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In the early stages of neurodegenerative disorders, individuals may exhibit a decline in

language abilities that is difficult to quantify with standardized tests. Careful analysis of

connected speech can provide valuable information about a patient’s language capacities.

To date, this type of analysis has been limited by its time-consuming nature. In this study,

we present a method for evaluating and classifying connected speech in primary

progressive aphasia using computational techniques. Syntactic and semantic features

were automatically extracted from transcriptions of narrative speech for three groups:

semantic dementia (SD), progressive nonfluent aphasia (PNFA), and healthy controls.

Features that varied significantly between the groups were used to train machine learning

classifiers, which were then tested on held-out data. We achieved accuracies well above

baseline on the three binary classification tasks. An analysis of the influential features

showed that in contrast with controls, both patient groups tended to use words which were

higher in frequency (especially nouns for SD, and verbs for PNFA). The SD patients also

tended to use words (especially nouns) that were higher in familiarity, and they produced

fewer nouns, but more demonstratives and adverbs, than controls. The speech of the PNFA

group tended to be slower and incorporate shorter words than controls. The patient groups

were distinguished from each other by the SD patients’ relatively increased use of words

which are high in frequency and/or familiarity.

ª 2012 Elsevier Ltd. All rights reserved.
puter Science, University of Toronto, 10 King’s College Road, Room 3302, Toronto, Ontario,

.C. Fraser).

r KC, et al., Automated classification of primary progressive aphasia subtypes from
3), http://dx.doi.org/10.1016/j.cortex.2012.12.006

ier Ltd. All rights reserved.

mailto:kfraser@cs.toronto.edu
www.sciencedirect.com/science/journal/00109452
www.elsevier.com/locate/cortex
http://dx.doi.org/10.1016/j.cortex.2012.12.006
http://dx.doi.org/10.1016/j.cortex.2012.12.006
http://dx.doi.org/10.1016/j.cortex.2012.12.006


c o r t e x x x x ( 2 0 1 3 ) 1e1 82
1. Introduction more pronouns, as well as more pronouns with ambiguous
Primary progressive aphasia (PPA) is a dementia syndrome,

resulting from neurodegenerative disease, in which language

impairment is the earliest and most salient feature. It is

widely accepted that there are three variants of PPA (Gorno-

Tempini et al., 2004): progressive nonfluent aphasia (PNFA),

progressive fluent aphasia, often referred to as semantic

dementia (SD) due to the pervasive semantic impairment, and

logopenic progressive aphasia. PNFA is characterized by

nonfluent, hesitant, effortful speech, with word-finding diffi-

culty; in addition, agrammatism and/or apraxia of speech are

considered to be core features. In SD, there is severe anomia,

although spoken output remains fluent, well-articulated, and

grammatically correct, with normal prosody. The logopenic

variant is associated with hesitant speech, obvious word-

finding difficulty, and intact word repetition but poor repeti-

tion of phrases and sentences; this variant is not a focus of the

present study and therefore will not receive further attention.

Until recently, most systematic investigations of spoken

output in PPA focused on single word production (naming,

reading, repetition), but there is now a small literature that

examines production of connected speech. Difficulty with

conversing is often a presenting complaint in PPA, and diag-

nostic criteria describe the nature of the impairment in

spoken output that is indicative of each variant (Gorno-

Tempini et al., 2004). Because impairment in connected

speech is the essence of PPA, thorough characterization seems

essential. The main hurdle to date has been the laborious

process required for transcription and systematic analysis of

connected speech. Nevertheless, progress has been made and

we are beginning to understand the characteristics of

language production in connected speech in each variant

of PPA.

Patients with PNFA tend to have reduced output in

comparison with control participants: it has been shown that

they produce fewer words (Graham et al., 2004; Wilson et al.,

2010), shorter phrase length (Knibb et al., 2009), and

a shorter mean length of utterance (Ash et al., 2006;

Thompson et al., 2012). As well, their speech rate is slower and

their speech is less informative than that of controls (Ash

et al., 2006; Graham et al., 2004; Knibb et al., 2009; Thompson

et al., 2012; Wilson et al., 2010). Impairment in grammatical

competency is an established feature of the syndrome. These

patients produce increased grammatical errors (Knibb et al.,

2009), fewer grammatically correct sentences (Thompson

et al., 2012), and show impaired production of verb inflection

and argument structure (Thompson et al., 2012). The degree of

grammatical impairment is a matter for debate, as not all

patients show agrammatism and production of normal

proportions of content and function words has been docu-

mented (Graham et al., 2004). Knibb et al. (2009) noted that

increased grammatical errors and simplified syntax were

universal in the PNFA patients they studied, while pervasive

agrammatism was not common.

The work on production of connected speech in patients

with SD has demonstrated that they tend to use words which

are higher in frequency but less specific than the words used

by controls (Meteyard and Patterson, 2009). They also produce
Please cite this article in press as: Fraser KC, et al., Automated
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referents (Kavé et al., 2007; Meteyard and Patterson, 2009;

Patterson andMacDonald, 2006; Wilson et al., 2010). Thus, it is

not surprising that the speech of SD patients has been shown

to be less informative than that of controls (Ash et al., 2006;

Kavé et al., 2007; Meteyard and Patterson, 2009). There is also

a tendency to use nouns and verbs which are higher in

frequency than those used by controls (Bird et al., 2000). The

rate of syntactic and phonological errors is no higher than

controls (Sajjadi et al., 2012;Wilson et al., 2010), but the level of

syntactic ability remains unclear. Some studies have docu-

mented normal ratios of content words to function words and

of nouns to verbs (Meteyard and Patterson, 2009; Sajjadi et al.,

2012), suggesting normal grammatical production, but others

found that both of these ratios were abnormal (Bird et al.,

2000; Garrard and Forsyth, 2010; Thompson et al., 2012).

Similarly, there has been inconsistency with respect to the

findings regarding speech rate, which has been found to be

both normal (Bird et al., 2000; Garrard and Forsyth, 2010;

Meteyard and Patterson, 2009; Thompson et al., 2012) and

reduced (Ash et al., 2006; Sajjadi et al., 2012; Wilson et al.,

2010). Interestingly, Sajjadi et al. (2012) found that SD

patients do not exhibit frequent circumlocution, despite

numerous clinical descriptions to the contrary.

In this study, we examine narrative speech in PNFA and

SD. In contrast to the studies reviewed above, to gain

maximum information we used methods from natural

language processing, which involves the use of software to

analyze speech samples, or in our case, transcriptions of

speech samples. These methods enable, for example, part-of-

speech (POS) tags to be automatically assigned to words in

a text using a statistical POS tagger. Others have begun to use

these methods to analyze spoken output in dementia. For

example, Roark et al. (2011) compared automatic and manual

methods for determining syntactic structure of spoken

output, and demonstrated that the automatic method was

sufficiently accurate to enable identification of syntactic

complexity measures that distinguished between healthy

participants and those with mild cognitive impairment.

Peintner et al. (2008) have adopted this approach. They

studied speech from patients with frontotemporal dementia

(FTD), and used a subset of extracted features as input to

machine learning classifiers to classify each participant as

belonging to the PNFA, SD, or behavioural variant FTD groups,

or as a control. A similar procedure was followed by Jarrold

et al. (2010) when they used machine learning algorithms

to classify transcriptions of speech from participants with

pre-symptomatic Alzheimer’s disease (AD), mild cognitive

impairment, or depression. Both studies had some success

with classification based on samples of connected speech, but

they are limited in that they do not report which features were

able to reliably distinguish between patient groups.

The present study had two aims. The first was to develop

a machine learning classifier that would analyze speech

samples and be able to distinguish between control partici-

pants and participants with PNFA or SD, as well as between

the two patient groups. The other aim of this study was to

identify the automatically extracted features that best

distinguish the groups, and to compare this with results in the
classification of primary progressive aphasia subtypes from
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literature that are based on traditional (manual) analysis

methods. Identification of the distinguishing features is

important for improved detection and differentiation of the

variants of PPA.
2. Participants and methods

2.1. Participants

Our participants comprised 24 patients diagnosed with either

the fluent (SD) or nonfluent variant (PNFA) of PPA, and 16 age-

and education-matched healthy controls. The patient group is

an unselected sample of patients with SD or PNFA, except that

participants who were unable to complete the narrative task

(n ¼ 7) were excluded: 2 PNFA patients had incomprehensible

speech, 1 PNFA patient said nothing, 1 SD patient refused to

attempt the task, and the responses of 1 PNFA and 2 SD

patients did not include any of the story that they were asked

to tell, but instead comprised statements of how they could

not remember the story. Participants with PPA were recruited

through three memory clinics in Toronto and each was diag-

nosed by an experienced behavioural neurologist. There were

a further 7 patients in the cohort who were diagnosed with

logopenic PPA, but this group was not included in the present

study due to its small size. Control participants were recruited

from a volunteer participant pool. All participants were native

speakers of English, or completed some of their education in

English. Exclusion criteria included a known history of drug or

alcohol abuse, or a history of neurological ormajor psychiatric

illness.

The study was approved by the Research Ethics Boards of

all the hospitals involved in recruitment, as well as the board
Table 1 e Demographic and neuropsychological data for each
deviation). Asterisks denote significant effect of group on 1-w

SD (n ¼ 10)

Demographic information

Age 65.6 (7.4)

Years of education 17.5 (6.1)

Sex 3 F

Handedness 9 R

General cognitive function

Mini-Mental State Examination (/30) 24.4 (4.3)a

Dementia Rating Scale-R (/144) 117.2 (12.6)a

Language production

Boston Naming (/60) 13.9 (7.3)a,b

Category fluency e animals 7.6 (3.7)a

Language comprehension

Test for the Reception of Grammar (/80) 71.4 (11.0)

Peabody Picture Vocabulary Test (/204) 113.8 (30.8)a,b

Visuospatial

Copy of Rey Complex Figure (/36) 33.2 (2.6)

VOSP cube analysis subtest (/10) 9.4 (1.9)

Nonverbal memory

30 min recall of Rey Complex Figure (/36) 12.7 (7.1)

Nonverbal reasoning

Raven’s Coloured Progressive Matrices (/36) 31.5 (5.0)

a Significantly different from controls.

b Significantly different from nonfluent patients.

Please cite this article in press as: Fraser KC, et al., Automated
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at the University of Toronto. Written informed consent was

obtained from all participants.

Diagnosis was based on history, neuroimaging, neurolog-

ical examination and neuropsychological testing, and all

patients met current criteria for PPA (Gorno-Tempini et al.,

2011). Patients with the fluent variant exhibited grammati-

cally correct fluent speech, with word-finding difficulties.

Those with the nonfluent variant had effortful, halting speech

with anomia, although not all exhibited clear agrammatism in

production or clear apraxia of speech on formal testing.

Demographic data are listed in Table 1.

All participants underwent a battery of neuropsychological

and linguistic tests as part of a longitudinal study of PPA

which is being conducted in the Department of Speech-

Language Pathology of the University of Toronto. The neuro-

psychological test information is reported in Table 1. The level

of general cognitive functioning was measured using the

Mini-Mental State Examination (Folstein et al., 1975) and the

Dementia Rating Scale-R (Jurica et al., 2001). The two patient

groups did not differ on these tests, but were both impaired

relative to controls. In keeping with the diagnosis of PPA, both

patient groups performed poorly on a test of picture naming

(Boston Naming Test, Kaplan et al., 2001) and on category

fluency for animals (where participants are asked to name all

the animals they can think of in 1 min). Impairment in

syntactic comprehension is a known feature of PNFA and

indeed was exhibited by the PNFA group studied here; this

ability was measured using the Test for the Reception of

Grammar (Bishop, 2003), and the nonfluent group (only) per-

formed significantly worse than controls. Impairment in

single word comprehension is an established feature of SD;

both of our patient groups were impaired on single word

comprehension, but as expected, the SD patients performed
participant group. Values shown are mean (standard
ay analyses of variance at *p < .05, ***p < .001.

PNFA (n ¼ 14) Controls (n ¼ 16) Group effect

64.9 (10.1) 67.8 (8.2)

14.3 (3.6) 16.8 (4.3)

6 F 7 F

13 R 16 R

25.0 (2.9)a 29.3 (.8) ***

123.9 (15.6)a 142.2 (1.7) ***

39.6 (11.5)a 55.8 (3.3) ***

12.3 (6.0)a 20.4 (4.4) ***

63.9 (12.0)a 79.1 (.9) ***

172.9 (14.3)a 196.1 (3.9) ***

29.9 (5.3)a 33.4 (1.4) *

9.2 (1.6) 8.5 (2.1)

14.9 (6.3) 18.8 (6.9)

27.1 (6.5)a 31.8 (4.2) *
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significantly worse than the PNFA patients (Peabody Picture

Vocabulary Test, Dunn and Dunn, 1997). Consistent with the

diagnosis of PPA, performance was generally better on

nonverbal tests. The PNFA group was mildly impaired on

copying the Rey Complex Figure (Rey, 1941) while the SD group

showed normal performance. On another measure of visuo-

spatial functioning, the cube analysis subtest from the Visual

Object and Space Perception Battery (Warrington and James,

1991), both patient groups performed normally. Similarly,

performance on nonverbal episodic memory was normal for

both patient groups; this was assessed by asking participants

to recall the Rey Complex Figure 30 min after copying it.

Finally, nonverbal reasoning was relatively preserved,

although it was mildly impaired for the PNFA group (only)

(Raven’s Coloured Progressive Matrices, Raven, 1962).

2.2. Narrative task

Speech samples were elicited by having participants tell the

Cinderella story, as in Saffran et al. (1989). To prompt their

memories for the story, participants were given as much time

as they needed to examine a picture book illustrating the

story. When each participant had finished looking at the

pictures, and the book had been removed, the examiner said

“Now you tell me the story. Include as much detail as you can

and try to use complete sentences.” After letting the partici-

pant speak for as long as he or she wished, if the story was

incomplete, general encouragement for more speech was

given, for example, “Good, tell me more about that”, “What

happens next”, “Go on”, etc. At no time were specific ques-

tions or prompts given. The narratives were recorded on

a digital audio recorder for subsequent verbatim transcription.

Transcription was done in accordance with the procedures

used in the Quantitative Production Analysis (Berndt et al.,

2000), with the exception that punctuation and sentence

initial capitalization were used. Brief pauses were marked

with commas, while pauses longer than 1 sec were timed and

the length of the pause was noted [e.g., (2 sec)]; however,

commas and pauses were removed before analysis. Sentence

boundaries were marked with full stops. Placement of sen-

tence boundaries was guided by semantic, syntactic and

prosodic features, using a method essentially identical to that

described by Thompson et al. (2012). When utterance bound-

aries were ambiguous, we created shorter utterances [as did

Thompson et al. (2012) andWilson et al. (2010)]. Fillers such as

um and uh were transcribed (and analyzed), but were not

included in the total word count. Repetitions, false starts and

repeated but incomplete attempts at a given word were

transcribed, but only repetitions of words and false starts

were included in the total word count. Neologisms were

transcribed with the International Phonetic Alphabet, and

words/passages which were incomprehensible were marked

with [###]. Phonemic errors were written using the Roman

alphabet and were followed by the transcriber’s gloss of the

word, which was put into double brackets. Neologisms and

incomprehensible speechwere not included in the automated

analyses or in the word counts as we could not be certain how

many words were represented; note, however, that incom-

prehensible passages were always brief. There were only rare

instances of neologisms or incomprehensible speech: 3
Please cite this article in press as: Fraser KC, et al., Automated
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participants (one in each group) had 2 occurrences each, while

a further 3 participants had 1 occurrence (2 PNFA, 1 SD).

2.3. Analysis of narrative speech

The automatically extracted features are defined in Table 2.

The first feature is the number of words in the transcript. The

subsequent 22 structural features (2e23) were calculated

using Lu’s L2 Syntactic Complexity Analyzer (Lu, 2010), which

uses the Stanford parser (Klein and Manning, 2003). We

modified features 3e9 to be normalized by the total number

of words, to facilitate comparison between narratives of

different lengths. Lu used these features to analyze the

syntactic complexity of college-level English essays from

Chinese students, but the software has also been used to

analyze spoken language (Chen and Zechner, 2011). We have

not attempted to adapt this tool specifically for the study of

aphasic speech; rather, we are interested to see how well

such methods perform in the absence of any domain-

adaptation.

The next four features (24e27) are also measures of

syntactic complexity. Tree-basedmeasures have been used to

detect age-related cognitive decline (Cheung and Kemper,

1992) and mild cognitive impairment (Roark et al., 2011).

Parse trees were constructed using the Stanford parser, so

they are based on the same structural model as features 2e23.

The Yngve depth quantifies to what extent the syntactic

structure of a sentence contains left-branching rather than

right-branching phrases, which provides a comparisonmetric

of syntactic complexity (Yngve, 1960). For detailed illustra-

tions of how Yngve depth is quantified, see Sampson (1997),

Cheung and Kemper (1992), or Yngve (1960). We quantified

Yngve depth as mean depth over all words, the maximum

depth in the sentence, and the total depth. For example,

a sentence with an object-embedded relative clause such as

The juice that the child spilled stained the rug is more left-

branching than one with a subject-embedded relative clause

such as The child spilled the juice that stained the rug (Stromswold

et al., 1996). Using our procedures, the first sentence is

assigned these values: (max depth: 3, mean depth: 1.67, total

depth: 15), while the second sentence is assigned: (max depth:

2, mean depth: 1.11, total depth: 10).

Features 28e40 rely explicitly on the POS tags for eachword

in the sample, determined by using the Stanford POS tagger

(Toutanova et al., 2003). Differences in the noun and verb

production of SD and PNFA patients have been noted before

(Harciarek and Kertesz, 2011). It has also been observed that

PNFA patients are more likely to omit inflections and function

words (Harciarek and Kertesz, 2011). Here, function words

included determiners, pronouns, prepositions, conjunctions,

particles, and modals.

Word-level phonemic errors can present a potential

problem to the tagger. We have introduced an extra tag called

not in dictionary or NID for cases in which the speaker produces

a nonword token. This prevents such tokens from being

counted towards the wrong POS category. If a word error

results in another English word, this is not detected by our

system and could be tagged incorrectly. However, the context

around the word may provide useful clues to the tagger in

such cases.
classification of primary progressive aphasia subtypes from
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Table 2 e Definitions of features.

Feature Definition

1 Words

2 Sentences

3 T-units A clause and all of its

dependent clauses

4 Clauses A structure consisting

of at least a subject and

a finite verb

5 Coordinate phrases A phrase immediately

before a coordinating

conjunction

6 Complex nominals A noun phrase, clause,

or gerund that stands in

for a noun

7 Complex T-units A T-unit which contains a

dependent clause

8 Verb phrases A phrase consisting of at

least a verb and its dependents

9 Dependent clauses A clause which could not

form a sentence on its own

10 Mean length of sentence

11 Mean length of clause

12 Mean length of T-unit

13 Dependent clauses

per clause

14 Dependent clauses

per T-unit

15 Verb phrases per T-unit

16 Clauses per sentence

17 Clauses per T-unit

18 Complex T-units

per T-unit

19 Coordinate phrases

per T-unit

20 Complex nominals

per T-unit

21 T-units per sentence

22 Coordinate phrases

per clause

23 Complex nominals

per clause

24 Tree height Height of the parse tree

25 Total depth Total Yngve depth

26 Max depth Maximum Yngve depth

27 Mean depth Mean Yngve depth

28 Nouns # Nouns/# words

29 Verbs # Verbs/# words

30 Nouneverb ratio # Nouns/# verbs

31 Noun ratio # Nouns/(# nouns þ # verbs)

32 Inflected verbs # Inflected verbs/# verbs

33 Light verbs # Light verbs/# verbs

34 Determiners # Determiners/# words

35 Demonstratives # Demonstratives/# words

36 Prepositions # Prepositions/# words

37 Adjectives # Adjectives/# words

38 Adverbs # Adverbs/# words

39 Pronoun ratio # Pronouns/(# nouns þ #

pronouns)

40 Function words # Function words/# words

41 Frequency Mean frequency of all

words appearing in the

frequency norms

42 Noun frequency Mean frequency of nouns

appearing in the frequency norms

Table 2 (continued)

Feature Definition

43 Verb frequency Mean frequency of verbs appearing

in the frequency norms

44 Imageability Mean imageability of all words

appearing in the imageability norms

45 Noun imageability Mean imageability of nouns

appearing in the imageability norms

46 Verb imageability Mean imageability of verbs

appearing in the imageability norms

47 Age of acquisition Mean age of acquisition of all

words appearing in the age of

acquisition norms

48 Noun age of

acquisition

Mean age of acquisition of nouns

appearing in the age of acquisition

norms

49 Verb age of

acquisition

Mean age of acquisition of verbs

appearing in the age of acquisition

norms

50 Familiarity Mean familiarity of all words

appearing in the familiarity norms

51 Noun familiarity Mean familiarity of nouns

appearing in the familiarity norms

52 Verb familiarity Mean familiarity of verbs appearing

in the familiarity norms

53 Type-token ratio # Unique word

types/# words

54 Word length Mean number of letters in each word

55 Fillers # Fillers/# words

56 Um # Occurrences of ‘um’/# words

57 Uh # Occurrences of ‘uh’/# words

58 Speech rate # Words uttered/total time in

minutes

c o r t e x x x x ( 2 0 1 3 ) 1e1 8 5
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Verbs can be categorized as being heavy or light, according

to their semantic complexity. Light verbs like have or do can be

used in such a wide variety of different contexts that they are

similar in some ways to closed-class function words (Breedin

et al., 1998). We used the same list of light verbs as Breedin

et al. (1998), namely: be, have, come, go, give, take, make, do,

get, move, and put. All verbs which are not on this list are

considered to be heavy.

Features 41e52 measure frequency, imageability, age of

acquisition, and familiarity. Frequency was calculated

according to the SUBTL norms (Brysbaert and New, 2009), and

the remaining three according to the combined Bristol norms

and GilhoolyeLogie norms (Stadthagen-Gonzalez and Davis,

2006; Gilhooly and Logie, 1980). In addition to calculating the

overall averages, the measures were calculated for nouns and

verbs independently, to explore any possible dissociations.

We calculated the proportion of words covered by the norms

based on unique word forms (as opposed to individual

occurrences). The coverage for the frequency norms is excel-

lent e between .92 and .95 across the three groups. The

coverage for the imageability, age of acquisition, and famil-

iarity norms is not as good, ranging from .25 to .31 for all

content words across the three groups. One reason for this is

that the Bristol norms were specifically designed to exclude

high frequency words, as the authors wanted to use words in

“the frequency range most often sampled by psycholinguistic

experiments” (Stadthagen-Gonzalez and Davis, 2006). This

means that most of the words included in the norms have
classification of primary progressive aphasia subtypes from
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frequencies between 1 and 100 counts per million. For

example, nouns like thing (which has a frequency of 1088

counts per million in the SUBTL norms) and name (641 counts

per million) are excluded, as are verbs like go (3793 counts per

million) and do (6135 counts per million).

The last six features (53e58) are measures of fluency and

vocabulary richness. One way to measure vocabulary size is

by calculating the type-token ratio, which is the ratio of the

number of word types to the total number of words in the

sample. A type-token ratio of 1.0 would mean that every word

in the sample was unique; a low type-token ratio would

indicate that many words were repeated. Filled pauses are

measured by counting occurrences of the words um, uh, ah,

and er, called “fillers” in Table 2. The words um and uh were

also counted individually, because of research which suggests

that they may be used to indicate major and minor pauses,

respectively (Clark and Fox Tree, 2002). Finally, speech rate

has been shown to distinguish between PPA patients and

controls, although the results in SD are inconsistent (see

Introduction). Here we consider an estimate of the speech

rate, which was calculated by dividing the number of words

produced by the participant by the total speech sample time.

Impaired speech can present difficulties for automatic

language processing techniques, which have typically been

developed for well-formed, written text. However, these

methods represent a starting point for future development of

more sophisticated techniques. To increase the probability of

the structural analyses producing accurate results, our system

counts and then removes the filled pauses from the transcript.

Short nonword tokens (i.e., repeated but incomplete attempts

at a given word, e.g., br- bring) are also removed.

To test the results of our automatic methods against

traditional manual methods, we had a human annotator

perform POS tagging and calculate a subset of the parse

measures for three randomly-chosen narratives from each of

the three participant groups (22.5% of the total data set). For

POS tagging, wemeasured the agreement between the human

annotator and the automatic tagger by counting the number

of tags on which they both agreed, and dividing by the total

number of tags. The average agreement was 87.3% for the

PNFA group, 89.2% for the SD group, and 91.9% for the control

group. For comparison, the best reported accuracies for

statistical taggers onwritten, well-formed text are around 97%

(Manning, 2011), while Pakhomov et al. (2010) reported

a tagging accuracy of 86% on PNFA speech transcripts.

In comparing the parse features, we were limited by the

fact that Lu’s program simply outputs counts for each

measure, rather than the actual constituents beingmeasured.

This makes it impractical to use traditional parse measures

such as the PARSEVALmeasures (Manning and Schütze, 1999).

Instead we had the annotator produce counts of different

structures, just as the software does, and then correlated the

two sets of counts.We examined a set of features that seemed
Table 3 e Correlations between human- and computer-genera

Clauses Dependent clauses T

Per narrative .9966 .9319

Per sentence .9630 .6396
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to be important in distinguishing the groups based on

preliminary analyses, although not all of them were signifi-

cant in the final version of the system. We measured the

correlation in two ways: the correlation between the counts

for each individual sentence, and the correlation between the

total counts for each narrative. The correlation coefficients for

these measures are shown in Table 3.

Correlations between the scores calculated by the human

annotator and Lu’s systemwere high when considered across

narratives, which is the most relevant comparison for our

purposes, as only the total scores for the narratives were used

as input to the classifiers. The per-sentence correlations were

somewhat lower. Inspection of the discrepancies between the

manual and automatic scoring revealed a systematic pattern.

In general, the automatic system has high agreement with the

human annotator when determining the number of clauses.

However, it has difficulty labelling clauses as being either

independent or dependent, especially when the clauses are

not connected by a conjunction. Inmany such cases, we found

that the system counted a different number of dependent

clauses than the human annotator, which in turn affected the

number of T-units and complex T-units. Given this apparently

systematic error, the results from Lu’s syntactic complexity

analyzer must be interpreted with caution.

2.4. Classification

We trained machine learning classifiers to predict partici-

pants’ diagnoses based on a set of features extracted auto-

matically from speech transcripts. Including too many

features risks overfitting the classifier to idiosyncrasies in the

training set, resulting in poor generalization to new data

points. Therefore, some process of feature selection is

necessary. To select features on which to train the classifiers,

we conducted a two-sample t-test on each feature between

the two groups that were to be distinguished. All features that

were significant at p < .05 were used for classification. The

values of the selected features make up a feature vector,

which defines a point in feature space. The goal of a machine

learning classifier is to take a feature vector as input, and

output a class label (in this case, either SD, PNFA, or control).

Three machine learning classifiers from the WEKA machine

learning toolkit were compared (Hall et al., 2009).

Naı̈ve Bayes is a classifier based on Bayes’s theorem. It is

called “naı̈ve” because it makes the strong simplifying

assumption that all of the features are conditionally inde-

pendent given the class. The classifier learns estimates for the

class-conditional probabilities and priors for each class from

the training data. In the classification stage, it uses Bayes’s

theorem to assign a data point to the class that maximizes the

posterior probability. Naı̈ve Bayes iswidely used, even in cases

where the independence assumption is known to be false, and

often performs well. The rationale for this is that even though
ted counts for syntactic structures.

-units Complex T-units Coordinate phrases

.9269 .8792 .9475

.4756 .4568 .7921
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the probability estimates may be inaccurate, the classification

results (which depend only on which probability is the high-

est, and not on the actual numbers) can still be good (Manning

et al., 2008).

In contrast to naı̈ve Bayes, which attempts to model the

classes themselves, logistic regression is a discriminative clas-

sifier which attempts to model the boundary between the

classes instead. Logistic regression estimates the posterior

probability directly from the training data. Research suggests

that naı̈ve Bayesmay perform better in cases where there is not

a large amount of training data (Ng and Jordan, 2002). However,

the benefit of logistic regression is that it does not assume the

features are conditionally independent. Peintner et al. (2008)

used logistic regression, along with two other classifiers not

considered here, on various classification tasks involving FTD

subtypes and healthy controls. They had mixed results, with

logistic regression achieving the best results in two out of six

cases.

Support vector machines (SVMs) are another type of linear

discriminative classifier which have become very popular in

natural language processing applications in the past several

years (Manning et al., 2008). SVMs are maximum margin

classifiers, which means they find the decision boundary

between two classes that maximizes the margin between the

two classes. In other words, they maximize the distance

between the decision boundary and the nearest data points. If

the data are not linearly separable, then the algorithm tries to

maximize the margin while also minimizing the misclassifi-

cation error (Manning et al., 2008).

The classifiers were evaluated on the basis of classification

accuracy, or the total proportion of narratives which were

correctly classified. The evaluation was performed using

leave-one-out cross validation. In this procedure, one data

point is left out, and the classifier is trained on the remaining

data. The left-out data point can then be used as an unbiased

test point. This procedure is repeated until each data point has

been left out once, and the performance is averaged.
3. Results

We consider three separate classification tasks: (1) dis-

tinguishing between SD and controls; (2) distinguishing

between PNFA and controls; and (3) distinguishing between SD

and PNFA. The means and standard deviations for each attri-

bute are compared in Tables 4e6. Group differences were

measuredusingWelch’s two-tailed,unpaired t-test,whichdoes

not assume that the two samples share the same variance. A

significance level of p< .05 is indicated by a single asterisk, and

p< .01 is indicated by a double asterisk. Becausewewere using

the t-tests primarily as ameans of feature selection, we did not

adjust their significance levels for multiple comparisons. For

each classification task, the set of significant features for that

particular comparison formed the input vectors to the classi-

fiers. The features were rescaled to have zero mean and unit

variance before classification, to prevent features with large

magnitudes (e.g., imageability) from dominating features with

smaller magnitudes (e.g., fillers).

The features thatwereconsideredsignificantbetweentheSD

and control transcripts, and therefore used in that classification
Please cite this article in press as: Fraser KC, et al., Automated
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task, were: number of clauses, mean length of sentence, mean

length of clause, T-units per sentence, total Yngve depth,mean

Yngve depth, nouns, nouneverb ratio, noun ratio, demonstra-

tives, adverbs, pronoun ratio, frequency, noun frequency, verb

frequency, verb imageability, familiarity, noun familiarity,

meanword length, and speech rate (see Table 4). For the task of

classifying PNFA versus controls, the significant features were:

number of words, T-units per sentence, demonstratives,

frequency, verb frequency, age of acquisition, noun age of

acquisition, meanword length, and speech rate (see Table 5). In

the case of SD versus PNFA, only five features were significant:

dependentclausesperclause,nounfrequency, familiarity,noun

familiarity, and occurrence of “um” (see Table 6).

The classification accuracies are given in Table 7. The

baseline accuracies represent the accuracies that would be

achieved by simply assigning every transcript to the larger of

the two classes. That is, the baseline accuracy for SD (n ¼ 10)

versus controls (n ¼ 16) would be achieved by simply classi-

fying all the transcripts as controls (16/26 ¼ .615). The two

experimental scenarios involving patient groups versus

control groups result in very high classification accuracies.

The accuracies for classifying SD versus PNFA transcripts are

not as high; however, they are well above the baseline for all

three of the classifiers.

For comparison, we also evaluated the performance of the

classifiers trained on all features as input, rather than just the

features pre-selected by the t-tests. Thismethodwas expected

to perform rather poorly due to overfitting. Although using

more featuresmay improve classification on the training set, it

results in poor generalization tonewdata, as assessedwith the

cross-validation procedure. Indeed, performance in this case

was lower than the results shown in Table 7: for SD versus

controls, the accuracies ranged from .846 to .923, for PNFA

versus controls the accuracies ranged from .700 to .800, and for

SD versus PNFA they ranged from .625 to .667. This illustrates

the necessity of feature selection prior to classifier training.

Because the classification takes place in high-dimensional

feature space, it is difficult to visualize the models produced

by the classifiers. Instead, it is useful to visualize the classes in

two dimensions by using some form of dimensionality reduc-

tion. Here we use the method of partial least squares, or PLS

(Haenlein and Kaplan, 2004). PLS is similar to the well-known

method of principal components analysis, except that prin-

cipal components analysis discovers the latent variables that

best explain the variance in the attributes, while PLS discovers

the latent variables that aremost predictive of the response (in

this case, the patient groups or class labels). In addition, PLS is

appropriatewhen thenumberof attributes ishighcompared to

the number of data points, which is the case here.

Scatter plots of the first two PLS components are shown in

Fig. 1. Eachof theplotsshowrelativelygoodseparationbetween

the groups. We were interested to see whether two narratives

that were located close together in the PLS plot shared some

similarities, even when the participants who produced them

were from different diagnostic groups (for example, the points

labelled 1 and 2 in Fig. 1c). These transcripts are included in the

Appendix, along with the transcripts associated with points 3

and 4 in Fig. 1c for the sake of comparison. Participants 1 and 2

have similar rates of speech, and Participant 1, although diag-

nosedwithSD,makesseveralsyntacticerrors. Participant2was
classification of primary progressive aphasia subtypes from
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Table 4 e A comparison of SD and control features. Values shown are mean (standard deviation). Asterisks denote
significance (*p < .05; **p < .01).

Feature SD Controls p Value

1 Words 380.300 (272.429) 403.688 (121.380) .8025

2 Sentences 20.400 (13.550) 15.688 (6.877) .3276

3 T-units .069 (.022) .058 (.019) .2036

4 Clauses .145 (.013) .133 (.011) .0292 *

5 Coordinate phrases .028 (.010) .029 (.007) .6676

6 Complex nominals .098 (.039) .083 (.020) .2735

7 Complex T-units .037 (.009) .030 (.009) .0505

8 Verb phrases .177 (.020) .167 (.015) .2056

9 Dependent clauses .067 (.016) .052 (.021) .0543

10 Mean length of sentence 20.135 (8.190) 28.608 (10.973) .0346 *

11 Mean length of clause 7.035 (.603) 7.602 (.632) .0329 *

12 Mean length of T-unit 16.217 (6.481) 19.465 (8.042) .2701

13 Dependent clauses per clause .460 (.090) .391 (.144) .1459

14 Dependent clauses per T-unit 1.094 (.497) 1.081 (.768) .9571

15 Verb phrases per T-unit 2.848 (1.276) 3.186 (1.196) .5094

16 Clauses per sentence 2.845 (1.010) 3.738 (1.242) .0573

17 Clauses per T-unit 2.292 (.786) 2.558 (1.007) .4610

18 Complex T-units per T-unit .580 (.183) .535 (.159) .5353

19 Coordinate phrases per T-unit .463 (.334) .589 (.369) .3820

20 Complex nominals per T-unit 1.558 (.720) 1.694 (1.082) .7038

21 T-units per sentence 1.250 (.230) 1.526 (.356) .0249 *

22 Coordinate phrases per clause .193 (.074) .221 (.058) .3150

23 Complex nominals per clause .673 (.229) .627 (.162) .5911

24 Tree height 13.167 (2.359) 14.821 (2.401) .0998

25 Total Yngve depth 70.477 (41.393) 117.609 (72.438) .0456 *

26 Maximum Yngve depth 5.091 (1.168) 6.023 (1.156) .0613

27 Mean Yngve depth 2.913 (.409) 3.345 (.498) .0250 *

28 Nouns .141 (.031) .179 (.026) .0051 **

29 Verbs .207 (.028) .200 (.019) .4427

30 Nouneverb ratio .699 (.209) .907 (.163) .0164 *

31 Noun ratio .403 (.072) .472 (.047) .0178 *

32 Inflected verbs .635 (.127) .706 (.086) .1417

33 Light verbs .474 (.093) .476 (.085) .9527

34 Determiners .107 (.030) .120 (.016) .2203

35 Demonstratives .037 (.011) .012 (.009) .0000 **

36 Prepositions .103 (.035) .087 (.015) .1994

37 Adjectives .034 (.013) .038 (.009) .3434

38 Adverbs .083 (.017) .058 (.014) .0010 **

39 Pronoun ratio .508 (.094) .416 (.068) .0175 *

40 Function words .467 (.033) .453 (.033) .2823

41 Frequency 5.021 (.105) 4.803 (.104) .0001 **

42 Noun frequency 3.861 (.231) 3.282 (.183) .0000 **

43 Verb frequency 4.614 (.282) 4.378 (.184) .0341 *

44 Imageability 477.721 (44.025) 507.025 (20.643) .0729

45 Noun imageability 560.959 (43.450) 580.710 (12.370) .1913

46 Verb imageability 416.117 (37.506) 385.947 (22.543) .0387 *

47 Age of acquisition 258.881 (21.629) 257.814 (12.476) .8894

48 Noun age of acquisition 254.246 (33.465) 251.696 (19.006) .8295

49 Verb age of acquisition 260.465 (27.603) 266.521 (14.566) .5338

50 Familiarity 607.358 (12.903) 565.956 (10.052) .0000 **

51 Noun familiarity 604.910 (20.954) 545.967 (17.119) .0000 **

52 Verb familiarity 605.526 (19.573) 600.218 (13.388) .4629

53 Type-token ratio .405 (.118) .415 (.057) .8028

54 Mean word length 3.735 (.186) 3.997 (.152) .0017 **

55 Fillers .053 (.067) .054 (.056) .9876

56 Um .007 (.008) .014 (.015) .1613

57 Uh .046 (.061) .040 (.060) .8052

58 Speech rate 104.048 (35.149) 160.779 (35.131) .0007 **
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diagnosed with PNFA, but tends to use high frequency words

(such as girls instead of stepsisters). In contrast, the two tran-

scripts from opposite sides of the PLS plots seem to be more

clearly representative of their diagnostic groups.
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Rather than analyze the factor loadings, which are not

easily interpretable in PLS, we calculate selectivity ratios,

which are closely related to the correlation between each

attribute and the response (Kvalheim, 2010). A high
classification of primary progressive aphasia subtypes from
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Table 5 e A comparison of PNFA and control features. Values shown are mean (standard deviation). Asterisks denote
significance (*p < .05; **p < .01).

Feature PNFA Controls p Value

1 Words 302.214 (141.837) 403.688 (121.380) .0466 *

2 Sentences 16.143 (12.526) 15.688 (6.877) .9049

3 T-units .061 (.023) .058 (.019) .7698

4 Clauses .141 (.020) .133 (.011) .2027

5 Coordinate phrases .028 (.013) .029 (.007) .7585

6 Complex nominals .092 (.017) .083 (.020) .2005

7 Complex T-units .030 (.010) .030 (.009) .9345

8 Verb phrases .167 (.017) .167 (.015) .9699

9 Dependent clauses .055 (.016) .052 (.021) .7312

10 Mean length of sentence 24.501 (12.192) 28.608 (10.973) .3437

11 Mean length of clause 7.299 (.986) 7.602 (.632) .3348

12 Mean length of T-unit 19.655 (8.814) 19.465 (8.042) .9516

13 Dependent clauses per clause .384 (.082) .391 (.144) .1333

14 Dependent clauses per T-unit 1.054 (.545) 1.081 (.768) .9106

15 Verb phrases per T-unit 3.212 (1.400) 3.186 (1.196) .9577

16 Clauses per sentence 3.346 (1.493) 3.738 (1.242) .4444

17 Clauses per T-unit 2.716 (1.243) 2.558 (1.007) .7078

18 Complex T-units per T-unit .517 (.146) .535 (.159) .7456

19 Coordinate phrases per T-unit .615 (.521) .589 (.369) .8763

20 Complex nominals per T-unit 1.767 (.790) 1.694 (1.082) .8331

21 T-units per sentence 1.256 (.254) 1.526 (.356) .0232 *

22 Coordinate phrases per clause .203 (.093) .221 (.058) .5336

23 Complex nominals per clause .660 (.130) .627 (.162) .5493

24 Tree height 12.933 (2.718) 14.821 (2.401) .0555

25 Total Yngve depth 108.405 (78.010) 117.609 (72.438) .7415

26 Maximum Yngve depth 5.275 (1.364) 6.023 (1.156) .1197

27 Mean Yngve depth 3.085 (.589) 3.345 (.498) .2070

28 Nouns .155 (.040) .179 (.026) .0644

29 Verbs .191 (.025) .200 (.019) .2804

30 Nouneverb ratio .837 (.286) .907 (.163) .4276

31 Noun ratio .444 (.082) .472 (.047) .2775

32 Inflected verbs .706 (.096) .706 (.086) .9923

33 Light verbs .538 (.141) .476 (.085) .1666

34 Determiners .130 (.032) .120 (.016) .3183

35 Demonstratives .026 (.018) .012 (.009) .0210 *

36 Prepositions .088 (.032) .087 (.015) .8884

37 Adjectives .030 (.017) .038 (.009) .1219

38 Adverbs .069 (.030) .058 (.014) .2253

39 Pronoun ratio .476 (.095) .416 (.068) .0601

40 Function words .478 (.045) .453 (.033) .0968

41 Frequency 4.962 (.118) 4.803 (.104) .0006 **

42 Noun frequency 3.451 (.317) 3.282 (.183) .0936

43 Verb frequency 4.608 (.237) 4.378 (.184) .0072 **

44 Imageability 509.119 (40.552) 507.025 (20.643) .8634

45 Noun imageability 579.078 (23.669) 580.710 (12.370) .8192

46 Verb imageability 404.073 (49.196) 385.947 (22.543) .2215

47 Age of acquisition 245.879 (14.862) 257.814 (12.476) .0260 *

48 Noun age of acquisition 235.038 (20.937) 251.696 (19.006) .0316 *

49 Verb age of acquisition 264.400 (13.607) 266.521 (14.566) .6834

50 Familiarity 573.625 (18.408) 565.956 (10.052) .1808

51 Noun familiarity 561.110 (24.689) 545.967 (17.119) .0668

52 Verb familiarity 589.838 (19.242) 600.218 (13.388) .1043

53 Type-token ratio .421 (.046) .415 (.057) .7421

54 Mean word length 3.769 (.136) 3.997 (.152) .0002 **

55 Fillers .083 (.080) .054 (.056) .2584

56 Um .025 (.027) .014 (.015) .1948

57 Uh .058 (.084) .040 (.060) .5937

58 Speech rate 78.468 (27.978) 160.779 (35.131) .0000 **
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selectivity ratio indicates that a feature is very influential

with respect to the response. The details of calculating this

measure are given by Kvalheim (2010); we used a pre-

existing Matlab package to perform the analysis (Li, 2011).
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Fig. 2 shows the selectivity ratios for each feature in the

three cases. For ease of interpretation, each feature with

a selectivity ratio of greater than a cut-off of .5 is given for

each of the three classification problems. In the majority of
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Table 6 e A comparison of SD and PNFA features. Values shown are mean (standard deviation). Asterisks denote
significance (*p < .05; **p < .01).

Feature SD. PNFA p Value

1 Words 380.300 (272.429) 302.214 (141.837) .4223

2 Sentences 20.400 (13.550) 16.143 (12.526) .4436

3 T-units .069 (.022) .061 (.023) .3518

4 Clauses .145 (.013) .141 (.020) .6028

5 Coordinate phrases .028 (.010) .028 (.013) .9334

6 Complex nominals .098 (.039) .092 (.017) .6376

7 Complex T-units .037 (.009) .030 (.010) .0580

8 Verb phrases .177 (.020) .167 (.017) .2393

9 Dependent clauses .067 (.016) .055 (.016) .0805

10 Mean length of sentence 20.135 (8.190) 24.501 (12.192) .3056

11 Mean length of clause 7.035 (.603) 7.299 (.986) .4254

12 Mean length of T-unit 16.217 (6.481) 19.655 (8.814) .2829

13 Dependent clauses per clause .460 (.090) .384 (.082) .0472 *

14 Dependent clauses per T-unit 1.094 (.497) 1.054 (.545) .8509

15 Verb phrases per T-unit 2.848 (1.276) 3.212 (1.400) .5161

16 Clauses per sentence 2.845 (1.010) 3.346 (1.493) .3381

17 Clauses per T-unit 2.292 (.786) 2.716 (1.243) .3188

18 Complex T-units per T-unit .580 (.183) .517 (.146) .3825

19 Coordinate phrases per T-unit .463 (.334) .615 (.521) .3953

20 Complex nominals per T-unit 1.558 (.720) 1.767 (.790) .5084

21 T-units per sentence 1.250 (.230) 1.256 (.254) .9541

22 Coordinate phrases per clause .193 (.074) .203 (.093) .7648

23 Complex nominals per clause .673 (.229) .660 (.130) .8714

24 Tree height 13.167 (2.359) 12.933 (2.718) .8246

25 Total Yngve depth 70.477 (41.393) 108.405 (78.010) .1386

26 Maximum Yngve depth 5.091 (1.168) 5.275 (1.364) .7270

27 Mean Yngve depth 2.913 (.409) 3.085 (.589) .4071

28 Nouns .141 (.031) .155 (.040) .3591

29 Verbs .207 (.028) .191 (.025) .1440

30 Nouneverb ratio .699 (.209) .837 (.286) .1844

31 Noun ratio .403 (.072) .444 (.082) .2122

32 Inflected verbs .635 (.127) .706 (.096) .1550

33 Light verbs .474 (.093) .538 (.141) .1935

34 Determiners .107 (.030) .130 (.032) .0862

35 Demonstratives .037 (.011) .026 (.018) .0688

36 Prepositions .103 (.035) .088 (.032) .3086

37 Adjectives .034 (.013) .030 (.017) .5577

38 Adverbs .083 (.017) .069 (.030) .1586

39 Pronoun ratio .508 (.094) .476 (.095) .4313

40 Function words .467 (.033) .478 (.045) .5254

41 Frequency 5.021 (.105) 4.962 (.118) .2139

42 Noun frequency 3.861 (.231) 3.451 (.317) .0014 **

43 Verb frequency 4.614 (.282) 4.608 (.237) .9557

44 Imageability 477.721 (44.025) 509.119 (40.552) .0916

45 Noun imageability 560.959 (43.450) 579.078 (23.669) .2527

46 Verb imageability 416.117 (37.506) 404.073 (49.196) .5036

47 Age of acquisition 258.881 (21.629) 245.879 (14.862) .1211

48 Noun age of acquisition 254.246 (33.465) 235.038 (20.937) .1309

49 Verb age of acquisition 260.465 (27.603) 264.400 (13.607) .6845

50 Familiarity 607.358 (12.903) 573.625 (18.408) .0000 **

51 Noun familiarity 604.910 (20.954) 561.110 (24.689) .0001 **

52 Verb familiarity 605.526 (19.573) 589.838 (19.242) .0659

53 Type-token ratio .405 (.118) .421 (.046) .6828

54 Mean word length 3.735 (.186) 3.769 (.136) .6341

55 Fillers .053 (.067) .083 (.080) .3290

56 Um .007 (.008) .025 (.027) .0335 *

57 Uh .046 (.061) .058 (.084) .6864

58 Speech rate 104.048 (35.149) 78.468 (27.978) .0736
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cases, these are the same features which were found to be

significant and included in the classifiers above. We expect

there to be some discrepancies, as the individual t-tests do

not take into account correlations between variables, while
Please cite this article in press as: Fraser KC, et al., Automated
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the PLS analysis does. Selectivity ratios for influential

features may be reduced in the presence of a second feature

highly correlated with the first, as the two share variance

that predicts group membership.
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Table 7eAccuracies for the three classifiers, compared to
a simple baseline classifier.

SD versus
control

PNFA versus
control

SD versus
PNFA

Baseline .615 .533 .583

Naı̈ve Bayes .923 .900 .792

Logistic

regression

.962 .933 .708

SVM 1.00 .967 .750

a SD vs control
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Fig. 1 e PLS analysis of the data, with each point

representing one transcript. Transcriptions for the

participants labelled in (c) are provided in the Appendix.
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4. Discussion

In this study we set out to determine whether computational

methods could reliably distinguish between healthy controls

and patients with PPA, as well as differentiate the two patient

groups, based upon samples of narrative speech. We found

that even with relatively short samples of narrative speech

(i.e., for machine learning purposes), classifiers were able to

achieve this goal with a high degree of accuracy. In addition,

we wished to determine how the automatically extracted

features compared to previous findings in the literature with

respect to these two subtypes. In general, we found that our

procedure identified many of the same features that have

been previously noted to differ between groups (e.g., word

frequency, speech rate, demonstrative pronouns), with some

surprising findings (e.g., the lack of syntactic features as

differentiating ones) and some new features identified (e.g.,

adverbs and word length). We discuss these issues below.

4.1. Classification

Our results show that machine learning classifiers can distin-

guish between controls and each of the two patient groups, SD

and PNFA, with a high degree of accuracy. Although less accu-

rate than in comparison to controls, they also distinguish well

between the two patient groups. The performance of the clas-

sifiers varied across the three tasks: SVM achieved the highest

accuracy for SDversus controls and PNFAversus controls,while

naı̈ve Bayes performed best for SD versus PNFA. Logistic

regression achieved thesecond-highest accuracy in thefirst two

cases,butwastheworstatdistinguishingbetweenSDandPNFA.

We also note the relatively high accuracy of naı̈ve Bayes despite

obvious correlations between the features in some cases.

4.2. Features that distinguished the groups and
comparison with previous findings on PPA

The PLS analysis identified the features that best predicted

group membership. The selectivity ratios, together with the

group means on each feature, provided valuable information

on the characteristics of narrative speech in each group.

The features that best distinguished the SD patients from

controls were higher familiarity and frequency of words

(particularly nouns), increased production of adverbs and

demonstratives, production of shorter clauses, and reduced

word length and speech rate. The familiarity of the words

produced, which was greater in SD, was the feature with the

highest selectivity ratio. The familiarity of nouns in particular
Please cite this article in press as: Fraser KC, et al., Automated
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was also ranked highly. The finding that the SD patients

produced words with higher familiarity ratings than controls

is consistent with findings from studies of naming (Lambon

Ralph et al., 1998; Woollams et al., 2008), but to the best of
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our knowledge has not been previously documented in con-

nected speech. It also fits with previous research demon-

strating that SD patients’ semantic knowledge is best

preserved for familiar items (Funnel, 1996; Simons et al., 2001).
Please cite this article in press as: Fraser KC, et al., Automated
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The SD patients tended to use higher frequency nouns

than the controls, and this feature had the second highest

selectivity ratio. Overall word frequency also distinguished

well between the groups and these findings demonstrate the
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robust effect of frequency on language production in SD. It has

been established that frequency has a pervasive influence on

naming in SD (Lambon Ralph et al., 1998; Woollams et al.,

2008), but this influence is less well documented in con-

nected speech. Two studies which used picture description

tasks observed that SD patients produced higher frequency

nouns than controls (Bird et al., 2000; Wilson et al., 2010).

Meteyard and Patterson (2009) did not evaluate frequency per

se, but their analysis of structured interviews showed that

patients with SD tended to replace content words with higher

frequency (and less specific) words. We have found that

patients with SD use higher frequency words overall, and that

nouns are particularly affected.

Familiarity and frequency, the features with the highest

selectivity ratios, are correlated with each other (Tanaka-Ishii

and Terada, 2011). It is interesting to note that individually

they would have had even higher selectivity ratios if only one

of the features had been included in the model.

The SD patients produced more demonstratives and

adverbs than controls, and this distinguished the groups. The

increased reliance on demonstrative pronouns, which

comprise the words these, those, this, that, here, and there, may

reflect the tendency of SD patients to make substitutions of

less specific words (Meteyard and Patterson, 2009) and use

vague terms (Kavé et al., 2007; Patterson and MacDonald,

2006); the automated analysis techniques used here did not

enable us to evaluate whether these terms had clear referents

when used. Previous studies have documented over-reliance

on pronouns in SD (Kavé et al., 2007; Meteyard and

Patterson, 2009; Patterson and MacDonald, 2006; Wilson

et al., 2010), but to the best of our knowledge this is the first

examination specifically of demonstrative pronouns. The

increased use of adverbs may at least partially reflect that fact

that some participants in this patient group started many of

the sentences in their narratives with then or so, sometimes

preceded by and. Because then and so are classified as adverbs

(describing when or why something happened), this inflates

the count on these words. Repeated use of the same syntactic

structure is compatible with the idea that SD patients are

unable to produce the full range of syntactic structures

(Benedet et al., 2006), but needs to be investigated further

before firm conclusions can be drawn.

The SD patients produced fewer nouns than the controls,

and reduced noun production accounted for 3 of the features

which had high selectivity ratios (nouns, noun-to-verb

ratio, and noun ratio). Difficulty with production of nouns

is an expected finding. Impaired confrontation naming is

a core diagnostic feature in SD (Gorno-Tempini et al., 2011),

and is expected to lead to corresponding problems with

word-finding in connected speech (see Sajjadi et al., 2012).

Moreover, previous studies have documented reduced

production of nouns in the connected speech of people with

SD (Bird et al., 2000; Ash et al., 2009; Patterson andMacDonald,

2006; Kavé et al., 2007). Bird et al. (2000) contrasted noun and

verb production by SD patients on a picture description task

and provided evidence that production of nouns was more

affected as a result of their lower relative frequency. This is

compatible with the current results in that our SD patients

produced higher frequency, and proportionally fewer, nouns

than controls (and these features had high selectivity ratios).
Please cite this article in press as: Fraser KC, et al., Automated
narrative speech transcripts, Cortex (2013), http://dx.doi.org/10.1
The mean word length for the SD patients was slightly

shorter than for controls, and this feature distinguished well

between the groups. The effect of word length has not been

examined in connected speech. We attribute this small but

significant effect of length to availability of words, rather than

to difficulty with pronouncing long words. Many of the long

words used by controls were used less often by the SD

patients. The most frequently used long word for both groups

was Cinderella, which was used a total of 69 times by the

controls and a total of 17 times by the SD patients (an average

of 4.3 vs 1.7 times per narrative). Other long words that were

used more often by controls than patients include, for

example, slipper which was used 48 times by controls but

never by SD patients, and beautifulwhichwas used 25 times by

controls and 5 times by SD patients (an average of 1.6 versus

.5 times per narrative).

The number, and mean length, of clauses both distin-

guished between the SD and control groups, although the

numerical differences were rather small. The SD patients

producedmore clauses than the controls, but on average their

clauses were shorter. The explanation for this is not clear. It

seems unlikely to be an artefact of the automatic coding, as

the clause counts had high agreement with the human

annotator, even with the sentence-by-sentence comparison.

It may be associated with the reduced production of nouns,

which could result in fewer nouns per clause. In addition,

inspection of the transcriptions indicates that the SD patients

were more likely to produce “filler” comments such as you

know and whatever you call it, which are relatively short clau-

ses. We know of no identical analyses in other studies,

although some have used similar measures: Patterson and

MacDonald (2006) found that SD and controls produced

similar numbers of clauses, while Sajjadi et al. (2012) found

that SD patients produced reduced proportions of syntacti-

cally complex clauses relative to controls (data on simple

clauses were not reported). Further work would be required to

understand the basis and potential significance of the present

finding that SD patients tend to produce shorter, but more,

clauses than controls.

The final feature which distinguished well between the SD

patients and controls was speech rate. As noted in the Intro-

duction, findings with respect to speech rate in SD have been

inconsistent. The slower rate for SD patients may be due to

pauses in speech while searching for a word, and seems

unlikely to reflect amotor speech problem.Wilson et al. (2010)

also documented slower speech rate in SD patients than in

controls, but found that the maximum speech rate (which

they defined as the three most rapidly spoken sequences of

ten or more words) for their patients was normal; they sug-

gested that the slower rate reflected impairment in higher-

level processes, and we concur with this idea.

The features that distinguish SD patients from controls

can largely be attributed to the semantic memory impair-

ment. This seems to be the dominant influence in the

language output of this group, and can account for the

increased reliance on more familiar and frequent words, use

of general terms such as demonstratives and adverbs like

then and so, reduced production of nouns, and pauses for

word-finding (which could explain the relatively slower

speech rate).
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The features that distinguished the PNFA patients from

controls were reduced speech rate and word length, as well as

higher frequency of words and of verbs in particular. Not

surprisingly, slower speech rate was the feature that best

distinguished PNFA from controls. A reduced rate of speech is

one of the diagnostic features (Gorno-Tempini et al., 2004),

and has been documented in other studies of connected

speech production in PNFA (Ash et al., 2010, 2006; Graham

et al., 2004; Knibb et al., 2009; Thompson et al., 2012).

The PNFA patients tended to produce shorter words than

controls, and this feature had a high selectivity ratio.

Increased word length of stimulus items has been shown to

deleteriously affect naming, reading and repetition in PNFA

(Croot et al., 1998; Graham et al., 2004), and this effect could

arise from phonological ormotor speech impairment(s). In the

case of narrative speech, it could also arise from word-finding

difficulties, which would affect availability of words (as sug-

gested for the SD patients). The current analyses do not

inform the choice of explanation, and indeed the use of

shorter words could arise from different causes in different

individuals.

Like the SD patients, the PNFA patients were distinguished

from controls by overall word frequency. For the PNFA

patients (versus controls), verb frequency also had a high

selectivity ratio. Once again we have a situation where two

correlated features both have high selectivity ratios, suggest-

ing that each would have had an even higher ratio if they had

been included in the model without the other. Studies have

shown that naming of verbs/actions in PNFA is more impaired

than naming of nouns/objects (Cotelli et al., 2006; Hillis et al.,

2004). Although we do not know of a study which assesses the

effect of frequency on naming of verbs in PNFA, our results

suggest that production of higher frequency verbs is better

preserved. The finding that the PNFA patients produce higher

frequency verbs than the controls cannot be due to excessive

use of light verbs (which tend to be high in frequency),

because the t-tests indicate no difference between PNFA and

controls in use of light verbs. Despite this apparent difficulty

with verb production, the PNFA patients in this study

produced nouns and verbs in normal proportions as demon-

strated by equivalent noun-to-verb ratios for PNFA patients

and controls. An increase in noun-to-verb ratio is taken to

indicate difficulty with verb production, and has been re-

ported in other studies of connected speech in PNFA

(Thompson et al., 1997). Consistent with the current findings,

Graham et al. (2004) also documented normal noun-to-verb

ratios but suggested that the verbs produced by PNFA

patients were less specific than those produced by controls.

The results also yielded interesting findings regarding the

features that distinguished between the two patient groups.

SD patients used nouns which were more frequent and

familiar, and words which were more familiar overall, than

PNFA patients. These features are identical to those that best

discriminated between SD patients and controls, and have the

same rank order with respect to their selectivity ratios. As

noted above, frequency and familiarity are known to affect

naming performance in SD (Woollams et al., 2008; Lambon

Ralph et al., 1998), and clearly these factors affect word-

finding in connected speech as well. The greater impact

(relative to PNFA) of familiarity and frequency upon the
Please cite this article in press as: Fraser KC, et al., Automated
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speech of the SD patientsmay be due to their greater semantic

impairment, or to the fact that they are more anomic than the

PNFA patients (as documented in Table 1).

The final feature that differentiated the two patient groups

was the number of dependent clauses per clause. This indi-

cates that the SD patients produce a proportionally greater

number of clauses which could not form sentences on their

own. In their study of connected speech in SD, Meteyard and

Patterson (2009) documented increased production of

restarts, which they defined as a sentence which was

incomplete and then started again. We did not count restarts,

but inspection of the transcriptions reveals that there were

many, and this could account at least partially for the

increased production of incomplete (i.e., dependent) clauses.

The finding that production of dependent clauses was greater

in SD than PPA should, however, be regarded as tentative as

there is uncertainty (noted above) in the ability of the system

to properly identify dependent clauses. Furtherworkwould be

needed to clarify the reliability and interpretation of this

result.

Some surprising findings also emerged. While it is well

documented that PNFA patients tend to have sparse output,

producing fewer words than either controls or SD patients

(Graham et al., 2004; Wilson et al., 2010), total word count did

not emerge as an important feature distinguishing the groups

in the PLS plots. It is also surprising that so few of the features

measuring syntactic complexity emerged as main dis-

tinguishing features, particularly for the PNFA group. This

may have occurred because, as noted in the Methods section,

not all of the PNFA patients exhibited agrammatism. Alter-

natively, it may be due to the way the syntactic analyses were

performed. As mentioned in Section 2.3, Lu’s syntactic

complexity analyzer was originally designed to be applied to

written documents by second-language learners, and so may

not be ideally suited to the analysis of aphasic speech. Our

goal was to test its performance in this domain, and although

we found that it was effective in detecting clause boundaries,

and returned counts that were highly correlated with manual

counts, it did encounter particular difficulty in labelling clau-

ses as dependent or independent. In part, this may be attrib-

utable to the uncertainty about sentence boundaries as

determined by a human transcriber, as opposed to quantita-

tive linguistic criteria. We note that sentence boundaries are

frequently ambiguous in natural speech, aphasic or other-

wise. Further methodological development of automated

analysis for syntactic complexity is a promising avenue for

future research, particularly if it can be made to operate

mainly within rather than across clause boundaries.

To summarize, the automated analyses indicated that SD

patients showed an over-reliance on words which were high

in familiarity and/or frequency, and this applied particularly

to nouns. They also produced proportionally fewer nouns, but

more demonstratives (e.g., this, these) and more adverbs (e.g.,

so, then). In contrast, the speech of the PNFA patients was

characterized by reduced speech rate and word length; this

group also tended to use words which were high in frequency

and this applied particularly to verbs. Verbs were, however,

produced in normal proportions. The SD patients were

distinguished from PNFA by their relatively greater use of

words with higher familiarity and frequency.
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4.3. Future directions

In this work, we have demonstrated that fairly high classifica-

tionaccuraciescanbeachievedthroughautomatedquantitative

analysis of speech samples, with relatively little human inter-

vention requiredexcept for transcription.Given that procedures

already exist for diagnosing PPA (Gorno-Tempini et al., 2011),

one might ask what added value there is in developing an

automated classification approach based on naturalistic speech

alone. In fact, a diagnostic classifier provides a starting point for

a much more extensive use of speech samples in applications

beyond diagnosis. The ultimate goal of research into language

disorders is todevelop techniquesto interveneeffectively, either

to restore function, or to slow its decline. Many diagnostic tests

are not generally well suited for longitudinal assessment of

language function, due to practice and familiarity effects.

Furthermore, a patient’s speechmay change in significantways

that are not necessarily reflected by formal tests, but can be

nonetheless captured and quantified by linguistic analysis. The

automated measurement of many parameters provides the

maximum opportunity to reveal significant changes across

time, and the use of these parameters in classification provides

a means to decide which parameters are most indicative of the

function of underlying language systems.

We focused here on differential diagnosis between SD and

PNFA, due to their association with degeneration in distinct

brain regions.We consider SD and PNFA to be goodmodels for

studying dysfunction in the ventral and dorsal language

networks, respectively. However, the same methods can be

applied to tracking language dysfunction in a variety of neural

disorders, including AD. Language symptoms are relatively

common in AD, but highly variable across individuals (Taler

and Phillips, 2008). This high variability is presumably due to

differential spread of cortical pathology (Stopford et al., 2008),

in contrast to themedial temporal lobe pathology that is more

universal in AD and underlies the disease’s characteristic

episodicmemory impairment. As greater cortical involvement

accompanies the progression of AD (Singh et al., 2006),

quantitative analyses of speech content may provide a sensi-

tive measure of disease severity, useful for the evaluation of

interventions designed to slow the progression. Similarly, this

analysis may be useful in contexts where the goal is to bring

about improvement rather than slow decline, such as in

rehabilitation of post-stroke aphasia. Although narrative

speech is widely regarded as a rich and ecologically valid

source of information about linguistic function, the labour-

intensive nature of its analysis has precluded its widespread

adoption in research and clinical practice. Therefore, the

analysis methods presented here, which can be fully auto-

mated beyond the transcription stage, may offer a basis for

routine incorporation of narrative speech into cognitive

evaluation for a wide range of disorders beyond PPA.

Longitudinal evaluation of language decline will require

extensions to our present approach of binary classification.

The binary classifiers presented here are aimed at categoriz-

ing an individual patient in an all-or-none fashion, and the

metric of their success at present is the rate at which their

classification matches the clinical diagnosis. However, some

classifiers (e.g., naı̈ve Bayes and logistic regression, out of the
Please cite this article in press as: Fraser KC, et al., Automated
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ones considered here) output a probabilistic estimate of class

membership for each individual case. Such values could be

tracked for an individual over time, based on a classifier

trained on a static set of observations in different patients.

Alternatively, instead of classification, one could use machine

learning techniques based on regression, which seek to map

continuous input variables to continuous output variables.

Many such techniques are available, including ridge regres-

sion (Hoerl and Kennard, 1970), support vector regression, and

relevance vector regression (Tipping, 2001). These techniques

have become popular in neuroimaging, as investigators have

sought to reveal relationships between continuous behav-

ioural variables and multi-voxel measures of brain structure

or activity (for review, see Cohen et al., 2011). In the case of

PPA, these continuous coding techniques could be used to

determine quantitative relationships between aspects of

speech and patterns of brain atrophy or hypoactivity. As large

datasets containing both speech data and neuroimaging

measures from the same participants become available, we

expect these machine learning methods to play an increas-

ingly large role in elucidating the neural bases of language

processing in both health and disease.
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Appendix A. Sample transcriptions

Transcriptionsof fourparticipants’ narrativesof theCinderella

story are provided below. The transcriptions are numbered to

reflect their location on the plot in Fig. 1c. Transcriptions 1 and

2 are from the participants in each patient group who were

closest to each other in the PLS analysis comparing SD versus

NFPA; their proximity in the PLS plot suggests that they share

somesimilarities despite belonging todifferentpatient groups.

Examples 3 and 4 were located on opposite sides of the plot,

which suggests they may be more typical examples of SD and

PNFA speech, respectively.

The following annotations were used (although all anno-

tations are removed before computational analysis, as are

commas):
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(hhh) laughter, exhalation pulse

: elongated vowel/consonant

(X) X represents length of pause in seconds

[###] unintelligible

((text)) gloss/transcriber comment

/text/ phonological transcription
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Transcription 1 (SD, patient 29). Speech rate: 116.3 words
per minute.

Well she was a kind of, a uh not a woman there, she was a bad

woman. She had a couple of kids, women, girls, and he she

had her too. And she uh, she’s uh had to do all thework, do the

washing and uh everyday she’s at work and they don’t have to

work at all. And she used to go around tell her to do everything

for them. So anyway uh [###] sort on it because uh then they

came about this uh dance, and uh shewouldn’t let her go. Two

girls would go, but not her. But anyway, she got a fairy. Found

a fairy a woman talked to her and that. And she got sitting up

and they said, she got him to there with all dressed up to, uh I

don’t know the mice now, they helped her a lot apparently,

but I don’t know that too much about it, but they did. And she

got real nice, she got dressed up she looked for every the stuff

and got to the feet, the feet yeah the the shoes. And she went

there with it, and when he went in, she uh uh what happened

she drove ahead of it, and ran out, go away, and she dropped

the (1) shoe. So anyway, this fellow came looking out, found

you know, one of these fair fellows the big fellows, he went for

the prince. [###] And he had to find that woman, I want to find

that, and then he get this, he got the leg, the foot, the shoe. So

he went over to everybody and when he found her, just when

she found out and and and the prince took her away.

Transcription 2 (PNFA, patient 41). Speech rate: 110.5
words per minute.

OK. So, Cinderella, one day she ended up in, themiddle of, um,

in the in the in the, inside. So she was, she went in: to this

house. And, sh: what basically what she had to dowas she had

to go down on her hands and knees and she had to clean. That

was her job, um and, she also had, two or three, um, three

girls, where they didn’t have to do anything, which was

interesting. And they were all excited about going to the ball.

Um:, in the meantime, she, she also has a, grandmother, who

looks af-, who looked after her. And then finally, she did

actually, well first of all, she realized that the three people,

they were her sisters as such, and then there was this other

lady who basically was not a nice person at all. And: so that

went on for quite a while, so they were, it was all about them

and not about her, and then she actually met, her, beautiful

person.

Transcription 3 (SD, patient 2). Speech rate: 101.5 words
per minute.

Well,Cinderella, um(2) cametoum, theco-n- I gon’ saycottage

but it’s not a cottage obviously it’s ammquite a p- a place. And

um, sheuh initially is not th:ought of toomuchanduh the little

animals sort of thing are b- uh down there and uh and as
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a matter of fact uh they uh come to like her as a matter of fact

too. And um she uh is uh going there and these little things

are going along and uh the uh older lady and so on uh not th-

that g- good to her ah I I suspect. And then there’s a shellow

((fellow)) who uh looks quite nice and he thinks that she looks

quite nice and it ends up to some degreewhen they eventually

getmarried.That’s all I can thinkof right there, but sorry. (2)Uh

(2) and there’s all all s- uh sort of little little things that are

running around and uh and that but part of the thing but she

doesn’t br- b- bother them but she rather likes that the

gentleman who is probably one of the king’s dau- s- s- sons.

And away they go. Anyways that’s (hhh) just looking at it

slightly like that. I’m sure I missed a lot of things but never-

theless that’s positive and I’m glad she’s fi- having fun. And so

are the (hhh) little things too. Anyways, there.
Transcription 4 (PNFA, patient 31). Speech rate: 54.6 words
per minute.

Okay. Um, Cinderella, they have uh a stepfathers and the uh

godmother or whatever. Um (4) uh um (11) I, I guess they’re

going to go to the ball and then um all thosemice they’re going

to do the dress (hhh) and um (3), and u:m oh the pumpkin

(hhh) and uh (3) well the godmother will do the pumpkin and

um (4), and then she’ll go to the ball (3) and then (4) he has, he

has a (3) him (hhh) him um anyways, so anyways twelve

o’clock she’ll go down the stairs. And she has a glass slipper,

but it’s, it’s not it’s just in the stairs, so anyways she um she

had a pumpkin. She went (2) um went to her castle again and

then um (3) and then they had a glass slipper for her and then:

the prince and the Cinderella.
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