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Abstract
This paper presents experiments in automatically diagnosing
primary progressive aphasia (PPA) and two of its subtypes,
semantic dementia (SD) and progressive nonfluent aphasia
(PNFA), from the acoustics of recorded narratives and textual
analysis of the resultant transcripts. In order to train each of
three types of classifier (naı̈ve Bayes, support vector machine,
random forest), a large set of 81 available features must be
reduced in size. Two methods of feature selection are there-
fore compared – one based on statistical significance and the
other based on minimum-redundancy-maximum-relevance. Af-
ter classifier optimization, PPA (or absence thereof) is correctly
diagnosed across 87.4% of conditions, and the two subtypes of
PPA are correctly classified 75.6% of the time.
Index Terms: aphasia, classification, feature selection

1. Introduction
Primary progressive aphasia (PPA) is a neurodegenerative dis-
ease which primarily affects the language areas of the brain. It
has two main subtypes: semantic dementia (SD), which is char-
acterized by word-finding difficulties and vague but relatively
fluent speech, and progressive nonfluent aphasia (PNFA), which
is characterized by slow, hesitant speech and grammatical im-
pairments, but relatively spared single word comprehension [1].
A third subtype, logopenic progressive aphasia, has been iden-
tified in recent years but is not considered here (although see
Machulda et al. [2] for a recent analysis of that subtype).

Typically, a PPA diagnosis can occur only after a series of
tests for cognitive and language function. Usually at least one of
these tests involves the production of narrative speech, either in
a picture description or a story-telling task. A narrative speech
sample can contain rich information about the speaker’s abil-
ity to choose appropriate content and function words, construct
sentences, and convey meaning. However, analysis of narrative
speech is typically done by hand and can be prohibitively time-
consuming and expensive. Indeed, there is evidence that fron-
totemporal lobar degeneration of this type can go undiagnosed
for up to 7 years, often being misdiagnosed by human asses-
sors as psychiatric disorder or Alzheimer’s disease [3]. These
problems will increase with the age of populations across many
nations. It is therefore important to develop inexpensive and ac-
curate automatic analysis of narrative speech, particularly using
features that are relevant to clinical diagnosis.

Our previous work used textual features extracted from
transcripts of speech to classify between SD, PNFA, and healthy
controls [4]. That work achieved relatively high accuracies
between patient groups and controls, but the accuracies were

reduced when attempting to distinguish between the two PPA
subtypes. By contrast, this paper analyzes acoustic features of
patient and control speech, and augments text-based classifiers
with these features.

2. Background
Pakhomov et al. [5] extracted a number of different features
from the audio files and corresponding transcripts of 38 patients
with frontotemporal lobar degeneration (FTLD). They exam-
ined the differences between SD and PNFA (which are subtypes
of both FTLD and PPA), and behavioural variant FTLD (which
is a subtype of FTLD but not of PPA). However, they did not
attempt to classify the subtypes based on the extracted features.
Peintner et al. [6] analyzed data from 30 FTLD patients and 9
controls. They used a large number of phoneme and linguistic
content features to train machine learning classifiers, but did not
report which features were selected for classification.

Other related work has applied similar techniques to dif-
ferent clinical groups. Roark et al. [7] tested the ability of a
classifier to distinguish patients with mild cognitive impairment
from healthy controls based on speech and language measures.
Tsanas et al. [8] used speech features to discriminate individu-
als with Parkinson’s disease from healthy controls. A common
feature of these studies is the relatively small number of par-
ticipants. This can present a problem for machine learning ap-
proaches, for which a large quantity of training data is preferred.
However, clinical data can be expensive and time-consuming to
collect. In this domain, appropriate methods for reducing the di-
mensionality of the data are essential. In this study, we explore
two methods of feature selection to reduce the dimensionality
of the data: a simple filter method, and minimum-redundancy-
maximum-relevance (mRMR).

3. Data
Our data set comprises speech samples from 24 patients with
PPA and 16 age- and education-matched controls. Of the 24
PPA patients, 10 were diagnosed with SD and 14 with PNFA.
The speech samples were collected as part of a longitudinal
study on language impairment in PPA in the Department of
Speech-Language Pathology at the University of Toronto. Nar-
rative speech samples were elicited using a standard story-
telling procedure (see, for example, Saffran et al. [9]). Partic-
ipants were given a wordless picture book of the well-known
fairy tale “Cinderella”, and given a chance to look through the
book. The book was then taken away, and participants were
asked to tell the story in their own words.



The narrative samples were recorded on a digital audio
recorder, and transcribed at the word level by trained research
assistants. Transcriptions include filled pauses, repetitions,
false starts, and total speech time. Sentence boundaries were
marked according to semantic, syntactic, and prosodic cues.

3.1. Features

For each participant, we have two sources of information: the
transcript and the audio sample. We extract 58 lexical and syn-
tactic features from the transcript and an additional 23 acoustic
features from the audio file, for a total of 81 possible features.

3.1.1. Text features

To examine the syntactic properties of the participants’ speech,
we use Lu’s L2 Syntactic Complexity Analyzer, which counts
the number of clauses, dependent clauses, T-units1, and other
syntactic structures [10]. Although this tool was developed to
analyze the syntactic complexity of written language, it has also
been used to measure the syntactic complexity of speech [11].
We also evaluate syntactic complexity by measuring the height
of the parse trees generated by the Stanford parser [12], as well
as the maximum, mean, and total Yngve depths2 [13].

A number of additional features are based on the part-of-
speech (POS) tags assigned by the Stanford tagger [14]. SD
patients have been observed to produce proportionally fewer
nouns and more verbs and pronouns, while PNFA patients tend
to produce more nouns and fewer verbs [15, 16]. PNFA pa-
tients also tend to omit function words, such as determiners or
auxiliaries [17, 16].

We find the frequency of each word in the SUBTL norms,
which are derived from a large corpus of subtitles from film
and television [18]. We calculate the average frequency over all
words as well as specifically for nouns and verbs. Similarly, we
calculate the average familiarity, imageability, and age of acqui-
sition of the words in each transcript using the combined Bristol
norms and Gilhooly-Logie norms [19, 20]. Each word in these
psycholinguistic databases has been ranked according to human
perception of how familiar the word is, the approximate age at
which a word is learned, and how easily the word evokes an im-
age in the mind. Previous studies have found that SD patients
tend to use words which are higher in frequency and familiarity
[21], and in some cases lower in imageability [22].

From the transcripts we also measure such quantities as the
average length of the words and the type-token ratio, as well
as measures of fluency such as the number of filled pauses pro-
duced and the rate of speech, or verbal rate. We measure the
combined occurrence of all filled pauses, as well as the individ-
ual counts for “um” and “uh”, since it has been suggested that
they may indicate different types of hesitation [23].

3.1.2. Acoustic features

We follow the work of Pakhomov et al. and measure pause-
to-word ratio (i.e., the ratio of non-silent segments, excluding
filled pauses, to silent segments longer than 150 ms), mean fun-
damental frequency (F0) and variance, total duration of speech,
long pause (> 0.4 ms) count, and short pause (> 0.15 ms) count
[5]. To this we add mean pause duration and phonation rate (the
amount of the recording spent in voiced speech) [7], as well as

1T-units are minimally terminable units consisting of a main clause
and its dependent clauses.

2Yngve depth measures the proportion of left-branching to right-
branching in parse tree structures.

the mean and variance for the first 3 formants (F1, F2, F3),
mean instantaneous power, mean and maximum first autocor-
relation function, skewness, kurtosis, zero-crossing rate, mean
recurrence period density entropy (a method for measuring the
periodicity of a signal, which has been applied to pathological
speech generally [24]), jitter [25], and shimmer.

Slow, effortful speech is a core symptom of PNFA, and
apraxia of speech is often an early feature of the disease [1].
PNFA patients may make speech sound errors and exhibit dis-
ordered prosody [1, 26]. Indeed, atypical F0 range and variance
have been shown to be indicative of articulatory neuropatholo-
gies within the context of speech recognition [27]. In contrast,
speech production is generally spared in SD, although SD pa-
tients may produce long pauses as they search for words [16].

3.2. Feature selection

To avoid overfitting, we reduce the dimensionality of our data
to be bounded above by the minimum number of data points
available for a classification task; since there are 24 speakers
with either PNFA or SD, we reduce our feature space from 81
to at most 20. We compare two methods of performing this
feature selection. In the first, we calculate Welch’s t-test for
each feature to calculate the significance of the difference in
that feature between the two groups. We then rank each fea-
ture by its p-value, and for a feature set of size n we consider
only the top n features from the ranked list. This method does
not take into account any correlations between variables, but it
does offer some insight into which individual features are most
strongly indicative of one diagnosis (class) or the other. Feature
selection methods based on p-value have been used in previous
studies on machine learning classification of frontotemporal lo-
bar degeneration [6] and mild cognitive impairment [7].

The second method we consider is minimum-redundancy-
maximum-relevance (mRMR) feature selection in which a set
of features is selected such that redundancy (i.e., the average
mutual information between features) is minimized and the rel-
evance (i.e., the mutual information between the given features
and the class) is maximized [28]. Specifically, for feature fi in
set S and class c, mRMR selects the feature set S∗ such that

S∗ = argmax
S

 1

‖S‖
∑
fi∈S

I(fi; c)−
1

‖S‖2
∑

fi,fj∈S

I(fi; fj)

 ,
where I(X;Y ) is the mutual information between X and Y .

Table 1 shows the top n = 10 features selected by both
the mRMR and p-value methods. Both mRMR and the p-value
method select more textual features than acoustic features from
all available features; 7/10 features are textual in all cases ex-
cept for the p-value selection of features for PNFA-vs-SD, in
which case 9/10 of the selected features are textual. This might
be tempered to some extent by the fact that our acoustic fea-
tures are more highly correlated (average r = 0.16 (σ = 0.47)
among acoustic features and r = 0.05 (σ = 0.37) among tex-
tual features). In general, the mRMR and p-value methods are
in greater agreement on the PPA-vs-CTRL task (with 6, 7, and
6 features in common across feature sets) than on the PNFA-vs-
SD task (with 5, 4, and 4 features in common). Also, the PPA
and CTRL classes are more significantly differentiated by the
associated top n = 10 features than the PNFA and SD classes;
all features selected across feature sets in PPA-vs-CTRL are sig-
nificant at α ≤ 0.05 (mean p = 0.003, (σ = 0.008)) but fewer
than half of the features across feature sets in PNFA-vs-SD are
significant (mean p = 0.131, (σ = 0.156)).



mRMR p-value

PP
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T
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L

te
xt

frequency, verbalRate, totalDepth, nounFrequency,
verbFrequency, verbs, aveLengthWord,
demonstratives, totalWords, familiarity

verbalRate‡, frequency‡, aveLengthWord‡, demonstratives‡,
nounFamiliarity‡, nounFrequency‡, familiarity‡,
verbFrequency‡, nouns‡, pronounRatio†

ac
ou

s.

phonationRate, meanF2, meanRPDE, skewness
pause:wordRatio, meanDurationOfPauses,
meanInstantaneousPower, F0variance,
longPauseCount, meanF0

phonationRate‡, meanRPDE‡, longPauseCount‡, short-
PauseCount‡, meanDurationOfPauses‡,
meanInstantaneousPower‡, shimmer‡, skewness†, kurtosis∗,
pauseWordRatio∗

al
l phonationRate, familiarity, F2variance, verbalRate,

nounFrequency, verbFrequency, meanRPDE,
nounRatio, TUnitsPerSentence, demonstratives

phonationRate‡, verbalRate‡, frequency‡, aveLengthWord‡,
demonstratives‡, meanRPDE‡, nounFamiliarity‡,
longPauseCount‡, nounFrequency‡, familiarity‡

PN
FA

vs
.S

D

te
xt

nounFamiliarity, verbalRate, imageability,
nounFrequency, adjectives, familiarity, determiners,
dependentClauses, nounAOA, S

familiarity‡, nounFamiliarity‡, nounFrequency‡, dependent-
ClausesPerClause∗, um∗, complexTUnits, dependentClauses,
verbFamiliarity, demonstratives, determiners

ac
ou

s. ZCR, shortPauseCount, skewness,
totalDurationOfSpeech, F0variance, jitter, shimmer,
meanF0, meanRPDE, phonationRate

meanFirstAutocorrFunc∗, jitter, totalDurationOfSpeech,
maxFirstAutocorrFunc, pauseWordRatio, F3variance,
F2variance, meanF2, meanF0, longPauseCount

al
l imageability, familiarity, jitter, verbalRate,

nounFrequency, clausesPerTUnit, nounFamiliarity,
shortPauseCount, ZCR, demonstratives

familiarity‡, nounFamiliarity‡, nounFrequency‡, dependent-
ClausesPerClause∗, um∗, meanFirstAutocorrFunc∗, complex-
TUnits, dependentClauses, verbFamiliarity, demonstratives

Table 1: Selected features (n = 10) for each task and feature set using the mRMR and p-value methods. Features in bold and italic
appear in the associated selected feature sets for n = 2 and n = 5 of the mRMR method, respectively; features marked with ‡, † and ∗

represent features on which the given classes are significantly different at α = 0.005, α = 0.01, and α = 0.05, respectively.

4. Experiments in diagnosis
Our experiments compare diagnostic accuracy across a num-
ber of empirical variables, namely the task (PPA-vs-CTRL or
SD-vs-PNFA), feature set (‘Feat. set’: text-only, acoustic-only,
all), classifier (naı̈ve Bayes (NB), support vector machine with
sequential minimal optimization (SVM), and random forests
(RF)), number of features considered for classification (‘Num.
feat.’: 2, 5, 10, 15, 20), and the method of feature selection used
to derive these reduced sets (‘Feat. select’, described in section
3.2). The naı̈ve Bayes classifier assumes conditional indepen-
dence of its features, the SVM is a parametric binary classifier
that provides highly non-linear decision boundaries given par-
ticular kernels, and the random forest is an ensemble classifier
that returns the mode of the class predictions of several deci-
sion trees. We optimize the SVM classifier over several combi-
nations of kernel (polynomial of degree 1 or 2, or radial basis
function) and complexity (c = {0.01, 0.1, 1, 10, 100}). We op-
timize RF for the number of trees (I = {5, 10, 15, 20}) and
the random seed (S = {1, 2, 3, 4, 5}). Accuracies of diagnostic
classification were obtained for each of the possible permuta-
tions of our empirical parameters using stratified leave-one-out
cross-validation.

Table 2 shows the results of a multi-way analysis of vari-
ance (ANOVA) across each of our empirical variables and their
two-way interactions. Interestingly, each empirical parameter
contributes significantly to the variance except for the num-
ber of features. Table 3 partitions rates of accurate diagnosis
across tasks, feature sets, classifiers, and methods of feature se-
lection. As expected, classifying PPA from CTRL is signif-
icantly easier than among sub-types of PPA (heteroscedastic
one-tailed t(268) = 10.354, p < 0.0001, CI = [9.92,∞].
Interestingly, although the effect size of considering all possi-
ble features rather than only textual features is small (Cohen’s
d = 0.1363), the difference in accuracy is significant (paired

one-tailed t(89) = −1.798, p < 0.05, CI = [−∞,−0.09].
If we consider each task separately, adding acoustics to tex-
tual features always increases accuracy, but not significantly
(PPA-vs-CTRL: µtext = 90.4%, µall = 91.2%, t(88) =
−0.70, p = 0.24; SD-vs-PNFA: µtext = 78.8%, µall =
80.4%, t(88) = −0.96, p = 0.17.

Mean sq. F p > F

Task 7132.24 196.26 2.27E−32

Feat. select. 679.69 18.70 2.31E−5

Feat. set 2700.66 74.31 1.96E−25

Num. feat. 50.59 1.39 0.24
Classifier 985.84 27.13 2.88E−11

Task× Feat. select. 437.10 12.03 6.29E−4

Task×Feat. set 24.17 0.67 0.52
Task×Num. feat. 103.24 2.84 0.03
Task×Classifier 873.22 24.03 3.58E−10

Feat. select.×Feat. set 314.60 8.66 2.40E−4

Feat. select.×Num. feat. 31.81 0.88 0.48
Feat. select.×Classifier 96.88 2.67 0.07
Feat. set×Num. feat. 45.20 1.24 0.27
Feat. set×Classifier 39.49 1.09 0.36
Num. feat.×Classifier 51.46 1.42 0.19

Table 2: Multi-way ANOVA (F statistics and p values) on accu-
racy across task, feature selection method, feature set, number
of features, classifier, and two-way interactions. Statistically
significant (α = 0.05) results are in bold

Figure 1 shows graphs of accuracy over the number of fea-
tures in feature sets for each type of feature set (text, acoustic,
all) and each task (PPA-vs-CTRL and SD-vs-PNFA).



(a) PPA vs. CTRL (text) (b) PPA vs. CTRL (acoustic) (c) PPA vs. CTRL (all)

(d) SD vs. PNFA (text) (e) SD vs. PNFA (acoustic) (f) SD vs. PNFA (all)

Figure 1: Accuracies across task (PPA-vs-CTRL, SD-vs-PNFA) and feature set (text, acoustic, all) for NB (red), SVM (blue), and RF
(green). Star-shaped points represent accuracies obtained using mRMR; circles represent those obtained using the p-value method.

Variable Value Accuracy (%)

Task PPA vs CTRL µ = 87.39, (σ = 6.79)
SD vs PNFA µ = 75.59, (σ = 11.37)

Feat. set
text µ = 84.62, (σ = 8.51)

acoustic µ = 74.05, (σ = 11.59)
all µ = 85.80, (σ = 8.84)

Classifier
NB µ = 77.48, (σ = 12.87)

SVM µ = 82.13, (σ = 11.30)
RF µ = 84.85, (σ = 6.95)

Feat. select. pvalue µ = 83.73, (σ = 8.28)
mRMR µ = 80.37, (σ = 12.08)

Table 3: Average accuracy µ (and standard deviation σ) of accu-
racies across experiments partitioned by task, feature set, clas-
sifier, and method of feature selection.

5. Discussion
The naı̈ve Bayes method performed surprisingly well here, al-
though generative approaches can sometimes outperform dis-
criminative ones when the available data is less vast [29]. The
feature selection method can affect the accuracy of NB, as illus-
trated in Figure 1e. For a feature set of size two, the NB classi-
fier achieved an accuracy of 83% using the p-value method, and
only 29% using mRMR. We hypothesize that this is because the
p-value filter, which chooses features on the basis of their mean
and variance, is choosing exactly those features which would
best distinguish the groups in a Gaussian framework. Indeed,
the top two features chosen by mRMR (ZCR and short pause
count) both have bimodal (non-Gaussian) distributions.

Using acoustic features as well as text features had a sig-
nificant effect on the classification accuracies. For the task of
classifying PPA versus controls, it is unsurprising that features
like phonation rate and short and long pause counts are infor-
mative, reflecting the language difficulties experienced by the
PPA patients. Other features which were significantly different
between the groups, including mean RPDE, mean instantaneous
power, shimmer, skewness, and kurtosis, have not to our knowl-
edge been previously reported for PPA.

Only one acoustic feature, mean first autocorrelation func-
tion, significantly differentiated the SD and PNFA groups. This
is somewhat unexpected, as SD patients are often described as
more “fluent” than PNFA patients, suggesting they could be dis-
tinguished on the basis of characteristics such as phonation rate
and number of pauses. However, fluency may be a poor marker
for subtyping PPA, in part because patients without PNFA may
show “intermittent dysfluency” due to word-finding difficul-
ties [30]. Wilson et al. [16] also found reduced average speech
rate for both PNFA and SD, and suggested that measuring max-
imum speech rate might be more useful for distinguishing them.

In future work we hope to determine whether there are
other acoustic features which may better differentiate the patient
groups, and whether it would be more effective to approach the
problem as a three-class classification (SD vs. PNFA vs. con-
trols). Future work will also examine the effect (or lack thereof)
of the number of features across classifiers, and the interaction
between the diagnostic task and the feature set.
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