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Dementia is a gradual cognitive decline that typically occurs as a consequence of neurode-

generative disease, and can result in language deficits (i.e. aphasia). I show that linguistic

features automatically extracted from the connected speech samples of individuals with de-

mentia can both differentiate these individuals from healthy controls and contribute to our

knowledge of the nature of language impairment in dementia. As a secondary goal, I address

the challenges of a fully automated processing pipeline.

I focus on a dementia syndrome known as primary progressive aphasia (PPA), in which

language abilities are specifically impaired. I begin by automatically extracting linguistic in-

formation from transcripts of PPA speech, training machine learning classifiers to differentiate

between the different variants of PPA relative to healthy controls, and interpreting the selected

features in the context of the PPA literature. While traditional measures of syntactic com-

plexity do not distinguish between the groups, the inclusion of parse-based syntactic features

ultimately leads to accuracies of over 90% in three classification tasks.

Having shown that the extracted features can differentiate the groups, I examine how these

features degrade as a result of the processing steps in a fully automated pipeline, including

automatic speech recognition (ASR) and sentence segmentation. The classifiers still achieve

positive results, although the degraded feature accuracy may be of concern in biomedical ap-

plications.

I then explore a question of some debate in the literature: Is there a difference between
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agrammatism in PPA and agrammatism in post-stroke aphasia? Above-baseline classification

results suggest that there are indeed differences between these two impairments.

Having validated the methodology on PPA, I conclude by examining whether a similar

analysis will detect Alzheimer’s disease from speech samples, even though language impair-

ment is not the primary symptom of the disease. By including additional features to measure

the information content of the narrative, classification accuracies of up to 81% are achieved. I

repeat the classification experiment using ASR transcripts, and find that many of the relevant

features are still significantly different between the groups, suggesting that a fully automated

analysis may be possible as ASR improves.

iii



Dedicated to Elda May Hepburn Fraser (1915–2014)

You continue to inspire.

iv



Acknowledgements

I wish to gratefully acknowledge funding from an NSERC CGS-D scholarship, as well as

grants to my collaborators from NSERC, CIHR, and the Alzheimer’s Association. I would also

like to express my deepest gratitude to all the volunteers who contributed speech samples to

the data sets discussed herein, without whom this research would not be possible.

Thank you to my supervisors, for their patience and guidance. To Graeme, and whatever

inscrutable metric you use to select graduate students, for giving me this opportunity. Thank

you for pushing me, for keeping me on track despite all the distractions I generated for myself,

and for only making fun of my accent every once in a while. Thank you to Jed, for your unfail-

ing enthusiasm and optimism, and for always reminding me of the “big picture” perspective

when I needed it the most.

To my other committee members: Elizabeth, you shared your data with me and made it

seem from my perspective like the easiest thing in the world. I realize now that it was compli-

cated and exceptionally generous — thank you. Frank, I still have no idea how you accomplish

so much in the same 24 hours in which I manage to do so little; thank you for always making

time for me. Thank you also to my external examiners, Brian Roark and Regina Jokel, for

your inspiring work in this area, and your thought-provoking questions and suggestions for my

research.

To my other collaborators: It has been a pleasure to learn from you, and I hope we can

continue many of these collaborations into the future. Thank you for sharing your expertise,

time, data, and in some cases even your homes: Naida Graham, Sandra Black, Carol Leonard,

Karine Marcotte, Cynthia Thompson, Jennifer Mack, Martin van Schijndel, Sandra Maria Alu-

sio (and her students), and Leticia Mansur. An especially big thank you to Naama Ben-David

and Luke Zhou, for working so hard over the summer and then still answering my emails long

after the summer was over. I know you will be successful at whatever you choose to do.

Thank you to all my fellow graduate students for your advice and support, especially my

v



office mates (at one time or another) Aditya, Tong, Vanessa F., and Maria, my Pratt lunch

buddies Varada, Nona, Jackie, Aida, and Afsaneh, and my best Brazilian friend Vanessa M. A

special thank you to Libby, partly because I know you read these things, but really for your

help guiding me through matters both professional and personal. I am grateful that our paths

happened to overlap exactly as and when they did. Cheers also to the rest of the CL group for

many interesting and funny conversations over the years.

To my family, for really not being into computers at all, for fostering my interests in art and

language, and for raising their eyebrows only ever so slightly when I chose this road instead,

and loving me all the same. In particular to my mom, for never hesitating to do whatever needed

to be done to help me succeed, despite your own busy schedule. You made the impossible

possible on a regular basis. Thank you.

Finally, to my husband Danny, I never could have done it without you — or at least, I

wouldn’t have wanted to. You kept the lights on and the home fires burning, all while working

full time in your own career and being an equal partner in every way. I love you.

vi



Contents

1 Introduction 1

2 Background and related work 8

2.1 Primary progressive aphasia . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Detecting PPA and related disorders from connected speech . . . . . . . . . . . 11

2.2.1 Manual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Computerized analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Machine learning for text classification . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Syntactic complexity of speech . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Automatic segmentation of speech . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Automatic speech recognition for the elderly and the cognitively impaired . . . 26

2.7 Potential applications and ethical considerations . . . . . . . . . . . . . . . . . 29

2.7.1 Cognitive screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.2 Computerized cognitive testing . . . . . . . . . . . . . . . . . . . . . 32

2.7.3 Longitudinal assessment . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Classification of PPA from manual transcripts 38

3.1 Introduction to the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Narrative task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Automatic classification using text features from manual transcripts . . . . . . 43

vii



3.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Augmenting text features with acoustic features . . . . . . . . . . . . . . . . . 66

3.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 New syntactic features for PPA classification . . . . . . . . . . . . . . . . . . 74

3.4.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.2 Analysis of differences between groups . . . . . . . . . . . . . . . . . 77

3.4.3 Phrase-level statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 A comparison of feature sets for PPA classification . . . . . . . . . . . . . . . 91

3.5.1 Feature sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Classification of PPA from real and simulated ASR transcripts 99

4.1 A preliminary exploration of automatic speech recognition for PPA classification100

4.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1.2 ASR and simulated errors . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Automatic sentence boundary detection in aphasic speech . . . . . . . . . . . . 109

viii



4.2.1 Background: Automatic sentence segmentation . . . . . . . . . . . . . 110

4.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.4 Segmentation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.5 Complexity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.6 Classification of participant groups . . . . . . . . . . . . . . . . . . . 121

4.2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 Agrammatism in progressive and post-stroke aphasia 128

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.1 Manually calculated features . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.2 Automatically extracted features . . . . . . . . . . . . . . . . . . . . . 134

5.3.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4.1 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4.2 Analysis of important features . . . . . . . . . . . . . . . . . . . . . . 139

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Speech and language features for the detection of Alzheimer’s disease 149

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.1.1 Language in AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.1.2 Related computational work . . . . . . . . . . . . . . . . . . . . . . . 152

6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3 Detection of AD using manual transcripts . . . . . . . . . . . . . . . . . . . . 156

6.3.1 New features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

ix



6.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3.4 Factor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3.5 Factor loadings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3.6 Relationships among factors . . . . . . . . . . . . . . . . . . . . . . . 169

6.3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.4 Detection of AD using ASR transcripts . . . . . . . . . . . . . . . . . . . . . . 173

6.4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7 Conclusions and future work 184

7.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Bibliography 194

x



List of Tables

2.1 Reasons for and against routine screening of elderly people for dementia. . . . 31

3.1 Demographic and neuropsychological data for PPA study. . . . . . . . . . . . . 41

3.2 Definitions of features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Correlations between manual and automatic counts for syntactic structures. . . 48

3.4 A comparison of sv-PPA and control features. . . . . . . . . . . . . . . . . . . 50

3.5 A comparison of nfv-PPA and control features. . . . . . . . . . . . . . . . . . 51

3.6 A comparison of sv-PPA and nfv-PPA features. . . . . . . . . . . . . . . . . . 52

3.7 Accuracies for the three classifiers, compared to a simple majority-class base-

line classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 Acoustic features extracted directly from the PPA speech samples. . . . . . . . 68

3.9 Selected features (n = 10) for each task and feature set using the mRMR and

p-value methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.10 Multi-way ANOVA on accuracy across task, feature selection method, feature

set, number of features, and classifier. . . . . . . . . . . . . . . . . . . . . . . 72

3.11 Average accuracy across experiments, partitioned by task, feature set, classi-

fier, and method of feature selection. . . . . . . . . . . . . . . . . . . . . . . . 72

3.12 Results of χ2 testing for each phrase type. . . . . . . . . . . . . . . . . . . . . 81

3.13 Features with a standardized residual greater than 2.5 in the χ2 test. . . . . . . 82

3.14 Feature set names, abbreviations, and descriptions. . . . . . . . . . . . . . . . 92

3.15 Classification accuracies for each feature set individually. . . . . . . . . . . . . 94

xi



3.16 Ablation study results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Mean WER for the Nuance systems on each participant group. . . . . . . . . . 104

4.2 Distribution of error types for the Nuance systems. . . . . . . . . . . . . . . . 104

4.3 Significant text features for PPA versus controls. . . . . . . . . . . . . . . . . . 105

4.4 Significant text features for sv-PPA vs.nfv-PPA. . . . . . . . . . . . . . . . . . 105

4.5 F score for the automatic segmentation method on each data set. . . . . . . . . 114

4.6 The 10 features with the highest weights in each CRF model. . . . . . . . . . . 116

4.7 Mean values of syntactic complexity metrics for the different patient groups. . . 119

4.8 Classification accuracies for the automatically and manually segmented tran-

scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1 Demographic information for PPA-G and StrAg participants. . . . . . . . . . . 133

5.2 Features which were manually extracted from the narrative samples. . . . . . . 135

5.3 Group means for features that are selected more than 50% of the time. . . . . . 144

5.4 Correlations between the automatic and manual features. . . . . . . . . . . . . 144

6.1 Demographic information for participants with AD and healthy controls. . . . . 155

6.2 Information units in the Cookie Theft picture. . . . . . . . . . . . . . . . . . . 159

6.3 Keywords corresponding to each of the concepts in Table 6.2. . . . . . . . . . . 161

6.4 Dependencies corresponding to each of the actions in Table 6.2. . . . . . . . . 163

6.5 Correlations with diagnosis and promax factor loadings. . . . . . . . . . . . . 166

xii



List of Figures

1.1 Processing pipeline for automatic detection of dementia from speech. . . . . . 3

3.1 Partial least squares analysis of the PPA data. . . . . . . . . . . . . . . . . . . 54

3.2 PLS selectivity ratio for each of the features. . . . . . . . . . . . . . . . . . . . 55

3.3 Transcription 1 (sv-PPA, patient 29). . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Transcription 2 (nfv-PPA, patient 41). . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Transcription 3 (sv-PPA, patient 2). . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Transcription 4 (nfv-PPA, patient 31). . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Accuracies across task (PPA vs.control, sv-PPA vs.nfv-PPA) and feature set. . . 73

3.8 Context-free grammar (CFG) representation of a sentence. . . . . . . . . . . . 76

3.9 Frequency counts of noun phrase productions in each group. . . . . . . . . . . 79

3.10 Frequency counts of verb phrase productions in each group. . . . . . . . . . . . 80

3.11 Frequency counts of prepositional phrase productions in each group. . . . . . . 81

4.1 Comparison of ASR classification accuracies with and without acoustic features.107

4.2 Classification accuracies with the default and reduced vocabularies. . . . . . . 108

4.3 An example of ASR text before and after processing. . . . . . . . . . . . . . . 110

4.4 Selected features using automatically and manually segmented transcripts. . . . 123

5.1 Classification accuracy using the manually extracted features. . . . . . . . . . . 138

5.2 Classification accuracy using the automatically extracted features. . . . . . . . 139

5.3 The proportion of folds in which each feature was selected. . . . . . . . . . . . 143

xiii



6.1 Classification results for AD versus healthy controls. . . . . . . . . . . . . . . 165

6.2 Pair-wise combinations of the four factors. . . . . . . . . . . . . . . . . . . . . 170

6.3 Bubble plots of features in the ASR and manual transcripts (linear scale). . . . 177

6.4 Bubble plots of features in the ASR and manual transcripts (log scale). . . . . . 178

6.5 Average accuracies for AD vs.controls using ASR transcripts. . . . . . . . . . 179

6.6 Highly ranked features in the ASR and manual transcripts. . . . . . . . . . . . 180

xiv



Chapter 1

Introduction

Dementia is a degenerative cognitive impairment, with a severity that interferes with the ability

to function normally in day-to-day life. Prince et al. (2013) estimate that 35.6 million people

worldwide were living with dementia in 2010, and the Alzheimer Society of Canada1 reports

that 747,000 Canadians suffered from cognitive impairment or dementia in 2011. These num-

bers are projected to double in the next 20 years (Prince et al., 2013). The increasing preva-

lence of dementia is expected to lead to more pressure on the healthcare system to provide

more services related to dementia. Such services could include screening for early detection

of cognitive decline, accurate diagnosis of different types of dementia, and long-term care of

people with dementia, including assistive technologies to allow individuals to safely remain in

their homes and communities. Tools for monitoring the severity of dementia symptoms, and

tracking the efficacy of potential interventions, will also be required.

A diagnosis of dementia is made on the basis of several factors, including neuropsycho-

logical testing, interviews with family and caregivers, and brain imaging. In some types of

dementia, such as primary progressive aphasia (which will be the main focus of this disser-

tation), language deficit is a core symptom. Language ability is assessed by a range of tests,

including single-word naming, recitation of overlearned sequences (such as counting, or days

of the week), repetition of words and sentences, fluency tests (such as naming animals), and
1http://www.alzheimer.ca

1
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many others. These tests are designed to examine specific language processes, allowing a clin-

ician to determine a precise pattern of language ability and disability. However, these tests do

not necessarily reflect how people use language in everyday life, which requires the production

of complete sentences, expressing a range of meaning and emotion. Individuals who perform

well on single-word naming tasks may not be able to string those words together to form gram-

matical utterances. Or the opposite can be true: patients who perform poorly on very specific

semantic tasks could still be able to produce quite long and fluent sentences.

Many researchers and clinicians therefore agree that the analysis of narrative or conver-

sational speech is important for assessing the extent of an individual’s language impairment

(Bucks et al., 2000; Forbes-McKay and Venneri, 2005; Rohrer et al., 2008; Sajjadi et al., 2012).

However, the prevailing view is summarized by Sajjadi et al. (2012) in their paper on language

in dementia: “Connected speech provides the most realistic measure of language function but

its use has been restricted by operational constraints.” There is simply not enough time to per-

form a quantitative analysis of long streams of speech in a clinical setting. Some researchers

have approached this problem by using methods from natural language processing (NLP) to

automate the analysis of speech in various neurodegenerative disorders (for example, Thomas

et al. (2005); Jarrold et al. (2010); Roark et al. (2011)). The basic processing pipeline for these

studies (and the work presented here) is shown in Figure 1.1, although not all studies use each

component in the diagram. These studies have shown that it is possible for machine learning

classifiers to achieve high accuracy on some diagnostic tasks, when trained on features which

were automatically extracted from speech transcripts.

However, previous computational work suffers from the following limitations. In general,

there is an over-emphasis on classification accuracy, and a lack of attention paid to the features

that form the foundation for the classification results. For example, Peintner et al. (2008) only

report the number of statistically significant features, rather than listing the features themselves.

Jarrold et al. (2014) discuss only 8 of the apparently hundreds of features they extract (indeed,

the exact number and nature of the features is not clear). Roark et al. (2011) present the values
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Figure 1.1: Processing pipeline for automatic detection of dementia from speech. The
input to the system is an audio file containing a connected speech sample. Most studies
use a human transcriber for the “Transcription” and “Segmentation” steps. Many studies
omit the “Acoustic feature extraction” step. Note that the “Text feature extraction” step
itself can contain multiple sub-processes, such as parsing, chunking, tagging, etc.

for the extracted features across groups, but do not explain in any detail what those values

might imply about language changes due to cognitive decline. Garrard et al. (2014) are unable

to identify a clear pattern in the features distinguishing between dementia pathologies, likely

in part due to the sparse nature of the features (lexical unigram frequencies). Other studies

employ automated techniques to extract relevant features, but then stop short of actually using

those features to predict class membership (Pakhomov et al., 2010b,a; Garrard and Forsyth,

2010; Meteyard et al., 2014). Here, in contrast, my objective is to find clinically motivated

features that both lead to high classification accuracies and reveal interpretable information

about the dementia syndrome in question.

Furthermore, it is rarely addressed how the different stages of the NLP processing pipeline

(Figure 1.1) affect the data and the resultant extracted features. Very few studies consider the

practical questions of automatic speech recognition and segmentation at all, let alone examine

the effect of these noisy processes on feature values, or investigate how these processes may

disproportionately affect data from different patient populations. Peintner et al. (2008) use

automatic speech recognition (ASR) to generate transcripts for dementia participants, listing

word error rates ranging from 30% to 61% (and up to 100% for one participant). However,
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there is no discussion of how the lexical features and part-of-speech tags may have been af-

fected. In related work, Jarrold et al. (2014) use the same speech recognition system, although

they do not report word error rates. They do list several hypotheses based on the dementia

literature, and they also compare their findings for these hypotheses using both manual and

automatic transcriptions. However, although they report different results on the two sets of

transcripts, there is no analysis of the conflicting results or discussion of whether some fea-

tures are more affected than others. Lehr et al. (2012) report word error rates of 36–47%,

and find that increased error rates led to decreasing feature accuracy, although they consider

the somewhat different task of scoring story re-tellings for recall of relevant items, rather than

assessing linguistic ability. Lehr et al. (2013) report an improved word error rate of 25.6%

but similarly seek to assess story recall, rather than linguistic ability. None of these four stud-

ies attempts to measure the syntactic complexity of the narrative samples. To the best of my

knowledge, all other studies of automated classification of dementia from narrative speech use

manual transcripts.

In some machine learning applications, classification accuracy may be the most relevant

outcome of a study. Accuracy is also important here. However, in healthcare applications,

the features which go into a classifier may be just as important to the end user as the result

that comes out. In this dissertation, I aim to show that linguistic features automatically ex-

tracted from the connected speech samples of individuals with dementia can both differentiate

these individuals from healthy, older controls and contribute to our knowledge of the nature of

language impairment in dementia. As a secondary goal, I aim to address the challenges and

ultimate feasibility of a fully automated processing pipeline.

Background information about language impairment in dementia is given in Chapter 2. In

this research, I focus on a dementia syndrome called primary progressive aphasia (PPA). Apha-

sia is an acquired language disorder, and in PPA the aphasic symptoms are due to an underlying

neurodegenerative disease, principally affecting the language areas of the brain. Because peo-

ple with PPA are relatively cognitively intact, PPA speech represents an ideal source of data on
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which to test linguistic analyses in the absence of other impairments. Furthermore, there are

different variants of PPA that affect semantic and syntactic production differentially, allowing

us to test whether certain features are more sensitive to semantic or syntactic abnormalities. I

also provide information about related manual and computational studies of connected speech

in PPA and other types of dementia. Additionally, I present some of the issues around mea-

suring the syntactic complexity of speech, in which, unlike writing, dysfluencies are common

and sentence or utterance boundaries are unclear. Finally, I expand on the potential applica-

tions of this work and discuss some of the ethical concerns related to automated detection and

monitoring of dementia.

The objective of the work discussed in Chapter 3 is to automatically extract linguistic in-

formation from the PPA data, train machine learning classifiers to differentiate between the

different variants of PPA relative to healthy controls, and interpret the selected features in the

context of previous studies of connected speech in PPA. I start by considering only linguistic

features derived from the speech transcripts. I then incorporate acoustic features derived from

the associated audio files. The classifiers achieve reasonable accuracies in this preliminary

work, but the features do not identify syntactic differences between the two subtypes. There-

fore, in the second half of this chapter I examine a more fine-grained set of syntactic features

and compare the different distributions of these features across groups. This chapter ends with

an ablation study to determine the optimal set of features on which to train the classifiers, which

ultimately achieve accuracies of over 90% in each task.

Having shown that the extracted features can reliably differentiate the groups, I turn to the

question of how these features degrade in the face of the noisy processes which will necessarily

be part of a fully automated system. In the first part of Chapter 4, I experiment with using off-

the-shelf speech recognition software, and find that it does a poor job of recognizing these data.

However, despite the high error rates, some features are still relevant, particularly those that

measure the psycholinguistic properties of words, such as frequency and familiarity. By com-

bining these relatively robust features with the acoustic features, which are unaffected by the
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speech recognition process, the classifier can still distinguish between PPA and control partic-

ipants with over 80% accuracy, although distinguishing between the subtypes is more difficult.

In the second part of the chapter, I consider the effect of automatic boundary segmentation

on traditional measures of syntactic complexity. Although the accuracy of the segmentation is

only moderate, relative to the manual segmentation, we actually observe higher classification

accuracies using the automatically segmented transcripts. This illustrates the potential diver-

gence between accurate classification and accurate feature values, although some examples

from the transcripts also call into question the assumption that human-generated annotations

are, by definition, more accurate.

While Chapter 4 addresses primarily practical concerns, Chapter 5 focuses on a question

of more theoretical interest: Is there a difference in the speech patterns of individuals with

agrammatism due to PPA versus agrammatism due to post-stroke aphasia? The two existing

studies on this topic report conflicting results (Patterson et al., 2006; Thompson et al., 2013). In

this case, the use of machine learning classification is not directed towards a clinical application

(the onset of aphasia after a stroke is sudden and would not be confused for the slow, insidious

onset of PPA), but rather to explore the question of whether a detectable difference between

the groups exists. A best accuracy of 76% is achieved, suggesting that there are differences

between these two populations. An analysis of important features reveals differences in the

usage of verb tenses and prepositional phrases.

Having validated the methodology on PPA, in Chapter 6 I examine whether a similar anal-

ysis will detect Alzheimer’s disease from speech samples. Alzheimer’s disease (AD) is the

most common form of dementia, and is marked by a gradually worsening memory impair-

ment. Over time, other cognitive areas are also affected. While language impairment is not

the primary symptom of AD, numerous studies have suggested that changes in language can

occur very early in the disease, and even in the prodromal phase (Forbes et al., 2001; Ahmed

et al., 2013; Cuetos et al., 2007). By including additional features to capture the expected lex-

ical content of the narratives, classification accuracies of up to 81% are achieved. A factor
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analysis reveals the different underlying language dimensions that are affected. Finally, the

experiment is repeated using ASR transcripts rather than manual transcripts, and we find that

the resulting accuracy is within one standard deviation of the system’s performance on man-

ual transcripts, and that many of the relevant features are still significantly different between

the groups. This suggests that a completely automated system may become feasible as speech

recognition accuracy improves.

In Chapter 7 I summarize and discuss the results, and list some limitations of the work and

how they might be improved. I also present a number of areas for future work, building on the

foundation presented here.

Much of this research has already been published, and all of it was collaborative. The

stereotype of the ‘lone wolf’ computer scientist does not translate to such intensely multidis-

ciplinary work. Therefore, I have indicated with a footnote all sections containing previously

published material, and the co-authors of the material. These publications include Fraser et al.

(2013a,b, 2014a,c, 2015a,b). I have received permission from each of my co-authors to repro-

duce the work here, and all of the publishers permit the re-use of material by the author in an

academic dissertation. The pronoun we is used throughout these publications, and for consis-

tency throughout the unpublished sections as well, with the exception of the introductory and

concluding chapters.



Chapter 2

Background and related work

There are many different types of dementia that can exhibit language symptoms, including

Alzheimer’s disease, frontotemporal dementia, dementia with Lewy bodies, and vascular de-

mentia (Rohrer et al., 2008). In this dissertation, I will focus on the syndrome of primary

progressive aphasia (PPA), although an extension to Alzheimer’s disease is presented in Chap-

ter 6. Individuals with PPA are specifically impaired with respect to language, while other

cognitive abilities are generally spared. This makes PPA speech a natural choice of data set

on which to test speech and language measures. More details about PPA and its subtypes are

presented below.

In this chapter, I also discuss previous work using connected speech samples to detect

and classify dementia. In the past, this type of analysis was carried out by hand, although in

recent years there has been growing interest in using tools from natural language processing

to automate existing processes and to develop new methods of analysis. I focus on measures

of syntactic complexity and the challenges associated with applying these metrics to speech

data, including the problem of utterance segmentation in speech. I then give a brief overview

of automatic speech recognition, particularly as it has been applied to ageing voices, and finish

with a discussion of some of the potential applications of this research as well as the ethical

issues surrounding them.

8
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2.1 Primary progressive aphasia

Primary progressive aphasia is a language disorder which occurs as the result of neurodegen-

eration. It progresses slowly and insidiously. According to the international consensus criteria,

a diagnosis of PPA requires the presence of aphasic symptoms in the absence of other major

cognitive deficits (such as memory or executive function) or behavioural disturbances (Gorno-

Tempini et al., 2011).

PPA is often considered to be a type of frontotemporal dementia (FTD), along with a be-

havioural variant (bv-FTD) (Harciarek and Kertesz, 2011). The bv-FTD subtype involves a

change in personality or behaviour, and is not normally associated with language symptoms,

although it has been suggested that patients with bv-FTD may develop difficulties at higher

levels of language functioning, such as producing coherent, organized discourse (Ash et al.,

2006).

PPA may be broken down into subtypes based on specific language deficits. In early work,

a distinction was drawn between “fluent” and “nonfluent” subtypes, roughly corresponding

to the distinction between Wernicke’s aphasia and Broca’s aphasia in classical aphasiology

(Leyton and Hodges, 2014). However, this view is now regarded as overly simplistic. Due to

the range of different underlying causes for PPA, and debate regarding the diagnostic criteria

for each subtype, subtype classification can be difficult in some cases. While there are broad

patterns of decline, individual patients often show at least some symptoms from different sub-

types (Rogalski et al., 2011). Nonetheless, most cases of PPA can be assigned to one of three

subtypes: semantic variant (sv-PPA), nonfluent/agrammatic variant (nfv-PPA) and logopenic

variant (lv-PPA) (Gorno-Tempini et al., 2011).1

The semantic variant, sometimes called “semantic dementia”, is marked by fluent but empty

speech, anomia, deficits in comprehension, and spared grammar and syntax (Mesulam et al.,

2012). Patients with sv-PPA often have particular difficulty with nouns as opposed to verbs,

1Since no abbrevations for the subtypes are given in Gorno-Tempini et al. (2011), here we follow the abbre-
viation conventions of Leyton and Hodges (2014).
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particularly low-frequency nouns (Rohrer et al., 2008). In general, semantic noun categories

(e.g., animate versus inanimate objects) are affected more or less equally, although there have

been a few cases where category effects were seen (Lambon Ralph et al., 2003a). In conversa-

tional speech, sv-PPA patients may avoid these low-frequency words by using circumlocutions

or higher-frequency hypernyms (Rohrer et al., 2008). They may also use more pronouns or

other closed-class words in place of more specific words (Harciarek and Kertesz, 2011).

The nonfluent/agrammatic variant is characterized by halting, agrammatic speech, reduced

syntactic complexity, word-finding difficulties, and relatively spared single-word comprehen-

sion (Mesulam et al., 2012). The agrammatism is usually less severe than in Broca’s aphasia

(Harciarek and Kertesz, 2011; Wilson et al., 2010). This subtype is called “nonfluent” because

of the typically slow, effortful speech of nfv-PPA patients. However, recent work by Thomp-

son et al. (2012) shows that levels of fluency and grammatical abilities vary from individual to

individual and can be dissociated. Patients may also show altered prosody and speech sound

errors or apraxia of speech (Grossman, 2010; Harciarek and Kertesz, 2011). As the disease

progresses, the patient may become mute (Wilson et al., 2010).

The third subtype, lv-PPA, was identified by Gorno-Tempini et al. (2004) after their expe-

rience with PPA patients who did not seem to fall into either of the above categories. The two

main features of lv-PPA are word-finding difficulties and impaired repetition (i.e., difficulty

repeating a sentence or phrase spoken by the examiner), as well as speech errors. Usually

single-word comprehension is spared, along with motor speech and grammar (Gorno-Tempini

et al., 2011), although speech is slow and syntactically simple (Gorno-Tempini et al., 2004).

Neuroimaging can be a useful diagnostic tool, although the mapping from clinical subtype

to location of brain pathology is not always direct. Mesulam et al. (2009) observe that PPA

in general is marked by a “distinctly asymmetric atrophy” centered in the left hemisphere lan-

guage network. Harciarek and Kertesz (2011) note that while most neuroimaging of nfv-PPA

patients shows atrophy around the left posterior inferior frontal gyrus, some patients show more

generalized atrophy, and others show none. The sv-PPA subtype is associated with bilateral at-
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rophy in the anterior temporal lobes, usually greater on the left, eventually spreading to the

ventral and lateral temporal lobes (Harciarek and Kertesz, 2011). Neuroimaging of lv-PPA pa-

tients shows damage to the left posterior superior temporal lobe, as well as parts of the parietal

lobe (Harciarek and Kertesz, 2011). Similar patterns of degeneration are seen in Alzheimer’s

disease, and there is some debate over whether lv-PPA should be considered a subtype of FTD

or a variant of Alzheimer’s disease (Munoz et al., 2007; Ahmed et al., 2012).

2.2 Detecting PPA and related disorders from connected speech

The diagnosis of language-specific syndromes is usually made on the basis on a series of neu-

ropsychological tests, family history, interviews with the patient and their relatives, and the

overall impression of the clinician (Pakhomov et al., 2010a). The tests will often include tests

of language production such as naming, reading, and writing, as well as comprehension tests.

Performance in each of these language areas is an important factor in making the diagnosis.

However, Rohrer et al. (2008) write that “[s]ystematic analysis of an extended sample of the

patient’s spontaneous (propositional) speech is the single most valuable aspect of the examina-

tion” when a patient presents with word-finding difficulties. Billette et al. (2015) state that in

the diagnosis of PPA, “[l]inguistic analysis of connected speech is the gold standard but is im-

practical outside the research setting.” Additionally, in the early stages of PPA or Alzheimer’s

disease, traditional cognitive testing may not be sensitive enough to detect small changes that

can be seen in normal conversation (Bucks et al., 2000). Careful analysis of connected speech

can therefore provide valuable information regarding an individual’s language capacities.

Prins and Bastiaanse (2004) discuss both the clinical and theoretical benefits of analyzing

spontaneous and semi-spontaneous speech from aphasic patients, but they also present some

caveats to the approach. In particular, they mention the difficulty of interpreting the results of

such analysis, when performance can vary over different sessions or even within a single ses-

sion, and given the complex relationships between the different linguistic levels that contribute
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to the production of narrative speech. Bearing these issues in mind, they stress the importance

of speech analysis as a realistic and objective measure of language processing capability, in

individual cases as well as in group studies.

In practice, narrative speech production is analyzed using one of two general procedures

(Pakhomov et al., 2010a). A trained professional may observe the patient in conversation or

on a more structured speech task, and rate their performance subjectively (e.g., on a scale from

“unimpaired” to “severely impaired”). Or, the speech may be transcribed, and the patient’s

performance characterized through the calculation of objective measures of linguistic ability.

The former method is more common in a clinical setting, given the constraints of time and

resources. The latter method is traditionally performed by hand in a research setting and,

according to Pakhomov et al. (2010a), is “likely to produce more objective and reproducible

results.”

2.2.1 Manual analysis

One popular method for performing in-depth analysis of aphasic speech is called Quantitative

Production Analysis, or QPA (Saffran et al., 1989). In QPA, speech transcripts are first edited

and segmented into utterances, then analyzed for a number of different syntactic and semantic

features. This analysis has been used, for example, to identify the differences between flu-

ent and non-fluent aphasic speech (Bird and Franklin, 1996) and to describe the qualities of

narrative production in Broca’s aphasia (Rochon et al., 2000).

Wilson et al. (2010) used QPA to analyze narrative speech in PPA. They analyzed speech

samples (elicited through a picture description task) from 50 participants with PPA, as well as

participants with bv-FTD and healthy older controls. They reported that all of the PPA patients

made syntactic errors, although these errors were more frequent in the nfv-PPA group. The

nfv-PPA group also had the lowest speech rate and produced the most false starts and filled

pauses. In the sv-PPA group, the proportion of closed-class words was increased, as well as the

ratio of pronouns to nouns and verbs to nouns. Interestingly, participants in the sv-PPA group
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produced more embedded phrases than controls, as a result of their word-finding difficulties.

Another formalized method for narrative speech analysis is the Northwestern Narrative

Language Analysis (NNLA) (Thompson et al., 1995). NNLA involves five levels of analysis,

from transcription, to determining utterance-level grammatical correctness, to detailed analysis

of verb complexity and verb argument structure. It is well-suited to studying grammatical

impairments, such as those seen in Broca’s aphasia (Thompson et al., 1997b) and nfv-PPA

(Thompson et al., 1997a, 2012).

As one example, Thompson et al. (2012) studied the relationship between fluency and

agrammatism in PPA using the NNLA method. They analyzed speech samples from 37 PPA

patients and 13 healthy controls, elicited through a story-telling task. They measured variables

such as speech rate, mean length of utterance, proportion of grammatically correct sentences,

ratio of open- to closed-class words, ratio of nouns to verbs, and correct production of verb

inflections and noun morphology. They found that some PPA patients showed reduced fluency

without agrammatism, primarily in the logopenic variant, although also in some cases of sv-

PPA.

Other researchers have focused on different aspects of narrative speech. Ash et al. (2006)

measured global and local connectedness in a picture-based story-telling task, and found that

bv-FTD patients were more impaired on these higher-level discourse measures than sv-PPA

patients (who struggled more with finding the correct words) and nfv-PPA patients (who pro-

duced the shortest narratives). In later work, Ash et al. (2010) analyzed the specific nature

of speech errors in narrative speech from nfv-PPA participants, drawing a distinction between

phonemic errors (resulting in permissible sequences of phonemes in English) and phonetic er-

rors (resulting in phoneme sequences not permissible in English). They found that most speech

errors were phonemic, suggesting the primary impairment in nfv-PPA is not a motor-planning

deficit.

Considering nfv-PPA specifically, Graham et al. (2004) used a picture description task to

elicit speech from participants with nfv-PPA. They reported reductions in narrative length and
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speech rate, as well as information content, relative to controls. Most of the participants did

not show signs of agrammatism. Knibb et al. (2009) analyzed conversational speech from

participants with nfv-PPA, finding increased speech sound errors and grammatical errors, and

simplified (but not telegraphic) syntax.

For sv-PPA, Meteyard and Patterson (2009) analyzed errors in autobiographical interviews

from 8 participants with sv-PPA and 8 matched controls. They found that sv-PPA participants

did make more errors than controls; specifically, they would omit or substitute open-class items

(e.g., nouns or verbs), and substitute but not omit closed-class items (e.g., function words).

There was little evidence for frank agrammatism or phonological errors. Sajjadi et al. (2012)

compared two types of connected speech, a picture description task and a semi-structured inter-

view, from participants with sv-PPA and Alzheimer’s disease. They found that the impairment

in sv-PPA was less obvious in the interview task, as participants had more control over the topic

of conversation and could avoid difficult words. Semantic impairments were more apparent in

the picture description, but the circumlocutions were still rare. In contrast, abnormalities in

syntax and morphological processing occurred more frequently in the structured interview.

To summarize, there are a number of previous studies reporting manual analysis of con-

nected speech in PPA. Some of these studies used a formalized system of analysis, such as

QPA or NNLA, while others developed project-specific methodologies. The speech elicita-

tion task varied, but typically involved either a story-telling task (from memory or aided by a

series of pictures), a description of a single picture, or a directed interview. Variation in the

results may be partly due to the manner in which the speech was elicited (Sajjadi et al., 2012).

In general, participants with sv-PPA produced an increased proportion of closed-class words,

pronouns, and verbs, showed evidence of word-finding difficulty, and did not exhibit notable

difficulties with grammar or motor speech. Participants with nfv-PPA typically had a slower

speech rate and produced shorter narratives with more false starts, filled pauses, and phonemic

errors. The frequency of agrammatism in nfv-PPA varied across studies.
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2.2.2 Computerized analysis

The manual systems of analysis described above have formed the basis of our understanding

of narrative speech in PPA. However, due partly to the time-consuming nature of the analysis,

there has been interest in automatic methods for feature extraction and classification of apha-

sic speech. Beyond the need for efficient information extraction, the application of machine

learning allows for a new type of analysis: determining the most likely diagnosis on the basis

of linguistic features.

In the case of PPA specifically, Pakhomov et al. (2010b) analyzed manual transcriptions

of connected speech samples from participants with FTD. They calculated the perplexity and

out-of-vocabulary rate for each transcript, and compared the differences across patient groups.

Both measures were sensitive to the impairments seen in sv-PPA. In a related study, Pakhomov

et al. (2010a) extracted both linguistic and acoustic features, and found a statistically signif-

icant difference between some FTD subtypes on the basis of pause-to-word ratio, frequency

of dysfluent events, and pronoun-to-noun ratio. Neither of these studies attempted to classify

patient narratives on the basis of the extracted features.

Meteyard et al. (2014) used two available software packages to analyze autobiographical

interviews from 8 patients with sv-PPA and 8 healthy controls. They compared the distributions

of nouns and verbs across the two groups, as well as the distributions of a variety of different

syntactic structures. They found that participants with sv-PPA used a reduced range of complex

morpho-syntactic forms. They also reported good agreement between the automatic analysis

and the hand-coded analysis, although they attributed some issues to the software’s inability to

distinguish between auxiliary and regular verbs.

Garrard and Forsyth (2010) analyzed picture description narratives from 21 participants

with sv-PPA and 21 control participants by counting the frequency of occurrence of each lex-

ical item, and then conducting a principal components analysis (PCA). When the first two

components were plotted, the controls formed a relatively tight cluster, while the sv-PPA clus-

ter was more diffuse, and partly overlapped the control cluster. The authors interpreted the first
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component as corresponding to discourse structure (positive loadings on grammatical function

words and negative loadings on deictic words and off-topic utterances), and the second com-

ponent as corresponding to differences in semantic content (positive loadings on pronouns,

negative loadings on determiners and content-bearing nouns and verbs). Again, no automated

method of assigning unseen patient narratives to one cluster or the other was tested. How-

ever, in a subsequent study, Garrard et al. (2014) used the unigram frequency information to

automatically classify sv-PPA versus controls, as well as to classify narratives from sv-PPA

participants with left- versus right-temporal lobe predominant atrophy. In the former case, the

important features included low-frequency content words, generic words, and extra-narrative

utterances such as “you know”. In the latter case, only a very few words were selected as

significant, reflecting the similarity between the two groups.

One study which is particularly relevant here is that of Peintner et al. (2008), in which the

authors used automatic speech recognition software to create transcripts of connected speech

samples from participants with FTD, and then classified the samples using lexical and acoustic

features. A subsequent paper from the same group used manually transcribed samples to detect

signs of cognitive impairment, depression, and Alzheimer’s disease (Jarrold et al., 2010). These

papers report relatively good classification accuracy, but contain very little discussion of the

features which were selected and how they might relate to the disorders being studied. Jarrold

et al. (2014) present a somewhat more nuanced approach, in which they use the automated

analysis pipeline to explore certain language hypotheses based on the clinical literature. In

general, they find that their automated approach produces results consistent with previous,

manual analysis.

Other related work has applied natural language processing techniques to different degen-

erative disorders. Roark et al. (2011) used similar techniques to measure the speech charac-

teristics of participants with mild cognitive impairment (MCI), a clinical syndrome that can

precede Alzheimer’s disease. The elicitation task that they used involved the speaker retelling

a story that had been told by the examiner, so there was a significant memory component to the
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task as well. They found that by using a combination of linguistic test scores and automatically

calculated speech and language features, they were able to achieve a better classification result

than by just using test scores alone.

Other researchers have explored using only information from the speech signal, without the

transcript, to detect signs of cognitive impairment. D’Arcy et al. (2008) extracted a number of

syntactic-temporal features, such as the number and duration of pauses, from read and sponta-

neous speech samples. Using the features extracted from read speech, they were able to predict

with an accuracy of 76.7% whether the speaker had scored below a threshold on a test of cog-

nitive function. In a subsequent paper from the same group, it was shown that similar features

could be extracted over telephone recordings, suggesting that this type of analysis could be

performed remotely (Rapcan et al., 2009). Tóth et al. (2015) also used acoustic features (in-

cluding articulation rate, speech rate, utterance length, pause duration, number of pauses, and

hesitation rate) to distinguish between 32 participants with MCI and 19 elderly controls with a

best accuracy of 80.4%.

A slightly different approach was taken by Hakkani-Tür et al. (2010), who used ASR and

natural language processing methods to predict numerical cognitive test scores rather than par-

ticipant categories. They achieved a high correlation with manual scores on a picture descrip-

tion task and story retelling task by automatically identifying and counting semantic units.

Their participants included a mix of younger and older people, but no participants with a clin-

ical diagnosis of dementia.

There has also been growing interest in detecting signs of Alzheimer’s disease from speech.

This literature is discussed in Chapter 6. Finally, there has also been work presenting computa-

tional analyses of speech and language in other cognitive and neuropsychological impairments,

including (but not limited to) Parkinson’s disease (Tsanas et al., 2012), amyotrophic lateral

sclerosis (Yunusova et al., 2016), drug-induced cognitive impairment (Pakhomov et al., 2013),

autism (Prud’hommeaux et al., 2011, 2014), and specific language impairment (Gabani et al.,

2011; Solorio, 2013). Studies of this type are generally beyond the scope of this thesis.
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2.3 Machine learning for text classification

As mentioned in the previous section, a crucial distinction between much of the manual analy-

sis and the more recent computational work is that the focus has shifted from merely describ-

ing the samples to also automatically labelling them with the most probable diagnosis. If we

consider only the speech transcripts as input, then the problem of determining the diagnosis

given the text can be thought of as a text classification problem. Text classification is a very

broad area of research in natural language processing. Other similar problems in this cate-

gory include: authorship attribution (Juola, 2006), authorship profiling (Argamon et al., 2009),

automatic essay grading (Dikli, 2006), determining the reading level of a text (Petersen and

Ostendorf, 2009), and scoring language-learners’ speech fluency (Zechner et al., 2009). What

these diverse applications have in common is the need to identify and measure vocabulary

richness, lexical choices, syntactic complexity, the amount of information conveyed, clarity,

coherence, grammaticality, and many other patterns of language use. Many of the features

used in such applications have also proven useful in the task of dementia detection, as we will

see throughout.

The core goal of these applications is to determine the most likely class to which a text

belongs (e.g., the author of an unknown play, or the grade of an unmarked essay). This is

typically accomplished through supervised machine learning. In this thesis, I consider a variety

of different classification algorithms, which are summarized below.

Naı̈ve Bayes

Naı̈ve Bayes is a classifier based on Bayes’s theorem. It is called “naı̈ve” because it makes the

strong simplifying assumption that all of the features are conditionally independent given the

class. The classifier learns estimates for the class-conditional probabilities and priors for each

class from the training data. In the classification stage, it uses Bayes’s theorem to assign each

data point to the class that maximizes the posterior probability. Naı̈ve Bayes is widely used,

even in cases where the independence assumption is known to be false, and often performs
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well. The rationale for this is that even though the probability estimates may be inaccurate, the

classification results (which depend only on which probability is the highest, and not on the

actual numbers) can still be good (Manning et al., 2008).

Logistic regression

In contrast to naı̈ve Bayes, which attempts to model the classes themselves, logistic regression

is a discriminative classifier which attempts to model the boundary between the classes instead.

Logistic regression estimates the posterior probability directly from the training data. Research

suggests that naı̈ve Bayes may perform better in cases where there is not a large amount of

training data (Ng and Jordan, 2002). However, the benefit of logistic regression is that it does

not assume the features are conditionally independent. Peintner et al. (2008) used logistic

regression, along with two other classifiers not considered here, on various classification tasks

involving FTD subtypes and healthy controls. They had mixed results, with logistic regression

achieving the best results in two out of six cases.

Support vector machines

Support vector machines (SVMs) are another type of linear discriminative classifier which

have become very popular in natural language processing applications in the past several years

(Manning et al., 2008). SVMs are maximum margin classifiers, which means they find the

decision boundary between two classes that maximizes the margin between the two classes. In

other words, they maximize the distance between the decision boundary and the nearest data

points. If the data are not linearly separable, then the algorithm tries to maximize the margin

while also minimizing the misclassification error (Manning et al., 2008).

Random forests

Random forests are a type of ensemble classifier consisting of several decision trees (Breiman,

2001). Each decision tree outputs a class prediction, and the output of the entire forest is the
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class that receives the most votes. Each individual tree is trained on a random subset of the

training data, and a random subset of the features. This process is repeated for each tree in the

ensemble (both training examples and features can be reused in different trees). Some benefits

to random forests are that they can handle missing data gracefully, and easily extend to multi-

class classification (Pal, 2005).

The algorithms discussed here are all standard machine learning algorithms in text classifica-

tion. Recently, the concept of “deep learning” has become very popular, and deep learning

algorithms have been successfully applied in a number of applications. However, these models

are complex, and typically require large quantities of data in order to be trained effectively (al-

though the problem of overfitting can be reduced to some extent by employing a regularization

method, such as dropout (Srivastava et al., 2014)). In the work reported here, we have a very

small amount of data from a machine learning standpoint, and so we restrict our analysis to

relatively simple classification algorithms.

2.4 Syntactic complexity of speech

One aspect of language that we would like to measure automatically is the appropriateness

and complexity of syntactic structures. Agrammatism refers to the inability of some aphasic

speakers to communicate in a grammatically complete and correct fashion. It usually involves

the omission or substitution of function words and morphological markers for tense, person,

number, and gender (Thompson and Bastiaanse, 2012). One form of agrammatism is known

as “telegraphic speech”. In telegraphic speech, the form of the sentence remains relatively

intact, but with most of the inflections and function words omitted, such that content words

such as nouns and verbs are simply strung together with no supporting structure (Goodglass

and Kaplan, 1983).



CHAPTER 2. BACKGROUND AND RELATED WORK 21

Although agrammatism is one of the core symptoms of nfv-PPA (Gorno-Tempini et al.,

2011), there is debate over the true extent of its occurrence in PPA (Graham et al., 2004; Knibb

et al., 2009; Wilson et al., 2010; Thompson et al., 2012). Thus, exploring different measures of

syntactic production and comparing them across diagnostic groups will be a key aspect of this

work.

In less severe cases, sentences may be grammatically correct, but with greatly simplified

syntax. Simplified syntax (including the production of short, simple sentences, a reliance on

canonical sentence structures, and a reduction in embedded clauses) is often associated with

agrammatism, but the two can be dissociated (Nadeau, 2012). Simplified syntax has been ob-

served in all subtypes of PPA (Wilson et al., 2010). However, reduced syntactic complexity

is not necessarily the result of pathological language impairment; Cheung and Kemper (1992)

compared the syntactic complexity of spoken narratives from older and younger adults and

found that sentence complexity does tend to decline with age, particularly in terms of sen-

tence length and number of embeddings, and suggested that the effect is related to normal

age-related decline in working memory. Similarly, although there is evidence of syntactic de-

cline in Alzheimer’s patients, it has been argued that such effects are primarily due to memory

deficits rather than true grammatical impairments (Reilly et al., 2011).

One simple way to measure syntactic information is to count the part-of-speech (POS) of

each word in the sample. For example, QPA calculates the proportion of closed-class words,

the ratio of determiners to nouns, the ratio of pronouns to nouns+pronouns, and the ratio of

verbs to nouns+verbs (Saffran et al., 1989; Rochon et al., 2000). These measures can be good

discriminators between fluent and nonfluent aphasia types, since fluent patients (e.g., sv-PPA)

tend to produce more pronouns and verbs, and nonfluent patients (e.g., nfv-PPA) tend to omit

determiners and produce more nouns. POS tagging also makes it possible to count the num-

ber of adjectives, which are less likely to occur in nonfluent speech (Nadeau, 2012). These

quantities are easily computed automatically with an automatic POS-tagger, such as the Stan-

ford tagger (Toutanova et al., 2003). QPA also measures such quantities as the proportion of
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nouns which require a determiner and actually have one, and the number of inflectable words

that are actually inflected (Saffran et al., 1989). These measures are more difficult to compute

automatically, since they require a grammaticality judgement rather than simply counting the

frequency of production.

Other syntactic measures assess complexity beyond the single-word level. Cheung and

Kemper (1992) examined 11 complexity measures in their study of older adults’ speech. They

considered mean length of utterance (MLU), mean number of clauses per utterance (MCU),

Developmental Sentence Scoring (DSS; a method to assess grammatical development in chil-

dren based on their use of eight different grammatical structures), Index of Productive Syn-

tax (IPSyn; a scale for grammatical development in children based on 56 target grammatical

types), Developmental Level (DLevel; a method to assess grammatical competence based on

seven (or eight) target sentence constructions), Directional Complexity (DComplexity; a mea-

sure of linguistic difficulty of a text based on the presence of various patterns and structures),

Propositional Density (PDensity; a measure of the amount of semantic content in a text), two

variants of Yngve depth (a tree-based measure that measures how left-branching a parse tree

is), and two variants of Frazier count (a tree-based measure in which each node in a parse tree

is given points based on the length of the path either to the root or to the lowest node with a left

sibling). They found significant differences between older and younger adults on all measures

except MLU, IPSyn, and PDensity (Cheung and Kemper, 1992).

Some of these complexity metrics have been automated and used in computational analy-

ses of impaired speech and language. Meteyard et al. (2014) automatically calculated Dlevel

for speech samples from sv-PPA patients and controls, using a software package called ShaC

(Voss, 2005). However, although they found differences in the fine-grained syntactic measures

that were computed as input to the DLevel analysis, there was no difference between the groups

on DLevel itself.

Roark et al. (2011) considered MLU, Frazier count, Yngve depth, and PDensity in their

analysis of story retelling in mild cognitive impairment (MCI). They also considered the mean
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length of clause (MLC), content density (the ratio of open-class words to closed-class words),

dependency distance (the distance between words connected by a dependency relation), and

POS tag cross-entropy (a measure of the probability of a sequence of POS tags). They found

that the difference between MCI and control groups on MLC and content density was signif-

icant in both the immediate and delayed retellings, POS cross-entropy was significant only in

the immediate retellings, and Yngve depth and dependency distance were significant only in

the delayed retellings.

One challenge in applying these methods to speech is that speech, unlike writing, is rarely

produced in well-defined sentences, and the location of sentence boundaries in speech tran-

scripts can be unclear. While written sentences are marked by punctuation and capitalization,

these cues do not exist in speech. Instead we must rely on prosodic and lexical cues, although

these are far from unambiguous. Coordinating conjunctions in speech can have a “loose dis-

course linking function” that does not indicate grammatical connection (Leech, 2000). This

means that speakers can create extremely long utterances consisting of independent clauses

connected by coordinate conjunctions, and it is not clear where one sentence ends and the next

begins. Alternatively, an utterance can also consist of multiple clauses joined without the use of

conjunctions, but uninterrupted by pauses or other prosodic cues that might indicate a sentence

boundary. As Miller and Weinert (1998) write, “it is far from evident that the language system

of spoken English has sentences, for the simple reason that text-sentences are hard to locate in

spoken texts.”

Miller and Weinert argue instead in favour of the clause as the primary unit of speech, and

suggest that clause boundaries can be detected by locating a verb and its complements. Another

popular position was put forth by Hunt (1966), who advocated the use of T-units as the basic

unit of speech, where a T-unit contains an independent clause plus any attached dependent

clauses. Hunt argues that there are two ways to add complexity: either by moving information

from a coordinate clause to a subordinate clause (The woman is tall and the woman went to

the store becomes The woman, who is tall, went to the store), or by moving information to
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the main clause (The tall woman went to the store). He claims that both of these types of

complexity are captured by T-unit analysis, rather than by sentence analysis. Foster et al.

(2000) extend the definition of T-unit in their analysis of speech unit, or AS-unit, by allowing

AS-units to consist of a main clause or “sub-clausal unit” as well as any attached subordinate

clauses. This modified definition is particularly relevant to conversational speech, which often

contains fragments and elliptical expressions; Leech (2000) estimated that 30% of utterances

in conversational speech are non-clausal.

Another potential issue which arises in speech is the presence of dysfluencies, such as filled

pauses, repetitions, and false starts. The traditional approach has been to remove dysfluencies

and other non-narrative speech before syntactic analysis (Saffran et al., 1989; Thompson et al.,

1995). Dysfluencies can artificially inflate some syntactic complexity measures, such as mean

sentence length or Yngve score. However, Garrard et al. (2014) found that what they called

paralinguistic elements conveyed useful diagnostic information, particularly discourse markers

(e.g., you know) and comments about the task itself (e.g., I can’t remember).

In the following work, we are constrained in our choice of primary syntactic unit by the

transcription protocols that were used when the data was transcribed, and the definition of

a “sentence” or “utterance” varies somewhat across data sets. However, wherever possible,

we consider syntactic analysis at multiple levels (e.g., by calculating mean length of clause,

T-unit, and sentence). Regarding dysfluencies, we count filled pauses and false starts, then

remove them for syntactic processing. However, with the exception of Chapter 5, we include

all other transcribed speech in the analysis.

2.5 Automatic segmentation of speech

Once it has been decided which unit will form the basis of the syntactic analysis, the unit

boundaries must be marked in the transcript. In manual analysis, this is typically done by

the transcriber during the process of transcription; however, as Elvevåg et al. (2010) note,
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“the use of measures representing structure imposed by the transcriber ... is certainly not

ideal.” That is, a transcriber might affect the results of the analysis by introducing his or her

own bias about what counts as a sentence or clause onto the data. To avoid this, transcribers

are often given handbooks with explicit instructions on how to segment the text. Even so,

there will be ambiguous cases and inter-rater agreement can vary. Reed et al. (2001) reported

inter-rater reliability for utterance segmentation ranging from 73.3% to 99%, depending on

the definition of “utterance”. They also reported significant differences on their measures of

syntactic complexity, depending on which definition for utterance was used.

Aside from the issue of agreement, it is clear that for fully automated analysis we will

require a computational method for detecting syntactic units. Most previous work has focused

on sentence-boundary detection. In many cases, the problem is framed as a binary labelling

problem, where the boundary between two consecutive words must be labelled as either a

sentence boundary or not a sentence boundary (Ostendorf et al., 2008).

One approach is to insert sentence boundaries according to prosodic cues, such as pauses.

However, as discussed above, pauses are neither necessary nor sufficient evidence for sentence

boundaries. Particularly in the case of PPA, we might expect there to be a number of pauses

which occur when the speaker experiences word-finding difficulties (also known as hesitation

pauses), rather than just at syntactic boundaries (or juncture pauses). Other prosodic features

which may help identify sentence boundaries include phone duration and pitch and energy

features. For example, the last syllables before a sentence boundary may be lengthened, or the

pitch may slowly decrease over the course of a sentence (Kolář, 2008).

Sentence boundaries may also be labelled on the basis of lexical cues only. This can be

done by searching for “trigger” words, such as conjunctions, that might indicate the start or

end of a sentence (Gavalda et al., 1997), or using word or POS n-gram modelling (Stolcke

and Shriberg, 1996; Stevenson and Gaizauskas, 2000). However, it is not surprising that the

most successful algorithms combine both lexical and acoustic information (Shriberg, 2005;

Ostendorf et al., 2008).
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There has not been as much work on the automatic detection of units other than sentences.

One intuitive approach would be to detect the sentence boundaries, then build parse trees of

the sentences, and search the resulting trees for clauses or T-units. Indeed, Stevenson and

Gaizauskas (2000) wrote, “it is difficult to imagine how clauses could be identified without

parsing.” Of course, this method assumes that the sentence boundary detector has done a good

job, and there are no clauses which cross the proposed sentence boundaries.

Jørgensen (2007) proposed a novel approach to clause detection, in which he classified each

coordinating conjunction as belonging to the syntactic level or the discourse level (building on

the idea that conjunctions in spoken language are often used to perform discourse or pragmatic

functions). However, his 2007 paper presents results only for the classification of coordinating

conjunctions, and not the proportion of clause boundaries which are correctly labelled.

Another method is to build the clauses from the bottom up, by combining words into

phrases and then combining phrases into clauses. For example, Abney (1990) described his

Cascaded Analysis of Syntactic Structure (CASS) parser, one component of which was a

“clause filter.” The clause filter identified clauses from patterns of noun phrases, verb phrases,

and function words.

In Chapter 4 we test standard algorithms for utterance segmentation on impaired speech,

using the manually annotated utterance boundaries as a gold standard. Such methods could

be applied to data that had been manually-transcribed at the word level, to remove inter-rater

variability in utterance segmentation. However, the more likely scenario is for these methods to

be used to automatically segment the text output from an automatic speech recognition system.

2.6 Automatic speech recognition for the elderly and the cog-

nitively impaired

Automatic speech recognition (ASR) software converts speech (audio signals) into text. If we

consider the noisy channel model of speech recognition, in which a source word sequence X is
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observed as a noisy acoustic sequence Y , then the task of speech recognition is to produce the

most likely word sequence X∗ according to:

X∗ = argmax
X

P(Y |X)P(X) (2.1)

The acoustic model describes P(Y |X), or the probability of an acoustic sequence Y given a

word sequence X . The language model describes P(X), the probability of a word sequence X .

The performance of an ASR system depends strongly on how well the acoustic and language

models actually model the properties of the incoming signal. In elderly people with dementia,

both the acoustic properties of the voice and the words that they use may not conform to typical

patterns, resulting in poor ASR performance.

In general, the accuracy of ASR systems on elderly voices tends to decrease with the age

of the speaker (Vipperla et al., 2008). Elderly voices typically have increased breathiness,

jitter, shimmer, and a decreased rate of speech (Vipperla et al., 2008). Older speakers may

also exhibit articulation difficulties, changes in fundamental frequency, and decreased voice

intensity (Young and Mihailidis, 2010). The underlying physical changes may be related to

changes in the size and periodicity of the glottal pulse, and changes to the internal control loops

of the articulatory system (Wilpon and Jacobsen, 1996). These factors can result in speech that

is less intelligible to both human listeners and ASR systems. For example, Hakkani-Tür et al.

(2010) found that in automatic scoring of a speech-based cognitive test, their ASR system had

a higher word error rate (WER) for healthy speakers over the age of 70 than for those under

the age of 70, with WERs between 26.3% and 34.1% for the elderly speakers, depending on

the task and the gender of the speaker, while the error rates ranged between 21.1% and 28.2%

for the younger speakers.

Aman et al. (2013) not only reported worse WERs for elderly speakers (age > 65) than

younger speakers, but found a much wider variance in WER as well. That is, some elderly

speakers were much more difficult to recognize than others. When they considered possible
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explanations for this variance, the WER was found to correlate with a measure of dependence,

or loss of autonomy, due to physical or cognitive decline. Speakers who had a higher level

of dependence were more difficult to recognize. While none of the speakers were described

as having dementia, it is certainly possible that this result would generalize to people with

dementia.

Effective speech recognition can be further challenged by the presence of linguistic impair-

ments such as those occurring in PPA. For example, Goldwater et al. (2010) described a number

of different characteristics of words which tend to be mis-recognized, and found that words di-

rectly preceding dysfluent events are difficult to correctly recognize. Paraphasias and other

“out-of-vocabulary” words will also cause problems for the language models in ASR systems.

To our knowledge, there has only been one previous study reporting the results of automatic

speech recognition with PPA speakers. Peintner et al. (2008) analyzed speech from patients

with nfv-PPA and sv-PPA as well as bv-FTD. They achieved a WER of 37% for sv-PPA and

61% for nfv-PPA. They also tested a control group, which had an average WER of 20%. In

related work, Lehr et al. (2012) reported WERs of 44.3–50.6% on participants with mild cog-

nitive impairment, and 36.1–45.0% for age-matched controls. In subsequent work, they were

able to reduce the mean WER to 25.6% using a combination of acoustic and language model

adaptation (Lehr et al., 2013).

There has also been previous research on adapting ASR for populations with other impair-

ments, such as motor speech disorders. For example, Mengistu and Rudzicz (2011) achieved a

reduction in word error rate of 37% for dysarthric speakers by recognizing error patterns within

individual speakers. However, it is not clear how well these findings can be applied to speech

from individuals with dementia, whose difficulties stem primarily from a cognitive, rather than

motor, impairment.
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2.7 Potential applications and ethical considerations

While it seems unlikely for automated cognitive assessment to replace a human clinician’s

diagnostic process, more reasonable applications of this technology include (a) an automated

screening tool to help flag potentially cognitively-impaired individuals for a more rigorous

assessment, (b) a computerized neuropsychological assessment which forms one part of a clin-

ician’s diagnostic framework, and (c) a method of analyzing language abilities quantitatively

over time (to measure response to medication, for example).

2.7.1 Cognitive screening

Screening tests are used to detect signs of illness in apparently healthy individuals. They are

applied across an entire population that is deemed to be at-risk for the disease. An example

of this is the use of mammograms to screen for breast cancer in women over the age of 50.

Screening allows for early detection of diseases, but there is a cost-benefit analysis that must

be performed before implementing a screening program for a given disease and population.

The World Health Organization published a set of guidelines for screening that include the

following ten criteria (quoted from Wilson and Jungner (1968)):

1. The condition sought should be an important health problem.

2. There should be an accepted treatment for patients with the recognized disease.

3. Facilities for diagnosis and treatment should be available.

4. There should be a recognizable latent or early symptomatic stage.

5. There should be a suitable test or examination.

6. The test should be acceptable to the population.

7. The natural history of the condition, including development from latent to declared dis-

ease, should be adequately understood.
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8. There should be an agreed policy on whom to treat as patients.

9. The cost of case-finding (including diagnosis and treatment of patients diagnosed) should

be economically balanced in relation to possible expenditure on medical care as a whole.

10. Case-finding should be a continuing process and not a “once and for all” project.

Much of the subjectivity in these criteria lies in the interpretation of the adjectives: when is

a treatment considered accepted? What does it mean for a test to be suitable? While Wilson

and Jungner provide some practical guidelines for defining these terms, the answers are not

clear-cut. Accordingly, there is ongoing debate regarding the acceptability of population-wide

screening for dementia in older adults, with most of the attention being focused on demen-

tia due to Alzheimer’s disease. Many arguments for and against population screening have

been proposed (Boustani et al., 2003; Solomon and Murphy, 2005; Ashford et al., 2006, 2007;

Le Couteur et al., 2013; Schicktanz et al., 2014; Calzà et al., 2015). These arguments are sum-

marized in Table 2.1. In short, the proponents argue that if screening leads to increased rates

of early diagnosis, patients will be able to access treatment at a stage when it is most effective,

their participation in risky behaviours (such as driving a car) can be reduced, and their family

and caregivers will generally be more prepared and experience less stress. The opponents of

screening argue that screening does not necessarily lead to diagnosis, due to challenges in fol-

lowing up after a positive screen and the costs associated with testing, and that early diagnosis

does not necessarily lead to better outcomes and can have a negative emotional impact.

Interpretation of the arguments is complicated by the fact that different studies report differ-

ent results with respect to prevalence, rates of under-diagnosis, and effectiveness of treatments

and social programs. Nonetheless, as new and better treatments become available, it is rea-

sonable to assume that screening will become more commonplace, at least amongst high-risk

populations. Some potential benefits of a language-based screening test include: the sensitivity

of language to early cognitive impairment (Cuetos et al., 2007; Ahmed et al., 2013), the sim-

plicity and naturalistic nature of narrative speech (Tomoeda et al., 1996), the ability to conduct
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Reasons for screening
Some causes of cognitive impairment are reversible when detected early (Calzà et al., 2015)
Fewer than 50% of AD cases diagnosed (Solomon and Murphy, 2005)
Cholinesterase inhibitors for treatment of symptoms are most effective when started in early

stage (Solomon and Murphy, 2005)
Early diagnosis reduces risk of adverse events (e.g., car accidents, falls, forgetting to take

medications) (Ashford et al., 2007; Calzà et al., 2015)
Allows for psychological and social intervention while individual is still competent (Ashford

et al., 2007)
Improved family understanding of patient’s behaviour reduces anxiety/stress (Ashford et al.,

2007)
Caregivers of treated patients have better outcomes than caregivers of untreated patients (Ash-

ford et al., 2007)

Reasons against screening
Not enough evidence that early diagnosis leads to better outcomes (Boustani et al., 2003;

Schicktanz et al., 2014)
Challenges to providing adequate follow-up after screening (Solomon and Murphy, 2005)
Variability in professional training/ability to perform screening (Solomon and Murphy, 2005)
Issues with getting informed consent (Solomon and Murphy, 2005; Schicktanz et al., 2014)
Screening tools have not been validated in full range of educational and socioeconomic levels

(Boustani et al., 2003)
Early diagnosis of AD can lead to adverse social consequences (stigma) and psychological

anguish (Le Couteur et al., 2013; Schicktanz et al., 2014)
Some evidence that general public does not understand or support screening (Martin et al.,

2015)
Financial cost of full neuropsychological assessment for all positive screens (Le Couteur et al.,

2013)

Table 2.1: Reasons for and against routine screening of elderly people for signs of demen-
tia. While there is an important distinction between screening and early diagnosis (namely,
that a positive screen can lead to early diagnosis but is not a diagnostic result in and of
itself (Ashford et al., 2007)), most arguments assume that screening programs will lead to
increased early diagnosis.
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the assessment remotely, e.g., over the phone (Rapcan et al., 2009), and the ability to repeat the

assessment with different stimuli to avoid a learning effect (Forbes-McKay et al., 2013).

These benefits assume that the screening will take place under the supervision of a qualified

healthcare professional. In recent years, a growing number of websites have started offering

online cognitive screening tests (Robillard et al., 2015). While there can be advantages to

online screening, including increasing access to information, allowing individuals to monitor

their own cognition, and providing motivation to seek professional help when warranted, there

are also a number of medical and ethical concerns associated with these tests. These concerns

include poor accuracy, lack of scientific validation, ethical lapses such as non-disclosure of

conflicts of interest, and a general lack of support and information accompanying the delivery

of potentially upsetting news (Robillard et al., 2015). In particular, there is evidence that com-

mercial entities selling unregulated and alternative “treatments” for AD may use online screens

to attract customers (Robillard, 2016). Other relevant work has shown that asymptomatic indi-

viduals who discover they are at elevated risk of AD via direct-to-consumer genetic testing can

be profoundly negatively impacted by the information, with little perceived benefit (Messner,

2011).

2.7.2 Computerized cognitive testing

Another potential application of automated speech analysis is integration within a computer-

ized neuropsychological assessment device (CNAD). Computerized versions of neuropsycho-

logical tests have been proposed as one solution to the problem of limited clinician time in

the face of increasing demand for dementia testing. CNADs have been used in the U.S. mili-

tary and for evaluation of sports-related head injuries since the 1980s (Parsey and Schmitter-

Edgecombe, 2013), and there is growing demand for their use in the field of age-related cog-

nitive decline (Gates and Kochan, 2015). However, there are a number of basic criteria which

any assessment tool must meet before it can be used in clinical decision-making.
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Bauer et al. (2012) published a joint position paper summarizing the views of the American

Academy of Clinical Neuropsychology and the National Academy of Neuropsychology on the

topic of CNADs. While positive towards the potential benefits of computerized assessment,

including the ability to quickly test a large number of patients, reduced assessment times, re-

duced costs for administration and scoring, automated data storage, and increased accessibility

for individuals in remote areas, the authors also identified eight key issues surrounding such

devices. These eight issues are summarized below:

1. Device marketing and performance claims: Information about what a device does,

how it does it, and its safety and effectiveness must be clearly provided.

2. End-user issues: End-users (e.g., patient or clinician) and their competencies and skills

must be clearly defined.

3. Technical issues: Locally installed CNADs must operate in a manner comparable to the

versions of the device on which normative data were collected.

4. Privacy, data security, identity verification, and testing environment: Patient data

must be protected to an appropriate degree.

5. Psychometric development issues: Information about reliability, validity, and clinical

utility (e.g., accuracy, sensitivity, specificity) must be provided.

6. Examinee issues: Cultural, experiential, and disability factors: Normative informa-

tion must be provided with regards to the appropriateness of the test for patients from

different racial, ethnic, and educational backgrounds, patients of different ages, and pa-

tients with cognitive, motor, or sensory disabilities.

7. Use of computerized testing and reporting systems: An automated output report from

a CNAD may supplement but should not replace a clinician’s evaluation of a patient.



CHAPTER 2. BACKGROUND AND RELATED WORK 34

8. Checks on validity of responses and results: CNADs should detect and identify exam-

inee non-compliance or lack of motivation (e.g., through internal measures of effort or

by recommending additional, validated tests of effort to be administered concurrently.).

In a follow-up article three years later, Gates and Kochan (2015) stated that, with few

exceptions, there had not been acceptable progress on these issues by the developers of CNADs.

Thus it is clear that before the research described in this thesis could be put to use in clinical

practice, a substantial amount of work would be required. However, the inclusion of natural

language analysis in a CNAD could be highly valuable, as previous studies have remarked on

the conspicuous absence of language testing in existing computerized batteries (Dede et al.,

2015; Tierney and Lermer, 2009).

2.7.3 Longitudinal assessment

A third potential application of this research is as a tool to provide quantitative ratings of

language ability over time, either to detect signs of incipient cognitive decline, or potentially

to track the progress of a therapy program or the effectiveness of a medication.2 One benefit

of the approach presented in this thesis is that it does not require longitudinal data, which is

usually not available. However, that does not mean the approach could not be extended to

include longitudinal information in future work.

Many previous studies have explored how language changes over time, in both healthy

aging and in dementia. Much of the work examining language change over the lifetime has

focused on writing, since few elderly people have speech samples from over the course of their

lives. For example, Snowdon et al. (1996) analyzed the autobiographical writings of nuns, and

found that certain linguistic measures could presage the diagnosis of Alzheimer’s disease by

decades. Heitkamp et al. (2016) also analyzed patient diaries, focusing on a single sv-PPA

patient. They found linguistic changes 7 years prior to diagnosis, including changes to lexical

2There is currently no cure for dementia, although certain medications may provide symptomatic relief in
some types of dementia (Herrmann et al., 2013).
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diversity and word frequency, although frank semantic errors did not occur until later.

Another source of written data has been from novelists. Le et al. (2011) compared lexical

and syntactic trends from three famous British novelists, and concluded that Agatha Christie’s

longitudinal pattern was more similar to that of Iris Murdoch (who died with Alzheimer’s

disease) than P.D. James, who was cognitively healthy at death. Van Velzen and Garrard (2008)

analyzed the writing of Dutch author Gerard Reve and found a sharp decline in lexical diversity

in his last novel, published shortly before his diagnosis with Alzheimer’s disease.

In some cases, speech from public figures who are later diagnosed with dementia is avail-

able for retrospective analysis. Brian Butterworth published a study analyzing the speech

patterns of U.S. President Ronald Reagan in the years preceding his eventual diagnosis of

Alzheimer’s disease (Erard, 2008). Butterworth reported that Reagan produced more sentence

fragments and “slips of the tongue”, paused more often, and spoke more slowly in 1984 relative

to 1980. More recent work has used tools from natural language processing to add further evi-

dence to this finding, showing a reduction in the number of unique words used, and an increase

in non-specific nouns and fillers in Reagan’s spontaneous speech (Berisha et al., 2015).

Longitudinal speech samples over shorter periods have also been analyzed as part of re-

search studies on language in dementia. For PPA specifically, Bird et al. (2000) tracked three

sv-PPA patients longitudinally over the course of the disease progression. They found that the

participants produced more high-frequency, low-imageablity words and fewer nouns relative to

verbs as the disease progressed. Thompson et al. (1997a) conducted a longitudinal analysis of

narrative speech in four participants with nfv-PPA, and found two distinct patterns of decline:

three participants resembled a set of participants with agrammatic Broca’s aphasia, while one

participant produced nonfluent but relatively grammatical speech up until 9 years post-onset.

In later work, the authors suggested that this participant would today be classified as having

logopenic PPA (Thompson et al., 2012). Kavé et al. (2007) analyzed narrative speech from an

individual with sv-PPA over the course of three years, and found a severe decline in conceptual

semantics, in marked contrast to her preserved morphological and syntactic abilities.
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Likewise, longitudinal speech analysis has contributed to research on Alzheimer’s disease.

Ahmed et al. (2013) found that the majority of their participants showed subtle changes in

narrative speech months before they were diagnosed with Alzheimer’s disease, but that these

differences were heterogeneous across the group, suggesting a potential benefit of compar-

ing a particular individual’s abilities longitudinally. Furthermore, these subtle changes may

not have been detected by more coarse-grained language tasks. In contrast, Forbes-McKay

et al. (2013) studied changes in Alzheimer’s disease longitudinally, and calculated a number

of different linguistic measures from picture description narratives collected 12 months apart.

They found no significant difference on any of the measures except the number of phonologi-

cal paraphasias. Using a computational approach, Yancheva et al. (2015) used features based

on the work presented in this thesis to predict cognitive test scores over time in a cohort of

Alzheimer’s patients, to within a margin of error comparable to human inter-rater agreement.

In theory, automated analysis could make it possible to measure changes over much shorter

time spans than have previously been studied, either via regularly scheduled assessments or

continuous monitoring. The idea of continuously monitoring speech patterns has gained trac-

tion in the field of mental health in recent years. For example, Karam et al. (2014) developed

a system to continuously and unobtrusively monitor cell phone conversations from users to

recognize periods of mania and depression in bipolar disorder. This idea could also be applied

to monitoring cognitive health. Kaye (2008) describes a smart-home environment that collects

information about the resident’s cognition through a speech-interface to the home’s computer.

One important application of such a system could be to track participants in clinical trials to

detect conversion to mild cognitive impairment or Alzheimer’s disease. Kaye (2008) lists some

of the advantages over the current paradigm (participants travel to the study site to complete

a neuropsychological battery every 6–12 months), including: ease of establishing an accurate

baseline, ability to identify outlier “good days” and “bad days”, increased accessibility for par-

ticipants who have limited access to transportation or live in remote locations, and the potential

for unobtrusive, natural measurements of day-to-day cognitive function.
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Obviously, automated analysis of conversational speech is very different from the anal-

ysis of semi-structured narrative tasks that we consider here. Furthermore, there are ethical

concerns related to continuous monitoring, largely relating to the privacy concerns of the in-

dividual being monitored and those with whom they interact. Individuals may also find it

stressful or disturbing for their speech to be continually monitored. Longitudinal assessment

in general would mark a departure from the work presented in this thesis in two major aspects:

(1) An individual’s language performance would be compared primarily against their own per-

formance at a previous time, rather against group means, although comparison to normative

data would still be useful to differentiate pathological change from normal changes due to ag-

ing. (2) Rather than using a classification framework to determine a binary distinction (healthy

versus unhealthy), it would likely be more useful to use regression or time-series analysis to

pinpoint an individual’s continuous progression along a spectrum, in order to characterize their

rate of decline and predict their future status from past measurements.

Indeed, the work presented here does not by itself immediately permit any of the applica-

tions outlined above. However, it may form part of the foundation on which these (and other)

practical technologies may be built, to aid in the assessment and treatment of people with de-

mentia.



Chapter 3

Classification of PPA from manual

transcripts

This chapter focuses on the analysis of a set of oral narratives, collected as part of a study

on primary progressive aphasia (PPA) in the Department of Speech-Language Pathology at

the University of Toronto. The data set includes audio files of participants telling the story of

Cinderella, along with manually-produced transcripts of the narratives. A full description of

the participants, the elicitation task, and the process of transcription is given in the following

section. Subsequent sections describe how we extracted features from the transcripts and audio

files, and how we used those features to train classifiers to distinguish between participant

groups. Several different experiments were performed.

Our first experiment is described in Section 3.2. Using features derived from the transcripts,

we trained three classifiers to distinguish between participants with the semantic variant of

PPA (sv-PPA) and controls, participants with the nonfluent/agrammatic variant of PPA (nfv-

PPA) and controls, and between participants from the two subtypes. A second aim of that

study was to compare our automatically-extracted features with the linguistic variables which

were described in previous work on PPA and its subtypes. We found that features which were

identified as important in our analysis had also been found to differentiate the groups in manual

38
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analyses of language in PPA.

Our next experiment, described in Section 3.3, involved adding acoustic features to the

classification task. While we found the text features to be more discriminative, the acoustic

features did hold some information and may be valuable when an accurate transcription is not

available.

In Section 3.4 we present additional syntactic features that measure the frequency of pro-

duction of different grammatical constituents. These fine-grained syntactic features were found

to be more sensitive to the differences between sv-PPA and nfv-PPA than the syntactic com-

plexity metrics we had originally considered.

Finally, in Section 3.5, we report the results of an ablation study to determine the optimal

subset of features to use in each classification task. We were able to boost the best classification

accuracy for each task by including only the most informative feature sets as input. Different

feature sets were relevant to each classification task, reflecting the particular language impair-

ments in the groups.

3.1 Introduction to the data1

3.1.1 Participants

Our participants comprised 24 patients diagnosed with either the semantic (sv-PPA) or non-

fluent/agrammatic variant (nfv-PPA) of primary progressive aphasia (PPA), and 16 age- and

education-matched healthy controls. The patient group is an unselected sample of patients

with sv-PPA or nfv-PPA, except that participants who were unable to complete the narrative

task (n = 7) were excluded: 2 nfv-PPA patients had incomprehensible speech, 1 nfv-PPA pa-

tient said nothing, 1 sv-PPA patient refused to attempt the task, and the responses of 1 nfv-PPA

and 2 sv-PPA patients did not include any of the story that they were asked to tell, but instead

1The material presented in this section was previously published in: Kathleen C. Fraser, Jed A. Meltzer,
Naida L. Graham, Carol Leonard, Graeme Hirst, Sandra E. Black, and Elizabeth Rochon (2014). Automated
classification of primary progressive aphasia subtypes from narrative speech transcripts. Cortex 55, 43-60.
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comprised statements of how they could not remember the story. Participants with PPA were

recruited through three memory clinics in Toronto and each was diagnosed by an experienced

behavioural neurologist. There were a further 7 patients in the cohort who were diagnosed

with logopenic PPA, but this group was not included in the present study due to its small size.

Control participants were recruited from a volunteer participant pool. All participants were

native speakers of English, or completed some of their education in English. Exclusion crite-

ria included a known history of drug or alcohol abuse, or a history of neurological or major

psychiatric illness.

The study was approved by the Research Ethics Boards of all the hospitals involved in

recruitment, as well as the board at the University of Toronto. Written informed consent was

obtained from all participants.

Diagnosis was based on history, neuroimaging, neurological examination and neuropsycho-

logical testing, and all patients met current criteria for PPA (Gorno-Tempini et al., 2011). Pa-

tients with the fluent variant exhibited grammatically correct fluent speech, with word-finding

difficulties. Those with the nonfluent variant had effortful, halting speech with anomia, al-

though not all exhibited clear agrammatism in production or clear apraxia of speech on formal

testing. Demographic data are listed in Table 3.1.

All participants underwent a battery of neuropsychological and linguistic tests as part of a

longitudinal study of PPA which is being conducted in the Department of Speech-Language

Pathology of the University of Toronto. The neuropsychological test information is reported

in Table 3.1. The level of general cognitive functioning was measured using the Mini-Mental

State Examination (Folstein et al., 1975) and the Dementia Rating Scale-R (Jurica et al., 2001).

The two patient groups did not differ significantly on these tests, but were both impaired rela-

tive to controls. In keeping with the diagnosis of PPA, both patient groups performed poorly on

a test of picture naming (Boston Naming Test, Kaplan et al., 2001) and on category fluency for

animals (where participants are asked to name all the animals they can think of in 1 minute).

Impairment in syntactic comprehension is a known feature of nfv-PPA and indeed was ex-
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sv-PPA nfv-PPA Controls Group effect
(n = 10) (n = 14) (n = 16)

Demographic information
Age 65.6 (7.4) 64.9 (10.1) 67.8 (8.2) ns
Years of education 17.5 (6.1) 14.3 (3.6) 16.8 (4.3) ns
Sex 3 F 6 F 7 F
Handedness 9 R 13 R 16 R

General cognitive function
Mini-Mental State Examination (/30) 24.4 (4.3)a 25.0 (2.9)a 29.3 (0.8) ***
Dementia Rating Scale-R (/144) 117.2 (12.6)a 123.9 (15.6)a 142.2 (1.7) ***

Language production
Boston Naming (/60) 13.9 (7.3)a,b 39.6 (11.5)a 55.8 (3.3) ***
Category fluency — animals 7.6 (3.7)a 12.3 (6.0)a 20.4 (4.4) ***

Language comprehension
Test for the Reception of Grammar (/80) 71.4 (11.0) 63.9 (12.0)a 79.1 (0.9) ***
Peabody Picture Vocabulary Test (/204) 113.8 (30.8)a,b 172.9 (14.3)a 196.1 (3.9) ***

Visuospatial
Copy of Rey Complex Figure (/36) 33.2 (2.6) 29.9 (5.3)a 33.4 (1.4) *
VOSP cube analysis subtest (/10) 9.4 (1.9) 9.2 (1.6) 8.5 (2.1) ns

Nonverbal memory
30 minute recall of Rey Complex Figure (/36) 12.7 (7.1) 14.9 (6.3) 18.8 (6.9) ns

Nonverbal reasoning
Raven’s Coloured Progressive Matrices (/36) 31.5 (5.0) 27.1 (6.5)a 31.8 (4.2) *

Table 3.1: Demographic and neuropsychological data for each participant group. Values
shown are mean (standard deviation). Asterisks denote significant effect of group on 1-
way analyses of variance at * p < .05, *** p < .001.
a Significantly different from controls
b Significantly different from nonfluent patients
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hibited by the nfv-PPA group studied here; this ability was measured using the Test for the

Reception of Grammar (Bishop, 2003), and the nonfluent group (only) performed significantly

worse than controls. Impairment in single-word comprehension is an established feature of sv-

PPA; both of our patient groups were impaired on single-word comprehension, but as expected,

the sv-PPA patients performed significantly worse than the nfv-PPA patients (Peabody Picture

Vocabulary Test, Dunn and Dunn, 1997). Consistent with the diagnosis of PPA, performance

was generally better on nonverbal tests. The nfv-PPA group was mildly impaired on copying

the Rey Complex Figure (Rey, 1941) while the sv-PPA group showed normal performance. On

another measure of visuospatial functioning, the cube analysis subtest from the Visual Object

and Space Perception Battery (Warrington and James, 1991), both patient groups performed

normally. Similarly, performance on nonverbal episodic memory was normal for both patient

groups; this was assessed by asking participants to recall the Rey Complex Figure 30 minutes

after copying it. Finally, nonverbal reasoning was relatively preserved, although it was mildly

impaired for the nfv-PPA group (only) (Raven’s Coloured Progressive Matrices, Raven, 1962).

3.1.2 Narrative task

Speech samples were elicited by having participants tell the Cinderella story, as in Saffran

et al. (1989). To prompt their memories for the story, participants were given as much time

as they needed to examine a picture book illustrating the story. When each participant had

finished looking at the pictures, and the book had been removed, the examiner said “Now you

tell me the story. Include as much detail as you can and try to use complete sentences.” Af-

ter letting the participant speak for as long as he or she wished, if the story was incomplete,

general encouragement for more speech was given, for example, “Good, tell me more about

that”, “What happens next”, “Go on”, etc. At no time were specific questions or prompts given.

The narratives were recorded on a digital audio recorder for subsequent verbatim transcription.

Transcription was done in accordance with the procedures used in the Quantitative Produc-

tion Analysis (Berndt et al., 2000), with the exception that punctuation and sentence initial
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capitalization were used. Brief pauses were marked with commas, while pauses longer than

1 second were timed and the length of the pause was noted (e.g., (2 sec)); however, commas

and pauses were removed before analysis. Sentence boundaries were marked with full stops.

Placement of sentence boundaries was guided by semantic, syntactic, and prosodic features,

using a method essentially identical to that described by Thompson et al. (2012). When ut-

terance boundaries were ambiguous, the segmentation which produced shorter utterances was

preferred (as in Thompson et al. (2012) and Wilson et al. (2010)). Fillers such as um and uh

were transcribed (and analyzed), but were not included in the total word count. Repetitions,

false starts, and repeated but incomplete attempts at a given word were transcribed, but only

repetitions of words and false starts were included in the total word count. Neologisms were

transcribed with the International Phonetic Alphabet, and words/passages which were incom-

prehensible were marked with ###. Phonemic errors were written using the Roman alphabet

and were followed by the transcriber’s gloss of the word, which was put into double brackets.

Neologisms and incomprehensible speech were not included in the automated analyses or in

the word counts as we could not be certain how many words were represented; note, however,

that incomprehensible passages were always brief. There were only rare instances of neolo-

gisms or incomprehensible speech: 3 participants (one in each group) had 2 occurrences each,

while a further 3 participants had 1 occurrence (2 nfv-PPA, 1 sv-PPA).

3.2 Automatic classification using text features from manual

transcripts2

This study had two aims. The first was to develop a machine learning classifier that would an-

alyze speech samples and distinguish between control participants and participants with either

nfv-PPA or sv-PPA, as well as between the two patient groups. The other aim of this study was

2The material presented in this section was previously published in: Kathleen C. Fraser, Jed A. Meltzer,
Naida L. Graham, Carol Leonard, Graeme Hirst, Sandra E. Black, and Elizabeth Rochon (2014). Automated
classification of primary progressive aphasia subtypes from narrative speech transcripts. Cortex 55, 43-60.



CHAPTER 3. CLASSIFICATION OF PPA FROM MANUAL TRANSCRIPTS 44

to identify the automatically extracted features that best distinguish the groups, and to compare

this with results in the literature that are based on traditional (manual) analysis methods. Iden-

tification of the distinguishing features is important for improved detection and differentiation

of the variants of PPA.

3.2.1 Features

The automatically extracted features are defined in Table 3.2. The first feature is the number

of words in the transcript. The subsequent 22 structural features (2–23) were calculated using

Lu’s L2 Syntactic Complexity Analyzer (Lu, 2010), which uses the Stanford parser (Klein and

Manning, 2003). We modified features 3–9 to be normalized by the total number of words,

to facilitate comparison between narratives of different lengths. Lu used these features to

analyze the syntactic complexity of college-level English essays from Chinese students, but

the software has also been used to analyze spoken language (Chen and Zechner, 2011). We

have not attempted to adapt this tool specifically for the study of aphasic speech; rather, we are

interested to see how well such methods perform in the absence of any domain-adaptation.

The next four features (24–27) are also measures of syntactic complexity. Tree-based mea-

sures have been used to detect age-related cognitive decline (Cheung and Kemper, 1992) and

mild cognitive impairment (Roark et al., 2011). Parse trees were constructed using the Stan-

ford parser, so they are based on the same structural model as features 2–23. The Yngve depth

quantifies to what extent the syntactic structure of a sentence contains left-branching rather than

right-branching phrases, which provides a comparison metric of syntactic complexity (Yngve,

1960). For detailed illustrations of how Yngve depth is quantified, see Sampson (1997), Che-

ung and Kemper (1992), or Yngve (1960). We quantified Yngve depth as both mean depth over

all words, the maximum depth in the sentence, and the total depth. For example, a sentence

with an object-embedded relative clause such as The juice that the child spilled stained the

rug is more left-branching than one with a subject-embedded relative clause such as The child

spilled the juice that stained the rug (Stromswold et al., 1996). Using our procedures, the first
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Feature Definition
1 Words # words, excluding fillers, neologisms, and short, incomplete attempts at words
2 Sentences # sentences, as marked by the transcriber
3 T-units # T-units (a clause and all of its dependent clauses)
4 Clauses # clauses (a structure consisting of at least a subject and a finite verb)
5 Coordinate phrases # coordinate phrases (a phrase containing a coordinating conjunction)
6 Complex nominals # complex nominals (a noun phrase, clause, or gerund that stands in for a noun)
7 Complex T-units # complex T-units (a T-unit which contains a dependent clause)
8 Verb phrases # verb phrases (a phrase consisting of at least a verb and its dependents)
9 Dependent clauses # dependent clauses (a clause which could not form a sentence on its own)

10 Mean length of sentence # words / # sentences
11 Mean length of clause # words / # clauses
12 Mean length of T-unit # words / # T-units
13 Dependent clauses per clause # dependent clauses / # clauses
14 Dependent clauses per T-unit # dependent clauses / # T-units
15 Verb phrases per T-unit # verb phrases / # T-units
16 Clauses per sentence # clauses / # sentences
17 Clauses per T-unit # clauses / # T-units
18 Complex T-units per T-unit # complex T-units / # T-units
19 Coordinate phrases per T-unit # coordinate phrases / # T-units
20 Complex nominals per T-unit # complex nominals / # T-units
21 T-units per sentence # T-units / # sentences
22 Coordinate phrases per clause # coordinate phrases / # clauses
23 Complex nominals per clause # complex nominals / # clauses
24 Tree height height of the parse tree
25 Total depth total Yngve depth, averaged over all sentences
26 Max depth maximum Yngve depth, averaged over all sentences
27 Mean depth mean Yngve depth, averaged over all sentences
28 Nouns # nouns / # words
29 Verbs # verbs / # words
30 Noun-verb ratio # nouns / # verbs
31 Noun ratio # nouns / (# nouns + # verbs)
32 Inflected verbs # inflected verbs / # verbs
33 Light verbs # light verbs / # verbs
34 Determiners # determiners / # words
35 Demonstratives # demonstratives / # words
36 Prepositions # prepositions / # words
37 Adjectives # adjectives / # words
38 Adverbs # adverbs / # words
39 Pronoun ratio # pronouns / (# nouns + # pronouns)
40 Function words # function words / # words
41 Frequency mean frequency of all words appearing in the frequency norms
42 Noun frequency mean frequency of nouns appearing in the frequency norms
43 Verb frequency mean frequency of verbs appearing in the frequency norms
44 Imageability mean imageability of all words appearing in the imageability norms
45 Noun imageability mean imageability of nouns appearing in the imageability norms
46 Verb imageability mean imageability of verbs appearing in the imageability norms
47 Age of acquisition mean age of acquisition of all words appearing in the age of acquisition norms
48 Noun age of acquisition mean age of acquisition of nouns appearing in the age of acquisition norms
49 Verb age of acquisition mean age of acquisition of verbs appearing in the age of acquisition norms
50 Familiarity mean familiarity of all words appearing in the familiarity norms
51 Noun familiarity mean familiarity of nouns appearing in the familiarity norms
52 Verb familiarity mean familiarity of verbs appearing in the familiarity norms
53 Type-token ratio # unique word types / # words
54 Word length mean number of letters in each word
55 Fillers # fillers / # words
56 Um # occurrences of ‘um’ / # words
57 Uh # occurrences of ‘uh’ / # words
58 Speech rate # words uttered / total time in minutes

Table 3.2: Definitions of features.
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sentence is assigned these values: [max depth: 3, mean depth: 1.67, total depth: 15], while the

second sentence is assigned: [max depth: 2, mean depth: 1.11, total depth: 10].

Features 28–40 rely explicitly on the part-of-speech (POS) tags for each word in the sample,

determined by using the Stanford POS tagger (Toutanova et al., 2003). Differences in the

noun and verb production of sv-PPA and nfv-PPA patients have been noted before (Harciarek

and Kertesz, 2011). It has also been observed that nfv-PPA patients are more likely to omit

inflections and function words (Harciarek and Kertesz, 2011). Here, function words included

determiners, pronouns, prepositions, conjunctions, particles, and modals.

Word-level phonemic errors can present a potential problem to the tagger. We have used

an additional tag called not in dictionary or NID for cases in which the speaker produces a

nonword token. This prevents such tokens from being counted towards the wrong part-of-

speech category. If a word error results in the substitution of another English word, this is not

detected by our system and could be tagged incorrectly. However, the context around the word

may provide useful clues to the tagger in such cases.

Verbs can be categorized as being heavy or light, according to their semantic complexity.

Light verbs like have or do can be used in such a wide variety of different contexts that they

are similar in some ways to closed-class function words (Breedin et al., 1998). We used the

same list of light verbs as Breedin et al. (1998), namely: be, have, come, go, give, take, make,

do, get, move, and put.

Features 41–52 measure frequency, imageability, age of acquisition, and familiarity. Fre-

quency was calculated according to the SUBTL norms (Brysbaert and New, 2009), and the re-

maining three according to the combined Bristol norms and Gilhooly-Logie norms (Stadthagen-

Gonzalez and Davis, 2006; Gilhooly and Logie, 1980). In addition to calculating the overall

averages, the measures were calculated for nouns and verbs independently, to explore any pos-

sible dissociations. We calculated the proportion of words covered by the norms based on

unique word forms (as opposed to individual occurrences). The coverage for the frequency

norms is between .92 and .95 across the three groups. The coverage for the imageability, age
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of acquisition, and familiarity norms is lower, ranging from .25 to .31 for all content words

across the three groups. One reason for this is that the Bristol norms were specifically designed

to exclude high-frequency words, as the authors wanted to use words in “the frequency range

most often sampled by psycholinguistic experiments” (Stadthagen-Gonzalez and Davis, 2006).

This means that most of the words included in the norms have frequencies between 1 and 100

counts per million. For example, nouns like thing (which has a frequency of 1088 counts per

million in the SUBTL norms) and name (641 counts per million) are excluded, as are verbs

like go (3793 counts per million) and do (6135 counts per million).

The last six features (53–58) are measures of fluency and vocabulary richness. One way to

measure vocabulary size is by calculating the type-token ratio, which is the ratio of the number

of word types to the total number of words in the sample. A type-token ratio of 1.0 would

mean that every word in the sample was unique; a low type-token ratio would indicate that

many words were repeated. Filled pauses are measured by counting occurrences of the words

um, uh, ah, and er, called “fillers” in Table 3.2. The words um and uh were also counted

individually, because of research which suggests that they may be used to indicate major and

minor pauses, respectively (Clark and Fox Tree, 2002). Finally, speech rate has been shown to

distinguish between PPA patients and controls, although the results in sv-PPA are inconsistent.

Here we consider an estimate of the speech rate, which was calculated by dividing the number

of words produced by the participant by the total speech sample time.

Impaired speech can present difficulties for automatic language processing techniques,

which have typically been developed for well-formed, written text. However, these methods

represent a starting point for future development of more sophisticated techniques. To increase

the probability of the structural analyses producing accurate results, our system counts and

then removes the filled pauses from the transcript. Short nonword tokens (i.e., repeated but

incomplete attempts at a given word, e.g., br- bring) are also removed.

To test the results of our automatic methods against traditional manual methods, we had a

human annotator perform part-of-speech tagging and calculate a subset of the parse measures
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Clauses Dependent
clauses

T-units Complex T-
units

Coordinate
phrases

Per narrative 0.9966 0.9319 0.9269 0.8792 0.9475
Per sentence 0.9630 0.6396 0.4756 0.4568 0.7921

Table 3.3: Correlations between human- and computer-generated counts for syntactic
structures.

for three randomly-chosen narratives from each of the three participant groups (22.5% of the

total data set). For part-of-speech tagging, we measured the agreement between the human

annotator and the automatic tagger by counting the number of tags on which they both agreed,

and dividing by the total number of tags. The average agreement was 87.3% for the nfv-PPA

group, 89.2% for the sv-PPA group, and 91.9% for the control group. For comparison, the

best reported accuracies for statistical taggers on written, well-formed text are around 97%

(Manning, 2011), while Pakhomov et al. (2010a) reported a tagging accuracy of 86% on nfv-

PPA speech transcripts.

In comparing the parse features, we were limited by the fact that Lu’s program simply out-

puts counts for each measure, rather than the actual constituents being measured. This makes it

impractical to use traditional parse measures such as the PARSEVAL measures (Manning and

Schütze, 1999). Instead we had the annotator produce counts of different structures, just as the

software does, and then correlated the two sets of counts (Pearson’s correlation). We examined

a set of features that seemed to be important in distinguishing the groups based on prelimi-

nary analyses, although not all of them were significant in the final version of the system. We

measured the correlation in two ways: the correlation between the counts for each individ-

ual sentence, and the correlation between the total counts for each narrative. The correlation

coefficients for these measures are shown in Table 3.3.

Correlations between the scores calculated by the human annotator and Lu’s system were

high when considered across narratives, which is the most relevant comparison for our pur-

poses, as only the total scores for the narratives were used as input to the classifiers. The

per-sentence correlations were somewhat lower. Inspection of the discrepancies between the
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manual and automatic scoring revealed a systematic pattern. In general, the automatic system

has high agreement with the human annotator when determining the number of clauses. How-

ever, it has difficulty labelling clauses as being either independent or dependent, especially

when the clauses are not connected by a conjunction. In many such cases, we found that the

system counted a different number of dependent clauses than the human annotator, which in

turn affected the number of T-units and complex T-units. Given this apparently systematic

error, the results from Lu’s syntactic complexity analyzer must be interpreted with caution.

3.2.2 Classification

We trained machine learning classifiers to predict participants’ diagnoses based on a set of

features extracted automatically from speech transcripts. Including too many features risks

overfitting the classifier to idiosyncrasies in the training set, resulting in poor generalization to

new data points. Therefore, some process of feature selection is necessary. To select features on

which to train the classifiers, we conducted a two-tailed t-test on each feature between the two

groups that were to be distinguished. All features that were significant at p < 0.05 were used

for classification. The values of the selected features make up a feature vector, which defines

a point in feature space. The goal of a machine learning classifier is to take a feature vector

as input, and output a class label (in this case, either sv-PPA, nfv-PPA, or control). Three

machine learning classifiers from the WEKA machine learning toolkit were compared (Hall

et al., 2009): naı̈ve Bayes, logistic regression, and support vector machines (SVM).

The classifiers were evaluated on the basis of classification accuracy, or the total proportion

of narratives which were correctly classified. The evaluation was performed using leave-one-

out cross-validation. In this procedure, one data point is left out, and the classifier is trained

on the remaining data. The left-out data point can then be used as an unbiased test point.

This procedure is repeated until each data point has been left out once, and the performance is

averaged.



CHAPTER 3. CLASSIFICATION OF PPA FROM MANUAL TRANSCRIPTS 50

Feature sv-PPA Controls p value
1 Words 380.300 (272.429) 403.688 (121.380) 0.8025
2 Sentences 20.400 (13.550) 15.688 (6.877) 0.3276
3 T-units 0.069 (0.022) 0.058 (0.019) 0.2036
4 Clauses 0.145 (0.013) 0.133 (0.011) 0.0292 *
5 Coordinate phrases 0.028 (0.010) 0.029 (0.007) 0.6676
6 Complex nominals 0.098 (0.039) 0.083 (0.020) 0.2735
7 Complex T-units 0.037 (0.009) 0.030 (0.009) 0.0505
8 Verb phrases 0.177 (0.020) 0.167 (0.015) 0.2056
9 Dependent clauses 0.067 (0.016) 0.052 (0.021) 0.0543
10 Mean length of sentence 20.135 (8.190) 28.608 (10.973) 0.0346 *
11 Mean length of clause 7.035 (0.603) 7.602 (0.632) 0.0329 *
12 Mean length of T-unit 16.217 (6.481) 19.465 (8.042) 0.2701
13 Dependent clauses per clause 0.460 (0.090) 0.391 (0.144) 0.1459
14 Dependent clauses per T-unit 1.094 (0.497) 1.081 (0.768) 0.9571
15 Verb phrases per T-unit 2.848 (1.276) 3.186 (1.196) 0.5094
16 Clauses per sentence 2.845 (1.010) 3.738 (1.242) 0.0573
17 Clauses per T-unit 2.292 (0.786) 2.558 (1.007) 0.4610
18 Complex T-units per T-unit 0.580 (0.183) 0.535 (0.159) 0.5353
19 Coordinate phrases per T-unit 0.463 (0.334) 0.589 (0.369) 0.3820
20 Complex nominals per T-unit 1.558 (0.720) 1.694 (1.082) 0.7038
21 T-units per Sentence 1.250 (0.230) 1.526 (0.356) 0.0249 *
22 Coordinate phrases per clause 0.193 (0.074) 0.221 (0.058) 0.3150
23 Complex nominals per clause 0.673 (0.229) 0.627 (0.162) 0.5911
24 Tree height 13.167 (2.359) 14.821 (2.401) 0.0998
25 Total Yngve depth 70.477 (41.393) 117.609 (72.438) 0.0456 *
26 Maximum Yngve depth 5.091 (1.168) 6.023 (1.156) 0.0613
27 Mean Yngve Depth 2.913 (0.409) 3.345 (0.498) 0.0250 *
28 Nouns 0.141 (0.031) 0.179 (0.026) 0.0051 **
29 Verbs 0.207 (0.028) 0.200 (0.019) 0.4427
30 Noun-verb ratio 0.699 (0.209) 0.907 (0.163) 0.0164 *
31 Noun ratio 0.403 (0.072) 0.472 (0.047) 0.0178 *
32 Inflected verbs 0.635 (0.127) 0.706 (0.086) 0.1417
33 Light verbs 0.474 (0.093) 0.476 (0.085) 0.9527
34 Determiners 0.107 (0.030) 0.120 (0.016) 0.2203
35 Demonstratives 0.037 (0.011) 0.012 (0.009) 0.0000 **
36 Prepositions 0.103 (0.035) 0.087 (0.015) 0.1994
37 Adjectives 0.034 (0.013) 0.038 (0.009) 0.3434
38 Adverbs 0.083 (0.017) 0.058 (0.014) 0.0010 **
39 Pronoun ratio 0.508 (0.094) 0.416 (0.068) 0.0175 *
40 Function words 0.467 (0.033) 0.453 (0.033) 0.2823
41 Frequency 5.021 (0.105) 4.803 (0.104) 0.0001 **
42 Noun frequency 3.861 (0.231) 3.282 (0.183) 0.0000 **
43 Verb frequency 4.614 (0.282) 4.378 (0.184) 0.0341 *
44 Imageability 477.721 (44.025) 507.025 (20.643) 0.0729
45 Noun imageability 560.959 (43.450) 580.710 (12.370) 0.1913
46 Verb imageability 416.117 (37.506) 385.947 (22.543) 0.0387 *
47 Age of acquisition 258.881 (21.629) 257.814 (12.476) 0.8894
48 Noun age of acquisition 254.246 (33.465) 251.696 (19.006) 0.8295
49 Verb age of acquisition 260.465 (27.603) 266.521 (14.566) 0.5338
50 Familiarity 607.358 (12.903) 565.956 (10.052) 0.0000 **
51 Noun familiarity 604.910 (20.954) 545.967 (17.119) 0.0000 **
52 Verb familiarity 605.526 (19.573) 600.218 (13.388) 0.4629
53 Type-token ratio 0.405 (0.118) 0.415 (0.057) 0.8028
54 Mean word length 3.735 (0.186) 3.997 (0.152) 0.0017 **
55 Fillers 0.053 (0.067) 0.054 (0.056) 0.9876
56 Um 0.007 (0.008) 0.014 (0.015) 0.1613
57 Uh 0.046 (0.061) 0.040 (0.060) 0.8052
58 Speech rate 104.048 (35.149) 160.779 (35.131) 0.0007 **

Table 3.4: A comparison of sv-PPA and control features. Values shown are mean (standard
deviation). Asterisks denote significance (* p < .05; ** p < .01).
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Feature nfv-PPA Controls p value
1 Words 302.214 (141.837) 403.688 (121.380) 0.0466 *
2 Sentences 16.143 (12.526) 15.688 (6.877) 0.9049
3 T-units 0.061 (0.023) 0.058 (0.019) 0.7698
4 Clauses 0.141 (0.020) 0.133 (0.011) 0.2027
5 Coordinate phrases 0.028 (0.013) 0.029 (0.007) 0.7585
6 Complex nominals 0.092 (0.017) 0.083 (0.020) 0.2005
7 Complex T-units 0.030 (0.010) 0.030 (0.009) 0.9345
8 Verb phrases 0.167 (0.017) 0.167 (0.015) 0.9699
9 Dependent clauses 0.055 (0.016) 0.052 (0.021) 0.7312
10 Mean length of sentence 24.501 (12.192) 28.608 (10.973) 0.3437
11 Mean length of clause 7.299 (0.986) 7.602 (0.632) 0.3348
12 Mean length of T-unit 19.655 (8.814) 19.465 (8.042) 0.9516
13 Dependent clauses per clause 0.384 (0.082) 0.391 (0.144) 0.1333
14 Dependent clauses per T-unit 1.054 (0.545) 1.081 (0.768) 0.9106
15 Verb phrases per T-unit 3.212 (1.400) 3.186 (1.196) 0.9577
16 Clauses per sentence 3.346 (1.493) 3.738 (1.242) 0.4444
17 Clauses per T-unit 2.716 (1.243) 2.558 (1.007) 0.7078
18 Complex T-units per T-unit 0.517 (0.146) 0.535 (0.159) 0.7456
19 Coordinate phrases per T-unit 0.615 (0.521) 0.589 (0.369) 0.8763
20 Complex nominals per T-unit 1.767 (0.790) 1.694 (1.082) 0.8331
21 T-units per Sentence 1.256 (0.254) 1.526 (0.356) 0.0232 *
22 Coordinate phrases per clause 0.203 (0.093) 0.221 (0.058) 0.5336
23 Complex nominals per clause 0.660 (0.130) 0.627 (0.162) 0.5493
24 Tree height 12.933 (2.718) 14.821 (2.401) 0.0555
25 Total Yngve depth 108.405 (78.010) 117.609 (72.438) 0.7415
26 Maximum Yngve depth 5.275 (1.364) 6.023 (1.156) 0.1197
27 Mean Yngve Depth 3.085 (0.589) 3.345 (0.498) 0.2070
28 Nouns 0.155 (0.040) 0.179 (0.026) 0.0644
29 Verbs 0.191 (0.025) 0.200 (0.019) 0.2804
30 Noun-verb ratio 0.837 (0.286) 0.907 (0.163) 0.4276
31 Noun ratio 0.444 (0.082) 0.472 (0.047) 0.2775
32 Inflected verbs 0.706 (0.096) 0.706 (0.086) 0.9923
33 Light verbs 0.538 (0.141) 0.476 (0.085) 0.1666
34 Determiners 0.130 (0.032) 0.120 (0.016) 0.3183
35 Demonstratives 0.026 (0.018) 0.012 (0.009) 0.0210 *
36 Prepositions 0.088 (0.032) 0.087 (0.015) 0.8884
37 Adjectives 0.030 (0.017) 0.038 (0.009) 0.1219
38 Adverbs 0.069 (0.030) 0.058 (0.014) 0.2253
39 Pronoun ratio 0.476 (0.095) 0.416 (0.068) 0.0601
40 Function words 0.478 (0.045) 0.453 (0.033) 0.0968
41 Frequency 4.962 (0.118) 4.803 (0.104) 0.0006 **
42 Noun frequency 3.451 (0.317) 3.282 (0.183) 0.0936
43 Verb frequency 4.608 (0.237) 4.378 (0.184) 0.0072 **
44 Imageability 509.119 (40.552) 507.025 (20.643) 0.8634
45 Noun imageability 579.078 (23.669) 580.710 (12.370) 0.8192
46 Verb imageability 404.073 (49.196) 385.947 (22.543) 0.2215
47 Age of acquisition 245.879 (14.862) 257.814 (12.476) 0.0260 *
48 Noun age of acquisition 235.038 (20.937) 251.696 (19.006) 0.0316 *
49 Verb age of acquisition 264.400 (13.607) 266.521 (14.566) 0.6834
50 Familiarity 573.625 (18.408) 565.956 (10.052) 0.1808
51 Noun familiarity 561.110 (24.689) 545.967 (17.119) 0.0668
52 Verb familiarity 589.838 (19.242) 600.218 (13.388) 0.1043
53 Type-token ratio 0.421 (0.046) 0.415 (0.057) 0.7421
54 Mean word length 3.769 (0.136) 3.997 (0.152) 0.0002 **
55 Fillers 0.083 (0.080) 0.054 (0.056) 0.2584
56 Um 0.025 (0.027) 0.014 (0.015) 0.1948
57 Uh 0.058 (0.084) 0.040 (0.060) 0.5937
58 Speech rate 78.468 (27.978) 160.779 (35.131) 0.0000 **

Table 3.5: A comparison of nfv-PPA and control features. Values shown are mean (stan-
dard deviation). Asterisks denote significance (* p < .05; ** p < .01).
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Feature sv-PPA nfv-PPA p value
1 Words 380.300 (272.429) 302.214 (141.837) 0.4223
2 Sentences 20.400 (13.550) 16.143 (12.526) 0.4436
3 T-units 0.069 (0.022) 0.061 (0.023) 0.3518
4 Clauses 0.145 (0.013) 0.141 (0.020) 0.6028
5 Coordinate phrases 0.028 (0.010) 0.028 (0.013) 0.9334
6 Complex nominals 0.098 (0.039) 0.092 (0.017) 0.6376
7 Complex T-units 0.037 (0.009) 0.030 (0.010) 0.0580
8 Verb phrases 0.177 (0.020) 0.167 (0.017) 0.2393
9 Dependent clauses 0.067 (0.016) 0.055 (0.016) 0.0805
10 Mean length of sentence 20.135 (8.190) 24.501 (12.192) 0.3056
11 Mean length of clause 7.035 (0.603) 7.299 (0.986) 0.4254
12 Mean length of T-unit 16.217 (6.481) 19.655 (8.814) 0.2829
13 Dependent clauses per clause 0.460 (0.090) 0.384 (0.082) 0.0472 *
14 Dependent clauses per T-unit 1.094 (0.497) 1.054 (0.545) 0.8509
15 Verb phrases per T-unit 2.848 (1.276) 3.212 (1.400) 0.5161
16 Clauses per sentence 2.845 (1.010) 3.346 (1.493) 0.3381
17 Clauses per T-unit 2.292 (0.786) 2.716 (1.243) 0.3188
18 Complex T-units per T-unit 0.580 (0.183) 0.517 (0.146) 0.3825
19 Coordinate phrases per T-unit 0.463 (0.334) 0.615 (0.521) 0.3953
20 Complex nominals per T-unit 1.558 (0.720) 1.767 (0.790) 0.5084
21 T-units per Sentence 1.250 (0.230) 1.256 (0.254) 0.9541
22 Coordinate phrases per clause 0.193 (0.074) 0.203 (0.093) 0.7648
23 Complex nominals per clause 0.673 (0.229) 0.660 (0.130) 0.8714
24 Tree height 13.167 (2.359) 12.933 (2.718) 0.8246
25 Total Yngve depth 70.477 (41.393) 108.405 (78.010) 0.1386
26 Maximum Yngve depth 5.091 (1.168) 5.275 (1.364) 0.7270
27 Mean Yngve Depth 2.913 (0.409) 3.085 (0.589) 0.4071
28 Nouns 0.141 (0.031) 0.155 (0.040) 0.3591
29 Verbs 0.207 (0.028) 0.191 (0.025) 0.1440
30 Noun-verb ratio 0.699 (0.209) 0.837 (0.286) 0.1844
31 Noun ratio 0.403 (0.072) 0.444 (0.082) 0.2122
32 Inflected verbs 0.635 (0.127) 0.706 (0.096) 0.1550
33 Light verbs 0.474 (0.093) 0.538 (0.141) 0.1935
34 Determiners 0.107 (0.030) 0.130 (0.032) 0.0862
35 Demonstratives 0.037 (0.011) 0.026 (0.018) 0.0688
36 Prepositions 0.103 (0.035) 0.088 (0.032) 0.3086
37 Adjectives 0.034 (0.013) 0.030 (0.017) 0.5577
38 Adverbs 0.083 (0.017) 0.069 (0.030) 0.1586
39 Pronoun ratio 0.508 (0.094) 0.476 (0.095) 0.4313
40 Function words 0.467 (0.033) 0.478 (0.045) 0.5254
41 Frequency 5.021 (0.105) 4.962 (0.118) 0.2139
42 Noun frequency 3.861 (0.231) 3.451 (0.317) 0.0014 **
43 Verb frequency 4.614 (0.282) 4.608 (0.237) 0.9557
44 Imageability 477.721 (44.025) 509.119 (40.552) 0.0916
45 Noun imageability 560.959 (43.450) 579.078 (23.669) 0.2527
46 Verb imageability 416.117 (37.506) 404.073 (49.196) 0.5036
47 Age of acquisition 258.881 (21.629) 245.879 (14.862) 0.1211
48 Noun age of acquisition 254.246 (33.465) 235.038 (20.937) 0.1309
49 Verb age of acquisition 260.465 (27.603) 264.400 (13.607) 0.6845
50 Familiarity 607.358 (12.903) 573.625 (18.408) 0.0000 **
51 Noun familiarity 604.910 (20.954) 561.110 (24.689) 0.0001 **
52 Verb familiarity 605.526 (19.573) 589.838 (19.242) 0.0659
53 Type-token ratio 0.405 (0.118) 0.421 (0.046) 0.6828
54 Mean word length 3.735 (0.186) 3.769 (0.136) 0.6341
55 Fillers 0.053 (0.067) 0.083 (0.080) 0.3290
56 Um 0.007 (0.008) 0.025 (0.027) 0.0335 *
57 Uh 0.046 (0.061) 0.058 (0.084) 0.6864
58 Speech rate 104.048 (35.149) 78.468 (27.978) 0.0736

Table 3.6: A comparison of sv-PPA and nfv-PPA features. Values shown are mean (stan-
dard deviation). Asterisks denote significance (* p < .05; ** p < .01).
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sv-PPA vs. control nfv-PPA vs. control sv-PPA vs. nfv-PPA
Baseline .615 .533 .583
Naı̈ve Bayes .923 .900 .792
Logistic Regression .962 .933 .708
SVM 1.00 .967 .750

Table 3.7: Accuracies for the three classifiers, compared to a simple majority-class base-
line classifier.

3.2.3 Results

We consider three separate classification tasks: (1) distinguishing between sv-PPA and con-

trols; (2) distinguishing between nfv-PPA and controls; and (3) distinguishing between sv-PPA

and nfv-PPA. The means and standard deviations for each attribute are compared in Tables 3.4

to 3.6. Group differences were measured using Welch’s two-tailed, unpaired t-test, which does

not assume that the two samples share the same variance. A significance level of p < .05 is

indicated by a single asterisk, and p < .01 is indicated by a double asterisk. Because we were

using the t-tests primarily as a means of feature selection, we did not adjust their significance

levels for multiple comparisons. For each classification task, the set of significant features

for that particular comparison formed the input vectors to the classifiers. The features were

rescaled to have zero mean and unit variance before classification, to prevent features with

large magnitudes (e.g., imageability) from dominating features with smaller magnitudes (e.g.,

fillers). The features that were considered significant between the sv-PPA and control tran-

scripts, and therefore used in that classification task, were: number of clauses, mean length of

sentence, mean length of clause, T-units per sentence, total Yngve depth, mean Yngve depth,

nouns, noun-verb ratio, noun ratio, demonstratives, adverbs, pronoun ratio, frequency, noun

frequency, verb frequency, verb imageability, familiarity, noun familiarity, mean word length,

and speech rate. For the task of classifying nfv-PPA versus controls, the significant features

were: number of words, T-units per sentence, demonstratives, frequency, verb frequency, age

of acquisition, noun age of acquisition, mean word length, and speech rate. In the case of sv-

PPA versus nfv-PPA, only five features were significant: dependent clauses per clause, noun
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(a) sv-PPA vs control

(b) nfv-PPA vs control

(c) sv-PPA vs nfv-PPA

Figure 3.1: Partial least squares analysis of the data, with each point representing one tran-
script. Transcriptions for the participants labelled in Figure (c) are provided in Figures 3.3
to 3.6.
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Feature SR
50 familiarity 2.98
42 noun frequency 2.95
51 noun familiarity 2.69
35 demonstratives 1.69
38 adverbs 1.39
41 frequency 1.13
28 nouns 0.71
54 word length 0.65
4 clauses 0.62
30 noun-verb ratio 0.57
31 noun ratio 0.57
58 speech rate 0.54
11 mean clause length 0.53

(a) sv-PPA vs. control

Feature SR
58 speech rate 1.62
54 word length 1.14
41 frequency 0.93
43 verb frequency 0.53

(b) nfv-PPA vs. control

Feature SR
50 familiarity 1.81
42 noun frequency 1.76
51 noun familiarity 1.53
13 dependent clauses 0.76

per clause

(c) sv-PPA vs. nfv-PPA

Figure 3.2: PLS selectivity ratio for each of the features. On the left, plots of the selectivity
ratio for every feature. The feature numbers on the horizontal axes refer to the feature
numbers in Table 3.2. Note the difference in scale on the vertical axes. On the right, the
features with selectivity ratio greater than 0.5.
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frequency, familiarity, noun familiarity, and occurrence of “um”.

The classification accuracies are given in Table 3.7. The baseline accuracies represent

the accuracies that would be achieved by simply assigning every transcript to the larger of

the two classes. That is, the baseline accuracy for sv-PPA (n = 10) versus controls (n = 16)

would be achieved by simply classifying all the transcripts as controls (16/26 = .615). The

two experimental scenarios involving patient groups versus control groups result in very high

classification accuracies. The accuracies for classifying sv-PPA versus nfv-PPA transcripts are

not as high; however, they are well above the baseline for all three of the classifiers.

For comparison, we also evaluated the performance of the classifiers trained on all features

as input, rather than just the features pre-selected by the t-tests. This method was expected to

perform rather poorly due to overfitting. Although using more features may improve classi-

fication on the training set, it results in poor generalization to new data, as assessed with the

cross-validation procedure. Indeed, performance in this case was lower than the results shown

in Table 3.7: for sv-PPA versus controls, the accuracies ranged from .846 to .923, for nfv-PPA

versus controls the accuracies ranged from .700 to .800, and for sv-PPA versus nfv-PPA they

ranged from .625 to .667. This illustrates the necessity of feature selection prior to classifier

training.

Because the classification takes place in high-dimensional feature space, it is difficult to

visualize the models produced by the classifiers. Instead, it is useful to visualize the classes

in two dimensions by using some form of dimensionality reduction. Here we use the method

of partial least squares, or PLS (Haenlein and Kaplan, 2004). PLS is similar to the well-

known method of principal components analysis, except that principal components analysis

discovers latent variables that best explain the variance in the attributes, while PLS discovers

latent variables that are most predictive of the response (in this case, the patient groups or class

labels). In addition, PLS is appropriate when the number of attributes is high compared to the

number of data points, which is the case here. Scatter plots of the first two PLS components

are shown in Figure 3.1.
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Each of the plots shows relatively good separation between the groups. We were interested

to see whether two narratives that were located close together in the PLS plot shared some

similarities, even when the participants who produced them were from different diagnostic

groups (for example, the points labelled 1 and 2 in Figure 3.1c). These transcripts are included

in Figures 3.3 and 3.4. The transcripts associated with points 3 and 4 in Figure 3.1c are included

in Figures 3.5 and 3.6 for the sake of comparison. Participants 1 and 2 have similar rates of

speech, and Participant 1, although diagnosed with sv-PPA, makes several syntactic errors.

Participant 2 was diagnosed with nfv-PPA, but tends to use high frequency words (such as

girls instead of stepsisters). In contrast, the two transcripts from opposite sides of the PLS

plots seem to be more clearly representative of their diagnostic groups.

Well she was a kind of, a uh not a woman there, she was a bad woman. She had a couple of kids, women,
girls, and he she had her too. And she uh, she’s uh had to do all the work, do the washing and uh everyday
she’s at work and they don’t have to work at all. And she used to go around tell her to do everything for
them. So anyway uh [###] sort on it because uh then they came about this uh dance, and uh she wouldn’t let
her go. Two girls would go, but not her. But anyway, she got a fairy. Found a fairy a woman talked to her
and that. And she got sitting up and they said, she got him to there with all dressed up to, uh I don’t know
the mice now, they helped her a lot apparently, but I don’t know that too much about it, but they did. And
she got real nice, she got dressed up she looked for every the stuff and got to the feet, the feet yeah the the
shoes. And she went there with it, and when he went in, she uh uh what happened she drove ahead of it, and
ran out, go away, and she dropped the (1) shoe. So anyway, this fellow came looking out, found you know,
one of these fair fellows the big fellows, he went for the prince. [###] And he had to find that woman, I want
to find that, and then he get this, he got the leg, the foot, the shoe. So he went over to everybody and when
he found her, just when she found out and and and the prince took her away

Figure 3.3: Transcription 1 (sv-PPA, patient 29). Speech rate: 116.3 words per minute.

OK. So, Cinderella, one day she ended up in, the middle of, um, in the in the in the, inside. So she was, she
went in: to this house. And, sh: what basically what she had to do was she had to go down on her hands and
knees and she had to clean. That was her job, um and, she also had, two or three, um, three girls, where they
didn’t have to do anything, which was interesting. And they were all excited about going to the ball. Um:, in
the meantime, she, she also has a, grandmother, who looks af-, who looked after her. And then finally, she
did actually, well first of all, she realized that the three people, they were her sisters as such, and then there
was this other lady who basically was not a nice person at all. And: so that went on for quite a while, so they
were, it was all about them and not about her, and then she actually met, her, beautiful person.

Figure 3.4: Transcription 2 (nfv-PPA, patient 41). Speech rate: 110.5 words per minute.
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Well, Cinderella, um (2) came to um, the co- n- I gon’ say cottage but it’s not a cottage obviously it’s a mm
quite a p- a place. And um, she uh initially is not th:ought of too much and uh the little animals sort of thing
are b- uh down there and uh and as a matter of fact uh they uh come to like her as a matter of fact too. And
um she uh is uh going there and these little things are going along and uh the uh older lady and so on uh not
th- that g- good to her ah I I suspect. And then there’s a shellow ((fellow)) who uh looks quite nice and he
thinks that she looks quite nice and it ends up to some degree when they eventually get married. That’s all I
can think of right there, but sorry. (2) Uh (2) and there’s all all s- uh sort of little little things that are running
around and uh and that but part of the thing but she doesn’t br- b- bother them but she rather likes that the
gentleman who is probably one of the king’s dau- s- s- sons. And away they go. Anyways that’s (hhh) just
looking at it slightly like that. I’m sure I missed a lot of things but nevertheless that’s positive and I’m glad
she’s fi- having fun. And so are the (hhh) little things too. Anyways, there.

Figure 3.5: Transcription 3 (sv-PPA, patient 2). Speech rate: 101.5 words per minute.

Okay. Um, Cinderella, they have uh a stepfathers and the uh godmother or whatever. Um (4) uh um (11)
I, I guess they’re going to go to the ball and then um all those mice they’re going to do the dress (hhh) and
um (3), and u:m oh the pumpkin (hhh) and uh (3) well the godmother will do the pumpkin and um (4), and
then she’ll go to the ball (3) and then (4) he has, he has a (3) him (hhh) him um anyways, so anyways twelve
o’clock she’ll go down the stairs. And she has a glass slipper, but it’s, it’s not it’s just in the stairs, so anyways
she um she had a pumpkin. She went (2) um went to her castle again and then um (3) and then they had a
glass slipper for her and then: the prince and the Cinderella.

Figure 3.6: Transcription 4 (nfv-PPA, patient 31). Speech rate: 54.6 words per minute.

Rather than analyze the factor loadings, which are not easily interpretable in PLS, we cal-

culate selectivity ratios, which are closely related to the correlation between each attribute and

the response (Kvalheim, 2010). A high selectivity ratio indicates that a feature is very influen-

tial with respect to the response. The details of calculating this measure are given by Kvalheim

(2010); we used a pre-existing Matlab package to perform the analysis (Li, 2011). Figure 3.2

shows the selectivity ratios for each feature in the three cases. For ease of interpretation, each

feature with a selectivity ratio of greater than a cut-off of 0.5 is given for each of the three

classification problems. In the majority of cases, these are the same features which were found

to be significant and included in the classifiers above. We expect there to be some discrepan-

cies, as the individual t-tests do not take into account correlations between variables, while the

PLS analysis does. Selectivity ratios for influential features may be reduced in the presence of

a second feature highly correlated with the first, as the two share variance that predicts group
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membership.

3.2.4 Discussion

In this study, we set out to determine whether computational methods could reliably distin-

guish between healthy controls and patients with PPA, as well as differentiate the two patient

groups, based upon samples of narrative speech. We found that even with relatively short sam-

ples of narrative speech (i.e., for machine learning purposes), classifiers were able to achieve

this goal with a high degree of accuracy. In addition, we wished to determine how the automat-

ically extracted features compared to previous findings in the literature with respect to these

two subtypes. In general, we found that our procedure identified many of the same features

that have been previously noted to differ between groups (e.g., word frequency, speech rate,

demonstrative pronouns), with some surprising findings (e.g., the lack of syntactic features as

differentiating ones) and some new features identified (e.g., adverbs and word length). We

discuss these issues below.

Classification

Our results show that machine learning classifiers can distinguish between controls and each

of the two patient groups, sv-PPA and nfv-PPA, with a high degree of accuracy. Although less

accurate than in comparison to controls, they also distinguish well between the two patient

groups. The performance of the classifiers varied across the three tasks: SVM achieved the

highest accuracy for sv-PPA versus controls and nfv-PPA versus controls, while naı̈ve Bayes

performed best for sv-PPA versus nfv-PPA. Logistic regression achieved the second-highest

accuracy in the first two cases, but was the worst at distinguishing between sv-PPA and nfv-

PPA. We also note the relatively high accuracy of naı̈ve Bayes despite obvious correlations

between the features in some cases.
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Features that distinguished the groups and comparison with previous findings on PPA

The PLS analysis identified the features that best predicted group membership. The selectivity

ratios, together with the group means on each feature, provided valuable information on the

characteristics of narrative speech in each group.

The features that best distinguished the sv-PPA patients from controls were higher familiar-

ity and frequency of words (particularly nouns), increased production of adverbs and demon-

stratives, production of shorter clauses, and reduced word length and speech rate. The famil-

iarity of the words produced, which was greater in sv-PPA, was the feature with the highest

selectivity ratio. The familiarity of nouns in particular was also ranked highly. The finding that

the sv-PPA patients produced words with higher familiarity ratings than controls is consistent

with findings from studies of naming (Lambon Ralph et al., 1998; Woollams et al., 2008), but

to the best of our knowledge has not been previously documented in connected speech. It also

fits with previous research demonstrating that sv-PPA patients’ semantic knowledge is best

preserved for familiar items (Funnel, 1996; Simons et al., 2001).

The sv-PPA patients tended to use higher frequency nouns than the controls, and this fea-

ture had the second highest selectivity ratio. Overall word frequency also distinguished well

between the groups and these findings demonstrate the robust effect of frequency on language

production in sv-PPA. It has been established that frequency has a pervasive influence on nam-

ing in sv-PPA (Lambon Ralph et al., 1998; Woollams et al., 2008), but this influence is less well

documented in connected speech. Two studies which used picture description tasks observed

that sv-PPA patients produced higher frequency nouns than controls (Bird et al., 2000; Wilson

et al., 2010). Meteyard and Patterson (2009) did not evaluate frequency per se, but their analy-

sis of structured interviews showed that patients with sv-PPA tended to replace content words

with higher frequency (and less specific) words. We have found that patients with sv-PPA use

higher frequency words overall, and that nouns are particularly affected.

Familiarity and frequency, the features with the highest selectivity ratios, are correlated

with each other (Tanaka-Ishii and Terada, 2011). It is interesting to note that individually they
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may have had even higher selectivity ratios if only one of the features had been included in the

model.

The sv-PPA patients produced more demonstratives and adverbs than controls, and this

distinguished the groups. The increased reliance on demonstrative pronouns, which comprise

the words these, those, this, that, here, and there, may reflect the tendency of sv-PPA patients

to make substitutions of less specific words (Meteyard and Patterson, 2009) and use vague

terms (Kavé et al., 2007; Patterson and MacDonald, 2006); the automated analysis techniques

used here did not enable us to evaluate whether these terms had clear referents when used.

Previous studies have documented over-reliance on pronouns in sv-PPA (Kavé et al., 2007;

Meteyard and Patterson, 2009; Patterson and MacDonald, 2006; Wilson et al., 2010), but to

the best of our knowledge this is the first examination specifically of demonstrative pronouns.

The increased use of adverbs may at least partially reflect that fact that some participants in

this patient group started many of the sentences in their narratives with then or so, sometimes

preceded by and. Because then and so are classified as adverbs (describing when or why

something happened), this inflates the count on these words. Repeated use of the same syntactic

structure is compatible with the idea that sv-PPA patients are unable to produce the full range

of syntactic structures (Benedet et al., 2006), but needs to be investigated further before firm

conclusions can be drawn.

The sv-PPA patients produced fewer nouns than the controls, and reduced noun production

accounted for 3 of the features which had high selectivity ratios (nouns, noun-to-verb ratio,

and noun ratio). Difficulty with production of nouns is an expected finding. Impaired con-

frontation naming is a core diagnostic feature in sv-PPA (Gorno-Tempini et al., 2004), and is

expected to lead to corresponding problems with word finding in connected speech (see Saj-

jadi et al., 2012). Moreover, previous studies have documented reduced production of nouns

in the connected speech of people with sv-PPA (Bird et al., 2000; Ash et al., 2009; Patterson

and MacDonald, 2006; Kavé et al., 2007). Bird et al. (2000) contrasted noun and verb produc-

tion by sv-PPA patients on a picture description task and provided evidence that production of
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nouns was more affected as a result of their lower relative frequency. This is compatible with

the current results in that our sv-PPA patients produced higher frequency, and proportionally

fewer, nouns than controls (and these features had high selectivity ratios).

The mean word length for the sv-PPA patients was slightly shorter than for controls, and

this feature distinguished well between the groups. The effect of word length has not been

examined in connected speech. We attribute this small but significant effect of length to avail-

ability of words, rather than to difficulty with pronouncing long words. Many of the long words

used by controls were used less often by the sv-PPA patients. The most frequently used long

word for both groups was Cinderella, which was used a total of 69 times by the controls and

a total of 17 times by the sv-PPA patients (an average of 4.3 versus 1.7 times per narrative).

Other long words that were used more often by controls than patients include, for example,

slipper which was used 48 times by controls but never by sv-PPA patients, and beautiful which

was used 25 times by controls and 5 times by sv-PPA patients (an average of 1.6 versus 0.5

times per narrative).

The number, and mean length, of clauses both distinguished between the sv-PPA and con-

trol groups, although the numerical differences were rather small. The sv-PPA patients pro-

duced more clauses than the controls, but on average their clauses were shorter. The expla-

nation for this is not clear. It seems unlikely to be an artifact of the automatic coding, as

the clause counts had high agreement with the human annotator, even with the sentence-by-

sentence comparison. It may be associated with the reduced production of nouns, which could

result in fewer nouns per clause. In addition, inspection of the transcriptions indicates that the

sv-PPA patients were more likely to produce “filler” comments such as you know and whatever

you call it, which are relatively short clauses. We know of no identical analyses in other stud-

ies, although some have used similar measures: Patterson and MacDonald (2006) found that

sv-PPA and controls produced similar numbers of clauses, while Sajjadi et al. (2012) found

that sv-PPA patients produced fewer syntactically complex clauses relative to controls (data on

simple clauses were not reported). Further work would be required to understand the basis and
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potential significance of the present finding that sv-PPA patients tend to produce shorter, but

more, clauses than controls.

The final feature which distinguished the sv-PPA patients and controls was speech rate.

Findings with respect to speech rate in sv-PPA have been inconsistent. The slower rate for sv-

PPA patients may be due to pauses in speech while searching for a word, and seems unlikely to

reflect a motor speech problem. Wilson et al. (2010) also documented slower speech rate in sv-

PPA patients than in controls, but found that the maximum speech rate (which they defined as

the three most rapidly spoken sequences of ten or more words) for their patients was normal;

they suggested that the slower rate reflected impairment in higher-level processes, and we

concur with this idea.

The features that distinguish sv-PPA patients from controls can largely be attributed to the

semantic memory impairment. This seems to be the dominant influence in the language output

of this group, and can account for the increased reliance on more familiar and frequent words,

use of general terms such as demonstratives and adverbs like then and so, reduced production

of nouns, and pauses for word-finding (which could explain the relatively slower speech rate).

The features that distinguished the nfv-PPA patients from controls were reduced speech

rate and word length, as well as higher frequency of words and of verbs in particular. Not

surprisingly, slower speech rate was the feature that best distinguished nfv-PPA from controls.

A reduced rate of speech is one of the diagnostic features (Gorno-Tempini et al., 2004), and

has been documented in other studies of connected speech production in nfv-PPA (Ash et al.,

2010, 2006; Graham et al., 2004; Knibb et al., 2009; Thompson et al., 2012).

The nfv-PPA patients tended to produce shorter words than controls, and this feature had a

high selectivity ratio. Increased word length of stimulus items has been shown to deleteriously

affect naming, reading and repetition in nfv-PPA (Croot et al., 1998; Graham et al., 2004), and

this effect could arise from phonological or motor speech impairment(s), which are common

in nfv-PPA. In the case of narrative speech, it could also arise from word finding difficulties,

which would affect availability of words (as suggested for the sv-PPA patients). The current



CHAPTER 3. CLASSIFICATION OF PPA FROM MANUAL TRANSCRIPTS 64

analyses do not inform the choice of explanation, and indeed the use of shorter words could

arise from different causes in different individuals.

Like the sv-PPA patients, the nfv-PPA patients were distinguished from controls by overall

word frequency. For the nfv-PPA patients (vs. controls), verb frequency also had a high se-

lectivity ratio. Once again we have a situation where two correlated features both have high

selectivity ratios, suggesting that each would have had an even higher ratio if they had been

included in the model without the other. Studies have shown that naming of verbs/actions

in nfv-PPA is more impaired than naming of nouns/objects (Cotelli et al., 2006; Hillis et al.,

2004). Although we do not know of a study which assesses the effect of frequency on naming

of verbs in nfv-PPA, our results suggest that production of higher frequency verbs is better pre-

served. The finding that the nfv-PPA patients produce higher frequency verbs than the controls

cannot be due to excessive use of light verbs (which tend to be high in frequency), because

the t-tests indicate no difference between nfv-PPA and controls in use of light verbs. Despite

this apparent difficulty with verb production, the nfv-PPA patients in this study produced nouns

and verbs in normal proportions as demonstrated by equivalent noun-to-verb ratios for nfv-PPA

patients and controls. An increase in noun-to-verb ratio is taken to indicate difficulty with verb

production, and has been reported in other studies of connected speech in nfv-PPA (Thompson

et al., 1997a). Consistent with the current findings, Graham et al. (2004) also documented nor-

mal noun-to-verb ratios but suggested that the verbs produced by nfv-PPA patients were less

specific than those produced by controls.

The results also yielded interesting findings regarding the features that distinguished be-

tween the two patient groups. The sv-PPA patients used nouns which were more frequent and

familiar, and words which were more familiar overall, than the nfv-PPA patients. These fea-

tures are identical to those that best discriminated between sv-PPA patients and controls, and

have the same rank order with respect to their selectivity ratios. As noted above, frequency and

familiarity are known to affect naming performance in sv-PPA (Woollams et al., 2008; Lambon

Ralph et al., 1998), and clearly these factors affect word finding in connected speech as well.
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The greater impact (relative to nfv-PPA) of familiarity and frequency upon the speech of the

sv-PPA patients may be due to their greater semantic impairment, or to the fact that they are

more anomic than the nfv-PPA patients.

The final feature that differentiated the two patient groups was the number of dependent

clauses per clause. This indicates that the sv-PPA patients produce a proportionally greater

number of clauses which could not form sentences on their own. In their study of connected

speech in sv-PPA, Meteyard and Patterson (2009) documented increased production of restarts,

which they defined as a sentence which was incomplete and then started again. We did not

count restarts, but inspection of the transcriptions reveals that there were many, and this could

account at least partially for the increased production of incomplete (i.e., dependent) clauses.

The finding that production of dependent clauses was greater in sv-PPA than nfv-PPA should,

however, be regarded as tentative as there is uncertainty (noted above) in the ability of the

system to properly identify dependent clauses. Further work would be needed to clarify the

reliability and interpretation of this result.

Some surprising findings also emerged. While it is well documented that nfv-PPA patients

tend to have sparse output, producing fewer words than either controls or sv-PPA patients (Gra-

ham et al., 2004; Wilson et al., 2010), total word count did not emerge as an important feature

distinguishing the groups in the PLS plots. It is also surprising that so few of the features

measuring syntactic complexity emerged as main distinguishing features, particularly for the

nfv-PPA group. This may have occurred because not all of the nfv-PPA patients exhibited

agrammatism. Alternatively, it may be due to the way the syntactic analyses were performed.

As mentioned in Section 3.2.1, Lu’s syntactic complexity analyzer was originally designed to

be applied to written documents by second-language learners, and so may not be ideally suited

to the analysis of aphasic speech. Our goal was to test its performance in this domain, and

although we found that it was effective in detecting clause boundaries, and returned counts that

were highly correlated with manual counts, it did encounter particular difficulty in labelling

clauses as dependent or independent. In part, this may be attributable to the uncertainty about
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sentence boundaries as determined by a human transcriber, as opposed to quantitative linguis-

tic criteria. We note that sentence boundaries are frequently ambiguous in natural speech,

aphasic or otherwise. Further methodological development of automated analysis for syntactic

complexity is a promising avenue for future research, particularly if it can be made to operate

mainly within rather than across clause boundaries.

To summarize, the automated analyses indicated that sv-PPA patients showed an over-

reliance on words which were high in familiarity and/or frequency, and this applied particularly

to nouns. They also produced proportionally fewer nouns, but more demonstratives (e.g., this,

these) and more adverbs (e.g., so, then). In contrast, the speech of the nfv-PPA patients was

characterized by reduced speech rate and word length; this group also tended to use words

which were high in frequency and this applied particularly to verbs. Verbs were, however, pro-

duced in normal proportions. The sv-PPA patients were distinguished from nfv-PPA by their

relatively greater use of words with higher familiarity and frequency.

3.3 Augmenting text features with acoustic features3

The work described in the previous section used textual features extracted from transcripts of

speech to classify between sv-PPA, nfv-PPA, and healthy controls. The classifiers achieved

high accuracies between patient groups and controls, although the accuracies were reduced

when attempting to distinguish between the two PPA subtypes. In this section, we analyze

acoustic features of patient and control speech, and augment the text-based classifiers with

these features. A benefit to acoustic features is that they do not require transcription, as they

can be calculated directly from the audio files.

3The material presented in this section was previously published in: Kathleen Fraser, Frank Rudzicz, and
Elizabeth Rochon (2013). Using text and acoustic features to diagnose progressive aphasia and its subtypes. In
Proceedings of INTERSPEECH, pp.2177–2181.
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3.3.1 Features

Slow, effortful speech is one of the core symptoms of nfv-PPA, and apraxia of speech can

be an early feature, including the production of speech sound errors and disordered prosody

(Gorno-Tempini et al., 2011; Grossman, 2010). Amici et al. (2006) reported over 80% of

their nfv-PPA patients had apraxia of speech. More broadly, atypical F0 range and variance

have been shown to be indicative of articulatory neuropathologies within the context of speech

recognition (Mengistu et al., 2011; Kent and Kim, 2003). In contrast, speech production is

generally spared in sv-PPA, although sv-PPA patients may produce long pauses as they search

for words (Wilson et al., 2010).

We attempt to measure some of these characteristics by introducing a set of acoustic fea-

tures, given in Table 3.8. We follow the work of Pakhomov et al. (2010b) and measure pause-

to-word ratio (i.e., the ratio of silent segments longer than 150 ms to non-silent segments),

mean fundamental frequency (F0) and variance, total duration of speech, long pause (> 0.4

ms) count, and short pause (> 0.15 ms and < 0.4 ms) count. To this we add mean pause du-

ration and phonation rate (the amount of the recording spent in voiced speech) (Roark et al.,

2011), as well as the mean and variance for the first 3 formants (F1,F2,F3) and mean in-

stantaneous power, which we expect to relate to dysprosody (Baghai-Ravary and Beet, 2012),

mean and maximum first autocorrelation function (Meilán et al., 2014), skewness and kurtosis

of the signal (Lee and Hahn, 2010), zero-crossing rate, mean recurrence period density entropy

(a method for measuring the periodicity of a signal, which has been applied to pathological

speech generally (Little et al., 2006)), jitter (Silva et al., 2009), and shimmer (Adnène et al.,

2003).

In addition to the acoustic features, we consider the same text features as before (see Table

3.2). We extract 58 lexical and syntactic features from the transcript and an additional 23

acoustic features from the audio file, for a total of 81 possible features.
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Total duration of speech Total length of all non-silent segments, in milliseconds.
Phonation rate Total duration of active speech divided by the total duration of the sample

(including pauses).
Mean pause duration Mean length of pauses > 150 ms.
Short pause count Number of pauses > 150 ms and < 400 ms.
Long pause count Number of pauses ≥ 400 ms.
Pause:word ratio Ratio of silent segments longer than 150 ms to non-silent segments.
Mean/var. F0:3 Mean and variance of the fundamental frequency and first three formant

frequencies.
Jitter Measure of the short-term variation in the pitch (frequency) of a voice.
Shimmer Measure of the short-term variation in the loudness (amplitude) of a voice.
Zero-crossing rate (ZCR) An approximation for average pitch of an utterance, defined

as the number of sign changes along a signal, per second.
Mean instantaneous power Measure related to the loudness of the voice.
First autocorrelation function Mean and maximum of the first autocorrelation function.
Skewness Measure of lack of symmetry in the distribution of the amplitude of a signal,

associated with a tense or “creaky” voice.
Kurtosis Measure of the “peakedness” of a signal’s amplitude, or specifically the 4th

moment of its distribution.
Mean recurrence period density entropy (MRPDE) Measure of periodicity of a signal.

Specifically, it measures the extent to which a time series repeats itself. It is similar
to linear autocorrelation.

Table 3.8: Acoustic features extracted directly from the PPA speech samples.
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3.3.2 Feature selection

To avoid overfitting, we reduce the dimensionality of our data to be bounded above by the

minimum number of data points available for a classification task; since there are 24 speakers

with either nfv-PPA or sv-PPA, we reduce our feature space from 81 to at most 20. We compare

two methods of performing this feature selection. In the first, similar to the method used in the

previous section, we calculate Welch’s t-test for each feature to calculate the significance of

the difference in that feature between the two groups. We then rank each feature by its p-value,

and for a feature set of size n we consider only the top n features from the ranked list. This

method does not take into account any correlations between variables, but it does offer some

insight into which individual features are most strongly indicative of one diagnosis (class) or

the other. Feature selection methods based on p-value have been used in previous studies on

machine learning classification of frontotemporal lobar degeneration (Peintner et al., 2008) and

mild cognitive impairment (Roark et al., 2011).

The second method we consider is minimum-redundancy-maximum-relevance (mRMR)

feature selection in which a set of features is selected such that redundancy (i.e., the average

mutual information between features) is minimized and the relevance (i.e., the mutual informa-

tion between the given features and the class) is maximized (Peng et al., 2005). Specifically,

for feature fi in set S and class c, mRMR selects the feature set S∗ such that

S∗ = argmax
S

[
1
‖S‖ ∑

fi∈S
I( fi;c)− 1

‖S‖2 ∑
fi, f j∈S

I( fi; f j)

]
,

where I(X ;Y ) is the mutual information between X and Y .

Table 3.9 shows the top n = 10 features selected by both the mRMR and p-value methods.

Both mRMR and the p-value method select more textual features than acoustic features from

all available features; 7/10 features are textual in all cases except for the p-value selection of

features for the nfv-PPA versus sv-PPA case, in which case 9/10 of the selected features are

textual. This might be tempered to some extent by the fact that our acoustic features are more
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highly correlated (average r = 0.16(σ = 0.47) among acoustic features and r = 0.05(σ =

0.37) among textual features). In general, the mRMR and p-value methods are in greater

agreement on the PPA versus control task (with 6, 7, and 6 features in common across feature

sets) than on the nfv-PPA versus sv-PPA task (with 5, 4, and 4 features in common). Also,

the PPA and control classes are more significantly differentiated by the associated top n = 10

features than the nfv-PPA and sv-PPA classes; all features selected across feature sets in the

PPA versus control case are significant at α ≤ 0.05 (mean p = 0.003,(σ = 0.008)) but fewer

than half of the features across feature sets in the nfv-PPA versus sv-PPA case are significant

(mean p = 0.131,(σ = 0.156)).

3.3.3 Results

Our experiments compare diagnostic accuracy across a number of empirical variables, namely

the task (PPA vs. controls or sv-PPA vs. nfv-PPA), feature set (‘Feat. set’: text-only, acoustic-

only, all), classifier (naı̈ve Bayes (NB), support vector machine (SVM), and random forests

(RF)), number of features considered for classification (‘Num. feat.’: 2, 5, 10, 15, 20), and the

method of feature selection used to derive these reduced sets (‘Feat. select’, described in Sec-

tion 3.3.2). We optimize the SVM classifier over several combinations of kernel (polynomial

of degree 1 or 2, or radial basis function) and complexity (c = {0.01,0.1,1,10,100}). We opti-

mize RF for the number of trees (I = {5,10,15,20}) and the random seed (S = {1,2,3,4,5}).

Accuracies of diagnostic classification were obtained for each of the possible permutations of

our empirical parameters using leave-one-out cross-validation.

Table 3.10 shows the results of a multi-way analysis of variance (ANOVA) across each

of our empirical variables. Each empirical parameter contributes significantly to the variance

except for the number of features. Table 3.11 partitions rates of accurate diagnosis across tasks,

feature sets, classifiers, and methods of feature selection. As expected, distinguishing PPA

participants from controls is significantly easier than classifying among sub-types of PPA (p <

0.0001). Interestingly, although the effect size of considering all possible features rather than
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mRMR p-value

PP
A
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ls

te
xt

frequency, verbalRate, totalDepth,
nounFrequency, verbFrequency, verbs,
aveLengthWord, demonstratives,
totalWords, familiarity

verbalRate‡, frequency‡,
aveLengthWord‡, demonstratives‡,
nounFamiliarity‡, nounFrequency‡,
familiarity‡, verbFrequency‡, nouns‡,
pronounRatio†

ac
ou

st
ic

phonationRate, meanF2, meanRPDE,
skewness pause:wordRatio,
meanDurationOfPauses,
meanInstantaneousPower, F0variance,
longPauseCount, meanF0

phonationRate‡, meanRPDE‡,
longPauseCount‡, short- PauseCount‡,
meanDurationOfPauses‡,
meanInstantaneousPower‡, shimmer‡,
skewness†, kurtosis∗, pauseWordRatio∗

al
l

phonationRate, familiarity,
F2variance, verbalRate,
nounFrequency, verbFrequency,
meanRPDE, nounRatio,
TUnitsPerSentence, demonstratives

phonationRate‡, verbalRate‡, frequency‡,
aveLengthWord‡, demonstratives‡,
meanRPDE‡, nounFamiliarity‡,
longPauseCount‡, nounFrequency‡,
familiarity‡

nf
v-

PP
A

ve
rs

us
sv

-P
PA

te
xt

nounFamiliarity, verbalRate,
imageability, nounFrequency,
adjectives, familiarity, determiners,
dependentClauses, nounAOA, S

familiarity‡, nounFamiliarity‡,
nounFrequency‡, dependent-
ClausesPerClause∗, um∗, complexTUnits,
dependentClauses, verbFamiliarity,
demonstratives, determiners

ac
ou

st
ic

ZCR, shortPauseCount, skewness,
totalDurationOfSpeech, F0variance,
jitter, shimmer, meanF0, meanRPDE,
phonationRate

meanFirstAutocorrFunc∗, jitter,
totalDurationOfSpeech,
maxFirstAutocorrFunc, pauseWordRatio,
F3variance, F2variance, meanF2,
meanF0, longPauseCount

al
l

imageability, familiarity, jitter,
verbalRate, nounFrequency,
clausesPerTUnit, nounFamiliarity,
shortPauseCount, ZCR,
demonstratives

familiarity‡, nounFamiliarity‡,
nounFrequency‡, dependent-
ClausesPerClause∗, um∗,
meanFirstAutocorrFunc∗, complex-
TUnits, dependentClauses,
verbFamiliarity, demonstratives

Table 3.9: Selected features (n = 10) for each task and feature set using the mRMR and
p-value methods. Features in bold and italic appear in the associated selected feature sets
for n = 2 and n = 5 of the mRMR method, respectively; features marked with ‡, † and
∗ represent features on which the given classes are significantly different at α = 0.005,
α = 0.01, and α = 0.05, respectively.

only textual features is small (Cohen’s d = 0.1363), the difference in accuracy is significant

(p < 0.05). If we consider each task separately, adding acoustics to textual features always

increases accuracy, but not significantly (PPA vs. controls: µtext = 90.4%, µall = 91.2%, p =
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Mean sq. F p

Task 7132.24 196.26 2.27e−32
Feat. select. 679.69 18.70 2.31e−05
Feat. set 2700.66 74.31 1.96e−25
Num. feat. 50.59 1.39 0.24
Classifier 985.84 27.13 2.88e−11

Table 3.10: Multi-way ANOVA (F statistics and p values) on accuracy across task, feature
selection method, feature set, number of features, and classifier. Statistically significant
(α = 0.05) results are in bold.

0.24; sv-PPA vs. nfv-PPA: µtext = 78.8%, µall = 80.4%, p = 0.17).

Variable Value Accuracy (%)

Task
PPA vs controls µ = 87.39,(σ = 6.79)

sv-PPA vs nfv-PPA µ = 75.59,(σ = 11.37)

Feat. set
text µ = 84.62,(σ = 8.51)

acoustic µ = 74.05,(σ = 11.59)
all µ = 85.80,(σ = 8.84)

Classifier
NB µ = 77.48,(σ = 12.87)

SVM µ = 82.13,(σ = 11.30)
RF µ = 84.85,(σ = 6.95)

Feat. select.
pvalue µ = 83.73,(σ = 8.28)

mRMR µ = 80.37,(σ = 12.08)

Table 3.11: Average accuracy µ (and standard deviation σ ) across experiments partitioned
by task, feature set, classifier, and method of feature selection.

Figure 3.7 shows graphs of accuracy over the number of features in feature sets for each

type of feature set (text, acoustic, all) and each task (PPA vs. control and sv-PPA vs. nfv-PPA).

3.3.4 Discussion

The naı̈ve Bayes method performed surprisingly well here, although generative approaches

can sometimes outperform discriminative ones on small data sets (Ng and Jordan, 2002). The

feature selection method can affect the accuracy of NB, as illustrated in Figure 3.7d. For

a feature set of size two, the NB classifier achieved an accuracy of 83% using the p-value
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(a) PPA vs. controls (text) (b) sv-PPA vs. nfv-PPA (text)

(c) PPA vs. controls (acoustic) (d) sv-PPA vs. nfv-PPA (acoustic)

(e) PPA vs. controls (all) (f) sv-PPA vs. nfv-PPA (all)

Figure 3.7: Accuracies across task (PPA vs. control, sv-PPA vs. nfv-PPA) and feature
set (text, acoustic, all) for NB (red), SVM (blue), and RF (green). Star-shaped points
represent accuracies obtained using mRMR; circles represent those obtained using the
p-value method.
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method, and only 29% using mRMR. We hypothesize that this is because the p-value filter,

which chooses features on the basis of their mean and variance, is choosing exactly those

features which would best distinguish the groups in a Gaussian framework. Indeed, the top

two features chosen by mRMR (ZCR and short pause count) both have bimodal (non-Gaussian)

distributions.

The utility of the acoustic features appears to vary depending on the classification task. For

the task of classifying PPA versus controls, it is unsurprising that features like phonation rate

and short and long pause counts are informative, reflecting the language difficulties experienced

by the PPA patients. Other features which were significantly different between the groups,

including mean RPDE, mean instantaneous power, shimmer, skewness, and kurtosis, have not

to our knowledge been previously reported for PPA.

However, only one acoustic feature, mean first autocorrelation function, significantly dif-

ferentiated the sv-PPA and nfv-PPA groups. This lack of distinguishing features is somewhat

unexpected, as sv-PPA patients are often described as more “fluent” than nfv-PPA patients,

suggesting they could be distinguished on the basis of characteristics such as phonation rate

and number of pauses. However, fluency may be a poor marker for subtyping PPA, in part

because patients without nfv-PPA may show “intermittent dysfluency” due to word-finding

difficulties (Thompson et al., 2012). Wilson et al. (2010) also found reduced average speech

rate for both nfv-PPA and sv-PPA, and suggested that measuring maximum speech rate might

be more useful for distinguishing them. In general, although acoustic features have a practical

advantage in that they can be extracted directly from the audio file, their usefulness appears to

be limited to the case of differentiating between PPA patients and controls.

3.4 New syntactic features for PPA classification

In our initial analysis of PPA using the manual transcripts (Section 3.2), we found that only

one syntactic feature differed significantly between sv-PPA and nfv-PPA (dependent clauses
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per clause, p = 0.047), and between nfv-PPA and controls (T-units per sentence, p = 0.023).

This was somewhat surprising, since the literature suggested that nfv-PPA speech would exhibit

reduced syntactic complexity and increased agrammatism. However, it is not clear whether our

results indicate a lack of syntactic impairment in the nfv-PPA group in our study, or whether

the syntactic metrics we used were simply not sensitive enough.

Motivated by this uncertainty, in this section we present a new set of features that measure

the frequency of different context-free grammar constituents in each narrative sample. The

context-free grammar (CFG) is a popular formalism for modelling the structure of language,

based on the idea that language can be described by a set of rules (also called constituents or

productions) and a set of words and symbols (also called the lexicon) (Jurafsky and Martin,

2000). By embedding these rules hierarchically, we can construct sentences of arbitrary com-

plexity. An example of a CFG representation of a sentence is given in Figure 3.8. By counting

the frequency of occurrence of each production, we can compare the frequency distribution of

different grammatical constructions across groups.

To test that these features could detect atypical syntax, we first conducted a study com-

paring Cinderella narratives from patients with post-stroke agrammatic aphasia with healthy

controls (Fraser et al., 2014b). We found that we could achieve a better classification accu-

racy using the CFG features than traditional measures of syntactic complexity, and that many

of the features could be interpreted with respect to previous findings on agrammatic speech,

such as a reduced number of prepositional phrases, difficulty with grammatical morphemes

(e.g., possessive markers), and an increase in filled pauses and repetitions. Given this success-

ful proof-of-concept, we now examine whether these features uncover syntactic differences

between the PPA and control groups, and between the two PPA subtypes.

Syntactic complexity metrics derived from parse trees have been used by various researchers

in studies of mild cognitive impairment (Roark et al., 2011), autism (Prud’hommeaux et al.,

2011), and child language development (Sagae et al., 2005; Hassanali et al., 2013). Here we

focus specifically on the use of CFG production rules as features. Using the CFG production
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Figure 3.8: Context-free grammar (CFG) representation of a sentence. We count the fre-
quency of occurrence of each non-lexical production, e.g., ROOT→ S, S→ NP VP, NP
→ NNP, and so on. We do not count productions containing terminal symbols (words),
e.g., NNP→ Cinderella.

rules from statistical parsers as features was first proposed by Baayen et al. (1996), who ap-

plied the features to an authorship attribution task. More recently, similar features have been

widely used in native language identification (Wong and Dras, 2011; Brooke and Hirst, 2012;

Swanson and Charniak, 2012). Perhaps most relevant to the task at hand, CFG productions as

well as other parse outputs have proved useful for judging the grammaticality and fluency of

sentences. For example, Wong and Dras (2010) used CFG productions to classify sentences

from an artificial error corpus as being either grammatical or ungrammatical. Taking a different

approach, Chae and Nenkova (2009) calculated several surface features based on the output of

a parser, such as the length and relative proportion of different phrase types. They used these

features to distinguish between human and machine translations, and to determine which of a

pair of translations was the more fluent.

To our knowledge there has been no work using CFG features to assess the grammaticality

of speech from individuals with dementia or aphasia. In related work, Meteyard et al. (2014)
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counted the frequency of some syntactic constructions in sv-PPA and controls; they found an

absence of frank agrammatism but reported a reduced range of syntactic constructions in sv-

PPA, as well as some evidence for syntactic simplification.

3.4.1 Feature extraction

For the CFG production rules, we use the Charniak parser (Charniak, 2000) to parse each

utterance in the transcript and then extract the set of non-lexical productions. Our choice

of parser is based on the recommendations of Wong and Dras (2010). The total number of

production types is large, many of them occurring very infrequently, so we compile a list of the

100 most frequently occurring productions in each of the three groups (sv-PPA, nfv-PPA, and

controls) and use the combined set as the set of features. Here we consider integer frequency

counts for each feature. The CFG non-terminal symbols follow the Penn Treebank naming

conventions (Santorini, 1990).

3.4.2 Analysis of differences between groups

Rather than looking at individual features, of which there are 134 in our analysis, we first

consider the distributions across features. To make the task more manageable, we group the

features by the left-hand side of the rule. In this way, we can examine whether there are

differences between the groups in how they choose to construct different types of phrases.

Here we restrict our analysis to noun phrases, verb phrases, and prepositional phrases.

Figure 3.9 shows the frequency counts for different noun phrase (NP) structures in each

group, Figure 3.10 shows the frequency counts for different verb phrase (VP) structures, and

Figure 3.11 shows the frequency counts for different prepositional phrase (PP) structures. Raw

frequency counts are used rather than ratios, to allow for χ2 testing, below.

Looking at the bar graphs, we are able to pick out some qualitative differences between

the groups. For example, when we consider the noun phrases in Figure 3.9, we observe lower

counts for NP → NNP in the two PPA groups relative to controls, and greater counts for
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NP→ DT (especially considering the smaller size of the PPA groups). To examine such dif-

ferences in a more rigorous way, we perform statistical testing to determine (1) whether there

is a significant difference between the distributions, and (2) which features are contributing to

the difference.

To compare the distributions of categorical data, we use the χ2 test. This statistical test

can be used to measure whether two (or more) population distributions are identical (McHugh,

2013). The null hypothesis is that the data were all drawn from the same distribution. Here,

the null hypothesis is that patients from each group do not significantly differ in their prefer-

ence for each grammatical construction. One benefit of χ2 analysis is that it is appropriate for

comparing unequal sample sizes, as we do here (McHugh, 2013). A limitation of this formu-

lation is that χ2 analysis assumes that the data were independently sampled, when clearly a

number of the constituents will have been produced by the same person, and therefore are not

independent. However, this assumption is often violated in practice (McHugh, 2013).

For each constituent type, our analysis is the same: first perform a χ2 test to determine

whether there is a significant difference between the groups. If so, then perform a post-hoc χ2

test (with Bonferroni adjustment) to determine the effect between each pairwise combination of

groups. The results of these tests are in Table 3.12. If a significant effect is found, we determine

the individual variables which contribute to the lack of fit between the distributions. Following

Agresti (2003), we use the Pearson standardized residual to identify features of interest. This

method requires a threshold value; Agresti (2003) suggests a cut-off of “about 2 or 3” (p. 81).

We split the difference and use a threshold of 2.5. Those features with a standardized residual

greater than 2.5 are reported in Table 3.13.
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Figure 3.9: Frequency counts of noun phrase productions in each group.
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Figure 3.10: Frequency counts of verb phrase productions in each group.
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Figure 3.11: Frequency counts of prepositional phrase productions in each group.

Constituent head χ2 d.f. p
VP 185.9471 90 1.192e-08*

Post-hoc: controls vs. sv-PPA 115.5328 45 4.045e-08*
controls vs. nfv-PPA 75.0373 45 0.003283*
sv-PPA vs. nfv-PPA 85.8254 45 0.0002352*

NP 192.8707 72 5.555e-13*
Post-hoc: controls vs. sv-PPA 124.5016 36 1.12e-11*

controls vs. nfv-PPA 89.2601 36 2.04e-06*
sv-PPA vs. nfv-PPA 63.7956 36 0.002913*

PP 33.378 8 5.264e-05*
Post hoc: controls vs. sv-PPA 31.7741 4 2.128e-06*

controls vs. nfv-PPA 9.8792 4 0.04251
sv-PPA vs. nfv-PPA 13.3384 4 0.009735*

Table 3.12: Results of χ2 testing. Significant effects are marked with *. Main effects are
significant at α = 0.05 and post-hoc effects are significant at α = 0.016.

As in Section 3.2.1, we find that the sv-PPA versus controls task has the highest number

of distinguishing features. In some ways this is counter-intuitive, as we might expect these

grammar-based features to be more relevant to the two nfv-PPA classification tasks. However,

a closer look at the selected features reveals that the features capture some semantic informa-
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Rule controls (total) sv-PPA (total) controls (mean) sv-PPA (mean)
VP→ VBD SBAR 59 11 3.69 1.00
VP→ VBD S 42 9 2.63 0.82
VP→ AUX RB VP 29 40 1.81 3.64
VP→ VBD NP PP 21 3 1.31 0.27
VP→ VBG PP 15 28 0.94 2.55
VP→ VBZ PP 14 1 0.88 0.09
VP→ VBP 5 12 0.31 1.09
NP→ PRP 690 543 43.13 49.36
NP→ NNP 54 16 3.38 1.45
NP→ DT NN 349 166 21.81 15.09
NP→ DT NN NN 35 4 2.19 0.36
NP→ PRP$ NN NN 11 0 0.69 0.00
NP→ DT 33 59 2.06 5.36
NP→ EX 9 23 0.56 2.09
PP→ IN NP 322 251 20.13 22.82
PP→ TO NP 111 35 6.94 3.18
PP→ IN PP 1 8 0.06 0.73

(a) Control versus sv-PPA features.

Rule controls (total) nfv-PPA (total) controls (mean) nfv-PPA (mean)
VP→ VBN PP 33 6 2.06 0.46
VP→ AUX SBAR 9 16 0.56 1.23
NP→ DT 33 52 2.06 4.00
NP→ EX 9 17 0.56 1.31
NP→ NNP NNP 2 9 0.13 0.69
NP→ DT NP CC NP 1 6 0.06 0.46

(b) Control versus nfv-PPA features.

Rule sv-PPA (total) nfv-PPA (total) sv-PPA (mean) nfv-PPA (mean)
VP→ AUX VP 90 49 8.18 3.77
VP→ VBD SBAR 11 24 1.00 1.85
VP→ VBD S 9 22 0.82 1.69
VP→ VBG NP 17 3 1.55 0.23
NP→ NNS 28 8 2.55 0.62
PP→ TO NP 35 57 3.18 4.38

(c) sv-PPA versus nfv-PPA features.

Table 3.13: Features with a standardized residual greater than 2.5 in the χ2 test (i.e. those
features which contribute to the lack of fit between the distributions).
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tion, as well. To help interpret the results in Table 3.13, we present some examples of these

constructions from the data, and discuss their relation to the expected language impairments in

each subtype.

Controls vs sv-PPA

The first two rules from Table 3.13a show that controls are more likely than sv-PPA patients to

create a verb phrase from a past-tense verb (VBD) and an independent or dependent clause (S

or SBAR, respectively). An example of this construction from the control data is: Cinderella

realized it was midnight. One question that arises is whether sv-PPA participants are less likely

to attach clauses to verbs, or whether they are less likely to use past-tense verbs in general. If

we consider all cases where an S-clause occurs after a verb in a verb phrase, we find a greater

number in the control data (81 cases for controls, average: 5.06 per narrative; 42 cases for sv-

PPA, average: 3.82 per narrative). For SBAR-clauses occurring after a verb in a verb phrase,

we also find a greater number in the control data (154 cases for controls, ave: 9.63; 71 for

sv-PPA, ave: 6.45). Considering instead the question of verb tenses, we find many more verb

phrases containing past tense verb forms (VBD) in the control data (240 examples for controls,

ave: 15.0; 94 for sv-PPA, ave: 8.54). So it would appear that sv-PPA participants are less likely

to use past-tense verbs and less likely to attach clauses to verbs in general.

The next rule, VP→ AUX RB VP, occurs more often in sv-PPA narratives than in control

narratives. In some cases, this represents narrative content, such as She wasn’t going (where

was is the auxiliary and the negation is the adverb). However, in 60% of cases (24 out of 40,

as labelled by hand), the construction is used in an expression of semantic difficulty, such as I

don’t know or I didn’t see him.

We then have three verb phrases involving prepositional phrases. VP→ VBD NP PP and

VP→ VBZ PP are used more frequently by controls, while VP→ VBG PP is used more fre-

quently in the sv-PPA group. Meteyard et al. (2014) found that patients with sv-PPA produced

significantly more verbs in -ing forms than controls, and the same effect could be driving the
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results here, particularly given our observation that sv-PPA patients are less likely to use -ed

endings.

The last VP rule is VP → VBP, or verb phrases consisting of only a present-tense verb.

While these constructions are not common in either group, they are more common in the sv-

PPA group. Examining the data, one sv-PPA utterance using this construction is a narrative

statement (away they go), while the rest are discourse markers like you know and hedging

phrases like I think or I guess.

Turning to the noun phrases, we see that sv-PPA participants use more pronouns and fewer

proper nouns per narrative than controls, as expected. They also use fewer noun phrases con-

sisting of a determiner and a noun, and fewer noun phrases consisting of a determiner and two

nouns. Examining the second case in more detail, we find that the two most common instantia-

tions of NP→ DT NN NN are references to the fairy godmother or the glass slipper(s). Only

one of the sv-PPA participants uses the word glass to describe Cinderella’s shoes (and as men-

tioned previously, none of the sv-PPA participants refer to Cinderella’s footwear as slippers).

Furthermore, none of the sv-PPA participants describe the fairy godmother as such, instead

describing her as simply a fairy, or in some cases a witch or an angel. The rule NP→ PRP$

NN NN is another example of this phenomenon.

In contrast, we find that sv-PPA participants are more likely to use noun phrases consisting

of only a determiner. In most cases this corresponds to use of a demonstrative pronoun, e.g.,

stuff like that or he get this. Meteyard et al. (2014) also found that sv-PPA participants used

significantly more demonstrative pronouns than controls. Participants with sv-PPA are also

more likely to use EX, the “existential there”; examples from the sv-PPA group include there’s

one type of small animals and there was a party coming on.

Finally, we consider prepositional phrases. PP→ TO NP is used more frequently in control

narratives than sv-PPA narratives, while the other two PP constructions are more common (on

average) in the sv-PPA groups. In total the control group uses 453 (ave: 28.31) prepositional

phrases, and the sv-PPA group uses 317 (ave: 28.81). So sv-PPA and control participants
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use approximately the same number of prepositional phrases, on average. However, out of

those totals, 25% of prepositional phrases produced by controls take the form of PP→ TO NP,

and only 11% of those produced by sv-PPA participants do. The difference between this rule

and all the other rules with PP on the left-hand side is that the preposition is tagged with TO

(indicating the word to) rather than IN (indicating a preposition or subordinating conjunction

more generally). In particular, to is a preposition of movement: it expresses a movement from

one place to another. Some examples from the control data include they went to Cinderella’s

house and she went to the ball. Since all the other prepositions are grouped together under

the category IN, we cannot say whether this represents a specific deficit for to prepositions in

sv-PPA, or whether perhaps there is another preposition which is favoured over all others.

Controls versus nfv-PPA

For controls versus nfv-PPA, there are two verb phrase constructions in Table 3.13b. The

first takes the form VP → VBN PP. Examination of the parse trees reveals that 6 of the 33

productions of this rule in the control group (18%) were due to parse errors where past tense

verbs were mistakenly tagged as past participles – an easy mistake, since they take the same

form for regular verbs. The correctly tagged instances correspond to phrases like she was

relegated to doing all the menial tasks and they were turned into horses. However, in the nfv-

PPA group, only one instance of the rule accurately corresponds to use of the past participle. If

we count up the total frequency of VBN occurrences in the data, we find 52 cases in the control

data and only 14 in the nfv-PPA data. Given that the correct use of a past participle involves

both an auxiliary verb and an inflected form, this may reflect an underlying agrammatism or

syntactic simplification in the nfv-PPA group.

VP→ AUX SBAR occurs more frequently in the nfv-PPA group. In 3/16 of the cases, this

corresponds to a grammatical construction (e.g., that’s who she married). In the majority of

cases, however, it actually corresponds to a false start and subsequent repair, such as she is the

she was a slave and they were it was all about them.
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The first two NP rules in Table 3.13b involve the use of demonstrative pronouns and “exis-

tential there”, as discussed above in the sv-PPA versus control case. Again, these constructions

are used more frequently in the patient data, suggesting that they are features of PPA speech in

general.

The last two rules in the nfv-PPA versus controls case have very small frequency counts,

so their generalizability is unclear, but in this corpus nfv-PPA participants use NP → NNP

NNP and NP → DT NP CC NP more than controls. The first case corresponds to multiple

attempts at the word Cinderella, or non-word paraphasias in general (when a word is not in

the parser’s vocabulary, it often resorts to tagging it as a proper noun). The second case occurs

6 times in the nfv-PPA group, and every time corresponds to a repeated determiner (e.g., the

the footwear and the prince). Note that if the determiner wasn’t repeated, then matching rule

would be simply NP→ NP CC NP, which occurs 21 times in the nfv-PPA group (ave: 1.62)

and 46 times in the control group (ave: 2.88).

Differentiating PPA subtypes

On average, the construction VP→ AUX VP occurs over twice as often per-narrative in the sv-

PPA group as in the nfv-PPA group. Many of the examples correspond to the past progressive

tense (she was working, she was running out). This is consistent with (1) an increased reliance

on -ing forms in sv-PPA, and (2) decreased production of function words, such as auxiliaries,

in nfv-PPA.

The next two VP rules (VP→ VBD SBAR and VP→ VBD S) correspond to the first two

rules in Table 3.13a, and have been discussed at length above. Again, we observe that these

constructions are used less frequently in the sv-PPA group relative to the nfv-PPA group. This

suggests that the effect is due to the notable lack of such constructions in sv-PPA rather than an

increase in nfv-PPA (in fact, nfv-PPA production of these constructions is also reduced relative

to controls, but to a lesser degree).

The final VP construction takes the form VP→ VBG NP, and is more frequent in the sv-
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PPA group. Unfortunately, it appears that 6/17 of those cases are due to a parser error, where

the filled pause um is mis-tagged as VBG.4 The remaining 11 cases are either past or present

progressive (e.g., she was making clothing, they’re doing something), in line with previous

results from this section.

Looking at NP → NNS, it appears that participants in the sv-PPA group use more plural

nouns without determiners. Figure 3.9 shows that sv-PPA participants use this construction

more than controls, and nfv-PPA participants use this construction far less than controls. If we

include all constructions with NNS (i.e. including NP→ DT NNS and NP→ PRP$ NNS), the

trend still holds: controls use an average of 4.25 plural nouns per narrative, sv-PPA participants

use 5.6, and nfv-PPA participants use only 2.8. This deficit for plural nouns in nfv-PPA may

be related to an impairment in grammatical morphology.

Finally, the last entry in Table 3.13c represents the paucity of PP → TO NP structures in

the sv-PPA data, as discussed above. Again, the frequency of this structure is also reduced in

the nfv-PPA group relative to controls, but not to the extent that is seen in sv-PPA. Therefore,

this should be interpreted as a feature whose reduction distinguishes sv-PPA in general, rather

than whose increase distinguishes nfv-PPA.

3.4.3 Phrase-level statistics

We also consider a set of phrase-level statistics. These are a subset of the features described by

Chae and Nenkova (2009), and are related to the incidence of different phrase types. We again

consider three different phrase types: noun phrases, verb phrases, and prepositional phrases.

These features are defined as follows:

• Phrase type proportion Total number of words in each phrase type (including embed-

ded phrases), divided by total number of words in the narrative.

4The reason for this is unclear, since present participles end with “ing” in English, but is presumably related
to the parser trying to manipulate ungrammatical text to fit a more probable construction.



CHAPTER 3. CLASSIFICATION OF PPA FROM MANUAL TRANSCRIPTS 88

• Average phrase length Total number of words in each phrase type, divided by number

of phrases of that type.

• Phrase type rate Number of phrases of a given type, divided by total number of words

in the narrative.

Because we are interested in the grammaticality of the entire narrative, we normalize by narra-

tive length (rather than sentence length, as in Chae and Nenkova’s study). These features are

real-valued.

When we compare the group means on each of these measures, a two-tailed t-test reveals an

uncorrected significant difference on sv-PPA versus controls for VP proportion (sv-PPA mean

2.06, control mean 2.89, p= 0.03), average VP length (sv-PPA mean 9.67, control mean 13.09,

p = 0.04, and average NP length (sv-PPA mean 2.99, control mean 3.83, p = 0.03). However,

none of these differences are significant if we correct for multiple comparisons.

3.4.4 Discussion

While detailed analysis of the sort presented above can help contextualize individual CFG

features, it can be easy to lose sight of the overall picture. Here, we will summarize some of

the key findings from this section at a higher level.

Syntactic productions can reflect semantic impairment

There were a number of different features which distinguished the sv-PPA group from con-

trols. Many of the phenomena observed here seem to relate more clearly to a semantic deficit

than a syntactic one, including an increase in the number of personal pronouns and demon-

strative pronouns, a decrease in proper nouns and noun phrases corresponding specifically to

story elements like the fairy godmother and the glass slippers, and an increase in structures

corresponding to extra-narrative comments on word-finding difficulties, like I don’t know. In

some sense, these production rules may be seen as an extension of our previous approach of
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counting individual parts-of-speech, except that we now consider syntactic labels higher in the

hierarchy than individual POS tags. Since it has already been established that the distribution

of POS tags changes in the presence of semantic impairment (e.g., increasing verbs, decreas-

ing nouns), it is unsurprising that the distributions of higher-order syntactic structures are also

affected.

Potential syntactic changes in sv-PPA

There were, however, some constructions which appeared to point to syntactic, rather than

semantic, changes in sv-PPA. Specifically, sv-PPA participants used -ing verbs in progressive

tenses more frequently than controls or nfv-PPA participants, and showed a corresponding

deficit in other verb forms. They also showed a reduction in prepositional phrases consisting of

the preposition to followed by a noun phrase. Previous work has also found an increase in -ing

verbs in sv-PPA (Meteyard et al., 2014), although the potential relevance of the second result

will require further investigation.

While the extent to which grammar is compromised in sv-PPA is still an open research

question, other researchers have theorized that differences in semantics will result in differ-

ences in the syntactic structures which are selected in narrative speech. Meteyard and Patter-

son (2009) suggest that as the disease progresses, sv-PPA patients may rely heavily on highly

frequent structures and routinized phrases, paralleling their reliance on highly frequent lexical

items. They also found evidence of syntactic errors, concluding that “Whilst there was no evi-

dence of gross syntactic violations, there was definitely an increased rate of errors on free and

bound closed class items, and syntactic anomalies occurred when lexical retrieval went awry.”

Meteyard et al. (2014) found that their sv-PPA patients showed a reduced range of complex

structures, and a different distribution of constructions relative to controls, much as we did

here.
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Relationship between speaker errors and parser errors

In the nfv-PPA case, many of the relevant features corresponded to dysfluencies produced by

the nfv-PPA speakers (e.g., repetitions, false starts). Modern statistical parsers take a rather

descriptionist view of grammar: they generally will not fail on an ungrammatical sentence,

they will simply apply the rules of the grammar as best they can to produce the most probable

parse of the sentence. In some cases, this results in the use of low-frequency rules, as we saw

in the case of NP → DT NP CC NP. These low-frequency rules may be used to detect the

occurrence of dysfluencies in the samples.

The other side of this issue is that the parser often makes mistakes when the input does not

conform to the expected grammar. For example, only 1/6 cases of the production VP→ VBN

PP in nfv-PPA actually contained a past participle verb. A future direction for analysis of this

type could be to associate a confidence score to each structure, as in Lin and Weng (2008), to

help determine the trustworthiness of the parser output.

Distinguishing between subtypes

One motivation for introducing these features was to find additional features that distinguish

between the two subtypes of PPA. Interestingly, while some of the features which distinguished

nfv-PPA from controls did point to the occurrence of dysfluencies in the nfv-PPA group, these

features did not distinguish between sv-PPA and nfv-PPA. Similarly to Section 3.2, most of the

relevant features seem to be related to deficits in sv-PPA rather than nfv-PPA, although some

of the features did hint at difficulties with grammatical morphology in nfv-PPA.

It has been suggested that narrative speech is not the most sensitive measure of syntac-

tic impairment, since people in general (healthy and impaired) tend to naturally use simpler

structures in such situations (Benedet et al., 2006; Meteyard and Patterson, 2009; Wilson et al.,

2010). Despite identifying a number of differing features between the subtypes, this analy-

sis did not conclusively point to an obvious syntactic deficit in nfv-PPA relative to sv-PPA.

However, the practical utility of these features has yet to be tested in a classification task (see
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Section 3.5, below).

Conclusion

The analysis presented in this section is limited in a number of ways: we have only a small

sample of data, it involved an arbitrary cut-off of the 100 most frequent productions per group

and then a semi-arbitrary cut-off of 2.5 for the magnitude of the Pearson residual, we limited

our analysis to NPs, VPs, and PPs, and some of the results seem to correspond specifically

to the task of Cinderella story-telling with unclear generalizability to other forms of speech

production. However, we can conclude that there are differences in the CFG productions pro-

duced by the patient groups, and that in most cases they appear to be associated with expected

changes in language in PPA. In the next section, we will explore the utility of these features in

the classification framework.

3.5 A comparison of feature sets for PPA classification5

At this point, we have a large number of features from both the transcripts and the associated

audio files. To conclude this chapter, we conduct a thorough analysis of which types of features

are most useful to the classification tasks. This is a matter of both theoretical and practical

interest. To learn more about PPA, we would like to know which aspects of language are most

affected by the disease: The number of unique words used? The syntactic classes of the words?

The structure of the sentences? The fluency of speech? and so on. However, we would also

like to know if there are some features which simply are not worth measuring, either because

they measure characteristics of speech or language which are not affected in PPA, or because

they are too noisy or inconsistent to be of value.

We perform two experiments. We first evaluate the individual feature sets on their classi-

5The material presented in this section was previously published in: Kathleen C. Fraser, Graeme Hirst, Naida
L. Graham, Jed A. Meltzer, Sandra E. Black, and Elizabeth Rochon (2014). Comparison of different feature
sets for identification of variants in progressive aphasia. Proceedings of the 1st Workshop on Computational
Linguistics and Clinical Psychology (CLPsych), Baltimore, Maryland.
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fication accuracy, and then perform an ablation study to determine the optimal combination of

feature sets.

3.5.1 Feature sets

The features in this section have been previously introduced; here we simply describe the

grouping of the features into different feature sets. Table 3.14 presents the seven feature sets,

the abbreviation for the sets, and a description of the features assigned to each set. In many

cases the groupings are self-explanatory; however, a few features were somewhat ambiguous.

We assigned word length to the “Complexity” set, with the rationale that it measures word-level

complexity. The total number of words was assigned to the “Fluency” set. The “Vocabulary

richness” set includes a variation on type:token ratio (TTR) called moving average type:token

ratio (MATTR), introduced by Covington and McFall (2010) as an alternative to TTR which

is not dependent on sample length.

Acoustic (A) Features derived directly from the audio file, e.g., mean pause duration,
fundamental frequency variance.

Complexity (C) Features capturing some notion of syntactic complexity, e.g., mean Yn-
gve depth, mean length of utterance.

CFG production rules (CFG) Features derived from frequency counts of CFG con-
stituents and phrase-level features, e.g., NP→ DT NN, VP proportion.

Fluency (F) Features measuring aspects of fluency from the transcripts, e.g., number of
filled pauses, number of NID words.

Psycholinguistic (P) Features relating to the psycholinguistic properties of words, e.g.,
frequency, familiarity.

Part-of-speech (POS) Features measuring the distributions of different POS categories,
e.g., noun:verb ratio, number of adverbs.

Vocabulary richness (VR) Features measuring the lexical diversity of the sample, e.g.,
type:token ratio, Brunét’s index.

Table 3.14: Feature set names, abbreviations (in parentheses), and descriptions.
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3.5.2 Experiments

We report the results of two experiments exploring the discriminative power of the different

features. We first compare the classification accuracies using each individual feature set. We

then perform an ablation study to determine which combination of feature sets leads to the

highest classification accuracy. Unlike in previous sections, we do not perform feature selec-

tion; rather we include or exclude entire sets of features at a time.

Accuracies using individual feature sets

The accuracies which result from using each feature set individually are given in Table 3.15.

The highest accuracy across the three tasks is achieved in distinguishing sv-PPA participants

from controls. An accuracy of .963 can be achieved using all the features together, or using

the psycholinguistic or POS features alone. This is consistent with the semantic impairments

that are observed in sv-PPA. The measures of vocabulary richness do not distinguish between

the sv-PPA and control groups, suggesting it is the words themselves, and not the number of

different words being used, that is important.

In the case of nfv-PPA participants vs. controls, we find that the highest accuracy of .931 is

achieved using all the features, and the second highest (.862) by using only acoustic features.

This suggests that the results of the PPA vs. controls experiment in Section 3.3 may have

been driven primarily by the nfv-PPA group (note that the accuracy using acoustic features to

detect sv-PPA is lower, at .778). The third best accuracy is achieved using the fluency features.

Both acoustic and fluency features could potentially detect the hesitant, halting speech that is

characteristic of nfv-PPA. Once again, the complexity and CFG features are not particularly

sensitive to this classification task.

Finally, the best accuracy for sv-PPA vs. nfv-PPA is lower than in the previous two cases,

and is achieved using only CFG features. This indicates that there are some grammatical con-

structions which occur with different frequencies in the two groups, as discussed in Section 3.4.

These differences do not appear to be captured by the complexity features, which explains why
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Feature set sv-PPA vs. controls nfv-PPA vs. controls sv-PPA vs. nfv-PPA
All .963 .931 .708
Acoustic .778 .862 .167
Psycholinguistic .963 .724 .708
POS .963 .690 .375
Complexity .852 .621 .667
Fluency .667 .828 .500
Vocab. richness .481 .586 .583
CFG .630 .690 .792

Table 3.15: Classification accuracies for each feature set individually using a SVM clas-
sifier. Bold indicates the highest accuracy for each task.

we did not find syntactic differences between the sv-PPA and nfv-PPA groups in Section 3.2.

Interestingly, the results using CFG features are actually higher than the results using all fea-

tures. This demonstrates that classifier performance can be adversely affected by the presence

of irrelevant features, especially in small data sets.

Combining feature sets

In the previous subsection we examined the feature sets individually; however, one type of

feature may complement the information contained in another feature set, or it may contain

redundant information. To examine the interactions between the feature sets, we perform an

ablation study. Starting with all the features, we remove each feature set one at a time and

measure the accuracy of the classifier. The feature set whose removal causes the smallest

decrease in accuracy is then removed permanently from the experiment, the reasoning being

that the most important feature sets will cause the greatest decrease in accuracy when removed

(Bethard, 2007). In some cases, we observe that the classification accuracy actually increases

when a set is removed, which suggests that those features are not relevant to the classification

(at least in combination with the other sets). In the case of a tie, we remove the feature set

whose individual classification accuracy on that task is lowest. The procedure is then repeated

on the remaining feature sets, continuing until only one set remains.

The results for sv-PPA vs. controls are given in Table 3.16a. The best result, 1.00, is
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Removed Remaining Features Accuracy
A+P+POS+C+F+VR+CFG .963

F A+P+POS+C+VR+CFG .963
A P+POS+C+VR+CFG 1.00
VR P+POS+C+CFG .926
CFG P+POS+C .926
C P+POS 1.00
POS P .963

(a) sv-PPA vs. controls.

Removed Remaining Features Accuracy
A+P+POS+C+F+VR+CFG .931

VR A+P+POS+C+F+CFG .931
C A+P+POS+F+CFG .931
POS A+P+F+CFG .931
CFG A+P+F .966
F A+P .966
P A .862

(b) nfv-PPA vs. controls.

Removed Remaining Features Accuracy
A+P+POS+C+F+VR+CFG .708

POS A+P+C+F+VR+CFG .750
VR A+P+C+F+CFG .833
F A+P+C+CFG .833
A P+C+CFG .792
C P+CFG .917
P CFG .792

(c) sv-PPA vs. nfv-PPA.

Table 3.16: Ablation study results. A=acoustic, P=psycholinguistic, POS=part-of-speech,
C=complexity, F=fluency, VR=vocabulary richness, CFG=CFG production rule features.
Bold indicates the highest accuracy with the fewest feature sets.

achieved by combining the psycholinguistic and POS features. This is unsurprising, since

each of those feature sets perform well individually. Curiously, the same result can also be

achieved by also including the complexity, vocabulary richness, and CFG features, but not in

the intermediate stages between those two optimal sets. We attribute this to the interactions

between features and the small data set.

For nfv-PPA vs. controls, shown in Table 3.16b, the best result of .966 is achieved using a
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combination of acoustic and psycholinguistic features. In this case the removal of the fluency

features, which gave the second highest individual accuracy, does not make a difference to

the accuracy. This suggests that the fluency features contain similar information to one of the

remaining sets, presumably the acoustic set.

In the case of sv-PPA vs. nfv-PPA, we again see that the best accuracy can be achieved by

combining two feature sets, as shown in Table 3.16c. Using psycholinguistic and CFG features,

we can achieve an accuracy of .917, a substantial improvement over the best accuracy for this

task in Table 3.15. In fact, in all three cases we see that using a carefully selected combination

of feature sets can result in better accuracy than using all the feature sets together or using any

one set individually.

3.5.3 Discussion

In the first experiment, we found that the single best feature set for distinguishing between

sv-PPA and controls was either psycholinguistic features (e.g., frequency, familiarity) or part-

of-speech features, the best feature set for distinguishing between nfv-PPA and controls was

acoustic features, with fluency features as a close second, and the best feature set for distin-

guishing between sv-PPA and nfv-PPA was the CFG feature set. In the second experiment we

found that by combining feature sets in a systematic manner, we could achieve better classifica-

tion results than either choosing any one feature set, or combining all the feature sets together.

Notably, our best result for classifying sv-PPA vs. nfv-PPA was achieved using a combination

of CFG and psycholinguistic features. The accuracy in that case was .917, a considerable in-

crease over the best accuracy (.792) on that task in Section 3.2. We conclude that while it may

be tempting to calculate as many features as possible and use them all in a classifier, better

results can be achieved by choosing a small, relevant subset of features.
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3.6 Summary

In this chapter, we showed that we can extract a large quantity of relevant information from

a short sample of patient speech. In the first section, we extracted a variety of syntactic, psy-

cholinguistic, and fluency-based features from the manual transcriptions of the Cinderella sto-

ries. Using these features, we could achieve high classification accuracies for distinguishing

between PPA participants and controls, but lower accuracy for distinguishing between the se-

mantic and nonfluent/agrammatic variants. Surprisingly, the syntactic features were not sig-

nificantly different in the nfv-PPA group relative to the sv-PPA group. A partial least squares

analysis showed good separation between all three groups in two dimensions. Importantly,

the features which were identified as being relevant to the distinction between groups were

consistent with previous literature in the field.

We then considered adding acoustic features to the classification pipeline. One benefit

of acoustic features is that they do not require a transcription of the stories; however, they

proved to be useful only in distinguishing between PPA patients and controls, and not between

the two subtypes. On the task of detecting PPA, important features included long and short

pause counts, mean duration of pauses, and phonation rate, which point to the word-finding

difficulties and dysfluencies that can be seen in PPA.

We then investigated a new set of features to analyze the syntactic changes in PPA in more

detail. By counting the frequency of occurrence of different CFG productions, we could iden-

tify the syntactic structures that were used more (or less) often in each group. Although formu-

lated as syntactic features, we found that some production rules were associated with semantic

phenomena. We also linked certain low-frequency rules to dysfluencies such as repetitions or

false starts.

Finally, we compared the performance of an SVM classifier when trained on different sets

of the features presented in the chapter. We first compared the accuracies that could be achieved

using each set of features individually, and found that the results varied depending on the classi-

fication task. Psycholinguistic, POS, acoustic, fluency, and CFG features were all identified as
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important, indicating that different features types capture different linguistic impairments. An

ablation study revealed that a combination of psycholinguistic and POS features was most suc-

cessful at distinguishing sv-PPA from controls, a combination of psycholinguistic and acoustic

features was most successful at distinguishing nfv-PPA from controls, and a combination of

psycholinguistic and CFG features was most successful at distinguishing between the two sub-

types of PPA.

The automated extraction of features from a transcript is incredibly time-saving relative

to manual annotation. Features as specific as the CFG features, which require parsing every

utterance in the transcript, are practically infeasible to extract manually. However, relying

on manual transcription and utterance segmentation is a major obstacle to creating a fully-

automated system of analysis. In the next chapter, we will consider the effects of incorporating

automatic speech recognition and automated boundary segmentation.



Chapter 4

Classification of PPA from real and

simulated ASR transcripts

It is clear that automatic speech recognition (ASR) will be necessary to create a fully auto-

mated, end-to-end analysis pipeline. However, as discussed in Section 2.6, speech recognition

systems do not tend to work well for older adults in general, and people with dementia in

particular. In this chapter, we present the results of an experiment using off-the-shelf ASR

software to recognize the speech samples in our data set, followed by an analysis of the effect

of the noisy recognition on the features, and on the subsequent classification accuracy.

In the second half of this chapter, we consider the related problem of automated sentence

segmentation. Since the output of an ASR system is typically a stream of text, an automatic

method for segmenting that text into meaningful syntactic units is required. In this study, we

train a classifier to label each interword boundary as either a sentence boundary or not, and

compare the results against the manual sentence boundary annotations. We also compare the

accuracy with the results we obtain on a corpus of news data. Once again, we consider the

effect of the noisy segmentation on relevant features, and the performance of classifiers trained

on such features.

99
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4.1 A preliminary exploration of automatic speech recogni-

tion for PPA classification1

Fully automated analysis of narrative speech will require automatic speech recognition (ASR)

in order to extract lexical and syntactic features from acoustic signals. Despite major improve-

ments in ASR technology over the past few decades, accuracy for unrestricted (i.e., ‘dictation-

style’) speech remains decidedly imperfect, and accuracy for older and impaired speakers is

often much worse. In order to estimate how effective a classifier of PPA and its subtypes might

be given textual transcripts derived from ASR, a wide range of potential system performances

must be considered, to account for real-world variation. This research approximates various

levels of ASR performance by randomly corrupting human transcripts according to pre-defined

levels of error and compares these results against actual output from a leading commercial dic-

tation system. Error levels are quantified by word-error rate (WER), which is the number of

erroneous insertions, deletions, and substitutions of words in an ASR transcript, divided by

the total number of words in a reference transcript2. Simulated ASR errors have been used in

various contexts, such as training dialogue systems (Schatzmann et al., 2007) and for testing

the safety of dictation systems for use in automobiles (Labský et al., 2012).

4.1.1 Features

Two sources of information are available for each participant individually, namely text tran-

scripts and acoustic samples. From these, we derive lexical/syntactic features from the tran-

scripts (features 1 and 27–58 in Table 3.2) and acoustic features from the audio samples (see

Table 3.8), giving a total of 54 available features.

1The material presented in this subsection was previously published in: Kathleen Fraser, Frank Rudzicz,
Naida Graham, and Elizabeth Rochon (2013). Automatic speech recognition in the diagnosis of primary progres-
sive aphasia. Proceedings of the Fourth Workshop on Speech and Language Processing for Assistive Technologies,
pp. 47–54

2If the number of insertions is large, it can overwhelm the total number of words in the reference transcript,
thereby allowing for WERs above 100%.
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In Chapter 3, when using manual transcripts, we examined measures which can be derived

from parse trees, such as Yngve depth, or the number and length of different syntactic con-

structions. However, such parse trees will depend on the location of the sentence boundaries in

the transcript, the placement of which can be a difficult task for ASR systems (Liu et al., 2006).

Indeed, the Nuance system used here does not place punctuation except by explicit command.

For the purposes of this preliminary study, we avoid using features which depend on accurate

sentence boundaries.

4.1.2 ASR and simulated errors

We use two methods to produce errorful textual transcripts. The first method represents the

current leader in commercial dictation software, Nuance Dragon NaturallySpeaking Premium;

here, audio files are transcribed by Nuance’s desktop dictation software. The second method

corrupts human-produced transcripts according to pre-defined levels of WER; this method al-

lows for an indirect approximation of the performance given a wide range of potential alterna-

tive ASR systems.

The Nuance Dragon NaturallySpeaking 12.5 Premium for 64-bit Windows dictation sys-

tem (hereafter, ‘Nuance’) is based on traditional hidden Markov modeling of acoustics and,

historically, on trigram language modeling (Francois, 2008). This system is initialized with

the default ‘older voice’ model suitable for individuals 65 years of age and older. The de-

fault vocabulary consists of 150,478 words, plus additional control phrases for use during

normal desktop dictation (e.g., “new paragraph”, “end of sentence”); this feature cannot be

deactivated. The core vocabulary, however, can be changed. In order to get a more restricted

vocabulary, all words used in the Cinderella data set plus all words used in a selection of 9 sto-

ries about Cinderella from Project Gutenberg (totalling 22,168 word tokens) were combined to

form a reduced vocabulary of 2633 word types. Restricted vocabularies, by their nature, have

higher random baselines and fewer phonemically confusable word pairs, usually resulting in

proportionally higher accuracies in ASR.
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For the simulated ASR transcripts, each word in the manual transcript is modified with a

probability equal to the desired WER. A word w can be modified in one of three ways:

• Substitution – w is replaced with a new word wS.

• Insertion – w is followed by a new word wI .

• Deletion – w is removed.

In the case of insertion, the word to be inserted is chosen according to the bigram distribution

of the language model obtained on the Gigaword corpus (Graff and Cieri, 2003). If w is not

found in the vocabulary, then wI is chosen according to the unigram distribution of the language

model. In the case of substitution, the new word is randomly chosen from a ranked list of words

with minimal phonemic edit distance from the given word, as computed by the Levenshtein

algorithm.

Once it has been determined that a word will be modified, it is assigned one of the above

modifications according to a pre-defined distribution. Different ASR systems may tend towards

different distributions of insertion errors (IE), substitution errors (SE), and deletion errors (DE).

We create data noise according to three distributions, each of which favours one type of error

over the others: [60% IE, 20% SE, 20% DE], [20% IE, 60% SE, 20% DE], and [20% IE,

20% SE, 60% DE]. We then also adjust these proportions according to proportions observed in

Nuance output, as described in Section 4.1.4.

4.1.3 Classification

We use leave-one-out cross-validation to test our diagnostic classifiers. For each fold, one

transcript is removed as test data. We then apply a simple feature selection algorithm to the

remaining transcripts: we calculate a Welch’s t-test for each feature individually and determine

the significance of the difference between the groups on that feature. We then rank each feature

by increasing p-value, and include as input to the classifier only the top ten most significant
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features in the list. For each fold, different training data is used and therefore different features

may be prioritized in this manner.3

Once the features have been selected, we train three types of classifier: naı̈ve Bayes (NB),

support vector machine with sequential minimal optimization (SVM), and random forests (RF).

The classifiers are then tested on the held-out transcript. This procedure is repeated for every

transcript in the data set, and the average accuracy is computed.

We consider two classification tasks, PPA vs. controls and sv-PPA vs. nfv-PPA, since these

binary classification tasks can be cascaded. For each task, there are two possible feature sets:

text features only, or a combination of text and acoustic features. There are also two possible

training sets for each task: i) the classifiers can be trained on the human-transcribed data and

tested on the ASR data (for example, if researchers have access to a corpus of manual tran-

scriptions for training purposes), and ii) the classifiers are both trained and tested on the noisy

ASR (or simulated ASR) data. We test our classifiers on each combination of these variables.

4.1.4 Results

Recognizing PPA speech

Table 4.1 shows the WER of the Nuance system across populations and vocabularies. Some-

what surprisingly, using the reduced vocabulary reduces accuracy considerably, despite all

words in the test set being present in the vocabulary. A possible explanation may be found

in the distribution of error types across the uses of both vocabularies, which is shown in table

4.2. In particular, Nuance makes significantly more deletion errors when using the reduced

vocabulary, which may be attributed to a lower confidence associated with its word sequence

hypotheses, which in turn may be attributed to a language model that is not adapted to non-

default vocabularies. A general language model may assign a high lexical probability to a

series of words that are phonemically similar to an utterance but if those words are not in the

3In the classification experiments in Chapter 3, feature selection occurred outside the cross-validation frame-
work. However, a more accurate estimate of the system’s performance on unseen data is obtained by performing
the feature selection within the cross-validation.
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Default Vocabulary Reduced Vocabulary
sv-PPA 73.1 98.1
nfv-PPA 67.7 97.3
Control 64.0 97.1
All 67.5 97.5

Table 4.1: Mean word error rates for the Nuance systems on each of the participant groups.

Default
Vocabulary

Reduced
Vocabulary

Insertion errors 0.00602 0.00008
Substitution errors 0.39999 0.11186
Deletion errors 0.59398 0.88804

Table 4.2: Distribution of error types for the Nuance systems.

reduced vocabulary, a more domain-specific sequence of words may be assigned a low lexical

probability and therefore a low confidence. When confidence in a hypothesis is below some

threshold, that hypothesis may not be returned, resulting in an increase in deletion errors. Not

having access to these internals of the Nuance engine prohibits modification at this level.

Another point to highlight is that, given Nuance’s default vocabulary, there is no significant

difference between the WER obtained with the control and nfv-PPA groups (p = 0.54), nor

with the control and sv-PPA groups (p = 0.16).

Features and feature selection

Despite the high WER, some text features are still significant in the Nuance data. Table 4.3

shows the text features that were significant (p< 0.05) when comparing PPA and controls using

the two Nuance models. Since the feature set changes with each fold in the cross-validation,

the p-value is an average across folds. The means for the two groups are also shown to indicate

the direction of the difference. Using the default vocabulary, there are three significant text

features: verb imageability, noun frequency, and noun familiarity. These three features are all

significant in the manually-transcribed data as well, and with the same direction. For the sys-

tem trained on the reduced vocabulary, there are five significant text features, as indicated, only

one of which (noun imageability) is not significant in the manual transcripts. All five features
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p-
value

PPA
mean

Control
mean

Nuance default vocabulary
verb imageability 0.0006 401 354
noun frequency 0.002 3.51 3.26
noun familiarity 0.04 575 558
Nuance reduced vocabulary
average word length 0.003 5.44 6.21
noun frequency 0.006 3.13 2.77
noun imageability 0.01 487 554
noun familiarity 0.02 558 531
frequency 0.04 3.60 3.20

Table 4.3: Significant text features (p < 0.05) for PPA versus controls using the Nuance
system with default and reduced vocabularies.

p-value sv-PPA
mean

nfv-
PPA
mean

Nuance default vocabulary
noun familiarity 0.002 596 560
familiarity 0.002 594 568
Nuance reduced vocabulary
None N/A N/A N/A

Table 4.4: Significant text features (p< 0.05) for sv-PPA versus nfv-PPA using the Nuance
system with default and reduced vocabularies.

show differences in the same direction. Table 4.4 shows that only noun familiarity and overall

familiarity are significant in the sv-PPA vs. nfv-PPA case using the default vocabulary system,

as they are in the manually transcribed data, with the difference in the same direction. There

are no significant text features using the reduced vocabulary system.

Diagnosing PPA and its subtypes

We evaluate the accuracy of diagnosing PPA and its subtypes based on the selected features

across the three classification methods using the simulated ASR method. In practice, classi-

fication models might be trained on data that have been manually transcribed by human tran-
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scribers. However, as the amount of data increases, this becomes less practical and it may

become necessary to train these models from transcripts that were automatically generated

from ASR. We replicate our experiments once on data that have been manually transcribed

and once on the same data, but with transcripts corrupted by synthetic word errors. Classifiers

trained on human-produced transcripts had an average accuracy of 65.71% (σ = 12.42) and

those trained on ‘noisy’ transcripts had an average accuracy of 70.72% (σ = 13.89), which

is significant at p < 0.00001. These differences can be observed in Figure 4.1. Interestingly,

the classifiers trained with ‘noisy’ transcripts outperform those trained with ‘clean’ transcripts

fairly consistently in the PPA vs. control task, but this is far less pronounced (and to some

extent reversed) in the sv-PPA vs. nfv-PPA task.

This trend is also apparent when the classifiers are tested using the Nuance transcripts.

Figure 4.2 shows the classification accuracies for each classifier on each diagnostic task using

the data generated using the default and reduced vocabularies. When classifying PPA versus

controls, training on the ‘noisy’ Nuance data always leads to equal or greater accuracies than

training on the ‘clean’ (human-transcribed) data. For sv-PPA versus nfv-PPA, the results are

mixed, although the results from the reduced vocabulary suggest the opposite trend.

We compare the diagnostic accuracies across all classifiers given transcripts from Nuance

using the reduced vocabulary with the accuracies of the synthetic WER method using the near-

est WER (100%) and the associated error type distribution (i.e., 10% substitutions, 90% dele-

tions, over all errors). We find no significant difference between results obtained with Nuance

data and those obtained with the synthetic method (p = 0.27). We repeat this analysis with

the default Nuance vocabulary and its equivalent synthetic WER (70%) and distribution (i.e.,

40% substitution, 60% deletion) and again find no significant difference (p = 0.15). While not

conclusive, the fact that there is no apparent difference in diagnosis when using the Nuance

ASR and the synthetic method supports the use of the latter in these experiments.
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(a) PPA vs. control (text) (b) PPA vs. control (text & acoustic)

(c) sv-PPA vs. nfv-PPA (text) (d) sv-PPA vs. nfv-PPA (text & acoustic)

Figure 4.1: Accuracy in diagnosing the indicated classes given features derived from po-
tentially error-full textual transcriptions alone and in combination with features derived
directly from the acoustics. Lines marked with x’s, circles, and pluses indicate the use
of the naı̈ve Bayes, random forest, and support vector machine classifiers. Solid lines in-
dicate those trained with human-transcribed data and dashed lines indicate those trained
with corrupted data.

4.1.5 Discussion

This study represents an initial step towards incorporating ASR into a system for automated

analysis of speech from people with possible dementia. One main result of this research is

that classification of PPA can remain relatively accurate, even at very high levels of WER, by

selecting appropriate features from the data at training time. Acoustic features are valuable,

as they remain constant as the WER increases. However, our data suggest that some features

from the text can still be informative, even when the transcripts are very noisy.
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(a) Text features, default vocab (b) Text and acoustic features, default vocab

(c) Text features, reduced vocab (d) Text and acoustic features, reduced vocab

Figure 4.2: Classification accuracies for PPA versus controls and sv-PPA versus nfv-
PPA using transcripts from the Nuance system with the default and reduced vocabularies.
Empty bars indicate the accuracy achieved when training on the clean, human-transcribed
data, while filled bars indicate the accuracy when training on the noisy ASR data.

One important direction for future work is to improve ASR for clinical populations. Here,

we detect a trend towards worse ASR performance on PPA speech relative to speech from the

general elderly population. This finding is in line with previous studies using ASR for partici-

pants with dementia (Peintner et al., 2008; Lehr et al., 2012), as discussed in Section 2.6. Our

WER is especially poor for individuals with sv-PPA, suggesting that while more appropriate

acoustic models built for older-adult voices will be important, a focus on improving language

modeling may be more fruitful if the speaker has semantic impairments.

In this study we did not take into account any syntactic features, although agrammatism

and/or syntactic simplification are characteristic of nfv-PPA. Including such information will

require first applying a sentence boundary detection algorithm to the ASR transcripts, and then
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extracting traditional syntactic complexity measures, such as features 2–27 in Table 3.2. In

the next section, we consider the problem of applying sentence segmentation algorithms to

impaired speech.

4.2 Automatic sentence boundary detection in aphasic speech4

It is clear that automatic speech recognition (ASR) is required to build a fully automated anal-

ysis pipeline. However, as we discovered in the previous section, using ASR leads to another

issue: the raw output from an ASR system is generally a stream of words, as shown in Figure

4.3. With some effort, it can be transformed into a format which is more readable by both

humans and machines. Many algorithms exist for the segmentation of the raw text stream into

sentences, but there has been no previous work on how those algorithms might be applied to

impaired speech.

This problem must be addressed for two reasons: first, sentence boundaries are important

when analyzing the syntactic complexity of speech, which can be a strong indicator of potential

impairment. Many measures of syntactic complexity are based on properties of the syntactic

parse tree (e.g., Yngve depth, tree height), which first require the demarcation of individual sen-

tences. Even very basic measures of syntactic complexity, such as the mean length of sentence,

require this information. Secondly, there are many reasons to believe that existing algorithms

might not perform well on impaired speech, since assumptions about normal speech do not

hold true in the impaired case. For example, in normal speech, pausing is often used to indi-

cate a boundary between syntactic units, whereas in some types of dementia or aphasia a pause

may indicate word-finding difficulty instead. Other indicators of sentence boundaries, such as

prosody, filled pauses, and discourse markers, can also be affected by cognitive impairments

(Emmorey, 1987; Bridges and Van Lancker Sidtis, 2013). For these reasons, it is not clear that

4The material presented in this subsection was previously published in: Kathleen C. Fraser, Naama Ben-
David, Graeme Hirst, Naida L. Graham, and Elizabeth Rochon (2015). Sentence segmentation of aphasic speech.
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Lin-
guistics – Human Language Technologies (NAACL-HLT-2015), pp. 862–871.
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turning to politics for al gore and george w bush another day of rehearsal in just over forty eight hours the
two men will face off in their first of three debates for the first time voters will get a live unfiltered view of
them together

Turning to politics, for Al Gore and George W Bush another day of rehearsal. In just over forty-eight hours
the two men will face off in their first of three debates. For the first time, voters will get a live, unfiltered
view of them together.

Figure 4.3: An example of ASR text before and after processing.

existing algorithms can be applied to impaired speech with any degree of success.

Here we explore whether we can apply standard approaches to sentence segmentation to

impaired speech, and compare our results to the segmentation of broadcast news. We then

extract syntactic complexity features from the automatically segmented text, and compare the

feature values with measurements taken on manually segmented text. We assess which features

are most robust to the noisy segmentation, and thus could be appropriate features for future

work on automatic diagnostic interfaces.

4.2.1 Background: Automatic sentence segmentation

Many approaches to the problem of segmenting recognized speech have been proposed. One

popular way of framing the problem is to treat it as a sequence tagging problem, where each

interword boundary must be labelled as either a sentence boundary (B) or not (NB) (Liu and

Shriberg, 2007).

Liu et al. (2005) showed that using a conditional random field (CRF) classifier for this

problem resulted in a lower error rate than using a hidden Markov model or maximum entropy

classifier. They stated that the CRF approach combined the benefits of these two other pop-

ular approaches, since it is discriminative, can handle correlated features, and uses a globally

optimal sequence decoding.

The features used to train such classifiers fall broadly into two categories: word features

and prosodic features. Word features can include word or part-of-speech n-grams, keyword
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identification, and filled pauses (Stevenson and Gaizauskas, 2000; Stolcke and Shriberg, 1996;

Gavalda et al., 1997). Prosodic features include measures of pitch, energy, and duration

of phonemes around the boundary, as well as the length of the silent pause between words

(Shriberg et al., 2000; Wang et al., 2003).

The features which are most discriminative to the segmentation task can change depending

on the nature of the speech. One important factor can be whether the speech is prepared or

spontaneous. Cuendet et al. (2007) explored three different genres of speech: broadcast news,

broadcast conversations, and meetings. They analyzed the effectiveness of different feature sets

on each type of data. They found that pause features were the most discriminative across all

groups, although the best results were achieved using a combination of lexical and prosodic fea-

tures. Kolár et al. (2009) also looked at genre effects on segmentation, and found that prosodic

features were more useful for segmenting broadcast news than broadcast conversations.

Sentence segmentation of written text has also been studied extensively. Recent approaches

have reported F-measures of up to 99.8% (Read et al., 2012) and even 100% (Evang et al.,

2013). Punctuation provides much of the information in the written case; Read et al. (2012)

report that 91.9% of the sentences in their data set end with either a period, question mark, or

exclamation mark.

4.2.2 Data

PPA data

For the PPA case, we include 28 patients with PPA (11 with sv-PPA and 17 with nfv-PPA),

and 23 age- and education-matched healthy controls.5 As before, the Cinderella narratives

were transcribed by trained research assistants, and the transcriptions include filled pauses,

repetitions, and false starts. Sentence boundaries were marked by a single annotator according

5This data set includes all the narrative samples from Chapter 3, as well as some additional samples that
became available since that work was completed. Additionally, all the transcripts had been reviewed and in some
cases re-segmented. Therefore, syntactic complexity results reported in this section are not directly comparable
to those reported earlier.
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to semantic, syntactic, and prosodic cues. We remove capitalization and punctuation, keeping

track of original sentence boundaries for training and evaluation, to simulate a high-quality

ASR transcript. Of course, a real ASR transcript would contain word recognition errors as

well, but we first aim to examine sentence segmentation for impaired speech in the absence of

such errors.

Broadcast news data

For the broadcast news data, we use a 804,064 word subset of the English section of the TDT4

Multilingual Broadcast News Speech Corpus6. Using the annotations in the transcripts, we

extracted news stories only (ignoring teasers, miscellaneous text, and under-transcribed seg-

ments). The transcriptions were generated by closed captioning services and commercial tran-

scription agencies (Strassel, 2005), and so they are of high but not perfect quality. Again, we

remove capitalization and punctuation to simulate the output from an ASR system.

Since the TDT4 corpus is much larger than our PPA data set, we also construct a small

news data set by randomly selecting 20 news stories from the TDT4 corpus. This allows us to

determine which effects are due to differences in genre and which are due to having a smaller

training set. We refer to this smaller news corpus as TDT4-small to distinguish it from the

larger TDT4 corpus.

4.2.3 Methods

Lexical and POS features

The lexical features are simply the unlemmatized word tokens. We do not consider word n-

grams due to the small size of our PPA data set. To extract our part-of-speech (POS) features,

we first tag the transcripts using the NLTK POS tagger (Bird et al., 2009). We use the POS of

the current word, the next word, and the previous word as features.

6catalog.ldc.upenn.edu/LDC2005S11
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Prosodic features

To calculate the prosodic features, we first perform automatic alignment of the transcripts to

the audio files. This provides us with a phone-level transcription, with the start and end of

each phone linked to a time in the audio file. Using this information, we are able to calculate

the length of the pauses between words, which we bin into three categories based on previous

work by Pakhomov et al. (2010a). Each interword boundary either contains no pause, a short

pause (<400 ms), or a long pause (>400 ms).

We calculate the pitch (Talkin, 1995; Brookes, 1997), energy, and duration of the last vowel

before an interword boundary. For each measurement, we compare the value to the average

value for that speaker, as well as to the values for the last vowel before the next and previous

interword boundaries.

We perform the forced alignment using the HTK toolkit (Young et al., 1997). Our pronun-

ciation dictionary is based on the CMU dictionary7, augmented with estimated pronunciations

of out-of-vocabulary words using the “g2p” grapheme-to-phoneme toolkit (Bisani and Ney,

2008). We use a generic acoustic model that has been trained on Wall Street Journal text

(Vertanen, 2006).

Boundary classification

We use a conditional random field (CRF) to label each interword boundary as either a sentence

boundary (B) or not (NB). We use a CRF implementation called CRFsuite (Okazaki, 2007) with

the passive-aggressive learning algorithm. To avoid overfitting, we set the minimum feature

frequency cut-off to 20.

To evaluate the performance of our system, we compare the hypothesized sentence bound-

aries with the manually annotated sentence boundaries and report the F score, where F is the

harmonic mean of recall and precision. For the PPA data and the TDT4-small data, we as-

sess the system using a leave-one-out cross-validation framework, in which each narrative is

7www.speech.cs.cmu.edu/cgi-bin/cmudict
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Feature set TDT4 TDT4-
small

Controls sv-PPA nfv-PPA

Chance baseline 0.07 0.07 0.05 0.07 0.06
All 0.61 0.57 0.51 0.43 0.47
Lexical+prosody 0.57 0.50 0.44 0.30 0.33
Lexical+POS 0.48 0.36 0.36 0.36 0.40
POS+prosody 0.61 0.59 0.45 0.39 0.45
POS 0.45 0.39 0.28 0.35 0.39
Prosody 0.50 0.48 0.24 0.23 0.25
Lexical 0.26 0.14 0.18 0.17 0.18

Table 4.5: F score for the automatic segmentation method on each data set. Boldface
indicates best in column.

sequentially held out as test data while the system is trained on the remaining narratives. For

the large TDT4 corpus, we randomly hold out 10% of the corpus as test data, and train on the

remaining 90%.

Assessment of syntactic complexity

Once we have segmented the transcripts, we want to assess how the (presumably noisy) seg-

mentation affects our measures of syntactic complexity. Here we consider a number of the

syntactic complexity metrics that we have used in previous sections. The metrics are defined

in the first column of Table 4.7.

4.2.4 Segmentation results

Comparison between data sets

Table 4.5 shows the performance on the different data sets when trained using different combi-

nations of feature types. We also report the chance baseline for comparison.

We first consider the differences in results observed between the two news data sets. The

best results are similar in both groups, although, as would be expected, the larger training

sample performs better. However, the difference is small, which suggests that the small size of
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the PPA data set should not greatly hurt the performance. When we compare the performance

of these two groups with different sets of training features, we notice that the difference in

performance is greatest when training on lexical features. In a small random sample from the

TDT4 corpus, it is unlikely that two stories will cover the same topic, and so there will be

little overlap in vocabulary. This is reflected in the results showing that lexical features hurt the

performance in this small news sample.

Performance on the news corpus is better than on the PPA data (including the control

group). Comparing TDT4-small to the PPA controls, we see that this is not simply due to

the size of the training set, so we instead attribute the effect to the fact that speech in broadcast

news is often prepared, while in the PPA data sets it is spontaneous.

A closer look at the effect of prosodic features in our training data further shows the dif-

ference we observe between prepared and spontaneous speech. When trained on the prosodic

features alone, the news data set performs relatively well, while performance on the control

data is much worse. These results are consistent with the findings of Kolár et al. (2009) regard-

ing the effect of prosodic features in prepared and spontaneous speech.

When comparing the performance on the control group and on the PPA data, we see that

generally, the results are better on the controls. This is to be expected, as the speech in the

control group has more complete sentences and fewer dysfluencies. However, it is interesting

to note that in many cases, the performance on the nfv-PPA and sv-PPA groups is comparable to

the performance on controls. All three data sets achieved the best results when trained with all

feature types. This suggests that standard methods of sentence segmentation for spontaneous

speech can be effective on PPA speech as well.

Looking at the PPA and control groups with other feature sets, we see that POS features

are more important in the nfv-PPA and sv-PPA groups than they are for the control data. A

closer look at the transcripts shows us that the PPA participants tend to connect independent

clauses with a conjunction more frequently than control participants, and independent clauses

are often separated in the manual segmentation. This means that many sentence boundaries in
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TDT4-small Control sv-PPA nfv-PPA
PRP next long pause CC next long pause
DT next go NNS CC next
RB her RB NN
NNS NNS NN RB next
long pause CC next RB next NNS
pitch<ave RB PRP next RB
NN RB next energy<ave short pause
CC next PRP next RB prev PRP next
energy<ave IN VB no pause
IN prev short pause IN prev RB prev

(a) Features associated with a boundary

TDT4-small Control sv-PPA nfv-PPA
VBD next TO next the TO next
the so PRP$ next then
IN CC and the
MD next NNS next then she
CC the VBD next VBP next
VBG next she VBZ next and
VBN next and TO next uh
CD prev VBD next ’s VB next
a of I VBD next
to uh a a

(b) Features associated with a non-boundary

Table 4.6: The 10 features with the highest weights in each CRF model, indicating either
that the following interword boundary is or is not a sentence boundary.

the PPA data are marked by conjunctions. This is discussed further in the next section.

When considering the prosodic and lexical feature sets individually, we see that perfor-

mance is similar in all three cases (control, sv-PPA, and nfv-PPA). However, when we com-

bine prosodic and lexical features together, the performance in the control case increases by

a much larger margin than in the two aphasic cases. This suggests that control participants

combine words and prosody in a manner that is more predictive of sentence boundaries than in

the aphasic case.
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Important features

In Table 4.6, we report the 10 features in each data set which are most strongly associated with

a boundary or a non-boundary. We consider only the reduced news corpus TDT4-small, for a

fair comparison with the PPA data.

The POS tags shown are the output of the NLTK part-of-speech tagger, which uses the Penn

Treebank Tag Set (Santorini, 1990). We append ‘ next’ and ‘ prev’ to indicate that this is the

POS tag of the next and previous word respectively. Italicized words represent lexical items.

We first consider the features that indicate a sentence boundary (see Table 4.6a). In general,

we observe that our minimum frequency cut-off removes many of the lexical features from the

top 10. (In the absence of such a cut-off, we observed that very low frequency words can be

given deceptively high weights.) The exceptions to this are the words go and her in the control

set. When we look at the data, there are indeed many occurrences of go and her at the end

of sentences, for example, she was not allowed to go or she couldn’t go, and very mean to

her or so in love with her. While these lexical items are not specific to the Cinderella story,

it seems unlikely that these features would generalize to other story-telling tasks (although we

note that the Cinderella story is very widely used in the assessment of aphasia and some types

of dementia).

The POS of the given word and its neighbours are generally important features. In all four

cases, the next word being a coordinating conjunction or a pronoun is indicative of a boundary.

In the three PPA cases, but not the news case, the next word being an adverb is also indicative.

Looking at the data, we observe that this very often corresponds to the use of words like so,

then, well, anyway, etc. This would seem to reflect a difference between the frequent use of

discourse markers in spontaneous speech and their relative sparsity in prepared speech.

The POS of the current word is also important. In all cases, a boundary is associated with

the current word being an adverb or a noun. In the control data only, the tag IN, representing

either a preposition or a subordinating clause, is also associated with a boundary. Although

this seems counter-intuitive, an examination of the data reveals that in almost every case, this
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corresponds to the phrase happily ever after. The fact that this feature does not occur in the

other PPA groups could indicate that the patients are less likely to use this phrase, but could

also be due to our relatively high frequency cut-off.

Another anomalous result is that the tag VB (verb, base form) is associated with a sentence

boundary in the sv-PPA case only. Again, examples from the data suggest a probable expla-

nation. In many cases, sentences ending with VB are actually statements about the difficulty

of the task, rather than narrative content; e.g., that’s all I can say, I can’t recall, or I don’t

know. These statements are consistent with the word-finding difficulties that are a hallmark of

sv-PPA.

In the prosodic features, we see that long pauses and decreases in pitch and energy are

associated with sentence boundaries in the news corpus. However, the results are mixed in

the PPA data. This finding is consistent with our results in Section 4.2.4, and supports the

conclusion of Cuendet et al. (2007) and Kolár et al. (2009) that prosodic features are more

useful in prepared than spontaneous speech.

We now look briefly at the features which are associated with a non-boundary (Table 4.6b).

Here we see more lexical features in the top 10, mostly function words and filled pauses. These

features reflect the reasonable assumption that most sentences do not end with determiners,

conjunctions, or subjective pronouns. One feature which occurs in the news data but not the

PPA data is the next word being a modal verb (MD). This seems to be a result of the more

frequent use of the future tense in the news stories (e.g., the senator will serve another term),

in contrast to the Cinderella stories, which are generally told in the present or simple past tense.

4.2.5 Complexity results

We first compare calculating the syntactic complexity metrics on the manually segmented tran-

scripts and the automatically segmented transcripts. The results are given in Table 4.7. Metrics

for which there is no significant difference between the manual and automatic segmentation are

marked with “NS”. Of course, we do not claim that there is actually no difference between the
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Metric Diff? Controls sv-PPA nfv-PPA
Manual Auto Manual Auto Manual Auto

Max YD maximum Yngve depth 5.10 4.53 4.45 3.87 4.66 3.83
Mean YD mean Yngve depth 2.97 2.72 2.68 2.44 2.77 2.41
Total YD total sum of the Yngve

depths
66.92 53.41 42.48 32.95 49.95 32.57

Tree height average parse tree
height

12.56 11.30 10.79 9.81 11.25 9.88

S number of sentences 24.35 31.22 27.73 37.36 18.82 25.47
T number of T-units NS 31.43 35.13 32.55 39.27 23.29 27.41
C number of clauses NS 61.48 64.48 57.73 62.45 42.94 46.65
DC number of dependent clauses NS 24.70 27.30 26.27 26.09 16.59 18.88
CN number of complex nominals NS 41.39 43.52 38.73 39.64 27.12 27.88
VP number of verb phrases NS 77.00 79.65 72.09 77.00 51.76 55.24
CP number of coordinate phrases 12.39 10.30 11.55 6.91 7.82 4.18
CT number of complex T-units NS 14.30 13.52 12.00 11.82 9.29 8.71
MLS mean length of sentence 19.79 16.22 14.04 11.25 15.86 11.60
MLT mean length of T-unit 14.92 13.72 12.19 10.46 12.78 10.66
MLC mean length of clause 7.55 7.21 7.13 6.58 6.89 6.39
T/S T-units per sentence 1.34 1.17 1.15 1.06 1.23 1.08
C/S clauses per sentence 2.64 2.25 1.96 1.70 2.28 1.82
DC/T dependent clauses per T-unit NS 0.80 0.78 0.73 0.63 0.73 0.69
VP/T verb phrases per T-unit 2.47 2.34 2.11 1.92 2.23 1.98
CP/T coordinate phrases per T-unit 0.40 0.33 0.35 0.17 0.35 0.15
CN/T complex nominals per T-unit NS 1.32 1.26 1.18 1.10 1.17 1.01
C/T clauses per T-unit 1.99 1.91 1.71 1.58 1.86 1.68
CT/T complex T-units per T-unit NS 0.46 0.40 0.37 0.32 0.39 0.32
DC/C dependent clauses per clause NS 0.39 0.41 0.42 0.40 0.38 0.41
CP/C coordinate phrases per

clause
0.20 0.17 0.20 0.10 0.19 0.09

CN/C complex nominals per
clause

NS 0.65 0.65 0.70 0.71 0.63 0.61

Table 4.7: Mean values of syntactic complexity metrics for the different patient groups.
Features which show no significant difference between the manual and automatic segmen-
tation on all three clinical groups are marked as “NS” (not significant).

values, as can be seen in the table, but we use this as a threshold to determine which features

are less affected by the automatic segmentation.

All the features relating to Yngve depth and height of the parse trees are significantly dif-

ferent in at least one of the three clinical groups. However, of the eight primary syntactic units

calculated by Lu’s SCA, six show no significant difference when measured on the automati-

cally segmented transcripts. To examine this effect further, we will discuss how each of the

eight is affected by the segmentation process.
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Although the number of sentences (S) is different, the number of clauses (C) is not signif-

icantly affected by the automatic segmentation, which implies that the boundaries are rarely

placed within clauses, but rather between clauses. An example of this phenomenon is given in

Example 1:

Manual: And then they go off to the ball and then she comes I dunno how she meets up with this um

fairy godmother whatever.

Auto: And then they go off to the ball. And then she comes I dunno how she meets up with this um

fairy godmother whatever.

Our automatic method inserts a sentence boundary before the second and, breaking one sen-

tence into two but not altering the number of clauses. In fact, the proposed boundary seems

quite reasonable, although it does not agree with the human annotator. The correlation be-

tween the number of clauses counted in the manual and automatic transcripts is 0.99 in all

three clinical groups. The counts for dependent clauses (DC) are also relatively unaffected by

the automatic segmentation, for similar reasons.

The T-unit count (T) is also not significantly affected by the automatic segmentation. Since

a T-unit only contains one independent clause as well as any attached dependent clauses, this

suggests that the segmentation generally does not separate dependent clauses from their in-

dependent clauses. This also helps explain the lack of difference on complex T-units (CT).

Table 4.7 also indicates that the number of verb phrases (VP) and complex nominals (CN)

is not significantly different in the automatically segmented transcripts. Since these syntactic

units are typically sub-clausal, this is not unexpected given the arguments above.

The remaining primary syntactic unit, the coordinate phrase (CP), is different in the auto-

matic transcripts. This represents a weakness of our method; namely, it has a tendency to insert

a boundary before all coordinating conjunctions, as in Example 2:

Manual: So she is very upset and she’s crying and with her fairy godmother who then uh creates a

carriage and horses and horsemen and and driver and beautiful dress and magical shoes.
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Auto: So she is very upset. And she’s crying and with her. Fairy godmother who then uh creates a

carriage. And horses and horsemen and and driver. And beautiful dress. And magical shoes.

In this case, the manual transcript has five coordinate phrases, while the automatic transcript

has only two.

The mean lengths of sentence (MLS), clause (MLC), and T-unit (MLT) are all significantly

different in the automatically segmented transcripts. The remaining metrics in Table 4.7 are

simply combinations of the primary units discussed above.

4.2.6 Classification of participant groups8

Our analysis so far suggests that some syntactic units are relatively impervious to the automatic

sentence segmentation, while others are more susceptible to error. However, when we examine

the mean values given in Table 4.7, we observe that even in cases when the complexity metrics

are significantly different in the automatic transcripts, the differences appear to be systematic.

For example, we know that our segmentation method tends to produce more sentences than

appear in the manual transcripts (i.e., S is always greater in the automatic transcripts). If we

look at the differences across clinical groups, the same pattern emerges in both the manual

and automatic transcripts: participants with sv-PPA produce the most sentences, followed by

controls, followed by participants with nfv-PPA.

In a classification task, what matters most is not the absolute value of the metric, but the

relative differences between groups. Thus we now turn to the question of whether syntactic

complexity metrics derived from the automatically segmented transcripts are useful in a clas-

sification framework, even though their values are different from those derived from manually

segmented transcripts.

We perform two classification tasks, PPA versus controls and sv-PPA versus nfv-PPA. We

once again use a p-value filter, restricting the size of the feature set to N = 10. Features are

limited to those given in Table 4.7. We consider three classification algorithms: naı̈ve Bayes
8The classification experiment described in this section did not appear in the original paper.
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Auto Manual
SVM .71 .65
LR .75 .65
NB .76 .69

(a) PPA versus controls

Auto Manual
SVM .64 .57
LR .61 .68
NB .68 .50

(b) sv-PPA versus nfv-PPA

Table 4.8: Classification accuracies for the automatically and manually segmented tran-
scripts. The majority class baseline is .55 for PPA versus controls and .61 for sv-PPA
versus nfv-PPA.

(NB), logistic regression (LR), and support vector machines (SVM). The classifiers are trained

and tested in a leave-one-out cross-validation procedure, and average accuracy across folds is

computed.

The results of this experiment are shown in Table 4.8. In all cases except one, the best

result is actually achieved using the automatically segmented transcripts. To investigate this

result further, we examine the features selected by the feature selection step in each case. Since

different features may be selected in each fold, for each feature we measure the proportion of

folds in which it is selected. This information is shown in Figure 4.4.

In the case of controls versus PPA, some features are selected on both sets of transcripts,

but there is also notable divergence. Coordinate phrases (CP) appear to be much more relevant

to the distinction between groups in the automatically segmented transcripts. The features CP,

CP/C, and CP/T are selected in every fold for the auto transcripts, but very rarely in the manual

transcripts. From Table 4.7, we know that the number of coordinate phrases is reduced in the

auto transcripts, and the reduction is greater in the patient transcripts (17% reduction in the

control group compared to 40% and 47% in the sv-PPA and nfv-PPA groups, respectively).

In general, this reduction is most likely due to the segmentation classifier’s tendency to split

sentences before the word and, as discussed above. A possible explanation for why this error

affects the patient groups more than the control group is that the controls use more typical

prosody, and so the acoustic features predicting “not a boundary” outweigh the lexical features

predicting “boundary”.

In contrast, features such as clauses per sentence (C/S) are selected highly frequently in
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(a) Features selected in the PPA vs. controls task.

(b) Features selected in the sv-PPA vs. nfv-PPA task.

Figure 4.4: Selected features for the two classification experiments, using automatically
and manually segmented transcripts.
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the manual transcripts and never in the auto transcripts. Upon closer examination of the data,

we notice an obvious outlier in the control group on this measure in the manual transcripts. A

sample sentence from this transcript reads:

I believe the um the fairy godmother told her she had to be home by twelve so
she starts to see that it’s getting nearer and she gets worried and she starts running
down the stairs and she loses one of her slippers uh she had a glass slipper on and
anyway she goes home and then uh the prince is wondering what happened to that
girl because I guess he fell for her and um only in the fairy tales so anyway then
they send someone from the palace with this glass slipper to s find the girl who fits
in the glass slipper and of course the the wicked stepsisters it doesn’t fit them but
then it fits Cinderella and she gets her prince and they live happily ever after.

The same passage was segmented by the automated method into the following sentences:

I believe the um the fairy godmother told her she had to be home by twelve.

So she starts to see that it’s getting nearer and she gets worried and she starts
running down the stairs and she loses one of her slippers uh she had a glass slipper
on and anyway she goes home and then uh the prince is wondering what happened
to that girl because I guess he fell for her.

And um.

Only in the fairy tales so anyway then.

They send someone from the palace with this glass slipper to s find the girl who
fits in the glass slipper and of course the the wicked stepsisters it doesn’t fit.

Them but then it fits Cinderella and she gets her prince and they live happily ever
after.

Clearly, the automated method is not perfect (e.g., the first word of the last sentence belongs

with the previous sentence), but it seems fair to say that the human segmentation is not per-

fect, either. Importantly, the manual segmentation of this particular narrative is not consistent

with how the other narratives were segmented, leading to anomalous results on the syntactic

complexity measures that do not necessarily reflect real differences between the groups.

One positive characteristic of the features chosen on the auto transcripts is that there is very

little variation between folds. Nine of the 11 features are selected in 100% of the folds. This

indicates that the features measured on the training set are likely to generalize well to the test
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set (as reflected in the higher classification accuracies). Furthermore, although the values of

the features differ from those measured on the manual transcripts, the direction of the trend is

the same as in the manual data set on all 11 selected features.

In the case of sv-PPA vs. nfv-PPA, there is more variation in the selected features for both

the auto and manual transcripts. The classification results are also lower. In this case, complex

nominals (CN; also CN/C and CN/T) are chosen frequently in the auto transcripts and rarely

in the manual transcripts. Interestingly, complex nominals were one feature that was found to

be robust to the noisy segmentation. However, if we rank the features by p-value in both the

auto and manual data sets, we find that CN is ranked first in the auto case (p = .13) and tenth

in the manual case (p = .19). That is, the feature does not significantly differ between sv-PPA

or nfv-PPA in either group, it is simply ranked higher in the auto group. Given that there are in

fact no significant features in the auto transcripts and only one (C/S) in the manual transcripts,

we will not attempt to provide further interpretation for these features.

4.2.7 Discussion

We have examined the issue of automated sentence segmentation of impaired speech, and tested

the effectiveness of standard segmentation methods on PPA speech samples. We found that,

as expected, performance was best on prepared speech from broadcast news, then on healthy

controls, and worst on speech samples from PPA patients. However, the results on the PPA

data are promising, and suggest that similar methods could be effective for aphasic speech.

Future work will look at adapting the standard algorithms to improve performance in the case

of impaired speech. This would include an evaluation of the forced alignment on impaired

speech data (e.g., by comparing the labelled phone start and end times with manually annotated

transcripts), as well as the exploration of new features for the boundary classification.

One limitation of this study is the use of manually transcribed data with capitalization

and punctuation removed to simulate perfect ASR data. We expect that real ASR data will

contain recognition errors, and it is not clear how these errors will affect the segmentation
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process. Unfortunately, given the extremely high WERs reported in the previous section, it is

not possible to determine the location of the gold standard sentence boundaries in those ASR

transcripts. Analysis of boundary segmentation in real ASR data will have to wait until we

have more accurate ASR for this population.

We analyzed our results to see how the noise introduced by our segmentation affects various

syntactic complexity measures, by comparing the values of these measures computed on the

automatically and manually segmented transcripts. Some measures (e.g., T-units) were robust

to the noise, while others (e.g., Yngve depth) were not. When using such automatic methods

for the analysis of speech data, researchers should be aware of the unequal effects on different

complexity metrics.

We then tested the effectiveness of the syntactic measures on two classification tasks, and

found that in most cases the accuracy was actually higher using the automatically segmented

transcripts than the manually segmented transcripts. While this result was surprising, we iden-

tified two possible factors that may have contributed to this effect: segmentation errors that

preferentially affected the PPA group, and more consistent segmentation within groups in the

automated case.

Although we evaluated our methods against human-annotated data, there is some uncer-

tainty about whether a single gold standard for the sentence segmentation of speech truly exists.

Miller and Weinert (1998), among others, argue that the concept of a sentence as defined in

written language does not necessarily exist in spoken language. In future work, it would useful

to compare the inter-annotator agreement between trained human annotators to determine an

upper bound for the accuracy of an automatic system.

4.3 Summary

In this chapter, we explored the question of whether we can apply ASR techniques to fully

automate our processing pipeline. Despite the growing popularity of speech-based interfaces,
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there is still much work to be done before wide-vocabulary, speaker-independent speech recog-

nition will reach an acceptable level of accuracy. In the meantime, however, we did achieve

some promising results. In Section 4.1, we showed that even when the WER is very high, psy-

cholinguistic features like frequency, familiarity, and imageability can still help to distinguish

between PPA patients and controls. In ongoing work, we are exploring the effect of adapting

the acoustic and language models to the specific parameters of our data set, using open-source

ASR toolkits such as HTK and Kaldi.

A fully automated system will also require automatic utterance segmentation. In Sec-

tion 4.2, we applied standard sentence segmentation algorithms to PPA speech. While the

results were not as good as the results achieved on broadcast news data, this was to be expected

due to the nature of spontaneous speech. Segmentation of PPA speech was also less successful

than segmentation of control speech, and we hypothesize that this is at least partly due to the

increased incidence of pausing within sentences. However, we found that several of the syntac-

tic features were robust to the noisy segmentation, and in fact better classification accuracies

were achieved using the automatically segmented transcripts.

Somewhat separate from the specific issues of ASR and segmentation, the results in this

chapter raise important questions about the goal of feature selection and machine learning in

the context of medical diagnostics and monitoring. Optimizing the accuracy of the prediction

is the primary (and in some cases only) goal in many machine learning applications. How-

ever, as Guyon and Elisseeff (2003) point out, this is not the only role of feature selection in

bioinformatics problems. Ideally, we want to look to the set of selected features to inform our

knowledge of the health condition at hand. Certainly an application that outputs a probability

of diagnosis but no report of the underlying factors which led to the prediction is unlikely to be

useful in a clinical context. Thus, while the classification results presented in this chapter are

promising, further work is required to refine our understanding of these “noisy” variables and

their relationship to ground truth measurements.



Chapter 5

Agrammatism in progressive and

post-stroke aphasia

It is an open question whether the grammatical impairments seen in primary progressive apha-

sia (PPA) are similar in nature to those seen in post-stroke agrammatic aphasia, or if instead

there are meaningful differences between the two conditions. From a purely anatomical per-

spective, there is no reason why the two conditions must have the same linguistic presentations:

damage to the brain after a stroke tends to follow a distinct pattern, defined by the structure of

the cerebral vascular system, while damage due to neurodegenerative disease does not (Thomp-

son et al., 2013). Yet, in many cases, the deficits seen in nonfluent PPA are similar to those

reported in post-stroke Broca’s aphasia (Rohrer et al., 2008; Harciarek and Kertesz, 2011).

In this preliminary work, we show that computational analysis may provide insight on this

debate. By extracting linguistic features from the narrative speech of agrammatic participants

with PPA and post-stroke aphasia, we can train a classifier to distinguish between the two

groups with 76% accuracy, suggesting that there are some quantifiable differences between

the groups. The highly-ranked features are compared to manually extracted measures and

discussed in relation to previous work in the field.

128
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5.1 Background

Agrammatism is a common symptom in Broca’s aphasia (Goodglass, 1993), and can mani-

fest in a variety of different ways. Wilson et al. (2012) define grammatical processing as “the

ability to implicitly generate hierarchically structured representations of sentences, and to use

function words and inflectional morphology to express grammatical categories such as number,

definiteness, tense and aspect.” There are a number of different linguistic concepts wrapped

up in this definition, and studies have shown dissociations between the various components

(Saffran et al., 1989; Webster et al., 2007; Nadeau, 2012; Webster and Howard, 2012). Thomp-

son and Mack (2014) broadly break down this idea of grammar into the following elements:

grammatical morphology, functional categories (i.e., parts-of-speech or POS), verb-argument

structure, and syntactic complexity. We will briefly summarize the findings in these four cate-

gories with respect to speech production in agrammatic aphasia.

Grammatical morphology refers to the modifications made to words to express their rela-

tionship to other words, such as agreement in tense, number, aspect, and gender. In agrammatic

aphasia, these grammatical morphemes tend to be either omitted or mis-used (Thompson and

Bastiaanse, 2012; Webster et al., 2007). With respect to the production of different POS, peo-

ple with agrammatic aphasia show a marked reduction in the production of verbs, relative to

nouns (Saffran et al., 1989; Kim and Thompson, 2000; Goodglass et al., 1994). They also have

a tendency to omit function words (or closed-class words) relative to content words (or open-

class words) (Saffran et al., 1989; Thompson et al., 1995). The verb-argument structure of a

verb defines the constraints placed on a verb’s arguments, including subcategorization (e.g., an

intransitive verb can have only a subject, whereas a ditransitive verb requires both a subject

and two objects) and selectional constraints (e.g., the verb eats requires an animate subject).

People with agrammatic aphasia tend to produce verbs with fewer arguments, and may make

errors in the argument structure (Thompson et al., 1995; Kim and Thompson, 2000). Finally,

the speech output of agrammatic patients tends to show a reduction in syntactic complexity

(Saffran et al., 1989; Goodglass et al., 1994).
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Agrammatism in language production is also one of the two core criteria for nonfluent/a-

grammatic PPA (nfv-PPA) (Gorno-Tempini et al., 2011). However, since only one of the two

core criteria need be satisfied, it is possible for patients to be diagnosed with nfv-PPA without

showing signs of agrammatism. This has led to some disagreement in the literature regarding

the nature and extent of agrammatism in nfv-PPA (Thompson et al., 1997a; Graham et al.,

2004; Knibb et al., 2009; Wilson et al., 2010; Thompson et al., 2012, 2013; Thompson and

Mack, 2014).

Very few studies have directly compared the speech of people with agrammatism due to

PPA and due to stroke. However, two previous studies are particularly relevant to this work.

Patterson et al. (2006) compared the performance of 10 participants with nfv-PPA and 10 par-

ticipants with post-stroke nonfluent aphasia (NFA) on a number of language tasks, including

picture description, reading passages and lists, and tests of phonological judgement and ma-

nipulation. Their hypothesis was that the deficits seen in nfv-PPA would be more sensitive

to the specific language task, and more specifically, that these deficits would primarily appear

in tasks requiring “self-generated” connected language. Indeed, they found that while there

was no difference between the groups on speech rate for the picture description task, the av-

erage nfv-PPA speech rate nearly doubled on the reading task, while the average NFA speech

rate stayed the same. They also found that nfv-PPA patients made roughly half the amount

of errors reading function words in context that NFA patients did (errors on function words in

spontaneous speech were not reported).

Patterson et al. (2006) also report a pattern, confirmed by previous literature, that NFA

patients experience the most difficulty reading non-words, then function words, and then low-

imageability words, with high-imageability words presenting the least difficulty. The nfv-PPA

patients (a) performed better than NFA patients on reading each of these categories of words,

and (b) showed minimal differences across each of the categories. The authors conclude that

spontaneous connected speech is specifically impaired in nfv-PPA (in contrast to NFA, in which

participants showed equivalent deficits in spontaneous and read speech), and that phonological
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processing capabilities are better in nfv-PPA than NFA.

Thompson et al. (2013) presented results for a number of different experiments compar-

ing syntactic processing in two subtypes of PPA and in post-stroke agrammatic and anomic

aphasia. Specifically, the experiment examining narrative discourse (via a story-telling task) in-

cluded 9 participants with agrammatic PPA (PPA-G) and 8 participants with post-stroke agram-

matic aphasia (StrAg). There was no significant difference between the two groups on speech

rate, mean length of utterance, proportion of grammatical sentences, proportion of correctly

inflected verbs, or noun-verb ratio. However, there was a significant difference on the ratio of

open-class words to closed-class words, with the StrAg group having a higher value. When

compared to healthy controls, the StrAg open-closed class ratio was significantly higher, while

there was no difference between PPA-G and controls. This suggests that PPA-G patients do not

show a deficit in producing closed-class (function) words. Thompson et al. (2013) note that

this result is consistent with previous work by Graham et al. (2004), but disagree with the in-

terpretation given by Graham et al. that nonfluent PPA patients do not show true agrammatism.

In fact, the authors conclude that despite the different disease processes underlying PPA-G and

StrAg, the resulting language deficits are very similar.

There are a few possible explanations for the apparent disagreement between the results re-

ported by Patterson et al. (2006) and Thompson et al. (2013). One factor is that the two studies

measure disjoint sets of variables, apart from speech rate (in which case, both studies report no

significant difference between the groups for spontaneous, connected speech). Another factor

is the relatively small sample sizes included in each study. However, possibly the most salient

factor is related to the classification of PPA subtypes. In Patterson et al. (2006), the PPA partic-

ipants are described as having progressive nonfluent aphasia and exhibiting “slowed, effortful

output with phonological errors in spontaneous speech or on formal testing.” However, the par-

ticipants in Thompson et al. (2013) were subtyped according to a different set of criteria, which

allows only those participants with frank grammatical impairments into the PPA-G class. It is

therefore possible that Thompson et al. (2013) observe grammatical deficits in their PPA group



CHAPTER 5. AGRAMMATISM IN PROGRESSIVE AND POST-STROKE APHASIA 132

specifically because agrammatism was a diagnostic criterion for inclusion in the group, while

Patterson et al. (2006) do not observe as much frank agrammatism (and nor do Graham et al.

(2004) in a companion study using the same participants) because their PPA patients were se-

lected on the basis of “nonfluency” rather than agrammatism. Furthermore, since the Patterson

et al. (2006) paper was published before the consensus criteria (Gorno-Tempini et al., 2011), it

is also possible that their “nonfluent” group includes participants who today would be classified

as lv-PPA.

In the work which follows, patient diagnoses were made according to the same criteria as

in the work of Thompson et al. (2013). Thus we know that both participant groups exhibit

agrammatism, and the question becomes: is there any difference in the nature of the agramma-

tism, or in other linguistic areas (e.g., semantic processing), between the progressive and acute

conditions?

5.2 Data

This study is a retrospective analysis of data that was collected by Cynthia Thompson and

colleagues at Northwestern University. Participants were recruited from subject pools at the

Northwestern University Aphasia and Neurolinguistics Research Laboratory. All participants

were native speakers of English. Demographic information is given in Table 5.1. A diagnosis

of PPA was made by an experienced neurologist on the basis of a neurological examination,

neuropsychological testing, and clinical presentation. PPA subtyping was based on single word

comprehension and sentence generation tasks. Specifically, a diagnosis of PPA-G was given

when single word comprehension was spared, but sentence generation was impaired. Only

those participants with a primarily grammatical impairment (as opposed to a motor speech

impairment) were included in this study. The StrAg participants had developed aphasia as the

result of a left-hemisphere stroke, and were classified as agrammatic on the basis of formal

language testing and clinical impression.
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PPA-G (n = 35) StrAg (n = 27) sig?
Age (years) 64.1 (6.9) 55.4 (11.8) p < 0.01
Education (years) 16.1 (2.6) 16.3 (2.4) n.s.
Sex (M/F) 20/15 17/10 n.s.
WAB-AQ 82.5 (6.9) 78.6 (8.9) n.s.

Table 5.1: Demographic information for PPA-G and StrAg participants.

All participants completed the Western Aphasia Battery (WAB) (Kertesz, 1982). The WAB

Aphasia Quotient (WAB-AQ) provides an assessment of overall aphasia severity. Although the

patient groups originally included 39 participants with PPA-G and 28 participants with StrAg,

to match the groups for aphasia severity, it was necessary to remove the 4 PPA-G participants

with the highest WAB-AQ and the StrAg participant with the lowest WAB-AQ. There is no

significant difference between the resultant groups on aphasia severity. There is also no signifi-

cant difference on education or sex. There is a significant difference between the ages, with the

PPA-G group being older on average. This is due to the fact that people with neurodegenerative

diseases tend to be older, in general, and a significant age difference between groups was also

reported in Patterson et al. (2006) and Thompson et al. (2013).

Narrative speech data was elicited through a Cinderella story-telling task. Participants were

given a wordless picture book to remind them of the story, then the book was taken away and

they were asked to tell the story in their own words. The narratives were recorded and then

manually transcribed. Dysfluencies such as repetitions, filled pauses, and comments on the

task were manually annotated and removed.

5.3 Methods

Measures of linguistic performance were both manually and automatically extracted from the

Cinderella transcripts. These features were used to train a machine learning classifier to dis-

tinguish between the two patient groups. Details of the features extraction and classification

procedure are given in the following sections.
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5.3.1 Manually calculated features

As part of previous and ongoing work by the Northwestern University Aphasia and Neurolin-

guistics Research Lab, each participant narrative has been manually annotated for syntax and

morphology by trained annotators, following the NNLA procedure. A number of different

measures were calculated from these annotations by researchers at Northwestern. These man-

ually computed features are given in Table 5.2.

Some of the features in Table 5.2 involve a Verb Morphology Index (VMI). This is a mea-

sure of the morphological complexity of a verb that was developed by Thompson et al. (1995)

and adapted from a scoring system originally proposed by Chomsky (1957). The VMI in-

creases in the presence of tense markings, auxiliary verbs, modal verbs, etc.

5.3.2 Automatically extracted features

As discussed in Section 3.4, we had previously examined the usefulness of the CFG features for

distinguishing between speakers with agrammatic aphasia and healthy controls (Fraser et al.,

2014b). In the aphasic case, we found evidence for fragmented speech with a higher incidence

of solitary noun phrases, difficulty with determiners and possessives, and a reduced number of

prepositional phrases and embedded clauses. Furthermore, using these features in a classifica-

tion task led to better results than using traditional measures of syntactic complexity. Given that

we have shown these features to be sensitive to agrammatism, we now examine whether they,

in combination with the other text features, can actually distinguish between the two different

agrammatic populations.

Text-based features were extracted from the transcripts following the procedures outlined

in Chapter 3. In addition, we introduce a new set of features derived from the dependency

structure of each narrative utterance, described below. Acoustic features were not included.
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Feature name and description
MLU-word Mean length of utterance in words.
MLU-morpheme Mean length of utterance in morphemes.
WPM Number of words per minute (excluding dysfluencies).
TTR Type-token ratio.
Gram-sentences Percentage of sentences which are grammatically correct.
Syn-sentences Percentage of sentences which are syntactically correct.
Complexity-ratio Ratio of complex sentences to simple sentences (where a simple sen-

tence is produced in canonical form with no embedded clauses).
Open-closed-ratio Ratio of number of open-class words to number of closed-class

words.
Noun-verb-ratio Ratio of number of nouns to number of verbs.
Correct-reg-infl Percentage of regular verbs which are correctly inflected.
Correct-irreg-infl Percentage of irregular verbs which are correctly inflected.
Correct-3s Percentage of third-person singular verbs which are correctly inflected.
Correct-ed Percentage of past-tense verbs which are correctly inflected.
Correct-comp Percentage of complementizers which are used correctly.
Percent-3s Percentage of third-person singular markers that are produced, out of the total

number of regular morphological markers.
Percent-ed Percentage of regular past-tense markers that are produced, out of the total

number of regular morphological markers.
Percent-ed+ Percentage of regular past tense and past participle markers that are pro-

duced, out of the total number of regular morphological markers.
Percent-ing Percentage of present participle markers that are produced, out of the total

number of regular morphological markers.
Correct-1-place Percentage of 1-place verbs with the correct argument structure.
Correct-2-place Percentage of 2-place verbs with the correct argument structure.
Correct-3-place Percentage of 3-place verbs with the correct argument structure.
Correct-arg-struct Percentage of verbs with the correct argument structure.
Correct-VMI Percentage of verbs with correct Verb Morphology Index (VMI).
Mean-VMI Mean VMI (calculated over all verbs).
Correct-mean-VMI Mean VMI (calculated over correct verbs).
Correct-VI Percentage of correctly inflected verbs.
Correct-NI Percentage of correctly inflected nouns.

Table 5.2: Features which were manually extracted from the narrative samples in previous
work at Northwestern University.
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Dependency parse features

The syntactic features used throughout this thesis have been extracted from context-free gram-

mar constituent parses of sentences. A different grammar formalism, called a dependency

grammar, describes a sentence in terms of the relationships between words, rather than in

terms of the syntactic constituents (Jurafsky and Martin, 2000). In dependency parsing, the

nodes are words and the edges are the grammatical relationships between words (e.g., subject,

object, modifier).

One reason for limiting our previous analysis to constituent parse features (and in that case,

to ignore the lexical productions) was to mitigate issues of data sparsity when calculating the

features. For example, in the sentence Cinderella washed the laundry and swept the floor, we

can count two instances of the rule VP → VBD NP and two instances of the rule NP → DT

NN, but it is not obvious how (or whether) to conflate the associated dependency relations,

when the lexical content and sentence positions are different:

nsubj(washed-2, Cinderella-1)

root(ROOT-0, washed-2)

det(laundry-4, the-3)

dobj(washed-2, laundry-4)

cc(washed-2, and-5)

conj(washed-2, swept-6)

det(floor-8, the-7)

dobj(swept-6, floor-8)

Instead, as a first step towards including some of this relational information, we simply

count the frequency of each relation type, without considering the arguments. In the example

above, the counts would be nsubj: 1, root: 1, det: 2, dobj: 2, cc: 1, conj: 1. This allows

us to capture rough estimates for some of the quantities that had been calculated by hand; for

example, the number of direct objects provides an estimate for the number of verbs with greater
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than one argument.

Dependency parses are obtained from the Stanford dependency parser1 (de Marneffe et al.,

2006). In related work, da Cunha et al. (2015) used dependency parsing to automatically

identify propositions in order to calculate the idea density of speech from participants with de-

mentia. Roark et al. (2011) used mean dependency distance as a feature when classifying MCI

narratives from controls. Orimaye et al. (2014) computed the number of unique dependencies

and the average number of unique dependencies per sentence in their paper on language in

Alzheimer’s disease, although they found no difference on those measures relative to healthy

controls. More broadly related work has considered using dependency parse features to track

child language development (Lubetich and Sagae, 2014) and to detect preposition errors in

second-language writing (Tetreault et al., 2010).

5.3.3 Classification

We used the extracted features to train a logistic regression classifier and a support vector

machine classifier (Hall et al., 2009) for varying feature set sizes. A correlation-based feature

selection method was used, in which features were ranked according to their correlation with

diagnosis (Guyon and Elisseeff, 2003). Performance was measured using leave-one-out cross-

validation and calculating the average accuracy across the entire data set. Error bars were

estimated based on a 95% confidence interval using the normal approximation method. A

majority-class classifier would achieve an accuracy of 0.56.

1Here we also go back to using the Stanford constituency parser, for consistency. While we did not compare
the results using the Charniak and Stanford parsers, it would be an interesting avenue for future research.



CHAPTER 5. AGRAMMATISM IN PROGRESSIVE AND POST-STROKE APHASIA 138

Figure 5.1: Classification accuracy for various feature set sizes using the manually ex-
tracted features. The majority-class baseline is shown with a black dotted line.

5.4 Results

5.4.1 Classification results

The classification accuracies achieved using the manual features are given in Figure 5.1. Per-

forming the classification revealed one potential drawback to using these features, which is that

the feature values are frequently undefined (for example, the percentage of 3-place verbs with

correct argument structure when no 3-place verbs are used). Features with unknown values are

not selected in the feature selection step.2 Thus, the maximal feature set size for the manual

features on this data set is 14. The maximum classification accuracy is 0.71 (logistic regression,

N = 10,12). This is significantly greater than the baseline (paired t-test, p = 0.04).

The accuracies achieved using the automatically extracted features are given in Figure 5.2.

Here, the best accuracy is 0.76 (logistic regression, N = 70). This accuracy is higher than

2When the feature selection was modified to allow for this, a drop in performance was observed.
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Figure 5.2: Classification accuracy for various feature set sizes using the automatically
extracted features. The majority-class baseline is shown with a black dotted line.

using the manual features, but the difference is not significant. It is significantly higher than

the majority-class baseline (paired t-test, p = 0.01).

5.4.2 Analysis of important features

We now turn to the question of what information the classifiers are using to distinguish between

the groups in the automated analysis. In the feature selection step, those features with the

highest correlation with diagnosis are selected. These features can be slightly different from

fold to fold, as the training sets are different from fold to fold. Figure 5.3 shows which features

are selected most frequently across folds (limited to the N = 10 case for the sake of visualization

and brevity). There are 5 features which are selected in every fold: words per minute (WPM),

VP proportion (the length of each verb phrase in words, divided by total narrative length in

words), the number of aux (auxiliary) dependency relations, the frequency of occurrence of the

grammatical structure VP→ VBG S, and the proportion of light verbs. A few other features
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are selected more than 50% of the time: the frequency of NP→ NN NN, the frequency of the

relation prep on (prepositional relation using on), PP rate (the number of prepositional phrases,

divided by the number of words in the narrative), and the frequency of NP→ NNP.

To explore these highly-ranked features in more depth, the means of the 9 features men-

tioned above in both the PPA-G group and the StrAg group are reported in Table 5.3. WPM

is significantly higher in the PPA-G group (p = 0.001), in contrast to previous studies that

reported no difference between the groups on speech rate (Patterson et al., 2006; Thompson

et al., 2013). The PPA-G group also has a higher proportion of words which are part of a verb

phrase (note that this proportion can be greater than one because each word can be part of

multiple, nested verb phrases). Although not selected in the top features, average VP length is

also higher in the PPA-G group (5.0 versus 4.3, p = 0.03). People with agrammatic aphasia

may omit words like auxiliaries from verb phrases (Saffran et al., 1989), produce fewer verbs

with complex argument structures (Thompson et al., 1997a), and use fewer adjectives (Nadeau,

2012), which could all contribute to shorter VPs. Thus it would appear that the PPA-G group

is less impaired than the StrAg group on this measure.

The aux feature is higher in the PPA-G group than the StrAg group, and this may be related

to the VP proportion feature. Consider the following examples:

Cinderella cleans the kitchen.

(ROOT

(S

(NP (NNP Cinderella))

(VP (VBZ cleans)

(NP (DT the) (NN kitchen)))

(. .)))

This sentence has one verb phrase containing 3 words, and a total length of 4 words, so the VP

proportion is 3/4 = 0.75.
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Cinderella is cleaning the kitchen.

(ROOT

(S

(NP (NNP Cinderella))

(VP (VBZ is)

(VP (VBG cleaning)

(NP (DT the) (NN kitchen))))

(. .)))

This sentence has one VP containing 3 words, and another VP containing 4 words, so the total

VP proportion is (3+4)/5 = 1.4. It also contains the auxiliary verb relation aux(cleaning-3, is-2).

So it is clear that sentences with auxiliary verbs will also tend to have higher VP proportions.

Again, because use of auxiliary verbs is impaired in agrammatic aphasia, this suggests a lower

degree of impairment in PPA-G.

The feature VP→ VBG S is also higher in the PPA-G group. The means in Table 5.3 are

normalized by the total number of CFG rules produced, but on average PPA-G participants use

this construction 1.1 times per narrative, while StrAg participants use this construction only

0.44 times per narrative. When we examine the PPA-G data, we find that this construction

corresponds to two main usages: (1) Past progressive with infinitive complement. Examples:

she was trying to dance, he was trying to find the owner of the shoe. (2) Future progressive

using going to. Examples: the prince is going to find the lady, she is going to go to the party.

In each of these cases, the auxiliary verb be is used (was trying, is going to), as well as the

progressive (-ing) verb form. In general, progressive verb forms are over-used in agrammatic

aphasia (Druks and Carroll, 2005; Faroqi-Shah and Thompson, 2007), but auxiliaries tend to

be omitted (Thompson and Bastiaanse, 2012).

Table 5.3 shows a higher proportion of light verbs in the PPA-G group. Given the evidence

so far for PPA-G participants using more auxiliary verbs, one explanation for the increased

number of light verbs in the PPA-G narratives could be that the auxiliary verbs are being la-
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belled as light verbs (since the tagger does not distinguish between auxiliary verbs and regular

verbs). If the effect is real, then the interpretation is still unclear. Previous studies do not agree

on whether agrammatic patients tend produce more light verbs than controls (as reported by

Berndt et al. (1997)) or fewer (as reported by Breedin et al. (1998)).

The feature NP → NN NN occurs more frequently in the StrAg group (on average 0.48

times per narrative in the StrAg group versus only 0.03 in the PPA-G group). While there are

some grammatical uses of this construction, it often corresponds to an ungrammatical produc-

tion, e.g., man coach riding and pearl earring were broken.

The PP rate is higher and prepositional relations with the preposition on are more common

in the PPA-G group. In general, people with agrammatism tend to produce fewer prepositional

phrases (Goodglass et al., 1994). In particular, processing of locative prepositions (such as

in or on) can be impaired in agrammatic aphasia (Nadeau, 2012). However, there is some

question of whether the effect here can be interpreted as a true difference in the production of

prepositional phrases. Examining the PPA-G data, we find that while many of the examples of

prep on do correspond to the preposition on (e.g., the slipper she left on the stair, it fit on her

foot), there are also many examples which may be more appropriately marked as phrasal verbs

(e.g., she put on the shoe, having the people try on the slipper). Thompson et al. (1995) found

that people with nonfluent aphasia tended to produce fewer phrasal verbs than healthy controls

in conversation. However, it will be necessary to develop new features to more accurately

examine the use of on as both a preposition and a particle in a phrasal verb separately before

we can draw a conclusion here.

The last feature in Table 5.3 relates to the construction NP→ NNP, which unsurprisingly

corresponds to the word Cinderella in almost all cases. On average, the StrAg group uses this

construction 4.9 times per narrative, while the PPA-G groups uses it 3.0 times per narrative.

Since there is no difference on the total number of words produced, one potential explanation

could be that people with PPA-G are referring to Cinderella with a pronoun more frequently.

Since she could refer to Cinderella, the fairly godmother, the step-mother, or one of the step-
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Figure 5.3: The proportion of folds in which each feature was selected, for the case of
N = 10.

sisters, it is difficult to test this hypothesis directly without performing co-reference resolution,

but as an indirect measure we can calculate the ratio of proper nouns to pronouns in each

narrative. Indeed, we find that on average the PPA-G group ratio is lower (0.22 versus 0.62 for

the StrAg group, p = 0.04). The “pronoun ratio” feature, which measures the ratio of pronouns

to nouns+pronouns, is not significantly different between the groups (although slightly higher

in the PPA-G group). If the PPA-G group is using more pronouns, one explanation could be

a subtle word-finding difficulty. Alternatively, it may reflect a difficulty with pronouns in the

StrAg group. In previous work, participants with nonfluent PPA showed spared production

of pronouns relative to healthy controls (Wilson et al., 2010), while participants with StrAg

showed a reduction in pronoun production (Saffran et al., 1989).

Finally, we examine whether these highly-ranked features are associated with the manually-

extracted features. We measure the correlation between the features in Table 5.3 and all the

manually extracted features. Only those manual features which show a moderate positive or

negative correlation with at least one of the automatically extracted features are shown (r > 0.5
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Feature PPA-G mean StrAg mean p
WPM 53.8 34.9 0.001
VP proportion 1.18 0.94 0.006
aux 0.058 0.041 0.009
VP→ VBG S 0.0053 0.0015 0.0008
light verbs 0.60 0.48 0.001
NP→ NN NN 0.000085 0.0023 0.02
prep on 0.0071 0.0026 0.004
PP rate 0.069 0.051 0.009
NP→ NNP 0.015 0.024 0.03

Table 5.3: Group means for those features in Figure 5.3 that are selected more than 50% of
the time. Bold font indicates the group with the higher mean. p measures the significance
of the difference between groups, measured on the complete data set.
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MLU-word 0.60 0.80 0.32 0.14 0.21 −0.30 0.14 0.49 −0.46
MLU-morpheme 0.59 0.79 0.35 0.13 0.22 −0.32 0.14 0.49 −0.44
WPM 0.87 0.52 0.21 0.14 0.30 −0.10 −0.03 0.18 −0.41
Gram-sentences 0.42 0.64 0.34 0.35 0.23 −0.36 0.01 0.58 −0.32
Syn-sentences 0.36 0.52 0.31 0.28 0.33 -0.42 −0.10 0.47 −0.14
Complexity-ratio 0.28 0.52 0.24 0.34 −0.03 −0.03 −0.14 0.36 −0.13
Open-closed-ratio −0.45 −0.53 −0.38 −0.24 −0.44 0.57 −0.10 −0.55 0.62
Noun-verb-ratio −0.40 −0.51 −0.30 −0.18 −0.40 −0.01 0.01 −0.24 0.48
Correct-VMI 0.38 0.62 0.30 0.30 0.43 −0.33 0.09 0.50 −0.21
Mean-VMI 0.42 0.61 0.75 0.28 0.37 −0.10 0.10 0.32 −0.35
Correct-mean-VMI 0.39 0.58 0.72 0.25 0.38 −0.16 0.14 0.36 −0.15
Correct-VI 0.26 0.36 0.18 0.24 0.16 −0.51 −0.17 0.25 −0.14

Table 5.4: Correlations between the highly ranked, automatically extracted features and
the manual features. We only show those manual features for which the absolute value
of the correlation with at least one of the automatic features is greater than 0.5. Those
correlations with absolute value greater than 0.5 are shown in bold.
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or r <−0.5).

The only feature in each group which actually attempts to measure the same quantity is

speech rate, which is highly correlated. (We also measure noun-verb ratio and mean length of

utterance automatically, although they were not selected as highly relevant features. However,

the correlations between those variables and the manual ones are 0.93 and 0.98, respectively).

Nonetheless, it is interesting to note that many of the automatic features are at least moderately

correlated with one or more of the manually extracted features.

For example, speech rate is also positively correlated with the mean length of utterance

(both measures of fluency). The VP proportion is correlated with a number of different manual

features, and some of these relationships are more intuitive than others. Most sentences are

composed of a (relatively short) NP and then a VP, whose length will contribute to both the

MLU and the VP proportion. Similarly the VMI increases with elements such as objects and

auxiliaries, which also increase the length and number of levels in a VP. More surprising,

perhaps, is that VP proportion is also associated with measures of grammaticality, which we

make no attempt to evaluate directly (e.g., proportion of grammatical sentences and proportion

of verbs with correct VMI).

Use of auxiliary verbs is correlated with VMI, which is to be expected. NP → NN NN

is correlated with the open:closed class ratio, and contains only open-class word types. That

feature is also negatively correlated with the proportion of correctly inflected verbs. PP rate is

positively correlated with the proportion of grammatical sentences and verbs with correct verb

morphology index, and negatively correlated with open:closed class ratio, suggesting that nar-

ratives with more prepositional phrases also tend to be more grammatically correct. Finally, NP

→ NNP is correlated with open:closed class ratio, which again makes sense since Cinderella

is an open-class word, and the alternative (a pronoun) is closed-class.
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5.5 Discussion

The issue of whether the agrammatic/nonfluent variant of PPA is qualitatively the same as

post-stroke agrammatic/nonfluent aphasia is complicated and somewhat controversial. A ma-

jor challenge lies in comparing appropriate data sets. Here we have compared the largest two

patient groups to date, matched for aphasia severity and education, and using stringent criteria

to exclude PPA patients whose primary deficits are not grammatical in nature. Our analysis

suggests that there are still observable differences in the narrative language production of the

two groups, as measured by both manual features (classification accuracy: 71%) and auto-

matically extracted features (classification accuracy: 76%). Preliminary investigation of the

features suggests these differences may lie in the spontaneous production of verb tenses re-

quiring auxiliary verbs and the production of prepositional phrases and pronouns. However,

detailed analysis of all the computed features will no doubt enhance this interpretation. A gen-

eral theme which emerged from this analysis is that the PPA-G participants were less impaired

than the StrAg participants (that is, PPA-G participants spoke faster, produced a greater pro-

portion of words in verb phrases, and produced more auxiliaries, prepositional phrases, and

pronouns). In future work, it will be informative to compare these results to healthy controls,

to determine whether PPA-G speakers fall within the normal range on any of these measures,

or whether they are simply less impaired than in post-stroke aphasia.

In this chapter we also introduced dependency parse features. Two of these features were

selected in the top 10 over 50% of the time, confirming their utility on this task. Future work

will involve applying these features to other datasets discussed in this thesis, including PPA and

Alzheimer’s disease, as well as developing methods to use information from the arguments in

the relations.

A major methodological difference in this chapter compared to preceding chapters is the

use of manually annotated data. Specifically, dysfluencies and non-narrative utterances were

identified by the transcriber and subsequently removed from the analysis. The primary argu-

ment against this approach is that we want to ultimately develop a system which automatically
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analyzes speech input for signs of dementia and aphasia, without requiring human intervention.

However, my goal in this particular project was primarily to contribute to the scientific question

of whether there are syntactic differences between the two patient populations, and in light of

that goal it seemed appropriate to use manually annotated data and reduce the probability of

parser errors. However, previous results suggest that by throwing away all information related

to dysfluency, we may in fact be discarding diagnostically useful information (Fraser et al.,

2014b). Future work will involve repeating the analysis with the full, unedited transcripts, as

well as comparing features extracted from those transcripts to features extracted from the clean

transcripts.

The analysis presented here does not include any direct judgements of grammaticality,

which may seem strange, given the task at hand. In more highly structured speech tasks, where

there are clear right and wrong answers, a focus on correctness is certainly appropriate. How-

ever, in spontaneous (or semi-spontaneous) narrative speech, the number of grammatical errors

made may be a function not only of severity but of individual willingness to attempt difficult

syntactic structures. Wilson et al. (2010) observed that some of their nonfluent participants

never made syntactic errors, apparently because they attempted only the simplest syntactic

structures. Thus the level of frank agrammatism may vary depending on the compensatory

strategies adopted by the individual. Furthermore, the task of reconstructing a hypothetical

“target phrase” in a relatively unstructured task such as story-telling becomes very difficult.

Given the ungrammatical output the sister go, was the target phrase the sisters go, or the sis-

ter goes? The interpretation directly affects the analysis – did the participant omit a plural

marker, or a third-person singular inflection? Or perhaps they meant something else entirely;

it is impossible to know. Saffran et al. (1989) touch on this issue in their criteria for a system

to analyze agrammatic speech, writing, “Minimal assumptions should be made concerning the

patients’ intended target utterances, and consequently about the nature of the error produced.

Instead, scoring should be based on the structural elements actually present in the utterances.

The frequency with which these elements occur in patients’ speech can then be compared to
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that of a matched normative group.” Of course, in some contexts a determiner is obligatory,

or a verb is obviously in disagreement with a noun, and in these cases an automated system

should be able to capture the error. However, the current approach avoids the very difficult

problem of automatic error detection in non-canonical speech while still demonstrating the

same (even slightly higher) ability to differentiate between the groups as hand-coded measures

of grammatical correctness.



Chapter 6

Speech and language features for the

detection of Alzheimer’s disease

In previous chapters, we have demonstrated the potential utility of applying natural language

processing techniques to the analysis of PPA. Language impairment is the defining character-

istic of PPA, and so the rationale for using language samples to classify PPA and its subtypes

was clear. In this chapter, we will demonstrate the flexibility of this approach by applying it to

the problem of detecting another type of dementia, namely Alzheimer’s disease (AD).

AD is more common than PPA, and is in fact the most common type of dementia overall

(Alzheimer’s Association, 2016). While brain imaging of PPA patients typically reveals a rel-

atively focal degeneration in the language areas of the brain, AD pathology tends to be more

global, affecting a wide range of cognitive processes (Kirshner, 2012). The core symptom of

AD is memory impairment, typically beginning with an inability to remember new informa-

tion. However, there are a number of other symptoms associated with the disease, including

difficulties with planning or problem-solving, an inability to complete familiar tasks, confu-

sion surrounding time and place, poor judgement, changes in personality, and difficulties with

language (Alzheimer’s Association, 2016).

In fact, subtle changes in language can be one of the earliest signs of AD (Forbes-McKay

149
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and Venneri, 2005; Cuetos et al., 2007; Ahmed et al., 2013). Researchers have suggested that

this could be due to the fact that successful discourse production requires a range of cognitive

functioning, including planning, attention, and memory (Fleming, 2014). As a result, an analy-

sis of narrative speech can in some cases pick up on changes that are not apparent on a simpler

language task, such as confrontation naming (Fleming, 2014).

In this chapter, we present some background information on language in AD and related

computational work. We describe the participants and the narrative task — in this case, a

picture description task. We then present some new features designed specifically to assess

previously reported characteristics of AD speech; namely, repetitions and a reduction in infor-

mation content. The results of a classification experiment and a factor analysis are discussed

in relation to previous work in the field. Finally, we consider the effect of ASR on the features

and classification accuracy.

6.1 Background1

6.1.1 Language in AD

Although memory impairment is the main symptom of AD, language impairment can be an im-

portant marker. Faber-Langendoen et al. (1988) found that 36% of mild AD patients and 100%

of severe AD patients had aphasia, according to standard aphasia testing protocols. Ahmed

et al. (2013) found that two-thirds of their participants showed subtle, but significant, changes

in connected speech production up to a year before their diagnosis of probable AD. Weiner

et al. (2008), in a study of 486 AD patients, reported a significant correlation between de-

mentia severity and a number of different linguistic measures, including confrontation naming,

articulation, word-finding ability, and semantic fluency.

Declining performance on naming tasks can occur early in the disease progression (Kirsh-

1The material presented in Sections 6.1–6.3 was originally published in: Kathleen C. Fraser, Jed A. Meltzer,
and Frank Rudzicz (2015). Linguistic features identify Alzheimer’s disease in narrative speech. Journal of
Alzheimer’s Disease 49(2), pp.407–422.
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ner, 2012; Reilly et al., 2011; Kirshner et al., 1984; Taler and Phillips, 2008). Kirshner et al.

(1984) found that all the AD participants in their study were impaired on a naming task, even

when their language functioning was normal by other measures. Individuals with AD can have

difficulty retrieving the names of people and places (Oppenheim, 1994), and may substitute

generic terms for more specific ones (Kirshner, 2012; Reilly et al., 2011; Kempler, 1995). Nu-

merous studies have reported a greater impairment in category naming fluency (e.g., naming

animals or tools) relative to letter naming fluency (e.g., naming words that start with the letter

R) (Salmon et al., 1999; Monsch et al., 1992; Adlam et al., 2006), and this finding was sup-

ported by a meta-analysis of 153 studies (Henry et al., 2004). There is also some evidence that

patients with AD may have more difficulty naming verbs than nouns. Robinson et al. (1996)

found that AD participants performed worse on a picture-naming task for verbs than nouns,

even when the verbs and nouns were spelled and pronounced the same, and matched for fre-

quency. As a result of word-finding difficulties and a reduction in working vocabulary, the

language of AD patients can seem “empty” (Nicholas et al., 1985; Ahmed et al., 2013), and

was described by Appell et al. (1982) as “verbose and circuitous, running on with a semblance

of fluency, yet incomplete and lacking coherence.”

Macro-linguistic language functions, such as understanding metaphor and sarcasm, also

tend to deteriorate in AD (Rapp and Wild, 2011). Thematic coherence, or the ability to maintain

a theme throughout a discourse, may also be impaired. In a study comparing 9 AD participants

to healthy controls and participants with fluent aphasia, Glosser and Deser (1991) found that

the AD participants showed a reduction in global coherence in a structured interview task.

Blonder et al. (1994) reported a similar result when interviewing 5 AD participants and their

healthy spouses.

The effect of AD on syntax is controversial. Some researchers have reported syntactic

impairments in AD, while others claim that any apparent deficits are in fact due to difficulties

with memory and semantics (Reilly et al., 2011). Several studies have found evidence for

a decrease in the syntactic complexity of language in AD (Croisile et al., 1996; Ehrlich et al.,
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1997; Sajjadi et al., 2012). Croisile et al. (1996) compared oral and written picture descriptions

from 22 AD patients and matched controls, and found that the AD patients produced fewer

subordinate clauses than controls. Ehrlich et al. (1997) reported a reduced utterance length on

narrative tasks administered to 16 AD participants and controls. In a study comparing language

production in AD and semantic dementia, Sajjadi et al. (2012) found that their 20 patients with

mild AD tended to produce fewer complex syntactic units on both a picture description task

and an interview. On the other hand, Kempler et al. (1987) found that 10 individuals with

AD used a range of syntactic constructions with the same frequency as control participants

in spontaneous conversation, despite showing signs of lexical impairment. Glosser and Deser

(1991) similarly did not find any difference in syntactic complexity or correctness between AD

patients and controls in spontaneous speech.

There is evidence that language decline in AD is heterogenous. Hodges and Patterson

(1995) divided 52 AD patients into three different categories based on dementia severity and

assessed their semantic impairment on a number of different tasks. They reported a wide range

of performance in the “minimal” and “mild” AD groups. Duong et al. (2005) had 46 AD par-

ticipants produce narratives based on a single picture and a series of pictures. A cluster analysis

subsequently revealed a number of different discourse patterns rather than a single character-

istic pattern of impairment. Ahmed et al. (2013) contrasted their findings of heterogenous

language decline in connected speech from 15 AD patients with the more predictable patterns

of decline seen in primary progressive aphasia.

6.1.2 Related computational work

A relatively small subset of studies on language in AD attempt to quantify the impairments

in connected speech using computational techniques. Bucks et al. (2000) conducted a linear

discriminant analysis of spontaneous speech from 8 AD participants and 16 healthy controls.

They considered eight linguistic features, including part-of-speech (POS) tag frequencies and

measures of lexical diversity, and obtained a cross-validation accuracy of 87.5%.



CHAPTER 6. SPEECH AND LANGUAGE FEATURES FOR AD DETECTION 153

Thomas et al. (2005) classified spontaneous speech samples from 95 AD patients and an

unspecified number of controls by treating the problem as an authorship attribution task, and

employing a “common N-grams” approach. They were able to distinguish between patients

with severe AD and controls with a best accuracy of 94.5%, and between patients with mild

AD and controls with a best accuracy of 75.3%. They suggested that closed-class words were

particularly informative in their analysis.

Guinn and Habash (2012) built classifiers to distinguish between AD and non-AD language

samples using 80 conversations between 31 AD patients and 57 cognitively normal conversa-

tion partners. They found that features such as POS tags and measures of lexical diversity were

less useful than measuring filled pauses, repetitions, and incomplete words, and achieved a best

accuracy of 79.5%.

Meilán et al. (2014) distinguished between 30 AD patients and 36 healthy controls with

temporal and acoustic features alone, obtaining an accuracy of 84.8%. For each participant,

their speech sample consisted of two sentences read from a screen. The five most discriminat-

ing features were percentage of voice breaks, number of voice breaks, number of periods of

voice, shimmer, and noise-to-harmonics ratio.

Jarrold et al. (2014) used acoustic features, POS features, and psychologically-motivated

word lists to distinguish between semi-structured interview responses from 9 AD participants

and 9 controls with an accuracy of 88%. They also confirmed their hypothesis that AD patients

would use more pronouns, verbs, and adjectives and fewer nouns than controls.

Rentoumi et al. (2014) considered a slightly different problem: they used computational

techniques to differentiate between picture descriptions from AD participants with and without

additional vascular pathology (n= 18 for each group). They achieved an accuracy of up to 75%

when they included frequency unigrams and excluded binary unigrams, syntactic complexity

features, measures of vocabulary richness, and information theoretic features.

Orimaye et al. (2014) obtained F-measure scores up to 0.74 using a relatively restricted fea-

ture set on transcripts from DementiaBank, although they combined participants with different
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etiologies, rather than focusing on AD. Prud’hommeaux and Roark (2015) also considered a

subset of DementiaBank (130 narratives from the AD group and 130 from controls). Narra-

tives were manually post-processed and limited to 100 words (Prud’hommeaux, 2012). They

achieved a best accuracy of 83.2% for distinguishing between the two groups.

Our study differs from previous work in several ways. Along with Orimaye et al. (2014) and

Prud’hommeaux and Roark (2015), we consider a much larger sample size than most previous

work, giving a more representative sample for machine learning. We also consider a larger

number of features to help capture the array of different language impairments that can be seen

in AD, and conduct factor analysis to characterize patterns of heterogeneity.

6.2 Data

In this study, we consider narrative speech samples elicited through a picture description task,

from participants with probable AD and older, healthy controls. Our data are derived from

the DementiaBank corpus, which is part of the larger TalkBank project (MacWhinney et al.,

2011). These data were collected between 1983 and 1988 as part of the Alzheimer Research

Program at the University of Pittsburgh. Information about the study cohort is available from

Becker et al. (1994). Participants were referred directly from the Benedum Geriatric Center at

the University of Pittsburgh Medical Center, and others were recruited through the Allegheny

County Medical Society, local neurologists and psychiatrists, and public service messages on

local media. To be eligible for inclusion in the study, participants were required to be above

44 years of age, have at least 7 years of education, have no history of nervous system disorders

or be taking neuroleptic medication, have an initial Mini-Mental State Exam (MMSE) score of

10 or greater, and be able to give informed consent. Additionally, participants with dementia

were required to have a relative or caregiver to act as an informant. All participants received an

extensive neuropsychological and physical assessment (see Becker et al. (1994) for complete

details). Participants were assigned to the “patient” group primarily based on a history of
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AD (n = 240) Control (n = 233)
Age (years) 71.8 (8.5) 65.2 (7.8)
Education (years) 12.5 (2.9) 14.1 (2.4)
Sex (male/female) 82/158 82/151
MMSE 18.5 (5.1) 29.1 (1.1)

Table 6.1: Demographic information for participants with AD and healthy controls. Means
and standard deviations are given for each quantity.

cognitive and functional decline, and the results of a mental status examination. In 1992,

several years after the study had ended, the final diagnosis of each patient was reviewed on the

basis of their clinical record and any additional relevant information (in some cases, autopsy).

From the “Dementia” group, we include participants with a diagnosis of “possible AD”

or “probable AD”, resulting in 240 samples from 167 participants. We also include control

participants, resulting in 233 additional files from 97 speakers. Demographics are given in

Table 6.1. We compute averages over individual sessions instead of individual participants in

order to capture intra-speaker variation over the five years these data were collected. The two

groups are not matched for age and education, which is one limitation of these data.

Narrative speech was elicited using the “Cookie Theft” picture description task from the

Boston Diagnostic Aphasia Examination (Goodglass and Kaplan, 1983). This protocol in-

structs the examiner to show the picture to the patient and say, “Tell me everything you see

going on in this picture.” The examiner is permitted to encourage the patient to keep going if

they do not produce very many words. Each speech sample was recorded, and then manually

transcribed at the word level following the TalkBank CHAT (Codes for the Human Analysis

of Transcripts) protocol (MacWhinney, 2000). Narratives were segmented into utterances and

annotated with filled pauses, paraphasias, and unintelligible words.

From the CHAT transcripts, we keep only the word-level transcription and the utterance

segmentation. We discard the morphological analysis, dysfluency annotations, and other asso-

ciated information, as our goal is to create a fully automated system that does not require the

input of a human annotator. Before tagging and parsing the transcripts, we automatically re-

move short false starts consisting of two letters or fewer (e.g., The c- cookie jar would become
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The cookie jar) and filled pauses such as uh, um, er, and ah (e.g., The um um boy would become

The boy). All other dysfluencies (including repetitions, revisions, paraphasias, and comments

about the task) remain in the transcript. The AD participants produce an average of 104.3 (SD:

59.0) words per narrative, while the control participants produce an average of 114.4 (SD: 59.5)

words per narrative, although the distribution in both cases is somewhat right-skewed.

Each transcript has an associated audio file, allowing for lexical and acoustic analysis in

parallel, which we converted from MP3 to 16-bit mono WAV format with a sampling rate of

16 kHz.

6.3 Detection of AD using manual transcripts

In addition to all the text and acoustic features discussed in Chapter 3, here we also include

new features that are designed to capture some of the specific impairments of connected speech

in AD that have been noted in the literature. Specifically, we explore techniques for detecting

and quantifying repetitive ideas and a reduction in the information content of speech. We also

include a new set of acoustic features based on the mel-frequency cepstral coefficients of the

audio signal.

6.3.1 New features

Perseverations in speech

One phenomenon that is often noted by the caretakers of AD patients is the occurrence of

perseverative behaviour, including in their speech (Bayles et al., 2004; Tomoeda et al., 1996).

It has been theorized that this may be a result of an impairment in memory or attention, leading

speakers to forget that they had recently uttered the same phrase. Nicholas et al. (1985) found

that in a picture description task, AD patients repeated words and phrases more frequently than

healthy controls and also more frequently than participants with fluent aphasia. Tomoeda et al.

(1996) found also that AD patients were more likely to repeat ideas in a picture description
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task than healthy controls, and that the frequency of repetitions was not related to severity of

dementia.

Recently Barney et al. (2013) proposed an automated technique to detect perseverations

in speech samples by modelling the problem as a “motif detection” problem. That is, they

transformed the audio signal into discrete subsequences and used existing algorithms to search

for repetitive speech patterns. When they tested this method on read speech, they were able to

detect repeated sequences with an accuracy of 57% to 71%.

Here, we consider detecting repetitions from the transcripts, rather than from the audio sig-

nal. We compute the semantic similarity between utterances by using a bag-of-words model

and calculating the cosine distance between each pair of utterances in the transcript. We re-

move a short list of stopwords, after observing that utterances such as He is standing on the

stool and He is holding the cookie could be considered relatively similar given the common

occurrences of he, is, and the. We calculate five features using this information: the average

cosine distance between utterances, the minimum cosine distance between utterances, and the

number of utterance pairs with cosine distance equal to zero, less than 0.3, and less than 0.5

(normalized by the total number of pairs). Note that if the cosine distance is zero, then the two

utterances contain the same words, though not necessarily in the same order.

These features allow us to detect narratives with highly repetitive content, such as in the

following example:

all the bad things

sink’s overflowing

the stool’s going over

and the cookie jar

−guess the little girl she’s saying

give me shh

and the sink’s overflowing

I might not be very observant but I don’t see anything else
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Information units

Picture description tasks can be scored in different ways. In the BDAE, examiners count

seven different variables, mostly related to syntax: the total number of utterances, the number

of empty utterances, subclausal utterances, single clause utterances, multi-clause utterances,

agrammatic deletions, and a complexity index (number of clauses per utterance) (Goodglass

and Kaplan, 1983). Many of these concepts are related to the syntactic features we already

measure. However, in the Western Aphasia Battery (WAB), a similar picture description task

is judged on two dimensions: fluency and information content (Kertesz, 1982). Numerous

studies have found that individuals with probable AD tend to produce narratives with lower in-

formation content than healthy controls (Giles et al., 1996; Croisile et al., 1996; Forbes-McKay

and Venneri, 2005; Ahmed et al., 2013).

Giles et al. (1996) defined an information unit as “the smallest non-redundant fact or in-

ference about the picture, which may range in size from e.g., plural /s/ to a phrase.” They

did not define any criteria for whether the information conveyed was relevant to the picture

itself. In contrast, Croisile et al. (1996) defined a set of specific information units that they

expected to be conveyed, based on a survey of earlier literature. These information units are

listed in Table 6.2. They found a significant difference between the number of information units

produced by controls and by AD participants in both verbal and written picture descriptions.

Ahmed et al. (2013) used the same list of information units, as well as idea density, which

was defined as the number of information units divided by the the total number of words in the

sample, and efficiency, defined as the number of information units divided by the total sample

time in seconds. They found a significant downward trend on a composite score consisting of

all the semantic content features when they computed it for participants with mild cognitive

impairment, mild AD, and moderate AD.

In the studies mentioned above, information units were identified and counted manually.

There has also been some progress towards the automatic scoring of picture descriptions.

Hakkani-Tür et al. (2010) compared the scores they obtained through automatic speech recog-
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Subjects: BOY, GIRL, WOMAN

Places: KITCHEN, EXTERIOR SEEN THROUGH WINDOW

Objects: COOKIE, JAR, STOOL, SINK, PLATE, DISHCLOTH, WATER, WIN-
DOW, CUPBOARD, DISHES, CURTAINS

Actions: BOY TAKING OR STEALING, BOY OR STOOL FALLING, WOMAN

DRYING OR WASHING DISHES/PLATE, WATER OVERFLOWING OR

SPILLING, ACTION PERFORMED BY THE GIRL, WOMAN UNCON-
CERNED BY THE OVERFLOWING, WOMAN INDIFFERENT TO THE CHIL-
DREN

Table 6.2: Information units for the scoring of information content in the Cookie Theft
picture (from Croisile et al. (1996)).

nition and an automated scoring system to manual scores, and found very high correlation

between the automatically computed scores on ASR and reference transcripts, and reasonably

high correlation between those scores and the manual scores. To compute the scores, they mea-

sured the unigram recall between the picture descriptions and a list of pre-defined information

units. However, it is not clear how they handled multi-word phrases (“on the beach” is one

example from their task), and they did not take into account any synonyms, hypernyms, and

so on. In other related work, Pakhomov et al. (2010b) calculated information units in Cookie

Theft picture descriptions from patients with frontotemporal dementia by matching sequences

of 1 to 4 words with a list of pre-defined words and phrases. They did not find a significant

difference between their patient groups on this measure.

There has also been related work on the automated scoring of story retelling tasks for de-

tecting MCI (Prud’hommeaux and Roark, 2011, 2012; Lehr et al., 2012). The general idea

behind this method is to identify story elements in the participant narratives by using forced

alignment with the source narrative (i.e., the original story). The authors achieve high recall

and precision on the extraction of story elements, and their diagnostic accuracies are similar to

those using the manually extracted scores. However, this method is less suitable for determin-

ing the information content of picture descriptions, because there is no “source narrative” in the

picture description task, and therefore, the exact lexical content is not defined. Prud’hommeaux

and Roark (2015) show that one way to resolve this issue is to choose one of the control narra-
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tives as the “gold standard”. The benefit of their approach is that it is data-driven: it does not

require an expert annotator to compile a list of expected information units. The disadvantage

is that it is dependent on the content of the specific data set, and the criteria for selecting the

gold standard transcript.

Subjects, places, and objects The approach that we take here is to search for words that are

related to each of the expected information units. We start by considering the subject, place,

and object concepts in Table 6.2. Since these concepts all correspond to nouns, it is relatively

easy to construct a set of words that we might expect the participants to use when referencing

these concepts. Starting with each word given in the table, we first constructed a set of related

words by looking at the WordNet synset for the most relevant sense of the word (Fellbaum,

1998). We then added words from the direct hypernym and hyponym synsets as well. Finally

we manually reviewed the sets to remove words that were unlikely to be used in the context of

the picture (e.g., binary compound for WATER) and to add words which were not directly related

in WordNet but which seemed likely given the picture (e.g., mother for WOMAN). The final set

of words relating to each subject, place, and object information unit is given in Table 6.3.

Obviously, these lists of words do not cover the entire set of possible words that could be

used to describe each concept, which is one limitation of this method. Another difficulty we

encountered was potential overlap between concepts. For example, the word female could be

used to describe both the GIRL and the WOMAN, and dish could refer to either the PLATE in the

woman’s hand, or the DISHES on the counter. Since our word-counting method is too simplistic

to take context into account, we simply put each word with the concept it is most likely to refer

to, with the understanding that this may be a source of error.

Given the sets of words in Table 6.3, we calculate two types of features. The first is a

binary information unit for each concept. For example, if the speaker uses the word boy, son,

or brother, then the value of the information unit for the concept BOY is one, otherwise it is
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Classes Concepts Words
Subjects BOY boy, son, brother

GIRL girl, daughter, sister
WOMAN woman, female, adult, grownup, lady, mother

Places KITCHEN kitchen, room
EXTERIOR outside, outdoors, yard, backyard, garden, driveway, path,

tree, bush
Objects COOKIE cookie, biscuit, cake, treat

JAR jar, container, crock, pot
STOOL stool, seat, chair, ladder
SINK sink, basin, washbasin, washbowl, washstand, tap
PLATE plate
DISHCLOTH dishcloth, dishrag, towel, rag, cloth
WATER water, dishwater, liquid
WINDOW window, frame, glass
CUPBOARD cupboard, closet, shelf
DISH(ES) dish, cup, counter
CURTAIN(S) curtain, drape, drapery, blind, screen

Table 6.3: Keywords corresponding to each of the concepts (i.e. subjects, places, and
objects) in Table 6.2.

zero. We have 16 information unit features, corresponding to the 16 concepts.

However, it could also be informative to know specifically which of the words was used

to describe a concept. For example, someone with word-finding difficulties might say room

instead of kitchen, or container instead of jar. To capture this information, we also compute an

individual frequency count for each of the words in the third column of Table 6.3. We call these

features “key words”, and they are integer-valued frequency counts. Previous work has shown

the utility of simple binary and frequency unigrams (Rentoumi et al., 2014; Garrard et al.,

2014). Rather than considering the space of all possible unigrams, we have considered only

this smaller set which we have deemed to be relevant to the expected information content, to

avoid problems of data sparsity, and to help improve the interpretability of the selected features.

Actions The information units describing actions are more of a challenge to encode. We

begin with a fairly simple approach that could be easily extended to account for more complex

lexical variation in future work. We extract the typed dependencies of each utterance using
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the Stanford parser, and attempt to match them with each of the actions listed in Table 6.2.

Table 6.4 shows the mapping from concept to dependency. Note that in the Stanford parser,

nsubj represents the subject of a verb. We consider the verb lemma in each case, to allow for

variations such as The boy falls off the stool and The boy is falling off the stool. In the case of

the boy or the woman, we also allow the substitution of the pronouns he or she, respectively.

However, in the case of the girl, we do not allow the substitution of a pronoun. Since the action

is unspecified, allowing a pronoun in this case could create matches with the woman’s actions

as well. Similarly, we do not allow the stool to be replaced by it, because the rule becomes

too general (for example, it could match with The water is running and it is falling all over the

floor).

On the other hand, we underspecify the action of the woman washing the dishes/plate,

allowing any utterance that describes the woman washing or drying any object, since it seems

likely that in most cases this would be an appropriate match and we can reduce the risk of false

negatives by keeping the rule more general. We also do not specify the subject of overflow and

spill, since in most cases the presence of the verb alone indicates the appropriate information

unit, regardless of whether the speaker chooses to say the water is overflowing, the sink is

overflowing, it is overflowing, etc. In the current work, we do not include the two information

units corresponding to the woman’s indifference to or ignorance of the water overflowing or

the children stealing the cookies.

False negatives are an issue with this approach, for a number of reasons. As with the

subjects, objects, and places, there are a number of ways to represent the same concepts, except

here the problem is twice as large since each action has at least a subject and a verb. For

example, the boy could be described as the boy, he, the kid, etc., and the action of taking the

cookie could be described as taking, stealing, getting, grabbing, etc. Then these two concepts

can be paired in any combination. Furthermore, depending on how the action is expressed, the

parser may not correctly identify the verb and its object. One simple example is the sentence

The boy is going to fall, which produces the dependency nsubj(go, boy) rather than nsubj(fall,
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Actions Dependencies
BOY TAKING OR STEALING nsubj(take, boy) or nsubj(take, he)

or nsubj(steal, boy) or nsubj(steal,
he)

BOY OR STOOL FALLING nsubj(fall, boy) or nsubj(fall, he) or
nsubj(fall, stool)

WOMAN DRYING OR WASHING DISHES/PLATE nsubj(dry, woman) or nsubj(dry,
she) or nsubj(wash, woman) or
nsubj(wash, she)

WATER OVERFLOWING OR SPILLING nsubj(overflow, *) or nsubj(spill, *)
ACTION PERFORMED BY THE GIRL nsubj(*, girl)
WOMAN UNCONCERNED BY THE OVERFLOWING –
WOMAN INDIFFERENT TO THE CHILDREN –

Table 6.4: Dependencies corresponding to each of the actions in Table 6.2.

boy).

To validate this approach, a certified speech-language pathologist also annotated these in-

formation units over a random 5% of the data and we compared these against the automatically

identified units. There was an observed agreement of 98.02%, which corresponds to a Cohen’s

kappa coefficient of 0.804.

MFCC features

We also consider a set of additional acoustic features, based on the mel-frequency cepstral

coefficients (MFCCs). MFCCs are features that are commonly used in speech recognition.

In a nutshell, the spectrum of an audio signal is its representation in the frequency domain,

and is obtained by taking a Fourier transform of the time domain signal. The cepstrum of the

signal is obtained by then transforming the logarithm of the spectrum using a discrete cosine

transform (Quatieri, 2002). This separates the ‘source’ of a signal (i.e., the energy of the lungs)

from the ‘filter’ of the signal (i.e., the upper vocal tract, in which phonemes are differentiated

phonologically). The mel-scale simply refers to the fact that the frequencies are windowed

based on a perceptual scale rather than a linear scale. As frequency increases, the human

ear is less sensitive to differences in frequency, and so the intervals on the mel-scale increase
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(Jurafsky and Martin, 2000).

The first several MFCCs represent information about the vocal tract filter and are often

used as part of the input to a speech recognition system, although they have also been used

as features in classification problems (e.g., Cummins et al. (2011)). We consider the mean,

variance, skewness, and kurtosis of the energy and the first 13 MFCCss through time, as well

as the mean, variance, skewness, and kurtosis of the first and second derivatives of the energy

and MFCCs. We also calculate the kurtosis and skewness of the means across MFCCs.

6.3.2 Methods

We train a logistic regression classifier to distinguish between AD patients and healthy controls.

We perform a 10-fold cross-validation procedure in which a unique 10% of the data are used in

each iteration for evaluation, and the remaining 90% are used to select the most useful features

(from the 370 available) and construct our models. The reported accuracy is an average across

the 10 folds. In a given fold, data from any individual speaker can occur in the test set or

the training set, but not both. In order to optimize the ratio of training examples to their

dimensionality, we select the N features with the highest Pearson’s correlation coefficients

between each feature and the binary class.

6.3.3 Results

Figure 6.1 shows the average accuracies (and standard deviations) for the logistic regression

method. The maximum average accuracy (81.92%) in distinguishing between AD and controls

is achieved with the 35 top-ranked features. The accuracy remains relatively constant until we

choose a feature set of size 50 (accuracy = 78.72%), after which it drops off sharply. As a

result, we use the top 50 features in our factor analysis. Those features, and their correlation

with diagnosis, are shown in Table 6.5. Using all 370 features, the logistic regression method

obtains 58.51% accuracy on average, which reinforces the need to do feature selection given a

high-dimensional feature space such as this.
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Figure 6.1: Classification results for AD versus healthy controls.

6.3.4 Factor analysis

To help discover the underlying structure of the data, we conduct an exploratory factor analysis.

Since our data do not satisfy the assumption of multivariate normality, we use the method of

principal axis factors (PAF), as recommended by Fabrigar et al. (1999) . We include 50 features

in the factor analysis, as discussed in the previous section.

A scree test suggests that four factors are sufficient to account for the majority of the vari-

ance. To interpret the factor structure, it is customary to perform a rotation. Although varimax

is the most popular rotation algorithm, it is an orthogonal rotation and is therefore guaranteed

to produce uncorrelated factors. To fairly examine the degree of heterogeneity of linguistic

impairments in patients with AD, we chose promax, an oblique rotation which allows factors

to be correlated with each other (Costello and Osborne, 2005).

6.3.5 Factor loadings

Feature loadings on the four factors are presented in Table 6.5. Factor signs were deliberately

set such that higher factor scores reflect greater impairment. As is customary in exploratory
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Feature R Factor1 Factor2 Factor3 Factor4
Pronoun:noun ratio 0.35 1.01 −0.32
NP→ PRP 0.37 0.88 −0.24
Frequency 0.34 0.74
Adverbs 0.31 0.51 0.19
ADVP→ RB 0.30 0.44 0.10
Verb frequency 0.21 0.39 0.13
Nouns −0.27 −0.97 0.37
Word length −0.41 −0.60 −0.13
NP→ DT NN 0.10 −0.52 −0.19
Honoré’s statistic −0.25 −0.46 −0.14 −0.14 0.33
Inflected verbs −0.19 −0.39
Average cosine distance −0.19 −0.33 −0.15 0.13
Skewness(MFCC 1) 0.22 0.95
Skewness(MFCC 2) 0.20 0.87 −0.14
Kurtosis(MFCC 5) 0.19 0.78
Kurtosis(VEL(MFCC 3)) 0.24 −0.17 0.44 0.24
Phonation rate −0.21 0.16 −0.62 −0.28
Skewness(MFCC 8) −0.22 −0.39 −0.13
Not-in-dictionary 0.38 −0.14 0.53 0.26
ROOT→ FRAG 0.23 −0.15 0.36 0.19
Verbs −0.29 0.38 −1.05 0.20
VP rate −0.19 0.37 −0.95 0.32
VP→ AUX VP −0.23 −0.16 −0.56 0.18
VP→ VBG −0.27 −0.28 −0.34 0.21
Key word: window −0.29 0.20 −0.79
Info unit: WINDOW −0.32 0.12 −0.63
Key word: sink −0.23 −0.62
Key word: cookie −0.23 0.13 −0.61
PP proportion −0.21 0.18 −0.61
Key word: curtain −0.25 −0.56
PP rate −0.21 0.19 −0.55
Info unit: CURTAIN −0.26 −0.53
Key word: counter −0.18 0.14 −0.47
Info unit: COOKIE −0.24 −0.46
Info unit: SINK −0.31 −0.43
Info unit: GIRL −0.30 −0.42
Info unit: GIRL’S ACTION −0.25 0.13 −0.12 −0.36
Info unit: DISH −0.24 −0.12 −0.29
Key word: stool −0.28 −0.15 −0.29
Key word: mother −0.32 −0.27 −0.26
Info unit: STOOL −0.32 −0.29 −0.21
Skewness(MFCC 12) −0.19 −0.18
Info unit: WOMAN −0.29 −0.16 −0.18
VP→ VBG PP −0.34 −0.19 −0.30 −0.12
VP→ IN S −0.20 −0.10
VP→ AUX ADJP −0.19 −0.11
VP→ AUX 0.20 0.28
VP→ VBD NP 0.19
Cosine cutoff: 0.5 0.19 0.15 0.14
INTJ→ UH 0.18 0.25

Table 6.5: Correlations with diagnosis (first column) and promax factor loadings. Load-
ings less than 0.1 are excluded. Bold font indicates a loading with an absolute value greater
than 0.3.
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factor analysis, we name and present a subjective interpretation of the factors, below.

Factor 1: Semantic impairment

All of the high loadings reflect characteristics of semantically impoverished language, similar

to that seen in the semantic variant of PPA (Gorno-Tempini et al., 2004). Individuals scor-

ing high on this factor produce many pronouns (+NP→ PRP, +pronoun ratio) and few nouns

(−nouns), and are biased towards shorter (−word length) and higher frequency words (+fre-

quency, +verb frequency). They also use a less diverse vocabulary (−Honoré’s statistic) and

exhibit increased repetition of content (−cosine distance).

Pronouns and high frequency words suggest empty, vague, or non-specific speech. A de-

crease in the proportion of nouns and an increase in the proportion of verbs is the same pattern

as seen in sv-PPA (Harciarek and Kertesz, 2011; Wilson et al., 2010). Individuals with a

semantic impairment may have difficulty accessing more specific nouns and verbs, and as a

result may replace them with generic, high-frequency substitutes (e.g., Meteyard et al. (2014)).

Negative Honoré’s statistic suggests low lexical diversity, which has been observed in anomic

aphasia (Fergadiotis and Wright, 2011), and negative cosine distance suggests high repetition,

which bears similarity to the “stereotypic thematic perseverations” seen in sv-PPA (Harciarek

and Kertesz, 2011). Examples of the adverbial construction (+ADVP→ RB) include the little

girl’s reaching up there and a tree coming up here; that is, the adverb serves a deictic purpose,

which is more common amongst aphasics with a semantic impairment (Varley, 1993).

Factor 2: Acoustic abnormality

All high loadings here relate to features derived from acoustic analysis. All but one of these

refer to either the skewness or kurtosis of individual Mel-frequency cepstral coefficients, whose

perceptual values may not be distinguishable to humans, and whose anatomical basis depends

on interpreting the vocal tract within a source-filter model of speech production. The remaining

feature, phonation rate, is the proportion of a narrative that is vocalized; low values here refer
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to more time being spent silently, as in a pause.

Factor 3: Syntactic impairment

This factor appears to reflect a syntactic deficit somewhat reminiscent of such conditions as

Broca’s aphasia and nonfluent/agrammatic PPA. High-scoring patients produced fewer verbs,

which is typical of agrammatic patients (e.g., Saffran et al. (1989), and Thompson et al.

(1997a)). They also produced fewer auxiliary verbs, and fewer gerunds and participles. Pa-

tients with Broca’s aphasia often omit auxiliaries and use only the simplest verb tenses (e.g.,

he reach might be preferred over he is reaching, which requires an auxiliary and a participle)

(Bastiaanse and Thompson, 2003; Menn, 1995). Additionally, they produced more sentence

fragments, and more words tagged as “not in dictionary,” which could include phonological

paraphasias, distortions, and unrecognizable words (note that the automatic analysis cannot

distinguish between these different language phenomena). We note that while these deficits

resemble Broca’s aphasia and nfv-PPA in their form, they are less severe, seldom reaching the

point of frank agrammatism or “telegraphic” speech seen in those disorders. Presumably this

reflects the fact that cortical damage to language centres in Alzheimer’s disease is less severe

than in those conditions.

Factor 4: Information impairment

This factor primarily includes mention of key words and information units. Patients with high

scores produced relatively uninformative picture descriptions, failing to mention key concepts.

This factor differs from Factor 1 in that the relevant features do not describe generic properties

of the words, such as their frequency or part-of-speech, but rather their appropriateness and

specific semantic relevance to the task at hand. These participants also lacked prepositional

phrases, which reflects a lower level of detail in their descriptions. There may be some relation

between the absence of certain information units and a reduction in prepositional phrases. For

example, both the information unit SINK and key word sink are negatively weighted on this
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factor. When we examined the control transcripts, we found that in 57% of cases, the word

sink appeared as the object of a prepositional phrase (e.g., water’s overflowing in the sink, the

water is spilling out from the sink, the mother’s working at the sink). This potential connection

between the omission of certain content words and a reduction in prepositional phrases will

require further investigation in future work.

6.3.6 Relationships among factors

Figure 6.2 shows pairwise scatterplots of individual transcript scores on each factor. All four

factors are significantly different between groups, which is not surprising given that the fea-

tures comprising the factors were pre-selected for their association with diagnosis. Of greater

interest is the degree of correlation among the factors, which can be estimated by the oblique

promax rotation, as opposed to orthogonal rotations such as varimax that guarantee uncorre-

lated factors. The correlation coefficients among all samples, and limited to AD and control

subjects alone, are given in each plot.

An intriguing result is the correlation between Factor 1 (semantic impairment) and Fac-

tor 3 (syntactic impairment). These factors are moderately correlated in the control group

(R = 0.42) but much less correlated in the AD group (R = 0.19). This suggests that in cogni-

tively normal individuals, semantic and syntactic abilities are somewhat linked, but when these

abilities decline in AD, there can be an asymmetry to the impairment. This may be attributable

to damage specific to networks responsible for distinct aspects of linguistic competence (see

Section 6.3.7).

Another pattern is seen when we consider Factor 4 (information impairment). Factor 1

and Factor 4 are more highly correlated in the AD group (R = 0.49) than the control group

(0.18). Similarly, Factor 3 and Factor 4 are more highly correlated in the AD group (R = 0.31)

than the control group (R = −0.097). Since information is expressed through both syntax

and semantics, we hypothesize that difficulty in either Factor 1 or Factor 3 would also imply

impairment in conveying information. That a similar correlation is not seen in the control data
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Figure 6.2: Pair-wise combinations of the four factors. Correlation coefficients are given
for the entire data set, as well as just AD and control groups.
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might be due to the fact that the task is generally easy for controls, and our method for scoring

information units is very simplistic. For example, when we look at individual transcripts, we

find a control participant who uses a number of pronouns and generic, high-frequency words

(e.g., thing, something). However, this semantic “impairment” does not prevent the participant

from mentioning most of the relevant information units. Conversely, a control participant who

uses more detailed language will not be able to increase their information score beyond what

our simple keyword-spotting algorithm can detect.

Factor 2 (acoustic abnormality) is uncorrelated with Factor 1 (semantic impairment) and

Factor 3 (syntactic impairment) in both the AD and control groups. Factor 2 is moderately

correlated with Factor 4 (information impairment) in the AD (R = 0.32) and control (R = 0.31)

groups. This would suggest that participants who spoke slower (phonation rate) or had some

other acoustic irregularity (MFCC features) also offered less information, regardless of whether

they were a patient or a control.

6.3.7 Discussion

Although language impairment is a secondary cognitive symptom of AD, numerous studies

have shown that language skills become abnormal relatively early in AD, and can serve as

a sensitive index of disease severity over time. The present study employs a combination of

automated quantification of language with a modern machine-learning classification approach

to accurately distinguish between healthy controls and patients with Alzheimer’s disease on

the basis of short speech samples from a picture description task.

The relatively short length (roughly 100 words) of the picture descriptions is one drawback

of the current study. Other researchers have suggested that 150 words is an acceptable mini-

mum length for language analysis (Sajjadi et al., 2012; Saffran et al., 1989). Our classification

results indicate that there is still valuable information to be found in the short samples, con-

firming previous studies using picture descriptions to assess language in dementia (Rentoumi

et al., 2014; Garrard et al., 2014; Wilson et al., 2010); however, we expect that the accuracies
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of each feature value would increase as the length of the sample increased. We also emphasize

that our findings here do not necessarily generalize to other spoken language tasks. For exam-

ple, Sajjadi et al. (2012) found that the picture description task was more sensitive to semantic

impairment in AD, while an interview format was more sensitive to syntactic measures.

Factor analysis reveals that our relatively large set of linguistic measures can be mapped

to 4 latent variables, broadly representing syntax/fluency, semantics, acoustic differences, and

other information content. Each of these language domains has been reported separately to be

altered in patients with AD and MCI (Meilán et al., 2014; Snowdon et al., 1996; de Lira et al.,

2011; Kemper et al., 2001), but the relationships between separate domains of impairment have

seldom been characterized. Many previous studies have relied upon labour-intensive manual

analyses of language samples, emphasizing particular aspects according to the research inter-

ests of the authors. The large heterogeneity in language impairments reported across studies

leaves open the question of whether there is a single quantifiable aspect of spoken language

output that is particularly diagnostic of Alzheimer’s disease. The heterogeneity of reported

impairments is presumably attributable to two sources of variability: differences between indi-

vidual patients, and differences in the methods and hypotheses employed by the authors of the

studies.

For the present study, we aimed to capture as broad a spectrum of linguistic variables as

possible using fully automated analysis of transcripts and acoustic recordings, from a relatively

large sample of picture descriptions. This approach, while potentially missing some useful vari-

ables that require manual analysis, can characterize the level of heterogeneity present across

individual patients tested with a consistent protocol. Previous studies of cognitive decline in

MCI/AD have highlighted considerable heterogeneity among patients, but have tended to view

language as a fairly unitary construct along with other cognitive domains including episodic

memory and visuospatial cognition. Despite this heterogeneity, there seems to be a typical pat-

tern of decline in AD particularly driven by impairments in episodic memory (Lambon Ralph

et al., 2003b), with other domains affected in a more limited set of patients.
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Variability in the cognitive presentation of AD is to be expected, given that different patients

have damage to different parts of the cortex. To date, little work has been done to characterize

the relationship between impairments on specific subdomains of language and cortical atrophy

in AD. This situation contrasts strongly with that of primary progressive aphasia (PPA). As

discussed in Chapter 3, a current consensus among researchers holds that PPA can be clearly

divided into at least three subtypes characterized by impairments to distinct aspects of language

(Gorno-Tempini et al., 2004). The double dissociation of syntactic and semantic impairments

in PPA highlights the fact that distinct brain networks make unique contributions to linguistic

competence. Thus, even though the episodic memory impairment dominates the cognitive

profile of AD patients, variability in cortical involvement across patients should differentially

impact the same subdomains of language that are affected in PPA. However, this variability

in AD is likely to be more subtle than between PPA subtypes, as the patients do not fall into

clearly distinguishable diagnostic categories.

Although memory impairment may be the definitive symptom for the diagnosis of AD,

it is not necessarily the most sensitive index of cognitive function and response to interven-

tion. Language function especially degrades as the disease progresses through moderate and

severe stages (Cummings et al., 1985; Feldman and Woodward, 2005), and has been shown

to improve in response to successful treatment with acetylcholinesterase inhibitors (Ferris and

Farlow, 2013). Therefore, computational analyses of naturalistic language may ultimately pro-

vide a means to monitor changes in cognitive status over the course of the disease, as well as

responsiveness to interventions, and can thus serve as a useful clinical tool for purposes well

beyond diagnosis.

6.4 Detection of AD using ASR transcripts

In this section, we consider using ASR transcripts (and no manually-derived information) to

classify AD versus healthy controls. One benefit to working with the larger DementiaBank cor-
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pus is that it contains enough data to train a limited-vocabulary automatic speech recognition

(ASR) system, rather than having to adapt an existing system to our data.

The speech recognition experiments were carried out by a collaborator, Luke Zhou, and

are described in Zhou et al. (2016). Briefly, he trained DementiaBank-specific ASR models

using the open-source speech recognition toolkit Kaldi (Povey et al., 2011). The corpus was

divided into 10 folds, and in each fold the ASR models were trained using the test set (i.e.,

audio files and transcripts from 90% of the entire corpus) and then used to generate transcripts

for the remaining 10% of the corpus. This process was repeated until all the DementiaBank

samples had been recognized. In the classification experiments which follow, we use the same

data partitions as were used in the ASR experiments.

In the ASR optimization, various combinations of model complexity, language model

weight, and insertion penalty were explored (see Zhou et al. (2016) for details). In this section,

we use the transcripts from the most successful recognition experiment (corresponding to the

tri3 training model, language model weight = 20, and insertion penalty = 0.0). These tran-

scripts have an average word error rate (WER) of 36.6%. This is a substantial improvement

over the WERs reported in Chapter 4, on the PPA data set, and is commensurate with the previ-

ous work discussed in Section 2.6. Furthermore, the recognition procedure used by Zhou et al.

(2016) operated on each utterance separately, rather than on the sample as a whole, so utterance

segmentation is not required.2 Thus, we expect that more of the resultant text features may be

relevant in these ASR transcripts, compared to our previous results.

6.4.1 Features

To explore how the discriminative properties of different features are affected in the ASR tran-

scripts, we construct the plots seen in Figure 6.3 and Figure 6.4.3 Each bubble represents a

2Note that this is in some sense a limitation of the method, since a fully automated system would presumably
analyze the speech sample as a whole. However, this procedure was necessary due to a technical requirement in
Kaldi for transcripts to contain no more than 10-20 words.

3Interactive, zoomable versions of these plots are available at http://www.cs.toronto.edu/~kfraser/
thesis_bubbles.html
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feature. The size and colour of the bubble represents the correlation between the feature values

in the manual and ASR transcripts (larger radius and warmer colour indicate higher correlation.

No feature values were negatively correlated in the two sets of transcripts.). The axes repre-

sent the degree of significance between the AD and control groups in the manual and ASR

transcripts. For perfectly recognized speech, we would expect that the bubbles would line up

along y = x, with each pair of features being perfectly correlated. Obviously, this is not the

case here. Instead, bubbles in the upper-right quadrant of Figure 6.3 are features which have

no diagnostic utility in either the manual or ASR transcripts (p close to 1). Bubbles in the

lower-right correspond to features that are more useful (lower p) in the ASR transcripts than

the manual transcripts. Bubbles in the upper-left are more useful in the manual transcripts than

the ASR transcripts, and bubbles in the lower-left (as p approaches 0 on each axis) are features

that are useful in both sets of transcripts.

In Figure 6.3, most visible bubbles are not significant at α = 0.05. However, when we use

a log-scale axis as in Figure 6.4, features which differ significantly between the groups become

visible. In Figure 6.4, we observe fewer examples of features which have very low correlation

(small, dark blue bubbles) in the ASR and manual transcripts; however, we also observe fewer

features which are very highly correlated (large, red bubbles). The bubbles tend to follow a

linear trend, that is, there is a tendency for highly relevant features in the manual transcripts to

also be highly relevant in the ASR transcripts. However, most of the features lie above y = x,

indicating that, in general, features are less significant in the ASR transcripts.

The location and size of the feature bubbles in the plot can help us predict how the set

of selected features in the ASR transcripts will change relative to the manual transcripts. For

example, we can see that NID, or ‘not-in-dictionary’ words (the small blue bubble in the upper-

left quadrant of Figure 6.4), is highly significant between the groups in the manual transcripts,

but much less so in the ASR transcripts. This makes sense, considering that any particular NID

word in the test data is unlikely to have appeared in the training data, and is likely to be mis-

recognized as a real (i.e., more probable) word. We can also see that the correlation for this



CHAPTER 6. SPEECH AND LANGUAGE FEATURES FOR AD DETECTION 176

feature is low across the two sets of transcripts, suggesting that the feature is not identifying

the same NID words in the ASR and manual transcripts. In contrast, word frequency and VP

→ VBG PP are highly significant between the groups in both the manual and ASR transcripts,

and so we expect those features to be selected in both cases.

There is no obvious pattern to the features which are significant in the ASR transcripts –

they include measures of frequency, information content, grammatical productions, and POS

tags. This is in contrast to our findings with the very noisy PPA transcripts in Chapter 4, where

only the psycholinguistic features were still relevant in the ASR transcripts. This may be partly

due to the much lower WER here.
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Figure 6.3: Bubbles represent features; large red bubbles indicate features that are highly correlated in the ASR and manual
transcripts, while small blue bubbles indicate low correlation. Linearly scaled axes show features which are not significant between
the control and AD groups (p close to 1).
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Figure 6.4: Bubbles represent features; large red bubbles indicate features that are highly correlated in the ASR and manual
transcripts, while small blue bubbles indicate low correlation. Logarithmically scaled axes show features which are significant
between the control and AD groups (p� 1).
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Figure 6.5: Average accuracies for distinguishing between AD and control narratives for
varying feature sets. Error bars represent the standard deviation across folds.

6.4.2 Classification

We now compare the performance of a logistic regression classifier on the task of differentiating

between AD and control narratives, using either the manual transcripts or the ASR transcripts.

As in Section 6.3.2, we iterate over a number of different feature set sizes, selected using

a correlation-based filter. The accuracy is averaged over 10 folds (restricted here to be the

same folds used in the ASR process). The accuracies (and standard deviations) are shown in

Figure 6.5. While the accuracies are lower on the ASR transcripts, as expected, they are within

the error bars of the accuracies from the manual cases, except for when the number of features

is very small, i.e., N = 5. The best accuracy for the ASR transcripts is 76.3%, achieved using

10 features. A very similar result is achieved using the manual transcripts with 10 features

(76.5%).

To compare the features which were selected using the ASR and manual transcripts at

N = 10, we rank all the features in each data set by their correlation with diagnosis, since this

was the feature selection criterion. As before, the exact ranking will vary from fold to fold,



CHAPTER 6. SPEECH AND LANGUAGE FEATURES FOR AD DETECTION 180

(a) Top 10 highly ranked features in the ASR transcripts, with corresponding feature rankings from the manual
transcripts for comparison.

(b) Top 10 highly ranked features in the manual transcripts, with corresponding feature rankings from the ASR
transcripts for comparison

Figure 6.6: Highly ranked features in the ASR and manual transcripts.

but this gives a global estimate of the relevance of each feature. Figure 6.6 shows the top 10

features in the ASR transcripts (with the corresponding rankings in the manual transcripts for

comparison), and the top 10 features in the manual transcripts (with the corresponding rankings

in the ASR transcripts).
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In Figure 6.6a, we see that the top 10 features in the ASR transcripts are also highly ranked

in the manual transcripts. Some of the features are ranked lower in the manual transcripts (e.g.,

VP→ VBZ VP is ranked 14th rather than 4th). However, all of the top 10 features in the ASR

transcripts are ranked in the top 17 in the manual transcripts, and we can see in Figure 6.4 that

they are all statistically significant between the groups in both sets of transcripts.

In Figure 6.6b we see an anomalous result with the second-ranked feature, NID. As an-

ticipated, NID is ranked much lower in the ASR transcripts than in the manual transcripts.

Interestingly, NP → PRP (where PRP stands for ‘personal pronoun’) and pronoun ratio are

both ranked lower in the ASR transcripts than in the manual transcripts. In Figure 6.4 these

features are less significant (although still p∼ 10−5) in the ASR transcripts than in the manual

transcripts. Examining the values of these features, we find that NP → PRP has an average

value of 0.059 for AD and 0.042 for controls in the manual transcripts, compared with 0.038

for AD and 0.028 for controls in the ASR transcripts. That is, the number of pronouns is

underestimated in the ASR transcripts, but more so in the AD transcripts than the control tran-

scripts, reducing the relative difference between the groups. A similar trend is observed for

pronoun ratio. Cursory examination of the transcripts does not immediately suggest a reason

for this effect, although future work will involve a more detailed analysis of these types of

discrepancies.

In general, however, these plots suggest that the ASR transcripts still contain much of the

same information that the manual transcripts do, with the exception of speech distortions that

are coded as NID. Critically, the classifier is not making decisions based on features that are

entirely irrelevant in the manual transcripts. Rather, there are relatively small differences in

the order in which features are ranked, at least for the N = 10 case. Also worth noting is the

fact that none of the acoustic features were selected in the top 10 in the ASR case, even though

those features are not affected by the ASR errors.



CHAPTER 6. SPEECH AND LANGUAGE FEATURES FOR AD DETECTION 182

6.4.3 Discussion

Using automatically generated transcripts, we were able to achieve classification accuracies

that were within one standard deviation of the accuracies using manual transcriptions. While

there is still room for improvement, this is a promising step towards the goal of a fully auto-

mated system. We also showed that there are a number of features which are robust to the ASR

process and differ significantly between the participant groups. Unlike in our previous experi-

ments with ASR (Section 4.1), these features were not limited to psycholinguistic features, but

also included features measuring the occurrence of syntactic patterns and lexical keywords.

One limitation of this work is that we have no way of directly linking feature values be-

tween the ASR and manual transcripts. For example, it would be useful to be able to compare

an ASR transcript to its original and see that the number of pronouns in the ASR transcript

is reduced because some of them were deleted, and others were mistakenly substituted with

determiners. This type of analysis will require aligning the two sets of transcripts and then as-

sociating features with insertion, substitution, and deletion errors. While not straightforward,

this would potentially allow us to make improvements to the system as well as better interpret

the measured feature values.

6.5 Summary

In this chapter, we have shown that the automated linguistic analysis of verbal picture descrip-

tions can lead to high diagnostic classification accuracies in the case of Alzheimer’s disease.

This is particularly relevant given that language impairment is not part of the core criteria for

AD, although changes to speech and language are widely reported in the literature. The success

of the approach may be due to the fact that narrative speech production does not only involve

the language centers of the brain, but also involves elements of planning, organization, and

memory. Some researchers have suggested that other language elicitation tasks probe these

cognitive skills more deeply; for example, asking the participant to describe everything they
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would need to do to prepare for a trip (Fleming, 2014). Further investigation will be required

to see if analysis of other types of speech (e.g., conversational speech) lead to similar results.

Beyond the binary classification task, we also conducted a factor analysis, and identified

four factors that explained most of the variance in the data: semantic impairment, syntactic

impairment, information impairment, and acoustic abnormality. The factors were only loosely

correlated, suggesting that individuals could, for example, show syntactic impairment without

semantic impairment, and vice versa. Such dissociations have already been observed in PPA

(and in aphasia in general), where more focal pathology is common. In the case of AD, we

hypothesize that the heterogeneity in language symptoms is linked to the heterogenity of the

underlying AD pathology, but are unable to say anything conclusively due to the absence of

neuroimaging data for these patients. Associating features of spontaneous speech in AD with

anatomical images would be a compelling project for future work, if such a data set should

become available.

Finally, we repeated the classification experiment using automatically recognized tran-

scripts and found that the accuracy was lower, but within one standard deviation, of the ac-

curacy using manual transcripts. Furthermore, many of the relevant features in the manual

transcripts were still highly significant in the ASR transcripts. This points to the feasibility of

a fully automated processing pipeline for future applications.



Chapter 7

Conclusions and future work

7.1 Summary of contributions

In this dissertation, I have presented an in-depth computational analysis of connected speech in

primary progressive aphasia (PPA), including the automated extraction of clinically-motivated

measures of speech and language production, and the accurate classification of two PPA sub-

types versus healthy controls, and versus each other. In the process, I have shown that tra-

ditional measures of syntactic complexity are not sensitive to the differences between the se-

mantic variant of PPA (sv-PPA) and the nonfluent/agrammatic variant of PPA (nfv-PPA). As a

result, I also extracted syntactic features measuring the frequency of different grammatical con-

stituents, rather than simply the overall “complexity”. These features were more discriminative

between the two PPA subtypes, and detailed analysis revealed the somewhat fuzzy boundary

between semantic and syntactic impairment. There were also numerous differences observed

between sv-PPA and controls, suggesting that there can be changes to syntax in sv-PPA, in

contrast to the traditional view and in agreement with other recent studies (Meteyard and Pat-

terson, 2009; Meteyard et al., 2014). Including these additional features in an ablation study

led to an increase in classification accuracy between the subtypes, from 79.2% to 91.7%.

I also augmented the feature set with dependency relation features, and was able to achieve

184
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a 76% classification accuracy between agrammatic PPA patients and agrammatic post-stroke

aphasia patients, contributing to the ongoing debate regarding these two manifestations of

agrammatism. Previous work has not agreed on whether the impairments seen in agrammatic

PPA and agrammatic stroke are fundamentally different (Patterson et al., 2006), or the same

(Thompson et al., 2013). Thompson et al. (2013) suggested that one explanation for the dis-

crepancy could be different inclusion criteria; however, in the present work, participants were

selected by the same criteria used by Thompson et al. (2013), eliminating that potential source

of error. While the results here do suggest that differences between the groups exist, further

work will be required to determine how well these findings generalize, and how they might

relate to the underlying pattern of cortical atrophy in the two conditions.

Furthermore, I extended the approach to a different elicitation task (picture description

rather than story-telling) and a different type of dementia (Alzheimer’s disease, or AD). This

involved introducing new features to measure repetitiveness and to assess the production of

relevant information content. I was able to achieve 81% accuracy in differentiating between

people with AD and healthy controls, as well as demonstrate that performance across the di-

mensions of semantics, syntax, information, and acoustics need not be correlated.

Finally, I attempted throughout this work to be mindful of the practical goal of a fully

automated system. With the exception of Chapter 5, speech events such as restarts, filled

pauses, comments about the task, asides, and other “non-narrative” speech were all included

in the analysis, except where they could be removed automatically. I experimented with using

automatically generated transcripts in both the PPA and AD cases, and presented a new way

of visualizing the effect of ASR on the resulting features with the bubble plots in Section 6.4.

I also considered the problem of boundary segmentation, which is a thorny issue in speech

analysis even in the absence of ASR errors. I examined the effect of the automatically annotated

boundaries on the traditional syntactic complexity metrics, which are particularly sensitive to

the location of such boundaries. Somewhat surprisingly, I found that the classification accuracy

using the automatically segmented transcripts was higher than using the manual transcripts,
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even though the features themselves were, in some cases, quite different in the two data sets.

While indicating the feasibility of the automated approach, this also serves as a reminder that

classification accuracy alone is not the whole story, and further supports the idea that critical

analysis of the features can be valuable in interpreting the validity of the results.

Indeed, a minor contribution of this dissertation has been the ongoing exploration of how

to compare feature values across groups, feature selection methods, and data sets. From the

traditional approach of listing means and p values in a table (e.g., Table 3.4), to presenting

lists of features with various font effects to indicate significance (Table 3.9), to more graphical

methods such as selectivity ratios (Figure 3.2) and bar charts showing the distribution of feature

values across groups (e.g., Figure 3.9), the proportion of folds in which a feature was selected

(e.g., Figure 4.4), and the relative rankings of selected features (Figure 6.6), the process of

visualizing these differences in a meaningful way has evolved over the duration of the research

and is a subject of ongoing reflection and experimentation.

7.2 Limitations

One limitation of this work is the small size of the data sets, particularly for the PPA work.

PPA is relatively rare, and clinical data in general tends to be scarce. In particular, to be given

access to transcribed narrative speech data from PPA patients from two separate labs was an

incredible stroke of luck (and generosity). Which is to say, the barrier to getting more data

in this field is high, and thus improvements are not likely to come from training increasingly

complex models on increasingly more data, as they have in some other applications of machine

learning.

The main limitation of small data is that it is difficult to know how well these results gener-

alize. Are we measuring properties of PPA speech in general, or just the idiosyncratic patterns

of this particular group of people? I have tried to mitigate this concern in the following ways:

• By using significance testing, where appropriate, to identify statistically significant dif-
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ferences.

• By using a cross-validation training and testing framework for classification.

• By assessing how well the results fit into the literature and current understanding of PPA.

Using the extracted features to train and test a machine learning classifier is, in itself, a test

of generalizability. If a feature is identified as important on the training set, but then shows

no discriminative power in the test set, the subsequent classification accuracy will be low.

However, this does not guard against the possibility that all or most of the participants in this

small data set share some common linguistic quirks unrelated to their PPA diagnosis, or which

appear simply by random chance.

This issue is somewhat less serious in the DementiaBank AD data set, which is an order

of magnitude larger (though still small by machine learning standards). The bigger issue in

the AD data is that the participant groups are not matched for age or education, factors which

have been shown to affect performance on picture description tasks (e.g., Le Dorze and Bédard

(1998)). While the differences in age (AD mean: 71.8, control mean: 65.2) and education (AD

mean: 12.5, control mean: 14.2) are much smaller than the ranges considered in research such

as that cited above, the issue reflects a real-world requirement to be able to factor age, gender,

education, and other relevant demographic information into the analysis. One step towards

meeting that requirement will be collecting normative data from people from these different

demographic groups for comparison.

Another criticism of the AD data set is that the diagnoses were not made according to

current diagnostic criteria. However, according to Becker et al. (1994), patients were diagnosed

on the basis of their clinical history and their performance on neuropsychological testing, and

the diagnoses were updated in 1992, taking into account any relevant information from the

intervening years. Autopsies were performed on 50 patients, and in 43 cases the AD diagnosis

was confirmed (86.0%). A more recent study of clinical diagnostic accuracy in AD found

that of 526 cases diagnosed as probable AD, 438 were confirmed as neuropathological AD
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post-mortem (83.3%) Beach et al. (2012), suggesting that the DementiaBank diagnoses are

generally as reliable as diagnoses made using present-day criteria.

One finding that repeatedly emerged from this work was the importance of the psycholin-

guistic measures of frequency, familiarity, imageability, and age-of-acquisition. Our frequency

ratings were calculated from a large database of film and television subtitles (Brysbaert and

New, 2009) and covered most of the words in our PPA corpus. However, the other three met-

rics are subjective, and the norms for these quantities were compiled via undergraduate ques-

tionnaires (Stadthagen-Gonzalez and Davis, 2006; Gilhooly and Logie, 1980). These norms

contained a combined 3,394 words, and covered only around 30% of the words in our PPA

corpus. In future work, we could benefit from new approaches to estimating these measures.

One potential path lies in crowd-sourcing. For example, Kuperman et al. (2012) recently pre-

sented a crowd-sourced database of age-of-acquisition ratings for 30,000 words. In a different

approach, recent work has used existing norms as training data for supervised learning methods

to automatically predict ratings for familiarity, age-of-acquisition, concreteness and imageabil-

ity, achieving a correlation of .88 with human judgement (Paetzold and Specia, 2016). Related

work in German generated estimates for the abstractness, arousal, imageability and emotional

valence associated with 350,000 words (Köper and Schulte im Walde, 2016). By using similar

techniques, we could increase the coverage of the norms on our data and improve our estimates

for these psycholinguistic measures.

Given that analysis of the selected features has been so integral to the work, another aspect

which could potentially be improved upon is the feature selection. In the methodology con-

sidered here, the feature selection step is entirely separate from the classification step, and the

feature selection method is typically a ‘filter’ method based on p values or correlation coef-

ficients. The benefit of this architecture is that feature selection and classification algorithms

can easily be swapped in and out. However, Guyon and Elisseeff (2003) give examples of how

information can be lost using these simple filter methods. For example, two features which are

useless on their own can provide predictive information when they are taken together. These
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relationships are not captured when features are assessed individually. In contrast, ‘wrapper’

methods optimize classifier performance directly by selecting exactly those features which lead

to the best performance by the classifier on the training set. The drawback to wrapper methods

is that the process of identifying the optimal set of features can be computationally intractable.

However, such methods could potentially lead to better accuracies, reduce redundancy in the

feature sets, and capture information from complex relationships between the features.

A related limitation involves the interpretability of the machine learning models them-

selves. We have essentially treated the classifier in each experiment as a ‘black box’ which

takes features in and outputs class labels. Rüping (2006) argues that feature selection in com-

bination with a black box classifier represents only the first level of interpretability in machine

learning. Interpretability can be increased by examining how the classifier generates the output

from the input. A classic example of this is the decision tree classifier, whose final model is

relatively easy for the user to understand, and may even model the human decision-making

process in some applications. Rüping also suggests that when the number of features is large,

interpretability can be improved by training small, local models to improve on the performance

of more easily understood (but perhaps less accurate) global models. The implementation of

similar methods here could further increase the clinical utility of the work.

7.3 Future work

Since dementia is progressive, in many ways it makes sense to predict severity rather than

binary class membership. A first step towards this goal could involve modifying the existing

pipeline to perform regression, rather than classification; for example, using logistic regression

to predict MMSE scores rather than diagnosis in the DementiaBank corpus. This would allow

us to assign a severity rating to any given narrative. However, being able to predict severity

would also allow longitudinal monitoring of the sort discussed in Section 2.7.3. Of particular

interest would be developing a method to generate aggregate scores for different linguistic ar-
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eas (in the same spirit as the factor analysis of Section 6.3.4), which could then be monitored

over time. Monitoring patterns of language decline in dementia could help track the spread of

cortical atrophy. However, such technology could also be applied to other language disorders

with a more positive prognosis, such as post-stroke aphasia and childhood language disorders.

In such cases, longitudinal severity ratings across specific language areas could provide a quan-

titative basis for evaluating the efficacy of potential therapies, as well as suggesting particular

language deficits that should be intensively targeted.

One focus of this dissertation has been the development of metrics which are sensitive to

syntactic changes in language. In future work, I would like to investigate more sophisticated

measures of semantic production. In particular, the keyword-spotting approach to assessing

information content and lexical choice in Chapter 6 was relatively naı̈ve, and in the PPA work

I did not directly consider the semantic content of the narratives at all. In recent years, there

has been growing research into vector space models of semantics, and the methods being de-

veloped in that area could prove to be valuable here. If we construct a semantic space using a

corpus of Alzheimer’s speech, how will that differ from a representation trained on data from

healthy speakers? Furthermore, can this tell us anything at all about how semantic knowledge

is represented in the brain? Others have proposed the idea of “conditional word similarity”

based on the premise that different populations will tend to use a given word in different con-

texts (Kiros et al., 2014). We may be able to use such concepts to detect subtle differences

in semantic processing, either compared to a control model or, ideally, to a model built on an

individual’s language use earlier in life.

Beyond syntax and semantics, higher level discourse processing is also an area of interest.

For example, Ash et al. (2006) found that some dementia patients who were not frankly aphasic

still had difficulty organizing their narratives and making connections between story themes.

Previous work in computational linguistics has suggested automated methods for computing

discourse measures such as cohesion (Graesser et al., 2004) and coherence (Lapata and Barzi-

lay, 2005), which may help to reveal deficits in planning and organization not captured by our
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current system.

In the work presented here, speech data were elicited through specific story-telling and

picture-description tasks. The relatively constrained nature of these tasks (compared to open-

ended conversation) makes it easier to evaluate the content of the narratives, and compare

performance across participants. However, the tasks are somewhat artificial, and previous work

has suggested that an individual’s performance on such tasks can very from day to day (Cook

et al., 2009). Other research has suggested that conversational speech may offer a more realistic

perspective of language performance (Coelho et al., 2003). Conversational analysis would

also provide an opportunity to assess language use in a social context, including behaviours

such as turn-taking, back-channelling, lexical entrainment, and potentially even non-linguistic

elements of communication like gesture and eye contact.

Many of the available pharmacological interventions for Alzheimer’s disease symptoms are

most effective if administered early in the disease progression (Solomon and Murphy, 2005).

Thus, identifying and accurately describing the early linguistic symptoms of AD is critical.

Semi-structured speech data of the type discussed here is not normally collected until after an

individual starts displaying obvious symptoms and visits a clinician. Furthermore, as discussed

previously, the average person does not have speech samples (or novels, for that matter) which

may be retrospectively analyzed to search for relevant linguistic changes. However, in recent

years it has become more common for people to generate large quantities of digital text, much

of which is stored indefinitely on the Internet. Therefore, a long-term research goal will be to

develop methods of mining alternative sources of language data, including digital text such as

email, text messages, social media posts, and blogs. While perhaps not quite as spontaneous

as speech, such written material is often generated quickly and without the help of external

sources, such as dictionaries or copy editors. This research will study questions about how lan-

guage disorders are expressed in digital media, and how that expression differs from the usual

non-standard grammar and spelling frequently seen among cognitively healthy users. It will

also allow us to explore what compensatory strategies are used by people with incipient lan-
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guage or cognitive disorders in their digital communication (predictive spelling, for example),

and how they could be implemented in assistive technologies.

I am also interested in combining language analysis with other information about a person’s

cognitive status. One example of additional information is neuropsychological test scores. This

could include global measures of cognitive decline, such as the MMSE (as mentioned above),

but another possibility would be to examine the correlations between specific language tests

and narrative speech measures. Do formal language testing and narrative speech analysis mea-

sure the same things (in which case, one method could be considered redundant), or is there

information that can be obtained only from one method or the other? If the latter, can we com-

bine these sources of information to improve diagnostic accuracy? Another potential source

of information is neuroimaging. Correlations between different brain regions and the ability

to produce and comprehend language have long been known, but there are still many open

questions about the interactions between these areas and other parts of the brain. Being able to

associate specific patterns of language decline with patterns of degeneration could contribute

to our understanding of language processing in the brain (see Wilson et al. (2011) for one

example of this in PPA), as well as provide a non-invasive biomarker for neurodegeneration.

As a third possibility, analysis of video data in combination with speech data could also hold

promise for future work. Previous work has identified changes in the eye movements (Ander-

son and MacAskill, 2013), facial expressions (Seidl et al., 2012), and gestures (Carlomagno

et al., 2005) of people with dementia. A benefit to combining information from multiple input

modalities may be increased sensitivity to early signs of dementia; for example, Alberdi et al.

(2016) argue that a multimodal approach will be crucial for early diagnosis, in order to detect

small physiological and behavioural changes.
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7.4 Concluding remarks

From a computational linguistics perspective, I have demonstrated how we can transfer tech-

niques from solutions to problems as disparate as authorship attribution, language learning,

and grammar checking to tackle problems in the healthcare space. I have argued that the fea-

tures we extract need not be viewed simply as a means for increasing classification accuracy.

Rather, they can tell us useful things about the data, and in this particular case, about how peo-

ple with dementia use language. From the perspective of dementia and aphasia research, I have

shown that computer analysis can reveal much of the same information that has previously

been extracted by hand, as well as providing new ways of exploring the data that would not be

reasonable to attempt manually. While acknowledging the limitations of the current work and

the challenges that lie ahead, I have presented multiple experiments showing that we can detect

a useful signal in noisy data, and suggested that fully automated analyses may have some prac-

tical applications in the future. While this dissertation has centered on dementia, it is easy to

imagine how similar ideas could be applied in related healthcare fields where changes to speech

and language must be detected and assessed: traumatic brain injury, childhood language dis-

orders, depression, schizophrenia, etc. Such work will necessarily be multi-disciplinary, and

will be enriched by expertise from domain experts in fields such as medicine, psychology, and

speech-language pathology. My hope is that we in computational linguistics can ultimately

further knowledge in those fields by developing new techniques to search for and understand

patterns in the noisy reality of natural language.

“The job of the linguist, like that of the biologist or the botanist, is not to tell us
how nature should behave, or what its creations should look like, but to describe
those creations in all their messy glory and try to figure out what they can teach us
about life, the world, and, especially in the case of linguistics, the workings of the
human mind.”

–Arika Okrent
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