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Despite word embeddings being a cornerstone of current methods in natural language processing, many famous

properties of embeddings remain poorly understood. For example, analogies such as ‘man is to woman as king is

to ?’ can often be solved with vector algebra, despite word embeddings being trained in a completely unsupervised

manner. This work aims to answer two open questions: (1) Why, and under what conditions, can vector algebra

be used to solve word analogy tasks?; (2) Why do socially undesirable associations such as gender bias exist in

word embedding spaces and can they be provably removed? To answer these questions, I build on prior theoretical

work that frames neural embedding models as matrix factorization, showing how the inner product of two word

vectors has an information theoretic interpretation for models such as skipgram and GloVe. Building on one of

the conclusions of my theories – namely that adding two word vectors automatically down-weights the the more

frequent word – I then design a simple sentence embedding method that achieves state-of-the-art performance

on sentence similarity tasks. This highlights how answering theoretical questions on word embeddings, while

important in its own right, can also yield marked improvements on empirical problems.
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Chapter 1

Introduction

Distributed representations of words, better known as word embeddings or word vectors, are a cornerstone of

current methods in natural language processing (NLP). They can be generated by a variety of models, all of

which share Firth’s philosophy [Firth, 1957] that the meaning of a word is defined by “the company it keeps”.

The simplest such models obtain word vectors by constructing a low-rank approximation of a matrix containing

a co-occurrence statistic [Landauer and Dumais, 1997, Rohde et al., 2006]. In contrast, neural network models

[Bengio et al., 2003, Mikolov et al., 2013b] learn word embeddings by trying to predict words using the contexts

they appear in, or vice-versa. The use of embeddings has led to marked improvements on a wide array of NLP

tasks, ranging from textual entailment [Gong et al., 2018] to dependency parsing [Chen and Manning, 2014].

Still, many famous properties of word embeddings remain poorly understood, even those that are touted as

merits of distributed representations. One notable – and surprising – property is that word analogies can often be

solved with vector algebra, despite word embeddings being trained in a completely unsupervised manner using

non-linear embedding models [Mikolov et al., 2013b]. For example, ‘king is to ? as man is to woman’ can be

solved by finding the closest vector to ~king− ~man+ ~woman, which should be ~queen. However, such phenomena

are not exclusively serendipitous. Word embeddings can also capture undesirable associations such as gender

bias, allowing stereotypical analogies such as ‘doctor is to nurse as man is to woman’ to also hold in the vector

space [Bolukbasi et al., 2016]. Moreover, the tests used to measure undesirable associations, such as the word

embedding factual association test (WEFAT) [Caliskan et al., 2017], are not based on any rigorous theory.

In this work, I provide an answer to two open questions on word embedding properties: (1) Why, and under

what conditions, can vector algebra be used to solve word analogy tasks?; (2) Why do socially undesirable as-

sociations such as gender bias exist in word embedding spaces and can they be provably removed? To answer

these questions, I build on prior theoretical work that frames neural embedding models as matrix factorization

1



CHAPTER 1. INTRODUCTION 2

[Levy and Goldberg, 2014]. Specifically, I show how the inner product of two word vectors, not just a word and a

context vector, has an information theoretic interpretation for common embedding models such as skipgram with

negative sampling (SGNS). Since both word analogies and word associations involve linear operations on inner

products, this paradigm makes both of them much more interpretable. The major findings of this work are as

follows:

1. Where csPMI(x,y) , PMI(x,y)+ log p(x,y), a linear word analogy (e.g., ‘king is to queen as man is to

woman’) holds over a set of word pairs iff csPMI(x,y) is the same for every word pair and csPMI(x1,x2) =

csPMI(y1,y2) for any two word pairs. This identity can, in turn, be used to prove the conjecture proposed

in [Pennington et al., 2014] as to why word analogies hold.

2. In an SGNS embedding space with no reconstruction error, the addition of two word vectors automatically

down-weights the more frequent word. Since many weighting schemes are based on the idea that more fre-

quent words should be down-weighted ad hoc [Arora et al., 2017a], the fact that this is done automatically

provides novel justification for using addition to compose words.

3. In an SGNS or GloVe embedding space with no reconstruction error, the squared Euclidean distance be-

tween two words is a decreasing linear function of csPMI(x,y). In other words, the more similar two words

are (as measured by csPMI) the smaller the distance between their vectors. Although this is intuitive, it is

also the first rigorous explanation of why the Euclidean distance in embedding space is a good proxy for

word dissimilarity.

4. The subspace projection method for debiasing embeddings [Bolukbasi et al., 2016] is provably effective

for any embedding model that implicitly does matrix factorization (e.g., GloVe, SGNS), when there is

no reconstruction error. Debiasing vectors in this way is equivalent to training on an unbiased corpus.

However, tests like WEAT and WEFAT [Caliskan et al., 2017] are not good measures of gender bias; they

have theoretical flaws that easily exaggerate the extent of bias.

5. SGNS does not, on average, make the vast majority of words any more gendered in the vector space than

they are in the training corpus; individual words may be slightly more or less gendered due to reconstruction

error. However, for words that are gender-stereotyped (e.g., nurse) or gender-specific by definition (e.g.,

queen), SGNS amplifies the gender association in the training corpus.

I format these findings as two distinct and independent papers, one concerning the theoretical basis of word analo-

gies and one concerning undesirable word embedding associations, each of which is given its own chapter. Both

of these papers are co-authored with David Duvenaud and Graeme Hirst, with the former having been published
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as a preprint [Ethayarajh et al., 2018]. In the last chapter, which has been published as [Ethayarajh, 2018], I ex-

ploit one of the corollaries of my theory of linear word analogies (see item 3 above) and show just how effective

weighted addition is for composing word vectors. I propose a sentence embedding approach called unsupervised

smoothed inverse frequency (uSIF) that takes a weighted average of word vectors based on a random walk model

and then denoises using singular value decomposition. Despite being simple and requiring no hyperparameter

tuning – unlike similar methods, such as SIF [Arora et al., 2017b] – it achieves state-of-the-art results on several

sentence similarity tasks. The success of this simple method highlights how answering theoretical questions about

word embeddings, while an important research direction in its own right, can also yield marked improvements on

empirical problems.



Chapter 2

Towards Understanding Linear Word

Analogies

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst

2.1 Introduction

Distributed representations of words are a cornerstone of current methods in natural language processing. Word

embeddings, also known as word vectors, can be generated by a variety of models, all of which share Firth’s phi-

losophy [Firth, 1957] that the meaning of a word is defined by “the company it keeps”. The simplest such models

obtain word vectors by constructing a low-rank approximation of a matrix containing a co-occurrence statis-

tic [Landauer and Dumais, 1997, Rohde et al., 2006]. In contrast, neural network models [Bengio et al., 2003,

Mikolov et al., 2013b] learn word embeddings by trying to predict words using the contexts they appear in, or

vice-versa.

A surprising property of word vectors derived via neural networks is that word analogies can often be solved

with vector algebra. For example, ‘king is to ? as man is to woman’ can be solved by finding the closest vec-

tor to ~king− ~man+ ~woman, which should be ~queen. It is unclear why linear operators can effectively compose

embeddings generated by non-linear models such as skip-gram with negative sampling (SGNS). There have been

two attempts to rigorously explain this phenomenon, but both have made strong assumptions about either the

embedding space or the word distribution. The paraphrase model [Gittens et al., 2017] hinges on words having a

uniform distribution rather than the typical Zipf distribution, which the authors themselves acknowledge is unre-

alistic. The latent variable model [Arora et al., 2016] makes many a priori assumptions about the word vectors,

4



CHAPTER 2. TOWARDS UNDERSTANDING LINEAR WORD ANALOGIES 5

such as the assumption that word vectors are generated by randomly scaling vectors uniformly randomly sampled

from the unit sphere.

In this paper, we explain why – and under what conditions – word analogies in GloVe and SGNS embedding

spaces can be solved with vector algebra, without making the strong assumptions past work has. We begin by

formalizing word analogies as functions that transform one word vector into another. When this transformation

is simply the addition of a displacement vector – as is the case when using vector algebra – we call the analogy

a linear analogy. Using the expression PMI(x,y)+ log p(x,y), which we call the co-occurrence shifted pointwise

mutual information (csPMI) of a word pair (x,y), we prove that in both SGNS and GloVe spaces without recon-

struction error, a linear analogy holds over a set of ordered word pairs iff csPMI(x,y) is the same for every word

pair and csPMI(x1,x2) = csPMI(y1,y2) for any two word pairs. By then framing vector addition as a kind of word

analogy, we offer several new insights into the compositionality of words:

1. Past work has often cited the Pennington et al. conjecture [Pennington et al., 2014] as an intuitive explana-

tion of why vector algebra works for analogy solving. The conjecture is that an analogy of the form a is to

b as x is to y holds iff p(w|a)/p(w|b) ≈ p(w|x)/p(w|y) for every word w in the vocabulary. While this is

sensible, it is not based on any theoretical derivation or empirical support. We provide a rigorous proof that

this is indeed true.

2. Consider two words x,y and their sum ~z = ~x +~y in an SGNS embedding space with no reconstruction

error. If z were in the vocabulary, the similarity between z and x (as measured by the csPMI) would be

the log probability of y shifted by a model-specific constant. This implies that the addition of two words

automatically down-weights the more frequent word. Since many weighting schemes are based on the idea

that more frequent words should be down-weighted ad hoc [Arora et al., 2017a], the fact that this is done

automatically provides novel justification for using addition to compose words.

3. Consider any two words x,y in an SGNS or GloVe embedding space with no reconstruction error. The

squared Euclidean distance between~x and~y is a decreasing linear function of csPMI(x,y). In other words,

the more similar two words are (as measured by csPMI) the smaller the distance between their vectors.

Although this is intuitive, it is also the first rigorous explanation of why the Euclidean distance in embedding

space is a good proxy for word dissimilarity.

Although our main theorem only concerns embedding spaces with no reconstruction error, we also explain why,

in practice, linear word analogies hold in embedding spaces with some noise. We conduct experiments that

support the few assumptions we make and show that the transformations represented by various word analogies

correspond to different csPMI values. Without making the strong assumptions of past theories, we thus offer a

rigorous explanation of why, and when, word analogies can be solved with vector algebra.
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2.2 Related Work

PMI Pointwise mutual information (PMI) captures how much more frequently x,y co-occur than by chance:

PMI = log[p(x,y)/(p(x)p(y))] [Church and Hanks, 1990].

Word Embeddings Word embeddings are distributed representations of words in a low-dimensional continuous

space. Also called word vectors, they capture semantic and syntactic properties of words, even allowing relation-

ships to be expressed algebraically [Mikolov et al., 2013b]. Word vectors are generally obtained in two ways:

(a) from neural networks that learn representations by predicting co-occurrence patterns in the training corpus

[Bengio et al., 2003, Mikolov et al., 2013b, Collobert and Weston, 2008]; (b) from low-rank approximations of

word-context matrices containing a co-occurrence statistic [Landauer and Dumais, 1997, Levy and Goldberg, 2014].

SGNS The objective of skip-gram with negative sampling (SGNS) is to maximize the probability of observed

word-context pairs and to minimize the probability of k randomly sampled negative examples. For an observed

word-context pair (w,c), the objective would be logσ(~w ·~c)+ k ·Ec′∼Pn [log(−~w ·~c′)], where c′ is the negative

context, randomly sampled from a scaled distribution Pn. Words that appear in similar contexts will therefore

have similar embeddings. Though no co-occurrence statistics are explicitly calculated, [Levy and Goldberg, 2014]

proved that SGNS is in fact implicitly factorizing a word-context PMI matrix shifted by − logk.

Latent Variable Model The latent variable model [Arora et al., 2016] was the first attempt to rigorously explain

why word analogies can be solved algebraically. It is a generative model that assumes that word vectors are

generated by the random walk of a “discourse” vector on the unit sphere. Gittens et al.’s criticism of this proof

is that it assumes that word vectors are known a priori and generated by randomly scaling vectors uniformly

sampled from the unit sphere (or having properties consistent with this sampling procedure) [Gittens et al., 2017].

The theory also relies on word vectors being uniformly distributed (isotropic) in embedding space; however,

experiments by [Mimno and Thompson, 2017] have found that this generally does not hold in practice, at least

for SGNS.

Paraphrase Model The paraphrase model [Gittens et al., 2017] was the only other attempt to rigorously explain

why word analogies can be solved algebraically. It proposes that any set of context words C = {c1, ...,cm} is

semantically equivalent to a single word c if p(w|c1, ...,cm) = p(w|c). One problem with this is that the number

of possible context sets far exceeds the vocabulary size, precluding a one-to-one mapping; the authors circumvent

this problem by replacing exact equality with the minimization of KL divergence. Assuming that the words have

a uniform distribution, the paraphrase of C can then be written as an unweighted sum of its context vectors.
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However, this uniformity assumption is unrealistic – word frequencies obey a Zipf distribution, which is Pareto

[Piantadosi, 2014].

2.3 The Structure of Word Analogies

2.3.1 Formalizing Analogies

A word analogy is a statement of the form “a is to b as x is to y”, which we will write as (a,b)::(x,y). It asserts

that a and x can be transformed in the same way to get b and y respectively, and that b and y can be inversely

transformed to get a and x. A word analogy can hold over an arbitrary number of ordered pairs: e.g., “Berlin is

to Germany as Paris is to France as Ottawa is to Canada ...”. The elements in each pair are not necessarily in the

same space – for example, the transformation for (king,roi)::(queen,reine) is English-to-French translation. For

(king,queen)::(man,woman), the canonical analogy in the literature, the transformation corresponds to changing

the gender. Therefore, to formalize the definition of an analogy, we will refer to it as a transformation.

Definition 1 An analogy f is an invertible transformation that holds over a set of ordered pairs S iff ∀ (x,y) ∈

S, f (x) = y∧ f−1(y) = x.

The word embedding literature [Mikolov et al., 2013b, Pennington et al., 2014] has focused on a very specific

type of transformation, the addition of a displacement vector. For example, for (king,queen)::(man,woman), the

transformation would be ~king + ( ~woman− ~man) = ~queen, where the displacement vector is expressed as the

difference ( ~woman− ~man). To make a distinction with our general class of analogies in Definition 1, we will refer

to these as linear analogies.

Definition 2 A linear analogy f is an invertible transformation of the form ~x 7→~x+~r. f holds over a set of

ordered pairs S iff ∀ (x,y) ∈ S,~x+~r =~y.

Co-occurrence Shifted PMI Theorem Let W be an SGNS or GloVe word embedding space with no recon-

struction error and S be a set of ordered word pairs such that ∀ (x,y) ∈ S,~x,~y ∈ W and |S|> 1. A linear

analogy f holds over S iff ∃ γ ∈ R, ∀(x,y) ∈ S,PMI(x,y) + log p(x,y) = γ and for any (x1,y1),(x2,y2) ∈ S,

PMI(x1,x2)+ log p(x1,x2) = PMI(y1,y2)+ log p(y1,y2).

Throughout the rest of this paper, we will refer to PMI(x,y)+ log p(x,y) as the co-occurrence shifted PMI

(csPMI) of x and y. In sections 1.3.2 to 1.3.4, we prove the csPMI Theorem. In section 1.3.5, we explain why,

in practice, perfect reconstruction is not needed to solve word analogies using vector algebra. In section 1.4, we

explore what the csPMI Theorem implies about vector addition and Euclidean distance in embedding spaces.
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man

king queen

woman

royal royal

female

female

Figure 2.1: The parallelogram structure of the linear analogy (king,queen)::(man,woman). A linear analogy
transforms the first element in an ordered word pair by adding a displacement vector to it. Arrows indicate the
directions of the semantic relations.

2.3.2 Analogies as Parallelograms

Lemma 1 Where 〈·, ·〉 denotes the inner product, a linear analogy f holds over a set of ordered word pairs S iff

∃ γ ′ ∈ R,∀ (x,y) ∈ S,2〈~x,~y〉−‖~x‖2
2−‖~y‖2

2= γ ′ and 2〈~x1,~x2〉−‖~x1‖2
2−‖~x2‖2

2= 2〈~y1,~y2〉−‖~y1‖2
2−‖~y2‖2

2 for any

(x1,y1),(x2,y2) ∈ S.

When S = {(x1,y1)}, Lemma 1 holds for γ ′ = 2〈~x1,~y1〉− ‖~x1‖2
2−‖~y1‖2

2. When |S|> 1, consider the |S|−1

subsets of the form {(x1,y1),(x2,y2)} ⊂ S. f holds over every subset {(x1,y1),(x2,y2)} iff it holds over S. We

start by noting that by Definition 2, f holds over {(x1,y1),(x2,y2)} iff:

~x1 +~r =~y1∧~x2 +~r =~y2 (2.1)

By rearranging (2.1), we know that~x2−~y2 =~x1−~y1 and~x2−~x1 =~y2−~y1. Put another way, x1,y1,x2,y2 form a

quadrilateral in vector space whose opposite sides are parallel and equal in length. By definition, this quadrilateral

is then a parallelogram. In fact, this is often how word analogies are visualized in the literature (see Figure 2.1).

To prove the first part of Lemma 1, we let γ ′ = −‖~r‖2
2. A quadrilateral is a parallelogram iff each pair of

opposite sides is equal in length. For every possible subset,~r = (~y1−~x1) = (~y2−~x2). This implies that ∀ (x,y)∈ S,

γ
′ =−‖~y−~x‖2

2= 2〈~x,~y〉−‖~x‖2
2−‖~y‖2

2 (2.2)

However, this condition is only necessary and not sufficient for the parallelogram to hold. The other pair of

opposite sides, which do not correspond to~r, are equal in length iff −‖~x1−~x2‖2
2=−‖~y1−~y2‖2

2⇐⇒ 2〈~x1,~x2〉−

‖~x1‖2
2−‖~x2‖2

2= 2〈~y1,~y2〉− ‖~y1‖2
2−‖~y2‖2

2, as stated in Lemma 1. Note that the sides that do not equal ~r do not

necessarily have a fixed length across different subsets of S.
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2.3.3 Analogies in the Context Space

Definition 3 Let W be an SGNS or GloVe word embedding space and C its corresponding context space. Let k

denote the number of negative samples, Xx,y the frequency, and bx,by the learned biases for GloVe. If there is no

reconstruction error, for any words x,y with~x,~y ∈W and ~xc,~yc ∈C:

SGNS : 〈~x,~yc〉= PMI(x,y)− logk

GloVe : 〈~x,~yc〉= logXx,y−bx−by

(2.3)

SGNS and GloVe generate two vectors for each word in the vocabulary: a context vector, for when it is a context

word, and a word vector, for when it is a target word. Context vectors are generally discarded after training.

The SGNS identity in (2.3) is from [Levy and Goldberg, 2014], who proved that SGNS is implicitly factor-

izing the shifted word-context PMI matrix. The GloVe identity is simply the local objective for a word pair

[Pennington et al., 2014]. Since the matrix being factorized in both models is symmetric, 〈~x,~yc〉= 〈~xc,~y〉.

Lemma 2 A linear analogy f : ~x 7→ ~x +~r holds over a set of ordered pairs S in an SGNS or GloVe word

embedding space W with no reconstruction error iff ∃ λ ∈ R,g : ~xc 7→ ~xc +λ~r holds over S in the corresponding

context space C.

In other words, an analogy f that holds over S in the word space has a corresponding analogy g that holds

over S in the context space. The displacement vector of g is simply the displacement vector of f scaled by some

λ ∈ R. To prove this, we begin with (2.1) and any word w in the vocabulary:

~x2−~y2 = ~x1−~y1

⇐⇒ 〈~wc,(~x2−~y2)− (~x1−~y1)〉= 0

⇐⇒ 〈~w,(~x2c−~y2c)− (~x1c−~y1c)〉= 0

⇐⇒ ~x2c−~y2c = ~x1c−~y1c

(2.4)

Note that we can rewrite the second equation as the third because the matrices being factorized in (2.3) are

symmetric and there is no reconstruction error. We can simplify from the second-last step because not all word

vectors lie in the same hyperplane, implying that (~x2c−~y2c)− (~x1c−~y1c) =~0.

Thus a linear analogy with displacement vector (~y1− ~x1) holds over S in the word embedding space iff an

analogy with displacement vector (~y1c− ~x1c) holds over S in the context space. This is supported by empirical

findings that word and context spaces perform equally well on word analogy tasks [Pennington et al., 2014].

Since there is an analogous parallelogram structure formed by x1,y1,x2,y2 in the context space, there is some
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linear map from ~w 7→ ~wc for each word w ∈ S. The real matrix A describing this linear map is symmetric:

〈~x,~yc〉 =~xT A~y = (AT~x)T~y = 〈~xc,~y〉 for any (x,y) ∈ S. This implies that C = AW , since 〈~w,~xc〉 = 〈~wc,~x〉 for any

word w.

Since A is a real symmetric matrix, by the finite-dimensional spectral theorem, there is an orthonormal basis

of W consisting of eigenvectors of A. If A had distinct eigenvalues, opposite sides of the parallelogram formed

by x1,y1,x2,y2 in the word space could be stretched by different factors. This would imply that the quadrilateral

formed by x1,y1,x2,y2 in the context space is not a parallelogram, which is a contradiction. Therefore A can only

have non-distinct eigenvalues. Because A’s eigenvectors are a basis for W and all have the same eigenvalue λ ,

all word vectors lie in the same eigenspace (i.e., C = λW ). Experiments done by [Mimno and Thompson, 2017]

provide some empirical support of this result.

2.3.4 Proof of the csPMI Theorem

From Lemma 1, we know that if a linear analogy f holds over a set of ordered pairs S, then ∃ γ ′ ∈ R,∀ (x,y) ∈

S,2〈~x,~y〉 − ‖~x‖2
2−‖~y‖2

2= γ ′. Because there is no reconstruction error, by Lemma 2, we can rewrite the inner

product of two word vectors in terms of the inner product of a word and context vector. Using the SGNS identity

in (2.3), we can rewrite (2.2):

γ
′ = 2〈~x,~y〉−‖~x‖2

2−‖~y‖2
2

= (1/λ )〈~y−~x,~xc−~yc〉

λγ
′ = 2 PMI(x,y)−PMI(x,x)−PMI(y,y)

= csPMI(x,y)− log p(x|x)p(y|y)

(2.5)

We get the same equation using the GloVe identity in (2.3), since the learned bias terms cancel out. For log p(x|x)p(y|y)

to not be undefined, every word in S must appear in its own context at least once in the training corpus. However,

depending on the size of the corpus and the context window, this may not necessarily occur. For this reason,

we assume that p(w,w), the probability that a word co-occurs with itself, follows the Zipf distribution of p(w)

scaled by some constant ρ ∈ (0,1). We find this assumption to be justified, since the Pearson correlation between

p(w) and non-zero p(w,w) is 0.825 for uniformly randomly sampled words in Wikipedia. We can therefore treat

log p(x|x)p(y|y) ∀ (x,y) ∈ S as a constant α ∈ R−. Rewriting (2.5), we get

λγ
′+α = csPMI(x,y) (2.6)
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The second identity in Lemma 1 can be expanded analogously, implying that f holds over a set of ordered pairs

S iff (2.6) holds for every pair (x,y) ∈ S and PMI(x1,x2)+ log p(x1,x2) = PMI(y1,y2)+ log p(y1,y2) for any two

pairs (x1,y1),(x2,y2) ∈ S. In section 1.5, we provide empirical support of this finding by showing that there

is a moderately strong correlation (Pearson’s r > 0.50) between csPMI(x,y) and γ ′, in both normalized and

unnormalized SGNS embedding spaces.

2.3.5 Robustness to Noise

The csPMI Theorem does not explain why, in practice, linear word analogies hold in embedding spaces that have

some reconstruction error. There are two reasons for this: the looser definition of vector equality in practice and

the lower variance in reconstruction error associated with more frequent word pairs. For one, in practice, a word

analogy task (a,?)::(x,y) is solved by finding the most similar vector to ~a+(~y−~x), where dissimilarity is defined

in terms of Euclidean or cosine distance. The correct solution to a word analogy can be found even when that

solution is not exact.

The second reason is that the variance of the noise εx,y for a word pair (x,y) (i.e., 〈~x,~yc〉 − (PMI(x,y)−

logk)) is a strictly decreasing function of the frequency Xx,y: more frequent word pairs are associated with less

reconstruction error. This is because the cost of deviating from the optimal value is higher for more frequent

word pairs: this is implicit in the SGNS objective [Levy and Goldberg, 2014] and explicit in GloVe objective

[Pennington et al., 2014]. We also show that this holds empirically in section 1.5. Assuming εx,y ∼N (0,h(Xx,y)),

where δ is the Dirac delta distribution:

lim
Xx,y→∞

h(Xx,y) = 0 =⇒ lim
Xx,y→∞

N (0,h(Xx,y)) = δ

=⇒ lim
Xx,y→∞

εx,y = 0
(2.7)

As the frequency of a word pair increases, the probability that the noise is close to zero increases; when the

frequency is infinitely large, the noise is sampled from the Dirac delta distribution and is therefore zero. Thus

even without the assumption of zero reconstruction error, an analogy that satisfies the identity in the csPMI

Theorem will hold over a set of ordered pairs in practice as long as the frequency of each pair is sufficiently large.

A possible benefit of h mapping lower frequencies to larger variances is that it reduces the probability that a

linear analogy f will hold over rare word pairs. One way of interpreting this is that h essentially filters out the

word pairs for which there is insufficient evidence, even if the identities in the csPMI Theorem are satisfied. This

would explain why reducing the dimensionality of word vectors – up to a point – actually improves performance

on word analogy tasks [Yin and Shen, 2018]. Representations with the optimal dimensionality have enough noise

to preclude spurious analogies that satisfy the csPMI Theorem, but not so much noise that non-spurious analogies
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(e.g., (king,queen)::(man,woman)) are also precluded.

2.4 Vector Addition as a Word Analogy

2.4.1 Formalizing Addition

Corollary 1 Let~z =~x+~y be the sum of words x,y in an SGNS word embedding space with no reconstruction

error. If z were a word in the vocabulary, where δ is a model-specific constant, csPMI(x,z) = log p(y)+δ .

To frame the addition of two words x,y as an analogy, we need to define a set of ordered pairs S such that a

linear analogy holds over S iff~x+~y =~z. To this end, consider the set {(x,z),( /0,y)}, where z is a placeholder for

the composition of x and y and the null word /0 maps to~0 for a given embedding space. From Definition 2:

(~x+~r =~z)∧ (~/0+~r =~y)

⇐⇒~z−~x =~y−~/0

⇐⇒~x+~y =~z

(2.8)

Even though /0 is not in the vocabulary, we can map it to~0 because its presence does not affect any other word

vector. To understand why, consider the shifted word-context PMI matrix M that does not have /0, and the matrix

M′ that does, of which M is a submatrix. Where W and C are the word and context matrices, WCT = M ⇐⇒

[W ~0][C ~0]T = M′. Even if the null word does not exist for a given corpus, the embeddings we would get by

training on a corpus that did have the null word would otherwise be identical. An inner product with the zero

vector is always 0, so we can infer from the SGNS identity in (2.3) that PMI( /0, ·)− logk = 0 for every word in

the vocabulary. From the csPMI Theorem, we know that if a linear analogy holds over {(x,z),( /0,y)}, then

PMI(x,z)+ log p(x,z)

=2 PMI( /0,y)+ log p(y)+ log p( /0)

= log p(y)+δ

where δ = logk2 + log p( /0)

(2.9)

Thus the csPMI of the sum and one word is equal to the log probability of the other word shifted by a model-

specific constant. If we assume, as in section 1.3.5, that the noise is normally distributed, then even without

the assumption of zero reconstruction error, the csPMI of the sum and one word is on average equal to the log

probability of the other word shifted by a constant. We cannot repeat this derivation with GloVe because it is

unclear what the optimal values of the learned biases would be, even with perfect reconstruction.
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2.4.2 Automatically Weighting Words

Corollary 2 In an SGNS word embedding space, on average, the sum of two words has more in common with

the rarer word, where commonality is measured by csPMI.

For two words x,y, assume without loss of generality that p(x)> p(y). By (2.9):

p(x)> p(y) ⇐⇒ log p(x)+δ > log p(y)+δ

⇐⇒ csPMI(z,y)> csPMI(z,x)
(2.10)

Therefore addition automatically down-weights the more frequent word. For example, if the vectors for x = ‘the’

and y = ‘apple’ were added to create a vector for z = ‘the apple’, we would expect csPMI(‘the apple’, ‘apple’)

> csPMI(‘the apple’, ‘the’); being a stopword, ‘the’ would on average be heavily down-weighted. While the

rarer word is not always the more informative one, weighting schemes like inverse document frequency (IDF)

[Robertson, 2004] and unsupervised smoothed inverse frequency (uSIF) [Ethayarajh, 2018] are all based on the

principle that more frequent words should be down-weighted because they are typically less informative. The

fact that addition automatically down-weights the more frequent word thus provides novel justification for using

addition to compose words.

2.4.3 Interpreting Euclidean Distance

Corollary 3 ∃ λ ∈R+,δ ∈R− such that for any two words x and y in an SGNS or GloVe embedding space with

no reconstruction error, λ ‖~x−~y‖2
2=−csPMI(x,y)+δ ′.

From (2.6), we know that for some λ ,α,γ ′ ∈ R, csPMI(x,y) = λγ ′+α , where γ ′ =−‖~x−~y‖2
2. Rearranging

this identity, we get

‖~x−~y‖2
2 =−γ

′

= (−1/λ )(csPMI(x,y)−α)

λ‖~x−~y‖2
2 =−csPMI(x,y)+δ

′

where δ
′ = α

(2.11)

Thus the squared Euclidean distance between two word vectors is simply a linear function of the negative csPMI.

Since csPMI(x,y)∈ (−∞,0] and ‖~x−~y‖2
2 is non-negative, λ is positive. This identity is intuitive: the more similar

two words are (as measured by csPMI), the smaller the distance between their word embeddings. In section 1.5,

we provide empirical evidence of this, showing that there is a moderately strong correlation (Pearson’s r > 0.50)

between −csPMI(x,y) and ‖~x−~y‖2
2, in both normalized and unnormalized SGNS embedding spaces.
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2.4.4 Are Relations Ratios?

[Pennington et al., 2014] conjectured that linear relationships in the embedding space – which we call displace-

ments – correspond to ratios of the form p(w|x)/p(w|y), where (x,y) is a pair of words such that ~y−~x is

the displacement and w is some word in the vocabulary. This claim has since been repeated in other work

[Arora et al., 2016]. For example, according to this conjecture, the analogy (king,queen)::(man,woman) holds

iff for every word w in the vocabulary

p(w|king)
p(w|queen)

≈ p(w|man)
p(w|woman)

(2.12)

However, as noted earlier, this idea was neither derived from empirical results nor rigorous theory, and there has

been no work to suggest that it would hold for models other than GloVe, which was designed around it. We now

prove this conjecture for SGNS using the csPMI Theorem.

Pennington et al. Conjecture Let S be a set of ordered pairs (x,y) with vectors in an SGNS word embedding

space with no reconstruction error. A linear analogy holds over S iff ∀ (x1,y1),(x2,y2) ∈ S, p(w|x1)/p(w|y1) =

p(w|x2)/p(w|y2) for every word w in the vocabulary.

Given that there is no reconstruction error, we can rewrite the identity in the conjecture using (2.3):

p(w|x1)

p(w|y1)
=

p(w|x2)

p(w|y2)

⇐⇒ PMI(w,x1)−PMI(w,y1) =

PMI(w,x2)−PMI(w,y2)

⇐⇒ 〈~wc,~x1〉−〈~wc,~y1〉= 〈~wc,~x2〉−〈~wc,~y2〉

⇐⇒ 〈~wc,(~x1−~y1)− (~x2−~y2)〉= 0

(2.13)

The same equation appears in the derivation in (2.4). This holds iff ~x1− ~y1 = ~x2− ~y2 (i.e., iff, by Definition 2,

an analogy holds over {(x1,y1),(x2,y2)}) or if ~wc is orthogonal to non-zero (~x1− ~y1)− (~x2− ~y2). Even if the

context vector of some word is orthogonal to the difference between the relation vectors, not all are – as noted

in section 1.3.4, not all word or context vectors lie in the same hyperplane. Therefore, a linear word analogy

holds over {(x1,y1),(x2,y2)} iff for every word w, p(w|x1)/p(w|y1) = p(w|x2)/p(w|y2). If this applies to every

(x1,y1),(x2,y2) ∈ S, as stated in the conjecture, then the same analogy holds over S.
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2.5 Experiments

Measuring Noise We uniformly sample word pairs in Wikipedia and estimate the noise (i.e., 〈~x,~yc〉−[PMI(x,y)−

logk]) using SGNS vectors trained on the same corpus. As seen in Figure 2.2, the noise has an approximately

zero-centered Gaussian distribution and the variance of the noise is lower at higher frequencies, supporting our

assumptions in section 1.3.5. As previously mentioned, this is partly why linear word analogies are robust to

noise: at high frequencies, the amount of noise is simply negligible.

Analogy Mean csPMI Mean PMI Median Word Pair Frequency csPMI SD Accuracy
capital-world −9.294 6.103 980.0 0.704 0.965
capital-common-countries −9.818 4.339 3436.5 0.587 0.998
city-in-state −10.127 4.003 4483.0 1.726 0.802
gram6-nationality-adjective −10.691 3.733 3147.0 1.285 0.977
family −11.163 4.111 1855.0 1.702 0.847
gram8-plural −11.787 4.208 342.5 0.768 0.946
gram5-present-participle −14.530 2.416 334.0 1.723 0.769
gram9-plural-verbs −14.688 2.409 180.0 1.463 0.786
gram7-past-tense −14.840 1.006 444.0 1.011 0.747
gram3-comparative −15.111 1.894 194.5 1.077 0.923
gram2-opposite −15.630 2.897 49.0 1.733 0.723
gram4-superlative −15.632 2.015 100.5 1.641 0.793
currency −15.900 3.025 19.0 2.002 0.275
gram1-adjective-to-adverb −17.497 1.113 46.0 1.411 0.763

Table 2.1: The mean csPMI for analogies in [Mikolov et al., 2013a] over the word pairs for which they should hold
(e.g., (Paris, France) for capital-world). As implied by the csPMI Theorem, similar analogies have a similar mean
csPMI and algebraic solutions are less accurate at higher csPMI variances. The type of analogy gradually changes
with the csPMI, from geography (capital-world) to verb tense (gram7-past-tense) to adjectives (gram2-opposite).

Figure 2.2: The noise distribution for an SGNS embedding model (i.e., 〈~x,~yc〉− [PMI(x,y)− logk]) at various
frequencies. The noise is normally distributed and the variance decreases as the frequency increases.

Estimating csPMI The csPMI Theorem implies that if an analogy holds exactly over a set of word pairs when

there is no reconstruction error, then each word pair has the same csPMI value. In Table 2.1, we provide the mean

csPMI values for various analogies in [Mikolov et al., 2013a] over the set of word pairs for which they should
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Figure 2.3: The negative csPMI for a word pair against the squared Euclidean distance between its SGNS word
vectors. There is a positive correlation (Pearson’s r = 0.502); the more similar two words are, the smaller the
Euclidean distance between their vectors. In the normalized SGNS word space, the correlation is just as strong
(Pearson’s r = 0.514).

hold (e.g., {(Paris, France), (Berlin, Germany)} for capital-world). We also provide the accuracy of the vector

algebraic solutions for each analogy, found by minimizing cosine distance over the set of all words in the analogy

task.

As expected, when solutions to word analogies are more accurate, the variance in csPMI tends to be lower.

This is because an analogy is more likely to hold over a set of word pairs when the displacement vectors are

the same, and thus when the csPMI values are the same. Similar analogies (e.g., capital-world and capital-

common-countries) also have similar mean csPMI values – our theory implies this, since similar analogies have

similar displacement vectors. As the csPMI changes, the type of analogy gradually changes from geography

(capital-world, city-in-state) to verb tense (gram5-present-participle, gram7-past-tense) to adjectives (gram2-

opposite, gram4-superlative). We do not witness a similar gradation with the mean PMI, implying that analogies

correspond uniquely to csPMI but not PMI.

Euclidean Distance Because the sum of two word vectors is not in the vocabulary, we cannot calculate co-

occurrence statistics involving the sum, precluding us from testing Corollaries 1 and 2. We test Corollary 3 by

uniformly sampling word pairs and plotting, in Figure 2.3, the negative csPMI against the squared Euclidean

distance between the SGNS word vectors. As expected, there is a moderately strong and positive correlation

(Pearson’s r = 0.502): the more similar two words are (as measured by csPMI) the smaller the Euclidean distance

between their vectors. The correlation is just as strong in the normalized SGNS word space, where Pearson’s r

= 0.514. As mentioned earlier in section 1.3.4, our assumption that p(w,w) follows the Zipf distribution of p(w)

scaled by some ρ ∈ (0,1) is justified here, since there is a strong positive correlation between the two (Pearson’s

r = 0.825).
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Unsolvability The csPMI Theorem reveals two reasons why an analogy may be unsolvable in a given em-

bedding space: polysemy and corpus bias. Consider senses {x1, ...,xM} of a polysemous word x. Assum-

ing perfect reconstruction, a linear analogy f whose displacement has csPMI γ does not hold over (x,y) if

γ 6= PMI(x,y)+ log p(x,y) = log [p(x1|y)+ ...+ p(xM|y)] p(y|x). The Theorem applies over all the senses of x,

even if only a particular sense is relevant to the analogy. For example, while (open,closed)::(high,low) may make

intuitive sense, it is unlikely to hold in an embedding space, given that all four words are highly polysemous.

Even if (a,b)::(x,y) is intuitive, there is also no guarantee that csPMI(a,b) ≈ csPMI(x,y) and csPMI(a,x) ≈

csPMI(b,y) for a given training corpus. The less frequent a word pair is, the more sensitive its csPMI to even

small changes in frequency. Infrequent word pairs are also associated with more reconstruction error (see section

1.3.5), making it even more unlikely that the analogy will hold in practice. This is why the accuracy for the

currency analogy is so low (see Table 2.1) – in Wikipedia, currencies and their country co-occur with a median

frequency of only 19.

2.6 Conclusion

In this paper, we answered several open questions about gender bias in word embeddings, and word associations

more broadly. We proved that when there is no reconstruction error, for any embedding model that implicitly

does matrix factorization (e.g., SGNS, GloVe), debiasing with the subspace projection method is equivalent to

training on an unbiased corpus. This was the first theoretical guarantee of this method, which is popular due

to its empirical success. We then proved that WEAT and WEFAT, the most common tests of word embedding

association, have theoretical flaws that exaggerate the extent of gender bias. By contriving the attribute sets for

WEFAT, virtually any word can be classified as gender-biased. We then derived a new measure of association in

word embeddings called the relational inner product association (RIPA). Using RIPA, we found that SGNS does

not, on average, make most words any more gendered than they are in the training corpus. However, for words

that are gender-biased or gender-specific by definition, SGNS actually amplifies the genderedness in the corpus.



Chapter 3

Understanding Undesirable Word

Embedding Associations

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst

3.1 Introduction

A common criticism of word embeddings is that they capture undesirable associations in vector space. In ad-

dition to gender-appropriate analogies such as king:queen::man:woman, gender-biased analogies such as doc-

tor:nurse::man:woman also hold in SGNS embedding spaces [Bolukbasi et al., 2016]. [Caliskan et al., 2017]

created association tests for word vectors called WEAT and WEFAT, which use cosine similarity to measure how

associated words are with respect to two sets of attribute words (e.g., ‘male’ vs. ‘female’). They claimed that

the vector for ‘science’ was significantly more associated with male attributes and the vector for ‘art’ with more

female ones, for example. Since these associations are socially undesirable, they were described as gender bias.

Despite these remarkable findings, gender bias in word embeddings is still poorly understood. For one, what

causes it – is it biased training data, the embedding model itself, or just noise? Why should WEAT and WEFAT

be the tests of choice for measuring associations in word embeddings? [Bolukbasi et al., 2016] found that word

vectors could be debiased by defining a “bias subspace” in the embedding space and then subtracting from each

vector its projection on this subspace. But what theoretical guarantee is there that this method actually debiases

vectors?

In this paper, we answer several of these open questions. We begin by proving that for any neural embedding

model that implicitly does matrix factorization (e.g., GloVe, SGNS), assuming no reconstruction error, debiasing

18
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vectors post hoc via subspace projection is equivalent to training on an unbiased corpus. We find that contrary to

what [Bolukbasi et al., 2016] suggested, word embeddings should not be normalized before debiasing, as vector

length can contain important information [Ethayarajh et al., 2018]. If applied this way, the subspace projection

method can be used to provably debias embeddings generated by SGNS and GloVe, among other models.

Using this notion of a “bias subspace”, we then prove that WEAT and WEFAT, the most common association

tests for word embeddings, have theoretical flaws that exaggerate the extent of gender bias. At least for SGNS and

GloVe, these tests implicitly require the two sets of attribute words (e.g., ‘male’ vs. ‘female’) to occur with equal

frequency in the training corpus; when they do not, even gender-neutral words can be classified as gender-biased.

The test statistics for WEAT and WEFAT can also be easily manipulated by contriving the attribute word sets,

allowing virtually any word – even a gender-neutral one – to be classified as male- or female-biased.

Given that subspace projection removal provably debiases embeddings, we use it to derive a new measure

of association in word embeddings called the relational inner product association (RIPA). Given a set of or-

dered word pairs (e.g., {(‘man’, ‘woman’), (‘male’, ‘female’)}), we take the first principal component of all the

difference vectors, which we call the relation vector ~b. In [Bolukbasi et al., 2016]’s terminology, ~b would be a

one-dimensional bias subspace. Then, for a word vector ~w, the relational inner product is simply 〈~w,~b〉. Because

RIPA is for embedding models that implicitly do matrix factorization, it has an information theoretic interpreta-

tion, allowing us to directly compare the association in the vector space with the association in the training corpus.

This yields novel insights into the origin of gender bias in embedding spaces:

1. SGNS does not, on average, make the vast majority of words any more gendered in the vector space than

they are in the training corpus; individual words may be slightly more or less gendered due to reconstruction

error. However, for words that are gender-stereotyped (e.g., nurse) or gender-specific by definition (e.g.,

queen), SGNS amplifies the gender association in the training corpus.

2. To use the subspace projection method, one must have prior knowledge of which words are gender-specific

by definition, so that they are not also debiased. Debiasing all vectors can preclude gender-appropriate

analogies such as king:queen::man:woman from holding in the vector space. Since [Bolukbasi et al., 2016]

use a supervised method to identify gender-specific words, we propose an unsupervised method. Ours is

much more effective at preserving gender-appropriate analogies and precluding gender-biased ones.

To allow a fair comparison with prior work, our experiments in this paper focus on gender association. However,

we ground our claims in theory so that they extend to other types of word associations as well, which we leave as

future work.
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3.2 Related Work

Word Embeddings Word embedding models generate distributed representations of words in a low-dimensional

continuous space. This is generally done using: (a) neural networks that learn embeddings by predicting the con-

texts words appear in, or vice-versa [Bengio et al., 2003, Mikolov et al., 2013b, Collobert and Weston, 2008]; (b)

low-rank approximations of word-context matrices containing a co-occurrence statistic [Landauer and Dumais, 1997,

Levy and Goldberg, 2014]. The objective of SGNS is to maximize the probability of observed word-context

pairs and to minimize the probability of k randomly sampled negative examples. Though no co-occurrence

statistics are explicitly calculated, [Levy and Goldberg, 2014] proved that SGNS is implicitly factorizing a word-

context PMI matrix shifted by − logk. Similarly, GloVe implicitly factorizes a log co-occurrence count matrix

[Pennington et al., 2014].

Word Analogies A word analogy a:b::x:y asserts that “a is to b as x is to y” and holds in the embedding

space iff ~a+(~y−~x) =~b. [Ethayarajh et al., 2018] proved that for GloVe and SGNS, a:b::x:y holds exactly in an

embedding space with no reconstruction error iff csPMI(a,b) = csPMI(x,y) and csPMI(a,x) = csPMI(b,y), where

csPMI(a,b) = PMI(a,b)+ log p(a,b). Word analogies are often used to signify that semantic and grammatical

properties of words (e.g., verb tense, gender) can be captured as linear relations.

Measuring Associations [Caliskan et al., 2017] proposed what are now the most commonly used association

tests for word embeddings. The word embedding factual association test (WEFAT) and word embedding associ-

ation test (WEAT) use cosine similarity to measure how associated a given set(s) of target words are with respect

to two sets of attribute words (e.g., ‘male’ vs. ‘female’). WEFAT is used for testing a single set of target words;

WEAT for two sets. For example, [Caliskan et al., 2017] claimed that the vector for ‘science’ was more associ-

ated with ‘male’ than ‘female’ attributes, and that this was statistically significant. However, aside from some

intuitive results (e.g., that female names are associated with female attributes), there is little evidence that WEAT

and WEFAT are good measures of association.

Debiasing Embeddings [Bolukbasi et al., 2016] claimed that the existence of gender-biased analogies such

as doctor:nurse::man :woman constituted gender bias. To prevent such analogies from holding in the vector

space, they subtracted from each biased word vector its projection on a “gender bias subspace”. This subspace

was defined by the first m principal components for ten gender relation vectors (e.g., ~man− ~woman). Each

debiased word vector was thus orthogonal to the gender bias subspace and its projection on the subspace was zero.

While this subspace projection method precluded gender-biased analogies from holding in the embedding space,

[Bolukbasi et al., 2016] did not provide any theoretical guarantee that the vectors were unbiased (i.e., equivalent
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to vectors that would be obtained from training on a gender-agnostic corpus with no reconstruction error). Other

work has tried to learn gender-neutral embeddings from scratch [Zhao et al., 2018], despite this approach requiring

custom changes to the objective of each embedding model.

3.3 Provably Debiasing Embeddings

Experiments by [Bolukbasi et al., 2016] found that debiasing word embeddings using the subspace projection

method precludes gender-biased analogies from holding. However, as we noted earlier, despite this method being

intuitive, there is no theoretical guarantee that the debiased vectors are perfectly unbiased or that the debiasing

method works for embedding models other than SGNS. In this section, we prove that for any embedding model

that does implicit matrix factorization (e.g., GloVe, SGNS), when there is no reconstruction error, debiasing

unnormalized embeddings post hoc using the subspace projection method is equivalent to training on a perfectly

unbiased corpus.

Definition 1 Let M denote the Hermitian word-context matrix for a given training corpus that is implicitly or

explicitly factorized by the embedding model. Let S denote a set of word pairs. A word w is unbiased with respect

to S iff ∀(x,y) ∈ S,Mw,x = Mw,y. M is unbiased with respect to S iff ∀w 6∈ S, w is unbiased. A word w or matrix M

is biased wrt S iff it is not unbiased wrt S.

Note that Definition 1 does not make any distinction between socially acceptable and socially unacceptable

associations. A word that is gender-specific by definition and a word that is gender-biased due to stereotypes

would both be considered biased by Definition 1, although only the latter is undesirable. For example, by Def-

inition 1, ‘door’ would be unbiased with respect to the set {(‘male’, ‘female’)} iff the entries for Mdoor,male and

Mdoor,female were interchangeable. The entire corpus would be unbiased with respect to the set iff Mw,male and

Mw,female were interchangeable for any word w. Since M is a word-context matrix containing a co-occurrence

statistic, unbiasedness effectively means that the elements for (w, ‘male’) and (w, ‘female’) in M can be switched

without any impact on the embeddings. M is factorized into a word matrix W and context matrix C such that

WCT = M, with the former giving us our word embeddings.

Theorem 1 For a set of word pairs S, let B denote the bias subspace spanned by {~x−~y |(x,y) ∈ S}. For every

word w 6∈ S, let ~wd , ~w−projB~w. Assuming no reconstruction error, where WCT = M, the reconstructed matrix

WdCT = Md is unbiased with respect to S.

Lemma 1 A word embedding ~w is unbiased with respect to a set of word pairs S iff ∀(x,y) ∈ S,〈~w,~xc−~yc〉= 0,

where ~xc,~yc are the context vectors of x,y respectively.
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Assuming perfect reconstruction, this follows from Definition 1. The word w is unbiased with respect to S iff

∀(x,y) ∈ S,Mw,x = Mw,y ⇐⇒ 〈~w,~xc〉= 〈~w,~yc〉 ⇐⇒ 〈~w,~xc−~yc〉= 0.

Lemma 2 Assuming there is no reconstruction error, for any word w and any (x,y) ∈ S, ∃ λ ∈R, 〈~w,~xc−~yc〉=

λ 〈~w,~x−~y〉.

For a detailed explanation, we refer the reader to the proof of Lemma 2 of [Ethayarajh et al., 2018], which

shows that under perfect reconstruction, ∃ λ ∈ R,C = λW . In short, if a linear word analogy holds over S (i.e.,

the word pairs have the same difference vector), then there exists a real symmetric matrix A that maps W to

C. A can only have non-distinct eigenvalues because any word analogy that holds in the word space must also

hold in the context space. All word vectors must therefore lie in the same eigenspace, with eigenvalue λ . Then

〈~w,~xc−~yc〉= 〈~w,λ (~x−~y)〉.

Proof of Theorem 1 Each debiased word vector wd is orthogonal to the bias subspace in the word embedding

space, so ∀(x,y)∈ S,〈~wd ,~x−~y〉= 0. Then by Lemma 2, ∀(x,y)∈ S,〈~wd ,~xc−~yc〉= λ 〈~wd ,~x−~y〉= 0. By Lemma

1, every debiased word vector ~wd is therefore unbiased with respect to S. This implies that the co-occurrence

matrix Md that is reconstructed using the debiased word matrix Wd is also unbiased with respect to S.

The subspace projection method is therefore far more powerful than initially stated in [Bolukbasi et al., 2016]:

not only can it be applied to any embedding model that implicitly does matrix factorization (e.g., GloVe, SGNS),

but debiasing word vectors in this way is equivalent to training on a perfectly unbiased corpus when there is no

reconstruction error. However, word vectors should not be normalized prior to debiasing, since the matrix that

is factorized by the embedding model cannot necessarily be reconstructed with normalized embeddings, at least

when there is no reconstruction error.

3.4 The Flaws of WEAT and WEFAT

Given attribute word sets X and Y (e.g., {‘male’, ‘man’} vs. {‘female’, ‘woman’}), WEFAT and WEAT use

cosine similarity-based statistics to capture whether a given set(s) of target words are more associated with X or

Y [Caliskan et al., 2017]. For the sake of simplicity, we focus on WEFAT – which applies to a single set of target

words – though our criticisms extend to WEAT as well. Given w,X ,Y , the statistic d for WEFAT is:

d =
µ({cos(~w,~x)|x ∈ X})−µ({cos(~w,~y)|y ∈ Y})

σ({cos(~w,~z) | z ∈ X ∪Y})
(3.1)

This statistic is calculated for every word w in the target set, which also has a value pw that denotes some property.

The null hypothesis is that d is unrelated to pw, which is tested using linear regression [Caliskan et al., 2017].
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Proposition 1 Let X = {x},Y = {y}, and w be unbiased with respect to {(x,y)} by Definition 1. According to

WEFAT, an SGNS vector ~w is equally associated with X and Y under perfect reconstruction iff p(x) = p(y).

Both theoretical and empirical work have found the squared word embedding norm ‖~w‖2
2 to be linear in the

log probability of the word, log p(w) [Arora et al., 2016, Ethayarajh et al., 2018]. Then where α1,α2 ∈ R,

0 = cos(~w,~x)− cos(~w,~y)

=
1
‖~w‖2

(
〈~w,~x〉
‖~x‖2

− 〈~w,~y〉
‖~y‖2

)
=

〈~w,~x〉√
α1 log p(x)+α2

− 〈~w,~y〉√
α1 log p(y)+α2

(3.2)

By Theorem 1, w is unbiased with respect to the set {(x,y)} iff 〈~w,~x〉 = 〈~w,~y〉. Therefore (3.2) holds iff p(x) =

p(y). Because SGNS implicitly factorizes a shifted word-context PMI matrix [Levy and Goldberg, 2014] and the

context matrix is a scalar multiple of the word matrix when there is no reconstruction error [Ethayarajh et al., 2018],

if the squared vector norm were not linear in log p(w), then the condition that would need to be satisfied is even

stricter: PMI(x,x) = PMI(y,y).

Thus for w to be equally associated with both sets of attribute words, not only must w be unbiased with

respect to {(x,y)} by Definition 1, but words x,y must also occur with equal frequency in the corpus. If the

embedding model were GloVe instead of SGNS, the equal frequency requirement would still apply, since GloVe

implicitly factorizes a log co-occurrence count matrix [Pennington et al., 2014] while SGNS implicitly factorizes

the shifted PMI matrix [Levy and Goldberg, 2014]. Despite this being implicitly required, it was not stated as a

requirement in [Caliskan et al., 2017] for using WEAT and WEFAT. In practice, this issue often goes unnoticed

because each word in the attribute set, at least for gender association, has a counterpart that appears with roughly

equal frequency in most training corpora (e.g., ‘man’ vs. ‘woman’, ‘boy’ vs. ‘girl’). However, for attribute sets

that are more nebulous (e.g., ‘pleasant’ vs. ‘unpleasant’ words), this is not guaranteed to hold.

Proposition 2 Assume that for a word w, ∃ c ∈ R+, ∀ x ∈ X ,cos(~w,~x) = c and ∀ y ∈ Y,cos(~w,~y) = −c. Then

regardless of how small |c| is, the WEFAT statistic d = 2.

If ∃c ∈R+, ∀x ∈ X ,cos(~w,~x) = c and ∀y ∈Y,cos(~w,~y) =−c, then µ({cos(~w,~a)|a ∈ A})−µ({cos(~w,~b)|b ∈

B}) = 2c. Because the standard deviation is also c, d = 2c/c = 2. In this scenario, the WEFAT statistic is at its

maximum regardless of how small |c| is. For example, even if the cosine similarity is 0.01 between ~door and male

attribute words while being −0.01 between ~door and female attribute words, ~door would still be male-associated

according to WEFAT. Even though this exact scenario does not always apply, it evinces that attribute sets can be

easily contrived to manipulate the test statistic, such that even words that are marginally closer to one attribute

set in the vector space end up being classified as biased. In Table 3.1, we show how we can easily contrive the
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Target Word Male Attribute Words Female Attribute Words µmale µfemale WEFAT Statistic
male, masculine, manly she, womanly, girl 0.115 0.226 −1.425
male, masculine, man she, woman, female 0.152 0.197 −0.707

door male, masculine female, feminine 0.108 0.109 −0.040
male, manly female, feminine 0.138 0.109 1.356
male, boyish female, feminine 0.177 0.109 1.582
male, masculine, manly she, womanly, girl 0.119 0.199 −1.297
male, masculine female, feminine 0.100 0.121 −0.723

bowtie male, manly female, feminine 0.118 0.121 −0.087
male, masculine, man she, woman, female 0.134 0.118 0.393
male, boyish female, feminine 0.206 0.121 0.825
male, masculine, manly she, womanly, girl 0.106 0.147 −1.282
male, masculine female, feminine 0.084 0.097 −0.954

hairpin male, masculine, man she, woman, female 0.116 0.129 −0.338
male, manly female, feminine 0.110 0.097 0.421
male, boyish female, feminine 0.148 0.097 0.821

Table 3.1: By contriving the ‘male’ and ‘female’ attribute words, we can manipulate the WEFAT statistic to
claim that any target word is female-biased (i.e., negative statistic), male-biased (i.e., positive statistic), or gender-
neutral. For example, the values for ‘door’ (top row) range from −1.425 (strong female bias) to 1.582 (strong
male bias).

attribute sets to claim that any given target word is female-biased, male-biased, or gender-neutral.

Broadly speaking, cosine similarity is a useful measure of embedding similarity and hypothesis tests are

useful for testing differences between samples. Because of this, WEAT and WEFAT seem, at first glance, to be

intuitive. However, as shown in Propositions 1 and 2, there are two key theoretical flaws to WEAT and WEFAT

that exaggerate the degree of association and ultimately make them inappropriate for word embeddings. The only

other metric of note quantifies association as |cos(~w,~b)|c, where~b is the bias subspace and c∈R the “strictness” of

the measurement [Bolukbasi et al., 2016]. For the same reason discussed in Proposition 1, this too is exaggerative.

3.5 Relational Inner Product Association

Given the theoretical flaws of WEAT and WEFAT, we derive a new measure of word embedding association using

the subspace projection method, which provably debiases embeddings (section 3.3).

Definition 2 The relational inner product association β (~w;~b) of a word vector ~w ∈ V with respect to a relation

vector~b ∈V is 〈~w,~b〉. Where S is a non-empty set of ordered word pairs (x,y) that define the association,~b is the

first principal component of {~x−~y | (x,y) ∈ S}.

Our metric, the relational inner product association (RIPA), is simply the inner product of a relation vector

describing the association and a given word vector in the same embedding space. To use the terminology in

[Bolukbasi et al., 2016], RIPA is the scalar projection of a word vector onto a one-dimensional bias subspace

defined by the unit vector~b. When ~w is unbiased with respect to S (by Definition 1), the projection of ~w on the

subspace is~0, meaning that RIPA will also be 0. In their experiments, [Bolukbasi et al., 2016] defined~b as the

first principal component for a set of ten gender difference vectors (e.g., ~man− ~woman). This would be the means



CHAPTER 3. UNDERSTANDING UNDESIRABLE WORD EMBEDDING ASSOCIATIONS 25

of deriving~b for RIPA as well. As we show in the rest of this section, the interpretability of RIPA, its robustness

to how the relation vector is defined, and its derivation from a method that provably debiases word embeddings

are the key reasons why it is an ideal replacement for WEAT and WEFAT. Given that RIPA can be used for any

embedding model that implicitly does matrix factorization, it is applicable to most common embedding models,

such as SGNS and GloVe.

3.5.1 Interpreting RIPA

If only a single word pair (x,y) defines the association, then the relation vector ~b = (~x−~y)/‖~x−~y‖, making

RIPA highly interpretable. Given that RIPA is for embedding models that factorize a matrix M containing a

co-occurrence statistic (e.g., the shifted word-context PMI matrix for SGNS), if we assume that there is no recon-

struction error, we can rewrite β (~w;~b) in terms of M. Where x and y have context vectors ~xc and ~yc, λ ∈ R is

such that C = λW (see Lemma 2, [Ethayarajh et al., 2018]), δ ′ ∈ R− is a model-specific constant, and there is no

reconstruction error:

βSGNS(~w;~b) =
(1/λ )〈~w,~xc−~yc〉

‖~x−~y‖

=
(1/λ )(PMI(x,w)−PMI(y,w))√

(1/λ )(−csPMI(x,y)+δ ′)

=
1/
√

λ√
−csPMI(x,y)+δ ′

log
p(w|x)
p(w|y)

(3.3)

Here, csPMI(x,y),PMI(x,y)+log p(x,y) and is equal to−λ‖~x−~y‖2
2+δ ′ under perfect reconstruction [Ethayarajh et al., 2018].

There are three notable features of this result:

1. [Ethayarajh et al., 2018] proved the conjecture by [Pennington et al., 2014] that a word analogy holds over

a set of words pairs (x,y) iff for every word w, log[p(w|x)/p(w|y)] is the same for every word pair (x,y).

The expression in (3.3) is a multiple of this term.

2. Assuming no reconstruction error, if a linear word analogy holds over a set of ordered word pairs (x,y), then

the co-occurrence shifted PMI (csPMI) should be the same for every word pair [Ethayarajh et al., 2018].

The more x and y are unrelated, the closer that csPMI(x,y) is to−∞ and β (~w;~b) is to 0. This prevents RIPA

from exaggerating the extent of the association simply because x and y are far apart in embedding space.

3. Because~b is a unit vector, β (~w;~b) is bounded in [−‖~w‖,‖~w‖]. This means that one can calculate a word’s

association with respect to multiple relation vectors and then compare the resulting RIPA values.

These points highlight just how robust RIPA is to the definition of~b. As long as a word analogy holds over the

word pairs that define the association – i.e., as long as the word pairs have roughly the same difference vector
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– the choice of word pair does not affect log[p(w|x)/p(w|y)] or csPMI(x,y). Using (‘king’, ‘queen’) instead of

(‘man’, ‘woman’) to define the gender relation vector, for example, would have a negligible impact. In contrast,

as shown in section 3.4, the lack of robustness of WEAT and WEFAT to the choice of attribute sets is one reason

they are so unreliable.

We can also interpret β (~w;~b) for other embedding models, not just SGNS. Where Xx,y denotes the frequency

of a word pair (x,y) and zx,zy denote the learned bias terms for GloVe:

βGloVe(~w;~b) =C
(

log
p(x,w)
p(y,w)

− zx + zy

)
where C =

1/
√

λ√
−csPMI(x,y)+δ ′

(3.4)

Because the terms zx,zy are learned, β (~w;~b) is not as interpretable for GloVe. However, [Levy et al., 2015] have

conjectured that, in practice, zx,zy may be equivalent to the log counts of x and y respectively, in which case

βGloVe = βSGNS.

3.5.2 Statistical Significance

Unlike WEAT and WEFAT, there is no notion of statistical significance attached to RIPA. There is a simple reason

for this. Whether a word vector ~w is spuriously or non-spuriously associated with respect to a relation vector (~x−

~y)/‖~x−~y‖ depends on how frequently (w,x) and (w,y) co-occur in the training corpus; the more co-occurrences

there are, the less likely the association is spurious. As shown in experiments by [Ethayarajh et al., 2018], the

reconstruction error for any word pair (x,y) follows a zero-centered normal distribution where the variance is a

decreasing function of Xx,y. Word embeddings alone are thus not enough to ascribe a statistical significance to the

association. This also implies that the notion of statistical significance in WEAT and WEFAT is disingenuous, as

it ignores how the spuriousness of an association depends on co-occurrence frequency in the training corpus.

3.6 Experiments

With our experiments, we address two open questions. For one, how much of the gender association in an

embedding space is due to the embedding model itself, how much is due to the training corpus, and how much is

just noise? Second, how can we debias gender-biased words (e.g., ‘doctor’, ‘nurse’) but not gender-appropriate

ones (e.g., ‘king’, ‘queen’) without a priori knowledge of which words belong in which category?



CHAPTER 3. UNDERSTANDING UNDESIRABLE WORD EMBEDDING ASSOCIATIONS 27

Word Type Word Genderedness in Corpus Genderedness in Embedding Space Change (abs.)
mom −0.163 −0.648 0.485
dad 0.125 0.217 0.092

Gender-Appropriate queen −0.365 −0.826 0.462
(n = 164) king 0.058 0.200 0.142

Avg (abs.) 0.231 0.522 0.291
nurse −0.190 −1.047 0.858
doctor −0.135 −0.059 −0.077

Gender-Biased housekeeper −0.132 −0.927 0.795
(n = 68) architect −0.063 0.162 0.099

Avg (abs.) 0.253 0.450 0.197
ballpark 0.254 0.050 −0.204
calf −0.039 0.027 −0.012

Gender-Neutral hormonal −0.326 −0.551 0.225
(n = 200) speed 0.036 −0.005 −0.031

Avg (abs.) 0.125 0.119 −0.006

Table 3.2: On average, SGNS makes gender-appropriate words (e.g., ‘queen’) and gender-biased words (e.g.,
‘nurse’) more gendered in the embedding space than they are in the training corpus. As seen in the last column (in
bold), the average change in absolute genderedness for these categories is 0.291 and 0.197 respectively. However,
for gender-neutral words, the average change is −0.006: SGNS does not make the words any more gendered.

3.6.1 Setup

For our experiments, we use SGNS embeddings trained on Wikipedia, since RIPA is highly interpretable for

SGNS (see section 3.5). This means that for any given word in the vocabulary, we can compare its gender

association in the training corpus to its gender association in the embedding space, which should be equal under

perfect reconstruction. Words are grouped into three categories with respect to gender: biased, appropriate, and

neutral. We create lists of biased and appropriate words using the [Bolukbasi et al., 2016] lists of gender-biased

and gender-appropriate analogies. For example, doctor:nurse::man:woman is biased, so we classify the first two

words as biased. The last category, neutral, contains uniformly randomly sampled words that appear at least

10K times in the corpus and that are not in either of the other categories, and which we therefore expect to be

gender-agnostic.

3.6.2 Breaking down Gender Association

For any given word, the gender association in the training corpus is what the gender association in the embedding

space would be if there were no reconstruction error. By comparing these two quantities, we can infer the change

induced by the embedding model. Let g(w;x,y) denote the RIPA of a word w with respect to the gender relation

vector defined by word pair (x,y), let ĝ(w;x,y) denote what g(w;x,y) would be under perfect reconstruction for an

SGNS embedding model, and let ∆g denote the change in absolute gender association from corpus to embedding

space. Where S is a set of gender-defining word pairs (e.g., (‘man’, ‘woman’)) and λ ,δ ′ are the model-specific
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constants defined in section 3.5,

g(w;x,y) =
〈~w,~x−~y〉
‖~x−~y‖

ĝ(w;x,y) =
1/
√

λ√
−csPMI(x,y)+δ ′

log
p(w|x)
p(w|y)

∆g(w;S) =

∣∣∣∣∣ ∑
(x,y)∈S

g(w;x,y)
|S|

∣∣∣∣∣−
∣∣∣∣∣ ∑
(x,y)∈S

ĝ(w;x,y)
|S|

∣∣∣∣∣
(3.5)

We take the absolute value of each term because the embedding model may make a word more gendered,

but in the direction opposite of what is implied in the corpus. λ ← 1 because we expect λ ≈ 1 in practice

[Ethayarajh et al., 2018, Mimno and Thompson, 2017]. Similarly, δ ′← 1 because it minimizes the difference be-

tween ‖~x−~y‖ and its information theoretic interpretation over the gender-defining word pairs in S, though this is

an estimate and may differ from the true value of δ ′. The set S itself is taken from [Bolukbasi et al., 2016]. In

Table 3.2, we list the gender association in the training corpus (g(w)), the gender association in embedding space

(ĝ(w)), and the absolute change (∆g(w)) for each group of words.

On average, the SGNS embedding model does not make gender-neutral words any more gendered than they

are in the training corpus. Given that much of the vocabulary falls into this category, this means that the embedding

model does not systematically change the genderedness of most words. However, because of reconstruction error,

individual words may be more or less gendered in the embedding space, simply due to chance. In contrast, for

words that are either gender-biased or gender-appropriate, on average, the embedding model actually amplifies

the gender association in the corpus. For example, for the word ‘king’, which is gender-specific by definition, the

association is 0.058 in the corpus and 0.200 in the embedding space – it becomes more male-associated. For the

word ‘nurse’, which is gender-biased, the association is−0.190 in the corpus and−1.047 in the embedding space

– it becomes more female-associated. On average, the amplification is much greater for gender-appropriate words

than it is for gender-biased ones, although the latter are more gendered in the corpus itself.

This amplification effect is unsurprising and can largely be explained by second-order similarity. Two words

can be nearby in a word embedding space if they co-occur frequently in the training corpus (first-order similarity)

or if there exists a large set of context words with which they both frequently co-occur (second-order similarity).

The latter explains why words like ‘Toronto’ and ‘Melbourne’ are close to each other in embedding space; both are

cities that appear in similar contexts. In an environment with some reconstruction error, such as low-dimensional

embedding spaces, second-order similarity permits words to be closer in embedding space than would be the case

if only first-order similarity had an effect. As a result, 〈 ~king, ~man〉 > (1/λ )(PMI(king,man)− logk) for SGNS,

for example. What is often treated as a useful property of word embeddings can have, with respect to gender bias,

a pernicious effect.
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Figure 3.1: The [Bolukbasi et al., 2016] method of identifying gender-appropriate words – to avoid debiasing
them – is ineffective: it ends up precluding most gender-appropriate analogies (dotted line, left) while preserving
most gender-biased analogies (dotted line, right). Our unsupervised method (dashed line) does much better in both
respects. The x-axis is a threshold for how gendered the first word pair (x,y) in an analogy is (i.e., |β (~x−~y;~b)| ).

3.6.3 Debiasing without Supervision

To use the subspace projection method [Bolukbasi et al., 2016], one must have prior knowledge of which words

are gender-appropriate, so that they are not debiased. Debiasing all vectors can preclude gender-appropriate

analogies such as king:queen: :man:woman from holding in the embedding space. To create an exhaustive list

of gender-appropriate words, [Bolukbasi et al., 2016] started with a small, human-labelled set of words and then

trained an SVM to predict more gender-appropriate terms in the vocabulary. This bootstrapped list of gender-

appropriate words was then left out during debiasing.

The way in which [Bolukbasi et al., 2016] evaluated their method is unorthodox: they tested the ability of their

debiased embedding space to generate new analogies. However, this does not capture whether gender-appropriate

analogies are successfully preserved and gender-biased analogies successfully precluded. In Figure 3.1, we show

how the number of appropriate and biased analogies changes after debiasing. The x-axis captures how strongly

gendered the analogy is, using the absolute RIPA value |β (~w;~b)| but replacing ~w with the difference vector defined

by the first word pair (e.g., ~king− ~queen). The y-axis captures the number of analogies that meet that threshold.

As seen in Figure 3.1, using [Bolukbasi et al., 2016]’s bootstrapped list of gender-appropriate words yields the

opposite of what is intended: it is much better at preserving biased analogies and precluding appropriate ones.

We propose an unsupervised alternative. We first create a gender-defining relation vector~b∗ by taking the first

principal component of gender-defining difference vectors such as ~man− ~woman. Using difference vectors from

biased analogies, such as ~doctor− ~midwife, we then create a gender-bias relation vector~b′ the same way. We then

debias a word w iff it satisfies |β (~w;~b∗)|< |β (~w;~b′)|. As seen in Figure 3.1, this simple condition is sufficient

to preserve almost all gender-appropriate analogies while precluding most gender-biased ones. In our debiased
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embedding space, 94.9% of gender-appropriate analogies with a strength of at least 0.5 are preserved while only

36.7% of gender-biased analogies are. In contrast, the [Bolukbasi et al., 2016] method preserves only 16.5% of

appropriate analogies with a strength of at least 0.5 while preserving 80.0% of biased ones. Combining our simple

heuristic with other approaches may yield even better results, which we leave as future work.

3.7 Conclusion

In this paper, we answered several open questions about gender bias in word embeddings, and word associations

more broadly. We proved that when there is no reconstruction error, for any embedding model that does matrix

factorization (e.g., SGNS, GloVe), the subspace projection method [Bolukbasi et al., 2016] provably debiases

embeddings. This was the first theoretical guarantee of this method, which is popular due to its empirical success.

We then proved that WEAT and WEFAT, the most common tests of word embedding association, have theoretical

flaws that exaggerate the extent of gender bias. By contriving the attribute sets for WEFAT, virtually any word

can be classified as gender-biased. We then derived a new measure of association in word embeddings called

the relational inner product association (RIPA). Using RIPA, we found that SGNS does not, on average, make

most words any more gendered than they are in the training corpus. However, for words that are gender-biased or

gender-specific by definition, SGNS actually amplifies the genderedness in the corpus.



Chapter 4

Unsupervised Random Walk Sentence

Embeddings: A Strong but Simple

Baseline

Kawin Ethayarajh

4.1 Introduction

Distributed representations of words, better known as word embeddings, have become fixtures of current methods

in natural language processing. Word embeddings can be generated in a number of ways [Bengio et al., 2003,

Collobert and Weston, 2008, Pennington et al., 2014, Mikolov et al., 2013b] by capturing the semantics of a word

using the contexts it appears in. Recent work has tried to extend that intuition to sequences of words, using meth-

ods ranging from a weighted average of word embeddings to convolutional, recursive, and recurrent neural net-

works [Le and Mikolov, 2014, Kiros et al., 2015, Luong et al., 2013, Tai et al., 2015]. Still, [Wieting et al., 2016b]

found that these sophisticated architectures are often outperformed, particularly in transfer learning settings, by

sentence embeddings generated as a simple average of tuned word embeddings.

[Arora et al., 2017b] provided a more powerful approach: compute the sentence embeddings as weighted

averages of word embeddings, then subtract from each one the vector projection on their first principal component.

The weighting scheme, smoothed inverse frequency (SIF), is derived from a random walk model where words in

a sentence s are produced by the random walk of a latent discourse vector cs. A word unrelated to cs can be

produced by chance or if it is part of frequent discourse such as stopwords. This approach evens outperforms

31
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more complex models such as LSTMs on textual similarity tasks. Arora et al. argued that the simplicity and

effectiveness of their method make it a tough-to-beat baseline for sentence embeddings. Though they call their

approach unsupervised, others have noted that it is actually ‘weakly supervised’, since it requires hyperparameter

tuning [Cer et al., 2017].

In this paper, we first propose a class of worst-case scenarios for Arora et al.’s random walk model. Specif-

ically, given some sentence g that is dominated by words with zero similarity, and some sentence h that is dom-

inated by identical words, we show that their approach can return two discourse vectors cg and ch such that

p(g|cg) ≈ p(h|ch), provided that the word vectors for g have a sufficiently greater length than those for h. In

other words, word vector length has a confounding effect on the probability of a sentence being generated, and

this effect can be strong enough to yield completely unintuitive results. This problem is not endemic to these

scenarios, though they are the most illustrative of it; because of the underlying log-linear word production model,

Arora et al.’s model is fundamentally sensitive to word vector length.

Our contributions in this paper are three-fold. First, we propose a random walk model that is robust to distor-

tion by vector length, where the probability of a word vector being generated by a discourse vector is inversely

related to the angular distance between them. Second, we derive a weighting scheme from this model and compute

a MAP estimate for the sentence embedding as follows: normalize the word vectors, take a weighted average of

them, and then subtract from each weighted average vector the projection on their first m principal components.

We call the weighting scheme derived from our random walk model unsupervised smoothed inverse frequency

(uSIF). It is similar to SIF [Arora et al., 2017b] in practice, but requires no hyperparameter tuning at all – it is

completely unsupervised, allowing it to be used when there is no labelled data. Lastly, we show that our approach

outperforms Arora et al.’s by up to 44.4% on textual similarity tasks, and is even competitive with state-of-the-art

methods. Given the simplicity, effectiveness, and unsupervised nature of our method, we suggest it be used as a

baseline for computing sentence embeddings.

4.2 Related Work

Word Embeddings Word embeddings are distributed representations of words, typically in a low-dimensional

continuous space. These word vectors can capture semantic and lexical properties of words, even allowing some

relationships to be captured algebraically (e.g., vBerlin− vGermany + vFrance ≈ vParis) [Mikolov et al., 2013b]. Word

embeddings are generally obtained in two ways: (a) from internal representations of words in shallow neural

networks [Bengio et al., 2003, Mikolov et al., 2013b, Collobert and Weston, 2008]; (b) from low rank approxi-

mations of co-occurrence matrices [Pennington et al., 2014].



CHAPTER 4. UNSUPERVISED RANDOM WALK SENTENCE EMBEDDINGS: A STRONG BUT SIMPLE BASELINE33

Word Sequence Embeddings Embeddings for sequences of words (e.g., sentences) are created by composing

word embeddings. This can be done simply, by doing coordinate-wise multiplication [Mitchell and Lapata, 2008]

or taking an unweighted average [Mikolov et al., 2013b] of the word vectors. More sophisticated architectures can

also be used: for instance, recursive neural networks [Socher et al., 2011, Socher et al., 2013], LSTMs [Tai et al., 2015],

and convolutional neural networks [Kalchbrenner et al., 2014] can be defined and trained on parse and dependency

trees.

Other approaches are based on the presence of a latent vector for the entire sequence. Paragraph vectors

[Le and Mikolov, 2014] are latent representations that influence the distribution of words. Skip-thought vectors

[Kiros et al., 2015] are hidden representations of a neural network that encodes a sentence by trying to reconstruct

its surrounding sentences. [Conneau et al., 2017] leverage transfer learning by using the hidden representation of a

sentence in an LSTM trained for another task, such as textual entailment. The inspiration for [Arora et al., 2017b]

is [Wieting et al., 2016b], who use word averaging after updating word embeddings by tuning them on paraphrase

pairs. A later work [Wieting and Gimpel, 2017a] tried trigram-averaging and LSTM-averaging in addition to

word-averaging. In that approach, vectors were tuned on the ParaNMT-50M dataset, created by using neural

machine translation to translate 51M Czech-English sentence pairs into English-English pairs. This yielded state-

of-the-art results on textual similarity tasks, beating the previous baseline by a wide margin.

4.3 Approach

4.3.1 The Log-Linear Random Walk Model

In Arora et al.’s original model [Arora et al., 2016], words are generated dynamically by the random walk of

a time-variant discourse vector ct ∈ Rd, representing “what is being talked about”. Words are represented as

vw ∈ Rd. The probability of a word w being generated at time t is given by a log-linear production model

[Mnih and Hinton, 2007]:

p(w|ct) ∝ exp(〈ct ,vw〉) (4.1)

Assuming that the discourse vector ct does not change much over the course of the sentence, Arora et al. replace

the sequence of discourse vectors {ct} across all time steps with a single discourse vector cs. The MAP estimate

of cs is then the unweighted average of word vectors (ignoring any scalar multiplication).

Arora et al.’s improved random walk model [Arora et al., 2017b] allows words to also be generated: (a) by

chance, with probability α · p(w), where α is some scalar and p(w) is the frequency; (b) if the word is correlated

with the common discourse vector, which represents frequent discourse such as stopwords. We use c0 to denote

the common discourse vector, to be consistent with the literature. Among other things, these changes help explain
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words that appear frequently despite being poorly correlated with the discourse vectors — words like the, for

example. The probability of a word w being generated by a discourse vector cs is then given as:

p(w|cs) = α · p(w)+(1−α) · exp(〈c̃s,vw〉)
Zc̃s

,

where c̃s , β · c0 +(1−β ) · cs,c0 ⊥ cs

Zc̃s , ∑
w′∈V

exp(〈c̃s,vw′〉)

where α,β are scalar hyperparameters, V is the vocabulary, c̃s is a linear combination of the discourse and

common discourse vectors parameterized by β , and Zc̃s is the partition function.

The sentence embedding for a sentence is defined as the MAP estimate of the discourse vector cs that generated

the sentence. To compute this tractably, Arora et al. assume that word vectors vw are roughly uniformly dispersed

in the latent space. This implies that the partition function Zc̃s is roughly the same for all c̃s, allowing it to be

replaced with a constant Z. Assuming a uniform prior over c̃s, the maximum likelihood estimator for c̃s on the

unit sphere (ignoring normalization) is then approximately proportional to:

1
|s| ∑w∈s

a
a+ p(w)

· vw,where a ,
1−α

α ·Z

Since Z cannot be evaluated, and α is not known, a is a hyperparameter that needs tuning. This weighting

scheme is called smoothed inverse frequency (SIF) and places a lower weight on more frequent words. The first

principal component of all {c̃s} in the corpus is used as the estimate for the common discourse vector c0. The

final discourse vector cs is then produced by subtracting the projection of the weighted average on the common

component (common component removal):

cs , c̃s−projc0
c̃s

Arora et al. call their approach unsupervised, but others [Cer et al., 2017] have correctly noted that it is weakly

supervised, since the hyperparameter a needs to be tuned on a validation set.

4.3.2 The Confounding Effect of Vector Length

We now propose worst-case scenarios where word vector length clearly distorts p(s|cs) due to the underlying

log-linear word production model. Note that we discuss these scenarios because they are illustrative, not because

they circumscribe the universe of all scenarios in which word vector length has a confounding effect.

Consider a sentence g comprising two rare words x and y, where x and y have zero similarity. Also consider
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some sentence h, where the only word z appears twice. g might not occur naturally, but its weighted average

c̃g would be similar to that of some longer sentence where x,y are the only non-stopwords (i.e., those with non-

negligible weight). For simplicity, further assume that common component removal has negligible effect:

〈
vx,vy

〉
= 0

cg = c̃g =
1
2

(
a

a+ p(x)
· vx +

a
a+ p(y)

· vy

)
ch = c̃h =

a
a+ p(z)

· vz

(4.2)

Words x,y,z are so infrequent that the probability of them being produced by chance or by the common discourse

vector is negligible; the likelihood of them being produced is therefore proportional to the inner product of the

discourse and word vectors. Given that the words x,y ∈ g have zero similarity, and given that the only word z ∈ h

is identical to its discourse vector, we would expect:

p(h|ch)� p(g|cg) (4.3)

However, (4.3) does not always hold. Suppose that the word embeddings lie in R2. Then any scalar k can be used

to create a valid set of assignments for word embeddings vx,vy,vz that satisfy (4.2):

vx =

2k

0

 ,vy =

 0

2k

 ,vz =

k

k

 (4.4)

Assuming the words x,y,z have roughly the same frequency, they should have the same SIF-weight. Then the

weighted averages, and by extension the discourse vectors (4.2), are the same:

cg = ch =
a

a+ p(x)

k

k


⇒
〈
cg,x

〉
=
〈
cg,y

〉
= 〈ch,z〉=

a
a+ p(x)

·2k2

⇒ p(g|cg) = p(h|ch)

Thus it is possible for g to be generated by discourse vector cg with roughly the same probability as h by ch,

contradicting (4.3). How is this possible, given that the words in g have zero similarity with each other while those

in h are identical to each other? The answer can be found in the word vector lengths. Because ||vx||2 =
√

2||vz||2,

and p(w|cs) depends on the inner product of the word and discourse vectors (4.1), words with longer word vectors

are more likely to be produced. In fact, if vx and vy were multiplied by some scalar greater than 1, then p(h|ch)
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would be less than p(g|cg).

Generalizing Worst-Case Scenarios By manipulating the word vector length, we can also come up with a

more general class of assignments that can contradict (4.3):

vx =

 βk1σ

βk2(1−σ)

vy =

βk1(1−σ)

βk2σ

vz =

k1

k2

 (4.5)

where σ ∈ [0,1],β ∈ R,β ≥ 2. For convenience, we replace a
a+p(x) with C below:

cg =C

 1
2 βk1

1
2 βk2

 ,ch =C

k1

k2


For simplicity, we assume that the words x,y,z across the two sentences are so infrequent that the probability of

them being generated by chance is zero. Then the conditional probabilities of the sentences being generated are:

p(g|cg) ∝ exp
(〈

cg,vx
〉
+
〈
cg,vy

〉)
= exp

(
1
2

β
2C
(
k1

2 + k2
2))

p(h|ch) ∝ exp(〈ch,vz〉+ 〈ch,vz〉)

= exp
(
2C
(
k1

2 + k2
2))

∴ β ≥ 2⇒ p(g|cg)≥ p(h|ch)

(4.6)

In this general formulation, not all scenarios are worst-case. This describes a spectrum of scenarios ranging from

acceptable (e.g., vx = vy = vz when β = 2,σ = 0.5) to completely counter-intuitive (see (4.4)). Though these

assignments only apply for word vectors in R2, they can easily be extended to higher-dimensional spaces.

The confound of vector length persists for longer, naturally occurring sentences. Ultimately, the underlying

log-linear word production model (4.1) means that words with longer word vectors are more likely to be generated.

Because this confound is due to model design, rather than the MLE, removing it requires redesigning the model.

The exact degree of the confound varies across sentences, but in theory, it is unbounded.

4.3.3 An Angular Distance–Based Random Walk Model

To address the confounding effect of word vector length, we propose a random walk model where the probability

of observing a word w at time t is inversely related to the angular distance between the time-variant discourse
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vector ct ∈ Rd and the word vector vw ∈ Rd:

p(w|ct) ∝ 1− arccos(cos(vw,ct))

π
,

where cos(vw,ct),
vw · ct

‖vw‖2·‖ct‖2

(4.7)

where arccos(cos(vw,ct)) is the angular distance. For the intuition behind the use of this distance metric, note

that the angular distance between two vectors is equal to the geodesic distance between them on the unit sphere.

Thus the angular distance can also be interpreted as the length of the shortest path between the L2 normalized

word vector and the L2 normalized discourse vector on the unit sphere. Since the angular distance lies in [0,π],

we divide it by π to bound it in [0,1]. Our choice of angular distance – as opposed to, say, the exponentiated

cosine similarity – is critical to avoiding hyperparameter tuning.

Assuming that the discourse vector ct does not change much over the course of the sentence, the sequence

of discourse vectors {ct} across all time steps can be replaced with a single discourse vector cs for the sentence

s. To model sentences more realistically, we allow words to be generated in two additional ways, as proposed in

[Arora et al., 2017b]: (a) by chance, with probability α · p(w), where α is some scalar and p(w) is the frequency;

(b) if the word is correlated with one of m common discourse vectors {c′m}, which represent various types of

frequent discourse, such as stopwords. The probability of a word w being generated by discourse vector cs is

then:

p(w|cs) = α · p(w)+(1−α) · d (c̃s,vw)

Zc̃s

,

where c̃s , (1−β )cs +β

m

∑
i=1

λi c′i, cs ⊥ c′i

d (c̃s,vw), 1− arccos(cos(vw,ct))

π
,

Zc̃s , ∑
w′∈V

d (c̃s,vw′)

(4.8)

where α,β ,{λi} are scalar hyperparameters, V is the vocabulary, c̃s is a linear combination of the discourse and

common discourse vectors parameterized by β and {λi}, and Zc̃s is the partition function. Instead of searching

for the optimal hyperparameter values over some large space, as [Arora et al., 2017b] did, we make some simple

assumptions to directly compute them.

We define the sentence embedding for some sentence s to be the MAP estimate of the discourse vector cs that

generates s. Assuming a uniform prior over possible cs, the MAP estimate is also the MLE estimate for cs. The

log-likelihood of a sentence s is:

log p(s|cs) = ∑
w∈s

log p(w|cs)
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To maximize log p(s|cs), we can approximate log p(w|cs) using a first-degree Taylor polynomial:

fw(c̃s), log p(w|c̃s)

∇ fw(c̃s) =

[
1−α

π ·Zc̃s · exp( fw(c̃s))

] ∂

∂ c̃s
cos(vw, c̃s)√

1− cos2 (vw, c̃s)
,

∂

∂ c̃s
cos =

vw

‖vw‖2·‖c̃s‖2
− cos(vw, c̃s)

c̃s

‖c̃s‖2
2

Where a , (1−α)/(αZc̃s), C is a constant, and v′w is a vector orthogonal to vw with length ‖vw‖−1:

fw(c̃s)≈ fw(v′w)+∇ fw(v′w)
ᵀ (c̃s− v′w

)
=C+

a
π ·
(

p(w)+ 1
2 ·a
) · vw

(
c̃s− v′w

)
=C+

1
π

(
a

p(w)+ 1
2 ·a
〈c̃s,vw〉

)

The MLE for c̃s on the unit sphere (ignoring normalization) is then approximately proportional to:

1
|s| ∑w∈s

a
p(w)+ 1

2 a
· vw (4.9)

The MLE of c̃s is approximately a weighted average of word vectors, where more frequent words are down-

weighted. In fact, it very closely resembles the SIF weighting scheme [Arora et al., 2017b]! However, there are

two key differences. For one, as we show later in this subsection, we have derived this weighting scheme from a

model that is robust to the confounding effect of word vector length. Secondly, in SIF, a is a hyperparameter that

needs to be tuned on a validation set. We now show that in our approach, we can calculate a directly as a function

of the vocabulary V and the number of words in the sentence, |s|.

Normalization Before weighting the word vectors, we normalize them along each dimension: we construct

a matrix [vw1 ...ww|s| ] and take the L2 norm of each row, which corresponds to a single dimension in Rd. We

then multiply this d-dimensional vector element-wise with every vector in the sentence. This helps reduce the

difference in variance across the dimensions.

Partition Function To calculate Zc̃s , we borrow the key assumption from [Arora et al., 2017b] that the word

vectors vw are roughly uniformly dispersed in the latent space. Then the expected geodesic distance between a



CHAPTER 4. UNSUPERVISED RANDOM WALK SENTENCE EMBEDDINGS: A STRONG BUT SIMPLE BASELINE39

latent discourse vector and a word vector on the unit sphere is π/2, so Ew′∈V [d (c̃s,vw′)] =
1
2 . Then:

Zc̃s = ∑
w′∈V

d (c̃s,vw′)

= |V| Ew′∈V [d (c̃s,vw′)] =
1
2
|V|

(4.10)

Odds of Random Production α is the probability that a word w will be produced by chance instead of by the

discourse or common discourse vectors. To estimate α , we first consider the probability that a random word w

will be produced by a discourse vector cs at least once over n steps of a random walk:

p(w|c1
s , ...,c

n
s ) = 1−

n

∏
t=1

[
1− d(ct

s,vw)

Zcs

]
Ew∼V [p(w|c1

s , ...,c
n
s )] = 1−

(
1− 1
|V|

)n

The number of steps taken during the random walk is itself a random variable, so we let n = Es∈S|s|. We assume

that if the frequency is greater than this expectation, then the word is always produced by chance; less than this

expectation, and it is always produced by the discourse or common discourse vectors. α is the proportion of the

vocabulary with p(w) above this threshold:

α =
∑w∈V 1

[
p(w)> Ew∼V [p(w|c1

s , ...,c
n
s )]
]

|V|
(4.11)

Since we can directly calculate Zc̃s and α , we can also directly calculate a = (1−α)/(αZc̃s).

Common Discourse Vectors We estimate the m common discourse vectors as the first m singular vectors from

the singular value decomposition of the weighted average vectors. {λi} are the weights on the common discourse

vectors. In reality, these are unique to the word for which p(w|cs) is being evaluated. However, we let λi be:

λi =
σ2

i

∑
m
j σ2

j

where σi is the singular value for c′i. λi can be interpreted as the proportion of variance explained by {c′1, ...,c′m}

that is explained by c′i. If removing the common discourse vectors is a form of denoising [Arora et al., 2017b],

increasing m, in theory, should improve results. Because the variance explained by a singular vector falls with

every additional vector that is included, the choice of m is thus a trade-off between variance explained and com-

putational cost. When m = 1, this is equivalent to the removal in [Arora et al., 2017b]. We fix m at 5, since we

find empirically that singular vectors beyond that do not explain much more variance. To get cs, we subtract from
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Algorithm 1 uSIF Sentence Embedding
Input: vocabulary V , word vectors {vw : w ∈ V}, frequencies {p(w) : w ∈ V}, sentences S
Output: sentence embeddings {cs : s ∈ S}

1: procedure EMBED
2: m← 5
3: n← Es∈S|s|
4: for all s ∈ S do

5: α ←
∑w∈V 1

[
p(w)>1−

(
1− 1
|V |

)n]
|V|

6: Z← |V|/2
7: a← (1−α)/(α ·Z)
8: c̃s← 1

|s| ∑w∈s
a

p(w)+ 1
2 a

vw

9: end for
10: A←

(
c̃s1 . . . c̃sn

)
11: for all i in 1...m do
12: c′i← ith singular vector of A
13: σi← ith singular value of A
14: end for
15: for all i in 1...m do
16: λi←

σ2
i

∑
m
j σ2

j

17: end for
18: for all s ∈ S do
19: cs← c̃s−∑

m
i=1 λi projc′i c̃s

20: end for
21: end procedure

c̃s the weighted projection on each singular vector:

cs , c̃s−
m

∑
i=1

λi projc′i c̃s

We call this piecewise common component removal. Because our weighting scheme requires no hyperparameter

tuning, it is completely unsupervised. For this reason, we call it unsupervised smoothed inverse frequency (uSIF).

The full algorithm is given in Algorithm 1.

Note that while it is certainly possible to tune the hyperparameters in our model to achieve optimal results,

it is not necessary to do so, which allows our method to be used when there is no labelled data. By contrast, in

Arora et al.’s model [Arora et al., 2017b], hyperparameter tuning is a necessity.

Confound of Vector Length To understand why this model is not prone to the confound of word vector length,

we reconsider the class of assignments for vx,vy,vz in (4.5) and the resulting values for c̃g and c̃h. Recall that

in our example, sentence g comprises words x,y and sentence h comprises two instances of the word z. Under

our new weighting scheme, C in (4.5) is replaced with C′ = a
p(x)+ 1

2 a
. Note that we use p(x) in C′ because of

the simplifying assumption that p(x) = p(y) = p(z). Assuming again that p(x) ≈ 0 and that piecewise common
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component removal has negligible effect, we can see how p(g|cg) and p(h|ch) change in our random walk model:

p(g|cg) ∝ ∏
w∈{x,y}

(
1−

arccos(cos(cg,vw))

π

)

p(h|ch) ∝

(
1− arccos(cos(ch,vz))

π

)2

= 1

Because p(g|cg) is ultimately based on the cosine similarities between the discourse vector and word vectors, it

is a function of the parameter σ ∈ [0,1] that controls the degree of similarity between vx and vy. For example, for

the worst-case assignments (4.4), p(g|cg) ∝ 9/16. Conversely, when vx = vy = vz, we get p(g|cg) = p(h|ch) ∝ 1.

Recall that in Arora et al.’s model [Arora et al., 2017b], β ≥ 2 was sufficient to ensure the counter-intuitive result

of p(g|cg)≥ p(h|ch) (4.6), where β was a scalar that controlled the word vector length. In contrast, in our random

walk model, the effect of β – and thus the confound of vector length – is entirely absent; only the similarity

between the word vectors is influential.

4.4 Results and Discussion

4.4.1 Textual Similarity Tasks

We test our approach on the SemEval semantic textual similarity (STS) tasks (2012-2015) [Agirre et al., 2012,

Agirre et al., 2013, Agirre et al., 2014, Agirre et al., 2015], the SemEval 2014 Relatedness task (SICK’14) [Marelli et al., 2014],

and the STS Benchmark dataset [Cer et al., 2017]. In these tasks, the goal is to determine the semantic similar-

ity between a given pair of sentences; the evaluation criterion is the Pearson correlation coefficient between the

predicted and actual similarity scores. To predict the similarity score, we simply encode each sentence and take

the cosine similarity of their vectors. The individual scores for STS tasks are in Table 4.1 and the average scores

are in Table 4.2. The STS benchmark scores are in Table 4.3. We compare our results with those from several

methods, which are categorized by [Cer et al., 2017] as ‘unsupervised’, ‘weakly supervised’, or ‘supervised’.

4.4.2 Experimental Settings

For a fair comparison with [Arora et al., 2017b], we use the unigram probability distribution used by them, based

on the enwiki dataset (Wikipedia, 3B words). Our preprocessing of the sentences is limited to tokenization. We try

our method with three types of word vectors: GloVe vectors [Pennington et al., 2014], PARAGRAM-SL999 (PSL)

vectors [Wieting et al., 2015], tuned on the SimLex999 dataset, and ParaNMT-50 vectors [Wieting and Gimpel, 2017a],

tuned on 51M English-English sentence pairs translated from English-Czech sentence pairs. The value of n in

(4.11) is Es∈S|s| ≈ 11 and was estimated using sentences from all corpora. The value of a in (4.9) is then 1.2×
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[Wieting and Gimpel, 2017b] [Wieting et al., 2016b] [Arora et al., 2017b] Our Approach
Supervision Weakly Supervised Unsupervised Weakly Supervised Unsupervised

Tasks LSTM AVG AVG GRAN PP-XXL tfidf-GloVe skip-thought GloVe+WR PSL+WR GloVe+UP PSL+UP Czeng+UP
MSRpar 49.0 45.9 47.7 44.8 50.3 16.8 35.6 43.3 51.4 55.2 58.3
MSRvid 84.3 85.1 85.2 79.6 77.9 41.7 83.8 84.1 86.4 85.4 90.1
SMT-eur 51.2 47.5 49.3 49.5 54.7 35.2 49.9 44.8 54.9 51.3 54.7
OnWN 71.5 71.2 71.5 70.4 64.7 29.7 66.2 71.8 72.7 74.3 74.2

SMT-news 68.0 58.2 58.7 63.3 45.7 30.8 45.6 53.6 59.3 62.8 64.1
STS’12 64.8 61.6 62.5 61.5 58.7 30.8 56.2 59.5 64.9 65.8 68.3

headlines 77.3 76.9 76.1 73.9 69.2 34.6 69.2 74.1 74.8 77.7 81.2
OnWN 81.2 72.8 81.4 73.8 72.9 10.0 82.8 82.0 85.5 85.4 87.5
FNWN 53.2 50.2 55.6 47.7 36.6 30.4 39.4 52.4 55.0 56.9 53.6
SMT 40.7 38.0 40.3 40.4 29.6 24.3 37.9 38.5 39.1 41.0 42.0

STS’13 63.1 59.4 63.4 58.9 52.1 24.8 56.6 61.8 63.6 65.2 66.1
deft forum 56.6 55.6 55.7 53.4 37.5 12.9 41.2 51.4 52.3 55.0 58.5
deft news 78.0 78.5 77.1 74.4 68.7 23.5 69.4 72.6 74.6 74.5 78.4
headlines 74.5 75.1 72.8 71.5 63.7 37.8 64.7 70.1 69.7 73.3 78.7
images 84.7 85.6 85.8 80.4 72.5 51.2 82.6 84.8 84.3 84.9 87.1
OnWN 84.9 81.4 85.1 81.5 75.2 23.3 82.8 84.5 86.9 87.6 88.9

tweet news 76.3 78.7 78.7 77.4 65.1 39.9 70.1 77.5 78.5 80.0 78.8
STS’14 75.8 75.8 75.9 73.1 63.8 31.4 68.5 73.5 74.4 75.9 78.4

answers-forum 71.8 70.6 73.1 69.1 45.6 36.1 63.9 70.1 72.4 72.2 72.0
answers-student 71.1 75.8 72.9 78.0 63.9 33.0 70.4 75.9 72.7 75.1 73.5

belief 75.3 76.8 78.0 78.2 75.3 24.6 71.8 75.3 76.5 77.3 79.1
headline 79.5 80.3 78.6 76.4 70.9 43.6 70.7 75.9 75.9 78.8 83.1
images 85.8 86.0 85.8 83.4 72.9 17.7 81.5 84.1 83.0 84.6 87.5
STS’15 76.7 77.9 77.7 77.0 60.6 31.0 71.7 76.3 76.1 77.6 79.0
SICK14 71.3 72.4 72.9 72.7 69.4 49.8 72.2 72.9 73.0 72.3 73.5

Table 4.1: Results (Pearson’s r× 100) on textual similarity tasks. The highest score in each row is in bold.
“GloVe+UP” is the application of uSIF-weighting (U) and piecewise common component removal (P) to GloVe
word vectors; “PSL+UP” to PSL word vectors; “ParaNMT+UP” to ParaNMT word vectors.

10−3. Our results are denoted as X+UP, where X ∈ {‘GloVe’, ‘PSL’, ‘ParaNMT’}, U denotes uSIF-weighting,

and P denotes piecewise common component removal.

4.4.3 Results

Our model outperforms Arora et al.’s by up to 44.4% on individual tasks (see GloVe+UP vs. GloVe+WR for the

STS’12 MSRpar task in Table 4.1) and by up to 15.5% on yearly averages (see GloVe+UP vs. GloVe+WR for

STS’12 in Table 4.2). Our approach proves most useful in cases where Arora et al. underperform others, such as

for STS’12, where our models – GloVe+UP and PSL+UP – outperform their equivalents in Arora et al.’s results

by 15.5% and 10.6% respectively. On average, our approach outperforms Arora et al.’s by around 7.6%, but the

improvement is highly variable. This may be because the hyperparameter values we derived may be closer to

the optima for some corpora more than others or because our other improvements – normalization and piecewise

common component removal – are more effective for certain datasets.

Our best model, ParaNMT+UP, is also competitive with the state-of-the-art model, ParaNMT Trigram-Word,

an average of trigram and word embeddings tuned on the ParaNMT-dataset. ParaNMT+UP outperforms ParaNMT

Trigram-Word on STS’12, STS’13, and STS’14; it is narrowly outperformed on STS’15 and the STS benchmark.

ParaNMT Trigram-Word’s inclusion of trigram embeddings gives it an edge over our model for out-of-vocabulary

words [Wieting and Gimpel, 2017a]. It should be noted that ParaNMT+UP outperforms both ParaNMT Word

Avg. and ParaNMT BiLSTM Avg., implying that our model composes words better than both simple averaging

and BiLSTMs. Similarly, our model PSL+UP outperforms PP-XXL [Wieting et al., 2016b], despite the latter

using the same word vectors and a learned projection instead.
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Model STS’12 STS’13 STS’14 STS’15 SICK14
[Wieting et al., 2016b] - unsupervised
PP 58.7 55.8 70.9 75.8 71.6
PP-XXL 61.5 58.9 73.1 77.0 72.7
tfidf-GloVe 58.7 52.1 63.8 60.6 69.4
skip-thought 30.8 24.8 31.4 31.0 49.8
[Arora et al., 2017b] - weakly supervised
GloVe+WR 56.2 56.6 68.5 71.7 72.2
PSL+WR 59.5 61.8 73.5 76.3 72.9
[Wieting and Gimpel, 2017b] - weakly supervised
LSTM AVG 64.8 63.1 75.8 76.7 71.3
AVG 61.6 59.4 75.8 77.9 72.4
GRAN 62.5 63.4 75.9 77.7 72.9
[Conneau et al., 2017] - unsupervised (transfer learning)
InferSent (AllSNLI) 58.6 51.5 67.8 68.3 -
InferSent (SNLI) 57.1 50.4 66.2 65.2 -
[Wieting and Gimpel, 2017a] - unsupervised
ParaNMT Word Avg. 66.2 61.8 76.2 79.3 -
ParaNMT BiLSTM Avg. 67.4 60.3 76.4 79.7 -
ParaNMT Trigram-Word 67.8 62.7 77.4 80.3 -
Our Approach - unsupervised
GloVe+UP 64.9 63.6 74.4 76.1 73.0
PSL+UP 65.8 65.2 75.9 77.6 72.3
ParaNMT+UP 68.3 66.1 78.4 79.0 73.5

Table 4.2: Average results (Pearson’s r×100) on textual similarity tasks. The highest score in each column is in
bold. “Glove+UP” is the application of uSIF-weighting (U) and piecewise common component removal (P) to
GloVe word vectors; “PSL+UP’ to PSL word vectors; “ParaNMT+UP”, to ParaNMT word vectors.

Ablation Study On average, our weighting scheme alone is responsible for a roughly 4.4% improvement over

Arora et al. The piecewise common component removal alone is responsible for a roughly 5.1% improvement,

and the normalization alone is responsible for a roughly 6.7% improvement. This suggests that the benefits of our

individual contributions have much overlap. The choice of tuned word vectors (e.g., ParaNMT over GloVe) can

also improve results by up to 11.2%.

4.4.4 Supervised Tasks

We also test our approach on three supervised tasks: the SICK similarity task (SICK-R), the SICK entailment

task (SICK-E), and the Stanford Sentiment Treebank (SST) binary classification task [Socher et al., 2013]. To

a large extent, performance on these tasks depends on the architecture that is trained with the sentence em-

beddings. We take the embeddings that perform best on the textual similarity tasks, ParaNMT+UP, and fol-

low the setup in [Wieting et al., 2016b]. As seen in Table 4.4, both SIF-weighting with common component

removal [Arora et al., 2017b] and uSIF-weighting with piecewise common component removal (ours) perform

slightly better than simple word averaging, but not as well as more sophisticated models. Past work has found

that tuning the word embeddings in addition to the parameters of the model yields much better performance

[Wieting et al., 2016b], as does increasing the size of the hidden layer in the classifier [Arora et al., 2017b]. The

results here, however, suggest that regardless of such changes, our approach would not be any more effective than
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Unsupervised
Doc2Vec DBOW [Le and Mikolov, 2014] 64.9
GloVe+UP 71.5
Charagram [Wieting et al., 2016a] 71.6
Paragram-Phrase [Wieting et al., 2016b] 73.2
PSL+UP 74.8
Sent2vec [Pagliardini et al., 2017] 75.5
InferSent (bi-LSTM trained on SNLI) [Conneau et al., 2017] 75.8
ParaNMT Word Avg. [Wieting and Gimpel, 2017a] 79.2
ParaNMT BiLSTM Avg. [Wieting and Gimpel, 2017a] 79.2
ParaNMT+UP 79.5
ParaNMT Trigram-Word Addition [Wieting and Gimpel, 2017a] 79.9

Weakly Supervised
GloVe+WR [Arora et al., 2017b] 72.0
GRAN [Wieting and Gimpel, 2017b] 76.4

Supervised
Constituency Tree-LSTM [Tai et al., 2015] 71.9
CNN (HCTI) [Shao, 2017] 78.4

Table 4.3: Results (Pearson’s r×100) on the STS Benchmark dataset. The highest score is in bold. The scores of
our approaches are underlined.

Model SST SICK-R SICK-E
ParaNMT-based [Wieting and Gimpel, 2017a]
ParaNMT Word Avg. (300d) 80.0 83.6 80.6
ParaNMT Trigram Avg. (300d) 73.6 79.3 78.0
ParaNMT LSTM Avg. (300d) 80.6 83.9 81.9
LSTM (600d) 80.0 85.2 82.6
LSTM (900d) 81.6 86.0 83.0
BiLSTM (600d) 79.1 85.4 84.3
BiLSTM (900d) 81.3 85.8 84.4
Trigram-Word (600d, concatenation) 79.7 84.6 82.0
Trigram-Word-LSTM (900d, concatenation) 82.0 85.4 83.8
BILSTM AVG (4096) 82.8 85.9 83.8
ParaNMT+WR† [Arora et al., 2017b] 80.5 83.9 80.9
ParaNMT+UP† (ours) 80.7 83.8 81.1
Other Approaches
BiLSTM-Max (on AllNLI) [Conneau et al., 2017] 84.6 88.4 86.3
skip-thought [Kiros et al., 2015] 82.0 85.8 82.3
BYTE mLSTM [Radford et al., 2017] 91.8 79.2 -

Table 4.4: Results on the SST, SICK-R, and SICK-E tasks. The best score for each task is bolded. † indicates our
implementation.

Arora et al.’s on these tasks. Still, our approach retains the advantage of being a completely unsupervised method

that can be used when there is no labelled data.

4.5 Future Work

There are several possibilities for future work. For one, the values we derived for Zc̃s ,α,a and {λi} are not

necessarily optimal. While they are based on reasonable assumptions, there are likely sentence-specific and task-

specific values that yield better results. Hyperparameter search is one way of finding these values, but that would

require supervision. It may be possible, however, to theoretically derive more optimal values.
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4.6 Conclusion

We first showed that word vector length has a confounding effect on the log-linear random walk model of gener-

ating text [Arora et al., 2017b], the basis of a strong baseline method for sentence embeddings. We then proposed

an angular distance–based random walk model where the probability of a sentence being generated is robust to

distortion from word vector length. From this model, we derived a simple approach for creating sentence embed-

dings: normalize the word vectors, compute a weighted average, and then modify it using SVD. Unlike in Arora

et al., our approach does not require hyperparameter tuning – it is completely unsupervised and can therefore be

used when there is no labelled data. Our approach outperforms Arora et al.’s by up to 44.4% on textual similarity

tasks and is even competitive with state-of-the-art methods. Because our simple approach is tough-to-beat, robust,

and unsupervised, it is an ideal baseline for computing sentence embeddings.



Chapter 5

Conclusion

In this work, I provided an answer to two open questions on word embedding properties. The first of these

questions was: why, and under what conditions, can vector algebra be used to solve word analogy tasks? Building

on prior theoretical work that framed neural embedding models as matrix factorization, I showed that the geometry

of word analogies could be exploited to derive the co-occurrence shifted PMI (csPMI) Theorem: a linear word

analogy holds over a set of ordered word pairs iff the csPMI is the same for every word pair and across any two

word pairs. This had three key implications: (1) this proved the [Pennington et al., 2014] conjecture, the intuitive

explanation of this phenomenon; (2) the addition of two SGNS word vectors automatically downweights the more

frequent word, as weighting schemes do ad hoc; (3) Euclidean distance between two words in embedding space

is a good proxy of word dissimilarity because it is linear in the negative csPMI. Most importantly, unlike past

theories, the csPMI Theorem did not make strong assumptions about the word distribution or embedding space.

The second open question that this work addressed was: why do socially undesirable associations such as

gender bias exist in word embedding spaces and can they be provably removed? I proved that when there is no

reconstruction error, debiasing word embeddings using subspace projection [Bolukbasi et al., 2016] is, in theory,

equivalent to training on an unbiased corpus. Moreover, WEAT and WEFAT [Caliskan et al., 2017], the standard

metrics of word embedding association that are used to measure gender bias, have theoretical flaws that exaggerate

the extent of bias. Using the subspace projection method, I derived a new measure of word embedding association

called the relational inner product association (RIPA), which does not suffer from the theoretical flaws of WEAT

and WEFAT. Experiments with RIPA revealed that SGNS does not, on average, make the vast majority of words

any more gendered in the vector space than they are in the training corpus; individual words may be slightly

more or less gendered due to reconstruction error. However, for words that are gender-stereotyped (e.g., nurse) or

gender-specific by definition (e.g., queen), SGNS amplifies the gender association in the training corpus.
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Lastly, I designed a sentence embedding method based on a random walk model of sentences, which was

itself based on the broader finding that the simple addition of two word vectors is a sound, albeit simplistic,

means of composing words. This sentence embedding method, called unsupervised smoothed inverse frequency

(uSIF), involves taking a weighted average of word embeddings that downweights more frequent words and then

denoising with singular value decomposition (SVD). It is similar to SIF [Arora et al., 2017b], but does not require

any hyperparameter tuning and achieves much better results on sentence similarity tasks, on par with state-of-the-

art. The success of this simple method highlights how answering theoretical questions about word embeddings,

while an important research direction in its own right, can also lead to improvements on empirical problems.

While this work has taken major steps toward understanding word embedding phenomena, many properties of

word embeddings remain poorly understood. For example, why is the optimal dimensionality of word embeddings

so low relative to vocabulary size? Even as contextualized word embeddings [Peters et al., 2018] and deep end-to-

end neural networks [Devlin et al., 2018] supplant the traditional paradigm of using pretrained word embeddings

and a custom neural network architecture, there is still value in developing a deeper theoretical understanding of

word embeddings, if only to better understand the new wave of contextualized representations.
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