A Computational Model of
Collaboration on Referring Expressions

Peter Anthony Heeman

Technical Report CSRI-251
September 1991

Computer Systems Research Institute
University of Toronto
Toronto, Canada
MSS 1A1

The Computer Systems Research Institute (CSRI) is an interdisciplinary group formed to conduct research
and development relevant to computer systems and their application. It is an Institute within the Faculty of
Applied Science and Engineering, and the Faculty of Arts and Science, at the University of Toronto, and is
supported in part by the Natural Sciences and Engineering Research Council of Canada.

¥y

A Computational Model of

Collaboration on Referring Expressions

Peter Anthony Heeman

Department of Computer Science
University of Toronto
Toronto, Canada
M5S 1A4
September 1991

A thesis submitted in conformity with the requirements
for the degree of Master of Science at the
University of Toronto

Copyright © 1991 Peter Anthony Heeman

Abstract

In order to refer to an object, a speaker attempts to build a description of the object
that will allow the hearer to identify it. Since the description might not enable the
hearer to identify the referent, the speaker and hearer might engage in a clarification
subdialogue in which they collaborate in order to make the referring action successful.
This thesis presents a computational model of how a conversational participant
collaborates in order to make a referring action successful. The model is based on the
view of language as goal-directed behaviour. As such we propose that the content of
a referring expression can be accounted for by the planning paradigm. Not only does
this approach allow the process of building referring expressions and identifying their
referents to be captured by plan construction and plan inference, it also allows us to
account for how participants clarify a referring expression by using meta-plans that
reason about and manipulate the plan derivations corresponding to referring expres-
sions. To complete the picture, we show how participants can infer goals underlying
referring expression plans or clarification plans, and how these inferred goals can be
used by the participants to adopt their own goals to clarify the referring expression.
An important aspect of this process is that subsequent clarifications can either clarify
the previous clarification or can clarify the referring expression resulting from the pre-
vious clarification. So for the latter case, the same meta-plans that are used to clarify
the original referring expression can be used to model the subsequent clarifications.

Acknowledgments

I would like to thank my co-supervisors Graeme Hirst and Janyce Wiebe, who have
provided me with guidance and support, both for my thesis and for my future career.

I would also like to thank Diane Horton and the rest of the students in the Natural
Language Group at the University of Toronto. Their feedback greatly improved the
quality of my thesis.

Thanks to all of my friends in the Department of Computer Science and elsewhere,
especially Ray, Dimitri, Greg and Andre, Rita, and Rob. You listened to me talk
about my thesis work, and some of you even pretented to be interested in it!

- Thanks especially to my family, who have stood by me through the years.

Financial support was gratefully received from the Natural Sciences and Engineer-
ing Research Council of Canada.

ii

Contents

1 Introduction

IR QurRWork Sl e g of F i, MO N TR YL L
R Beyta L o By o, SRS I TR S - 4 Al Rt A A
1.3 Some Terminology
14 Overviewofthe Thesis

2 Foundations

2.1 Psychological Investigations of Collaboration
2.1.1 Clark and Wilkes-Gibbs
2.1.2 Garrod and Anderson0 e e
213 ClarkandBrennan

2.2 Referring Expressions0v.....
2.2.1 Generating Referring Expressions
2.2.2 Understanding Referring Expressions

213 SR an i T S N N L iy, | T R e e
2.3.1 Invalid Plans and Plan Repair
232 SharedPlansv. ...

2.4 CommunicativePlans.
241 Speech Acts
242 Referringas Action
2.4.3 Planning Referring Expressions
2.4.4 Discourse Plans and Clarification Subdialogues

3 Referring Expressions

31 Scopeof our Workt i i e e

32 Vocabulary

ISR EferbRa i oos N e . e . L . L

3.4 SurfaceSpeech Acts
GEAlIMS screfer "L L. L L PR L LT LR e

il

L I

W © -3 3

10
10
11
12
12
12
13
13
13
14
14

‘e

343 sattrib-rel L 21
344 s-attribrel-group L L L, 22
348 AnExample. 22

3.5 IntermediatePlans 23
3.5.1 M describe s LR ., SN, AL s 8 R L SR 24
352 headnoun 24
31588, imodifiers® . ol Lt Sl T s R L . o 25
354 modifier e 26

3.6 Constructing the Simplest Referring Expression 27
3161 _SAn Exampler. g5 . S SRR ISEEL FRN o e . LR ms 27

3.7 Understanding a Referring Expression. 28
3.727, ;An'Exampler-5's oL L L s oL R L e et 29

JISES SurnmARyS SRS S BRI e D BT T T 31
Clarifications 33
4.1 Judging Referring Expressions 34
42 Vocabulary e e 35
4.2.1 ReferringtoPlans 35
4.2.2 ReferringtoPartsofaPlan 36
4.2.3 Manipulating and Evaluating Plans 36

43 Discourse Plans 37
4:3.1 Facecepteplany, 80 L L. L L L 37
43.2 postponeplan 38
433 reject-plan 39
434 expand-plan 40
4r3opreplacesplan®itio ¥ T (RS S LS LT ER - - e 41

44 SurfaceSpeech Acts 44
AN s=accep il & INSUTRN R i e S e 44

- 442 spostpone e e 45
44508 srejectiuusgr . B fRi Ted B et ey e 45
444 stactions B K e L S e L 45

4.5 Constructing a Clarification 46
5. 1 S AGEPxamplet S NS S e T . e 46

4.6 Understanding a Clarification 48
N A S e e R . ot 49

G STITTIUITT 2 e e, A bl I RO S TR I Y 52

328 stantribe ™. R L Lo L o s L D T SRR 21

iv

Modeling the Subdialogue

5.1 Subsequent Judgements and Refashionings
5.1.1 Acceptance Processes
5.1.2 Judging Contributions
5.1.3 Our Model of Judging Contributions
514 DiscoursePlans

5.2 How Discourse Goals Arise
5.2.1 Understanding an Utterance
5.2.2 Adopting Discourse Goals
5.2.3 Achieving Discourse Goals

53NN At Exarnple it e . S L D T e

54 Summary e e e e e e e e

An Example

6.1 Understanding “The weird creature”

6.2 Constructing “In the corner?”
621 JudgementPlan..........................
6.2.2 RefashioningPlan.

6.3 Understanding “No, on the television”
631 JudgementPlan..........................
6.3.2 RefashioningPlan.

6.4 Constructing “Okay”,

Implementation

71 Discourse Enfities

72 Plan Construction.
7.2.1 Plan Construction Heuristics.
7.2.2 The Plan Construction Algorithm

73 PlanInference.
7.3.1 Plan Recognition
732 PlanEvaluation

74 BeliefModule

Conclusion '

81 Collaboration

8.2 Accepting Contributions

83 AFewAssumptions.,
8.3.1 Initiator and Responder

53
54
54
56
57
58
59
60
61
64
66
69

71
12
74
74
75
78
78
80
84

85
85
86
87
87
88
89
90
91

L4

8.3.2 Surface Speech Acts

8.3.3 Presentations

8.4 Comparisons to Other Work

8.4.1 Litman and Allen

8.4.2 Grosz and Sidner

8.5 [Future Direction
Bibliography

A Trace of the System
A.l Initialization.
A.2 Understanding “The weird creature”
A.3 Constructing “In the corner?”

A.4 Understanding “No, on the television”
A.5 Constructing “Okay”

vi

-

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

correct-planplanttt 15
refar plansat SN, T G p B SR e S o e B 19
s-refexriplan . pira . . . EE ReTD SN e my S SRR L6 21
sattribplan L e e 21
s-attrib-relplan o, 22
s-attrib-rel-groupplan, ... P2
describeplan. oL L e e e e 24
headnoun plang® . SoFFURL || e S RS et e 24
modifiersplan e e 25
modifiersplan e 25
modifiersplan 0 oo B e 926
modiieraplan i U N B e e, e ST 26
modifierplan. e 26
Constructed referring expressionplan 28
Recognized referring expressionplan 30
accept=plian‘plan,. . 8 ., L RE S e Tt T R R L 37
postpone-planplant e e e 38
Tejact=plienyplany. St s R SR R R S L e 39
expand-planplan. o o 40
replace-planplan 42
replace-planplan 43
relax-constraintiplan®. By ... oL CU DL ke L. 44
s=accept plan. .= . LUl L L Sl IR s s . e e 44
s=postponeplant ... 45
ssmeject plani. oL h ol U Tl L e 45
s=actionsplang 1T S A8 e SEUCRE D Ll e U 45
Inferred Referring Expression Plan (p1) 47
Constructed Refashioning Plan (p41) 48

vil

4.14 Refashioned Referring Expression Plan (p57) 49

4.15 Original Referring Expression Plan (p1) 50
4.16 Inferred Judgement Plan (p31) 51
6.1 Recognized Referring Expression Plan (p1) 73
6.2 Constructed Judgement Plan (p31) 75
6.3 Constructed Refashioning Plan (p42) 76
6.4 Constructed Expansion 7
6.5 Recognized Judgement Plan (p119) 79
6.6 Recognized Refashioning Plan (p129) 80
6.7 Recognized Expansiont ninerean 82
6.8 Constructed Judgement Plan (p207) 84
8.1 Discourse Segments for Dialogue (5.1) 96

viii

Chapter 1
Introduction

One way of viewing people is that we are goal oriented and we can plan courses of
actions to achieve our goals. But sometimes we might lack the knowledge needed
to formulate a plan of action, or some of the actions that we plan might depend on
coordinating our activity with other agents. How do we cope? One way is to work
together, or collaborate, in formulating a plan of action with the people who will be
doing the actions or who know the missing information.

In this thesis, we adopt the view that language is goal-oriented behaviour in which
the utterances are actions that are being used to achieve a goal. The success of these
actions relies on both the speaker and the hearer, since the speaker must construct
an utterance in such a way that the hearer can understand it. If the speaker is not
successful, she can collaborate with the hearer in formulating a plan of action to
achieve her goal. In this case, the actions are utterances and are executed during the
course of the collaboration.

Let’s look at referring expressions. The speaker has the goal of wanting the hearer
to identify an object that the speaker has in mind. The speaker attempts to achicve
this goal by constructing a description of the object that she thinks will cnable the
hecarer to identify it. But since the speaker and the hearer have different belicls about
the world, the hearer might not be able to identify the object. When the hcarer
cannot do so, the speaker and hearer can collaborate in making a referring expression

that accomplishes the goal.

1.1 Owur Work

This thesis presents a computational model of how a conversational participant col-
laborates in making a referring action successful. We use as our basis the model
proposed by Clark and Wilkes-Gibbs (1986). In their work, they give a descriptive

account of the conversational moves that participants make when collaborating to
make a referring expression. In making it computational, we draw on the insights of
Appelt (1985a), Litman and Allen (1987), and Pollack (1986), and propose a model
based on the planning paradigm. From Appelt, we use the idea that the act of refer-
ring can be incorporated into a plan-based model of how agents construct utterances.
From Litman and Allen, we use the idea that meta-plans can account for how con-
versational participants clarify an utterance. And from Pollack, we use her idea that
plans are mental objects, which facilitates the inference of invalid plans.

We propose that referring expressions can be represented by plan derivations, and
that plan construction and plan inference can be used to generate and understand
them. Not only does this approach allow the process of building referring expressions
and identifying their referents to be captured in the planning paradigm, it also allows
us to use the planning paradigm to account for how participants clarify a referring
expression. In this case, the plans are meta-plans that reason about and manipulate
a plan derivation corresponding to the referring expression.

To complete the picture, we account for how an agent, after it has inferred the
plan underlying an utterance, adopts goals of its own to collaborate in making a
referring action successful. An important aspect of this process is that subsequent
clarifications can either clarify the previous clarification or can clarify the referring
expression resulting from the previous clarification. So for the latter case, the same
meta-plans that are used to clarify the original referring expression can be used to
model the subsequent clarifications.

This thesis makes several contributions to the field. First, although much work
has been done on how agents request clarifications and how they clarify, this is not the
same as collaborating. This work is a start in formalizing what collaboration is, both
in terms of the goals and intentions that underlie it and the surface speech acts that
result from it. Second, it addresses the act of referring and shows how it can be better
accounted for by the planning paradigm, thus contributing towards answering Allen’s
question about “where this type of reasoning fits into the planning framework” (1979,
p. 117). Third, previous work has concentrated on either construction or recognition,
but not both. By doing both, we have ensured that our work scales up in the direction
of providing a complete model of the collaborative process. Finally, by using Clark
and Wilkes-Gibbs’s model as a basis of our work, we not only add support to their

work and our own work, but gain a much richer understanding of the subject.

1.2 Scope

In order to address the problem that we have set out, we have limited the scope of
our work. This has been done so that we can concentrate on the problem of how
agents collaborate, without getting into a great number of other problems that would
lead as astray of our research objective.

First, we look at referring expressions in isolation, rather than as part of a larger
speech act. One advantage of doing this is that we do not need to recognize which
goal it is that an agent is collaborating on, since it can only be the referring action.

Second, we assume that the plan library is shared. In other words, agents have
mutual knowledge about referring expressions and about how agents collaborate in
making them. Since these are communicative plans rather than domain plans, this
assumption does not seem that limiting.

Third, we deal with objects that both the speaker and hearer know of. Objects
are represented as constants such as bird1 and an agent’s beliefs about an object are
represented by propositions such as colour(birdi,brown). The act of identifying
the referent is to match the initiator’s description of the object with an object that the
responder knows about. However, we do not assume that both the initiator and the
responder have the same beliefs about the objects. This class of referring expressions
roughly corresponds to Appelt’s shared concept activation with identification intention
(1985c).

Fourth, as the input and the output to our system, we use surface speech actions.
We assume the existence of other modules that can parse an utterance into these
actions and generate utterances from them. _

Fifth, we are not attempting to handle all types of utterances that might oc-
cur when collaborating to make a referring action successful. We are attempting to
give a computational model of the collaborative process, rather than providing wide
coverage.

Finally, we do not specifically address the issue of how participants’ beliefs are
changed during -the acceptance of a referring expression. To properly account for
this, we would need to employ a model of belief revision and also account for an
agent’s confidence in its beliefs. Given this restriction, the collaborative moves that
we account for are such that they only need to augment beliefs rather than revise
them.

1.3 Some Terminology

Throughout this thesis, we need to refer to the conversational participants or agents
involved in the discourse. Although we could use those terms, it is more beneficial to
use terms that capture the role that each agent is performing in the discourse. So,
we use the term initiator to refer to the agent who initiates the referring action, and
the term responder to refer to the agent who is trying to identify the referent. Also,
it will be helpful to use terms that are relative to an utterance. For this we use the
terms speaker and hearer, where speaker is used to refer to an agent who is adopting
goals to be achieved in an utterance or who is constructing an utterance, and hearer
refers to an agent who is inferring the plan and goal that underlie an utterance or
who is adopting beliefs based on the utterance. When illustrating our system, we use
the terms system and user. :

Since we will need pronouns to refer to the agents, we will adopt the following
convention. Initiator and speaker will be referred to using the pronoun she, and
responder and hearer will be referred to using the pronoun he.!

We also need to present our planning terminology.? We will be using the terms
plan schemas, plan instances, plan derivations, plan construction, and plan inference.
A plan schema consists of a header, constraints, a decomposition, and an effect;® and
it encodes the constraints under which an effect can be achieved by the plan headers
and primitive actions in the decomposition. A plan instance is an instance of a plan
schema in which some of the variables in the plan might be instantiated. A plan
derivation is a plan instance in which the plan headers in its decomposition have
been recursively expa.ﬁded into plan instances. Plan construction is the process of
finding a plan derivation in which the primitive actions of the plan derivation (yield)
will achieve a given effect, and plan inference is the process of finding a plan derivation
whose yield is a set of observed primitive actions. Finally, where the context allows,
we will use the word plan to refer to either a plan schema, a plan instance, or a plan
derivation.

1.4 Overview of the Thesis

In the next chapter, we discuss the relevant literature.

1When an agent switches from understanding the previous utterance (hearer) to constructing the
next utterance (speaker), the sex of the agent changes as a side effect.

2Gee Allen (1987) for an introduction to using plan-based models in natural language
understanding.

3We do not consider preconditions.

In chapter 3 and 4, we focus on the part of our model that is based on the
planning paradigm. We show how plans that underlie an utterance are constructed
and inferred in isolation to how these processes fit into our model of goal-directed
behavior that accounts for the process of how a referring action is made successful.
Chapter 3 shows that the initial réfe'rring expression can be built and understood in
the planning paradigm. We present plan schemas and surface speech acts that the
implemented system uses and give examples of the system constructing and inferring
referring expression plans. Chapter 4 shows that clarifications of the initial referring
expression can also be built and understood in the planning paradigm. In this case
the plans are meta-plans that take as a parameter a plan derivation that corresponds
to a referring expression. In addition to presenting plan schemas and surface speech
actions, we present predicates for reasoning about and manipulating the referring
expression plans, Finally, we give examples of the system constructing and inferring
clarification plans.

The purpose of chapter 5 is twofold. First, we show that subsequent clarifications
of a referring expression can be accounted for by the same meta-plans that account for
clarifications of the initial referring expression. Second, we show how the construction
and inference of referring expression plans and clarification plans fit into a model of
goal-directed behaviour. The goals for clarifying a referring expression arise from
the mutual responsibility that the participants have towards making the referring
action successful. The mutual responsibility also provides a context for understanding
clarifications, and sanctions the updating of the common ground.

In chapter 6, we present a detailed example of the processing of our system on an
entire dialogue. Chapter 7 discusses the implementation. In particular, we show how
we have used the technique of chart parsing for plan inference, and how the same
plan schemas can be used for both plan construction and plan inference.

In chapter 8, we summarize our contributions, discuss how it relates to previous
work that has been done, and describe possible extensions.

Chapter 2
Foundations

This chapter reviews the foundations that our thesis is built on. Since our work pro-
poses a model based on the planning paradigm to account for how people collaborate
in making a referring action successful, the foundational work naturally divides itself
into a number of areas, and each is reviewed in a section of this chapter. The first sec-
tion reviews work that has been done in psychology on how people collaborate. The
second section reviews computational approaches to generating and understanding
the content of referring expressions. The third section reviews the planning literature
relevant to representing what a conversation is about, specifically where agents might
have invalid beliefs or incomplete beliefs with respect to constructing a plan. Finally,
the fourth section reviews the planning literature relevant to communicative actions.

2.1 Psychological Investigations of Collaboration

As mentioned in the first chapter, our work recasts into a computational model the
work done by Clark and Wilkes-Gibbs (1986) on how people collaborate in building
referring expressions. In this section, we discuss their work along with two other
related pieces of research.

2.1.1 Clark and Wilkes-Gibbs

Clark and Wilkes-Gibbs (1986) investigated how conversation participants collabo-
rate in making a referring action successful. They conducted experiments in which
participants had to refer to objects—tangram patterns—that are difficult to describe.
They found that typically the initiator would first present an initial referring expres-
sion. The responder would then pass judgement on it, either accepting it, rejecting
it, or postponing his decision until it was expanded. If it was rejected or the decision

postponed, then either the initiator or the responder would refashion the referring
expression. This would take the form of either repairing the expression by correcting
speech errors, expanding it by adding further qualifications, or replacing the original
expression with a new expression. This process would be repeated until the initiator
and responder mutually accepted the referring expression.

Below are two excerpts from their work that illustrate the acceptance process.

(2.1) A:?! Um, third one is the guy reading with, holding his book to the left.
B: ? Okay, kind of standing up?
A: 2 Yeah.
B: 4 Okay.

In the above dialogue, person A makes an initial presentation in (1). Person B
postpones his decision in (2) by voicing a “tentative okay”, and then proceeds to
refashion the referring expression. A accepts the new referring expression in (3), and
B signals his acceptance in (4).

(2.2) A:5 Okay, and the next one is the person that looks like they’re carrying
something and it’s sticking out to the left. It looks like a hat that’s
upside down.

B: © The guy that’s pointing to the left again?
A: 7 Yeah, pointing to the left, that’s it! (laughs)
B: 8 Okay.

In the second dialogue, B implicitly rejects A’s initial presentation by replacing it with
a new referring expression in (6). A then accepts the refashioned referring expression
in (7).

Clark and Wilkes-Gibbs claim that by collaborating in the above fashion, partic-
ipants can overcome a number of limitations that they are faced with.

o Ignorance: The initiator might not know enough about the responder to be
able to determine if the responder will be able to uniquely identify the object.

e Time Pressure: Conversation must flow at a certain rate in order to be nondis-
ruptive. The initiator might not be able to construct an appropriate noun phrase
within this time limit.

o Complexity: The noun phrase that the initiator constructed might be too
complex to be easily understood.

Clark and Wilkes-Qibbs also propose that conversational participants try to mini-
mize collaborative effort. There is a trade-off between initiating a referring expression
and refashioning it. The initiator might realize that it would take more collaborative
effort to construct a proper referring expression than the effort involved in refashion-
ing it with the help of the responder.

Clark and Wilkes-Gibbs argue that, in carrying out these clarification subdia-
logues, the participants establish a common perspective for describing the objects
that they are referring to, and that the common perspective helps to minimize the
collaborative effort. During the first round of presentations, they found that the
initiator would try to establish a common perspective. The perspective would be
refined during subsequent references. This resulted in a decrease in the amount of
collaboration, as the common perspective between the participants facilitated future
referring expressions.

2.1.2 Garrod and Anderson

Garrod and Anderson (1987) conducted experiments in which participants had to
describe their location in a maze game. Garrod and Anderson analyzed the partic-
ipants’ descriptions over the course of several games. They found that participants
adopted a common perspective for describing their positions. They claim that by
adopting this common perspective, participants are trying to minimize the collabora-
tive effort involved in describing their positions. To minimize the effort, it is necessary
to be locally consistent (consistent from one turn to the next) in the way positions
are described. This in turn causes the participants to adopt the same mental model
of the maze and the same local semantics for descriptions, and so adopt a common
perspective.

2.1.3 Clark and Brennan

Clark and Brennan (1990), expanding on the work of Clark and Wilkes-Gibbs, ad-
dressed the issue of grounding in conversation. Grounding is the process whereby
participants try to establish that they have understood what has been said, so that
their common ground can be updated. Participants do this by giving positive evi-
dence that they have understood each contribution to the conversation. This can take
the form of explicit acknowledgement such as “uh huh” and “yeah,” a relevant next

turn, for instance giving an appropriate answer to a question, or continued attention.

9

2.2 Referring Expressions

This section reviews the computational methods that have been used for generat-
ing and understanding the propositional content of referring expressions. All of the
methods assume a knowledge base containing facts about the objects in the world.

2.2.1 Generating Referring Expressions

As part of a system that uses planning techniques to generate sentences, Appelt
(1985a) addresses the issue of generating referring expressions. The content of a
referring expression is chosen by an algorithm that corresponds to a primitive action
in his plan library. The algorithm first chooses a basic category descriptor. It then
adds descriptors based on facts about the object that are linguistically realizable
and that are mutually known by the speaker and hearer. Descriptors are added
until the object is uniquely identified according to the mutual knowledge of the two
participants. Appelt also incorporates a simple model of context. If the object being
referred to is the discourse center then the object does not have to be distinguished
from the other objects.

Dale (1989) also uses an algorithm to construct referring expressions. His method
is similar to Appelt’s, but he chooses the descriptors in order of their discriminatory
power. The descriptor that rules out the most candidates is added to the description
until the description uniquely identifies the object being described.

Ehud Reiter (1990) also addresses the issue of determining the content of referring
expressions. His work focuses on avoiding conversational implicatures in descriptions
in a tractable manner. He does this by formulating three preference rules: the de-
scription should not have any unnecessary components, there should be no set of
components that can be replaced by a single component, and that lexically-preferred
classes should be used. For each of these rules, he presents a polynomial algorithm
that will take a set of descriptors and choose a subset that meets the preference rule.

Reiter’s work points out that when referring expressions are constructed, care
must be taken to avoid conversational implicature. However, his solution, as have
Appelt’s and Dale’s, relies on special-purpose algorithms for choosing the content of
referring expressions, as opposed to integrating this aspect into a general theory of
how agents determine the content of an utterance. Also, all three algorithms make
strong assumptions about the speaker’s knowledge of the hearer. Appelt assumes that
the speaker has complete knowledge of the hearer’s beliefs while Dale and Reiter do
not take belief into account and so assume that the speaker and hearer have the same

10

beliefs. From the work done by Clark and Wilkes-Gibbs (1986), these assumptions
seem unrealistic.

2.2.2 Understandiﬁg Referring Expressions

An ohvious approach to understanding referring expressions is to regard this task
as a constraint satisfaction problem. This technique is employed by Mellish (1985)
in his system that understands physics problems. In his system, when a referring
expression is encountered, a set of candidate objects is created. Each component of
the description supplies a constraint; plus, constraints are derived from other places
in the text such as co-referring descriptions. As these constraints are found, they are
applied to the candidate set to derive the object that is being referred to. By the end
of the text, the referring expression should only have a single candidate that matches
the description.

The constraint satisfaction approach assumes that as a result of applying the
algorithm, there will be only one object that matches the referring expression. Al-
though this might work for understanding textbooks, in which assumptions can be
made about the adequacy of referring expressions, this approach will fail in situations
where the speaker and hearer do not share the same beliefs. The approach might find
no objects, or multiple objects.

Goodman (1985) addresses the situation in which no objects match the descrip-
tion. He views descriptions as being approximate, and his computational model
relaxes the literal content of the description in order to find a referent that will match
it. The first step of his algorithm returns a set of candidate referents that are close to
the description in terms of a knoWledge base taxonomy. The second step orders the
set of candidates in terms of how likely the candidates are to be the referent. This
ordering reflects heuristic knowledge drawn from a number of knowledge sources, in-
cluding linguistic knowledge, hierarchical knowledge, and perceptual knowledge. For
instance, the linguistic knowledge base prefers relaxing adjectives, then prepositional
phrases, then relative clauses and predicate complements. The candidates are ranked
in terms of fewest number of components that need relaxing and how preferred those
components are to relax. The third step attempts the actual relaxation, starting
with the most preferred candidate. Again, multiple heuristics are used from multiple
knowledge sources. For instance, if the candidate was turquoise, but the original de-
scription mentioned the colour blue, then the colour blue can be relaxed to turquoise
on the basis of perceptual knowledge. Or, if the candidate is not blue but has a blue
subpart, a heuristic based on hierarchical knowledge could relax the colour so that
it only applied to the subpart. If the relaxation fails to relax the description to the

11

candidate, the next candidate is tried. This is repeated until a candidate is found.

Goodman’s algorithm is an improvement over the constraint satisfaction approach,
for it relaxes the assumptions that the speaker and hearer have exactly the same beliefs
about the world. However, his algorithm assumes that the hearer has no recourse to
question the speaker about the identify of the referent.

2.3 Planning

The planning literature that is relevant to this thesis has been separated into two
sections, This section reviews the literature that is relevant to representing what
a conversation is about, where agents might have invalid beliefs or incomplete be-
liefs with respect to constructing a plan. The next section reviews using planning
techniques to account for communicative actions.

2.3.1 Invalid Plans and Plan Repair

Plans are sometimes invalid. An agent might have incorrect beliefs about the world,
and hence it might construct a plan that will not achieve the goal that it is supposed
to achieve. Plan repair is the process where either the planning agent or another
agent fixes the plan so that it will achieve its goal.

Pollack (1986) has extended plan recognition to infer invalid plans that a user
might have. She views plans as “mental objects” rather than as data structures.
Under this view, “having a plan” means that an agent has a particular configuration
of beliefs and intentions. In inferring a plan, she uses plan inference rules that capture
the notion that the user might have incorrect beliefs. These inference rules include
inferring a plan where the enablement conditions are not true, where the user might
have mistakenly used an action that is similar to an action that the system believes
will achieve the goal, used a plan that is similar to one that will achieve the goal, or
made a typical mistake. To guide the plan inference process, both the goal that the
user is trying to achieve and the domain action that the user thinks will achieve the
goal are input to the plan inference system.

2.3.2 Shared Plans

Grosz, Sidner, and Lochbaum (Grosz and Sidner, 1990; Lochbaum, Grosz and Sidner,
1990) present a model of plans to account for how agents with partial knowledge
collaborate in the construction of a domain plan. Agents have a library of partially
specified plan schemas (recipes). These recipes might be underspecified as to how an

12

action is executed or how an action contributes to a goal. Agents then collaborate in
constructing a shared plan by uttering statements about their beliefs and intentions
about the plan. This collaboration will terminate with each agent mutually believing
that each act in the plan can be executed by one of the agents, that that agent intends
to perform the act, and that each act in the plan contributes to the goal.

Their computational work focuses on understanding how an agent’s utterance
contributes to the shared plan. They present an algorithm for augmenting the beliefs
about the plan being collaborated on. If the inferring agent detects a belief about
an action in the plan that is inconsistent with its own beliefs, it will communicate
dissent rather than negotiating about the action.

2.4 Communicative Plans

This section reviews how planning techniques have been used to model communicative
acts, with an emphasis on acts of reference and clarification subdialogues.

2.4.1 Speech Acts

By viewing language as action, the planning paradigm can be applied to natural lan-
guage processing. The actions in this case are illocutionary speech acts (Grice, 1957;
Austin, 1962; Searle, 1969), and include such things as promising, informing, and
requesting. Cohen and Perrault (1979) developed a system that uses plan construc-
tion to map an agent’s goals to speech acts, and Allen and Perrault (1980) use plan
recognition to understand an agent’s plan from its speech acts.

2.4.2 Referring as Action

Treating referring as a speech act was first proposed by Searle (1969). He proposed
that referring and predicating were propositional speech acts as opposed to illocution-
ary acts. This distinction is due to Searle’s view that referring and predicating cannot
be done alone, but only as part of an illocutionary act.

Cohen (1981; 1984), differing from Searle, advocates treating referring as re-
questing. From analyzing task-oriented dialogues, he proposed the use of an action
identify(agt,D), which means that the hearer, agt, identifies the referent of the
description, D. His approach would make identifying a referent the same as doing a
physical action. A speaker would plan that the hearer identify a referent and request
him to do so in the same way as the speaker would do for physical actions. So, mod-
els that account for the generation and understanding of requesting can be used for

13

referent identification.

Appelt and Kronfeld (1987) support Searle’s view that referring is a propositional
speech act and provide a formal model of referring. They propose that the literal
goal of referring “is to establish mutual belief that a particular object is being talked
about” and that the condition of satisfaction is for the hearer to “know the appro-
priate criteria for correct identification and successfully satisfy these criteria.” The
literal goal does not involve the hearer identifying the referent, but just having a
representation of it. This is achieved by the hearer recognizing the intention of the
referring goal. The criterion for identifying the referent depends on the illocutionary
act among other things, and will take the descriptive content of the noun phrase into
account.

2.4.3 Planning Referring Expressions

In a section 2.2.1, we discussed how Appelt (1985a; 1985b) chooses the content of
referring expressions. In this section, we are interested in how acts of reference fit
into his plan-based model of sentence generation.

In Appelt’s model, after a surface speech act has been planned, it is passed to a
functional unification grammar. The grammar is augmented so that when building a
noun phrase for a term O; of the surface speech act, it checks to see whether the term
has a description (propositional content). If it doesn’t then the grammar poses the
goal active(0;) to the planner. The proposition active(0;) means that O; “belongs
to the available set of terms for constructing the proposition the speaker is conveying
in way of the surface speech act” (1985a, p. 18). The planner achieves this goal by way
of a concept activation action, which can be viewed as a generalization of a referring
speech act. Concept activations are achieved by either the nonlinguistic action of
pointing or by the linguistic action describe. The preconditions of describe specify
that the speaker believes that the description is true of the intended referent, and that
the intended referent is the only object that is not ruled out according to the mutual
knowledge of the two agents. The describe action calls the algorithm that was
mentioned in section 2.2.1 to choose a description that satisfies the preconditions. The
chosen description is then used by the grammar to determine the linguistic realization
of the noun phrase.

2.4.4 Discourse Plans and Clarification Subdialogues

Litman and Allen (1987) have taken a plan-based approach to understanding dis-
course. In addition to using domain plans to encode knowledge about the topic

14

of conversation, they use discourse plans to encode knowledge about conversations.
Discourse plans correspond to how an utterance can relate to the current topic of
conversation, be it a domain plan, or even another discourse plan. This approach
allows them 1o use plan recognition to identify discourse phenomena from utterances,
such as introducing a new topic, continuing a topic, and clarifications.

The plan recognition process infers the user’s discourse plan from the utterance
that it observes. It then tries to determine the plan that underlies the discourse plan.
If this is not the first utterance, the plan recognition process will have as input a
plan stack that represents the current context. The plan recognition process prefers
interpretations that relate the discourse plan to one already on the stack. After the
plan recognition process is complete, a new plan stack will be built and this is used to
both determine the system’s next action and provide context for the next statement.

Litman and Allen present three clarification plans that can account for a number
of clarification subdialogues. To support these plans, they provide a vocabulary for
referring to and manipulating the underlying plans. An example is correct-plan
shown in figure 2.1. This plan takes another plan as a parameter (the underlying

Header: CORRECT-PLAN(speaker,hearer,laststep,newstep,
nextstep,plan)

Prerequisites: WANT (hearer,plan)
LAST(laststep,plan)

Decomposition-1: REQUEST(speaker,hearer,newstep)
Decomposition-2: REQUEST(speaker,hearer,nextstep)
Effect: STEP(newstep,plan)

AFTER(laststep,newstep)

AFTER (newstep,nextstep)

NEXT (newstep,plan)

Constraint: STEP(laststep,plan)
STEP(nextstep,plan)
AFTER(laststep,nextstep)

AGENT (newstep ,hearer)

not CANDO(speaker,nextstep,plan)
MODIFIES(newstep,laststep)
ENABLES (newstep,nextstep)

Figure 2.1: correct-plan plan

plan), and lets the speaker correct the underlying plan by introducing a new step
into it. The constraints of correct-plan ensure that the new step is a variant of the
last executed step, that the next step is not executable (presumably because the last
step didn’t enable some condition that the next step relied on), and that the new

15

step will enable the next step. The effect of correct-plan is that the new step will
be inserted into the underlying plan after the last step and before the next step and
that it will be executed next. This plan is achieved by the speaker either requesting
the new step or requesting the next step (which can’t be executed).

The clarification plans and the vocabulary for referring to plans provide a good
starting point for modeling clarification subdialogues. However, a richer set of clarifi-
cation plans and a corresponding richer vocabulary are needed to deal with clarifica-
tions in general. Litman and Allen’s plans deal with only changing a single primitive
action in an underlying plan where the change does not have any side effects in the
rest of the plan and where the action is the current focus. However, these limitations
must be relaxed. In general, a branch occurring anywhere in the plan tree should be
able to be repaired even when it has side effects elsewhere in the plan.

16

Chapter 3
Referring Expressions

Searle (1969) proposed that referring is a communicative act. With the advent of
using planning techniques to account for illocutionary speech acts, viewing referring
as a communicative act allows planning techniques to account for its usage. However,
previous plan-based models of referring (Cohen, 1984; Appelt, 1985a) have treated
the process of determining the description (proposition content) as a primitive action.

This thesis proposes using planning techniques to both generate and understand
the propositional content of referring expressions. In other words, the individual
components of a description will be accounted for in the planning paradigm. This
approach has several advantages. First, it allows both tasks to be captured in a single
paradigm that is used for modeling general intelligent behaviour. Second, it allows
more of the content of an utterance to be accounted for by a uniform process. Third,
only a single knowledge source for referring expressions is-needed instead of having
this knowledge embedded in special algorithms for each task.

The outline of the rest of this chapter is as follows. We first discuss the scope
of our work on referring expressions. Second, we define some predicates that will
be used in our plan schemas. Third, we present the refer plan, the surface speech
acts, and the subplans that are used in decomposing the refer plan into the surface
speech acts. Fourth, we show how these plans are used for constructing and inferring
referring expression plans.

3.1 Scope of our work

In order for a referring act to be successful, the referring expression must enable the
hearer to identify the referent. For our work, we focus on references to objects that are
mutually known by both the speaker and the hearer. Furthermore, we assume that
identification is achieved by the hearer checking his beliefs as opposed to performing

17

physical actions, such as testing the contents of a glass to determine if it is a martini
(Perrault and Cohen, 1981). This type of referring expréssion corresponds to Appelt’s
shared concept activation with identification intention (1985c).

When building a referring expression or when trying to identify a referent of a
referring expression, the context in which it is uttered is very important. The context
allows some objects to be referred to by pronouns or by definite descriptions that
do not fully distinguish the object from all other objects that could be referred to
(Grosz, 1981). But this thesis addresses the issue of referring to objects that are not
in focus, and hence does not consider context. However, a primitive model of context
could be incorporated into our work on the basis of sets of objects that are in focus.
An interesting problem would be to integrate default inferences, sanctioned by the
context, about what properties the referent can be assumed to have.

The beliefs of the speaker and hearer must also be taken into account. The
propositional content of a referring expression does not express truths about the
world but beliefs about the world. In constructing and inferring referring expression
plans, our model of an agent takes into account its own beliefs and its beliefs about
the other agent.

3.2 Vocabulary

Before we present the plan schemas for referring expressions, we need to introduce
some vocabulary that is used in the plan schemas. We use the standard definitions
of goal, bel, and bmb, and we introduce the predicate bub.

goal(Agt,Goal): Agent Agt has the goal Goal. An agent will act to make its goals
true.

bel(Agt,Prop): Agent Agt believes proposition Prop.

bmb(Agtl,Agt2,Prop): Agent Agt1 believes that it is mutually believed by itself
and Agt2 that proposition Prop is true. The standard definition of this predicate
is given below:!

1In the plan schemas, the predicate mb is used; however, this predicate is always implicitly
embedded inside the speaker’s beliefs, thus giving bmb. This also applies to the predicate bub.

18

bmb(Agtl,Agt2,Prop) = bel(Agtl,Prop) and
bel(Agt1,bel(Agt2,Prop)) and
bel(Agtl,bel(Agt2,bel (Agtl,Prop))) and

etc?

bub(Agt1,Agt3,Prop): Agent Agt1 believes that it is in the union of its beliefs and
Agt2’s beliefs that proposition Prop is true. This predicate is similar to mutual
belief except that, rather than an infinite conjunction of beliefs, it is defined as
an infinite disjunction.
bub(Agtl,Agt2,Prop) = bel(Agtl,Prop) or
bel (Agti,bel(Agt2,Prop)) or
bel(Agtl,bel(Agt2,bel (Agti,Prop))) or
etc
This predicate is used to determine whether or not more modifiers should be
added to the description, as will be explained in section 3.5.

3.3 Refer Plan

Since we are viewing referring as a communicative act, there is a plan schema for
referring, shown in figure 3.1. (We adopt the Prolog convention that variables begin
with an upper case letter, and all predicates and constants begin with a lower case
letter.) The refer plan takes as a parameter a term representing the discourse

Header: refer (Entity)
Where: speaker (Speaker)
hearer (Hearer)
Decomposition: s-refer(Entity)
describe(Entity)
Effect: bel (Hearer,goal (Speaker,knowref (Hearer ,Entity))))

Figure 3.1: refer plan

entity (Webber, 1983) of the referring expression that is being constructed. Such a
discourse entity is represented by entity(Var,0bject), where Object represents the
object being referred to, and Var is a unique identifier. The decomposition of the plan
consists of the primitive action s-refer, which signals that the speaker is referring,

2Since this definition involves an infinite conjunction of beliefs, it is not possible to compute
mutual belief in this way. Previous models have used rules for inferring mutual belief (Clark and
Marshall, 1981; Perrault, 1990). We follow a similar approach (see section 7.4).

19

"and the plan describe, which creates the description. These plans are presented
later in the chapter. The predicates in the plan schema labeled by where are used to
instantiate the variables Speaker and Hearer to either system or user.?

The effect of the refer plan is that the hearer will believe that the speaker has
a goal of the hearer knowing the referent of the referring expression.* The effect has
been formulated in this way so that it will be achieved by the hearer inferring the
speaker’s plan, regardless of whether the hearer is able to determine the referent.
Following Litman and Allen (1987), we use the predicate knowref to represent that
an agent knows a referent. However, our definition differs from theirs. They define
knowref (A,T,P) as A knowing. a description of term T that satisfies proposition P,
whereas we define knowref(A,E) as A knowing the object that corresponds to the
discourse entity E.

The effect shown in figure 3.1 is the only one included in any of the plan schemas
for referring expressions. We view this as a simplification, for each of the subplans
should have an effect stated for it. However, since we are chaining by decomposition
and since we assume that plan inference always derives the correct plan derivation,
nothing is lost by this simplification. Furthermore, determining the effects of each
plan and developing a vocabulary to state them in is not a simple task.

Although we present this plan in isolation of a system that plans illocutionary
speech acts, this plan is similar to Appelt’s concept activation action (1985a) and
Cohen’s request to identify (1984) in terms of its communicative role, and hence
could be integrated into their plan-based models of generation.

3.4 Surface Speech Acts

For referring expressions, we need a set of primitive actions. Since these primitive
actions will correspond to parts of an utterance, they can be viewed as surface speech
actions. The surface speech actions that we chose are such that each component of a
description is accounted for by a separate action, thus enabling our model to account
for the content of referring expressions in the planning paradigm.

3.4.1 s-refer

The s-refer action is performed by the speaker to signal to the hearer that she is
referring to an object, and that she intends him to identify the object. This is a

30ur usage of where-predicates stems from the lack of functions and typed variables in Prolog.
4This effect does not capture that the speaker will believe that the referring expression enables
the hearer to identify the referent. However, it will suffice for this thesis.

20

distinct action because a referring speech act is sometimes linguistically marked, for
instance, when uttered in an appropriate context, “the bird, you know?”, “see the
bird,” and even by the definite article.

Headér: s-refer(Entity)

Figure 3.2: s-refer plan

3.4.2 s-attrib

For each predicate that describes an object in terms of an attribute, there will be an
s-attrib action schema.®? The parameters of these schemas are a discourse entity,
and a predicate that encodes the attribute. The predicate is encoded using lambda
calculus since it allows the syntax of predicates to be standardized, thus simplifying
other plan schemas that might need to make use of the predicate. The constraints of
the plan specify that the speaker believes that the attribute is mutually believed to
be true of the referent.® In figure 3.3, the schema is given for attributing colour.”

Header: s-attrib(Entity,AX-colour(X,Colour))
Where: speaker (Speaker)

hearer (Hearer)

ref (Entity,0Object)
Constraint:. mb(Speaker,Hearer,colour(Object,Colour))

Figure 3.3: s-attrib plan

3.4.3 s-attrib-rel

The s-attrib-rel actions are similar to the s-attrib actions. However, instead
of describing an object in terms of an attribute, the object is described relative to
some other object. Hence, there are action schemas for relationships that can hold
between objects. Note that when using s-attrib-rel, it is necessary to refer to the
related object, which is done by the parent plan of s-attrib-rel (see section 3.5.4),

$Having multiple plan schemas with the same header corresponds to using an abstraction operator
(Kautz and Allen, 1986), where ‘the abstraction operator maps the plan header to each of the plan
schemas.

6This constraint is too strong and could be weakened to take into account Perrault and Cohen’s
work on inaccurate reference (1981).

"The ret predicate in the plan schema maps a discourse entity representing a referring expression
onto the object that is being referred to. It is used in order to access the beliefs about the referent.

21

and to create a discourse entity for the related object, which is done by the second
ref predicate.8 In figure 3.4, the schema for describing that an object is in another

object is given.

Header: s-attrib-rel(Entity,LocEntity, \X-AY-at(X,Y))
Where: speaker (Speaker)

hearer(Hearer)

ref (Entity,0Object)

ref (LocEntity,Loc)
Constraint: mb (Speaker,Hearer,at(Object, Loc))

Figure 3.4: s-attrib-rel plan

3.4.4 s-attrib-rel-group

The s-attrib-rel-group actions are also similar to the s-attrib actions. However,
in this case, the object is described relative to the set of objects that could satisfy the
propositional content of the actions that have already been planned. For instance, it
is used to describe that the object is the largest object of those that satisfy the rest
of the description. For each predicate that allows an ordering and for each way it can
be ordered, there is a separate action schema. In figure 3.5, the schema for saying
that an object is the largest is given.

Header: s-attrib-rel-group(Entity, X -max(size, X),Cand)
Where: speaker (Speaker)

hearer (Hearer)

ref (Entity,Object)
Constraint: mb(Speaker ,Hearer,max(size,Object ,Cand))

Figure 3.5: s-attrib-rel-group plan

3.4.5 An Example

With these primiti\;e actions, we can represent the surface speech acts associated
with referring expressions. As an example, the surface speech acts for the referring
expression “the black bird in the cage” are given below: -

814 is unclear where a discourse entity should be created. We have taken the approach of making
the ref predicate create new discourse entities if the variable representing the discourse entity is
uninstantiated.

22

s-refer(entity(1,bird2))
s-attrib(entity(1,bird2),AX-category(X,bird))
s~-attrib(entity(1,bird2),)X:colour(X,black))

s-attrib-rel (entity(1,bird2),entity(2,cage5), AX-AY-in(X,Y))
s~refer(entity(2,cage5))

s-attrib(entity(2,cageb) ,AX: category(X,cage)

3.5 Intermediate Plans

This section presents the subplans that are used in decomposing the refer plan into
the surface speech acts, namely describe, headnoun, modifiers, and modifier.
These plans encode the knowledge of how a description can allow a hearer to identify
an object.

To ensure successful reference, the description that these intermediate plans build
must enable the hearer to uniquely identify the referent. The intermediate plans
reason about the success of the description through the use of candidate sets. A
candidate set represents the set of objects that the speaker believes could satisfy the
propositional content of the referring expression that has already been planned. Since
the speaker and hearer are not assumed to have identical beliefs about the objects
in the world, the speaker must consider the union of their beliefs (bub) in computing
the candidate set in order to minimize the chance of an infelicitous reference.? Once
a description has been planned in which the associated candidate set contains only
the representation of the referent, the speaker will believe that the description will
enable the hearer to identify the referent. .

The candidate sets also play a crucial role in the plan inference process. When
inferring the referent of a referring expression, the strategy whereby each component
of the expression is used to constrain the choice of referent is captured in the plan
schemas by the operations that derive the candidate sets. Hence, the hearer will be
able to determine the candidate sets by evaluating the plan derivation that he has
ascribed to the speaker. Assuming that the beliefs that the speaker has ascribed to
the hearer are correct, then the candidate set corresponding to the entire expression
will contain only the referent.

We now need to account for how candidate sets are built, and how these sets

®Consider the scenario in which the speaker wants to refer to bird2, which he believes is mutually
believed to be black. Let’s also assume that there is another bird that the speaker believes to be
brown, but the speaker believes that the hearer believes it is black. By using the union of their beliefs
in determining candidate sets, the speaker will find the description “the black bird” is potentially
infelicitous and will therefore add another modifier.

23

will affect the rest of the referring expression. First, we propose the use of mental
actions. Mental actions are similar to primitive actions, except that they do not have
any observable effects. Instead, their effects are changes in the state of the planning
agent. Second, we allow variable instantiation to have side effects, whereby a variable
is instantiated in one step of a plan derivation and its value is used by another step.
Thus, the mental actions are used to build the candidate sets, and these candidate
sets can affect other steps in the plan derivation.

3.5.1 describe

The describe plan (figure 3.6) is one of the steps of the refer plan and is used to
construct a description of the object. Its decomposition consists of headnoun and
modifiers. The headnoun step instantiates the candidate set to the set of objects
that matches the head noun that is chosen. This candidate set is passed to the
modifiers step so that it will know which objects the referent must be distinguished
from.

Header: describe(Entity)
Decomposition: headnoun(Entity,Cand)
modifiers(Entity,Cand)

Figure 3.6: describe plan

3.5.2 headnoun

The plan headnoun (figure 3.7) has two steps. The first step is s-attrib, which

Header: headnoun (Entity,Cand)
Where: speaker (Speaker)
hearer (Hearer)
world(World)
Decomposition: s-attrib(Entity, A\X-category(X,Category))
subset (World, AX-ub(Speaker ,Hearer,
' category(X,Category)) ,Cand)

Figure 3.7: headnoun plan

determines the head noun of the referring expression. The second step is the mental
action subset, which determines the candidate set.!® The candidate set is computed

10The predicate subset(Set,Pred,Subset) computes Subset such that the following holds:
Subset = {X | X € Set and Pred(X)}. If Subset is empty, the mental action will fail.

24

by finding the subset of the objects in the world that the speaker believes could be
referred to by the head noun.

- 3.5.3 modifiers

" The modifiers plan attempts to ensure that the referring expression that is being
constructed is believed by the speaker to allow the hearer to uniquely identify the
referent. It accomplishes this by repeatedly choosing predicates that are true of
the referent, until the conjunction of the chosen predicates apparently identifies the
referent. Rather than extending the planning model to define the notion of iterative
plans, we use recursion.

There are three plan schemas for modifiers. The first schema (figure 3.8) embod-
ies the recursion. Its first step is modifier. This step, through its decomposition,

Header: modifiers(Entity,Cand)
Decomposition: modifier(Entity,Cand,NewCand)
modifiers(Entity,NewCand)

Figure 3.8: modifiers plan

adds a component to the description and updates the candidate set by computing
the subset of it that satisfies the new component. The updated candidate set is then
passed to the second step, which is the recursive instantiation of modifiers.

The second modifiers schema (figure 3.9), which has a null decomposition, ter-

11

minates the recursion.'! Its constraint ensures that only one object matches the

propositional content of the referring expression.

Header: modifiers(Entity,Cand)
Where: ref (Entity,0Object)
Constraint: Cand = [Object]
Decomposition: null

Figure 3.9: modifiers plan

The third schema (figure 3.10) also terminates the recursion. It decomposes into
the surface speech action s-attrib-rel-group, which adds a component to the de-
scription that distinguishes the referent from the other candidates.

U1n order to distinguish this plan from a primitive action, it has a step that is marked null.

25

Header:
Decomposition:

modifiers(Entity,Cand)

s-attrib-rel-group(Entity,Pred,Cand)

Figure 3.10: modifiers plan

3.5.4 modifier

The modifier plan accounts for individual components of the description. There are
two plan schemas for modifier, one corresponding to s-attrib and one correspond-
ing to s-attrib-rel.

The first schema is shown in figure 3.11. Its decomposition consists of the surface
speech act s-attrib and a mental action that determines the new candidate set
(NewCand) by including only the objects from the old candidate set (Cand) for which
the predicate could be believed to be true.

Header:
Where:

Decomposition:

modifier(Entity,Cand,NewCand)

speaker(Speaker)

hearer (Hearer) :

s-attrib(Entity,Pred)

subset (Cand, A\X-ub(Speaker ,Hearer,Pred (X)),
NewCand)

Figure 3.11: modifier plan

The second schema (figure 3.12) has s-attrib-rel in its decomposition. Since
this action describes an object in terms of some related object, the schema has a step
to refer to it. It also has a step to update the candidate set.

Header:
Where:

Decomposition:

modifier(Entity,Cand,NewCand)

speaker(Speaker)

hearer (Hearer)

s-attrib-rel(Entity,OtherEntity,Pred)

ref (OtherEntity,Other)

subset (Cand, A\X-ub(Speaker ,Hearer,Pred (X) (Other)),
NewCand)

refer (OtherEntity)

Figure 3.12: modifier plan

26

e

3.6 Constructing the Simplest
Referring Expression

The plan schemas described above underconstrain the choice of referring expressions.
In particular, nothing in the plan schemas captures the preference of people to use
minimal referring expressions. Since the content of an expression is being accounted
for in the planning paradigm, this preference can be stated in more general terms as
a heuristic for constructing plans: prefer simple plans'2. This heuristic has intuitive
appeal, and when planning with the intention that the hearer infer the plan, this
heuristic is related to Grice’s maxims of conversation.

In order to use the heuristic of preferring simple plans, it is necessary to state it in
an operational way. There are many ways that this could be done. For our purposes,
it suffices to prefer the plan derivation with the least number of primitive actions.!?
By using this planning heuristic, we can account for Ehud Reiter’s results on avoiding
conversational implicature (1990), without resorting to special algorithms that have
no intuitive appeal.!*

The plan schemas have been designed so that a plan can be constructed by chaining
through decomposition only. This simplifies the plan construction process, for it
eliminates the need to chain through preconditions. The plan constructor starts with
a goal and finds the shallowest plan derivation that achieves this goal, such that the
constraints are true and the mental actions are executable for each instance in the
plan derivation.

3.6.1 _An Example

Consider the scenario in which the system believes that there are three birds—a small
turquoise one (bird1l), a large black one (bird2), and a large white one (bird3)—
plus some other non-bird objects in the world. Also suppose that the system (as the
speaker) has the goal of referring to bird2.

The derivation in figure 3.13 shows the most preferred plan created by the plan
constructor to satisfy the goal of referring to bird2. Each plan, primitive action,
and mental action that is in the derivation is shown in a box, and the steps of a
plan are shown as boxes inside of the box representing the plan. Any variables that

12By simple plans we mean plans that are minimal in some manner. We are not referring to
Pollock’s usage of simple plan (1990, p. 91).

13Gee section 7.2.1 for further comments on this planning heuristic.

19A5 a counterpoint, our approach does not guarantee that a referring expression can be found in
polynomial time.

27

refer(entity(1,bird2))
[s-refer(entity(1,bird2)) |

describe(entity(1,bird2))
headnoun(entity(1,bird2), [bird1,bird2,bird3])
s-attrib(entity(1,bird2),)X-category(X,bird))
Constraint: mb(user,system,category(bird2,bird))

subset (World, \X-ub(user, system, category(X,bird)),
[birdl,bird2,bird3])

modifiers(entity(1,bird2), [bird1,bird2, bird3])
modifier(entity(1,bird2), [bird1,bird2,bird3], [bird2])
s-attrib(entity(1,bird2), X colour(X,black))

Constraint: mb(user,system,colour(bird2,black))

subset ([birdi,bird2,bird3], AX-ub(user,system,
colour(X,black)),[bird2])

modifiers(entity(1,bird2), [bird2])
Constraint: [bird2]=[bird2]

Effect: bel(user,goal(system,knowref(system,entity(1,bird2))))

Figure 3.13: Constructed referring expression plan

are instantiated during the plan construction process are labeled by instantiation,
and the effects of this instantiation on the rest of the plan derivation are shown by
replacing the variable with its value. For instance, in instantiating the constraint
mb(system,user,category(bird2,Category)), Category is instantiated to bird
and this instantiation is carried through to the second step of headnoun as shown. The

resulting surface speech acts of this derivation are listed below, and they correspond
to the phrase “the black bird.”

s-refer(entity(1,bird2))
s-attrib(entity(1,bird2),)X- category(X,bird))
s-attrib(entity(1,bird2),X:colour(X,black))

3.7 TUnderstanding a Referring Expression

To understand an utterances that he hears, the hearer must determine what the
speaker intended by way of the utterance. In our model, this is accomplished by plan

28

inference. By inferring the speaker’s plan, the hearer can determine the effects of the
plan, which are assumed to be the speaker’s intentions in making the utterance.

The plan inference process takes as input the surface speech acts returned by a
parser. The first step of the process recognizes the plan derivation. It finds a plan
that has as its yield the primitive actions that were observed. Motivated by Pollack’s
work on inferring invalid domain plans (1986), it does not ensure that the constraints
and mental actions are satisfiable, thus allowing plans with unsatisfiable constraints
or mental actions (invalid plans) to be recognized. The second step evaluates the plan
to ensure that it is valid, and if it is not, the node that is not satisfiable is noted.!®

The plan evaluator prefers to evaluate the constraints and mental actions in the
order specified by the plan schemas. However, these schemas have been formulated
for plan construction, and there is a difference in knowledge that the speaker has
when constructing a plan and the knowledge that the hearer has when inferring it.
Hence, it might not be efficient or even possible to evaluate in the order specified in
the plan schemas. Thus, the constraints and mental actions are evaluated in an order
that takes into account the hearer’s knowledge and meta-level knowledge about the
predicates in the plan schemas.

For referring expressions, once the plan inference process is completed, the hearer
will have inferred that the speaker’s plan was the refer plan and will have the belief
that the speaker has a goal of the hearer knowing the referent of the referring expres-
sion. If the plan evaluation was successful, the hearer will in fact know the referent,
since the variable representing the referent will have been instantiated. Otherwise,
if it wasn’t successful, one of the constraints or mental actions in the inferred plan
derivation will be found to be unsatisfiable, which could result in the hearer being
unable to identify the referent.

3.7.1 An Example

Consider again the scenario in which the system (as the hearer) believes that there
are three birds, a small turquoise one (bird2), a large black one (bird2), and a large
white one (bird3), plus some other objects in the world. Suppose that the user has
uttered “the black bird” and that a parser has derived the primitive actions listed
below:

15In a general model of plan inference, it might not always be necessary to evaluate a recognized
plan. The decision might depend on the effects of the inferred plan, and on whether there are several
completing plan derivations that can account for the primitive actions that were observed.

29

refer(entity(1,0bject))
[s-refer(entity(1,0bject)) |

describe(entity(1,0bject))
headnoun(entity(1,0bject),Cand)
s-attrib(entity(1,0bject), X:category(X,bird))
Constraint: mb(user,system,category(Object,bird))

[subset (World, \X-ub(user,system,category(X,bird)) ,Cand) |

modifiers(entity(1,0bject) ,Cand)
modifier(entity(1,0bject),Cand,NewCand)
s-attrib(entity(1,0bject), X-colour(X,black))
Constraint: mb(user,system,colour(0Object,black))

[subset (Cand, \X-ub(user, system,colour(X,black)),NewCand) |

modifiers(entity(1,0bject) ,NewCand)
Constraint: NewCand = [Object]

Effect: bel(system,goal(user, knowref(system,entity(1,0bject))))

Figure 3.14: Recognized referring expression plan

s-refer(entity(1,0bject))
s-attrib(entity(1,0bject),AX-category(X,bird))
s-attrib(entity(1,0bject) ,AX:colour(X,black))

In order to understand the user’s utterance, the primitive actions are used as input
to the plan inference process. The first step of the plan inference process will recognize
the user’s plan, resulting in the derivation shown in figure 3.14 (with the where-
predicates instantiated). Note that all variables that co-refer have been unified.’® For
instance, the variables for the candidate sets in the describe, headnoun, modifiers,
and modifier plans have been unified. Unifying co-referring variables also has the
effect that all variables that co-refer to a variable that has been instantiated in the
primitive action will be instantiated.)

The second step of the plan inference process evaluates the constraints and mental
actions in the plan derivation. For this plan derivation, the evaluator will first instan-
tiate the mental action subset in the headnoun plan. This will result in Cand being
instantiated to [birdl,bird2,bird3]. Second, the subset action in the modifier

16The variable names have been changed for readability. In reality, Prolog gives all variables
arbitrary names such as _34.

30

Ly

plan is evaluated yielding Cand1 being instantiated to [bird2]. Third, the constraint
Candl = [Object] in the second instance of the modifiers plan is evaluated, yield-
ing Object being set to bird2. Once this instantiation is made, the rest of the plan
derivation can be evaluated in any order. The resulting plan derivation is the same as
the one shown in figure 3.13 except that system and user are exchanged. So, as can
be seen, the stated effect of the refer plan will have the variable Object instantiated

to bird2, and so the system has deduced the referent of the referring expression.!?

3.8 Summary

In this chapter, we presented our model, which is based on the planning paradigm, of
how the propositional content of referring expressions can be generated and under-
stood. Although we have not covered all types of referring expressions, we feel that
our model can be extended to handle a large number of them. In particular, we feel
that this approach can incorporate non-linguistic actions that are used in conjunc-
tion with referring expressions, such as pointing at a referent. As well, descriptions
sometimes specify a plan of actions for the hearer to perform to identify the referent.
Since our approach is based on planning, it could offer a solution to how such referring
expressions are constructed and understood.

17In chapter 5, we will give rules that the system can apply so as infer that it knows the referent
given the knowledge it has inferred from the plan derivation.

31

32

Chapter 4

Clarifications

Clark and Wilkes-Gibbs (1986) present a model of how conversational participants
collaborate in making a referring action successful. Their model consists of conver-
sational moves that express a judgement of the success of a referring expression and
conversational moves that refashion an expression. However, their model is not com-
putational. They do not account for how the judgement is made, how the judgement
effects the refashioning, nor the content of the moves.

This chapter casts Clark and Wilkes-Gibbs’s model into a computational frame-
work based on the planning paradigm. The conversational moves of their model are
accounted for by discourse plans. This approach allows plan construction to be used
for generating a clarification and plan inference for understanding a clarification.

The discourse plans, however, only provide part of the solution. We must still
account for how a plan that is inferred from an utterance influences how an agent
choices the goal it tries to achieve in the next utterance. This part of our model
is presented in the next chapter, allowing us in this chapter to concentrate on the
construction and inference of clarifications in isolation.

The outline of the rest of this chapter is as follows. We first account for how
referring expressions are judged. Second, we present a vocabulary that our discourse
plans use to reason about and manipulate a plan derivation that corresponds to a
referring expression. Third, we present the discourse plans and the surface speech
acts that we employ. Fourth, we give examples of how clarifications are constructed
and inferred in our model.

1We use the term clarification since the conversational moves of judging and refashioning a
referring expression can be viewed as clarifying the referring expression.

33

4.1 Judging Referring Expressions

Clark and Wilkes-Gibbs propose a number of conversational moves that participants
use in collaborating to make a referring action successful. They claim that after a
referring expression (or a refashioned referring expression) is presented, the hearer
judges it and that he either accepts it, rejects it, or postpones the judgement. If he
rejects it or postpones the judgement then either he or the speaker will refashion it by
replacing it or expanding it. This process is repeated until a final referring expression
is mutually accepted.?

Clark and Wilkes-Gibbs, however, do not account for why conversational partic-
ipants choose to accept or reject a referring expression or postpone the judgement.
Nor do they account for how a participant chooses whether to replace a referring
expression or expand it. In order to cast their model of conversational moves into a
computational framework, we need to account for how these decisions are made.

We propose that the hearer judges the referring expression by determining whether
any objects match the description. Either exactly one object matches, no objects
match, or multiple objects match the referring expression. If exactly one object
matches the referring expression, then the hearer will accept it. If he doesn’t find any
objects that match it, then the expression overconstrains the choice of referent and
he will be unable to identify the referent, and will thus reject the expression or part
of it. If he finds multiple objects that match the expression then it underconstrains
the choice of referent and although he finds it acceptable so far, he would postpone
his judgement.

If the referring expression was rejected or the judgement was postponed, then
either the hearer or the speaker will refashion it. If the hearer found that the referring
expression overconstrained the choice of referent, then the expression, or part of it,
will need to be replaced. If the hearer found that it underconstrained the choice of
referent, then the expression will either be expanded, or part of it replaced. Whether
this is done by the hearer will depend on whether he knows the referent (if he is the
initiator of the referring expression) or he is able to choose a plausible candidate as
the referent.

Since we are using the planning paradigm to account for the generation and un-
derstanding of the propositional content of referring expressions, we can cast the
judgement in terms of the evaluation of the inferred referring expression plan. When
the hearer tries to understand the referring expression, he employs plan recognition

2In this thesis, we do not incorporate Clark and Wilkes-Gibbs’s work on how speech errors are
repaired.

34

and then evaluates the recognized plan. If the evaluation is successful, then he will
have identified the referent of the referring expression. If it is not, then the hearer
will have identified a constraint or mental action that is not satisfiable. The node in
the plan derivation at which the evaluation failed captures the information needed
to decide whether the referring expression is overconstrained or underconstrained. If
it is overconstrained, then one of the constraints on an s-attrib, s-attrib-rel, or
s-attrib-rel-group speech act will have been violated.® If it is underconstrained,
then the constraint on the instance of the modifiers plan that terminates the re-
cursion and that has a null decomposition will have been violated. Hence, we use
structural properties of where the violation occurred in the plan derivation to deter-
mine whether the referring expression overconstrains or underconstrains the choice of
referent, which in turn determines whether the referring expression is rejected or the
judgement is postponed.

4.2 Vocabulary

In order to model how agents collaborate in making referring expressions, we need a
vocabulary for reasoning about plans, reasoning about the parts of a plan, and for
refashioning plans. The vocabulary that we present is motivated by work done by
Litman and Allen (Litman, 1985; Litman and Allen, 1987) in understanding clarifica-
tion subdialogues. The vocabulary is not intended to be complete, but only to allow
us to formalize the conversational moves involved in clarifying a referring expression.

4.2.1 Referring to Plans

The predicates defined in this section are used to refer to referring expression plans
and to reason about their success or failure in achieving a goal.

plan(Agt,Plan,Goal): Agt has a plan derivation Plan for achieving Goal.

achieve(Plan,Goal): Doing the primitive actions in the plan derivation Plan will
cause Goal to be true.

3The evaluation could also have failed on the mental action of the modifier plan that updates
the candidate set. This occurs only because the evaluator dynamically chooses the order in which
to evaluate the plan derivation and might choose to evaluate the mental action in the modifier
plan before evaluating the constraint on the surface speech act. So, the evaluator, when it finds an
error, tries to determine if the error is a result of a constraint or mental action whose evaluation was
postponed. Our algorithm for determining this looks for syntactic similarities. A better approach
would reason about the interactions of constraints and mental actions in the plan derivation.

35

error(Plan,Node): The plan derivation Plan has an error at the node named Node.
Nodes in the plan derivation are given names in order to distinguish two nodes
that have the same content.

replace(Plan,NewPlan): The plan derivation NewPlan will achieve the goal that
Plan is supposed to achieve.*

4.2.2 Referring to Parts of a Plan

The following predicates are used to refer to parts of a plan derivation. Their primary
usage in this thesis is to test for structural properties of plan derivations in order
to determine whether the referring expression overconstrains or underconstrains the
choice of referent.

content(Plan,Node,Content): In the plan derivation Plan, the node named by
Node has content Content.

constraint(Plan,Parent,Constraint): In plan derivation Plan, the node Parent
is a subplan and the node Constraint is a constraint of it.

yield(Plan,Node,Actions): In plan derivation Plan, the primitive actions in the
subtree rooted at Node is Actions.

4.2.3 Manipulating and Evaluating Plans

In order to refashion a referring expression plan, we need to be able to construct a
subplan that can be substituted into the existing plan, so that the resulting plan does
not have any violated constraints or mental actions. This section presents the mental
actions that accomplish these tasks.

construct(Goal,Plan,Actions): Invokes the plan constructor to construct a plan
derivation Plan that achieves Goal. Actions are the primitive actions of the
constructed plan derivation.

substitute(Plan,Node,NewPart,NewPlan,Actions): In plan derivation Plan,
substitutes the content of Node by NewPart resulting in the plan NewPlan and
the new primitive actions Actions. NewPart might be a constraint, in which
case Actions are those that are changed as a result of the substitution.

4Although this predicate, which is similar to Litman’s replace(Stack,01dStack) prediéate
(1985, p. 33), has the same name as one of Clark and Wilkes-Gibbs’s conversational moves, it
is used in stating the effects of both the replace and ezpand conversational moves.

J0

evaluate(Plan): Evaluates the plan derivation Plan. This action succeeds if and
only if the plan is valid.®

4.3 Discourse Plans

We propose using discourse plans to account for Clark and Wilkes-Gibbs’s conversa-
tional moves in collaborating to make a referring action successful. These discourse
plans are motivated by the work done by Litman and Allen (Litman, 1985; Litman and
Allen, 1987) in understanding clarification subdialogues. By using discourse plans,
‘both the generation and understanding of the conversational moves can be accounted
for. These discourse plans are meta-plans that take as a parameter a plan derivation
corresponding to a referring expression and use the predicates defined in section 4.2
to reason about and manipulate the derivation. The objective of this section is not
to provide complete coverage of how participants can clarify a referring expression,
but to demonstrate the feasibility of this approach. Although we focus on clarifying
referring expressions, we feel that our approach can be generalized to handle other
clarification subdialogues as well.

4.3.1 accept-plan

The discourse plan accept-plan (figure 4.1) is used by the speaker to establish the

Header: accept-plan(Plan)
Where: speaker (Speaker)
hearer (Hearer)
Constraint: achieve(Plan,Goal)
plan(Hearer,Plan,Goal)
Decomposition: s-accept (Plan)
Effect: bel (Hearer,goal (Speaker,mb(Speaker,Hearer,
achieve(Plan,Goal))))

Figure 4.1: accept-plan plan

mutual belief that a plan will achieve its goal. Since the speaker cannot directly affect
the beliefs of the hearer, the effect of the schema is that the hearer will believe that
the speaker has the goal that it be mutually believed that the plan achieves its goal.
The constraints of the schema specify that the plan being accepted achieves its goal
and the decomposition is the surface speech action s-accept.

5This predicate is treated as a mental action, in order to avoid the use of post-constraints.

37

4.3.2 postpone-plan

The discourse plan postpone-plan is used by the speaker if the referring expression
plan underconstrains the choice of referent. The speaker uses this schema in order to
tell the hearer that the plan is invalid and to inform him which node the evaluation
failed at. :

In figure 4.2, the plan schema for postpone-plan is given. The constraints specify
that the violation occurred on the constraint of an instance of the modifiers plan that

Header: postpone-plan(Plan)

Where: speaker (Speaker)
hearer (Hearer)

Constraint: error (Plan,ErrorNode)
plan(Speaker,Plan,Goal)

constraint(Plan,ParentNode, ErrorNode)
content (Plan,ParentNode,ParentContent)
yield(Plan,ParentNode, [])
ParentContent = modifiers(Entity,Cand)
Decomposition: s-postpone(Plan)
Effect: bel (Hearer,goal (Speaker,mb(Speaker,Hearer,
error (Plan,ErrorNode))))

Figure 4.2: postpone-plan plan

has no primitive actions in its decomposition. In other words, the violation occurred
on an instance of the modifiers plan that terminates the addition of modifier plans,
and so it only applies if the referring expression is underconstrained.

The decomposition of this schema includes the s-postpone surface speech action.
By observing this action, the hearer will be able to recognize that the speaker’s
plan is an instance of postpone-plan, and by evaluating the plan, he should be
able to infer that the speaker thinks that the node in violation is the constraint on
the terminating instance of modifiers. This knowledge will provide context for the
subsequent refashioning.

As we have just explained, through plan inference, the hearer should be able to
infer which node is in violation. In fact, this is the goal that the speaker is trying to
achieve by this plan. However, the speaker cannot be certain that the hearer will be
able to determine which node is in violation or whether he will agree that there is an
error at the node. So, the stated effect of the schema is that the hearer will recognize
the speaker’s goal of the speaker and hearer mutually believing that there is an error
at some node in the referring expression plan.

38

4.3.3 reject-plan

The discourse plan reject-plan is similar to postpone-plan in that it is also used
by the speaker to tell the hearer that a referring expression plan is invalid and to
inform him which node the evaluation failed at. In this case, however, it is used if
the plan overconstrains the choice of referent.

The plan schema is given in figure 4.3. The effect of this plan is the same as the

effect of postpone-plan. Its constraints specify that an error occurred on a constraint

Header: reject-plan(Plan)

Where: speaker(Speaker)
hearer (Hearer)

Constraint: error(Plan,ErrorNode)
plan(Hearer,Plan, Goal)

constraint(Plan,ParentPlan, ErrorNode)
yield(Plan,ParentPlan ,Acts)

length(Acts,1)
Decomposition: s-reject (Plan,Acts)
Effect: bel (Hearer,goal (Speaker,mb (Speaker,Hearer,

error(Plan,ErrorNode))))

Figure 4.3: reject-plan plan

of a plan that has a single primitive action in its yield. An alternative way of stating
the constraints, which is less general, would be to specify that an error occurred on
a constraint of a plan in which the plan is an instance of s-attrib, s-attrib-rel,
or s-attrib-rel-group.

The decomposition of the schema consists of the s-reject surface speech action,
which takes as a parameter the surface speech action that is in the yield of the plan
that has the constraint violation. By observing the s-reject action, the hearer will
be able to recognize that the speaker’s plan is an instance of reject-plan, and by
evaluating this plan, he should be able to determine the constraint that was violated.®
This information will provide context for the subsequent refashioning of the referring
expression.

6The reason the hearer should be able to determine the constraint is because the only plan
instances that have a yield of a single surface speech action and that have a constraint are the
surface speech actions s-attrib, s-attrib-rel, and s-attrib-rel-group, and these actions have
exactly one constraint. In a more general plan library, it might not be possible for the hearer to
determine the constraint or mental action that the speaker found unsatisfiable. However, it might
not be necessary for the hearer to do so. The hearer might just need to know that there was an error
in evaluating some constraint or mental action, where the constraint or mental action is influenced
by the primitive action that was rejected.

39

4.3.4 expand-plan

The discourse plan expand-plan is used by the speaker to replace a referring expres-
sion plan with a new plan. The new plan is arrived at by adding extra components
to the referring expression. Since our plan library is based on chaining by decompo-
sition, this can only be done by constructing a subplan to replace a branch of the
derivation that has a null yield. For our set of referring expression plan schemas, this
corresponds to replacing the terminating instance of the recursive plan modifiers
that has a null yield with a subplan that has a non-empty yield.

The plan schema for expand-plan is shown in figure 4.4. Its constraints are the
same as for postpone-plan, and its effect is that the hearer will believe that the

Header: expand-plan(Plan)
Where: ; speaker (Speaker)
_ hearer (Hearer)
Constraint: error (Plan,ErrorNode)
plan(Hearer,Plan,Goal)

constraint (Plan,ParentNode,ErrorNode)
content (Plan,ParentNode,ParentContent)
yield(Plan,ParentNode, [1)
ParentContent=modifiers(Entity,Cand)
Decomposition: member(Object ,Cand)
ref (Entity,Object)
construct (modifiers(Entity,Cand) ,Expansion,Acts)
substitute(Plan,ParentNode,Expansion,NewPlan,Acts)
s-actions(Plan,Acts)
Effect: bel (Hearer,goal (Speaker ,mb(Speaker,Hearer,
replace(Plan,NewPlan))))

Figure 4.4: expand-plan plan

speaker has the goal that the speaker and hearer mutually believe that a new plan
replaces the current referring expression plan.

The decomposition of the schema specifies how a new referring expression plan can
be built that will distinguish one of the objects that the current referring expression
matches from the rest. The first step, member(0Obj ect,Cand), chooses one of the
objects. If the speaker is the initiator then she will know what the referent is and
hence there is no choice involved in satisfying the mental action. However, if the
speaker is the responder, then she will not know the referent, and hence will have to
choose which object to suppose as the referent. In this case, she should use heuristics
to choose a plausible referent, such as the object which has the greatest number of
standard defaults. However, for this thesis, we will let the plan constructor arbitrarily

40

choose a member of the set of candidates. The third step’ is used to construct
an expansion that will distinguish the chosen candidate from the rest. The fourth
step substitutes the expansion into the current referring expression, resulting in the
refashioned referring expression NewPlan. The fifth step is the surface speech action
s-expand, which is used to inform the hearer of the surface speech actions, Acts,
that are being added to the referring expression plan. .

An interesting scenario arises when the hearer has postponed judgement on the
speaker’s referring expression, and the speaker is now planning an expansion. In this
case, although the speaker knows that the hearer thinks there is an error with the
constraint of the terminating instance of the modifiers plan, she will not know which
objects the hearer cannot distinguish the referent from, and since the speaker is ex-
amining her own plan derivation, she will think it doesn’t have to be distinguished
from any objects (since Cand contains only a single term, which represents the refer-
ent). Thus, when she constructs an expansion, the trivial plan derivation consisting
of an instance of the modifiers plan with a null yield will be returned. To solve
this problem, we require construct to always find a plan with at least one primitive
action.®

4.3.5 replace-plan

The discourse plan replace-plan is used by the speaker to replace a referring ex-
pression plan with a new plan. The new plan is arrived at by replacing some of the
primitive actions in a plan with new actions.

In this section we present two plan schemas for replace-plan. The first schema
(figure 4.5) is similar to the expand-plan schema shown in figure 4.4. Instead of
replacing a branch of a derivation that has a null yield, it replaces a branch whose
yield is the surface speech action that caused the plan evaluator to fail.

One point that is worth explaining is the use of the evaluate action. This
action succeeds if and only if the refashioned plan, NewPlan, is valid. In other
words, it ensures that NewPlan actually identifies a unique object. This action is
necessary because the modifier instance that is being replaced, ModifierContent,
might not be the last modifier instance in the plan derivation. So, there might be

7We have intentionally skipped the second step because it is an artifact resulting from the manner
in which discourse entities are treated. In the case where the speaker is the initiator, the discourse
entity will already have its object parameter instantiated and so this step will ensure that member
chooses the referent. If the speaker is the responder, then this step will update the discourse entity
with the value of the chosen object.

8Gince construct doesn’t take into account what has already been planned, we still have the
problem that it might choose a surface speech act that is already in the existing plan derivation.

41

Header: replace-plan(Plan)

Where: speaker(Speaker)
hearer (Hearer)

Constraint: error(Plan,ErrorNode)
plan(Hearer,Plan,Goal)

constraint(Plan,ParentNode,ErrorNode)
step(Plan,ModifierNode,ParentNode)
content (Plan,ModifierNode,ModifierContent)
ModifierContent = modifier(Entity,Cand,Cand1)
Decomposition: member (Object ,Cand)
ref (Entity,Object)
construct (modifier(Entity,Cand,Cand1) ,Expansion,Acts)
substitute(Plan,ModifierNode,Expansion,NewPlan,Acts)
evaluate(NewPlan)
s-actions(Plan,Actions)
Effect: bel (Hearer,goal(Speaker,mb(Speaker,Hearer,
replace(Plan,NewPlan))))

Figure 4.5: replace-plan plan

constraints that Object should satisfy that are not captured by Cand, resulting in
member(Object,Cand) choosing an object that does not satisfy the additional con-
straints. :

The second plan schema (figure 4.6), takes a different approach. This schema
tries to relax the constraint of the plan that is the cause of the error, and using
the relaxed constraint to refashion the referring expression. This approach is based
on the heuristics that Goodman (1985) uses to relax a referring expression that is
overconstrained. Our approach is more simplistic than Goodman’s, for we allow only
one constraint to be relaxed. Although this means that we cannot handle referring
expressions that need more than one constraint relaxed, we do not feel that this is
a serious limitation. In such cases it is probably best not to presuppose that the
referring expression can be relaxed, but to rely on the hearer to try to repair it, or to
use a different strategy to refashion it, such as the schema given in figure 4.5.

The decomposition of the schema is as follows. The first step is relax-constraint.
As is explained in the next section, there might be many ways that a constraint can
be relaxed, and some of these, when substituted into the referring expression plan,
might not result in a plan that identifies exactly one object. Since the plan con-
structor arbitrarily chooses one, the mental action evaluate in the third step is used
to ensure that the choice results in a referring expression plan that is valid. If the
resulting referring expression plan is not valid, then this step fails, and so this choice

42

Header: replace-plan(Plan)
Where: speaker (Speaker)
hearer (Hearer)
Constraint: error(Plan,ErrorNode)
plan(Hearer ,Plan,Goal)
content (Plan,ErrorNode,ErrorContent)
Decomposition: relax-constraint (ErrorContent,NewContent)
substitute(Plan,ErrorNode,NewContent ,NewPlan,Acts)
evaluate(NewPlan)
s-actions(Plan,Acts)
Effect: bel (Hearer,goal (Speaker ,mb(Speaker,Hearer,
replace(Plan,NewPlan))))

Figure 4.6: replace-plan plan

for the relaxed constraint is rejected by the plan constructor. Finally, in the fourth
step, the surface speech actions that are the result of the refashioning are conveyed
to the hearer through the s-actions action.

relax-constraint

The relax-constraint schemas incorporate the heuristics that are used by Good-
man (1985) in relaxing a description. These schemas take as input a constraint and
return a constraint that is the result of weakening the original. For instance, the
constraint that it is mutually believed that an object is turquoise could be relaxed to
the constraint that it is mutually believed that it is green or to the constraint that
it is mutually believed that it is blue.® In figure 4.7, a relax-constraint schema is
given for relaxing a colour to a similar colour.

A problem with relaxing a constraint is that the relaxed constraint might not be
believed by both participants. So, the agent that doesn’t believe it will find the plan
invalid, even though it knows that the violated constraint can be relaxed. A solution
to this problem is to allow the belief system to automatically relax propositions.
However, we feel that such relaxations should be explicitly sanctioned. So, the effect of

the relax-constraint plan is to sanction the belief system to make the relaxation,®

9Gince the new constraint will be used to refashion the referring plan derivation, it must be
unifiable with the constraint of the schema of the primitive action. Hence we do not relax the
constraint that it is mutually believed that the object is turquoise to the constraint that it is
turquoise, green, or blue.

10 A nother solution to the problem would be to change the operator on the constraint from mutually
believed to speaker believes. However, this constraint would not be unifiable with the plan schema
of the primitive action.

43

Header: relax-constraint (mb(Agtl,Agt2,colour(Object,
Colour)),mb(Agtl,Agt2,NewProp))

Where: speaker (Speaker)
hearer (Hearer)
Constraint: similar(category,Colour,NewColour)
Decomposition: NewProp=cat (Object,NewColour)
Effect: bel (Hearer,goal (Speaker,mb(Speaker ,Hearer,

relax(colour(0Object,Colour) ,NewProp))))

Figure 4.7: relax-constraint plan

which is captured by the relax predicate:

relax(Prop,NewProp): If NewProp is believed, Prop can be inferred.

4.4 Surface Speech Acts

In this section, we present the surface speech acts that are used by the discourse
plans. We have taken the approach that there are surface speech acts for accepting
and clarifying plans. These surface speech acts take as a parameter the plan that is
being accepted or clarified, and, depending on the speech act, a set of surface speech
acts.

The surface speech acts that we propose are stated without constraints or ef-
fects. This is because their constraints and effects have already been captured by the
constraints and effects of the discourse plans whose decomposition they are a part
of. Since we assume that plan inference will always derive the correct plan deriva-
tion, nothing is lost by this simplification. In fact, the discourse plans accept-plan,
reject-plan, and postpone-plan only have a single step in their decomposition,
which is their corresponding surface speech act, and hence they could have been
formulated as surface speech acts.

4.4.1 s-accept

The surface speech action s-accept (figure 4.8) is the only step in the accept-plan

Header: s-accept(Plan)

Figure 4.8: s-accept plan

schema. It takes as a parameter a valid plan, and it can be linguistically realized by
an explicit acknowledgement, such as “yes” or “okay” (Clark and Brennan, 1990).

44

4.4.2 s-postpone

The surface speech action s-postpone (figure 4.9) is the only step in postpone-plan.
It takes as a parameter an invalid plan, and it can be linguistically realized by a
tentatively voiced “okay.”

Header: s-postpone(Plan)

Figure 4.9: s-postpone plan

4.4.3 s-reject

The surface speech action s-reject (figure 4.10) is the only step in reject-plan.
It takes as a parameter an invalid plan and a set of surface speech acts that are a

Header: s-reject(Plan,Acts)

Figure 4.10: s-reject plan

subset of the primitive actions of the plan. Below is an example of an instance of this
action, which can be linguistically realized by “What brown one?”

s-reject(Plan, [s-attrib(Entity, AX-colour(X,brown))])

4.4.4 s-actions

The surface speech action s-actions (figure 4.11) is a step in both replace-plan

Header: s-actions(Plan,Acts)

Figure 4.11: s-actions plan

and expand-plan and it signals that new primitive actions are being added to a
referring expression plan in order to refashion it. Although two different kinds of
surface speech actions could have been defined, one corresponding to replace-plan
and one to expand-plan, we felt that this distinction is not always linguistically
marked. Even when it is linguistically marked, the distinction might be due to the
surface speech action being used in combination with either s-reject or s-postpone.
Below is an example of this action:

s-actions(Plan, [s-attrib(Entity, AX-colour(X,black))])

45

This could be linguistically realized by “the black one” or, if used in combination
with s-reject, it could be realized by “don’t you mean the black one?”

4.5 Constructing a Clarification

In constructing a clarification, we use the same algorithm as is used in constructing
referring expression plans. However, the plan constructor is augmented to handle the
mental actions that are given in section 4.2.3. In particular, for the mental action
construct, it invokes itself, and for evaluate, it invokes the plan evaluator.

4.5.1 An Example

Consider the scenario where the user has uttered “the green bird” but the system only
knows of a turquoise bird (bird1), a black bird (bird2), and a white bird (bird3).
So, the system will have inferred the invalid plan derivation p1 given in figure 4.121
and will have the following beliefs:

plan(user,pl,knowref(system,entity(1,0bject)))
error(pl,p24)

Furthermore, assume that the system has already informed the user that plan p1 is
invalid, and that it is now trying to replace the plan by a new plan that will achieve
the knowref goal. So, it will have the following goal:

bel (user,goal (system,mb(system,user,replace(pl,NewPlan))))

To achieve the goal, the plan constructor builds the derivation shown in figure 4.13,
which is based on the second replace-plan schema (figure 4.6). However, this is not
the only derivation that the planner considers. The plan constructor tries using the
postpone-plan schema as the root of the derivation. But this choice is rejected
because the constraint that the parent of the error node must not have any primi-
tive actions in its yield is not true. The plan constructor also tries using the first
replace-plan schema (figure 4.5) as the root. This results in a derivation with the
same number of primitive actions as the chosen derivation. However, it is rejected
due to an arbitrary decision on the part of the planner.!?

11We have labeled only the plan derivation and the node that is in error with their node names.
In reality, all nodes have node names.

12The constructor’s choice was actually a good choice because a derivation based on the first
schema involves the plan constructor making an arbitrary decision for the likely referent, whereas
for the second schema, its decision is based on relaxing a constraint.

46

pl:refer(entity(1,0bj ect))
[s-refer(entity(1,0bj ect)) |

describe(entity(1,0bject))

headnoun(entity(1 ,Efo?’ect) ,[bird1,bird2,bird3])
s-attrib(entity(1,0bject) ,AX-category(X, bird))
Constraint: mb(user,system,category(Object ,bird))

Subset (World, A\X-ub(user, system, category (X ,bird)),
[birdl,bird2,bird3])

modifiers(entity(1,0bject), [birdl,bird2 ,bird3])
modifier(entity(1,0bject), [birdl,bird2, bird3] ,NewCand)
s-attrib(entity(1,0bject),AX-colour (X,green))
Constraint: p24:mb(user,system,colour(Object, green))

subset ([birdl,bird2,bird3],AX-ub(user,system,
colour(X,green)) ,NewCand)

modifiers(entity(1,0bject),NewCand)
Constraint: NewCand=[Object]

Effect: bel(system,goal (user,knowref (system,entity(1,0bject) »)

Figure 4.12: Inferred Referring Expression Plan (p1)

The derivation given in figure 4.13 shows how the plan constructor builds the
chosen derivation. The text that is prefixed by Instantiation shows how the variables
are instantiated.!® From the constraints of replace-plan, ErrorNode is set to p24,
and ErrorContent is set to mb(user,system,colour (0bj ect,green)).! Next, the
plan constructor proves the constraints of the steps in the decomposition. The first
step is the relax-constraint plan. Proving its constraint results in NewColour being
instantiated to turquoise.!’® The next step is the action substitute. This results
in the refashioned referring expression plan p57 shown in figure 4.14, which, when
evaluated in the next step, results in Object being instantiated to bird1. The last

13We do not show the value for BewPlan due to space and formatting considerations. However,
we do indicate where it is instantiated.

14In our notation, we are not being careful about the scope of the existential quantifier for the
variable Object.

16The plan constructor actually pursues every possible value that NewColour can be instantiated
to; however, it is only the value turquoise that will allow the evaluation step to be proved.

p41:replace-plan(pl)
Constraint: error(pi,ErrorNode)
plan(user,pi1,Goal)
content (p1,ErrorNode,ErrorContent)
Instantiation: ErrorNode = p24
; Goal = knowref(system, entity(1,Object)))
ErrorContent = mb(user,system, colour(Object, green))
relax-constraint(mb(user,system, colour(Object ,green)),
mb (user, system,NewProp))
Constraint: similar(colour,green,NewColour)
Instantiation: NewColour = turquoise
NewProp=colour(Object, turquoise)
Instantiation: NewProp = colour(Object, turquoise)

Effect: bel(user,goal(system,mb (system,user,
relax(colour(Dbject,Colour) ,NewProp))))

substitute(pl,p24,mb(user,system »colour(Object,turquoise)),
NewPlan,Acts)
Instantiation: NewPlan
Acts =[s-attrib(entity(i,Object), A X- colour(X,turquoise))]

evaluate(NewPlan)
Instantiation: Object = birdl

| s—actions(p1,Acts) |

Effect: bel(user,goal(system,mb (system,user,replace(pl,NewPlan))))

Figure 4.13: Constructed Refashioning Plan (p41)

step is the surface speech act s-actions, which is instantiated to the following;:
s-actions(pl, [s-attrib(entity(1,bird1), \X-colour(X ,turquoise))])

This action and the action resulting from informing the user that the original plan is
invalid, could result in: “The green one? Don’t you mean the turquoise one?”

4.6 Understanding a Clarification

In understanding a clarification, we use the same algorithm as is used in understand-
ing a referring expression. However, a few extensions are needed to handle the mental
actions construct and evaluate. When evaluating construct, the evaluator knows
the primitive actions that construct must account for and the goal it is trying to
achieve. So, the evaluator invokes the plan recognizer rather than the plan construc-
tor.

48

p57: refer(entity(1,0bj ect))

[s-refer(entity(1,0bject)) |
describe(entity(1,0bject))

headnoun (entity(1,0bject) ,Cand)
s-attrib(entity(1,0bject),X- category(X,bird))
Constraint: mb(user,system,category(Object,bird))

[subset (World, AX.ub(user, system, category (X,bird)) ,Cand) |

modifiers(entity(1,0bject),Cand)
modifier(entity(1,0bject),Cand ,NewCand)
s-attrib(entity(1,0bject),\X-colour(X,green))
Constraint: mb(user,system,colour(Object,green))

[subset (Cand, AX- ub(user, system,colour (X,green)) ,NewCand) |

modifiers(entity(1,0bject) ,NewCand)
Constraint: NewCand=[Object]

Effect: bel(system,goal(user, knowref (system,entity(1,0bject))))

Figure 4.14: Refashioned Referring Expression Plan (p57)

When the mental action evaluate is in an inferred plan, it means that the speaker
found the plan that is the parameter of the evaluate to be valid. However, the
speaker might not intend that the hearer should find the plan to be valid, and so
the parameter of the evaluate action is not evaluated. As is discussed in the next
chapter, this view lets us distinguish between a clarification plan being valid versus
the refashioned referring expression plan being valid, for the validity of the refashioned
referring expression plan does not affect the validity of the clarification plan.

The remaining question to be answered is, if the evaluate mental action does
not cause the hearer to evaluate the refashioned plan, what causes him to do so?
We claim that the hearer decides to evaluate it by reasoning about the effects of the
refashioning plan, which state that the speaker’s goal is that it be mutually believed
that the refashioned plan can replace the original plan. This reasoning process is
discussed in the next chapter.

4.6.1 An Example

Consider the scenario where the system knows only of a turquoise bird (bird1), a
black bird (bird2), and a white bird (bird3) and it has constructed the referring

39

pl:refer(entity(1,birdl))
[s-refer(entity(1,bird1))|

describe(entity(1,bird1))
headnoun(entity(1,bird1), [birdl,bird2,bird3])
s-attrib(entity(1,bird1),\X- category(X,bird))
Constraint: mb(user,system,category(bird1,bird))

subset (World, AX-ub(user, system, category(X,bird)),
[bird1,bird2,bird3])

modifiers(entity(1,bird1),[bird1l,bird2, bird3])
modifier(entity(1,bird1), [birdl,bird2,bird3] ,[bird1])
s-attrib(entity(1,bird1), X: colour(X, turquoise))
Constraint: mb(user, system,colour (bird1l ,turquoise))

subset ([bird1,bird2,bird3], AX:ub(user, system,
colour(X,turquoise)), [bird1])

p26:modifiers(entity(1,bird1), [bird1])
Constraint: p28: ([bird1]=[bird1])

Effect: bel (user,goal(system,knowref (user, entity(1,bird1))))

Figure 4.15: Original Referring Expression Plan (p1)

expression plan p1 given in figure 4.15 to refer to the turquoise bird. Let’s assume
that the system has the following belief:

plan(user,pi,knowref (user, entity(1,bird1)))

Also, let’s assume that the user, after hearing the referring expression, made an
utterance, a tentatively voiced okay, that was parsed into the following primitive
action:

s-postpone(pl)

The plan inference process takes as input the primitive action, and it derives
an instance of postpone-plan.’® The recognized plan is then passed to the plan
evaluator. The plan evaluator uses meta-level knowledge to determine the order in
which it evaluates the constraints of the plan. Listed below is an edited trace of

16The plan recognizer doesn’t allow the plan consisting solely of the primitive action s-postpone,
since it is not a specially marked end plan.

50

31: postpone-plan(pl)

Constraint: error(pi,ErrorNode)
plan(system,pl,Goal)
constraint(pl,ParentNode,ErrorNode)
content (p1,ParentNode, ParentContent)
yield(p1,ParentNode, [])
ParentContent=modifiers(Entity,Cand)

Instantiation: Goal = knowref(user,entity(1,bird1))

ParentNode = p26
ErrorNode = p28
ParentContent = modifiers(entity(1,bird1),[bird1])
Entity = entity(1,bird1)
Cand = [bird1] '
[s-postpone(Plan) |

Effect: bel(system,goal (user ,mb(user,system, error(pi,ErrorNode))))

Figure 4.16: Inferred Judgement Plan (p31)

its output that shows both the order in which it evaluated the constraints and the

instantiations that were made:

error(pl,ErrorNode)

plan(system,pl,Goal)
Goal = knowref(user,entity(1,bird1))

yield(pl,ParentPlan, [])
ParentPlan = p26

constraint (p1,p26,ErrorNode)
ErrorNode = p28

content (p1,p26,ParentContent)
ParentContent = modifiers(entity(1,bird1),[bird1])

ParentContent = modifiers(Entity,Cand)
Entity = entity(1,bird1)
Cand = [bird1]

The evaluated plan is shown in figure 4.16, and the effect of the inferred plan is the

following:

bel(system,goal (user,mb(user,system,error(p1,p28))))

51

4.7 Summary

We use discourse plans to account for the conversational moves of Clark and Wilkes-
Gibbs (1986). These discourse plans reason about and manipulate the referring ex-
pression plans that they take as a parameter. A key idea in our approach is that we
separate the discourse plan from the underlying plan. This is evidenced through the
surface speech acts that we proposed, which take as a parameter the surface speech
acts of the underlying plan. Also, it is evidenced in the way discourse plans are eval-
uated, in which the successful evaluation of the discourse plan does not depend on
the success of the underlying plan.

The discourse plans that we presented are not meant to be a complete set that
can account for every type of referring expression clarification. Instead, they are
intended to illustrate our approach of using the planning paradigm to account for the
generation and understanding of clarifications, and to other clarification subdialogues
as well.

One major drawback concerning the plans that we propose is that they are unable
to do sophisticated reasoning about an invalid plan derivation to determine why it
failed. Instead, we have relied on reasoning about structural and syntactic features of
a plan derivation in order to determine which constraint or mental action is the cause
of the error and whether the referring expression overconstrains or underconstrains
the choice of referent.

52

Chapter 5

Modeling the Subdialogue

In chapter 3 and 4, we showed how initial referring expressions, and judgement and
refashionings of them, can be constructed and inferred in our model. In this chapter,
we account for how these tasks fit into a complete model of how an agent collaborates
in making a referring action successful. To do this, we need to address two issues.
First, the initial referring expression might not be accepted. Hence we need to account
for how the discourse plans that we proposed for judging and refashioning the initial
referring expression can account for subsequent conversational moves that are made
in the subdialogue. We start with the work of Clark and Wilkes-Gibbs (1986) in
modeling referring as a collaborative process, and augment their model with the
work of Clark and Schaefer (1989) on how conversational participants contribute to
discourse. :

Second, we have assumed that when constructing a judgement or refashioning
plan, an agent is trying to achieve a goal. So, we need to account for how these goals
arise from the previous utterance. Previous natural language systems that use plans
to account for the surface speech acts underlying an utterance (Cohen and Perrault,
1979; Allen and Perrault, 1980; Appelt, 1985a; Litman and Allen, 1987) model only
the recognition or only the construction of an agent’s plans, and so do not address this
issue. We propose that agents adopt goals to judge and refashion referring expressions
because they are mutually responsible for the success of the referring action. We then
present our model that incorporates this mutual responsibility and that can account
for how judgement and refashioning goals arise.

To conclude the chapter, we present an example of the processing of our model.
The example illustrates how discourse goals arise when collaborating to make a re-
ferring expression and how these goals can be achieved through the judgement and
refashioning plans that we presented for initial referring expressions.

53

5.1 Subsequent Judgements and Refashionings

In the previous chapter, we presented plans for judging and refashioning an initial
referring expression. The aim of this section is to show that these plans can also
account for the subsequent conversational moves that participants perform in making
a referring action successful. To do this, we first examine the model that Clark and
Wilkes-Gibbs (1986) propose. However, their model has an implicit assumption that
judgements and refashionings are always accepted. So, we augment their model by
adopting the proposal of Clark and Schaefer (1989) that judgements and refashionings
are also subjected to an acceptance process. The resulting model can then account
for how judgements and refashionings contribute to discourse in a consistent manner
with how referring expressions contribute to discourse. Thus we can better justify
our usage of the same discourse plans to account for subsequent judgements and
refashionings as are used for judging and refashioning the initial referring expression.

5.1.1 Acceptance Processes

Clark and Wilkes-Gibbs (1986) propose that conversational participants employ an
acceptance process when collaborating to make a referring action successful, and that
this process accounts for the conversational moves that participants make:

The acceptance process is played out in conversation ... as a series of
steps. ... The basic process, which might be called the acceptance cycle,
consists of a presentation plus its verdict. Let z, y, and z stand for noun
phrases or their emendations. A presents z and then B evaluates it. If
the verdict is not positive, then A or B must refashion that presentation.
That person can offer: a repair z’, an expansion y, or a replacement z.
The refashioned presentation, whether 2/, = + y, or z, is evaluated, and
so on. Acceptance cycles apply iteratively, with one repair, expansion,
or replacement after another, until a noun phrase is mutually accepted.
With that, A and B take the process to be complete. (p. 24)

Although not the theme of their work, Clark and Wilkes-Gibbs assume that the
acceptance process is employed in order to contribute the referring expression to the
discourse. The result of the contribution is that the final referring expression is
added to the common ground' of the participants, and hence provides a basis for

'We are using common ground following Clark and Schaefer’s work (1989) on contributing to
discourse. Like them, we do not attempt to formally define this term. It is, however, usually taken
as what is mutually believed by the conversational participants, or some weaker variant (Clark and
Marshall, 1981; Perrault and Cohen, 1981).

54

future references to the object being referred to, and helps to establish a perspective
for describing other objects. '

However, in their account of the acceptance process, Clark and Wilkes-Gibbs fail
to explicitly mention an important key to understanding this process. So, we draw
on the work of Clark and Schaefer (1989), in which they point out that “each part
of the acceptance phase is itself a contribution” (p. 269). So, there is an acceptance
process for each judgement and refashioning of the referring expression, and once
the judgement or refashioning is accepted, the common ground of the participants is
updated. Thus after a refashioning has been uttered and accepted, the refashioned
referring expression will be added to the common ground, and thus available for
the other participant to judge it. Likewise, after a judgement has been uttered and
accepted, it is added to the common ground and can be used as the basis of the next
refashioning,.

From the preceding discussion, it should be clear that the judgement and refashion-
ing moves are subjected to an acceptance process that is separate from the acceptance
process of the referring action. So, we can disting"uish between 1) accepting a refash-
joning move and 2) accepting the result of the refashioning—the refashioned referring
expression. In fact, Clark and Wilkes-Gibbs implicitly assume that a refashioning
move is always accepted, even if the refashioned referring expression that it proposes
is not accepted. So, the acceptance of the refashioning move need not depend on the
refashioned referring expression. This implies that there is a difference between 1) re-
jecting a refashioning move and 2) accepting the refashioning move and rejecting the
refashioned referring expression. But is this difference significant to a computational
model that accounts for how an agent collaborates in making a referring expression?
We feel that it is, for it impacts both the determination of the common ground that
is being built up, and it impacts the discourse structure.

Consider dialogue (5.1), which was collected at an information booth in a Toronto
train station (Horrigan, 1977). (Although the participants are not collaborating in
making a referring expression, the dialogue will serve to illustrate our point.)

(5.1) P: ! The 8:50 to Montreal?

: 2 8:50 to Montreal. Gate 7.

: 3 Where is it?

: 4 Down this way to your left. Second one on the left.
: 5 OK. Thank you.

W QYA

55

Litman (1985), in her work on recognizing clarification subdialogues gives the follow-
ing analysis of how her model, as the clerk, interprets the third utterance.

The first preference [that is, assuming that the clerk’s response was un-
derstood] fails. ...The second preference succeeds, and the utterance is
recognized as part of an introduction of a new identify-parameter referring
to the old one. (p. 83)

In other words, the utterance “Where is it?” is interpreted as rejecting the contri-
bution of “Gate 7" and initiating a side sequence to accept it. From this analysis,
Litman claims that a coherent continuation of the dialogue would be for the passenger
to utter “What’s a gate?” as the fifth utterance, because it would contribute towards
the acceptance of “Gate 7.”

However, we feel that Litman’s analysis of the dialogue is incorrect. Our intuition
leads us to believe that the third utterance, “Where is it?”, actually accepts the
clerk’s contribution of “Gate 7”, and hence does not initiate a side sequence to accept
it. So, if the passenger utters “What’s a gate?” as the fifth utterance, this utterance
cannot be interpreted as a contribution towards the acceptance of “Gate 7” since it
was already accepted.? In examining Litman’s analysis, it is interesting to note that
her model does first try to to interpret the third utterance as accepting the previous
contribution. However, this fails because the “SURFACE-REQUEST does not match
(directly or by chaining) any of the steps of PLAN3” (1985, p. 83), where PLAN3
is the plan that the second utterance is contributing towards. We feel that it does
not match any of the steps of PLAN3 because PLANS is not updated to reflect the
additional information that the train departs from gate 7.3

As the above discussion shows, if a model fails to properly determine whether a
contribution has been accepted or not, it will make undesirable expectations of how
a discourse will continue, and it will fail to properly account for how the common
ground is being updated during a dialogue.

5.1.2 Judging Contributions

As we have already mentioned, the acceptance of refashioning moves should not de-
pend on the judgement of the refashioned referring expression. So, what should it

*We view “What’s a gate?” as a semantic return (see Allen 1987).

3This brings up the related issue of when a speaker should update the common ground to reflect
her contribution. This is an important question, since to understand the next utterance the speaker
might have to presuppose the acceptance of her utterance, even though she might have no evidence
for doing so.

56

depend on? Clark and Schaefer (1989) propose that the acceptance of a contribution
depends on whether the hearer “believes he is understanding well enough for current
purposes” (p. 267). However, they do not define current purposes.

By viewing language as goal-oriented behaviour, we can differentiate the purpose
of a contribution from the purpose of what it is contributing towards. For judgement
moves, it is to inform the hearer of the speaker’s judgement of the referring expression,
and for refashioning moves, it is to replace the current referring expression by a
refashioned referring expression. So, we propose that the hearer uses the following
criteria to decide if he has understood a judgement or refashioning move. First, the
hearer must identify that the speaker is making a judgement or refashioning move.
Second, he must identify the relationship that holds between these moves and the
current discourse structure. Third, for a judgement move, he must determine why
the speaker finds the current referring expression invalid (in our model, this will be
to identify the constraint or mental action that was violated), and for refashioning
moves, he must determine the referring expression that the speaker intends to replace
the current referring expression by.* :

A point that we would like to address is why the acceptance of a refashioning move
should not depend on the acceptance of the refashioned referring expression. We feel
that if a hearer has understood a refashioning but does not find the refashioned re-
ferring expression acceptable, he has a choice between 1) contributing towards the
refashioning move, or 2) accepting the refashioning move and contributing towards the
referring action. However, by not accepting the refashioning, the participants must
suspend the current dialogue while they collaborate on the refashioning. Plus, assum-
ing that participants presuppose the acceptance of their contributions, by breaking
this expectation, the rejection of the refashioning must be explicitly marked in order
for it to be properly interpreted. Hence, we conjecture that there is an advantage, in
terms of minimizing collaborative effort, in accepting the refashioning and contribut-
ing to the refashioned referring expression.

5.1.3 Our Model of Judging Contributions

In this section, we show how the criteria for understanding a judgement or refashioning
move can be incorporated into our model. Since we model judgement and refashioning
moves as plans, we formulate these criteria in terms of plan recognition and plan

4This is obviously a simplification. A hearer might meet all of these criteria and still not accept
the contribution. For instance he might want to question the other person’s beliefs, “Why do you
think it’s green? Or he might not meet all of the criteria. For instance he might make an assumption
in order to meet the criteria, and rely on the speaker to correct him if his assumption is wrong.

57

evaluation.

From the plan recognition process, the hearer might have several candidate plan
derivations that can account for the speaker’s utterance, especially in the case of
refashioning plans where the same surface speech act is used for both expansions and
replacements. Each of the candidate plans is evaluated, as is explained below. If there
is exactly one valid plan derivation, then the hearer will believe he has understood the
contribution and will accept it. Otherwise, he will believe that he has not understood
the utterance well enough and will not accept it, and so he will contribute towards
its acceptance, for instance by uttering “What?”®

Now we just have to account for how our model evaluates refashioning plans.
Recall that this evaluation should not depend on the evaluation of the referring ex-
pression that it proposes to replace the current referring expression by. As was out-
lined in section 4.6, our refashioning plans include the mental actions construct and
evaluate. When the evaluator encounters the construct action in a derivation, it
performs plan recognition to find a plan that incorporates the primitive actions and
that accomplishes the goal; however, it does not evaluate the recognized plan. When
the evaluator encounters the evaluate action in a derivation, it does not evaluate the
plan that is its parameter, since the hearer does not know whether the speaker intends
for him to find it valid (for instance, the speaker might think that the plan depends
on knowledge not available to the hearer).® Hence in evaluating a refashioning plan,
the refashioned referring expression plan is not evaluated; however, it is recognized
and can thus serve to replace the current referring expression.?

5.1.4 Discourse Plans

Now that we have the above framework in place, we can account for how subsequent
judgements and refashionings can be accounted for by the same discourse plans as are
used for judging and refashioning an initial referring expression. After a refashioning
move has proposed a new referring expression and the refashioning move has been
accepted, the new referring expression is added to the common ground of the con-
versational participants, and so is available to be judged and refashioned in the same

*In this thesis, we do not give any plan schemas that represent such utterances.

SThis brings up an interesting question: How can a hearer determine whether the speaker intends
him to recognize a plan and whether he should find the recognized plan as being valid?

7 Another approach would have been to propose that the refashioning plans do not construct the
new referring expression, but only inform the hearer of the new plan. So, the new plan would be
constructed independently of the refashioning plan. However, with this approach, the hearer would
not be able to recognize the new referring expression plan by recognizing the refashioning plan, and
hence we would need a way to account for how this would be done. See Lambert and Carberry
(1991) and Ramshaw (1991) for a division between discourse plans and problem-solving plans.

58

was as the initial referring expression is. So, as Clark and Wilkes-Gibbs propose, the
same process for judging and refashioning the initial referring expression is used to
judge and refashion subsequent refashionings of the referring expression. In terms of
our model where plans are used to account for judging and refashioning the initial
referring expression, these same plans are used for subsequent refashionings of the
referring expression.

5.2 How Discourse Goals Arise

Throughout this thesis, we have been operating under the view that language is
goal-oriented behaviour. Since the model that we are proposing accounts for how a
conversational participant collaborates in making a referring expression, we must show
how a participant adopts goals that lead to the acceptance of a referring expression.

Clark and Wilkes-Gibbs propose that conversational participants are mutually
responsible for the acceptance of a referring expression. We feel that it is this mu-
tual responsibility that accounts for why a participant contributes to the acceptance
of a referring expression, and why he or she will have expectations that the other
participant will also be contributing.

The question now arises as to how this mutual responsibility should be represented
so that it can be used to justify why a participant adopts goals to contribute to the
acceptance of a referring action. To do this, we not only have to represent that
participants are mutually responsible for achieving some goal, but also that they
intend to achieve the goal,® and that they might already have contributed towards a
plan in attempting to do so. We represent this by the predicate mgoal, which takes .
as its parameters the participants involved in the collaboration, the plan that they
are currently considering, and the goal.

mgoal(Agt1,Agt2,Plan,Goal): Agents Agtl and Agt2 intend to achieve Goal and
are currently considering Plan as a plan to achieve this goal.

By currently considering, we mean that the agents have a set of beliefs (or perhaps
more accurately, mutual beliefs) about what the current plan is composed of, and a
belief that the current plan is coherent.® For expository reasons, we refer to the plan

8We are purposely avoiding the issue of whether the participants have a mutual intention. See
(Searle, 1990) for a discussion of this issue.

SOur set of beliefs about the current plan is similar to Pollack’s EPLAN (1990, p.93). However,
since the actions have already been performed, we do not have to consider if the actions of the plan
are executable or if some agent intends to perform the actions. Note that the current plan need not
be valid.

59

that is the parameter of an mgoal as a mutual plan.

Now that we have proposed that the collaboration results from an mgoal, we need
to account for how an agent adopts an mgoal. We also need to account for how goals
to contribute to the acceptance of a mutual plan arise, and the effect of an utterance
on the speaker’s and hearer’s beliefs. We express this knowledge as a set of rules that
specify the conditions under which an mgoal, belief, or goal can be adopted.!® These
rules shouldn’t be seen as the definitive answer, but only as a starting point towards
a theory that can account for how agents collaborate.

One simplification that we have made in the rules is that we assume that the
judgement and refashioning plans are always valid. This has been done because our
thesis is about how agents collaborate on making a referring action successful, and not
about repairs in general. However, since we have incorporated Clark and Schaefer’s
work on how agents contribute to discourse, we feel that our model can be extended
to handle such situations.

5.2.1 Understanding an Utterance

To understand an utterance, it is necessary to determine the goal that the speaker
intends to achieve by her utterance. We start with the observed primitive actions
that were derived by the parser, and use plan recognition to derive the derivation.
We then evaluate the constraints and mental actions of the plan to determine whether
gthe plan is valid. Next, the effects of the plan instances in the plan derivation are an-
-alyzed. These effects are what the hearer believes given that he has inferred the
plan. In particular, the effect of the root plan in the derivation is of the form
bel (Hearer,goal (Speaker,Goal)), where Goal is the goal that the speaker intends
to achieve by her plan.?

From this process, the hearer updates his beliefs to capture the information that
was inferred. This allows the rules to easily make use of the information. First, a
belief is added that the speaker has the inferred goal, and is using the inferred plan

as a means of accomplishing this goal:12

plan(Speaker,Plan,Goal)

10]n stating these rules, we use the same operators to express adopting an mgoal, belief, or goal.
For a more formal account, three different operators should be used.

N The effects are formulated in this way because we are assuming that when a speaker has a
communicative goal, she plans to achieve the goal by making the hearer recognize it.

2We do not add the belief that the speaker believes her plan will achieve the goal, since the
speaker might realize her plan is invalid, and choose to communicate this plan to the hearer with
the intention that the two participants will collaborate in order to achieve the goal.

60

Second, a belief is added to indicate which agent contributed the plan:
contributed(Speaker,Plan)

Third, a belief is added to indicate whether the plan is valid. If it is valid, then Result
is instantiated to success; otherwise, Result is instantiated to failure (Node),
where Node is the node that the error occurred at.

evaluation(Plan,Result)

5.2.2 Adopting Discourse Goals

The hearer’s beliefs about the speaker’s utterance are used to drive a chain of pro-
cessing that culminates in the adopting of discourse goals to either judge or refashion
the referring expression.

Adopting an mgoal

The first rule that we give is for adopting an mgoal. As with goal, we assume
that once a participant has adopted an mgoal, he believes that he has adopted it.
By adopting an mgoal, the hearer intends to adopt discourse goals to collaborate
in order to achieve the goal of the mgoal. Note, however, that not all goals that
are inferred are necessarily intended to become the basis of an mgoal, nor will a
participant necessarily adopt an mgoal even if the speaker intended him to. So, this
rule needs to be qualified. In this thesis, we have taken the approach of adopting an
ngoal for any plan that the speaker has (which the hearer knows about) in which the
goal is knowref.!?

Rule 1

mgoal (Hearer, Speaker,Plan, Goal) «
plan(Speaker,Plan,Goal) &
Goal = knowref(Hearer,Entity)

Adopting Beliefs

We give five rules for adopting beliefs about an mgoal.

13The value of the discourse entity Entity is not relevant for this rule.
14The rules also include the predicates speaker (Speaker) and hearer (Heaxrer) to instantiate
the variables Speaker and Hearer.

61

Rule 2 is used to adopt the belief that the speaker believes there is an error in
Plan, given that Plan is a mutual plan and that the speaker has another plan, SPlan,
to make it mutually believed that there is an error in Plan.

Rule 2

bel(Speaker, error(Plan,ErrorNode)) <«
mgoal (Hearer, Speaker,Plan,Goal) &
plan(Speaker,SPlan,mb(Hearer,Speaker, error(Plan,Node)))

Rule 3 is used to adopt the belief that there is an error in Plan, given that Plan is
a mutual plan and that the speaker has a plan, SP1an, to make it mutually believed
that there is an error in Plan. This rule has two built-in assumptions. The first,
as has already been mentioned, is that judgement plans are always valid; in other
words, evaluation(SPlan,success) is true. The second assumption is that the
hearer accepts the judgement. Since both participants are collaborating on the plan,
both agents must find the plan to be valid, and so the hearer can either convince the
speaker that there is not in fact an error, or accept the speaker’s belief even if he
doesn’t himself think there is such an error. We pursue only the latter option.

Rule 3

error (Plan,Node) «
mgoal (Hearer,Speaker,Plan,Goal) &
plan(Speaker,SPlan,mb(Hearer,Speaker, error(Plan ,Node)))

Rule 4 is also used to adopt a belief given that the speaker has this as the goal
of her plan, SP1an. In this case, the speaker’s goal is that it to be mutually believed
that a new plan replaces the current mutual plan. As a result of adopting this belief,
the hearer (through the belief module) will update mgoal by replacing Plan with
NewPlan, and will evaluate NewPlan to determine whether it is valid. There are two
built-in assumptions in this rule. The first is that refashioning plans are always valid.
The second, which is the subject of section 5.1.2, is that the hearer always accepts
valid refashioning plans.

Rule 4

replace(Plan,NewPlan) <«
mgoal (Hearer,Speaker,Plan,Goal) &
plan(Speaker,SPlan,mb(Hearer,Speaker, replace(Plan,NewPlan)))

62

Rule 5 is used to adopt the belief that Plan achieves its goal. The conditions
specify that Plan is a mutual plan, that it is valid, and that the goal, which is a
proposition, is true.

Rule 5

achieve(Plan,Goal) <«
ngoal (Hearer,Speaker,Plan,Goal) &
evaluation(Plan,success) &
true(Goal)

Rule 6 is used to adopt the belief that a mutual plan has an error in it, and so
does not achieve its goal.

Rule 6

error(Plan,Node) &
mgoal (Hearer,Speaker,Plan, Goal) &
evaluation(Plan,failure(Node))

Adopting Goals

The next set of rules capture how an agent adopts goals in order to collaborate in
achieving the goal that is the parameter of an mgoal. We refer to the agent who is
adopting a goal as the speaker, and so the conditions under which the rules apply are
stated with respect to the speaker’s point of view.

Rule 7 is used to adopt the goal of informing the hearer that there is an error in
Plan. The conditions specify that Plan is a mutual plan, that there is an error in the
plan, and that neither agent already has a plan, APlan, to make it mutually believed
that there is an error in Plan.

Rule 7
goal (Speaker ,mb(Speaker ,Hearer, error(Plan,Node))) <«
mgoal (Speaker ,Hearer,Plan, Goal) &
error (Plan,Node) &
not (plan(Agt,APlan,mb(Speaker,Hearer, error(Plan,Node))))

Rule 8 is used to adopt the goal of replacing a plan, Plan, that has an error. The
conditions for applying this rule specify that Plan is a mutual plan, that both the
speaker and hearer believe there is an error in Plan, and that neither agent already
has a plan, APlan, to replace it.!®

15The statement of this goal is problematic. It really states that the hearer has a goal of finding
a new plan to replace the old plan, and communicating this new plan to the speaker.

63

Rule 8
goal(Speaker,mb(Speaker,Hearer,replace(Plan,NewPlan))) <«
mgoal (Speaker ,Hearer,Plan,Goal) &
error(Plan,Node) &
bel (Hearer,error(Plan,Node)) &
not (plan(Agt,APlan,mb(Speaker,Hearer,replace(Plan,NewPlan))))

Rule 9 is used to adopt the goal of communicating the speaker’s acceptance of the
mutual plan. This rule ensures that the agent who proposed the plan doesn’t initiate
the acceptance of it.

Rule 9

goal (Speaker,mb(Speaker,Hearer,achieve(Plan,Goal))) <«
mgoal (Speaker ,Hearer,Plan,Goal) &
achieve(Plan,Goal) &
contributed (Hearer,Plan)

5.2.3 Achieving Discourse Goals

Now that we have seen how the speaker adopts goals, we can focus on how the speaker
can construct a plan to achieve these goals. First, the goals that we are interested in
involve collaborating with another agent, and involve the other agent either adopting
a belief, updating the mutual plan, or identifying an object. Since these goals cannot
be directly achieved by a plan of action, the speaker must instead plan actions that
will indirectly achieve them, for instance by planning an utterance that results in the
hearer recognizing her goal. So, if the speaker has the goal Goal, she will attempt
to construct a plan whose effect is bel (Hearer,goal (Speaker,Goal)). After such
a plan is constructed, this fact is added to the speaker’s beliefs, along with the fact
that the speaker contributed it, and that it is a valid plan.

plan(Speaker,Plan,Goal)
contributed(Speaker,Plan)
evaluation(Plan,success)

The speaker also adopts mgoals and beliefs to reflect the effect of the constructed
plan. The rules that we give to account for this process are similar to the rules given
in the previous section for adding an mgoal or a belief on the basis of an inferred
plan. However, these rules are from the point of view of the speaker rather than the
hearer.

64

bl

Rule 10 is a duplicate of rule 1, and is used by the speaker to adopt an mgoal in
anticipation of the hearer adopting it.

Rule 10

mgoal (Speaker ,Hearer,Plan,Goal) <
plan(Speaker,Plan,Goal) &
Goal = knowref (Hearer,Entity)

Rule 11 is a duplicate of rule 4 and is used to update the mgoal. This rule
presupposes the hearer’s acceptance of the speaker’s plan, SPlan. Note that it is
this rule, and not an action in the constructed plan, that actually replaces the old

referring expression plan by a new plan.

Rule 11

replace(Plan,NewPlan) <
mgoal (Speaker ,Hearer,Plan,Goal) &
plan(Speaker,SPlan,mb(Speaker,Hearer,replace (Plan,NewPlan)))

Rule 12 is used to adopt the belief that the hearer believes there is a error in the

mutual plan.1®

Rule 12
bel(Hearer,error(Plan,Node)) < .
plan(Speaker,SPlan,mb(Speaker,Hearer, error(Plan,Node)))

Rule 13 is a duplicate of rule 5.

Rule 13

achieve(Plan,Goal) <«
mgoal (Speaker ,Hearer,Plan, Goal) &
evaluation(Plan,success) &
true(Goal)

16]t5 counterpart is rule 2, but due to the inconsistent way that mutual belief is handled, it is not
identical.

65

5.3 An Example

In this section, we illustrate how our model accounts for how an agent adopts dis-
course goals to judge and refashion the current referring expression. We focus on the
application of the rules that we presented in the previous section and the beliefs that
are adopted about the plan that is constructed or inferred. In this example, we use
dialogue (5.3) and show how the system, taking the role of person A (the initiator),
reasons about the plan that it infers from the second utterance, and how this rea-
soning process leads it to adopting discourse goals that it attempts to achieve in the
third utterance.

(5.3) A:! See the black bird.
B: 2 The small one?
A: 3 No, the large one.

B: 4 Okay.

We first need to provide the appropriate context, in order for the system to un-
derstand the second utterance. So, let’s assume that the system has the following

mgoal, where p1 is the plan derivation corresponding to the referring expression “the
black bird.”

mgoal (system,user,pl,knovwref (user,entity(1,bird2)))

For the second utterance, the system is the hearer and is given as input the surface
speech acts that underlie the utterance “the small one?”

s-postpone(Plan)
s-actions(Plan, [s-attrib(entity(1,0bject), AX-size(X,small))])

Although the two actions s-postpone and s-actions arise from the same utterance,
we assume that the parser has separated them.!”

Starting with the s-postpone action, the system performs plan recognition and
infers that the user’s plan, p31, is an instance of postpone-plan. The constraints
and mental actions of the plan are then evaluated, and the plan is found to be valid,
Irom the effect of the plan, the system infers that the user’s goal is to inform the
system that the user finds the referring expression plan underconstrained (p28 is the
constraint of the plan instance of the referring expression plan that terminates the
addition of modifiers). From this process, the system adds the following beliefs:

1"This allows us to consider conversational moves separately, which simplifies our implementation.

66

-

plan(user,p31,mb(system,user,error(pl »p28))
contributed(user,p31)
evaluation(p31,success)

Since plan p1 is a mutual plan, rule 2 and 3 are applied, resulting in the following
beliefs:

bel(user,error(pi,p28))
error(pi,p28)

Next, starting with the s-actions action, the system again performs plan recog-
nition and infers that the user’s plan is either an instance of expand-plan or an
instance of replace-plan. From evaluating the constraints and mental actions of
the two plan derivations, the system finds expand-plan valid, but finds a violation
with replace-plan. So, the system chooses expand-plan as the plan underlying the
utterance. This leads to the system adopting the following beliefs, where p57 is the
referring expression plan that can be glossed as “the small black bird” and p42 is the
expand-plan derivation.

plan(system,p42,mb(system,user,replace (p1,p57)))*
contributed(user,p42) '
evaluation(p42,success)

The system then applies rule 4, resulting in the following belief being adopted:
replace(p1,p57)

This causes the belief module to update the mgoal, so that it refers to p57 rather
than p1. The belief module also evaluates p57, and it finds that a constraint, p90, on
the surface speech act that describes the object’s size is unsatisfiable. This results in
the following beliefs being adopted:

contributed(user,p57)
evaluation(p57,failure(p90))
mgoal (system,user,p57 ,knowref (user,entity(1,bird2)))

18 A ctually, the second parameter of replace is not p57, but the plan derivation corresponding to
it.

67

Rule 6 can now be applied, leading to the following belief:
error (p57,p90)

This exhausts the beliefs that can be adopted from the user’s inferred plans and
goals, and so the system now switches from being the hearer of the second utterance
to being the speaker of the third utterance. So, the system now checks to see if there
are any goals that it can adopt. Using rule 7, it adopts the goal to inform the user
that there is an error in the refashioned plan.

goal(system,mb(system,user,error(p57,p90)))

The system then constructs a plan to satisfy this goal (an instance of reject-plan).
After constructing this plan, p97, the system adds the following beliefs:

plan(system,p97,mb(system,user, error(p57,p90)))
contributed(system,p97)
evaluation(p97,success)

This then allows the system to apply rule 12, and so adopt the belief that the user
believes there is an error in the referring expression caused by the constraint of the
surface speech act that describes the size of the object.

bel (user,error(p57,p90))

This is the only belief that can be added from the constructed plan, and so the
system looks for more goals to pursue. Since the system believes that the user will
believe that there is an error in the referring expression plan, it uses rule 8 to adopt
the goal to replace it by a new plan.

goal(system,mb(system,user,replace(p57,NewPlan)))

The system constructs a plan that achieves this goal (an instance of replace-plan),
and adds the following beliefs about the plan, p107, where p123 is the new referring
expression plan.

plan(system,p107,mb(system,user,replace(p57,p123)))
contributed(system,p107)
evaluation(p107,success)

68

The system can now add the following belief, using rule 11, to replace the referring
expression plan by the new plan.

replace(p57,p123)

By a,ddmg this belief, the belief module updates the mgoal (replaces pS7 by p123),
and adds the following beliefs:

contributed(system,p123)
evaluation(p123,success)
mgoal (system,user,p123,knowref (user,entity(1,bird2)))

Also, the system adds the belief, sanctioned by rule 13, that it believes the refashioned
referring expression plan, p113, will allow the user to identity the referent.

achieve(p123,knowref (user,entity(1,bird2)))

5.4 Summary

In this section, we have drawn on Clark and Wilkes-Gibbs’s model of how participants
collaborate in making a referring expression, and Clark and Schaefer’s work on con-
tributing to discourse. This has allowed us to justify how subsequent judgements and
refashionings are modeled, and to motivate our account of how an agent adopts goals
to make judgement and refashionings until a referring expression is accepted. So, we
have been able to incorporate collaborative activity into a goal-oriented approach to
language.

However, as this chapter has shown, there are still many unresolved issues, and
many simplifying assumptions that must be removed. In particular, our account of
how an agent adopts an mgoal, belief, or goal must be set into a more formal model,
and an mgoal must either be defined as a primitivein this model, such as we-intention,
or be defined in terms of the other operators. Also, there is the issue of when should
an agent adopt an mgoal, and what sort of goals he should even consider.

69

70

Chapter 6
An Example

~ In this chapter, we give an example of our system in operation. (The full trace can
be found in appendix A). For this example, we use dialogue (6.1) and show how the
system collaborates in making the referring action successful.

(6.1) A:?! See the weird creature.
B: 2 In the corner?

A: 3 No, on the television.
B: 4 Okay.

Dialogue (6.1) is based on dialogue (6.2) from the Lund corpus (Svartvik and
Quirk, 1980, S.2.4a:1-8).

(6.2) B:! what’s that weird creature over there
c: 2 in the corner
B: ® mhm
c: %it’s just a fern plant
B: 3 no the one to the left of it
c: © that’s [the] television aerial

We do not use the original dialogue, (6.2), because it involves a number of com-
plexities that we haven’t addressed in this thesis. First, in the first three lines, the
participants are collaborating on a referring expression that is embedded inside a
request. The fourth utterance is a response to the request. But, the response shows
that the responder did not identify the right referent. So, in the fifth utterance, the

71

initiator refashions the previous referring expression, which then allows the responder
to properly respond to the request. ‘

A second complexity of the original dialogue is that the refashioning in the fifth
utterance refers to the referent of the rejected referring expression. So, to process this
utterance, our system would need a model of the attentional space and would need
to be able to construct and resolve anaphoric references.

A third complexity is that in the first utterance there is a referring expression,
“over there”, embedded inside of another referring expression. Hence, the second
utterance is ambiguous as to which referring expression it is clarifying.

Due to these complexities, dialogue (6.2) could be regarded as a holy-grail or
benchmark for an eventual perfect system. Since our model and implementation is
not at this stage, we have simplified the dialogue so as to remove these complexities,
with the result being dialogue (6.1).

We are now ready to show our system in operation. In dialogue (6.1), the system
will take the role of person B, who is the responder. In order to account for B’s
utterances, the system is given the following beliefs:

category(ferni,creature)

assessment (ferni,weird)

in(fern1,corner1)
category(antennal,creature)

assessment (antennal,weird)
on(antennal,televisioni)
category(corneri,corner)
category(televisioni,television)
world([ferni,antennal,corneri,televisioni])

So, the system believes that there are two objects that are “weird creatures,” a
television antenna that is on the television; and a fern plant that is in the corner.

6.1 Understanding “The weird creature”

For the first sentence, the system is given as input the surface speech actions under-
lying “the weird creature.”

s-refer(entity(1,0bject))
s-attrib(entity(1,0bject), X-assessment(X,weird))
s-attrib(entity(1,0bject),AX-category(X,creature))

72

-t

pl:refer(entity(1,0bject))

[s-refer(entity(1,0bject)) |

describe(entity(1,0bject))

headnoun(entity(1,0bject) ,Cand)
s-attrib(entity(1,0bject),AX.category (X,creature))
Constraint: mb(user,system,category(Object, creature))

subset ([fernl,antennal,corneri,televisionil, AX-ub(user,system,
category (X, creature)) ,Cand)

modifiers(entity(1,0bject),Cand)
modifier(entity(1,0bject),Cand,Candl)
s-attrib(entity(1,0bject) , X-assessment (X ,meird))
Constraint: mb(user,system,assessment (Object ,weird))

subset (Cand, \X-ub(user,systen,
()\X-assessment (X,weird)) (X)) ,Cand1)

modifiers(entity(1,0bject),Candl)
Constraint: p28:Cand1=[0bject]

Effect: bel(system,goal(user,knowref (system,entity (1,0bject))))

Figure 6.1: Recognized Referring Expression Plan (p1)

The system invokes the plan recognizer to derive a plan derivation whose yield is the
set of observed surface speech actions. The resulting plan derivation, p1, is shown in
figure 6.1 (with the where-predicates instantiated).

Next, the plan derivation is evaluated. Shown below are the constraints and
mental actions that are evaluated, and the variable instantiations that result. As can
be seen, the subset action in the headnoun plan is evaluated first, then the subset
action in the modifier plan, and then the constraint on the modifiers plan that
terminates the addition of modifiers. However, the constraint fails, since the plan
evaluator finds that there are two objects that match the description rather than one.
In other words, the system cannot determine if the user is referring to the antenna or
the fern plant.

subset ([fernl,antennal,corneri,televisioni], AX-ub(system,user,
category (X, creature)), Cand)
Cand = [antennal,fernl]

73

subset([antennal,ferni], AX-ub(system,user,assessment (X ,weird)),
Cand1l)
Candl = [antennal,fern1]

Candi=[0Object]
¥ cannot be satisfied *

Now that the plan has been inferred, the following beliefs about the inferred plan are
added to the system’s beliefs:

plan(user,pi,knowref (system,entity(1,0bject)))
contributed(user,p1)
evaluation(pi,failure(p28))

The system then checks to see if it can apply any of its rules, as given in section 5.2,
for adding beliefs about the inferred plan. This leads to the system adopting the
following beliefs, sanctioned by rule 1 and rule 6, respectively:

ngoal (system,user,pl,knovref (system,entity(1,0bject)))
error(pl,p28)

6.2 Constructing “In the corner?”

The system next checks if there are any goals that it should adopt. Since it found the
referring expression plan invalid, it gives itself two goals. The first goal is to inform
the user that the referring expression was not successful and the second is to refashion
it. The surface speech actions that are the yield of the plans that it constructs would
be realized by “in the corner?”

6.2.1 Judgement Plan

The system gives itself the goal of making it mutually believed that the referring
expression plan is invalid. It does this by way of rule 7.

goal(system,mb(system,user,error(pi,p28)))

The system then constructs a plan to achieve the following effect that is based on
this goal:

bel (hearer,goal (sjstem,mb(system ,user,error(pi,p28))))

74

p31: postpone-plan(pl)
Constraint: error(pl,p28)
plan(user,pi,knowref (system, entity(1i,Varl)))
constraint(pl,ParentPlan, ErrorNode)
content (p1,ParentPlan,Content)
yield(pl,ParentPlan, [1)
Content = modifiers(Entity,Cand)
Instantiation: Goal = knowref(system,entity(1,0bject))
' -ParentPlan = p26
Content = modifiers(entity(1,0bject),[antennal,fernl 1)
Entity = entity(1,0bject)
Cand = [antennal,fernl]
[s-postpone(p1) |

Effect: bel(user,goal(system ,mb(system,user,error(pl ,p28))))

Figure 6.2: Constructed Judgement Plan (p31)

Since the referring expression is underconstrained, the plan constructor builds an
instance of postpone-plan, p31, as shown in figure 6.2. The yield of this plan is
s-postpone(p1) and this action would be passed to the generator.!

The system then adds the following beliefs about the constructed plan:

plan(system,p31,mb(system,user, error(pi,p28)))
contributed(system,p31) :
evaluation(p31,success)

The system then applies rule 12 and infers that the user will believe that there is an
error in the plan.

bel (user, error(pi,p28))

6.2.2 Refashioning Plan

The system next checks to see if there are any other goals it should adopt. By applying
rule 8, it gives itself the goal of refashioning the invalid referring expression plan and
of informing the user of the new plan:

goal(system,mb(system,user, replace(p1,NewPlan)))

1We assume that the generator will wait with linguistically realizing this action so as to be able
to combine it with the s—actions surface speech act that it receives next.

75

P42: expand-plan(p1)
Constraint: error(pi,ErrorNode)
plan(user,pi,Goal)
constraint(pi,ParentPlan,ErrorNode)
content (p1,ParentPlan,Content)
yield(p1i,ParentPlan, [])
Content = modifiers(Entity,Cand)
Instantiation: ErrorNode = p28
Goal = knowref(system, entity(1, Var))
ParentPlan = p26
Content = modifiers(entity(1, Var),[antennal, fern1])
Entity = entity(1, Var)
Cand = [antennal,fern1]
member (Object ,Cand)
Instantiation: Object = fernl

ref (Entity,0Object)
Instantiation: Var = fernl

construct (modifiers(Ent ity,Cand,Expansion,Actions)
Instantiation: Ezpansion '
Actions

substitute(pl,ParentPlan,Expansion,NewPlan,Actions)
Instantiation: NewPlan '

| s-actions(p1,Actions) |
Effect: bel(user,goal(system,mb (system,user,replace(pl,NewPlan))))

Figure 6.3: Constructed Refashioning Plan (p42)

The system then constructs a plan to achieve the following effect that is based on
this goal: ;

bel (user,goal (system,mb(system,user, replace(pi,NewPlan))))

The plan constructor builds a plan derivation, p42, based on expand-plan (fig-
ure 6.3)%. In constructing this plan, the system chooses one of the objects that
matched the original description as the likely referent; in this case it happens to
choose the object in the corner. It then constructs an expansion to distinguish this
object from the others that matched, and this expansion is incorporated into the old
referring expression plan, creating a new expanded plan. The expansion is shown in
figure 6.4, and the surface speech actions of the expansion are shown below. These

?We do not show the value for the variables Expansion, Actions, and NewPlan due to space and
formatting considerations. ‘However, we do indicate where they are instantiated.

76

D

modifiers(entity(1,fernl), Tantennal,f ernﬁj?_L
modifier(entity(1,ferni), [antennal ,fern1], [ferni])
s-attrib-rel (entity(1,fernl) ,entity(4, cornerl), AX-AY-in(X,Y))
Constraint: mb(system,user,in(ferni, cornerl))

subset ([antennal,ferni] ,AX-ub(system,user,
((AX-AY-in(X,Y)) (X)) (cornerl)), [ferni])

[ref (entity(4,cornerl) ,corneri) |

refer(entity(4,corneri))
[s-refer(entity(4,corner1)) |

describe(entity(4,corneri))

headnoun (entity(4,corner1), [corneril)
s-attrib(entity(4,corner1), X:category(X, corner))
Constraint: mb(system,user,category (cornerl,corner))

subset ([fernl,antennal,corneri ,televisioni],
AX-ub(system,user,category (X,corner)), [corneri])

modifiers(entity(4,corneri), [corneri])
Constraint: [corneri]l=[corneri]

Effect: bel(user,goal (system,knowref (user,entity(4,corneri))))

Figure 6.4: Constructed Expansion

actions are embedded inside the surface speech action s-actions, which is given to

the generator.

s-attrib(entity(4,corneri), AX. category (X,corner)),
s-refer(entity(4,corneri)),
s-attrib-rel(entity(1,fernl),entity(4 ,corneri) ,AX-AY-in(X,Y))

The system then updates its beliefs to reflect the constructed plan:

plan(system,p42,mb (syétem ,user,replace(pi,NewPlan)))
- contributed(system,p42)
evaluation(p42,success)

Next, it applies rule 11 and adds the belief that the new expanded plan, p57, replaces
the old referring expression plan, pi.

replace(p1,NewPlan)

7

Since the above belief is not viewed as a primitive proposition by the belief module,
the belief module instead adds the following beliefs and revises the mgoal that p1 was
contributing towards:

contributed(system,p57)
evaluation(p57,success)
mgoal (system,user,p57,knowref (system, entity(1,0bject)))

6.3 Understanding “No, on the television”

The user next utters “No, on the television.” Below are the surface speech actions
that underlie this utterance. Note that we are assuming that the parser determines
which surface speech actions are rejected.

s-reject(p57, [
s-attrib—rel(entity(l,ferni),entity(4,corner1),AX-AY-in(X,Y))
1))

s-actions(p57, [
s-attrib—rel(entity(i,Dbject),entity(38,0bject2),AX~AY-on(X,Y)),
s-refer(entity(38,0bject1)),
s-attrib(entity(38,0bject1),\X-category(X,television))
D

Although the two actions s-reject and s-actions arise from the same utterance,
we assume that the parser has separated them.*

6.3.1 Judgement Plan

The system starts with the action s-reject (pS7,Actions), where Actions is given
below:

s-attrib-rel (entity(1,fern1),entity(4,corner1),\X-AY-in x,7)

It invokes the plan recognizer, which derives the derivation, p119, shown in figure 6.5
(with the where-predicates instantiated). The system then evaluates the constraints

31t could be argued that the surface speech actions that are embedded in s~reject should be all
three actions that were added by the previous utterance.
4This allows us to consider conversational moves separately, which simplifies our implementation.

78

-t

p119: reject-plan(p67)

Constraint: error(p57,ErrorNode)
plan(system,p57,Goal)
constraint(p57,ParentPlan,ErrorNode)
yield(p57 ,ParentPlan ,Actions)
length(Actions,1)

[s-reject(p57,Actions) |

Effect: bel(system,goal(user,mb (user,system,error(p67, ErrorNode))))

Figure 6.5: Recognized Judgement Plan (p119)

and mental actions as shown below:

error (p57,ErrorNode)

plan(system,p57,Goal)
Goal = knowref(system,entity(1,0bject))

yield(p57,ParentPlan,Actions)
ParentPlan = p86

constraint (p57,ParentPlan, ErrorNode)
ErrorNode = p91

length(Actions,1)

Note that the plan evaluator evaluates yield, which results in ParentPlan being
instantiated. This allows constraint to be evaluated, resulting in ErrorNode being
instantiated to p91. So, the system is able to determine why the referring expression
is not acceptable, which is because the constraint p91 does not hold.

After inferring the user’s plan, the system updates its beliefs:

plan(user ,p119,mb(system,user,error(p57 ,p91)))
contributed(user,p119)

evaluation(p119,success)

The system then applies rule 2 and rule 3, and so adopts the beliefs that the referring
expression is overconstrained:

bel (user,error(p57,p91))
error (p57,p91)

With these beliefs, the system will have the context that it needs to understand the

user’s refashioning plan.

79

p129: replace-plan(p57)

. Constraint: error(p57,ErrorNode)
plan(system,p57,Goal)
constraint(p57,ParentPlan,ErrorNode)
step(p57,ModifierPlan,ParentPlan)
content (p57 ,ModifierPlan,Content)
Content = modifier(Entity,Cand,Cand1)

| member (Object1,Cand) |

[ref (Entity,Object1)]

| construct (modifier (Entity,Cand,Candl) ;Expansion,Actions) |
[substitute(p57,ModifierPlan, Expansion,NewPlan,Actions] ﬂ
| evaluate(NewPlan) |

| s-actions(p57,Actions) |

Effect: bel(system,goal (user,mb(user, system,replace(p57,NewPlan))))

Figure 6.6: Recognized Refashioning Plan (p129)

6.3.2 Refashioning Plan

The system next performs plan recognition starting with the surface speech action
s-actions(p57,Actions), where Actions is given below:

s-attrib-rel(entity(1,0bject),entity(38, Object2) ,AX-AY-on(X,Y))
s-refer(entity(38,0bject1))
s-attrib(entity(38,0bject1),)\X-category(X,television))

The resulting derivation, p129, is shown in figure 6.6 (with the where-predicates
instantiated). Next it evaluates the constraints and mental actions as shown below:

error (p57,ErrorNode)
ErrorNode = p91

‘plan(system,p57,Goal)
Goal = knowref(system, entity(1,Object))

constraint (p57,ParentPlan,ErrorNode)
ParentPlan = p86

5As in figure 6.3, we do not show the values for Expansion, Actions, and NewPlan. However, we
do indicate where they are instantiated.

80

step(p57,ModifierPlan,ParentPlan)
ModifierPlan = p83

content (p57,ModifierPlan,Content)
Content = modifier(entity(1,fern1),[antennal,fernl],[fern1])

Content = modifier (Entity,Cand,Candl)
Entity = entity(1,fern1)

Cand = [antennal,fernl]

Candl = [fernl]

ref (Entity,0Objectl)
Objectl = fernl

member(Objectl,Cand)

construct (modifier (Entity,Cand,Candl) ,Expansion,Act ions)
Ezpansion

substitute(p57,ModifierPlan,Expansion,NewPlan, Actions)
NewPlan

evaluate(NewPlan)

From evaluating construct, the variable Expansion is instantiated and its value
(with the where-predicates instantiated) is shown in figure 6.7. Although the value
for NewPlan is not shown, it has been instantiated to a plan derivation, p145, by the
substitute action.

Now that the system has inferred the user’s plan, p129, it updates its beliefs:

plan(user,p129,mb(system,user,replace (p57,NewPlan)))
contributed(user,p129) °

evaluation(p129,success)

The system then applies rule 4 and adopts the belief that the new referring expression
plan, p145, replaces the old plan, p57.

replace(p57,NewPlan)

81

modifier(entity(1,0b ject),Candl,Cand2)
s-attrib-rel(entity(1,0bject),entity(38,0bject1), X -AY-on(X,Y))
Constraint: mb(user,system,on (Object,Object1))

| ref (entity(38,0bject1),Varl) |

| subset(Cand1,)X-ub(user, system, ((AX-AY-on(X,Y)) (X)) (Var1)),Cand2) |

refer(entity(38,0bject1))
| s-refer(entity(38,0bject1))]

describe(entity(38,0bjectl))
headnoun(entity(38,0bject1),Cand3)
s-attrib(entity(38,0bject1),AX-category(X,television))
Constraint: mb(user,system,category(Objectl,television))

subset ([fern1,antennal,corneri,televisioni],
AX-ub(user, system,category(X,television)),Cand3)

modifiers(entity(38,0bject1),Cand3)
Constraint: Cand3=[0bject1]

Effect: bel(system,goal (user,knowref (system,entity(38, Objecti))))

Figure 6.7: Recognized Expansion

Since the belief module does not view this as a primitive proposition, the belief module
adds the following beliefs and revises the mgoal that p57 contributed towards:

contributed(user,pi45)
mgoal (system,user,p145,knowref (system,entity(1,0bject)))

The belief module also invokes the plan evaluator on the new referring expression
plan. Shown below are the constraints and mental actions that it evaluates:

subset([fern1,antennal,corneri,televisioni] ,AX-ub(system,user,
category(X,creature)),Cand)
Cand = [antennel,fernl]

subset (Cand, AX- ub(system,usel_' ,assessment (X,weird)),Cand1)
Candl = [antennal,fernl] '

ref (entity(38,0bjectl),Varil)
Objectl = Vari®

6This means that the two variables are now co-referential.

82

subset([fernl,antennal,corneri ,televisioni] ,AX-ub(systen,user,
category(X,television)) ,Cand3)
Cand3 = [televisionl1]

Cand3=[0bject1]
Object] = televisionl

subset (Candi, \X-ub(system,user,on(X,Varl)),Cand2)
Cand? = [antennal]

mb(system,user,category(Objectl ,television))

[antennall=[0bject]
Object = antennal

mb(system,user,category(Object, creature))
mb(system,user, assessment (Object,weird))

mb(system,user,on(0Object,0bj ectl))

Since the plan evaluator finds the referring expression plan p145 valid, the following
belief is added:

evaluation(p145,success)

The system can now apply rule 5. For convenience, we have repeated rule 5 below,

with the variables instantiated:

Rule 5

achieve(p145,knovwref (system,entity (1,0bject)) <«
mgoal (Hearer, Speaker,p145,knowref (system,entity(1,0bject)) &
evaluation(p145,success) &
true(knowref (system,entity(1,0bject)))

It is easy to see that the first two conditions hold, due to the beliefs that were
just added. The third condition, however, is not as straightforward. In the plan
derivation p145, Object is instantiated to antennai. However, it is not instantiated
in the mgoal proposition. Hence, our knowref predicate not only checks the contents
‘of the discourse entity that it takes as a parameter, it also checks if there is a plan

83

p207: accept-plan(p145)
Constraint: achieve(p145,knowref (system,entity(1,antennai)))
plan(user,p146,knowref (system,entity(1,antennal)))
| s-accept(p145) |
Effect: bel(user,goal(system,mb(system,user,achieve (pi45,
knowref(system,entity(1,antennal))))))

Figure 6.8: Constructed Judgement Plan (p207)

derivation that contains this information. In this case there is, namely p145, and so
knowref succeeds.” Thus the system adds the following belief:

achieve(p145,knowref (system,entity(1,antennal)))

6.4 Constructing “Okay”

Since the system has inferred the referent of the refashioned referring expression, it
can apply rule 9 and so adopts the goal of informing the user that it has identified
the referent.

goal(system,mb(system,user,achieve(p145,
knowref (system,entity(1,antennal)))))

In figure 6.8, the plan derivation, p207, that was constructed to achieve this goal is
shown. So, the system gives the generator the action s-accept (p145), which would
be realized by “Okay.”

Lastly, the system adds the following beliefs about the constructed plan:

evaluation(p207,success)

plan(system,p207,mb(system,user,achieve(p145,knowref (system,
entity(1,antennal)))))

contributed(system,p207)

"This treatment is somewhat problematic, but it is due to our simplistic treatment of discourse
entities,

84

-0

LAl

Chapter 7
Implementation

In this chapter ‘we outline our implementation, specifically, our plan construction
algorithm, our plan inference algorithm, and our belief module. We also discuss the
role of discourse entities in our implementation.

The system is implemented in Prolog, and we use Prolog variables to encode
the variables that are in our plan schemas. By doing this, once a plan variable
is instantiated, all co-referential variables are also instantiated. The use of Prolog
variables has also influenced the manner in which we present our examples, for if a
variable is instantiated, we show its value rather than its name.

7.1 Discourse Entities

We use discourse entities to represent the referring expression that is being collab-
orated upon; but more importantly, to indirectly represent the object that is being
referred to. Discourse entities are represented by the predicate ent ity(Var,0Object),

. where Object represents the object being referred to and Var is a unique identifier.

Discourse entities are parameters of all surface speech actions that give rise to
referring expressions, thus capturing the coherency among the actions. This becomes
especially important when there is a referring expression embedded inside another
referring expression. For instance, “the black bird in the cage” would correspond to
the following surface speech actions:

s-refer(Entity1)
s-attrib(Entity1,)X-name(X,bird))
s-attrib(Entity1,\X-colour(X sbrown))
s-attrib-rel (Entity1,Entity2, AX-\Y- in(X,Y))

85

s-refer (Entity2)
s-attrib(Entity2,)X-name(X, cage))

As can be seen, the discourse entities, Entityl and Entity2, indicate which object
that each surface speech action is about.

An advantage of using discourse entities, rather than a term representing the ob-
ject itself, is that the relationship among the surface speech actions is captured with-
out relying on using Prolog variables. Consider again the above referring expression.
The input to our system would have Entity1 instantiated to entity(1,0bj1) and
Entity2 instantiated to entity(2,0bj2). Since these two discourse entities cannot
be unified (1 and 2 cannot be unified), the plan recognition process can use standard
Prolog unification when deriving a plan derivation.

72 Plan Construction

Before we discuss our plan construction algorithm, we need to give a more formal
definition of a what a plan derivation is. A plan derivation can be defined recursively
as follows. We start with a plan instance as the root of the derivation. For each plan
instance in the derivation, each plan header in its decomposition is expanded into a
plan instance, and the plan header is unified with the header of the plan instance. An
instantiated derivation is a plan derivation in which all variables in the plan instances
are instantiated, and all co-referential variables have the same value.

Motivated by Pollack (1986), we view an instantiated plan derivation not as a
data structure, but as a mental object that an agent has beliefs about. The mental
actions might not be executable and the constraints might not hold.! An agent will
view an instantiated plan derivation as valid just in case it believes that all of its
constraints hold and all of its mental actions are executable.

Now that this background has been given, we can state what our plan constructor
does. Given an effect, the plan constructor finds an instantiated plan derivation that
is valid (with respect to the planning agent’s beliefs), and whose root plan achieves
the effect. The yield of the plan derivation can then be given as input to a module

that generates the surface form of the utterance.

1Gince we assume that the plan library is shared and that agents can execute surface speech
actions, we do not consider beliefs about generation or about the executability of primitive actions.

86

7.2.1 Plan Construction Heuristics

In constructing a plan derivation to accomplish an effect, there might be many pos-
sible plan derivations to choose from. This is particularly true when constructing a
referring expression plan, since the plan schemas do not encode any preference for a
description of minimal length. We have intentionally designed our plan schemas to
exclude preference information. We feel that such information should be captured
as general heuristics that the plan constructor uses in choosing one plan derivation
over another. A benefit of this approach is that the heuristics can be applied to
plan construction in general rather than having preference information for every plan
schema. Also, it is not entirely clear how preference information should be used for
plan inference.

In section 3.6, we proposed that one such planning heuristic would be to prefer
plan derivations with the fewest number of primitive actions. This heuristic cap-

. tures the preference of people to use descriptions of minimal length and thus avoid

conversational implicature (Reiter, 1990).

There are other heuristics that could also be used. For instance, an agent not only
has the goal that it is currently constructing a plan to achieve, it also has many other
goals. Hence, plan derivations could be judged in terms of how well they contribute to
satisfying these goals. Also, in constructing a plan for communicating with another
agent, the speaker might have to make assumptions about the hearer’s beliefs. A
plan derivation that makes a minimal number of assumptions or that is based on the
strongest beliefs would be preferable.

In implementing a planner that uses heuristics in choosing a plan, it is neces-
sary to incorporate these heuristics as early in the construction process as possible,
Otherwise there will be a combinatorial explosion of plan derivations to consider. In
our iniplementation, the plan constructor orders the plan derivations by the number
of primitive actions. At each step, it expands the plan derivation with the fewest
number of primitive actions.

A side effect resulting from the way our plan schemas have been encoded is that
plan derivations are not viewed as invalid on the basis of having duplicate primitive
action instances. Since such derivations will not be chosen due to the heuristic, our
plan constructor immediately removes them from consideration.

7.2.2 The Plan Construction Algorithm

The plan constructor is implemented using a best-first search strategy. It starts with
the set of plan schemas that satisfy the effect that is to be achieved. It finds all

plan derivations whose constraints are satisfiable, and puts them into a list of partial
plan derivations. Each partial plan derivation in the list has an associated list of
unexpanded nodes and this list is initialized to its decomposition. The algorithm
then repeatedly removes the partial plan derivation with the fewest number of prim-
itive actions, finds all expansions of its leftmost unexpanded node, and adds these
expansions (possibly none) to the list. This process is repeated until it finds a plan
derivation that does not have any unexpanded nodes. Given below is the algorithm
for expanding a node:

¢ mental action
— Perform the action.?
e primitive action

— Instantiate the where-predicates.
— Ensure constraints are satisfiable (instantiate variables).

— Ensure action is not already in the derivation.
o plan header (that is not a primitive action)

— Instantiate the where-predicates.
— Ensure constraints are satisfiable (instantiate variables).

— Add decomposition to the front of the list of unexpanded nodes.

7.3 Plan Inference

In order for a hearer to understand an utterance, he must determine what the speaker
intended by way of the utterance. In our model, this is accomplished by plan inference.
By inferring the plan derivation that underlies the utterance, the hearer can determine
the effect that the speaker intended the plan to achieve.

Since the speaker and hearer do not have the same beliefs, the hearer must be
able to infer a plan even if he would view it as invalid. Following Pollack (1986), our
plan inference process can infer invalid plans in which either a constraint does not
hold or a mental action is not executable. Since we assume the plan library is shared
and since the primitive actions have already been executed, we do not considered the
other types of invalidities that Pollack considers.

2Mental actions are performed immediately. This allows the action to affect the rest of the
construction process.

88

~n

In inferring a plan derivation, we first try to find a plan derivation that accounts
for the primitive actions that were observed. Second, we evaluate it by attempting
to find an instantiation for the variables such that all of the constraints hold and the
mental actions are satisfiable with respect to the hearer’s beliefs about the speaker’s
beliefs. We refer to the first process as plan recognition, and the second process as
plan evaluation.

In evaluating a plan derivation, we might not be able to find an instantiation
for the variables.® In this case, the hearer will view the plan as invalid. However,
as Pollack (1986, p. 5) points out, “simply knowing that a plan is invalid is not
sufficient—agents must also be able to locate the source(s) of the invalidity.” So,
when a plan is found to be invalid, we determine the constraint or mental action that
is the source of the invalidity.

7.3.1 Plan Recognition

The plan recognition process attempts to find a plan derivation whose yield is the set
of primitive actions that was observed and whose root Plan is a specially marked end
plan.? It does not consider whether the constraints and mental actions are satisfiable,
but it does unify the variables in the plan headers into the plan derivation. Hence
plan derivations in which this unification cannot proceed are rejected.

The plan recognizer used in this system is based on chart parsing (see Allen
1987).% It has been modified to parse actions instead of words and we have removed
the restriction that the input be ordered. So, the edges in our chart represent the set
of primitive actions that is accounted for by the edge, rather than a start and end
vertex of a list of words. A side effect of this is that primitive actions need to express
any relationships with other actions that are implicit in the utterance. For referring
expressions, this is captured by the use of discourse entities.

The parsing strategy is essentially bottom-up, breadth-first. There is an exception
though. Some of the non-primitive plan schemas have a decomposition that consists
of only mental actions (e.g., relax-constraint) or have a null decomposition (e.g.,
the modifiers schema for terminating the recursion). Since the parsing strategy
is bottom-up starting from the primitive actions that were observed, plans of this
type will never be added to the chart, and hence plan derivations that include them
would not be properly recognized. Our solution to this problem is that whenever

3We will not consider the case where the plan recognition process is not able to find any plan
derivation that accounts for the primitive actions.

“Our usage of end plans follows Kautz and Allen (1986).

SThe actual code is based on the chart parser given by Ross (1989).

o I8

an active edge is added to the chart, a search is made to see if it has any leftmost
descendents of this type. These descendents are then added as inactive entries, and
normal bottom-up parsing can then connect them to the active edges that need them.

Applying parsing techniques to plan recognition is not a new idea. Sidner (1985)
suggests the idea, and Vilain (1990) formalizes it in terms of chart parsing by recasting
the work of Kautz and Allen (1986) on plan recognition. Unfortunately, Vilain shows
that recognizing plans with abstraction and partial step order, which characterizes
our work, is NP-complete.

7.3.2 Plan Evaluation

After a plan derivation has been recognized, the plan is evaluated. The plan evaluation
algorithm tries to evaluate the constraints and mental actions. It prefers to evaluate
them in the order that the plan constructor uses in constructing the plan derivation.
However, the plan schemas have been formulated for plan construction, and there
is a difference in the knowledge that the speaker has when constructing a plan to
accomplish a certain goal and the knowledge that the hearer has when trying to infer
the plan of another agent from the observed primitive actions. So, it might not be
efficient or even possible to evaluate plan derivations in the order specified in the plan
schemas. The plan evaluator takes this into account by using meta-level knowledge
to choose the order in which to evaluate the constraints and mental actions in the
plan derivation. This knowledge encodes which parameters of a predicate should be
instantiated before it can be evaluated. Note that since predicates might include other
predicates as parameters, the order of evaluation depends on all of the predicates in
a constraint or mental action. For instance, for bel (user,colour(Object,black)),
meta-knowledge about bel and colour is considered. Furthermore, the predicate

subset(Set ,\X-Prop,Subset)

requires special treatment. This predicate can be evaluated if Set is instantiated and
Prop, with X instantiated to a dummy value, can be evaluated.

If the plan evaluator is not successful, one of the constraints or mental actions
in the inferred plan derivation will be found to be unsatisfiable. Since the evaluator
dynamically chooses the order in which to evaluate the constraints and mental actions,
the one that it failed on might not be the cause of the error. Hence, when it finds an
error, it tries to determine if the error is a result of a constraint or mental action whose
evaluation was postponed. Our algorithm for determining the cause looks for syntactic
similarities. All of the postponed constraints and mental actions, and the node that
it failed on are stripped down to their base propositions. This involves stripping off

Pl

the operators subset, mb, ub, bel, and AX. With these stripped propositions, the
evaluator checks to see if any of the postponed constraints or mental actions unifies
with the failed node. For instance, consider the situation where the evaluator finds
that the following mental action fails:

subset ([bird1,bird2] ,AX-ub(user, system,colour(X,black)),NewCand)

The evaluator would be able to determine that it was the following postponed con-
straint that was the cause of the error:

mb(user,system, colour(Object,black))

As mentioned in section 4.6 and section 5.1.3, the plan evaluator treats construct
and evaluate specially. When evaluating construct, the evaluator knows the prim-
itive actions that construct must account for and the goal it is trying to achieve.
So, the evaluator invokes the plan recognizer rather than the plan constructor. For
evaluate, the plan evaluator does not evaluate it.

The algorithm proceeds as follows: It first evaluates all of the where-predicates.
Second, it gathers all of the constraints and mental actions into a list. Third, it
iteratively chooses the first unevaluated constraint or mental action that has the
required parameters instantiated as determined by the meta-knowledge, and tries to
prove that it is satisfiable; this results in its variables being instantiated, as well as any
co-referential variables in other constraints and mental actions being instantiated. If
it fails in evaluating a constraint or mental action, then it determines which constraint
or mental action is the cause of the failure.

7.4 Belief Module

We have incofporated a belief module into our system. This module provides the
minimum functionality that is needed in order to support plan construction, plan in-
ference, and the adoption of beliefs and goals. T'wo functions are provided, a function
for adding a new belief, and a function for testing whether the system holds a belief.
We do not provide a function for retracting a belief.

We represent our beliefs internally using the predicate abel (N,Prop) (Cohen and
Levesque, 1990, p. 232), which is the Nth alternating belief between the system and
the user. The proposition abel(1,Prop) represents that the system believes Prop,
abel (2,Prop) represents that the system believes the user believes Prop, etc. We do
not allow the proposition inside abel to include any belief operators. Since abel is

==9]

the only predicate that we use for representing beliefs, we do not represent mutual
belief, but as mentioned below, we have rules for inferring it.

When adding a new belief, the effect that this belief has on the other beliefs
must be taken into consideration. This is especially true when adding the proposition
replace(Plan,NewPlan) and error(Plan,Node). For replace, if the system has a
belief about an mgoal that has Plan as a parameter, Plan is replaced by NewPlan.
For error(Plan,Node), where Node is a constraint involving mutual belief, we could
add evidence so that this mutual belief will not be inferred in the future. However,
we do not address this issue.

When determining whether our system holds a belief, we use a number of inference
rules. The first inference rule allows the system to assume that if the system believes
a proposition then it is mutually believed. In particular, we can use this rule to derive
that the system believes that the user believes Prop if the system believes it. This
rule is intended to correspond with the co-presence heuristics of Clark and Marshall
(1981) and it only applies to certain predicates, such as mgoal, colour, and size.
This rule is obviously too strong, for it should ensure that there is no evidence to the
contrary (see Nadathur and Joshi 1983).

The second inference rule is used to ascribe beliefs based on other beliefs that the
system has. This includes inferring that the system and the user have a plan if they
have an mgoal.

A third inference rule is used to allow the system to assume a belief based on no
evidence. As with the first rule, this rule applies only to certain predicates. In this
case, it allows the system to believe that the user believes that there is an error in
a plan derivation. Note that without this inference rule, the system would find an
inferred judgement plan to be invalid.

A fourth inference rule sanctions the belief that Prop holds if the proposition
relax(Propil,Prop) is believed, and Prop1 is also believed.

Chapter 8
Conclusion

We have presented a computational model of how a conversational participant collab-
orates in making a referring expression. Qur work is based on the model that Clark
and Wilkes-Gibbs (1986) propose, augmented with the work done by Clark and Schae-
fer (1989) on contributing to discourse; In recasting their work into a computational
model, we have adopted the view that language is goal-oriented behaviour. This has
allowed us to do the following. First, account for the tasks of building a referring
expression and identifying its referent by using plan construction and plan recogni-
tion. Second, account for the conversational moves that participants make during the
acceptance process by using meta-plans. Third, show how beliefs are adopted from
an inferred plan, which in turn gives rise to the adoption of discourse goals to further
the collaborative activity.

Although our work has focused on referring expressions, we feel that it is relevant
to collaboration in general and to how agents contribute to discourse. So, in the
next section, we comment on what it means for two agents to be collaborating in
building a plan, and how this mode of interaction differs from viewing one of the
agents as an information provider. Then in the following section, we return to the
discussion in section 5.1.2 on judging contributions. In the renewed discussion, we
propose a formalization of the criteria for accepting contributions in terms of discourse
intentions.

Then in the remainder of the chapter, we discuss a few assumptions that we
have made in our work that are worth noting; we compare our work to Litman and
Allen (1987) and to Grosz and Sidnper (1990); and we conclude by pointing our some
directions for future research.

93

8.1 Collabor]ation

There are many ways that agents interact in conversation. In this thesis, we have
looked at how agents collaborate in making a referring expression, which we have
equated with collaborating in building a plan. But what does it mean for two agents
to collaborate in building a plan? From the work of Clark and Wilkes-Gibbs, we have
:dentified this with having mutual responsibility in building a plan to achieve a goal,
and where the agents interact by judging and refashioning the current plan.

Before exploring this further, let’s re-examine dialogue (5.1), reprinted here as
dialogue (8.1).

(8.1) P:? The 8:50 to Montreal?
C: 2 8:50 to Montreal. Gate 7.
P: 3 Where is it?
C: 4 Down this way to your left. Second one on the left.
P: 5 OK. Thank you.

In this dialogue, the passenger has a plan to board a train. However, her plan is
underspecified, and hence she requests information from the clerk and has an expec-
‘tation that he will answer her request. However, the passenger and the clerk are
not collaborating in building this plan. The passenger is simply using the clerk as
a resource for obtaining information, and so she is controlling the conversation (see
Walker and Whittaker, 1990). Note that the clerk might even infer the passenger’s
plan, but he does this in order to provide additional context for her question, or to
be able to anticipate any obstacles in her plan (Allen, 1979).}

So, there are different ways that agents can interact with respect to building a
plan. In the case of referring expressions, the agents are mutually responsible for
achieving the goal. We feel that this allows the agents to interact such that neither
agent assumes control of the dialogue, thus allowing both agents to contribute to the
best of their ability without being guided or impeded by the other agent. This results
in the agents minimizing their combined effort in achieving the goal. This type of
interaction is not possible in dialogue (8.1), since the agents do not have the plan in
their common ground, nor are they necessarily mutually responsible. Additionally,

1This of course means that the passenger must be able to understand any helpful comments from
the clerk. Hence the passenger should be able to understand the clerk’s response with respect to
her underlying plan, rather than just with respect to the request. For instance, the passenger, after
uttering “Where is it?”, should be able to understand a response such as “It is the only gate” or
“Follow that person.”

9

it would not be expedient for the agents to collaborate in the building of the plan,
since the passenger is perfectly able to build the plan herself—she simply needs some
information.

8.2 Accepting Contributions

In providing a computational model of how agents collaborate in making a referring
expression, we have adopted the view of Clark and Schaefer (1989) that the judgement
and refashioning moves are also contributions and hence are judged in accordance with
whether the hearer “believes he is understanding well enough for current purposes”
(p. 267). In section section 5.1.2, we gave criteria for determining whether judgements
and refashionings are understood that do not depend on whether the refashioned
referring expression is acceptable. Hence we distinguish between the acceptance of
a refashioning move and the acceptance of the refashioned referring expression. The

- outcome of this is that when a refashioning move is accepted, the common ground

of the participants is updated to reflect the refashioned referring expression, thus
allowing it to be judged and refashioned in the same way as the initial referring
expression, as Clark and Wilkes-Gibbs (1986) claim.

We have relied on Clark and Schaefer’s proposal that a hearer accepts a contri-
bution depending on whether he has understood it well enough for current purposes.
But, in general, what is the current purpose that they allude to? We feel that a
key to understanding this is to relate their work to that done by Grosz and Sidner
(1986) on intentions and discourse structure. Utterances have purposes associated
with them, and these utterances are embedded in discourse segments that also have a
purpose. So, in determining whether to accept a contribution, it is only the purpose
that is associated with the contribution that comes into play in determining whether
to accept it. Note that an utterance might be intended to fulfill the purpose of the
segment that it is embedded in. But if it doesn’t, then this is not grounds for rejecting
the contribution, but only grounds for not ending that discourse segment.

With this interpretation of Clark and Schaefer’s criteria, let’s re-examine the ac-
ceptance process for a referring expression. First, since there is an intention underly-
ing a referring expression, namely for the responder to identify the referent, we will
assume that the utterance of a referring expression initiates a new discourse segment,
say DS1. After a referring expression has been uttered, if the responder cannot iden-
tify the referent then he will not accept it, since his current purpose is to understand
the referent. The two participants will hence make judgements and refashionings, and
these are discourse segments embedded inside segment DS1. The purpose of these seg-

ments is not the same as the purpose of DS1. For a judgement move, it is to inform
the other participant of a judgement, and for a refashioning move, it is to inform the
other of a replacement referring expression. Hence, they are accepted and so their
discourse segments are ended independently of the acceptance of the current referring
expression. So, subsequent judgements and refashionings are embedded directly in
DS1. Once the conversational participants accept the referring expression, not only
is the acceptance accepted, but it also causes the current discourse segment, DS1, to
end.

In section 5.1.1, we examined subdialogue (5.1), repeated as (8.1), to illustrate
the relevance of Clark and Schaefer’s work. In particular, we claimed that the third
utterance implicitly accepts the second utterance and so is not a contribution to
accept it. Let’s now re-examine it in the light of discourse segments and intentions.

81 (11) [DS2 (I12) E” @) P: ! The 8:50 to Montreal?
| |554 @ C: 2?2 8:50 to Montreal. Gate 7.

[pss (15) [pse (6) P: 3 Where is it?

Figure 8.1: Discourse Segments for Dialogue (5.1)

In figure 8.1, we have reprinted the first three utterances, and indicated what we
think is the discourse structure of the dialogue. For the first utterance, we claim that
there are three distinct intentions—I1, I2, and I3—underlying it.

I1: P intends to know the location of the train so that she can board it.
I2: P intends C to inform her of the location of the train.

I3: P intends C to know that she wants him to inform her of the location
of the train.

Note that I1 dominates I2, and 12 dominates I3. As shown in figure 8.1, this gives
rise to three discourse segments, DS1, DS2, and DS3, corresponding to I1, I2, and I3,
respectively. '

Now the second utterance, which is itself a discourse segment, DS4, is being used
io achieve C’s intention that P know that the train is at gate 7. So, this utterance
implicitly accepts the first utterance, and so signals the end of DS3. Note that DS4 is
embedded inside DS2, since I2 dominates I4. The third utterance is the controversial
one with regard to whether or not it signals the end of DS2 and DS4. We claim that
it does, since the third utterance shows that P has understood the second utterance

96

well enough for the purposes 12 and 14. Hence, her utterance signals the acceptance
of the second utterance. However, since she doesn’t know the location well enough
to board the train, her utterance is embedded inside of Dsi.

8.3 A Few Assumptions

In this section, we discuss a few assumptions that we have made in carrying out our
research that we feel are worth noting.

8.3.1 Initiator and Responder

In collaborating to make a referring expression, the initiator and the responder have
different roles. The initiator knows the identify of the referent and the responder
is trying to identify it. So, if the initiator refashions a referring expression, the
utterance can be interpreted as “The one that ... ”, but if the responder refashions,
the utterance can be interpreted as “Do you mean the one that ... 7”

Clark and Wilkes-Gibbs (1986), in their model of the acceptance process, do not
distinguish between the initiator and the responder. Hence, it is unclear how their
model accounts for the difference in the surface forms between the initiator and the
responder’s utterances. Our model also doesn’t account for the difference in the forms
of the utterances. In fact, the same meta-plans and surface speech acts are used by
both agents in judging and refashioning referring expressions.

One avenue that is worth pursuing is the use of try markers. Clark and Wilkes-
Gibbs propose that try markers (rising intonation) are used by a speaker to express
her confidence in an utterance. Perhaps this can account for the difference between
the initiator’s utterances and the responder’s, since the responder would not be as
confident as the initiator would be that his refashioned referring expression identifies
the referent. In our model, we have not addressed speaker confidence, and so it is
difficult to say whether it can adequately account for the above phenomena.

8.3.2 Surface Speech Acts

. We have postulated the following surface speech actions:

Referring:
s-refer
Attributing:
s-attrib, s-attrib-rel, and s-attrib-rel-group

07
I

Expressing judgement:
s-accept, s-reject, and s-postpone

Refashioning:
s-expand

Although we could have viewed these as acts of informing, this would have shifted the
complexity into the parameter of the inform and it is unclear whether anything would
have been gained. Instead, we feel that a’parser can determine the surface speech
actions, especially if it has access to a model of the discourse to help it disambiguate
the utterance. Additionally, it should be easier for the generator to determine an
appropriate surface form.

8.3.3 Presentations

Clark and Wilkes-Gibbs (1986) and Clark and Schaefer (1989) talk about presenta-
tions of a contribution, as well as judgements and refashionings. We have viewed the
presentation of a contribution as being implicit. Hence, the effect of our refer plan is
not to inform the hearer of a referring expression plan, but to have the hearer believe
that the speaker has the goal for the hearer of identifying the referent. We assume
that the hearer doesn’t need to know that the speaker has presented a plan, because
this will be obvious if he has understood the utterance.

8.4 Comparisons to Other Work

In this section, we compare our work to Litman and Allen (1987), and Grosz and
Sidner (1990). We have limited ourselves to these works because we feel that they
come closest to offering the framework for collaborative behaviour that we propose.

8.4.1 Litman and Allen

Litman and Allen’s work on understanding clarification subdialogues has influenced
our work greatly. It has provided us with the idea of using meta-plans to account for
referring expressions that can be reasoned about and manipulated in the planning
paradigm.

There are several major differences between our work and theirs. First, our work
extends theirs, since it also accounts for the construction of an utterance and how
discourse goals arise from inferring a plan. Second, we account for collaboration.

So, our discourse plans are different from theirs, and we model an agent’s discourse

98

expectations by way of intentions rather than a more rigid plan stack. Third, we take
into account how plans are updated to reflect the contributions of the participants,
a problem that we feel causes Litman and Allen to improperly recognize when a
contribution is accepted.

8.4.2 Grosz and Sidner

Grosz and Sidner (1990)? are interested in the type of plans that underlie discourse
where the agents are collaborating in order to achieve some goal. They propose that
agents are building a shared plan. Their definition of a shared plan is in terms of the
mutual beliefs and intentions of the participants regarding the actions that comprise
the plan. They also discuss partial shared plans, which they define as follows: “First,
[a partial shared plan] may contain only some of the full collection of beliefs and
intentions of its associated full shared plan. Second, some of the beliefs included in
it may be only partially specified . ..” (Grosz and Sidner, 1990, p. 431). They then
use this to show how their partial shared plans are updated by recognizing the beliefs
and intentions underlying an utterance.

Our model differs from theirs in two important aspects.? First, not only do agents
have a collection of beliefs and intentions regarding the actions of a (partial) shared
plan, we feel that they also have an intention about the goal. It is this intention
in conjunction with the partial shared plan that sanctions the adoption of beliefs
and intentions about potential actions that will contribute to the goal, rather than
merely the partial shared plan as indicated by their second conversational default rule
(CDR2).

Second, we feel that their definition of a partial shared plan is too restrictive.
They require, in order for an action to be part of a partial shared plan, that both
agents believe (in fact mutually believe) that an action contributes to the goal, where
the action contributes by either enabling or generating® the goal. However, this is too
strong. In collaborating to achieve a mutual goal, participants sometimes propose
an action that is not believed by the other participant or even the participant that
is proposing it. By failing to represent such states, their model will be unable to
represent the intermediate states in which a hearer might have understood how the

2See also the subsequent work by Lochbaum, Grosz, and Sidner (1990) and Lochbaum (1991).

3Their work also addresses a number of issues that we have not concerned ourselves with. First,
we do not need to represent that an agent intends to perform an action or that it is able to execute
the action (because the actions have already been performed). Second, we assume that agents have
complete knowledge of the plan schemas and that this knowledge is shared.

“They consider several types of generation to account for simultaneous actions, consecutive ac-
tions, etc.

99—

speaker’s utterance contributes to a plan, but doesn’t agree with it. In section 5.1.1
we showed that this is important, since if a refashioning is understood, the common
ground is updated, and we feel that this should correspond to updating the shared
plan. Furthermore, even the final plan might contain an action that is not mutually
believed to be executable, as evidenced by an utterance such as] don’t think it will
work, but let’s try it anyways.” Perhaps the only requirement should be that the
plan is not incoherent.

8.5 Future Direction

There are many ways that this research can be extended. Perhaps the most obvious
would be to extend the coverage of the model. We have examined one type of refer-
ring expression. We feel that our approach can be extended to handle references to
objects in focus, references to objects outside of Appelt’s shared concept activation
with identification intention (1985c), and references in which the speaker is uncertain
about the adequacy of the constructed referring expression. Also, the meta-plans that
we have given do not handle all types of judgement and refashionings of referring ex-
pressions. Hence, our coverage of them could be expanded and even generalized so as
to handle plans other than just referring expressions. By extending our model in this
" way, we should be able to account for our benchmark dialogue, dialogue (6.2) given
in chapter 6, without simplifying it.

A second area for future research is to incorporate a better model of an agent’s
beliefs. When agents collaborate, their beliefs of the other agent as well as their
own beliefs are being revised. This belief revision not only facilitates subsequent
references, but it is also an integral part of the acceptance process, for the agents
are acquiring beliefs that facilitate them in making a referring expression acceptable
to both participants. However, in this thesis we have left this aspect practically
unexplored.

A third area would be to further investigate collaborative behaviour. In this
thesis, we have touched upon a number of questions that need to be answered more
fully. First, what does it mean to say that two agents are collaborating, and what
behavioral effects will be manifested? Second, how does this mode of interaction differ
from other modes, such as how a master and an apprentice interact? Third, how do
agents establish a mode of interaction based on collaboration? Fourth, what reasons
do agents consider in deciding whether to establish such a mode? By answering these
questions, we will not only have a better model to base natural language interfaces
on, but we will also have a better understanding of how people interact.

—100

Bibliography

Allen, J. (1987). Natural Language Understanding. Benjamin/Cummings, Menlo
Park.

Allen, J. F. (1979). A plan-based approach to speech act recognition. Doctoral
dissertation, Technical Report 131, Department of Computer Science, University
of Toronto.

Allen, J. F. and Perrault, C. R. (1980). Analyzing intention in utterances. Artificial
Intelligence, 15:143-178. Reprinted in (Grosz, Sparck-Jones and Webber, 1986).

Appelt, D. and Kronfeld, A. (1987). A computational model of referring. In Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI ’87),
pages 640-647.

Appelt, D. E. (1985a). Planning English referring expressions. Artificial Intelligence,
26(1):1-33.

Appelt, D. E. (1985b). Planning English Sentences. Cambridge University Press.

Appelt, D. E. (1985c). Some pragmatic issues in the planning of definite and indefinite
noun phrases. In Proceedings of the 28 Annual Meeting of the Association for
Computational Linguistics, pages 198-203.

Austin, J. L. (1962). How to do things with words. Oxford University Press, New
York.

Clark, H. H. and Brennan, S. E. (1990). Grounding in communication. In Resnick, L.,
Levine, J., and Behreno, S., editors, Perspectives on Socially Shared Cognition.
APA.

Clark, H. H. and Marshall, C. R. (1981). Definite reference and mutual knowledge.
In Joshi, A. K., Webber, B. L., and Sag, 1., editors, Elements of Discourse
Understanding, pages 10-62. Cambridge University Press, Cambridge.

101

Clark, H. H. and Schaefer, E. F. (1989). Contributing to discourse. Cognitive Science,
13:259-294.

Clark, H. H. and Wilkes-Gibbs, D. (1986). Referring as a collaborative process.
Cognition, 22:1-39.

Cohen, P. R. (1981). The need for referent identification as a planned action. In
Proceedings of the International Joint Conference on Artificial Intelligence (1J-
CAI ’81), pages 31-36.

Cohen, P. R. (1984). Referring as requesting. In Proceedings of the 10t* International
Conference on Computational Linguistics (COLING ’84), pages 207-211.

Cohen, P. R. and Levesque, H. J. (1990). Rational interaction as the basis for com-
munication. In Cohen, P. R., Morgan, J., and Pollack, M. E., editors, Intentions
in Communication, SDF Benchmark Series, pages 221-255. MIT Press.

Cohen, P. R. and Perrault, C. R. (1979). Elements of a plan-based theory of speech
acts. Cognitive Science, 3(3):177-212. Reprinted in (Grosz, Sparck-Jones and
Webber, 1986).

Dale, R. (1989). Cooking up referring expressions. In Proceedings of the 27" Annual
Meeting of the Association for Computational Linguistics, pages 68-75.

Garrod, S. and Anderson, A. (1987). Saying what you mean in dialogue: A study in
conceptual and semantic co-ordination. Cognition, 27:181-218.

Goodman, B. A. (1985). Repairing reference identification failures by relaxation. In
Proceedings of the 28 Annual Meeting of the Association for Computational
Linguistics, pages 204-217.

Grice, H. P. (1957). Meaning. Philosophical Review, 66:377-388.

Grosz, B. J. (1981). Focusing and description in natural language dialogues. In Joshi,
A. K., Webber, B. L., and Sag, 1., editors, Elements of Discourse Understanding,
pages 84-105. Cambridge University Press, Cambridge.

Grosz, B. J. and Sidner, C. L. (1986). Attention, intentions, and the structure of
discourse. Computational Linguistics, 12(3):175-204.

Grosz, B. J. and Sidner, C. L. (1990). Plans for discourse. In Cohen, P. R., Morgan,
J., and Pollack, M. E., editors, Intentions in Communication, SDF Benchmark
Series, pages 417-444. MIT Press.

102

Grosz, B. J., Sparck-Jones, K., and Webber, B. L., editors (1986). Readings in Natural
Language Processing. Morgan Kaufmann Publishers.

Horrigan, M. K. (1977). Modelling simple dialogs. Master’s Thesis, Technical Report
108, Department of Computer Science, University of Toronto.

Kautz, H. A. and Allen, J. F. (1986). Generalized plan recognition. In Proceedings
of the National Conference on Artificial Intelligence (AAAI ’86), pages 32-37.

Lambert, L. and Carberry, S. (1991). A tripartite plan-based model for dialogue.
In Proceedings of the 29" Annual Meeting of the Association for Computational
Linguistics, pages 47-54.

Litman, D. J. (1985). Plan recognition and discourse analysis: an integrated approach
for understanding dialogues. Doctoral dissertation, Technical Report 170, De-
partment of Computer Science, University of Rochester. '

Litma.n., D. J. and Allen, J. F, (1987). A plan recognition model for subdialogues in
conversations. Cognitive Science, 11(2):163-200.

Lochbaum, K. E. (1991). An algorithm for plan recognition in collaborative discourse.
In Proceedings of the 29" Annual Meeting of the Association for Computational
Linguistics, pages 33-38.

Lochbaum, K. E., Grosz, B. J., and Sidner, C. L. (1990). Models of plans to support
communication: An initial report. In Proceedings of the National Conference on

Artificial Intelligence (AAAI ’90), pages 485-490.

Mellish, C. S. (1985). Computer Interpretation of Natuﬁl Language Descriptions.
Ellis Horwood Series in Artificial Intelligence. Ellis Horwood, Chichester, West
Sussex, England.

Nadathur, G. and Joshi, A. K. (1983). Mutual beliefs in conversational systems:
Their role in referring expressions. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI ’83), pages 603—605.

Perrault, C. R. (1990). An application of default logic to speech act theory. In Cohen,
P. R., Morgan, J., and Pollack, M. E., editors, Intentions in Communication,
SDF Benchmark Series, pages 161-185. MIT Press.

Perrault, R. and Cohen, P. R. (1981). It’s for your own good: a note on inaccurate
reference. In Joshi, A. K., Webber, B. L., and Sag, 1., editors, Elements of Dis-
course Understanding, pages 217-230. Cambridge University Press, Cambridge.

103

Pollack, M. E. (1986). Inferring domain plans in question-answering. Technical Note
403, SRI International. Also Doctoral dissertation, University of Pennsylvania,
Philadelphia, PA.

Pollack, M. E. (1990). Plans as complex mental attitudes. In Cohen, P. R., Morgan,
J., and Pollack, M. E., editors, Intentions in Communication, SDF Benchmark
Series, pages 77-103. MIT Press.

Ramshaw, L. A. (1991). A three-level model for plan exploration. In Proceedings of
the 29% Annual Meeting of the Association for Computational Linguistics, pages
39-46. '

Reiter, E. (1990). The computational complexity of avoiding conversational implica-
ture. In Proceedings of the 28 Annual Meeting of the Association for Compu-
tational Linguistics, pages 97-104.

Ross, P. (1989). Advanced Prolog: Techniques and Ezamples. International series in
logic programming. Addison Wesley, Wokingham, England.

Searle, J. R. (1969). Speech acts: An essay in the philosophy of language. Cambridge
University Press, Cambridge.

Searle, J. R. (1990). Collective intentions and actions. In Cohen, P. R., Morgan,
J., and Pollack, M. E., editors, Intentions in Communication, SDF Benchmark
Series, pages 401-415. MIT Press.

Sidner, C. L. (1985). Plan parsing for intended response recognition in discourse.
Computational Intelligence, 1(1):1-10.

Svartvik, J. and Quirk, R. (1980). A Corpus of English Conversation. Lund Studies
in English. 56. C.W.K. Gleerup, Lund.

Vilain, M. (1990). Getting serious about parsing plans: a grammatical analysis of plan
recognition. In Proceedings of the National Conference on Artificial Intelligence
(AAAI °90), pages 190-197.

Walker, M. and Whittaker, S. (1990). Mixed initiative in dialogue: An investigation
into discourse segmentation. In Proceedings of the 28 Annual Meeting of the
Association for Computational Linguistics, pages T0-78.

Webber, B. L. (1983). So what can we talk about now? In Brady, M. and Berwick,
R. C., editors, Computational Models of Discourse, pages 331-371. MIT Press,
Cambridge.

104

L)

Appendix A

Trace of the System

In this appendix, we give the full trace of the example that was presented in chapter 6.
In this example, the system takes the role of the responder, person B, in dialogue (6.1),
repeated below as dialogue (A.1).

(A.1) A:! See the weird creature.
B: 2 In the corner?
A: 3 No, on the television.

B: 4 Okay.

In the trace, lambda expressions, AX - Prop, are represented as:
X~Prop
Propositions of the form (AX - Prop)(Y) are represented as:
apply(X~Prop,Y)

Prolog variables are represented as _n, where n is an integer. Lines in the trace have
been formatted so that they will fit on the page. Where a line has been broken,
a dash followed by a space is used to start the continuation. Plan derivations and
lists of actions have been formatted for readability. When they are a parameter in a
proposition, they are represented as a variable of the form Vn, where n is an integer.
On a line following the propoéition, the value of the variable is given. Section titles,
which correspond to the section titles of chapter 6, have been inserted into the trace.

105

A.1 Initialization

User Model: Adding Proposition
category(ferni,creature)

User Model: Adding Proposition
assessment (fern1 ,weird)

User Model: Adding Propositiom
in(fernl,cornerl)

User Nodel: Adding Proposition
category(antennal,creature)

User Model: Adding Proposition
assessment (antennal ,seird)

User Model: Adding Propositionm
on(antennal,televisionl)

User Model: Adding Proposition
category(corneri,corner)

User Model: Adding Proposition
category(televisioni,television)

User Model: Adding Proposition
world([fernl,antennal,corneri ,television1])

A.2 TUnderstanding “The weird creature”

SaSETEE EETIIIETY

Understanding

Plan Recognizer

- e e S e

Actions = s-refer(entity(1,_95))
s-attrib(entity(1,_95),_115~assessment(_115,veird))
s-attrib(entity(1,_965),_126"category(_126,creature))

Initial Setup

Adding inactive edge:

Head: s-refer(entity(1,_28615))
Acts: s-refer(entity(1,.28515))

Adding active edge:
Head: refer(_33753)
Heed: s-refer(_33753)

Adding config (from active edge):
Active: refer(_33753)
Inactive: s-refer(entity(1,.28515))

Adding inactive edge:
Head: s-attrib(entity(1,.28615),_28525~assessment(_285625,veird))
Acts: s-attrib(entity(1,_28515),_28526~assessment(_28526 ,weird))

Adding active edge:
Head: modifiex(_46979,_46980,_46981)
Need: s-attrib(_46979,_47019)

Adding config (from active edge):

106

-

Active: modifier(.46979,_46980,_46981)
Inactive: a-attrib(entity(1,_28515),_28525~assessment (.28526,weixd))

Adding inactive edge:
Head: s-attrib(entity(1,_28515) »-28539"category(_28539, creature))
Acts: s-attrib(entity(1,_28515), -28539"category(_28539, creaturs))

Adding config (from inactive edge):
Active: modifier(_46979 »-46980,_46981)
Inactive: s-attrib(entity(1,_28615) »-28539"category(_28539,creature))

Adding active edge:
Head: headnoun(_63427,_63428)
Heed: s-attrib(_63427,_63462"category(_63462 2-63470))

Adding config (from active edge):

Active: headnoun(_63427,_63428)
Inactive: s-attrib(entity(1,_28615) »-28539"category(_28539,creatura))

Adding active edge:

Head: modifiex(_63357,_63358,_63359)
Need: s-attrib(_63367,_63397)
s*sduplicate active edge (removed)sss

End of Initial Setup

Applying config (3 left, step 1)

Active: refer(_33753)
Inactive: s-refer(entity(1,_28515))

Adding active edge:

Head: refer(entity(1,_93284))
Heed: describe(entity(1,_93284))
Acts: s-refer(entity(1,_93284))

Applying config (2 left, step 2)

Active: modifier(_46979,_46980 »-46981)
Inactive: s~attrib(entity(1,_28515),_28525~assessment (_28525,weird))

-Addi.ng inactive edge:
Head: modifier(entity(1,_105818),_105652 »-105663)
Acts: s-attrib(entity(1,_105818) »-105820"assessment (_105820,weird))

Adding active edge:
Head: modifiers(_112377,_112378)
Beed: modifier(_112377,_112378,_112403)

Adding config (from active edge):
Active: modifiers(_112377,_112378)
Inactive: modifier(entity(1,_105818),_105652 »-105663)

Applying config (2 left, step 3)

Active: modifier(_46979,_46980 »46981)
Inactive: s-attrib(entity(1,_28515), -28639"category(.28639,creature))

Adding inactive edge:
Head: modifier(entity(1,_126854),_1 26688, .126689)
Acts: s-attrib(entity(1,_126854),_ 126856~cat egory(_126856,creature))

Adding config (from inactive edge):
Active: modifiera(_112377,_112378)
Inactive: modifier(entity(1,_126854) ,-126688,_126689)

107

Adding active edge:

Head: modifiers(_133413,_133414)

Need: modifier(_133413,_ 133414 +-133439)
sssduplicate active edge (removed)sss

Applying config (2 left, step q)

Active: headnoun(_63427,_63428)
Inactive: s-attrib(entity(1,.28516) ,_28539"category(_28539.creltu'o))

Adding inactive edge:
Head: headnoun(entity(1,.150474),.150300)
Acts: s-attrib(entity(1,_150474) ,_150334"cntegory(_15mtl,mam¢))

Adding active edge:
Head: describe(_156710) :
Heed: headnoun(_156710,_156733)

Adding config (from active edge):
Active: describe(_156710)
Inactive: headnoun(entity(1,_150474) »-.150300)

Applying config (2 left, step 5)

Active: modifiers(_112377 ,-112378)
Inactive: modifier(entity(1 ,~105818) ,_105652 ,-105653)

Adding active edge:

Head: modifiers(entity(1,.168821) »-168669)

Beed: modifiers(entity(1,.168821) »,-168694)

Acts: s-attrib(entity(1,_168821) ,.168864"assessmant (_168864 ,weird))

»+sTopdown addition of inactive entries (1)see

Adding inactive edge:
Head: modifiers(entity(1,.177236),.177232)

Adding config (from inactive edge):
Active: modifiers(entity(1,.168821) »-168669)
Inactive: modifiers(entity(1 ,-177238) ,_177232)

Applying config (2 left, step 8)

Active: modifiers(_112377,_112378)
Inactive: modifier(entity(1l ,-126854) ,_126688 ,-126689)

Adding active edge:

Head: modifiers(entity(1,.190889) »-190737)

Need: modifiers(entity(1,_190889) ,.190762)

Acts: s-attrib(entity(1,_190889) »-190932"category (_190932, cxeature))
Adding config (from active edge):

Active: modifiers(entity(1,_190889) »-190737)

Inactive: modifiers(entity(1,.177235) »-177232)

sssTopdown addition of inactive entries (1)%se

Adding inactive edge:
Head: modifiers(entity(1,.199303) »-199300)

+ssduplicate inactive edgases

Applying config (2 left, step 7)

Active: describe(_ 166710)
Inactive: headnoun(entity(1,_150474) »,-150300)

108

Adding active edge:

Head: describe(entity(1,_217432))

Heed: modifiers(entity(1,_217432),_217306)

Acts: s-attrib(entity(1,_217432), -217478"categoxy(_217478, creature))

Adding contig (from active edge):

Active: describe(entity(1,_217432))
Inactive: modifiers(entity(1,_177235) »=177232)
#*¢Topdown addition of inactive entries (1)ese

Adding inactive edge:
Head: modifiers(entity(1,_225622),_225519)

*ssduplicate inactive edgess»

Applying contig (2 left, step 8)

Active: modifiers(entity(1,_168821) »-168669)
Inactive: modifiers(entity(1,_177235) »=177232)

Adding inactive edge:
Read: modifiers(entity(1,_244291) »-244288)
Acts: s-attrib(entity(1,_244291),_244351~assessment (_244351,peird))

Adding config (from inactive edge):
Active: describe(entity(1,_217432))
Inactive: modifiers (entity(1,_244291),_244288)

Adding config (from inactive edge):
Active: modifiers(entity(1,_190889) ».190737)
Inactive: modifiers(entity(1,_244291) ».244288)

Applying config (3 left, step 9)

Active: modifiers(emtity(1,_190889) »-190737)
Inactive: modifiers(entity(1,_177235) »=177232)

Adding inactive edge:
Head: nodii'ion(ent:lty(i »-265635) ,_265632)
Acts: s-attrib(entity(1,_265635), -265696~category(_265695 ,creature))

ddding contig (from inmactive edge): -
Active: modifiers(entity(1,_168821) ».168669)
Inactive: modifiers(entity(1, _265635) »-265632)

Applying contig (3 left, step 10)

Active: describe(entity(1,_217432))
Inactive: modifiers(entity(1,_177235) »-177232)

Adding inactive edge:
Head: describe(entity(1,_282269))
Acts: s-attriblentity(1,_282269),_282331~cat egory(_282331,creature))

Adding config (from inactive edge):
Active: refer(emtity(1,_93264))
Inactive: describe(entity(1,_282269))

Applying contig (3 left, step 11)

Active: describe(entity(1,_217432))
Inactive: modifiers(entity(1,_244291) »-244288)

Adding inactive edge:

Head: describe(entity(1,_297936))

Acts: s-attrib(entity(1,_297936),_297998~cat egory(_297998, creature))
s-attrib(entity(1,_297936),_298248~assessment (.298248,veird))

109

Adding config (from inactive edge):
Active: refer(entity(1,_93284))
Inactive: describe(entity(1,_297936))

Applying config (3 left, step 12)

Active: modifiers(entity(1,.180889) »-190737)
Inactive: modifiers(entity(l ,-244291) ,_244288)

Adding inactive edge:

Head: modifiers(entity(1 ».317235) »<317232)

Acts: s-attrib(entity(1,.317236),.3172956"category (_317296 ,creature))
s-attrib(entity(1,_317235) ,-317551~assessment (_317651 ,neird))

Applying config (2 left, step 13)

Active: modifiers(entity(l ,.168821) ,.168669)
Inactive: modifiers(entity(1,.266636) ,.265632)

Adding inactive edge:

Head: modifiers(entity(1,.332713) ».332710)

Acts: s-attrib(entity(1,_332713) ,_asma“usesmt(_asma,'eird))
s-attrib(entity(1,_332713),.333029"category (_333029,creature))

Applying config (1 left, step 14)

Active: refer(entity(1,.93284))
Inactive: describe(entity(1,.282269))

Adding inactive edge: -
Head: refer(entity(1,.347469))
Acts: s-refer(entity(1,.347469))
s-attrib(entity(1,.347469) 347719 category(_347719 ,creature))

Applying config (0 left, step 15)

Active: refer(entity(1,_93284))
Inactive: describe(entity(1,_297936))

Adding inactive edge:

Head: refor(ont:l,ty(i,_asorli))

Acts: s-refer(entity(1,_360271))
s-attrib(entity(1,.360271) ,.360521~category (360621 ,creature))
s-attrib(entity(1,_360271),_360628~ ansessment (_360828,weird))

sss Agenda Empty es®

Number of complete plans found: 1

Consider Plan Derivation

refer(entity(1,.377109))
+-s-refer(entity(1,_377109))
+-describe(entity(1,.377109))
+-headnoun(entity(1,_377109),_377163)
| +-s-attrib(entity(1,_377109),_377197" category(_377197 ,creature))
| +-subset(_377178,_377197 ub(_ 377 170,_377174 ,category(_377197, creature)) ,_377163)
+-modifiers(entity(1,_377109),_377 163)
+-modifier(entity(1,.377109),_ 377163, 3717274)
| +-s~attrib(entity(1,.377109),_ 377304 assessment (_377304,veird))
| +-subset(_377163,_377341"ub(_377281, _377285,apply(_377304"assessment (_377304,weird),_377341)),
| - _377274)
+-modifiers(entity(1,.377109),.377274)
+-null

110

Evaluate

postponing evaluation of mb(system,user,category(_377109, creature))
<ma> subset([fern1,antemnal,corneri stelevisiont], -377197“ub(system,user scategoxy(_377197 ,creature)),
- .377183)
postponing evaluation of mb(system,user,category(_377109,creature))
Postponing evalmation of nb(system,user,assessment (_377109,weird))
<ma> subset([antennal,ferni], ~377341 ub(system,user, asseszment (_377341 sweixd)),_377274)
postponing evaluation of -h(syutan,uer,category(_mios,cmatuo))
Postponing evaluation of mb(system,user sassessment (_377109,weird))
<con> [antennat,ferm1l=[_377109]
#*32 fajled sse

Failure Evaluation

Failure Hode: [antemnal,ferni)=[_377109)

Inferred Plan

-414955 :xefor (antity(1,_377109))
+-_415331:8-refer(entity(1,_377109))
+-_415567:describe(entity(1,_377109))
+-_415761 :headnoun(entity(1,_377109) » [antennal,fern1))
| +-_416228:s~-attrid (entity(1,_377109),_377197cat egory(_377197,creature))
| +-_416828:subset([ferni »antennal ,corneri,television1] , 377197 ub(user s8ystem,category(_377197,
| = creature)),[antemnal,fern1])
+-_416961 :modifiers (entity(1,_377109), [antennal ,Tern1])
+-_417155 :modifier(entity(1,_18141), [antennat »Tern1], [antennal ,fern1]))
| +-_13507: s-attrib(entity(1,_13141),_13235"assessment (.13235,veird))
| +~_13547:subset ([antemnal »fern1),_13262"ub(user »8ysten,apply(_13235"assessment (_13235,weird) 5
| - -13262)), [antennal,ferni])
+-_13562:modifiers(entity(1,_13141), [antennal ,fern1])
+-_13582:null

User Model: Adding Proposition
Plan(user,pl,knowref(systen sentity(1,_13141)))

User Hodel: Adding Proposition
contributed(user,p1)

" User Model: Adding Proposition
evaluation(pl,failure(p28))

ESISORERRDoDRINE
Checking Rules
ERCTZEDDRDLIWLIL]

Adding beliefs about the inferred plan

Applying rulei
User Model: Adding Proposition
ngoal (system,user,p1 sknovref(system,entity(1,._61241)))

Applying ruleé ’
User Hodel: Adding Proposition
error(p1,p28)

A.3 Constructing “In the corner?”

===

Checking Rules

=s== =

Adding goals

111

Applying rule?
User Model: Adding Proposition
goal(system,mb(system,user,error (p1,p28)))

SxSESoREEn

Responding

e RS

Goal : ub(nystm,uer.emr(pi.pﬁs))
Effect: bel(user,goal(system,nb(system,user,error (p1,p28))))

Trying: rejact-plan(pl)

<con> error(pl,p28)

<con> plan(user .p1,..86268)
<con®> constraint(pl ,-86273,p28)
<con> yield(pl,p26,.86280)
<con> length([],1)

*s9 falled see®

Trying: postpone-plan(pl)
<con> erxox(pl,p28)

<con> plan(user,pl,_86268)
<con® cmtraint(pi,_aaz'la,pzs)
<con> content(p1,p26,.86260)
<con> yield(p1,p26,01)

<con> modifiers(entity(1,.99601), [antennal ,2fexni] Y=modifiers(_86203,_86294)
Heu edge added

End of Initialization

Expanding (step 0 active 1)

Head: postpone-plan(pl)
Heed: s-postpone(pl)
Trying: s-postpone(pl)
Hew edge added

Constructed Plan

postpone-plan(pl)
+-s-postpone(pl)

Actions to be fed to generator

s-postpone (p1)

User Model: Adding Proposition
plan(system,p31 ,mb(system,user,errox (p1,p28)))

User Model: Adding Proposition
contributed(system,p31)

User Model: Adding Proposition
evaluation(p31,success)

==gzooEnTuEaEs

Checking Rules

SEZsSSSSuEIRRRR

Adding beliefs about the constructed plan

112

Applying xulei2
User Model: Adding Proposition
bel (user,exrox(pi,p28))

Checking Rules

Adding goals

Applying rule8
User Model: Adding Proposition
goal(system,mb(system,nser,replace(pi,. 116192)))

Responding

Goal : mb(system,user,replace(pl,_124779))
Effect: bel(user,goal(system,mb(system,user,replace(pl,_124779))))

Trying: replace-plan(pi)

<con> error(pl,_128355)

<con> plan(user,p1,_128361)
<con> content(p1,p28,_128387)
Hew edge added

Trying: replace-plan(pl)

<con> error(pi,_128355)

<con> plan(user,pl,_128361)
<con> comstraint(p1,_128366,p28)
<con> step(pl,_128372,p26)

<con> content(p1,p16,_128379)
<con> modifiers(entity(1,.146806), [antennal ,fernt))=modifiex(_128386,_128387,_128388)
s3% failed s»2

Trying: expand-plan(pl)

<con> error(p1i,_128355)

<con> plan(user,pl,_128361)
<con> comstraint(p1,_128366,p28)
<con> content(p1,p26,_128373)
<con> yield(p1,p26,[])

<con> modifiers(entity(1,_141691), [antennal,ferni))=modifiers(_128386,_128387)
Hew edge added

End of Initialization

Expanding (step 0 active 2)

Head: expand-plan(p1)

Heed: member(_128167, [antennal,ferni])
<ma> member(_128167, [antennal,fern1])
Hew edge added

Expanding (step 1 active 2)

Head: replace-plan(p1l)
Heed: relax~constraint([antennal,ferni)=[_128404],_128398)
Ho edges added

Expanding (step 2 active 1)

Head: expand-plan(p1)
Heed: ref(entity(1,_133813),antennal)

et
-
(9]

<ma> ref(entity(1,.133813),antennal)
Hew edge added

Expanding (step 3 active 1)

Bead: expand-plan(pl)]
Feed: construct(modifiers(entity(1,antennal),[antennal ,ferni]),_143912,_143913)

Invokink construct recursively

lew edge added

Trying: modifiers(entity(1,antemnal),[antennal ,fern1])
<con> [antemnal,ferni)=[antennall

ss% failed sse

Trying: modifiers(entity(1,antennal),[antennal ,fern1])
New edge added

End of Initialization

Expanding (step 0 active 2)

Head: modifiers(entity(1,antennal),[antennal ,fern1])

Noed: modifier(entity(1,antennat),[antennal,ferni] ,-149322)
Trying: modifier(entity(1,antennal),[antennal ,fern1] ,_149322)
Hew edge added

Trying: modifier(entity(1,antennal), [anternal,fern1) ,_149322)
Hew edge added

Expanding (step 1 active 3)

Bead: modifiers(entity(1,antennal), [antennal ,fexrn1])

Need: s-attrib-rel-group(entity(1l ,antennal) ,_149263, [antennal ,fexn1])

Trying: s-attrib-rel-group(entity(1 ,antennal),_165181"max(sixe,_165181) , [antennal ,fern1])
<con> mb(system,user,max(size,antennal, [antennal,fern1]))

»33 failed oo»

Ho edges added

Expanding (step 2 active 2)

Head: modifiers(entity(1,antennal),[antennal ,fern1])

Feed: s-attrib(entity(1,antennal),_157468)

Trying: s-attrib(entity(1,antennal) ,-171563~category(.171563,_171667))
<con> mb(system,user,category(antennal,_171567))

Hev edge added

Trying: s-attrib(entity(1,antennal) ,-171563"colour(_171563,_171667))
<con> mb(system,user,colour(antennal ,-1715867))

s¢ failed s»

Trying: s-attrib(entity(1,antennal) ,-171563"8ize(_171563,_171567))
<con> mb(system,user,size(antennal,_171567))

s2% failed ¢*=*

Trying: s-attrib(entity(1 ,antennal) ,_171563"assessment(_171563 »-171567))
<con> mb(system,user,assessment(antemnal,_171567))

Hew edge added

Expanding (step 3 active 3)

Head: modifiers(entity(1,antennal),[antennal,fern1))

Heed: s-attrib-rel(entity(1,antennal) ,-167300,_157301)

Trying: s-attrib-rel(entity(1 ,antennal) ,-157300,_178834"_178837"at (_178834,_178837))
<con> mb(system,user,at(antennal,_ 178859))

114

bt

see fajiled s

Trying: s-attrib-rel(entity(1,antennal),_157300,_178834~_178837"on(_178834,_178837))
<con> mb(system,user,on(antennal,_178859))

Hew edge added

Trying: s-attrib-rel(entity(1,antenna1),_ 157300, 178834~_178837-in(_178834,_178837))
<con> mb(system,user,in(antennal,_178859))

s¢s failed ¢2e

Expanding (step 4 active 3)

Head: modifiers(entity(1,antennal), [antennal,fern1])

Heed: subset([antennal,fexn1],.171405-ub(system,user,apply(_171415"assessment(_171415,veixd),_171406))
- ,-171399)

<ma> subset([antennal,fernl],. 171405 ub(system,user,apply(.171415"assesement (_171415,weird),_171406))
- ,2171399)

New edge added

Expanding (step 6 active 3)

Head: modifiers(entity(1,antennal), [antennal,fexnt])

Heed: subset([antennal,fern1]),.171592 ub(system,user,apply(_171602"category(_171602,creature),_171592)
-),.171688)

<ma> subset([antennal,fern1],_171692"ub(system,user,apply(. 171602~ category(_171602,creature), 171692)
-),.1715886)

Hew edge added

Expanding (step 8 active 3)

Head: modifiers(entity(1,antennal),[antennal,fern1])
Heed: ref(entity(3,televisioni),_178668)

<ma> ref(emtity(3,televisionl),_178668)

Hew edge added

Expanding (step 7 active 3)

Head: modifiers(entity(1,antennal),[antennal,fern1])
Heed: modifiera(entity(1,antennal), [antennal,fern1])
Trying: modifiers(entity(1,antennal),[antennal,ferni]))
Hew edge added

Trying: modifiers(entity(1,antennal),[antennal,ferni])
<con> [antennal,ferni)=[antennat]

ss2 failed »os

Trying: modifiers(entity(1,antennal),[antennal,ferni])
Hew edge added

Expanding (step 8 active 4)

Head: modifiers(entity(1,antennal), [antennal,fern1])
Heed: modifiers(entity(1,antennal),[antennal,fern1])
Trying: modifiers(entity(1,antennal),[antennal,ferni]))
How edge added 5

Trying: modifiers(entity(1,antennal),[antennal,fexn1])
<con> [antemnal,ferni]=[antennail]

s failed »es

Trying: modifiers(entity(1,antemnal) ,[antennal,ferni])
Hew edge added

Expanding (step 9 active 5)

Head: modifiers(entity(1,antennal),[antennal,fern1])

Heed: subset([antennal,fern1],_207146-ub(system,user,apply(apply(_207168~_207161~on(_207158,_207161),
- _207146),television1)),_207139)

<ma> subset([antennal,fern1],_207146"ub(system,user,apply(apply(_207158~_207161"on(_207158,_207161),
- .207145),television1)),_207139)

Hew edge added

Expanding (step 10 active 5)

115

Head: modifiers(entity(1,antennai),[antennai,fernll)

Need: modifier(entity(1,antennal),[antemnal,ferni),_214782)
Trying: modifier(entity(1,antemnal1),[antennat,fern1],_214782)
Hew edge added

Trying: modifier(entity(1,antemnal),[antemnal,fern1],_214782)
Hevw edge added

Expanding (step 11 active 6)

Head: modifiers(entity(1,antennal), [antennal,ferni])

Need: s-attrib-rel-group(entity(1,antennal), 214568, [antexnal,foern1]) »
Trying: s-attrib-rel-group(eatity(1,antennal),_ 251497 max(sixe,_251497), [antennal,fernl])

<con> mb(system,user,max(sixe,antennal,[antennal,fern1]))

*#» failed sen .
o edges added =

Expanding (step 12 active 5)

Head: modifiers(entity(1,antennal),[antennal,ferni])

Need: modifier(entity(1,antennal),[antennal,ferni),.222591)
Trying: modifier(entity(1,antennal),[antennal,fern1],.222591)
Heu edge added

Trying: modifier(entity(1,antemnal),[antennal,ferni],_222591)
Bew edge added >

Expanding (step 13 active 6)

Head: modifiers(entity(1,antennal),[antennal,fexni))

Need: s-attrib-rel-group(entity(1,antennal),_222375,[antennal,fern1])

Trying: s-attrib-rel-group(entity(1,antennal),_267226"max(size,_267226), [antennal ,fern1))
<con> mb(system,user,max(size,antennal, [antemnal,fernil))

*23 failed »ss

Ho edges added

Expanding (step 14 active 5)

Head: modifiers(emtity(1,antennal),[antennal,fernil])
Heed: refer(entity(3,televisionl))

Trying: refer(entity(3,televisionl))

Hew edge added

Expanding (step 16 active §)

Head: modifiers(entity(1,antennal), [antennal,fern1])

Heed: s-attrib(entity(1,antennal),_243201)

Trying: s-attrib(entity(1,antennal),_280236"category(.260236,_280240))

<con> mb(system,user,category(antennal,_280240))

Hew edge added

Trying: s-attrib(entity(1,antemnal),_280236-colour(_280236,.280240))

<con> mb(system,user,colour(antennal,_280240)) =
sxs failed s#»

Trying: s-attrib(entity(1,antennal), 280236 size(_280236,.280240))

<con> mb(system,user,size(antennal,_280240)) .
*33 failed s*s

Trying: s-attrib(entity(1,antennal),_280238"assessment(_280236 »«280240))

<con> mb(system,user,assessment(antennal,_280240))

#s+ throwing out candidate (repeated action) se#

Expanding (step 16 active B)

Head: modifiers(entity(1,antennal), [antennal,fern1])

Heed: s-attrib-rel(entity(1,antennal),_242896,_242897)

Trying: s-attrib-rel (entity(1, antennal) ,_242896,_2876566"_287659"at €.287656,_287659))
<con> mb(system,user,at(antennal,_287681))

ses failed s»#

Trying: s-attrib-rel(entity(1,antennal),_ 242896, 287656~_287659"on(_287656, .287659))
<con> mb(system,nser,on(antennal,_287681))

New edge added

116

Trying: n-nttrib-rel(enxity(i,antennal),-242896,_287656‘_287659“in(_287656,_287659))
<con> mb(system,user,in(antennal,_287681))
*x¢ fajiled »aoa

Expanding (step 17 active 5)

Head: modifiers(entity(1,antennal), [antennat,fern1])

Heed: s-attrib(entity(1,antennal),_258930)

Trying: s-attrib(entity(1,antennal), 294768~ category(_204768,_284772))
<con> mb(system,user, category(antennal,_294772))

#22 throwing out candidate (repeated action) ese

Trying: s-attrib(entity(1,antennal),.294768"colour(_294768,_204772))
<con> mb(system,user,colour(antennal ,_294772))

a2 failed see

Trying: s-attrib(entity(1,antennal),_294768~size(_294768,_294772))
<con> mb(system,user,size(antennal,_294772))

**% fajiled sos

Trying: s-attrib(entity(1,antennal),_294768assessment(_294768,_294772))
<con> mb(system,usex,assessment (antennal,_294772))

Hew edge added

Expanding (step 18 active 5)

Head: modifiers(entity(1,antennal),[antennai,fern1])

Need: s-attrib-rel(entity(1,antennal),_268625,_268626)

Trying: n-attrib-rel(entity(i.untennai)._258625,_302168‘_302191‘at(_302188,_302191))
<con> mb(system,user,at(antennal,_302213))

s9% failed sen

Trying: s-attrib-rel(onxity(i,antemnal)._258625._302188‘_302191‘on(_302188,_302191))
<con> mb(system,user,on(antennal,_302213))

Hew edge added

Trying: s-attrib-rel(entity(1,antennal), 258625, 302188~_302181~in(_302188 »302191))
<con> mb(system,user, in(antennal,_302213))

32 failed e

Expanding (step 19 active 5)

Head: modifiers(entity(1,antennal), [antennal,fern1])
Heed: s-refer(entity(3,televisioni))

Trying: s-refer(entity(3,television1))

Hew edge added

éxpandins (step 20 active 5)

Head: modifiers(entity(1,antenna1),[antennal,fern1])

Heed: subset([antennal,fern1],_280078"ub(syatem,user, apply(..280088"category (_280088 ,creature) , _280078)
-),.280072)

<ma> subset([antennal,fern1] »~-280078"ub(systen,user ,apply (_280088~category(_280088,creature) ,_280078)
-),_280072)

Hew edge added

Expanding (step 21 active 5)

Head: modifiers(entity(1,antennal),[antennal,forn1])
Beed: ref(entity(6,television1),_287490)

<ma> ref(entity(6,televisionl),_287480)

Hev edge added

Expanding (step 22 active 5)

Head: modifiers(entity(1,antennal), [antennal,fern1])

Heed: subset([antennal,fern1],.294610~ub(system,user, apply (_294620"asseasment (_294620,weird) ,_294610))
- ,-.294604)

<ma> subset([antennal,fern1],_294610~ub(system,user, apply(_294620"~assessment (_294620,weird) ,_294610))
- ,.294604)

Hew edge added

Expanding (step 23 active 5)

117

Head: modifiers(entity(1,antennal),[antennal ,fern1l])
Beed: ref(entity(9,televisionl), -302022)

<ma> ref(entity(9,televisionl), -302022)

New edge added

Expanding (step 24 active 5)

Head: modifiers(entity(1,antennal),[antennal ,fexrn1])
Heed: describe(entity(3,television1))

Trying: describe(entity(3 ,television1))

New edge added

Expanding (step 26 active 5)

Head: modifiers(entity(1,antennal),[antennal ,fern1]))
Need: modifiers(entity(1,antennal),[antennal ,fern1])
Trying: modifiers(entity(1 ,antennal) , [antennal ,ferni])
Bew edge added

Trying: modifiexs(entity(1 ,antennal) , [antennal ,fernil)
<con> [antennal,ferni]=[antennal)

»s4 falled see

Trying: modifiers(entity(1 ,antenna1) , [antennal ,fern1])
New edge added

Expanding (step 26 active 6)

Head: modifiers(entity(1,antennai), [antennal ,fern1])

Need: subset([antennal,ferni],_327200"ub(system,user ,apply(lpply(_ﬂﬂzia"_aﬂnﬁ"on(_327213 ,-327216),
- _327200) ,televisioni)),_327194)

<ma> subset([antennal,fern1],. 327200 ub(system,user ,npply(npply(_aﬂzis'_aﬂne“on(_327213 ,-327216) ,
~ _327200) ,televisioni)),_327194)

Hew edge added

Expanding (step 27 active 6)

Head: modifiers(entity(1,antennal),[antennal ,fexn1))
Nead: modifiers(entity(1,antennal),[antennal ,fern1])
Trying: modifiers(entity(1 ,antennal) , [antennai,fern1])
Hew edge added

Trying: modifiers(entity(1 ,antennai) , [antennal,ferni])
<con> [antemnal,ferni]=[antennai]

s3¢ falled se2

Trying: modifiers(entity(1,antennal), [antennat ,ferni])
New edge added

Expanding (step 28 active 7)

Head: modifiers(entity(1,antennal),[antennal ,fern1])

Beed: subset([antennal,ferni] ,-345841"ub(system,user .apply(apply(-adsssr_wss'l‘on(_345854 ,-345857) ,
- _345841) ,television1)),_345836)

<ma> subset([antennal,fern1],_ 345841 ub(system,user ,apply(apply (_345854~_345857"on(_346864,_345867) ,
- _3465841),televisionl)) ,-345835)

NHew edge added

Expanding (step 29 active 7)

Head: modifiers(entity(l,antennal),[antennal ,fern1])
Feed: headnoun(entity(3,televisioni) ,-362654)
Trying: headnoun(entity(3 ,television1),_352654)

Hew edge added

Expanding (step 30 active k2

Head: modifiers(entity(1,antennal), [antennal ,fern1])

Need: modifier(entity(1,antennal),[antennal ,fernl] ,_360849)
Trying: modif jer(entity(1,antennal) , [antennal ,fern1],_360849)
Bew edge added

118

Trying: modifier(entity(1,antemnal),[antennal,fern1],_360849)
Hew edge added

Expanding (step 31 active 8)

Head: modifiers(entity(1,antennal),[antennal,fernl])

Heed: s-attrib-rel-group(entity(1,antennal),_ 360486, [antennal,fern1))

Trying: s~attrib-rel-group(entity(1,mtennal),_ 419797 max(size,_419787),[antennal,fern1])
<con> mb(system,user,max(size,antennal, [antennal,fernil))

s»s failed sox

Ho edges added

Expanding (step 32 active 7)

Head: modifiers(entity(1,antennal), [antennal,fern1])
Need: refer(entity(6,television1))

Trying: refer(entity(8,television1))

lew edge added :

Expanding (step 33 active 7)

Head: modifiers(entity(1,antennal),[antennal,fern1])

Need: modifier(entity(1,antennal),[antennai,ferni],_381996)
Trying: modifier(entity(1,antemal), [antennal,ferni],_381986)
New edge added

Trying: modifier(entity(1,antennal), [antemnal,ferni],_381988)
Hew edge added

Expanding (step 34 active 8)

Head: modifiers(entity(1,antennal), [antennal,fernil)

Need: s-attrib-rel-group(entity(1,antennai),_381633, [antennal,fern1])

Trying: s-attrib-rel-group(entity(1,antennal),_443266°max(size,_443265),[antennal,ferni])
<con> mb(system,user,max(aize,antennal,[antennal,fern1]))

s8¢ failed #&3

lo edges added

Expanding (step 36 active 7)

Head: modifiers(entity(1,antennal),[antennal,fern1])
Beed: refer(entity(9,television1))

Trying: refer(emtity(9,television1))

Hew edge added

Expanding (step 36 active 7)

Head: modifiers(entity(1,antennal),[antennal,ferni])

Beed: s-attrib(entity(3,televisionl),_402197-category(_402197,_402201))
Trying: s-attrib(entity(3,television1),_ 402197"category(402197, -402201))
<con> mb(system,user,category(televisioni,_27361))

Hew edge added

Expanding (step 37 active 7)

Head: modifiers(entity(1,antenna1),[antennal,ferni])

Heed: s-attrib(entity(1,antennal),_28237)

Trying: s-attrib(entity(1,antenna1),_38566-category(_38565,_38569))
<con> mb(system,user,category(antennal,_38569))

*+¢ throwing out candidate (repeated action) »»»

Trying: s-attrib(entity(1,antennal),_38665~colour(_38565,_38569))
<con> mb(system,user,colour(antennal,_38569))

se2 failed »#=

Trying: s-attrib(entity(1,antennal),_38665-size(_38565,.38569))
<con> mb(system,user,size(antennal,_38569))

ssa failed »ee

Trying: s-attrib(entity(1,antennal),_38565-assessment(_38565,_38569))
<con> mb(system,user,assessment(antemmal,_38569))

s48 throwing out candidate (repeated action) #oe

[E Y
5y
©

Ho edges added .

Expanding (step 38 active 6)

Head: modifiers(entity(1,antennal), [antennal,fexrn1])

Need: s-attrib-rel(entity(1,antennal),_27799,_27800)

Trying: s-attrib-rel(entity(1,antennal),_27799,_45207~_45210"~at(.45207,_45210))
<con> mb(system,user,at(antennal,. 456232))

»»% failed »»»

Trying: s-attrib-rel(entity(1,antennal),_27799,_45207~_45210"on(_46207,_456210))
<con> mb(system,user,on(antennal,_45232))

New edge added

Trying: s-attrib-rel(entity(1,antennal),_27799,_45207~_46210"in(_45207,_45210))
<con> mb(system,nser,in(antennal,_45232))

s3s fajiled »»»

Expanding (step 39 active 8)

Head: modifiers(entity(1,antennal),[antennal,fern1])
Heed: s-refer(entity(6,televisioni))

Trying: s-refer(entity(6,television1))

Hew edge added

Expanding (step 40 active 6)

Head: modifiers(entity(1,antenna1),[antennal,fern1])

Heed: s-attrib(emtity(1,antennal),_29642)

Trying: s-attrib(entity(1,antennal),_59879"category(.59879,.59883))
<con> mb(system,user,category(antennal,_59883))

ss+ throwing out candidate (repeated action) *»»

Trying: s-attrib(entity(1,antemnal),_59879"colour(_59879,_59883))
<con> mb(system,user,colour(antennal,_59883))

*#% failed ese

Trying: s~attrib(entity(1,antennal1),_59879"size(_69879,_59883))
<con> mb(system,user,size(antemnal,_59883))

s+ failed #os

Trying: s-attrib(entity(1,antennal),_59879"assessment (_59879,_69883))
<con> mb(system,user,assessment(antennal,_59883))

#s* throwing out candidate (repeated action) es#

Ho edges added

Expanding (step 41 active 5)

Head: modifiers(entity(1,antennal), [antennal,fern1])

Noed: s-attrib-rel(entity(1,antennal),._29204,_29205)

Trying: s-attrib-rel(entity(1,antennal),_29204,.66521"_66524"at(_66521, -68524))
<con> mb(system,user,at(antennal,_66546))

22 failed *e»

Trying: s-attrib-rel(entity(1,antennal),_29204,.66521~_66524"on(_66521,_66524))
<con> mb(system,user,on(antennal,_68546))

Hew edge added

Trying: s-attrib-rel(entity(1,antennal),_29204,_66521~_66524~in(_66521,.66524))
<con> mb(system,user,in(antennal,_66546))

sss failed een

Expanding (step 42 active 5)

Head: modifiers(entity(1,antennal), [antennal,fern1])
Need: s-refer(entity(9,televisioni))

Trying: s-refer(emtity(9,television1))

Hew edge added

Expanding (step 43 active 5)

Head: modifiers(emtity(1,antennal), [antennal,ferni])

Need: subset([ferni,antennal,corneril,televisioni],_30932"ub(system,user,category(_30932,television)),
- _30922)

<ma> subset([fernl,antennal,corneri,televisioni],_30932"ub(system,user,category(_30932,television)),

120

- -30922)
Hew edge added

Expanding (step 44 active 5)

Head: modifiers(entity(1,antennal),[antennal,fexn1])
Heed: ref(entity(12,television1),_45041)

<ma> ref(entity(12,televisioni),_45041)

How edge added

Expanding (step 45 active §)

Head: modifiers(entity(1,antennal), [antennal,fern1])
Heed: describe(entity(6,television1))

Trying: describe(entity(6,television1))

Hew edge added

Expanding (step 46 active 6)

Head: modifiers(entity(1,antenna1), [antennal,foerni])
Heed: ref(entity(15,televisionl),_86355)

<ma> ref(entity(15,televisionl),_66355)

Hew edge added

Expanding (step 47 active 5)

Head: modifiers(entity(1,antennat),[antennal,fern1])
Heed: deacribe(entity(9,televisionl))

Trying: describe(entity(9,television1))

Hew edge added

Expanding (step 48 active §5)

Head: modifiers(entity(1,antennal), [antennal,ferni])
Need: modifiers(entity(3,televisionl),[television1])
Trying: modifiers(entity(3,televisionl),[televisioni])
Hew edge added :

Trying: modifiers(entity(3,televisioni),[television1])
<con> [televisioni]=[televisioni1]

How edge added

Trying: modifiers(entity(3,televisioni),[television1])
New edge added

Expanding (step 49 active 7)

Head: modifiers(entity(1,antennal),[antennal,fern1])

Heed: subset([antennai,fern1], 92484 ub(system,user,apply(apply (_92497~_92500~0n(_92497,_92600),
- _92484) ,television1)),_92478)

<ma> subset([antennal,fern1],_92484"ub(system,user,apply(apply(_92497~_92500~on(_92497 »-92500),
-~ .92484) ,televisionl)),_92478)

Hew edge added

Expanding (step 50 active 7)

Head: modifiers(entity(1,antennal),[antennal,ferni])
Need: headnoun(entity(6,television1),_98678)

Trying: headnoun(entity(6,televisionl),_99678)

Hew edge added

Expanding (step 61 active 7)

Head: modifiers(entity(1,antennal), [antennal,fern1])

Feed: subset([antennal,fern1],.107298"ub(system,user, apply(apply(_107311-_107314"on(_107311,_107314),
~ .107298) ,televisionl)),_107292)

<ma> subset([antennai,ferni],_107298"ub(system,user,apply(apply(_107311~_107314~on(_107311 ,-107314),
-~ .107298) ,television1)),_107292)

Hew edge added

121

Expanding (step 52 active 7)

Head: modifiers(entity(1,antennal),[antennal ,fern1])
Need: headnoun(entity(9,televisionl) »-114492)
Trying: headnoun(entity(9,televisioni),_114492)

Hew edge added

Expanding (step 53 active 7)

Head: modifiers(emtity(1,antennal), [antennai ,2exn1])
Beed: null
NHew edge added

Expanding (step 54 active 7)

Head: modifiers(entity(1,antennal),[antennal,ferni])

Heed: modifier(entity(3,televisioni), [television1],.123280)
Trying: modifier (entity(3,television1),[televisioni] »-123290)
Hew edge added . .

Trying: modifier(entity(3 ,television1), [televieion1],_123280)
Hew edge added

Expanding (step 56 active 8)

Head: modifiers(emntity(1,antennal),[antennal ,fexrnil)

Need: s-attrib-rel-group(entity(3 ,television1),_122327, [televisionl])

Trying: s-attrib-rel-group(entity(3 ,televisioni),_188456"max(size,_188455), [television1])
<con> mb(system,user,max(size,televisioni,[t elevision1]))

*2% failed **»

Ho edges added

Expanding (step 66 active 7)

Head: modifiexs(entity(1,antennal),[antennal,ferni])
Need: refer(entity(12,televisionl))

Trying: refer(entity(12,television1))

Hew edge added

Expanding (step 67 active 7)

Head: modifiers(entity(1,antennal),[antennal ,fern1])

Need: s-attrib(entity(6,television1),_144010"category (_144010,_144014))
Trying: s-attrib(entity(6,televisionl),_144010"category (_144010,_144014))
<con> mb(system,user,category(televisionl ,-144014))

HBew edge added

Expanding (step 58 active 7)

Head: modifiers(entity(1,antennal), [antennal ,fern1))
Need: refer(entity(15,televisionl))

Trying: refer(entity(15,television1))

Hew edge added

Expanding (step 59 active 7)

Head: modifiers(entity(1,antennal),[antennal ,fernil)

Need: s-attrib(entity(9,television1),_ 164771"category(_ 164771 ,-164775))
Trying: s-attrib(entity(9 ,television1),_164771"category(_ 164771, .164775))
<con> mb(system,user,category(televisioni ,-164775))

Bew edge added

Expanding (step 60 active 7)

Head: modifiers(entity(1,antennal),[antennal,fern1])
Need: modifiers(entity(1,antenna1),[antennal])
Trying: modifiers(entity(1 ,antennal) , [antennal])

Hew edge added

Trying: modifiers(entity(1,antennal), [antennal])

122

<con> [antemmail=[antemmail]

Hew edge added

Trying: modifiers(entity(1,antennai),[antennai])
Hew edge added

Expanding (step 61 active 9)

Head: modifiers(entity(1,antennal), [antennal,ferni])

Beed: s-attrib(entity(3,television1),_179685)

Trying: s~attrib(entity(3,television1),_237520"category(_237520,_237624))
<con> mb(system,user,category(televisioni,_237524))

»2s throwing out candidate (repeated actiom) »#¢

Trying: s-attrib(entity(3,television1),_237520"colour(_237520,_237524))
<con> mb(system,user,colour(televisioni,_237524))

sss fajled oo%

Trying: s-attrib(entity(3,television1),_237520~size(_237520,_237524))
<con> mb(system,user,size(televisionl,_237524))

o35 failed sow

Trying: s-attrib(entity(3,televisioni),_237520"assessment(_237520,_237524))
<con> mb(system,user,assessment(televisionl,_237524))

sss failed »os

Ho edges added

Expanding (step 62 active 8)

Head: modifiexs(entity(1,antennal), [antennai,fexn1])

Heed: s-attrib-rel(entity(3,televizion1),_179120,_179121)

Trying: s-attrib-rel(entity(3,television1),_179120,.244162~_244165"at(_244162,_244165))
<con> mb(system,user,at(televisionl,_244187))

s33 failed see

Trying: s-attrib-rel(entity(3,television1),_179120,_244162"_244165"on(_244162,_244165))
<con> mb(system,user,on(television1,_244187))

s3s failed »ee

Trying: s-attrib-rel (entity(3,televisioni),_179120,_244162"_.244165"in (_244162,_244165))
<con> mb(system,user,in(television1,_244187))

ss% failed ose \

Ho edges added

Expanding (step 63 active 7)

Head: modifiers(entity(1,antennal), [antennal,fern1])
Heed: s-refer(entity(12,televisioni))

Trying: s-refer(entity(12,television1))

Hew edge added

Expanding (step 64 active 7)

Head: modifiers(entity(i,antennal), [antennal,fern1])
Heed: s-refer(entity(15,television1))

Trying: s-refer(entity(15,televisionl))

Hew edge added

Expanding (step 65 active 7)

Head: modifiers(entity(1,antennal), [antennal,ferni])
Heed: null

Hew edge added

Returning from recursive call to comstruct

Expanding (step 4 active 1)

Head: expand-plan(pl)
Heed: substitute(p1,p26,V1,_16401,V2)
Vi=modifiers(entity(1,antenna1), [antennal,fern1]))
+-modifier(entity(1,antennal) , [antennal,ferni],[antenna1])

| +-s-attrib-rel(entity(1,antennal),entity(3,television1),_16476~_16479"on(_16476,_16479))

| +-ref(entity(3,televisionl),televisionl)

123

| +-subset([antennal,farn1],_ 16536ub(system,user,apply(apply(_.16476-~_16479"on(_16476,.16479)

11 - ,.16536),television1)), [antemnal])

| +-refer(entity(3,televisionl))

| +=s-refer(entity(3,televisioni))

| +-describe(entity(3,television1))

| +-headnoun(entity(3,television1),[television1])

| | +~s-attrib(entity(3,televisioni), 16672 category(_16672,television))

| | +-subset([ferni,antennal,corneri,televisioni],_ 16672 ub(systen,user,category(16672,

| 1 - television)),[televisioni))

| +-modifiers(esitity(3,televisionl),[televiaioni])

| +-null

+-modifiers(entity(1,antennal), [antennal])

+-null

V2=g-attrib(entity(3,television1),_16672"category(_ 16672,television))
s-refex(entity(3,televisionl))
s~attrib-rel(entity(1,antennal),entity(3,television1),_16476~_16479"on(_16476,_16479))

<ma> substitute(pi,p26,V1,_16401,V2)

Vi=modifiers(entity(1,antennal),[antennal,fern1])
+modifier(entity(1,antemnal), [antemnal,fexrni) , [antenna1])
| +-g-attxib-rel(entity(1,antennal) ,entity(3,televisionl),_16476~_16479"on(_16476,.16479))
| +-ref(entity(3,televisionl),televisionl)
| +-subset([antemnat,ferni),_16536~ub(system,user,apply(apply(.16476=_16479"on(_16476,_16479)
| 1 - ,.16538),television1)),[antemmal])
| +-refex(entity(3,televisioni))
| +-s-refer(entity(3,televisionl))
| +-describe(entity(3,television1))
| +-headnoun(entity(3,televisionl), [televiaion1])
| | +-s-attrib(entity(3,television1),_16672"category(_16672,television))
| | +-subset([ferni,antennal,cprneri,televisioni],_ 16672 ub(aystem,user, category(16672,
| | - television)), [televisioni])
| +-modifiers(entity(3,televisionl), [television1])
| +-null
+-modifiers(entity(1,antennal),[antennal])
+-null
V2=g-attrib(entity(3,television1),_16672"category(.16672,telavision))
s~refer(entity(3,televisionl))
s-attrib-rel(entity(1,antennal),entity(3,television1),_16476"_ 16479“0:1(16476,.16479))

Hew edge added

Expanding (step 5 active 1)

Head: expand-plan(pi)
Heed: s-reject(p1,V1)

Vi=s-attrib(entity(3,television1),_93809~category(_93809,television))
s-refer(entity(3,televisionl))
s-attrib-rel(entity(1,antennal),entity(3,televisionl),_93834~_93837"on(_93834,_83837))

Trying: s-zreject(p1,V1)

Vi=g-attrib(entity(3,televisionl),_ 93809 category(_93809,television))
s-refer(entity(3,televisionl))
s-attrib-rel(entity(1,antennal),entity(3,televisioni),_93834~_93837-on(_93834,_93837))

New edge added

Constructed Plan

expand-plan(p1)

+-member(antennal, [antennal ,fern1])

+-ref(entity(1,antennal) ,antennal)

+-construct (modifiers(entity(1,antennal), [antennal,fern1]),v1,V2)
| Vi=modifiers(entity(1,antennai),[antennal,ferni])

+-modifier(entity(1,antennal), [antennal,fern1], [antennal])

| +-s-attrib-rel(entity(1,antennal),entity(3,television1),_ 118921~_118924"on(_118921,_118924))

| +-ref(entity(3,televisionl),televisionl)

| +-subset([antennal,fern1],_ 119184 ub(system,user,apply(apply(_118921~_118924"on(_118921,_118924
i | ~),.119184),television1)), [antennal])

| +-refer(entity(3,televisionl))

| +-s-refer(entity(3,television1))

| +-describe(entity(3,television1))

|
1
=

|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+

+-headnomn(entity(3,televisioni), [television1])
| +-s-attrib(entity(3,televisioni),_118896"category(.118896,televis ion))
| +-subset([fernl,antennal,corneri,television1]),_118898"ub(system,user,category(_118896,
] - television)),[televisioni])
+-modifiers(entity(3,telovision1), [telavision1])
+-null
+-modifiers(entity(1,antemnal) , [antennal])
+-null

V2=g-attrib(entity(3,televisioni) ,_ 118896~ category(.118896,televisicn))

s-refer(entity(3,televisioni))
s-attrib-rel(entity(1,antennal) ,entity(3,televisioni),_ 118921~ _118924"on(_118921 »-118924))

substitute(pl,p26,¥1,V2,V3)
Vi=modifiers(entity(1,antennal) ,[antennal,fern1])

+-modifier(entity(1,antennal), [antennal,fern1], [antennal]))

| +-s-attrib-rel(entity(1,antemnal),entity(3,televisionl), -118921~_118924"on(_118921,_118924))
| +-ref(entity(3,telovisionl),televisioni)

| +-subset([antennal,fexni],_119184~ub(system,user,apply(apply(_118921~_118924~0on(_118921,_118924
11 -),.119184),televinion1)), [antennal])

| +-refer(entity(3,televisionl))

| +-g-refex(entity(3,televisionl))

| +-describe(entity(3,televisioni))

| +-headnoun(entity(3,televisioni) ,[televisionl])

| | +-s-attrib(entity(3,television1),_118896"category(_118896,television))

} | +-subset([ferni,antennal,cornerl,television1],_118896"ub(aystem,usexr,category(_118896,
1 1 - television)),[televisioni])

| +-modifiera(entity(3,televisioni),[televisiont])

| +=-null

+-modifiera(entity(1,antemnal), [antenna1])

+-null

Va=_119932;refer(entity(1,antennal))

+-_119966 :a-refer(entity(1,antennal))
+-_119984:describe(entity(1,antennal))
+-_120003 :headnoun{entity(1,antemal),_120016)
| +-_120044:s-attrib(entity(1,antennal) ,_120082"category(_120082,creature))
| +-_120107:subset (_120040,_120062-ub(_120026,_120033,category(_120062,creature)),_120016)
+-_120126 :modifiers(entity(1,antennal),_120016)
+-_120146 :modifier(entity(1,antennal), 120016, [antennal ,ferni])
| +-_120185:5-attrib(entity(1,antennal),_120203"assessment(_120203,veixd))
| +-_120248:subset(_120016,_1202556"ub(_120174,_120181,apply(_120203"assessment (_120203 ,weird)
| - ,.120255)), [antennal ,fern1])
+-_120277 :modifiers(entity(1,antennal), [antemnal,fern1])
_120301 :modifier(entity(1,antennal), [antennal ,fern1], [antennai])
+-_120342:8-attrib-rel(entity(1,antennal) ,entity(3,television1),_118921~_118924"on(
| = _118921,_118924))
+-_120423:ref(entity(3,television1),televisionl)
+-_120434 :subset ([antennal ,ferni] ,_119184"ub(system,user,apply (apply(_118921~_118924"on(
] - _118921,_118924),.119184) ,televisionl)), [antennal])
+-_120471:xefer(entity(3,televisionl))
+-_120504 :s-refer(entity(3,television1))
+-_120523:describe(entity(3,televisionl))
+-_120542:headnoun(entity(3,television1) , [televisionl]))
] +-_120593:s-attrib(entity(3,television1), _118896"category(_118896,television))
| +-_120666:s8ubset ([fernl,antennal,corneri,televisioni],_118896~ub(systen,user,
| - category(.118896,television)), [television1])
+-_120685 :modifiers(entity(3,televisionl),[television1])
+=_120730:n0l1l
+=-_120752:modifiers(entity(1,antennal) , [antennall])
+=-_120797 :null

V3=g-attrib(entity(3,television1),_118896"category(_118896,television))

s-refer(entity(3,televinionl))
s-attrib-rel(entity(1,antennal) entity(3,televisioni),_118921~_118924"on(_118921, .118924))

-s-reject(p1,V1)
Vi=g-attrib(entity(3,televisionl),_ 118896~ category(_118886,televiaion))

s-refer(entity(3,televisionl))
s-attrib-rel(entity(1,antennal) ,entity(3,television1),_118921~_118924"on(_118921,_118924))

Actions to be fed to generator

s-reject(p1,v1)

Vi=a-attrib(entity(3,televisionl), 118896 category(_118896,television))
s-refer(entity(3,televisionl))
s-attrib-rel(entity(1,antennal),entity(3,television1),_118921-_118924"on(_118921,.118924))

User Hodel: Adding Proposition
plan(system,p42,ub(systen,user,replace(pl,V1)))
Vi=_119932:refer(entity(1,antennal))
+-_119966 :s~refer(entity(1,antennal))
+-_119984:describe(entity(1,antennal))
+=-_120003:headnoun(entity(1,antennal),_120016)
| +-_120044:8~attrib(entity(1,antennal),_120082"category(_120062,creature))
| +-_120107 :subset(_120040,_120082~ub(_120026,.120033,category (_120062,creature)),_120016)
+~_120126 :modifiers (entity(1,antennal), 120016)
+-_120148 :modifier(entity(1,antemnal) ,_120016, [antennal,ferni])
| +-_1201856:s-attrib(entity(1,antennal),_120203"assessmant(_120203,veird))
| +-_120248:subset(_120016,_120256-ub(_120174,_120181 ,apply(_120203"assessmant (.120203,weixd),
| - .120255)) , [antennail,fern1l)
+~_120277 :modifiers(entity(1,antennal) , [antennal ,fern1])
+-_120301 :modifier(entity(1,antemnal) , [antexnal,fern1] , [antexnall)
| +-_120342:s-attrib-rel(entity(1,antennal) ,entity(3,television1),_118921~_118924"on(_ 118921,
11 - _118924))
| +-_120423:ref(entity(3,television1),televiaionl)
| +-_120434:subset ([antennal,fernl],_119184~ub(system,user apply(apply(_118921~_118924"on(
| | - _118921,_118924),_119184) ,television1)), [antennai])
| +-_16546:refer(entity(3,televisionl))
] +-_16579:8-refer(entity(3,televisionl))
| +-_16598:describe(entity(3,televiaionl))
| +-_16617 :headnoun(entity(3,television1), [televisioni])
| | +-_16668:s-attrib(entity(3,television1), 14971 category(_14971,television))
| | +-_16731:subset([fern1,antemnal,corneri,televisioni],_14971-ub(system,user,category(
| | - _14971,television)),[televisioni])
| +-_16760:modifiers(entity(3,televiaionl) , [televinioni])
| +=-_16806 :null
+-_16827:modifiers(entity(1,antepnal) , [antennal])
+=-_16872:null

User Model: Adding Proposition
contributed(system,pi2)

User Model: Adding Proposition
evaluation(p42,success)

Checking Rules

Adding beliefs about the constructed plan

Applying ruleill
User Model: Adding Proposition
replace(pl,V1)
Vi=_78726:refer(entity(1,antennal))
+-_78759:8-refer(entity(1,antennal))
+-_78778:describe(entity(1,antennal))
+=_78797 :headnoun(entity(1,antennal) ,_78810)
| +-_78838:s-attrib(entity(1,antennal),_78856"category(_78868,creature))
| +-_78901:subset(_78834,_78856~ub(_78820,_78827 ,category(_78856,creature)),_78810)
+-_78920:modifiers(entity(1,antennal),_78810)
+~_78940:modifier(entity(1,antennal) ,_ 78810, [antennal,fernl])
| +-_78979:s-attrib(entity(1,antennal), 78997 assessment(_78997,weird))
| +-_79042:subset(_78610,_79049~ub(_78968,_78975,apply(_ 78997 assessment (_78997 ,weird), _79049))
| - ,[antennal,fern1])
+-_79071 :modifiers(entity(1,antennal), [antennal,ferni])
+-_79095:modifier(entity(1,antenna1) , [antennal,fern1], [antennal])
| +-_79136:s-attrib-rel(entity(1,antennal),entity(3,television1),_79158"_79161"on(_79158,
|1 - .79161))
| +-_79217:ref(entity(3,televisionl),televisionl)
| +-_79228:subset([antennal,fern1],_79239 ub(system,user,apply(apply(_79158~_79161on(_79158,

126

1 1 - _78161),_79239),television1)), [antenna1])
| +-_79265:refox (entity (3,televisionl))
| +-_79298:8-refer(ent ity(3,telavision1))
| +-_79317:describe(entity(3,televisiont))
| +-_79336:headnoun(entity(3,television1), [television1])
| | +-_79387 :e-~attrib(entity(3,televisionl) »- 79405~ category(_79405, television))
} | +-_79450:5ubset ([fexn1 ,antexnal »corneri,televisioni],_79406-ub(systen,user, category(
I 1 — -79405,television)) , [television1])
] +-_79479:modifiers(entity(3,telavision1) »[television1]))
l +-_79524:nu11
+-.78546:modifiers (entity(1,antenna1), [antennai])
+-_79591 :null

removing plan p1 from belief space

User Hodel: Adding Proposition
contributed(system,p57)

User Hodel: Adding Proposition
evaluation(pb7,success)

User Model: Adding Proposition
mgoal (system,user,pb7 sknosref (system,entity(1,_206950)))

#s% mgoal updated s*s

Applying rule1d
User Nodel: Adding Proposition
achieve(p57,knovref(system,entity(1,antennal)))

e e
Checking Rules
A T I ST T YT

Adding goals

A.4 Understanding “No, on the television”

Understanding

Plan Recognizer

Actions = s-reject (p57,71)
Vizg-attrib-rel(entity(1,antemnal) sentity(3,televisionl) »-238266"_238269"on(_238266, _238269)
- .

Initial Setup
Adding inactive edge:
Head: s-reject(p57,V1)
Vi=s-attrib-rel (entity(1,antennat) sentity(3,television) »-262974~_252977-on(_252974,_262977))
Acts: s~reject(p57,V1)
Vi=s-attrib-rel(entity(1,antenna1), entity(3,television1), 262974~_262977~on(_252974 »-262977))

Adding active edge:
Head: reject-plan(_267622)
Need: s-reject(_267622,._267664)

Adding config (from active edge):
Active: reject-plan(_267622)
Inactive: s-reject(p57,V1)
Vi=s-attrib-rel(entity(1,antennal) sentity(3,televisionl) +-252974°_252977~on(_252974, _252977)
-)

127

End of Initial Setup

Applying config (0 left, step 1)

Active: reject-plan(_267622)
Inactive: s-reject(p57,¥1)
Vi=s-attrib-rel(entity(1l ,antennal) ,entity(3 ,telavisionl) ..252974".252917“011(_252974,_252977)
=)

Adding inactive edge:
Head: reject-plan(pS7)
Acts: s-reject(p57,V1)
Vims-attrib-rel(entity(1,antennal) ,entity(3,televisionl) ,_287902~_287905~on(_287902 »-287906))
sss Agenda Empty ®s#

Number of complete plans found: 1

Consider Plan Derivation

reject-plan(ps7)
+-s-reject (p57,V1)
Vi=s-attrib-rel(entity(1 ,antennal) ,entity (3,televisionl) ,_298094“_298097“01:(_298094 ,-298097))

<con> error(p57,.298062)

<con> plan(system,p57,.298068)

postponing evaluation of constraint(p57,.298073,.298062)

<con> yield(p57,.298073, [s-attrib-rel(entity(1 ,antennal) ,entity (3,televisioni),_298084"_298097 ~on(
- _208094 »,-288097))1)

<con> constraint(p57,p8s,.298062)

<con> length([s-attrib-rel(entity(1 ,antennal) entity(3 ,televisionl) ._298094“_298097‘011(_298094 »298097
- N1,

Inferred Plan

_3066665:xe ject~plan(p57)
+=-_307496:8~reject (p57,V1)
Vi=s-attrib-rel(entity(l ,antennal) ,entity(3 ,televisionl) ,_298094"_298097“011(_298094 »,-298097))

User Model: Adding Proposition
plan(nser,pns,nb(systen,uor,on'or(lis7.p91)))

User Model: Adding Proposition
contributed(user,p119)

User Model: Adding Proposition
evaluation(p119,success)

oo EREERREER

Checking Rules

c=macsRnIRIERE

Adding beliefs about the inferred plan
Applying rule2

User Model: Adding Proposition
bel(user,errox(p57,p91))

Applying rule3

128

User Hodel: Adding Proposition
exror(p57,pa1)

Actions = s-reject(p57,v1) :

Vi=g-attrib-rel(entity(1,_383536) ,entity(20,_383561) »-383583~_383586"0n(_383583,_383586))

s-refex(entity(20,_383561))
s-attrib(ent ;ty(zo »-22021) ,_22061 “category(_22061,television))

Initial Setup
Adding inactive edge:
Head: s-reject(p57,V1)
Vims-attrib-rel(entity(1,_66482), entity(20,_66485),_86487 ~.66490"on(..66487,_66490))
s-refer(entity(20,._66485))
s-attrib(entity(20,_66485),_6651 1~category(_66511,television))
Acts: s-reject(p57,V1)
Vi=g-attrib-rel(entity(1,_66482), entity(20,_66485),_66487~_66490~on(_66487 ».66490))
s-refer(entity(20,_66485))
s-attrib(entity(20,_66485),_66511-category(_66511,television))

Adding active edge:
Head: replace-plan(_50143)
Heed: relax-constraint(_90179,_50187)

s»sTopdown addition of inactive entries (2)ess

Adding inactive edge:
Head: relax-constraint (mb(_83369, -93360,category(.93363,_93364)) ,nb(_93359 »-93360,_93368))

Adding config (from inactive edge):
Active: replace-plan(_950143)
Inactive: relax-constraint(mb(.93359,_93360, category(_93363,_93364)) ,mb(_93389,_93360, _93368))

Adding active edge:
Head: replace-~plan(_98155)
Heed: relax-constraint(_98191,_98199)

sssduplicate active edge (removed)sss

Adding inactive edge:
Head: relax-constraint (mb(_93263,_93264,colour(_93267 »-93268)) ,mb(_93263,_93264, 93272))

Adding config (from inactive edge):
Active: replace-plan(_90143)
Inactive: relax-constraint(mb(.93263,_93264,colonr(_93267 »-93268)) ,ub(_93263,_93264,_93272))

Adding active edge:
Head: replace-plan(_121095)
Heed: relax-constraint(_121131,_121139)

s+sduplicate active edge (removed)ses

Adding active edge:
Head: replace-plan(_S0008)
Heed: s-reject(_90008,_90081)

Adding config (from active edge):
Active: replace~plan(_S0008)
Inactive: s-reject(p57,v1)
Vi=s-attrib-rel(entity(1,_66482),entity(20,_66485) »-66487~_66490"0on(_66487,_66490))

129

s-refer(entity(20,.66486)) :
s-attrib(entity(20,_66485) ,.66511~category(_66511 ,television))

Adding active edge:
Head: expand-plan(_89879)
Need: s-Teject(_89879,_89961)

Adding config (from active edge) :
Active: expand-plan(_88879)
Inactive: s-reject(ps7,V1)
Vimg-attrib-rel(entity(1, _66482) ,entity(20, _66485) ,_66487~_68490"on (_66487,._66490))
g-refer(entity(20,_66486))
s-attrib(entity(20,_66485) ,.66511"category (_66511,television))

End of Initial Setup

Applying config (3 left, step 1)

Active: replace-plan(.90143)
Inactive; relax-constraint (mb(_93359, 93360, category(_93363,_93364)) ,mb(_93359,_93360,_93363))

Adding active edge:
Head: replace-plan(_1760565)
Need: s-reject(_176055 ,-176101)

Adding config (froem active edge):
Active: replace-plan(_176055)
Inactive: s-reject(p57,V1)
Vi=s-attrib-rel(entity(1,_66482) ,entity(20,_66485) ,66487~_66490"on(_66487 »,-66490))
s-refer(entity(20,_66485)) -
a-attrib(entity(20,_66485) , 66611 category (_66511,television))

Applying config (3 left, step 2)

Active: replace-plan(_90143) ;
Inactive: relax-constraint(mb(_93263, 93264 ,colour(_93267,_93268)) ,mb(_93263,_93264,_93272))

Adding active edge:
Head: replace-plan(_197101)
Need: s-reject(_197101,_197147)

Adding config (from active edge) :
Active: replace-plan(_197101)
Inactive: s-raject(p57,V1)
Vims-attrib-rel(entity(1,_66482) ,entity (20,.66485), _66487~_66490~on(_66487, _66490))
s~-refer(entity(20,_66486))
s-attrib(entity(20,_66485),_66511"category (_66511,television))

Applying config (3 left, step 3)

Active: replace-plan(_90008)
Inactive: s-reject(p5s7,V1)
Vi=s-attrib-rel (entity(1,.66482) ,ent ity(20,_66485) ,_m7"_364”"on(_66487 ,-66490))
s-refer(entity(20,.66485))
s-attrib(entity(20,_66485),_66511"category (_66511,television))

Adding inactive edge:
Head: Teplace-plan(pS7)
Acts: s-reject(p57,V1)
Vi=s-attrib-rel(entity(1,.226201) ,entity(20 ,.226204) ,_226206~_226209"on(_226206, -226209))
s-refer(entity(20,_.226204))
s-attrib(entity(20,_226204) ,.226230"category(_226230 ,television))

Applying config (2 left, step 4)

Active: expand-plan(_89879)
Inactive: s-reject(p5s7,V1)

130

Yisg-attrib-rel (entity(1,_66482), entity(20,_66485) »-66487~_66490"0on(_66487,_66490))
a-refer(entity(20,_66485))
s-attrib(entity(20,_66485),_66511"category(_66511,television))

Adding inactive edge:
Head: expand-plan(p57)
Acts: s-reject(pb7,V1)
Visg~attrib-rel(ent ity(1,_252925) ,entity(20,_262928) »-252030"_252933~on (_252930,_262933))
s-refer(entity(20,_262928))
s-attrib(entity(20,_252928) +-252964"category(_252954,television))

Applying config (1 left, step 5)

Active: replace-plan(_178055)
Inactive: B-reject(p67,V1)
Vi=s-attrib-rel(entity(1,_66482), entity(20,_66485),_66487 ~.66480~on(_66487,_66490))
s-xefer(entity(20,_66485))
s-attrib(entity(20,_66485),_66511"category(_66511,television))

Adding inactive edge:
Head: xeplace~plan(p57)
Acts: s-reject(p57,V¥1)
Visg-attrib-rel(entity(1,_279611) »entity(20,_279614),_279616~_279619~on(_279616 »-279619))
s-refer(entity(20,_279614))
s-attrib(entity(20,_279614),_279640"category(_279640,television))

Applying config (0 left, step 6)

Active: replace-plan(_197101)
Inactive: s-reject(p57,V1)
Vizg-attrib-rel(entity(1,_66482),ent ity(20,_66485) ,_66487~_66490~on(_66487 »-66490))
s-refer(entity(20,_66485))
s-attrib(entity(20,_68486) »-66611"category(_66511,television))

Adding inactive edge:
Head: replace-plan(p57)
Acts: s-reject(pb7,V1)
Vi=g-attrib-rel(entity(1,_306218) ,entity(20,_308221) »-306223"_306226"0on(_308223,_306226))
s-refer(entity(20,_306221))
s-attrib(entity(20, _306221), 306247 category(_306247,television))

s*» Agenda Empty ss»

Humber of complete plans found: 4

Consider Plan Derivation

replace-plan(p57)

+-relax-constraint (mb(_323701,_323702 scolour(_323705,_323706)) ,mb(_323701 »=323702, _323731))

| +-_323731=colour(_323705 »-323745)

+-substitute(p67,_323687,V1,_323778,V2)

| Vi=mb(_323701 »=323702,_323731)

| V2=s-attrib-rel(entity(1,_323792),ent ity(20,_323795),_323797~_323800"0n(_323797, _323800))

| s-refer(entity(20,_323795))

| s-attrib(entity(20,_323796), -323821"category(_323821,television))

+-evaluate(_323778)

+-g-reject (p57,V1)

Vizg-attrib-rel (ent‘:lty (1,._323792) ,ent ity(20,_323795),_3237 97~ _323800"on(_323797 »-323800))

s-refor(entity(20,_323795))
s-attrib(entity(20,_323795),_323821"category(_ 323821, television))

<con> error(p57,_323687)

131

<con> plan(system,p57,.323693)
<con> content (p57,p91,nb(systen,user,colour(_323705 ,-323706)))
ss¢ failed so#

Failure Evaluation

Failure Node: content(p57,p91 ,nb(systu.uor.colou(_aza'los._323706)))

Consider Plan Deriwation

replace-plan(ps7)

4+-relax-constraint (nb(_370560,_370561,category (_370564,_370565)) ,mb(_370680,_370561 »-370690))

| +-_370590=category(_370564,_370604)

+-gubstitute(ps7,_370546,V1,_370637 »V2)

] v1=mb(_370560,_370661, -370580)

| vz=s-attrib-ze1(cnsity(1._310651).entit,(zo,_37oas4),_370656‘_a7oess'on(_37oese._310659))

| s-refer(entity(20,_370654))

| s-attrib(entity(20,_870654) »,-370680" category(_370680 ,television))

+-evaluate(_370837)

+-s-reject (ps7,V1)

Vi=s-attrib-rel(entity(1,_37 0851) ,entity(20,_37 0854) ,_370658“.370659‘0!1(-370656 ».370859))

s-refer(entity(20,.370654))
s-attrib(entity(20,_370864) ,_370680"category (_370680,television))

- s -

<con> exror(p57,_370546)

<con> plan(system,p57,_370552)

<con> content(p57,po1 ,n‘h(synon,mr,category(_a'lom,_sloses)))
sa+ failed »os

Failure Evaluation

Failure Node: content (p57,p91 ,-’b(aysta-,uer.cntegory(.s'lom,_370565)))

Consider Plan Derivation

expand-plan(p57)

+-member(_417920,_417916)

+-raf(_417916,_417920)

+-construct (modifiers(_417915,_417916),.417931 ,V1)

| Vi=s-attrib-rel(entity(1, _417944) ,entity(20, _417947), _417949~_417952"0on(_417949, _417952))

| s-refer(entity(20,.417947))

| s-attrib(entity(20,_417847),_417973"category (_417973,television))

+-substitute(p57,.417895, _417931,_417984,V1)

| Vi=s-attrib-rel(entity(1, _417944) ,entity(20, ~417947), _417949"_417952"on(_417949, _417952))

| s-refer(entity(20,.417947))

| s-attriblentity(20,_417947) ,_417973"category(_ 417973 ,television))

+-s-reject (p57,V1)

Vi=a-attrib-rel(entity(1,.417944) ,entity(20, 41784T), _417949“_417952"01\(_417949,..417952))

s-refer(entity(20,_417947))
s-attrib(ontity(20._417947),_411973‘catogory(_417973,televinion))

<con> error(p57.l_56677)
<con> plan(system,p57,_66683)
<con» constraint(p57,.66688,p91)

132

<con> content(p57,p86,_66695)
<con> yield(p57,p88,[])
s9¢ fajled #se

Failure Evaluation

Failure Node: yield(p67,pss,[])

Consider Plan Derivatiom

replace-plan(p57)
+-member(_79024, _79019)
+-ref (_79018,_79024)
+-construct(modifier(_79018,_79019,_79020) »=79035,¥1)
| Vi=s-attrib-rel(entity(1,.79049),entity(20,_78052), -79054"_79057~an(_78054, _79057))
| s-refer(entity(20,_73052))
| s-attrib(entity(20,_78062),_79078"category(_78078, television))
+-substitute(p57,_79004,_79035,_79089,V1)
| Vi=g-attrib-rel(entity(1,_79049) ,entity(20,_79052), ~79054"_79057~on(_798054 »~79057))
| s-refer(entity(20,_79052))
| s-attrib(entity(20,_79052), -T9078"category(_79078, television))
+-evaluate(_79089)
+-s-reject(p57,v1)
Vi=a-attrib-rel(entity(1,_79049),ent ity(20,_72052) ,_78064~_79057~on(_73054 2-T9057))
s-refer(entity(20,_75052))
s-attrib(entity(20,_79052) »-T9078"category(_ 79078, television))

<con> error(pb7,_78987)

<con> plan(syatem,p57,_78993)

<con> constraint(p§7,_78998,p91)

<con> step(p57,_79004,p86)

<con> content(p5§7,p83,_79011)

<con> modifier(entity(1,antennal),[antennat sTern1] , [antenna1])=modifier(_79018 »-79019, _79020)

Postponing evaluation of member(_79024,[antennal ,fern1])

<ma> ref(entity(1,antennat),_79024)

<ma> member(antennal,[antemnal,fern1])

<ma> construct(modifier(entity(1,antennal) »[antenna1,fern1], [antenna1l) »=79035,V1)

Vi=g-attrib-rel(ent ity(1,_72049), entity(20,_79052) »=79064"_79057~0on(_79054 »=T79057))

s-refer(entity(20,_79052))
s-attrib(entity(20,_79052), -79078"category(_79078,television))

Invoking plan recognizer from evalunate

Plan Recognizer

Actions = s-attrib-rel(ont:lty (1,.79049) ,ent ity(20,_79052) »-T9054"_79057~on(_79054 »-T9087))
s~refer(entity(20,_79052))
s-attrib(entity(20,_79052) »=79078"category(_79078,television))

Initial Setup

Adding inactive edge:
Head: s-attrib-rel(ent ity(1,_75049),ent ity(20,_79052) »=79054~_79057~on(_79054,_79057))
Acts: s-attrib-rel(entity(1,_79049),ent ity(20,_79062) ,_79054~_79057~on(_79054 »-T9057))

Adding active edge:
Head: modifier(_203003,_203004 »-203005)
Heed: s-attrib-rel(_203003,_203032,_203051)

133

Adding config (from active edge):
Active: modifier(_203003, _203004,_203005)
Inactive: s-attrib-rel(entity(1, _T9049) ,entity(20,_79052), _T79054~_79057"~on(_79054, _79057))

Adding inactive edge:
Head: s-refexr(entity(20,_78052))
Acts: s-refer(entity(20,_79052))

Adding active edge:
Head: refer(_218166)
Foed: s-refer(_218166)

Adding config (from active edge):
Active: Trefex(_218166)
Inactive: s-refer(entity(20,.79052))

Adding inactive edge:
Head: s-attrib(entity(20,_79052),_790787cat egory(_79078 ,television))
Acts: s-attrib(emtity(20,_79052) ,.79078~category(.79078 ,television))

Adding active edge:
Head: headnoun(_231526,_.231527)
Need: s-attrib(_231520 ,.231561"category(.231561 »-231569))

2dding config (from active edge):
Active: headnom(,.231526._231527)
Inactive: s-attrib(entity (20,_79052) ,_79078“category(_79078,tohvision))

Adding active edge:
Head: modifier(.231456,.231457 »-231458)
Heed: s-attrib(_231458,_231496)

Adding config (from active edge):
Active: modifier(_231456, _231457,.231 458)
Inactive: s-attrib(entity(20, _79052) ,..79078"categoxry(_79078 ,television))

End of Initial Setup

Applying config (3 left, step 1)

Active: modifier(_203003,_203004, _203005)
Inactive: s-attrib-rel(entity(1 ,_T9049) ,entity (20,_79052) , _79054~_T9067~on(_79054 ,-T9057))

Adding active edge:

Head: modifier(entity(1 ,.268736) ,_258560 ,_258551)

Need: refer(entity(20,.258738))

Acts: s—attrib-rel(entity(l ,..268735) ,entity (20,.268738) 268740~ _2587: 43-on(_258740,.258743))

Applying config (2 left, step 2)

Active: refer(_218166)
Inactive: s-refer(entity(20,.79062))

Adding active edge:

Bead: refer(entity(20,_272825))
Need: describe(entity(20,_272825))
Acts: s-refer(entity(20,.27 2825))

Applying config (1 left, step 3)

Active: headnoun(.231526 »-.231627)
Inactive: s-attrib(entity(20, _T9052) ,_79078"category(_79078 ,television))

Adding inactive edge:

Head: headnoun(entity(20,_284967),.284793)
Acts: s-attrib(entity(20,_284967),.284827 category (_284827 ,television))

134

Adding active edge:
Head: describe(_291203)
Heed: headnoun(_291203,_291226)

Adding config (from active edge):
Active: describe(_291203)
Inactive: headnoun(entity(20,_284967),_284793)

Applying config (1 left, step 4)

Active: modifier(_231456,_231457,_231458)
Inactive: s-attrib(entity(20,.79052),.79078catogory(. 79078, telovision))

Adding inactive edge:
Head; modifier(entity(20,_304378),_304212,_304213)
Acts: s-attrib(entity(20,_304378),.304380"category(_304380,television))

Adding active edge:
Head: modifiers(_310937,_310938)
Heed: modifier(_310937,_310938,_310963)

Adding config (from active edge):
Active: modifiers(_310937,_310938)
Inactive: modifier(entity(20,_304378),_304212,_304213)

Applying config (1 left, step 5)

Active: describe(_291203)
Inactive: headnoun(entity(20,_284987),_284793)

Adding active edge:

Head: describe(entity(20,_323642))

Heed: modifiers(entity(20,_323842),_323516)

Acts: s-attrib(entity(20,_323642),.323688"category(_323688,television))

*¢2Topdown addition of inactive entries (1)eee

Adding inactive edge:
Head: modifiers(entity(20,_331732),_331729)

Adding config (from inactive edge):
Active: describe(entity(20,_323642))
Inactive: modifiers(entity(20,_331732),_331729)

Applying config (1 left, step 6)

Active: modifiers(_310937,_310938)
Inactive: modifier(entity(20,.304378),_304212,_304213)

Adding active edge:

Head: modifiers(entity(20,_345018),_344866)

Beed: modifiers(entity(20,_345018),_344891)

Acts: s-attrib(entity(20,_345018),_345061"category(_346061 stelevision))
Adding config (from active edge):

Active: modifiers(entity(20,_345018),_344866)

Inactive: modifiers(entity(20,_331732),_331729)

*#sTopdown addition of inactive entries (1)sss

Adding inactive edge:
Head: modifiers(entity(20,_353432),_353429)

*ssduplicate inactive edgeess

" Applying config (1 left, step 7)

Active: describe(entity(20,_323642))

[=TY
[2C]
(<14

Inactive: modifiers(entity(20,_331732),_331729)

Adding inactive edge:
Head: describe(entity(20,_372089))
Acts: s-attrib(entity(20,.372089),_372161"category (_372151 ,television))

Adding config (from inactive edge):
Active: refer(entity(20,._272825))
Inactive: describe(entity(20,.372089))

Applying config (1 left, step 8)

Active: modifiera(entity(20,.345018),_344866)
Inactive: modifiers(entity(20,_331732),_331729)

Adding inactive edge:
Head: modifiera(entity(20,_387952),_387949)
Acts: s-attrib(entity(20,_387952),.388012"category (388012 ,televisiomn))

Applying config (0 left, step 9)

Active: refer(entity(20,.272825))
Inactive: describe(entity(20,_.372089))

Adding inactive edge:

Head: refer(entity(20,_399351))

Acts: s-refer(entity(20,_399351))
s-attrib(entity(20,_399351),_399601"category (_399601 ,television))

Adding config (from inactive edge):
Active: modifier(entity(1,.258735),.268550,.268551)
Inactive: refer(entity(20,_399351))

Applying config (0 left, step 10)

Active: modifier(entity(1,_258735),.268550 »-268651)
Inactive: refer(entity(20,_399351))

Adding inactive edge:

Head: modifier(entity(1, _417538) ,_417534,_417535)

Acts: s-attrib-rel(entity(l ,-417538) ,entity (20,._417583) ,_417585"_417588"0!!(_417535 ,-417588))
s-refer(entity(20,.417583))
s-attrib(entity(20,_417583) ,_417913*category(_417913 ,television))

Adding config (from inactive edge):

Active: modifiers(_310937,_310938)

Inactive: modifier(entity(1,_417538),.417634 ,-417536)
Adding active edge:

Head: modifiers(_430857,.430858)

Need: modifier(_430857,_430858,_430883)

ssaduplicate active edge (removed)ees®

Applying config (0 left, step 11)

Active: modifiers(_310937,_310938)
Inactive: modifier(entity(1,_417638),_417534 »-417535)

Adding active edge:

Head: modifiers(entity(1,_447114),.446962)

Need: modifiers(entity(1,_447114),_.446987)

Acts: s-attrib—rel(entit,(i,_447114).entity(zo,_447159),_447181‘_447184‘0n(_447161,_447164))
s-refer(entity(20,_447159))
s-attrib(entity(20,_447159),_447341"category (_447341 ,television))

sesTopdown addition of inactive entries (1)ees

Adding inactive edge: %
Head: modifiers(emntity(1,_77618) »=77615)

Adding config (from inactive edge):
Active: modifiers(entity(1,_76524) »-76460)
Inactive: modifiers(entity(1,_77618) »-T7616)

Applying config (0 left, step 12)

Active: modifiers(entity(1,_76524) »-76460)
Inactive: modifiers(entity(1,_77618),_77615)

Adding inactive edge:

Head:
Acts:

modifiers (mtity (1,_91685) »,-91682)

s-attrib-rel(ent ity(1,_91685) ,ent ity(20,_91747) 291749~ _91752~on(_91749 ,-91752))
s-refer(entity(20,_91747))

s-attrib(entity(20,_91747), -91929"category(_91929,television))

L2 1] ,lsendg hpt’ R

Returning from plan recognizer

<mad>

<ma>

substitute(p57,p83,V1,_67339,V2)
Viﬂnodifier(entity(i,_75717),_75713,_75714)
+-s~-attrib-rel(entity(1,_75717) »entity(20,_75762) »-T5764~_7B767~on(_75764 »-78787))
+-raf(entity(20,_75782)._75809)
+-!nbsat(_75713,_75820“ub(_75737,_75741,apply(npply(_75704‘_75737’om(_75784,-75767),_75820),
| - _75809)),_75714)
+-refer(entity(20,_75762))
+-s-refer(entity(20,_75762))
+~describe(entity(20,_75762))
+-headnoun(entity(20,_75762),_75930)
| +-s-attrib(entity(20,_75762) »-75964"category(_75964,television))
| +-pubset(_75945, -75964-ub(_75937,_75941, category(_75864,television)),_75930)
+-modifiers(entity(20,_75762),_75930)
+-null
V2=g-attrib-rel(entity(1,.67299), entity(20,.67302),.67304~_67307~on(_67304 »-67307))
s-refer(entity(20,_67302))
s-attrib(entity(20,_67302),_67328~cat egory(_67328,television))
evalunate(V1)
Vi=_205819:refer(entity(1,_67299))
+-_206195:8-refexr(entity(1,_67299))
+-.206431 :describe(entity(1,_67299))
+-_206625:headnoun(entity(1,_67299) »=170995)
| +-_207092 :s-attrib(entity(1,_67299) »~168867category(_168867,creature))
| +--207692:snbaot(_171007,-188887‘nb(_170999._171003,category(_188867,creature)).-170995)
+-_207825:modifiers(entity(1,_67299) »-170995)
+~.208019:modifier(entity(1,_67299) 2170995, _75713)
| +-_208395:8-attrib(ent ity(1,.67299),_169008~assesament (_169008 ,weird))
| +-_208995:subset(_ 170995 »-172892"ub(_172875,_172879, apply(_169008~assessment (_169008 N
| - weird),_172892)),_75713)
#-_209128:nnditiers(entity(l._87299)._75713)
+-_209322:modifier(entity(1,_67299) »-15713,_75714)
| +-_209698:s-attrib-rel (ent ity(1,_67299),entity(20,_67302) »-67304~_67307-~0on(_67304,
11 - _e7307))
| +-_210389:ref(entity(20,_67302),_75809)
| +-_210480: subset (_75713, _75820~ub(_75737, 75741, apply (apply(_67304~_67307-on(_67304,
I I -67307),_75820),_75809)),_75714)
| +-_210671:refer(entity(20, -67302))
| +~_210947:s-refer(ent ity(20,_67302))
| +-_211183:describe(ent ity(20,_67302))
| +-_211377 :headnoun(entity(20,_67302) »-75930)
) | +-_211844:s-attrib (entity(20,_67302), -67328"category(_67328,television))
| | +-_212444:8ubset(_75945 »-67328"ub(_75937,_75941,cat egory(_67328,television)),
1 | - .75930)
! +-.212677 :modifiers(entity(20,_67302) 2-75930)
| +-_212953 :null
+-.213303:modifiers(entity(1,_67299),_75714)

137

+-_213679:n01l
Inferred Plan

_67631:replace-plan(p57) .

+-_67597 :member (antennai, [antexmal,fernil)

+-_67602:ref(entity(1 ;antennal) ,antennal)

+~-_B7607 :construct (modifier(entity(1,antemnal), [antennal,fernil, [antennail),¥1,¥2)

| Vi=modifier(entity(1 ,.67299),_75713, _757T14)

) +-g-attrib-rel(entity(1,_67299) ,entity (20,.67302) , 67304~ _67307"on(_67304 ,_67307))

| +-ref (entity(20,.67302),_75809)

| +-gubset (_75713,_75820"ub (_75737,_75741 ,apply (apply(_67304° _67307"on(_67304, _67307),.76820),
| | - .75809)) »-76714)

| +-refer(entity(20,.67302))

| +-s~-refer(entity(20,_67302))

] +-describe(entity (20, 67302))

| +-headnoun(entity(20,_67302),.75830)

| | +-s-attrib(entity(20,.67302) ,.67328~category (67328 ,television))

) | +-gubset(_75945,_67328~ub(_75937, _75941 ,category(_67328 ,television)),_75930)

| +-modifiers(entity(20, _67302) ,_75930)

| +=null

| v2=s-attrib-rel(entity (1,.67299), entity(20,_67302) ,-87304"_67307 ~on(_67304,_67307))

| a-refer(entity(20,.67302))

| s-attrib(entity(20,_67302) ,_67328"category (_67328,television))
+-_67612:substitute(ps7,p83,V1,V2 ,¥3)

| Vi=modifier (entity(1 ,-67299) ,_75713, _75714)

| +-g-attrib-rel(entity(1, _B87299) ,entity(20, _67302), _67304~_67307"on(_67304, _67307))

| +-ref (entity(20,_67302),_75809)

| +-gubset (_75713,_75820~ub(_76737, _75741 ,apply (apply(_67304~ _67307"on(_67304 ,-87307), .75820),
| | - .75809)), _75714)

] +-refer(entity(20,..67302))

1 +-s-refer(entity(20,_67302))

| +-describe(entity(20,.67302))

) +-headnoun(entity(20,_67302),_76930)

| | +-s-attrib(entity(20,.67302) ,_67328~category(_67328 ,televiaion))

| | +-subset(_75945,_67328"ub (_75937,_75941 ,category(_67328 ,television)),_75930)

| +-modifiers(entity(20,.67302), _75930)

! +-null

] v2=_206819:refer (entity(1, -67299))

\ +-_206195:s-refor(entity(1, -67299))

| +-_206431:describe(entity(1, -67299))

| +-_206625 sheadnoun(entity(1 ,_67299) »-170995)

| | +-_207092:s-attrib(entity(1 ,-67299) ,_168867"category (_168867 ,creature))

| | +-_207692:subset(_171007 ,-168867~ub(_170999 »-171003 , category (_168867 ,creature)), 170995)
| +-_207825 :modifiers(entity(1,.67299) »-170995)

| +-_208019 :modifier (entity(1 ,-67299) ,_170895 ,-T5713)

| | +-_208395:s-attrib(entity(1 ,-67299) ,_169008"assessment (169008 ,weird))

| | +-_208995;:8ubset(_170995 ,172892~ub(_172875, 172879 ,apply(_169008-assessment (_169008 ,weird)
| | - ,.172892)), _62437)

| +-_63139:modifiers (entity(1,.621 55),.62437)

| +-_63159 :modifier(entity(1 ,-62155) ,_62437, _62438)

| | +-_63189: s-attrib-rel(entity(1, _62156) ,entity(20 ,-.621568) ,-62160"_62163"on (_62160,_62163))
| | +-_63234:1ef (entity(20,_62158) ,-62531)

| +-_63239: subset(_62437 ,_62542"ub(_62459, _62463,apply(apply(_62160-_62163"0on (_62160,
1 | - _62163),.62542),_62531)),_62438)

) +-_63244:refer (entity(20 ,.62168))

| +-_63274:8-refer(entity(20,.62158))

| +—_63204:describe (entity(20,_62168))

\ +-_63314 :headnoun(entity (20,_62158) ,_62633)

| | +-_63349:s-attrib(entity(20, _62158) ,_62184"category(_62184 ,television))

| | +-_63389:aubset(_62648 ,.62184"ub(_62640,_62644, category(_62184 ,television)), _62633)
1 +-_63394 :modifiers(entity(20, _62158) ,_62633)

| +-_63424:null

| -_63434 :modifiers(entity(1 ,_62155) ,_62438)

| +-_63464:null

]| v3=s-attrib-rel(entity(1, _62165) ,entity(20,_62158), _62160"~_62163"0on(_62160, _62163))

§ o e —— — —— ——

138

| s-refer(entity(20,_62158))

1 s-attrib(entity(20,_62158) »-62184"category(_62184, television))

+-_62378:evaluate(V1)

| Via_62894:refer(entity(1,_62155))

1 +-.62924:s-refer(entity(1,_62155))

| +-.62944:describe(entity(1,_62155))

| +-.62964 :headnoun(entity(1,_62155) ,-62784)

| | +-_62999:g-attrib(ent ity(1,.62155),_62761 “category(_62761,creature))

! | +~_63039:gubset (.62790,_62761~ub (.62786,_62788 »category(_62761,creaturs)) »-62784)

] +-_63044 :modifiexrs(ent ity(1,_62155),_62784)

| +—_83064:-odi!1er(cntity(i,_82155),_82784,_82437)

|) +-_aaos¢:s-attzih(amxity(1,_62155).-ea7ez~-s-eas-ent(_sz?s:,-.ird))

| | +-_83134:subset (_62784,_62847~ub (_62838,_62840 »apply (62762 assessment (_62762,reird) s

| | ~ .62847)),_62437)

| +-_63139:modifiexs (entity(1,_62155) »-62437)

| +-_63159 imodifiex(entity(1,_62155) »-62437,_62438)

|) +-_63189 ss-attrib-rel(entity(1 2.62156) ,entity(20,_62158) ._62180‘-62163‘on(_82160,_62163))

| | +-_63234:ref (entity(20,_62158) ,_62531)

| | +-_63239:5ubset(_62437, 62542 ub(._62459, 62483, apply(apply(_62160"_62163~on(_62160,

| | | - _62163),_62542) »-62631)),_62438)

| | +-_63244:rafer(entity(20,_62158))

| | +-_63274: s-refer(entity(20,_62158))

1 | +-_63294:describe(entity(20,_62158))

! | +-_63314 :headnoun(entity(20,_62158),_62633)

| | | +-_63349: s-attrib(entity(20,_62158) »-62184"category(.62184,television))

| | | +-_88389:snbset(-62848,_62184‘nb(_82340,_82644,cltegory(_32184,televinion))._62633)

|] +-.63384 :modifiers (entity(20,_62158),_62633)

J) +-_63424:1n11

| +-.63434:modifiers(entity(1,_62155) »-62438)

| +-_63464 :1m11

+-_62383:8-reject (p57,V1)

Vimg~attrib-rel(ent ity(1,_62155) ,ent ity(20,_62158), .62180"_62163"“(_82160. -62163))
s-refer(entity(20,_62158))
s-attrib(entity(20,_62158) 2~62184"category(_ 62184, television))

User Nodel: Adding Propokition
Plan(user,p129,mb(system,user sTeplace(ps7,v1)))
V1=_62894:refer(entity(1,_62155))
+-.62924:8-refer(entity(1,_62155))
+-.62944:describe(entity(1,_62155))
+-=_062964 :headnoun (entity(1,_62155) »-62784)
| +-_62999: s-attrib(entity(1,._62155) »-62761"category(_62761,creature))
| +-_63039:subset (_62750 »-62761~ub(_62786,_62788 scategory(_62761,creature)),_62784)
+-.63044 :modifiera(entity(1,_62155) »-62784)
+-_63064 :modifier(entity(1,_62155) »-62784,_62437)
| +-_63094:8~attrib(ent ity(1,_62155),_62762"assessment (.62762,veixd))
| +-_63134:subaet(_62784 »-62847~ub(_62838, ~82840,apply(_62762"assessment(_62762 ,weird),_62847))
| - ,-62437)
+-_63139:modifiers(ent ity(1,_62155),_62437)
+-_63159:modifiexr(ent ity(1,.62155),_62437 »-62438) f
| +-_63189:8-attrib-rel (entity(1,_62155) »entity(20,_62158) »=62160"~_62163"0on(_62160 ,-62163))
| +-_.63234:xef(ent ity(20,_62188) »-62531)
| +-_63239:subset(_62437 »-62542"ub(_62459,_62463, apply(apply(.62160~_62163~on(_62160 ,-62163),
| | - _62542) »-625631)),_62438)
] +-_63244:refor(entity(20,_62158))
| +-_63274:s-refer(ent ity(20,_62158))
| +-_.63294:describe (entity(20,_62158))
] h_mli:hemom(mtity(ﬁo »-62168) ,_62633)
| | +-_63349:s-attrib(ent ity(20,.62158),_62184"cat egory(_62184,television))
| | +-_63389:subset (_62648 »-62184"ub(_62640, _62644, category(_62184,television)) ,-62633)
| +-_63394:modifiers(entity(20,_62158) ,-62633)
| +-=_63424 :null
+-_63434:modifiers(entity(1,_62155) »-62438)
+-_63464 :null

User Model: Adding Proposition
contributed(user,p129)

139

User Nodel: Adding Proposition
evaluation(p129,success)

SnzssISURERSONE

Checking Rules

IozoosSERRERDRRE

Adding beliefs about the inferred plan

Applying rule4
User Model: Adding Proposition
replace(p57,V1)
v1=_361371:refer(entity(1 ,-961386))
+-_361404:s-refer(entity (1,.361386))
+-_361423:describe (entity(1 ,.361386))
+-_361442:houhmnn(ont ityQ1 ,..361386) ».361455)
| +-_361483:a-nttr:lb(ent:l.ty(1 »,-3613886) ,.861501"cntegory(_361501,crnture))
| +-_361546 :nbnt(_ssmn,_361501‘111:(_361465 ,-361472 ,category(_361501 ,creature)) ,.361466)
+-_361566 modifiers(entity(1,.361386) »361455)
+-_361585 :modifier (entity(1 »-361386) »=3681456 »,-361599)
| +-_361620:s-attrid (entity(1,.361386) ,-361638"ansessment (_361638,weird))
| +-_361683:subset (_361456 ,.361690~ub(_361609, _361616,apply(_361638~assessment (_361638,veird),
| -~ _361690)) ,-361599)
+-_361708:modifiers(entity (1,.361386) ,361599)
+=-_361728 :modifier(entity (1,.361386) ,_361599 ,-361742)
| +-_361763:s~-attrib-Tel (entity(1,.361386) yentity(20 ,-361783) ,.361785"_361788"0on (_361785,
| | - _361788))
| +-_3e:a44:ref(entity(zo,_aeflaa),_361848)
| +-.361856:subset (_361599, .361862"udb (_361752,.361759, apply(apply (_361785~_361788" on(_361785,
1! - _361788) ,-361862) ,-361848)) »-361742)
| +-_381886:rder(entity(zo._381783))
] +-.361919:a-refer (entity(20,.361783))
| +-_361938:describe(entity (20,_361783))
| +~_361967 :headnoun (entity(20 ,-361783) ,-361970)
|) +-_361998:l-attrib(ntity(zo,_mm) ,_Mle‘catogory(_ssme,telov:la:lon))
| | +-_362061:subset(_361994 ,.362016~ub(_361980, _361987, category(.362016 ,television)),
| | - _361970)
| +-_362080 :modifiers(entity (20,_361783) ,_361970)
| +-_362121:00l1l
+-_362143 :modifiers(entity(1, _361386),.361742)
+=-_362184:null

postponing evaluation of mb(system,user ;category(.64327 ,creature))

<ma> subset([fernl,antennal ,cornerl ,televisionil, _64442"ub(system,user,category (_64442,creature)),
- _64396)

postponing evaluation of -b(aystﬂ,uer,cltopry(_msz'l ,creature))

postponing evaluation of mb(system,user ,usesment(_wz'l,veird))

<ma> subset([antennal,ferni] ,-64631 ub(system,user ,assessment (_64631 ,weird)) ,_64540)

postponing evaluation of nb(syston,uer,cntegory(_mz’l ,creature))

postponing evaluation of n’b(synen,nser.asnmt(_sﬁﬂ ,ueird))

postponing evaluation of mb(system,user,on(_64327 ,.64724))

<ma> ref(entity(20,.64724),.64789)

postponing evaluation of -b(s,sten.usor,catogory(_eﬁsﬂ,croaturo))

postponing evaluation of -b(nyston,nsor.usument(-mﬂ ,meird))

postponing evaluation of mb(system,user,on(_64327 ,64724))

postponing evaluation of subset ([antennal ,feni]._ﬂmﬁb(systn,uor,on(_M803,_64724)),_64683)

postponing evaluation of -b(uystu,nsor,catogory(_eﬂu,tclovh:lon))

<mad subset([fernl,antennal ,cornerl ,televisioni] , 84967~ ub(system,user ,category(_mﬂ,tolovision)) E
- _64911)

postponing evaluation of mb(system,user ,category(_ﬂSﬂ,creatuo))

postponing evaluation of nb(ustn,uer,usumt(_mﬂ ,weird))

postponing evaluation of mb(system,user,on(_64327 ,-64724))

_postponing evaluation of subset({antennal ,fexn1],_64803"ub(system,user ,on(_64803,_64724)) »,-54683)

postponing evaluation of nb(systu,uor,catogory(_ﬂ'lﬂ ,television))

<con> [television1]=[.64724]

140

postponing evaluation of mb(system,user,category(_ 64327, creature))
Postponing evaluation of mb(system,nser,assessment (_64327,weird))
postponing evaluation of mb(system,user,on(_64327 stelevision1))
<ma> subset([antennal,fern1],_64803~ub (system,user,on(_64803,television1)) »-64683)
postponing evaluation of nb(system,user,category(_64327,creaturs))
postponing evaluation of mb(systen,user,assessment (_64327,veird))
postpaning evaluation of mb(system,user,on(_64327,television1))
<con> mb(system,user,category(televisioni stelevision))

postponing evaluation of mb(system,user,category(_64327,creature))
postponing evaluation of mb(system,user,assessment(_64327 ymeird))
postponing evaluation of mb(system,nser,on(_84327,television1))
<con> [antemmal)=[_64327]

<con> mb(system,user,category(antennal,creature))

<con> mb(system,user,assessment (antemnal,weird))

<con> mb(system,user,on(antennal,televisioni))

removing plan p57 from belief space

User Hodel: Adding Proposition
contributed(user,p145)

User Model: Adding Proposition
evaluation(pi45,success)

User Model: Adding Proposition
mgoal(system,user,p145 ,knowref(system,entity(1,_182682)))

mgoal updated sos
Applying ruleb

User Model: Adding Proposition
achieve(p145,knovref(system,entity(1,antennal1)))

A.5 Constructing “Okay”

Checking Rules

Adding goals

Applying rule9
User Model: Adding Proposition
goal(system,ub(system,user,achieve(p145 »knowref(system,entity(1,antenna1)))))

|

Responding

|

Goal :nb(nyaten,mr,ach:leve(p145,hond(sy:tu,ontity(i,antemi))))
Effect: bel (naor.3oa1(syaten,nb(syatu,uer,achieu(pus,h\owrot (system,entity(1,antenna1))))))

Initial Setup

Trying: accept-plan(p145)

<con> achieve(p146,knovref(system,entity(1 ,antennal)))
<con> plan(user,p145,knowref(system,entity(1,antenna1)))
Hew edge added

End of Initialization

[un
[N~ §
N

Expanding (step 0 active 1)

Head: accept-plan(pi46)
Heed: s-accept(p145)

Trying: s-accept(p145)
Hew edge added

Co;lstncted Plan

accept~plan(p145)
+-s-accept (p146)

Actions to be fed to gemerator

s-accept (p146)

User Hodel: Adding Proposition

plan(system,p207 ,mb(system,usexr ,achieve(p145 ,knouref (system,entity (1,antennal)))))

User Model: Adding Proposition
contributed(system,p207)

User Model: Adding Proposition
evaluation(p207 ,success)

EESSO RSN

Checking Rules

T=ssmsnsEnTEen

Adding beliefs about the constructed plan

EnESERE IR

Checking Rules

BRSSO

Adding goals

	Heeman 1.PDF.pdf
	Heeman 2
	Heeman 3
	Heeman 4

