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Abstract

We use computational techniques to ex-
tract a large number of different features
from the narrative speech of individuals
with primary progressive aphasia (PPA).
We examine several different types of fea-
tures, including part-of-speech, complex-
ity, context-free grammar, fluency, psy-
cholinguistic, vocabulary richness, and
acoustic, and discuss the circumstances
under which they can be extracted. We
consider the task of training a machine
learning classifier to determine whether a
participant is a control, or has the fluent or
nonfluent variant of PPA. We first evaluate
the individual feature sets on their classifi-
cation accuracy, then perform an ablation
study to determine the optimal combina-
tion of feature sets. Finally, we rank the
features in four practical scenarios: given
audio data only, given unsegmented tran-
scripts only, given segmented transcripts
only, and given both audio and segmented
transcripts. We find that psycholinguis-
tic features are highly discriminative in
most cases, and that acoustic, context-free
grammar, and part-of-speech features can
also be important in some circumstances.

1 Introduction

In some types of dementia, such as primary pro-
gressive aphasia, language deficit is a core symp-
tom, and the analysis of narrative or conversa-
tional speech is important for assessing the extent
of an individual’s language impairment. Analy-
sis of connected speech has been limited in the
past because it is time-consuming and requires ex-
pert annotation. However, studies have shown that
it is possible for machine learning classifiers to
achieve high accuracy on some diagnostic tasks

when trained on features which were automati-
cally extracted from speech transcripts.

In this paper, we summarize previous research
on the automatic analysis of speech samples from
individuals with dementia, focusing in particular
on primary progressive aphasia. We discuss in de-
tail different types of features and compare their
effectiveness in the classification task. We sug-
gest some benefits and drawbacks of these differ-
ent features. We also examine the interactions be-
tween different feature sets, and discuss the rela-
tive importance of individual features across fea-
ture sets. Because we examine a large number
of features on a relatively small data set, we em-
phasize that this work is exploratory in nature;
nonetheless, our results are consistent with, and
extend, previous work in the field.

2 Background

In recent years, there has been growing interest in
using computer techniques to automatically detect
dementia from speech and language features de-
rived from a sample of narrative speech. Some re-
searchers have explored ways to use methods such
as part-of-speech tagging, statistical parsing, and
speech signal analysis to detect disorders such as
dementia of the Alzheimer’s type (DAT) (Bucks et
al., 2000; Singh et al., 2001; Thomas et al., 2005;
Jarrold et al., 2010) and mild cognitive impairment
(MCI) (Roark et al., 2011).

Here, we focus on a type of dementia called
primary progressive aphasia (PPA). PPA is a sub-
type of frontotemporal dementia (FTD) which is
characterized by progressive language impairment
without other notable cognitive impairment. There
are three subtypes of PPA: semantic dementia
(SD), progressive nonfluent aphasia (PNFA), and
logopenic progressive aphasia (LPA). SD, some-
times called “fluent” progressive aphasia, is typi-
cally marked by fluent but empty speech, anomia,



deficits in comprehension, and spared grammar
and syntax (Gorno-Tempini et al., 2011). In
contrast, PNFA is characterized by halting and
sometimes agrammatic speech, reduced syntac-
tic complexity, word-finding difficulties, and rela-
tively spared single-word comprehension (Gorno-
Tempini et al., 2011). The third subtype, LPA, is
characterized by slow speech and frequent word
finding difficulties; this subtype is not included in
the current analysis.

Although clear diagnostic criteria for PPA have
been established (Gorno-Tempini et al., 2011),
there is no one test which can provide a diagno-
sis. Classification of PPA into subtypes requires
evaluation of spoken output, as well as neuropsy-
chological assessment and brain imaging. Quali-
tative evaluation of speech often can be done accu-
rately by clinicians or researchers, but the ability
to do this evaluation can require years of training
and experience. Some researchers have performed
detailed quantitative characterization of speech in
PPA, but the precise characteristics of speech are
not yet fully understood and this process is too
time-consuming for most clinicians.

Peintner et al. (2008) conducted one of the earli-
est automatic analyses of speech from individuals
with FTD, including SD and PNFA as well as a
behavioural variant. They considered psycholin-
guistic features as well as phoneme duration fea-
tures extracted from the audio samples. Although
they were fairly successful in classifying partici-
pants according to their subtype, they did not re-
port many details regarding the specific features
which were useful or how those features might re-
flect the underlying impairment of the speakers.

Pakhomov et al. (2010a) examined FTD speech
from an information-theoretic approach. They
constructed a language model of healthy control
speech, and then calculated the perplexity and out-
of-vocabulary rate for each of the patient groups
relative to that model. In another study, Pakhomov
et al. (2010b) extracted speech and language fea-
tures from samples of FTD speech. In a principal
components analysis, they discovered four com-
ponents which accounted for most of the variance
in their data: speech length, hesitancy, empty con-
tent, and grammaticality. However, they did not
perform any classification experiments.

Fraser et al. (2013a) attempted to classify par-
ticipants as either SD patients, PNFA patients, or
healthy controls using a large number of language

SD
(N = 11)

PNFA
(N = 13)

Control
(N = 16)

Male/Female 8/3 7/6 9/7
Age (yrs) 65.9 (7.1) 64.5 (10.4) 67.8 (8.2)
Education (yrs) 17.5 (5.8) 14.0 (3.5) 16.8 (4.3)

Table 1: Demographic information. Numbers are
given in the form: mean (standard deviation).

features extracted from manually-transcribed tran-
scripts. They distinguished between SD and con-
trol participants with very high accuracy, and were
also successful at distinguishing between PNFA
and control participants. However, their method
did not perform as well on the task of classify-
ing SD vs. PNFA speakers. In subsequent work
(Fraser et al., 2013b), they expanded their feature
set to include acoustic features extracted directly
from the audio file.

3 Methods

3.1 Data
Twenty-four patients with PPA were recruited
through three Toronto memory clinics, and 16 age-
and education-matched healthy controls were re-
cruited through a volunteer pool. All participants
were native speakers of English, or had completed
some of their education in English. Exclusion cri-
teria included a known history of drug or alcohol
abuse and a history of neurological or major psy-
chiatric illness. Each patient was diagnosed by a
behavioural neurologist and all met current crite-
ria for PPA (Gorno-Tempini et al., 2011). Table 1
shows demographic information for each group.

To elicit a sample of narrative speech, partici-
pants were asked to tell the well-known story of
Cinderella. They were given a wordless picture
book to remind them of the story; then the book
was removed and they were asked to tell the story
in their own words. This procedure, described in
full by Saffran et al. (1989), is commonly used in
studies of connected speech in aphasia.

The narrative samples were transcribed by
trained research assistants. The transcriptions in-
clude filled pauses, repetitions, and false starts,
and were annotated with the total speech time.
Sentence boundaries were marked according to se-
mantic, syntactic, and prosodic cues.

3.2 Classification framework
Given the audio files and transcripts, we can then
calculate our features (described in detail below)



and use them to train a support vector machine
(SVM) classifier. We use a leave-one-out cross-
validation framework and report the average ac-
curacy (i.e. proportion of correctly classified in-
stances) across folds. We optimize the complexity
parameter and the kernel type in a nested cross-
validation loop over the training set. For compar-
ison, we also tested a naı̈ve Bayes classifier; how-
ever we found that the results were consistently
poorer and we do not report them here.

3.3 Features

In the following sections we will describe each of
the feature sets that we use and explain how the
features are computed, and we will discuss some
of the potential advantages and disadvantages as-
sociated with each set. In particular, we discuss
what types of data are necessary for the extraction
of these features. The data types are: unsegmented
transcripts, segmented transcripts, and audio.

3.3.1 Part-of-speech features
Different categories of words may be selectively
impaired in different types of dementia. In PPA,
individuals with SD tend to be more impaired
with respect to nouns than verbs, and may replace
nouns with pronouns or circumlocutory phrases.
In contrast, individuals with PNFA may have more
difficulty with verbs and may even demonstrate
agrammatism, which can result in the omission
of grammatical morphemes and function words.
Thus, it is often useful to compare the relative fre-
quencies with which words representing the differ-
ent parts-of-speech (POS) are produced in a sam-
ple, as in Table 2. Similar features have been re-
ported in computational studies of MCI (Roark et
al., 2011), FTD (Pakhomov et al., 2010b), and
DAT (Bucks et al., 2000). Numerous POS taggers
exist, although we use the Stanford tagger here
(Toutanova et al., 2003).

3.3.2 Complexity features
Changes in linguistic complexity may accompany
the onset of dementia, although some studies have
found a decrease in complexity (e.g. Kemper et al.
(2001)) while others have found an increase (e.g.
Le et al. (2011)).

The features in Table 3 vary in their ease of
computation. Mean word length can be calculated
from an unsegmented transcript, while mean sen-
tence length requires only sentence boundary seg-
mentation. Other measures, such as Yngve depth

Nouns # nouns / # words
Verbs # verbs / # words
Noun-verb ratio # nouns / # verbs
Noun ratio # nouns / (# nouns + # verbs)
Inflected verbs # inflected verbs / # verbs
Determiners # determiners / # words
Demonstratives # demonstratives / # words
Prepositions # prepositions / # words
Adjectives # adjectives / # words
Adverbs # adverbs / # words
Pronoun ratio # pronouns / (# nouns + # pronouns)
Function words # function words / # words
Interjections # interjections / # words

Table 2: Part-of-speech features.

Max depth maximum Yngve depth of each parse tree,
averaged over all sentences

Mean depth mean Yngve depth of each node in the
parse tree, averaged over all sentences

Total depth total sum of the Yngve depths of each node
in the parse tree, averaged over all sentences

Tree height height of each parse tree, averaged over
all sentences

MLS mean length of sentence
MLC mean length of clause
MLT mean length of T-unit
Subordinate conjunctions number of subordinate

conjunctions
Coordinate conjunctions number of coordinate con-

junctions
Subordinate:coordinate ratio ratio of number of sub-

ordinate conjunctions to number of coordinate
conjunctions

Mean word length mean length, in letters, of each
word in the sample

Table 3: Complexity features.

(Yngve, 1960), require full parses of the sentences
(we use the Stanford parser (Klein and Manning,
2003) and Lu’s Syntactic Complexity Analyzer
(Lu, 2010)).

3.3.3 CFG features
Although many of the complexity features above
are derived from parse trees, in this section we
present a set of features that take into account
the context-free grammar (CFG) labels on each
of the nodes. CFG features have been previously
used to assess the grammaticality of sentences in
an artificial error corpus (Wong and Dras, 2010)
and to distinguish human from machine transla-
tions (Chae and Nenkova, 2009). However, this
is the first time such features have been applied to
speech from participants with dementia.

In Table 4 we list a few examples of our 134
CFG features, as well as the three phrase-level fea-
tures (calculated for noun phrases, verb phrases,
and prepositional phrases).



NP → NNS Noun phrases consisting of only a plural
noun

VP → VBN PP Verb phrases consisting of a past-
participle verb and a prepositional phrase

ROOT→ INTJ Trees consisting of only an interjec-
tion

Phrase type proportion Length of each phrase type
(noun phrase, verb phrase, or prepositional
phrase), divided by total narrative length

Average phrase type length Total number of words in
a phrase type, divided by the number of phrases
of that type

Phrase type rate Number of phrases of a given type,
divided by total narrative length

Table 4: CFG features.

Um Frequency of filled pause um
Uh Frequency of filled pause uh
NID Frequency of words Not In Dictionary (e.g. para-

phasias, neologisms)
Verbal rate Number of words per minute
Total words Total number of words produced

Table 5: Fluency features.

3.3.4 Fluency features
Park et al. (2011) found that listeners’ judgements
of fluency were affected by a number of different
variables, and the three most discriminative fea-
tures were “speech rate, speech productivity, and
audible struggle.” For our list of fluency features
(Table 5), we include only those features which
could be extracted from the transcripts alone (as-
suming the total speech time is given). We count
pauses filled by um and uh separately, as research
has suggested that they may indicate different cog-
nitive processes (Clark and Fox Tree, 2002).

The number of words in a sample could be eas-
ily generated using the word count feature in most
text-editing software (although we first exclude
filled pauses and NID tokens), and the verbal rate
can subsequently be calculated directly. The other
three features are easily calculated using string
matching and an electronic dictionary.

3.3.5 Psycholinguistic features
Some types of dementia are characterized by im-
pairments in semantic access. Such impairments
may be sensitive to psycholinguistic features such
as lexical frequency, familiarity, imageability, and
age of acquisition (Table 6). We use the SUBTL
frequency norms (Brysbaert and New, 2009) and
the combined Bristol and Gilhooly-Logie norms
(Stadthagen-Gonzalez and Davis, 2006; Gilhooly
and Logie, 1980) for familiarity, imageability, and

Frequency Frequency with which a word occurs in
some corpus of natural language

Familiarity Subjective rating of how familiar a word
seems

Imageability Subjective rating of how easily a word
generates an image in the mind

Age of acquisition Subjective rating of how old a per-
son is when they first learn that word

Light verbs Number of occurrences of be, have, come,
go, give, take, make, do, get, move, and put,
normalized by total number of verbs

Table 6: Psycholinguistic features.

age of acquisition (see Table 6). We compute the
average of each of these measures for all content
words, as well as for nouns and verbs separately.

Another measure that fits into this category is
the frequency of occurrence of light verbs, which
an impaired speaker may use to replace a more
specific verb. We use the same list of light verbs
as Breedin et al. (1998), given in Table 6.

One challenge associated with psycholinguis-
tic features is finding norms which provide ade-
quate coverage for the given data. Fraser et al.
(2013a) reported that the SUBTL frequency norms
had a coverage of above 90% on their data, but the
Bristol-Gilhooly-Logie norms had a coverage of
only around 30%.

3.3.6 Vocabulary richness features
Individuals experiencing semantic difficulty may
use a limited range of vocabulary. We can mea-
sure the vocabulary richness or lexical diversity
of a narrative sample using a number of different
metrics (see Table 7). Type-token ratio has been
a popular choice, perhaps due to its simplicity;
however it is sensitive to the length of the sample.
Bucks et al. (2000) were the first to apply Honoré’s
statistic and Brunét’s index to the study of demen-
tia, and found significant differences between in-
dividuals with DAT and healthy controls. Cov-
ington and McFall (2010) proposed a new mea-
sure called the moving-average type-token ratio
(MATTR), which is independent of text length.
This feature was later applied to aphasic speech in
a study by Fergadiotis and Wright (2011), and was
found to be one of the most unbiased indicators of
lexical diversity in impaired speakers.

The measures given in Table 7 are easily com-
puted from their respective formulae. In this work,
we lemmatize each word using NLTK (Bird et
al., 2009) before calculating the features. For
MATTR, we consider w = 10,20,30,40,50.



Honoré’s statistic NV−0.165
/ where V is the number of

word types and N is the number of word tokens.
Brunét’s index 100logN/(1−V1/V ) where V1 is the

number of words used only once, V is the total
number of word types, and N is the number of
word tokens.

Type-token ratio (TTR) V/N where V is the num-
ber of word types and N is the number of word
tokens.

Moving-average type-token ratio (MATTRw) TTR
calculated over a moving window of size w,
and averaged over all windows.

Table 7: Vocabulary richness features.

3.3.7 Acoustic features
What we call acoustic features are extracted di-
rectly from the audio file. We consider the fea-
tures given in Table 8. Acoustic features have been
shown to be useful when automatically detecting
conditions such as Parkinson’s disease, in which
changes in speech are common (Little et al., 2009;
Tsanas et al., 2012). Acoustic features have also
been examined in studies of DAT (Meilán et al.,
2014), FTD (Pakhomov et al., 2010b), and PPA
(Fraser et al., 2013b, whose software we use here).

An obvious benefit to acoustic features is that
they do not require a transcription, and can be cal-
culated immediately given an audio sample. The
corresponding drawback is that they tell us noth-
ing about the linguistic content of the narrative.

4 Experiments

We report the results of three experiments explor-
ing the discriminative power of the different fea-
tures. We first compare the classification accura-
cies using each individual feature set. We then per-
form an ablation study to determine which com-
bination of feature sets leads to the highest clas-
sification accuracy. We also look at individual
features across sets and discuss which ones are
the most discriminative, particularly in situations
where data might be limited.

4.1 Individual comparison of accuracy by set

The accuracies which result from using each fea-
ture set individually are given in Table 9. The
highest accuracy across the three tasks is achieved
in distinguishing SD participants from controls.
An accuracy of .963 can be achieved using all
the features together, or using the psycholinguis-
tic or POS features alone. This is consistent with
the semantic impairments that are observed in SD.

Total duration of speech Total length of all non-silent
segments

Phonation rate Total duration of speech / total dura-
tion of the sample (including pauses)

Mean pause duration Mean length of pauses > 0.15
ms

Short pause count # Pauses > 0.15 ms and < 0.4 ms
Long pause count # Pauses > 0.4 ms
Pause:word ratio Ratio of silent segments longer than

150 ms to non-silent segments
F0:3 mean Mean of the fundamental frequency and the

first three formant frequencies
F0:3 variance Variance of the fundamental frequency

and the first three formant frequencies
Mean instantaneous power Measure related to the

loudness of the signal
Mean 1st ACF Mean first autocorrelation function
Max 1st ACF Maximum first autocorrelation function
Skewness Measure of lack of symmetry, associated

with tense or creaky voice
Kurtosis Measure of the peakedness of the signal
ZCR Zero-crossing rate, can be used to distinguish

between voiced and unvoiced regions
MRPDE Mean recurrence period density entropy, a

measure of periodicity
Jitter Measure of the short-term variation in the pitch

(frequency) of a voice
Shimmer Measure of the short-term variation in the

loudness (amplitude) of a voice

Table 8: Acoustic features.

The measures of vocabulary richness do not distin-
guish between the SD and control groups, suggest-
ing it is the words themselves, and not the number
of different words being used, that is important.

In the case of PNFA participants vs. controls,
we find that the highest accuracy is achieved us-
ing all the features, and the second highest by us-
ing only acoustic features. This is not surprising,
considering that the acoustic features include mea-
sures of pausing and phonation rate, which can
detect the characteristic halting speech of PNFA.
The third best accuracy is achieved using the flu-
ency features, which also fits with this explana-
tion. However, we might have expected that the
complexity and CFG features would be more sen-
sitive to the grammatical impairments of PNFA.

Finally, the best accuracy for SD vs. PNFA
is lower than in the previous two cases, and is
achieved using only CFG features. This sug-
gests that there are some grammatical construc-
tions which occur with different frequencies in
the two groups. These differences do not appear
to be captured by the complexity features, which
could explain why Fraser et al. (2013a) did not find
syntactic differences between the SD and PNFA
groups. Interestingly, the results using CFG fea-



Feature set SD vs.
controls

PNFA vs.
controls

SD vs.
PNFA

All .963 .931 .708
Acoustic .778 .862 .167
Psycholinguistic .963 .724 .708
POS .963 .690 .375
Complexity .852 .621 .667
Fluency .667 .828 .500
Vocab. richness .481 .586 .583
CFG .630 .690 .792

Table 9: Classification accuracies for each feature
set individually using a SVM classifier. Bold indi-
cates the highest accuracy for each task.

tures are actually higher than the results using all
features. This demonstrates that classifier perfor-
mance can be adversely affected by the presence
of irrelevant features, especially in small data sets.

4.2 Combining feature sets

In the previous section we examined the feature
sets individually; however, one type of feature
may complement the information contained in an-
other feature set, or it may contain redundant in-
formation. To examine the interactions between
the feature sets, we perform an ablation study.
Starting with all the features, we remove each fea-
ture set one at a time and measure the accuracy
of the classifier. The feature set whose removal
causes the smallest decrease in accuracy is then re-
moved permanently from the experiment, the rea-
soning being that the most important feature sets
will cause the greatest decrease in accuracy when
removed. In some cases, we observe that the clas-
sification accuracy actually increases when a set
is removed, which suggests that those features are
not relevant to the classification (at least in combi-
nation with the other sets). In the case of a tie, we
remove the feature set whose individual classifica-
tion accuracy on that task is lowest. The procedure
is then repeated on the remaining feature sets, con-
tinuing until only one set remains.

The results for SD vs. controls are given in Ta-
ble 10a. The best result, 1.00, is achieved by
combining the psycholinguistic and POS features.
This is unsurprising, since each of those feature
sets perform well individually. Curiously, the
same result can also be achieved by also including
the complexity, vocabulary richness, and CFG fea-
tures, but not in the intermediate stages between
those two optimal sets. We attribute this to the in-
teractions between features and the small data set.

For PNFA vs. controls, shown in Table 10b, the

(a) SD vs. controls.
Removed Remaining Features Accuracy

A+P+POS+C+F+VR+CFG .963
F A+P+POS+C+VR+CFG .963
A P+POS+C+VR+CFG 1.00
VR P+POS+C+CFG .926
CFG P+POS+C .926
C P+POS 1.00
POS P .963

(b) PNFA vs. controls.
Removed Remaining Features Accuracy

A+P+POS+C+F+VR+CFG .931
VR A+P+POS+C+F+CFG .931
C A+P+POS+F+CFG .931
POS A+P+F+CFG .931
CFG A+P+F .966
F A+P .966
P A .862

(c) SD vs. PNFA.
Removed Remaining Features Accuracy

A+P+POS+C+F+VR+CFG .708
POS A+P+C+F+VR+CFG .750
VR A+P+C+F+CFG .833
F A+P+C+CFG .833
A P+C+CFG .792
C P+CFG .917
P CFG .792

Table 10: A=acoustic, P=psycholinguistic,
POS=part-of-speech, C=complexity, F=fluency,
VR=vocabulary richness, CFG=CFG production
rule features. Bold indicates the highest accuracy
with the fewest feature sets.

best result of .966 is achieved using a combina-
tion of acoustic and psycholinguistic features. In
this case the removal of the fluency features, which
gave the second highest individual accuracy, does
not make a difference to the accuracy. This sug-
gests that the fluency features contain similar in-
formation to one of the remaining sets, presum-
ably the acoustic set.

In the case of SD vs. PNFA, we again see that
the best accuracy can be achieved by combining
two feature sets, as shown in Table 10c. Us-
ing psycholinguistic and CFG features, we can
achieve an accuracy of .917, a substantial im-
provement over the best accuracy for this task in
Table 9. In fact, in all three cases we see that us-
ing a carefully selected combination of feature sets
can result in better accuracy than using all the fea-
ture sets together or using any one set individually.

4.3 Best features for incomplete data

Up to this point, we have examined complete fea-
ture sets. We now briefly explore which individual



features are the most discriminative across feature
sets. We approach this as a practical consideration:
given the data that a researcher has, and limited re-
sources, what are the best features to measure? We
consider the following four scenarios:

1. Given audio files only. This scenario often
arises because it is relatively easy to record
speech, but difficult to have it transcribed.
Only acoustic features can be extracted.

2. Given basic transcriptions only (no audio).
We assume there is no sentence segmentation
and the time is not marked (e.g. as in the out-
put of automatic speech recognition). Thus,
we can measure psycholinguistic, POS, and
vocabulary measures. We can also measure
the fluency features except for verbal rate,
as well as mean word length and subordi-
nate/coordinate conjunctions from the com-
plexity set. Without sentence boundaries, we
cannot parse the transcripts.

3. Given fully segmented transcripts (no audio).
We can measure all features except for acous-
tic features.

4. Given audio and fully segmented transcripts.
We can measure all features.

For each scenario, we rank the available fea-
tures by their χ2 value and choose the top 10 only
as input to the SVM classifier (see Manning et al.
(2008) for a complete explanation of χ2 feature se-
lection). We only include features if χ2 > 0, so in
cases where there are very few relevant features,
fewer than 10 features may be selected. Because
we perform cross-validation, the selected features
may vary across different folds. In the tables that
follow, we present the features ranked by the num-
ber of folds in which they appear (i.e. a feature
with the value 1.00 was selected in every fold).
Due to space constraints, only the top 10 ranked
features are shown.

The results for Scenario 1 are given in Ta-
ble 11a. For the SD vs. controls and PNFA vs.
controls, the most highly ranked features tend to
be related to fluency and rate of speech, as well
as voice quality (skewness and MRPDE). How-
ever, when distinguishing between the two patient
groups, the acoustic features are essentially use-
less. In most cases, we see that none of the acous-
tic features had a non-zero χ2 value, and thus the
classifier could not be properly trained.

For Scenario 2 (Table 11b), the results for SD
vs. controls show that within the psycholinguistic

and POS feature sets, features relating to familiar-
ity and frequency are very important, as well as
nouns and demonstratives. In the PNFA vs. con-
trols case, we see that a number of the vocabulary
richness features are selected, which is in contrast
to the previous two experiments. However, it ap-
pears that only the MATTR feature is important
(with varying window lengths), so when we con-
sidered only full feature sets, that information was
obscured by the other, irrelevant features in that
set. The SD vs. PNFA case shows a mix of fea-
tures from the previous two cases.

For Scenario 3 (Table 11c), we add the com-
plexity and CFG features. These features do not
have a large effect in the SD vs. controls case, but
a few CFG features are selected in the PNFA vs.
controls and SD vs. PNFA cases.

In Scenario 4 (Table 11d), we consider all fea-
tures. In the SD vs. controls case this increases
the accuracy. However, for PNFA vs. controls and
SD vs. PNFA, the classification accuracy actually
decreases, relative to Scenario 3. When the num-
ber of features increases, the potential to overfit to
the training data fold also increases, and it seems
likely that that is occurring here. Nonetheless, we
expect that the features which are selected in every
fold are still highly relevant. These features are
unchanged between Scenarios 3 and 4 in the SD
vs. controls and SD vs. PNFA case, however in the
PNFA vs. controls case, the acoustic features are
now ranked more highly than some of the vocabu-
lary richness and CFG features from Scenario 3.

5 Discussion

While it may be tempting to calculate as many
features as possible and use them all in a classi-
fier, we have shown here that better results can be
achieved by choosing a small, relevant subset of
features. In particular, psycholinguistic features
such as frequency and familiarity were useful in all
three classification tasks. Acoustic features were
useful in discriminating patients from controls, but
not for discriminating between the two PPA sub-
types. We also found that MATTR was relevant
in some cases, although the other vocabulary rich-
ness features were not, and that the CFG features
were more useful than traditional measures of syn-
tactic complexity. POS features were useful only
in distinguishing between SD and controls.

One of the biggest challenges in this type
of work is the small amount of data available.



(a) Scenario 1: audio only.
SD vs. control, Acc: .852 PNFA vs. control, Acc: .793 SD vs. PNFA, Acc: .500

1.00 skewness 1.00 long pause count .083 max 1st ACF
1.00 phonation rate 1.00 phonation rate .042 mean F3
1.00 MRPDE 1.00 short pause count
1.00 mean duration of pauses 1.00 MRPDE
.037 long pause count 1.00 mean duration of pauses
.037 mean 1st ACF .966 pause:word ratio
.037 kurtosis .793 skewness

.793 ZCR

.345 mean inst. power

.035 jitter

(b) Scenario 2: unsegmented transcripts.
SD vs. control, Acc: .926 PNFA vs. control, Acc: .621 SD vs. PNFA, Acc: .792

1.00 familiarity 1.00 MATTR 50 1.00 familiarity
1.00 noun frequency 1.00 MATTR 40 1.00 noun frequency
1.00 noun familiarity 1.00 MATTR 30 1.00 noun familiarity
1.00 frequency 1.00 frequency 1.00 MATTR 20
1.00 verb frequency 1.00 MATTR 20 .708 MATTR 10
1.00 nouns .931 total words .208 MATTR 30
1.00 demonstratives .759 light verbs .042 MATTR 50
.778 pronoun ratio .690 adjectives .042 MATTR 40
.667 noun imageability .241 age of acquisition .042 light verbs
.630 Honoré’s statistic .241 MATTR 10 .042 verbs

(c) Scenario 3: segmented transcripts.
SD vs. control, Acc: .926 PNFA vs. control, Acc: .897 SD vs. PNFA, Acc: .792

1.00 word length 1.00 MATTR 50 1.00 WHADVP→WRB
1.00 familiarity 1.00 MATTR 40 1.00 familiarity
1.00 noun frequency 1.00 WHNP→WP 1.00 noun familiarity
1.00 noun familiarity 1.00 frequency 1.00 noun frequency
1.00 frequency 1.00 MATTR 20 1.00 MATTR 20
1.00 demonstratives 1.00 verbal rate 1.00 NP→ NNS
.889 nouns .966 MATTR 30 1.00 SBAR→WHADVP S
.852 verb frequency .827 S1→ INTJ .667 MATTR 10
.630 MLS .483 total words .500 NP→ DT JJ NNS
.630 total Yngve depth .414 word length .458 SQ→ AUX NP VP

(d) Scenario 4: segmented transcripts + audio.
SD vs. control, Acc: .963 PNFA vs. control, Acc: .793 SD vs. PNFA, Acc: .750

1.00 word length 1.00 frequency 1.00 WHADVP→WRB
1.00 familiarity 1.00 phonation rate 1.00 familiarity
1.00 noun frequency 1.00 MRPDE 1.00 noun familiarity
1.00 noun familiarity 1.00 verbal rate 1.00 noun frequency
1.00 frequency 1.00 mean duration of pauses 1.00 MATTR 20
1.00 demonstratives .897 MATTR 50 1.00 NP→ NNS
.963 phonation rate .897 WHNP→WP 1.00 SBAR→WHADVP S
.741 verb frequency .897 MATTR 20 .625 MATTR 10
.593 nouns .690 MATTR 40 .500 NP→ DT JJ NNS
.333 MLS .690 MATTR 30 .458 SQ→ AUX NP VP

Table 11: Classification accuracies and top 10 features for four different data scenarios.

Psychological studies are typically on the or-
der of only tens to possibly hundreds of partic-
ipants, while machine learning researchers often
tackle problems with thousands to millions of data
points. We have chosen techniques appropriate for
small data sets, but acknowledging the potential
weaknesses of machine learning methods when
training data are limited, these findings must be
considered preliminary. However, we also believe
that this is a promising approach for future ap-

plications, including automated screening for lan-
guage impairment, support for clinical diagnosis,
tracking severity of symptoms over time, and eval-
uating therapeutic interventions.
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