the context of the sink (her foot is getting
wet) and the rest refer to the act of stealing the cookie. In
the AD group there are a number of references to the sink
context (e.g. the floor is getting wet, mom is getting her foot
wet, the water is getting over the sink), as well as referring
to stealing the cookie.
One explanation for this phenomenon could lie in the fact
that get is a “light” verb, in that it does not convey very
much semantic information about the action it describes
(Breedin et al., 1998). Kim and Thompson (2004) showed
that people with Alzheimer’s disease produced more light
verbs and fewer heavy verbs in a story-telling task, and
were more impaired on retrieving heavy verbs than light
verbs in a sentence completion task. Both AD and con-
trol speakers use getting in the sense of getting a cookie,
which is the primary sense of the word get2, meaning “to
obtain or procure”. However, we expect that AD speak-
ers may also substitute light, easy-to-access verbs for more
semantically appropriate verbs. This phenomenon is ob-
served when, for example, an AD participant says the wa-
ter is getting over the sink rather than the water is flow-
ing/overflowing/running over the sink.

5.3. Cluster analysis
The example in the previous section illustrates how a sin-
gle word can have multiple senses, and these senses can

2http://www.oed.com/view/Entry/77994

Words Distance Distance
(AD corpus) (CT corpus)

getting, running 0.225 0.524
getting, overflowing 0.224 0.511
getting, falling 0.191 0.384
getting, reaching 0.395 0.349
getting, ask 0.588 0.482

Table 2: Cosine distances for the words in Figure 4 in each
of the two vector representations (trained on AD corpus and
CT corpus).

be distinguished by the different contexts in which they ap-
pear. This idea is the basis of the Distributional Hypothesis,
stated perhaps most succinctly as, “you shall know a word
by the company it keeps” (Firth, 1957). The difficulty of
representing the different senses of a word was an issue in
the early days of vector space representations, although nu-
merous solutions have been proposed since (Reisinger and
Mooney, 2010; Huang et al., 2012; Guo et al., 2014; Wu
and Giles, 2015).
In this section, we perform an analysis based on methods
for unsupervised word sense discovery. We take a step
back, and rather than considering the final vector represen-
tation for a word, we look at all the context vectors that con-
tribute to the final vector and perform cluster analysis on
them. Different clusters will represent different contexts,
and by assumption different word senses. We use k-means
clustering with a Euclidean distance metric. The optimal
number of clusters k is chosen manually, by the silhouette
method (Rousseeuw, 1987).
Our example for this section is the word three. The clus-
ters for k = 5 are shown in two-dimensions in Figure 5a.
The lemmatized context words associated with each point
are given in Figure 5b. Our interpretation of the clusters



is subjective, but in general we see that both AD partici-
pants and controls use the word three to describe the three-
legged stool (turquoise cluster), as well as the number of
dishes and the number of people in the room (purple clus-
ter). Of the smaller outlier clusters, two consist of only con-
texts from the AD corpus. The orange cluster is made up
of examples where participants described three cups, which
is not a semantically accurate representation of the picture
(there are three dishes, but one is a plate). In the green clus-
ter, a single AD participant repeats the word three (thus cre-
ating two instances with very similar contexts) and uses the
context word woman, which is unusual (the unlemmatized
transcript reads one two three three women). Interestingly,
although they were placed in a separate cluster, we also see
this “counting” use of three in context vectors 4 and 7 (both
from the AD corpus). Finally, the red cluster consists of two
cases of repeating the word three in the context of the stool
— one from the CT corpus and one from the AD corpus.
To summarize, in this example we see word senses (con-
texts) that are used by both AD participants and controls,
and then we see other rare senses that appear only in the AD
corpus. In this particular case, those rare senses correspond
to semantic errors, although more work will be needed to
see if that result generalizes to other words.

6. Limitations
Models based on raw word co-occurrence counts are per-
haps the most basic distributional models of semantics, and
it is known that performance is usually improved by (a)
transforming the raw counts using methods like positive
pointwise mutual information, or (b) learning predictive
models using neural networks (Baroni et al., 2014). How-
ever, as the model increases in complexity, we face the is-
sue of whether the Alzheimer’s model and control model
can still be compared directly. The literature on comparing
different semantic spaces is relatively sparse, with some ex-
ceptions (Zuccon et al., 2009). In future work we plan to
build on the baseline we have presented here by exploring
different vector space models and methods for comparing
them.
Furthermore, certain aspects of our methodology, such as
choosing the optimal number of clusters, involve human in-
tervention and have some degree of subjectivity. Work on
automatically choosing k and then evaluating the purity of
clusters and identifying outlier clusters is currently under
way.
Moving away from computational details and looking at the
big picture, it is clear that this study faces the same prob-
lem as many others: trying to study individual variation at
the population level. We do not expect that every person
with AD will say the boy is putting cookies into the jar, or
that there are three cups on the counter. Rather, we expect
that most people with AD will start to make semantic er-
rors of some kind. In doing this analysis, we have picked
up on semantic errors that we did not find using our previ-
ous approach (Fraser et al., 2015), and which have not been
reported, to our knowledge, in any previous work using this
data set. However, our approach here was similar in some
ways to a case study, where we dug deep into a few rep-
resentative examples. The true value will lie in scaling our

(a) Two-dimensional visualization of the clusters using t-
SNE. Circles represent contexts from the AD corpus, while
plus signs represent contexts from the CT corpus.
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1 okay there be person in the
4 uh two dish dish sit on
7 have two two four five door
19 oh I see people in there
20 dish there be dish set on
23 flower there be dish leave to
24 of the on of the cupboard
26 back there be dish on the
28 can see those thing

R
ed

2 xxx doing xxx three legged stool
3 doing xxx three legged stool I
16 fall off a three prong stool
17 off a three prong stool his

Tu
rq

uo
is

e

5 stand on a legged stool and
6 depart from that legged stool he
13 a stool a legged stool and
14 upend on the legged stool uh
15 be a a legged stool and
18 it be a it be a
21 his sister the legged stool be
22 be on a legged stool which
25 stool be a legged stool um
27 up on a legged stool which
29 it be a legged stool and

O
ra

ng
e 8 running there be cup and uh

9 the floor and cup three bowl
10 and three cup bowl there

G
re

en 11 be one two three woman has
12 one two three woman has some

(b) The lemmatized contexts corresponding to each
point.

Figure 5: Clustering of contexts for the word three.

methods to detect and count general semantic irregularities,
which can then be used as input to a system for screening,
longitudinal assessment, or diagnostic support.

7. Conclusion
We have presented preliminary results showing that the
changes in word usage that occur in Alzheimer’s disease



can be detected through analysis of the resulting seman-
tic space. We examined these differences through visual
analysis of the vectors themselves, two-dimensional repre-
sentations of the vector spaces, and cluster analysis of the
individual context vectors. Many of the differences are con-
sistent with previous work on language changes in AD. Fu-
ture work will focus on how these methods can be applied
to automated scoring of the picture description task, or gen-
erating meaningful features for a diagnostic classifier.
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