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Abstract

Spelling errors that happen to result in a real word in the lexicon cannot be detected by a

conventional spelling checker. We present a method for detecting and correcting many such

errors by identifying tokens that are semantically unrelated to their context and are spelling

variations of words that would be related to the context. Relatedness to context is determined

by a measure of semantic distance initially proposed by Jiang and Conrath (1997). We tested

the method on an artificial corpus of errors; it achieved recall of 23–50% and precision of

18–25%.

1 Real-word spelling errors

Conventional spelling checkers detect typing errors simply by comparing each token

of a text against a dictionary of words that are known to be correctly spelled.

Any token that matches an element of the dictionary, possibly after some minimal

morphological analysis, is deemed to be correctly spelled; any token that matches

no element is flagged as a possible error, with near-matches displayed as suggested

corrections. Typing errors that happen to result in a token that is a correctly spelled

word, albeit not the one that the user intended, cannot be detected by such systems.

Such errors are not uncommon; Mitton (1987, 1996) found that “real-word errors

account for about a quarter to a third of all spelling errors, perhaps more if you

include word-division errors”. A fortiori, it is now common for real-word errors to be

introduced by auto-correction mechanisms1 and by conventional spelling checkers

1 An auto-correction mechanism watches out for certain pre-defined “errors” as the user
types, replacing them with a “correction” and giving no indication or warning of the change.
Such mechanisms are intended for undoubted typing errors for which only one correction is
plausible, such as correcting accomodate to accommodate; deliberate misspellings (as in this
footnote) are precluded. However, the ‘AutoCorrect’ feature of Microsoft Word contains by
default many “corrections” for which other possibilities are also plausible. For example (in
Microsoft Word v.X for Macintosh, with all updates to December 2003), wierd is changed
to weird, although wired and wield are also plausible; eyt is changed to yet, although eye is
plausible; and Herat is changed to Heart, although Herat is plausibly correct as it stands.
Thus, a typing error that could have been subsequently detected by a spelling-checker may
be replaced by a real-word error that can’t be.
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when the user carelessly accepts an incorrect recommendation by the system or

inadvertently chooses the wrong correction from a menu. By contrast, a human

proofreader, using linguistic and world knowledge, will usually notice an error of

this kind because it will cause the text to be set somehow awry. If the erroneous

token is of a different part of speech from that intended, then the sentence that it is

in might not be parsable:

Example 1

The instrumental parts were recorded at different times and them [then] later

combined on the master tape to produce special effects.

If the erroneous token is semantically unrelated to the intended one, then the

sentence might not make sense:

Example 2

It is my sincere hole [hope] that you will recover swiftly.

Some typing errors will cause both conditions to occur:

Example 3

We all hole [hope] that you will recover swiftly.

And, of course, some errors result in a perfectly well-formed text, even if they

produce a meaning other than that intended, and hence cannot be detected without

knowledge or inference of the writer’s intention:

Example 4

The committee is now [not] prepared to grant your request.

See Kukich (1992) or Mitton (1996) for an extensive survey of types of spelling

errors and early approaches to the problem.

In this paper, we will discuss the detection and correction of errors that result

in semantic anomaly, as in example 2. To distinguish these errors from the other

kinds, we will refer to them, somewhat loosely, as malapropisms. Strictly speaking,

a malapropism is an amusing substitution, due to ignorance and pretentiousness on

the part of the writer or speaker, of one word for another of similar spelling or

sound:2

Example 5

She has reached the pinochle [pinnacle] of success.

For our purposes in this paper, it is immaterial whether the cause of the error is

ignorance, pretentiousness, poor typing, or careless use of a conventional spelling

checker (and whether or not the error is cause for amusement). Our goal is thus

2 The term is sometimes used even more loosely; for example, many of the spoken
“malapropisms” attributed to George W. Bush, while possibly both amusing and
due to ignorance, are actually non-word errors (They misunderestimated me; This issue
doesn’t seem to resignate with the people) or other kinds of linguistic or non-linguistic
error (Families is . . .where wings take dream; Our nation must come together to unite); see
http://slate.msn.com/Features/bushisms/bushisms.asp.
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considerably broader than that of other recent work on real-word errors that aims

simply at detecting occurrences of any of a small, pre-defined set of common errors;

see section 7 below for discussion of this work.

2 Malapropisms as perturbations of cohesion

By their nature, naturally occurring coherent, meaningful texts contain many

instances of the mechanisms of linguistic cohesion, such as word repetitions,

coreference, and sets of semantically related words (Halliday and Hasan 1976;

Hoey 1991). A coherent text will naturally refer to various concepts that are related

to its topic or topics and hence are related to one another. The recurrence in a text

of lexemes related to a particular concept is often characterized metaphorically as a

‘chain’ of words running through the text, linked by lexical and semantic relationships

such as literal repetition, coreference, synonymy, and hyponymy (Halliday and Hasan

1976; Morris and Hirst 1991; Hoey 1991). A coherent text will have many such

lexical chains, each running through part or all of the text and pertaining to some

aspect of the topic or topics of the text; and, conversely, most content words of

the text will be members of one or more chains. Because they are indicative of the

structure and content of a text, lexical chains have been applied in computational

linguistics for tasks such as text segmentation (Morris and Hirst 1991; Okumura

and Honda 1994), lexical disambiguation (Okumura and Honda 1994), automatic

creation of hypertext (Green 1999), and text summarization (Barzilay and Elhadad

1999; Silber and McCoy 2002); see Budanitsky (1999) for a detailed review. However,

it remains an open research question as to just what kinds and degrees of semantic

relationship should qualify as links for a lexical chain; we discuss this issue in a

separate paper (Budanitsky and Hirst submitted).

A malapropism is a perturbation of the cohesion (and coherence) of a text. By

definition, it is semantically inappropriate in its immediate context, and is probably

therefore also semantically inappropriate in the broader context of the text itself. It

is therefore unlikely that a malapropism can be linked into any of the lexical chains

of the nearby text; it will probably bear no semantic relationship to any other word

in the text.3 On the other hand, it is likely (though not assured) that the intended

word would fit into a lexical chain in the text. Thus the problem of detecting and

correcting malapropisms can be cast as the problem of detecting tokens that fit

into no lexical chain of the text and replacing them with words for which they are

plausible mistypings that do fit into a lexical chain.

This idea was first tried by Hirst and St-Onge (1998), who reported modest success;

while the system’s performance in both detecting and correcting malapropisms was

3 There are two qualifications to this statement. First, the malapropisms that we are
considering are primarily performance errors – slips in typing. So if the malapropism
is instead a competence error and is repeated within the text – consistently typing pinochle
for pinnacle, for example, in the belief that the former is the correct spelling of the latter –
then the malapropisms will form a lexical chain by their repetition. Such a text would be
incoherent but cohesive, and the methods to be discussed below will not apply. Second,
there is actually a mild cognitive bias in performance errors to words that are indeed
related to the intended word or its context (Fromkin 1980), but we ignore this effect here.
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well above baseline, it was nonetheless prone to far too many false alarms: for every

true malapropism that it found, it would flag about ten other tokens that were not

malapropisms at all. It was especially vulnerable to confusion by proper names and

by common words of minimal topical content; for example, it suggested that year

was a mistyping of pear in the context of Lotus Development Corporation, because

lotus and pear are both hyponyms of fruit and hence could form a lexical chain.

One of the serious problems underlying the system was an inadequate account of

semantic relatedness in its construction of lexical chains. Two non-identical lexemes

were considered to be related if and only if a short path of an allowable shape could

be found between their synsets in the noun portion of WordNet. Paths could follow

any of the WordNet relationships. (The details of ‘allowable shape’ and requisite

shortness are not necessary here; the interested reader may see Hirst and St-Onge

(1998).)

3 A new algorithm for detecting and correcting malapropisms

We have developed a new algorithm for malapropism detection and correction

that, like Hirst and St-Onge’s, is based on the idea of detecting and eliminating

perturbations of cohesion in text. However, the new algorithm does not use lexical

chains per se; rather, it treats a text as a bag of words (more precisely, as a

list of paragraph-sized bags of words). Forgoing the chain structures enables the

search to be bidirectional instead of left-to-right and to wrap around from the

end of the text to the start, thereby recognizing the potential cohesion between

introduction and conclusion. In addition, the measure of semantic relatedness that

the algorithm employs can be varied independently; the scope of search is an

additional parameter; distances in the text are measured in paragraphs rather than

sentences; and disambiguation of words may be only partial. The new algorithm

also includes proper-name recognition and addresses problems of ambiguity in

inflectional morphology.

In accordance with the discussion above, the algorithm makes the following

assumptions:

• A real-word spelling error is unlikely to be semantically related to the text.

• Usually, the writer’s intended word will be semantically related to nearby

words.

• It is unlikely that an intended word that is semantically unrelated to all those

nearby will have a spelling variation that is related.

In addition, the algorithm requires the definition of two independent mechanisms.

First, it requires a mechanism that, given a word (or any string), returns a list of all

the words in the lexicon for which that word is a plausible misspelling – its spelling

variations. Such a mechanism can be found in any conventional spelling checker.

In the system to be described in section 4, we define the spelling variations of a

word w to be those words in the lexicon that are derived from w by the insertion,

deletion, or replacement of a single character, or the transposition of two adjacent

characters. However, broader or narrower definitions are possible. For example, one
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might allow only substitutions of characters that are close to one another on the

keyboard (Al-Mubaid and Truemper 2004), or take into account the probability of

each particular typing error, using the data of Kernighan, Church and Gale (1990).

At the risk of becoming dialect-dependent, the definition might permit homophones

and other phonetic near-matches such as kettle–cattle and pour–poor (Al-Mubaid

and Truemper 2004).4

Second, the algorithm requires a mechanism that, given two words, determines

whether or not those words are semantically related (or semantically close). It’s

important to observe that semantic relatedness is not just similarity; similar entities

are usually assumed to be semantically related by virtue of their likeness (bank–

trust company), but dissimilar entities may also be semantically related by lexical

relationships such as meronymy (car–wheel) and antonymy (hot–cold), or just by

any kind of functional relationship or frequent association or co-occurrence of ideas

(soap–wash, penguin–Antarctica). Here, we require relatedness in the broadest sense –

pertaining to or associated with the same topic. Nonetheless, taking relatedness too

broadly will result in failing to detect malapropisms; they will be spuriously found

to be related to their context. We will discuss a constrained measure of semantic

relatedness in section 4.1. A more-general discussion of such measures and the

theoretical issues that they raise is given by Budanitsky (1999) and Budanitsky and

Hirst (submitted).

In outline, the algorithm for detecting and correcting malapropisms is as follows:

Words are (crudely) disambiguated where possible by accepting senses that are

semantically related to possible senses of other nearby words. If all senses of any

open-class, non–stop-list word that occurs only once in the text are found to be

semantically unrelated to accepted senses of all other nearby words, but some sense

of a spelling variation of that word is related (or is identical to another token in the

context), then it is hypothesized that the original word is an error and the variation

is what the writer intended; the user is warned of this possibility. For example, if no

nearby word in a text is related to diary but one or more are related to dairy, it is

suggested to the user that it is the latter that was intended. The exact window size

implied by “nearby” is a parameter to the algorithm.

4 Some commercial spelling checkers are extremely liberal in their notion of spelling variation,
allowing multiple insertions, deletions, and transpositions – a strategy that taken to extremes
could propose any word for any other. For example, the spelling checker in Microsoft Word,
given a list of uncommon names, suggests implausible changes such as these: Procopia to
Porkpie or Preoccupied, Prunella to Runnels, and Philena to Phalanx or Hyena. (This is
in contrast with the auto-correction mechanism in the same software, whose definition of
spelling variation is much too narrow; see footnote 1.) Overly broad definitions will reduce
the precision of our algorithm, as it becomes more likely that some spelling variation will
be wrongly preferred to the original word – see section 6. Nonetheless, in practical use, the
definition of spelling variation used with the algorithm should be the same as that used
with any associated non-word spelling corrector or auto-correct mechanism so that the
errors that they make can be undone.

Pedler (2001a, 2001b) studied the performance of four spelling checkers on a corpus of
writing by dyslexics (in which the error rate was greater than one word in every five) and
found that while 47% of the errors involved more than one addition, deletion, or sub-
stitution, Word’s broad definition of spelling variation gave it no practical advantage over
other spelling checkers with more-conservative definitions.
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0a. Look for non-word errors in the text, and make corrections (with help from user).

0b. Identify for consideration all words in the text that are in the lexicon but are not on

the stop-list nor used as (part of) the name of a named entity.

1. Mark a word as confirmed if it occurs more than once in the text, if it occurs in the

text as part of a known phrase, or if, within a window of n paragraphs (wrapping

around to the start or end of the text if necessary), there are one or more words with a

sense that is semantically related to at least one sense of the word under consideration.

When a word is confirmed, remove from consideration all of its senses that were not

involved in its confirmation.

2. If an unconfirmed word w (a suspect) has a spelling variation w′ that would have been

confirmed if it had appeared in the text instead of w, alert the user to the possibility

that w′ was intended where w appears (raise an alarm).

Fig. 1. Algorithm for malapropism detection and correction.

A statement of the algorithm is given in Figure 1. We now explain each step in

detail.

Step 0: Preprocessing

Steps 0a and 0b of the algorithm are preprocessing. The first substep is correction of

non-word spelling errors (perhaps by a conventional spelling checker). This should

occur before malapropisms are sought (rather than after or in parallel), in order to

maximize the number of words in the text available to check for semantic relatedness

to each word considered by the algorithm. Moreover, as we observed earlier, it is not

unusual for malapropisms to be introduced during conventional spelling checking,

so malapropism detection should follow that – but see also our remarks in section 8

on integration of the two processes.

The second substep identifies words in the document that are to be checked for

error by removing from further consideration those that are not in the lexicon at

all and those that are on a stop-list. The algorithm, by its nature, applies only to

words whose meaning or meanings are known and have content that is likely to

be topical. We therefore exclude closed-class words and common non-topical words.

Closed-class words are excluded as their role in a text is almost always purely

functional and unrelated to content or topic. It is of course possible that a typing

error could turn a highly contentful word into a closed-class word or vice versa;

but the former case will not be considered by the algorithm and the latter will be

considered but not detected. The exclusion of ‘untopical’ open-class words, such as

know, find, and world, is well-precedented in information retrieval. Here, there is a

trade-off between making the list as short as possible, in order to let as many words

as possible be checked, and making the list as long as possible in order to avoid

spurious relationships, such as the year–pear–Lotus example mentioned above.

Step 1: Suspicion

The first step of the algorithm itself is to confirm as correct any word found to be re-

lated to at least one other word in the text. This relationship can be identity – another
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occurrence of a word with the same lemma – or it can be a semantic relationship to

another word, as discussed above. In searching for an identical token, the entire text

is scanned; but in searching for a semantically related word, the scope of the search

may be limited to words that are physically not too far away. The rationale for this is

that in a large text with many topics, there is too high a chance of finding a spurious

semantic relationship between a malapropism and a word in some other part of the

text on a different topic; but this is less likely in the case of identity. (Pollock and

Zamora (1983) found that, with the exception of a handful of frequently misspelled

words, misspellings rarely tend to be repeated in a document.) Of course, the risk

of finding a spurious relationship depends on the nature and length of the text, and

different kinds of text could be treated differently. (In the system to be described in

section 4, we experimented with search scopes ranging from a single paragraph to

the entire text of a newspaper article.)

When the word under consideration has more than one sense, semantic

relationships are sought between all its senses and all the senses of other words in the

search scope. If any relationships are found between the word under consideration

and any others, then only the senses that participate in those relationships are

retained for subsequent searches. Thus words are, rather roughly, disambiguated or at

least partially disambiguated. For example, if relationships are sought for (senses of)

the word file, and a relationship to the tool sense of the word plane is the only one

found, then only the tool sense of file will be retained.

In addition to identity and semantic relatedness, we follow St-Onge’s (1995)

intuition that the probability of accidentally forming a multiword compound that

can be found in the lexicon (e.g. abdominal cavity , chief executive officer , automated

teller machine, withdrawal symptom) is so low that the words of any such phrase

occurring in the text can be regarded as mutually confirming.

Any word that cannot be confirmed in this step thus appears unrelated to its

context, and might therefore be a real-word spelling error. We refer to such words as

suspects; but it should be understood that this, by itself, is not sufficient cause to flag

the word as a likely malapropism. It is not at all unusual for a text to contain such

words, especially if the search scope – the context – is limited to a single paragraph

or little more than that.

Step 2: Detection

To determine whether a suspect is a likely real-word spelling error, we look for

positive evidence: a spelling variation of the suspect that would fit better into

context than the suspect itself does. We therefore generate all spelling variations and

for each one, attempt to confirm it as in Step 1. If at least one spelling variation is

confirmed, then we take this as indicating that the variation is a better fit and hence

more likely to be the intended word. The user is then alerted to this possibility.

4 A system for detecting and correcting malapropisms

We have built and evaluated a prototype system to detect and correct mala-

propisms by means of the algorithm above. In this section, we explain the
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components of the system, and in the following section, we describe an evaluation

of the system.

4.1 Semantic relatedness measure

We tried five different measures of semantic relatedness in our system, all of which

rely on a WordNet-like hierarchical thesaurus (Fellbaum 1998) as their lexical

resource. The measures were those of Hirst and St-Onge (1998), Jiang and Conrath

(1997), Leacock and Chodorow (1998), Lin (1997, 1998), and Resnik (1995). By

comparing the performance of the different measures, which varied widely, we

were able to study theories of semantic relatedness, and we describe this work

in a separate paper (Budanitsky and Hirst submitted). Because these issues are

orthogonal to malapropism detection, we report here only our experiments with the

best-performing measure, which was that of Jiang and Conrath.

Jiang and Conrath’s (1997) measure of semantic relatedness (strictly speaking,

of semantic distance, the inverse of relatedness) is based on both the hierarchical

structure of a taxonomy and the information content (IC) of its nodes. Given a

node c in the hierarchy (a synset in the case of WordNet), the information content

of c is the negative logarithm of the probability p(c) of encountering an instance of

concept c in a corpus – that is, any lexeme that maps to c (the words of the synset)

or its hyponyms. Then the relatedness of two lexemes that map to nodes c1 and c2

in the hierarchy is computed from the information content of those nodes and that

of their lowest superordinate (or most specific subsumer), lso(c1, c2), the lowest node

in the hierarchy that is an ancestor to both. Specifically, Jiang and Conrath define

the semantic distance between a child-node c and its parent-node par(c) as:

distJC(c, par(c)) = IC(c | par(c)) = IC(c) − IC(par(c)).

Then the semantic distance between two arbitrary nodes c1 and c2 is the sum of the

child-parent distances along the shortest path that connects them, path(c1, c2). Let

N(c1, c2) be the set of nodes in path(c1, c2), including c1 and c2 themselves. Then we

have:

distJC(c1, c2) =
∑

c∈N(c1 ,c2)\lso(c1 ,c2)

distJC(c, par(c))

= IC(c1) + IC(c2) − 2 × IC(lso(c1, c2))

= 2 log(p(lso(c1, c2))) − (log(p(c1)) + log(p(c2))).(1)

Observe that, as a special case, the distance between two words in the same synset is

zero. For a detailed explication and interpretation of the derivation and justification

of Jiang and Conrath’s measure, see Budanitsky (1999).

For example, in WordNet 1.5,5 the concepts number (‘a sum or total or indefinite

quantity of units or individuals’) and limit/bounds/boundary (‘the greatest possible

5 We began this work with WordNet 1.5, and stayed with this version despite newer releases
in order to maintain strict comparability. Our experiments were complete before WordNet
2.0 was released. See section 6 for further comments.
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Fig. 2. Shortest path from number to limit in WordNet 1.5.

extent or degree of something’) are related through their lso, magnitude (‘relative

size or extent’), as shown in Figure 2. The probability of encountering an instance

of these concepts in the Brown Corpus (see below) is, respectively, 1.746986 × 10−3,

9.889191 × 10−4, and 3.748222 × 10−2, implying respective information content of

9.160916, 9.98186, and 4.73765. Hence distJC(number, limit) = 9.160916 + 9.98186 −
2 × 4.73765 = 9.667477.

Corpus Following Resnik (1995), we obtained information content values for each

node in WordNet from frequency counts of words in the complete, untagged

Brown Corpus. In their original experiments, Jiang and Conrath used SemCor

(Miller, Leacock, Tengi and Bunker 1993), a sense-tagged subset of the Brown

Corpus. Choosing the Brown Corpus over SemCor essentially means trading away

accuracy for size, but, like Resnik, we believe that using a non-disambiguated corpus

constitutes a more general approach. The availability of disambiguated texts such

as SemCor is highly limited, due to the fact that automatic sense-tagging of text

remains an open problem and manual sense-tagging of large corpora is prohibitively

labor-intensive. On the other hand, the volume of raw textual data in electronic form

is steadily growing.

Calibrating the measure Because the Jiang–Conrath function returns a numerical

measure of distance on an essentially arbitrary scale, and not the boolean related–

unrelated judgment required by the malapropism-detection algorithm, we needed to

set a threshold distance below which two lexemes would be deemed close enough

to be related. We did this by calibrating the measure against human judgments of

semantic relatedness.

The data that we used were obtained and published by Rubenstein and

Goodenough (1965), who asked 51 human subjects to make “synonymy judgments”

on 65 pairs of words. The pairs ranged from “highly synonymous” (gem–jewel ) to

“semantically unrelated” (noon–string). Subjects were asked to rate them on the

scale of 0.0 to 4.0 according to their “similarity of meaning” and ignoring any other

observed semantic relationships (such as in the pair journey–car). Rubenstein and

Goodenough’s results are shown in Figure 3; the y-axis shows average similarity
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Fig. 3. Human judgments of similarity on 65 pairs of words, in order of increasing similarity

(Rubenstein and Goodenough 1965).

rating, and the x-axis shows pairs enumerated by increasing similarity. Observe

the broad gap between pair numbers 37 and 38 that separates the pairs into a

more-similar group and a less-similar group.

To calibrate the Jiang–Conrath measure with this data, we evaluated each of

the 65 Rubenstein–Goodenough pairs with the measure. The correlation between

the measure and the human similarity judgments was −0.781. (The correlation is

negative because semantic distance is inversely related to similarity.) We therefore

set the Jiang–Conrath measure’s threshold of relatedness at the point at which it

best separates the two Rubenstein–Goodenough groups.

4.2 Other components of the system

Lexicon and thesaurus Because the Jiang–Conrath measure requires a hierarchical

thesaurus, we used the noun portion of WordNet 1.5 as our lexicon and thesaurus.

However, we did not limit use of the system to nouns in the text; semantic relatedness

is independent of part of speech, and the algorithm applies to any non–stop-list

word found in the lexicon. For our prototype system, we relied on the fact that, in

English, verb lemmas and adjectives that are orthographically identical to a noun

are almost always closely semantically related to that noun and so it was immaterial

to our algorithm what the actual part of speech of the token was.6 For example,

for the sentence Nadia hoped for a miracle, we use the noun synset for hope even

though it occurs as a verb in the sentence. While this leads to an obvious limitation

on the prototype system – it simply cannot deal with words that do not have a noun

form – there is no reason to think that this will not be resolved by the advent of a

more-integrated hierarchical thesaurus that connects all parts of speech, such as the

6 There are exceptions to this heuristic, of course. For example, the verb to spell ‘to set down
the orthographic form of a word’ is not related to the noun spell ‘magic incantation’ or
‘period of time’.
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wordnets of EuroWordNet (Vossen 1998), the recently released WordNet 2.0, or an

on-line Roget-structured thesaurus. See section 6 for additional discussion.

Stop-list and proper name recognition We use St-Onge’s (1995) stop-list of 221 closed-

class and high-frequency words, which is rather small compared to the lists used

in systems for information retrieval and other applications in natural language

processing. Thus we have opted for wider coverage over higher precision.

Proper names are filtered out by a module based on a lexical analyzer that was

generously made available to us by Dekang Lin and Nalante Inc.

Spelling variations To generate spelling variations in Step 2 of the algorithm, we

used code from ispell, an open-source spelling checker for non-word errors,7 whose

definition of spelling variation is as described in section 3: a single insertion, deletion,

replacement, or transposition.

Lemmas and surface forms Although different occurrences of the same word in a

text are recognized through their having the same lemma, the original surface forms

must also be stored in order to generate spelling variations. For example, if the

lemma lie surfaces in the text as the token lain , its spelling variations are gain , lair ,

loin , lawn , plain , etc., and not die, lee, life, lieu , or pie.

5 Evaluation of the system

5.1 Test data

To test the algorithm, we need a sufficiently large corpus of malapropisms in their

context, each identified and annotated with its correction. Since no such corpus of

naturally occurring malapropisms exists, we created one artificially. Following Hirst

and St-Onge (1998), we took 500 articles from the 1987–89 Wall Street Journal

corpus, with lengths ranging from 90 to 2763 tokens (an average of just over 600

words each), and replaced one word in every 200 with a spelling variation. To be a

candidate for replacement, a word had to be present in our lexicon (see section 4.2),

have at least one spelling variation that was also in the lexicon, and not be a

stop-list word or proper noun. The corpus contained 107,233 such words, of which

1408 (1.31%) were replaced by malapropisms – an average of 2.8 malapropisms

per article. In 19 articles that contained few malapropizable words, no word was

replaced; these articles were removed from the data. We generated the spelling

variations with the same code from ispell that we used in the implementation of the

algorithm. (This does not lead to circularity, but rather to a consistent definition of

what constitutes a spelling variation.)

In evaluating the system, we tried four different search scopes in determinations

of semantic relatedness: just the paragraph containing the target word (scope = 1),

7 ispell is a program that has evolved in PDP-10, Unix, and Usenet circles for more than 20
years, with contributions from many authors. Principal contributors to the current version
include Pace Willisson and Geoff Kuenning.
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that paragraph plus one or two adjacent paragraphs on each side (scope = 3 and 5),

and the complete article (scope = max).

The baseline algorithm for malapropism detection is random choice (“chance”),

flagging words as real-word spelling errors in the same proportion as they are

expected to occur in the data. In addition, we compare our results to those of Hirst

and St-Onge (1998).

5.2 Example results

In this section, we give examples of situations in which the algorithm succeeded

and those in which it failed. In the subsequent section, we analyze the results

quantitatively.

The malapropism in the following example was detected and corrected in all

search scopes:

Example 6

Maybe the reasons the House Democrats won’t let the contras stand and fight for

what they believe in is because the Democrats themselves no longer stand and

fight for their beliefs. The House’s liberals want to pull the plug on the rebels but,

lacking the courage to hold a straight up or down vote on that policy and expose its

consequences to the U.S. electorate, they have to disguise their intension [intention]

as a funding “moratorium.”

No relationship was found between intension and any other word in the search

scope; intention was the only possible spelling variation, and it was found to be

related to reason, want, policy, vote, stand, and belief.

This malapropism was detected, but in some conditions was wrongly corrected:

Example 7

American Express says . . . it doesn’t know what the muss [fuss] is all about.

Although no connections could be found for muss in most search scopes, con-

nections were found not only for fuss but also for other spelling variations, such

as mass (connected to number in an adjacent sentence) and mugs (in the sense of

gullible people, connected to group nearby). And with scope = 1, fuss itself was not

among the candidate corrections but mugs was.

The algorithm failed completely on this example:

Example 8

Mr. Russell argues that usury flaw [law] depressed rates below market levels years

ago . . .

The word flaw was found to be related to the word state in a nearby sentence (flaw

is-a imperfection is-a state), although state was used in that sentence in the sense

of ‘nation’. This example shows the limitations of the very rough disambiguation

method in the algorithm.

Last, we illustrate two particular problems for the algorithm. The first is idiomatic

expressions that use words unrelated to the topic:
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Example 9

Banks need to realize that there is a fox in the henhouse . . .

The word fox had no relationships in narrower search scopes; box was suggested

in its place. (In broader search scopes, fox was accepted because of a spurious

relationship with American nearby: in WordNet, both Fox and American are

hyponyms of natural language.) The word henhouse was also suspected of being

a malapropism, but had no spelling variations. The second problem is rare words

that do not appear in the corpus that was used to generate the word probabilities

for the method:

Example 10

Charles T. Russell used to play trombone in Pittsburgh burlesque houses and with

big bands in the Southeast.

The word trombone does not appear in the Brown Corpus, and so has zero

probability, which leads to taking the logarithm of zero in equation 1. (There is

no smoothing in Jiang and Conrath’s measure.)

5.3 Quantitative results

We view malapropism detection as a retrieval task and present our results below

in terms of precision, recall, and F-measure for each different search scope. In the

first step of the algorithm, we say that a suspect is a true suspect if it is indeed

a malapropism and a false suspect if it isn’t. In the second step, if an alarm word

is indeed a malapropism, we say that the alarm is a true alarm and that the

malapropism has been detected; otherwise, it is a false alarm. Then we can define

precision (P ), recall (R), and F-measure (F) for suspicion (S ), involving only the first

step, and for detection (D), involving both steps, as follows:

Suspicion

PS =
number of true suspects

number of suspects
,(2)

RS =
number of true suspects

number of malapropisms in text
,(3)

FS =
2 × PS × RS

PS + RS

.(4)

Detection

PD =
number of true alarms

number of alarms
,(5)

RD =
number of true alarms

number of malapropisms in text
,(6)

FD =
2 × PD × RD

PD + RD

.(7)
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Fig. 4. Suspicion precision (PS ), recall (RS ), and F-measure (FS ), by scope.

Table 1. Precision, recall, and F after the first step (suspicion) and second step

(detection) of the algorithm, varying the scope of the search for related words to

1, 3, or 5 paragraphs or the complete news article (max)

Suspicion Detection

Scope PS RS FS PD RD FD

1 0.064 0.536 0.112 0.184 0.498 0.254

3 0.086 0.383 0.135 0.205 0.372 0.245

5 0.097 0.326 0.141 0.219 0.322 0.243

max 0.111 0.233 0.137 0.247 0.231 0.211

Chance 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129

5.3.1 Suspicion

We look first at the results for suspicion – just identifying words that have no

semantically related word nearby. Obviously, the chance of finding some word that

is judged to be related to the target word will increase with the size of the scope

of the search (with a large enough scope, e.g. a complete book, we would probably

find a relative for just about any word). So we expect recall to decrease as scope

increases, because some relationships will be found even for malapropisms; that

is, there will be more false negatives. But we expect that precision will increase

with scope, as it becomes more likely that (genuine) relationships will be found for

non-malapropisms; that is, there will be fewer false positives, and this factor will

outweigh the decrease in the overall number of suspects found.

Figure 4 and the left-hand side of Table 1 show suspicion precision, recall, and

F for each of the search scopes, computed as the mean values of these statistics

across our collection of 481 articles (which constitute a random sample from the
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Table 2. Overall (single-point) precision, recall, and F after the first step (suspicion)

and second step (detection) of Hirst and St-Onge’s (1998) system and of our system,

varying the scope of the search for related words to 1, 3, or 5 paragraphs or the

complete news article (max)

Suspicion Detection

Scope PS RS FS PD RD FD

Hirst–St-Onge 0.055 0.314 0.094 0.125 0.282 0.174

1 0.060 0.516 0.107 0.157 0.484 0.237

3 0.079 0.373 0.131 0.199 0.365 0.258

5 0.089 0.309 0.139 0.225 0.306 0.260

max 0.103 0.193 0.134 0.274 0.192 0.226

population of all WSJ articles). The values of precision range from 6.4% to 11.1%,

increasing significantly from scope 1 to the larger scopes8 and those of recall range

from 23.3% to 53.6%, decreasing, as expected, with scope (significantly everywhere

except from 3 to 5). The value of F ranges between 11.2% and 14.1%, with a

significant performance improvement from scope 1 to scope 5. All these values are

significantly (p < 0.001) better than chance, for which all measures are 1.29% (and,

of course, this is merely the first stage of a two-stage algorithm).9 Moreover, the

value for precision is inherently limited by the likelihood, as mentioned above, that,

especially for small search scopes, there will be words other than our deliberate

malapropisms that are genuinely unrelated to all others in the scope.

Although Hirst and St-Onge used their own, custom-made, measures of system

performance (see St-Onge (1995)), we can use their figures to compute overall

precision, recall, and F for their system; this is shown in the top row of the left side

of Table 2. These can then be compared with the corresponding quantities computed

for our system (shown in the remaining rows of the left side of the table), which are

seen to be far superior – with the crucial qualification that this comparison bears no

statistical significance because, unlike the figures in Table 1, these are single-point

figures, not per-article means (which is why they differ from those in Table 1).

5.3.2 Detection

We now turn to the results for malapropism detection, after the second step of

the algorithm. In the detection step, the suspects are winnowed by checking the

spelling variations of each for relatedness to context. Since (true) alarms can only

8 All the comparisons presented, except those with the baseline, were performed with the
Bonferroni multiple-comparison technique (Agresti and Finlay 1997), with an overall signi-
ficance level of .01.

9 To make statistically meaningful comparisons possible, we calculated a separate proportion
for each WSJ article in the test data, by analogy with the method used to compute the
performance of our system. The mean was 1.29%, slightly different from the overall
proportion of 1.31%.
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Fig. 5. Detection precision (PD), recall (RD), and F-measure (FD), by scope.

result from (true) suspects, recall can only decrease (more precisely, not increase)

from that for suspicion (cf. equations (3) and (6)). However, if the system is any

good, the proportion of false alarms will reduce more considerably – far fewer false

suspects will become alarms than true suspects – thus resulting in higher precision

for detection than for suspicion (cf. equations (2) and (5)).

Figure 5 and the right-hand side of Table 1 show precision, recall, and F for

detection, determined by the same method as those for suspicion. The values of

recall range from 23.1% to just under 50%. While these values are, as expected,

lower than those for suspicion recall, the decline (of 0.3–3.7 percentage points) is

not statistically significant. The values of precision range from 18.4% to 24.7%,

increasing, as expected, from suspicion precision – and the increase (of between 11.9

and 13.6 percentage points) is statistically significant at each scope. Furthermore, the

increase in precision outweighs the decline in recall, and F , which now ranges from

21.1% to 25.4%, increases by 10.7 percentage points on average; this increase is also

statistically significant for all scopes. Again, even the lower ends of the precision,

recall, and F ranges are significantly (p < 0.001) better than chance (which again

is 1.29%), and the results are quite impressive (e.g. 18% precision, 50% recall for

scope = 1, which had the highest FD). The right-hand side of Table 2 shows that

this performance again far exceeds that of Hirst and St-Onge.

Scope differences As in the suspicion stage, detection recall goes down with scope

(statistically significantly, except from 3 to 5); precision appears to go up, but the

increase is in fact statistically significant only between 1 and max. These overall

flatter precision and recall graphs explain the picture for FD: there are no significant

differences among the scopes, and so the F graph is not significantly different from

being flat. Thus we can choose scope = 1 – the smallest, most efficient search – as

the optimal scope for our malapropism detector.
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5.3.3 Correction

Last, we look at how often detection of a malapropism led to correction of the error.

Our algorithm is founded on the assumption that a spelling variation that is more

related to context than a malapropism is will be the correct word that the writer

intended (or, if there is more than one such spelling variation, then the correct word

will be a member of the set). But it is nonetheless possible that a true malapropism

could be detected and yet the spelling variation (or set of variations) responsible for

this detection is not correct either – in effect, it would be another malapropism, and

the detection of the initial malapropism would have been just a lucky accident. We

saw this in the fuss–mugs example earlier (Example 7 in section 5.2).

In our experiments, we observed only a few such “lucky accidents”; as expected, in

almost all cases the correct word was the spelling variation, or one of the variations,

responsible for detection of the malapropism, and thus would be suggested to the

user in an interactive system. Specifically, the proportion of detected malapropisms

for which the correct replacement was found ranged from 92% for scope = 1 to

97.4% for scope = max.

6 Discussion

With a recall of 50% and precision of nearly 20%, our system approaches what we

believe is a level of practical usability for malapropism detection and correction. It

is not realistic to expect absolute correctness, 100% precision and recall, nor is this

level of performance necessary for the system to be useful. In conventional interactive

spelling correction, it is generally assumed that very high recall is imperative but

precision of 25% or even less is acceptable – that is, the user may reject more than

three out of four of the system’s suggestions without deprecating the system as

‘dumb’ or not worth using. Very high recall is not yet achievable in unconstrained,

open-ended real-word spelling correction, but it is presently unknown just what a

typical user would consider to be an acceptable performance level. Nonetheless, we

believe that the performance of our system is competitive, especially in light of the

constraints under which it presently operates.

Limitations of WordNet In particular, the performance of our prototype is

constrained by limitations that arise from the use of WordNet, many of which

are likely to be eliminated or attenuated in the future. For example, we have already

mentioned in section 4.2 that our prototype uses only the noun portion of WordNet

(though adjectives and verb lemmas are taken as equivalent to any noun to which

they are identical in spelling) and that a complete system would require links between

synsets for different parts of speech, as WordNet 2.0 now permits. Another limitation

arises from the fine-grainedness of WordNet; its fine division of word-senses and

its inclusion of obscure and metaphoric senses (not labeled as such) are more likely

to lead our algorithm astray than to help it. The coarse-grained WordNet presently

under development by Mihalcea and Moldovan (2001) could help alleviate this.
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Efficiency In our present system, we perform a search in WordNet for each pair of

words whose semantic relatedness we wish to know. If semantic-relatedness measures

were pre-compiled for all possible pairs of synsets in WordNet, this search could

be replaced by table look-up. While the integrated WordNet of the future might

contain, say, 100,000 distinct synsets, implying 1010 ordered pairs, in practice the

table would be symmetric and very sparse; if each word has an above-threshold

semantic relationship to no more than a couple of hundred others, and probably

fewer, the size of the table might not need to be significantly greater than that of

WordNet itself.

Similarity versus semantic relatedness Although we have spoken throughout the

paper of semantic relatedness, the Jiang–Conrath measure that we have used is

actually a measure of similarity (expressed as its inverse, semantic distance) rather

than semantic relatedness per se: the only links of WordNet that it uses are

hypernymy, hyponymy, and the implicit link of synonymy. This is in contrast

to the measure of Hirst and St-Onge, which used all WordNet noun synset links,

including antonymy, meronymy, and holonymy. In a separate paper (Budanitsky

and Hirst submitted), in which we compare and evaluate a number of measures

of semantic relatedness, we explain in detail why the Jiang–Conrath measure is

superior overall to the Hirst–St-Onge measure, even though it will not find non-

hypernymic semantic relationships (such as yacht–keel) that would clearly be helpful

in our task. But regardless of which WordNet relationships are and aren’t used,

“non-classical” semantic relationships (Morris, Beghtol and Hirst 2003) that do

not appear in WordNet at all, especially those that are merely matters of typical

association (e.g. penguin–Antarctica) will not be found. EuroWordNet (Vossen 1998)

employs additional lexical relationships, such as non-factitive causality (search–find),

that might begin to help with this. In Budanitsky and Hirst (submitted), we discuss

this matter, including consideration of the effects of using a Roget-style thesaurus in

place of WordNet. (We are presently experimenting with the Macquarie Thesaurus

(Bernard 1986).) Here, it suffices to point out that because the essence of our

method lies in a sensitivity to cohesion and perturbations of cohesion, the success

of its performance depends on having an excellent measure of semantic relatedness.

The Jiang–Conrath measure for WordNet has done well, but there is still much

room for improvement.

Setting the threshold of relatedness The algorithm treats semantic relatedness as

boolean: two words are either related or they aren’t. So if the underlying measure

of relatedness is a continuous function (and most of the measures that have been

proposed are – see Budanitsky (1999)), then it is necessary to find the breakpoint

at which relatedness is separated from unrelatedness. We calibrated the Jiang–

Conrath measure with data on human judgments of “similarity of meaning” from

Rubenstein and Goodenough’s experiments, taking the breakpoint to correspond

to that observed in their data. This was justified by the strong correlation that we

found between the measure and the human judgments. But the correlation was by

no means perfect; the Rubenstein–Goodenough dataset is very small; and of course,
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similarity of meaning is not the same thing as semantic relatedness. However, there

is at present no large dataset of human judgments of semantic relatedness and no

better way to calibrate a computational measure.10

Proper names Last, our method is limited by its inability to use proper nouns in its

considerations of semantic relatedness. As we pointed out in section 2, misleading

proper names (such as Lotus Development Corporation) could get Hirst and

St-Onge’s system into serious difficulty, and for that reason we simply excluded them

from consideration in our system. But this is also unsatisfactory; many company

names contain words used with their ordinary meaning that are potentially helpful

in our task – for example, United Parcel Service – and it would be helpful to

have some method of identifying such words. In addition, many widely known

brand names carry meaning that we could usefully relate to other words – for

example, McDonald’s–hamburger; Visa–MasterCard–credit – and the same is true of

the names of well-known places and people, some of which are indeed listed in

WordNet (e.g. New York, Statue of Liberty, Bill Clinton). But any thesaurus that

we choose will contain comparatively few proper nouns, and a topical supplement

would be desirable.

Limitations of our method of evaluation In addition to limitations in the algorithm

itself, our method of evaluation also has its limitations: the use of artificial test data

and our somewhat narrow definition of “spelling variation”. The need for artificial

data is obvious: there is no large-enough, naturally occurring annotated corpus of

malapropisms. But, following Hirst and St-Onge, we chose the Wall Street Journal

as the basis for our corpus merely as a matter of convenience. Thus our results do

not necessarily hold for other genres of text. The malapropism-insertion rate of one

word in 200 was an arbitrary choice that seemed “sparse enough” to prevent the

malapropisms from interacting with one another. Inserting too many malapropisms

(one word in ten, say) would be unrealistic and would not just perturb the cohesion

of the text but completely destroy it, undermining the very basis of the algorithm.

Thus there is an underlying assumption that humans, likewise, do not normally

make malapropisms so frequently as to render their text wholly incoherent.

Our results are in part dependent upon the definition of “spelling variation” that

we chose – that used by the open-source spelling checker ispell. Clearly, the broader

the definition, the greater the chance of false alarms and the less well the algorithm

will perform. (In the limit, any word could be a spelling variation of any other, so

a spurious connection could always be found.) We could not try our algorithm with

the extremely liberal definition of spelling variation that is used in Microsoft Word

(see footnote 4) as this is proprietary information, but our results would almost

certainly be poorer. However, this must be seen as a weakness of Word’s overly

broad definition, not of our algorithm.

10 Evgeniy Gabrilovich has recently made available a dataset of similarity judgments of 353
English word pairs that were used by Finkelstein, Gabrilovich, Matias, Rivlin, Solan,
Wolfman and Ruppin (2002). This is still very small, but we plan nonetheless to try
recalibrating with this dataset in future work.
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7 Related research

Kukich (1992) reviews early approaches to the detection of real-word spelling

errors; such techniques included looking for unlikely part-of-speech bigrams (Atwell

and Elliott 1987), and looking for unlikely word trigrams (Mays, Damerau and

Mercer 1991). Some of the more recent work on spelling correction has focused

on smarter identification of non-word errors (Zhao and Truemper 1999), the use

of syntax (Vosse 1994; Zhao and Truemper 1999), and methods for improving the

suggested corrections offered for non-word errors (Mc Hale and Crowter 1996;

Agirre, Gojenola, Sarasola and Voutilainen 1998).

The word-trigram method of Mays, Damerau and Mercer (1991) used ideas from

a project in speech recognition (Bahl, Jelinek and Mercer 1983). They attempted

to apply a statistical language model in which “syntactic, semantic, and pragmatic

knowledge is conflated into word trigram conditional probabilities . . . derived from

statistics gathered from large bodies of text”. By itself, the model can be used “to

judge the relative well-formedness of sentences”. This model was combined with

the noisy-channel model, thereby making it possible to express the “a priori belief

that the observed input word is correct”. Briefly, their approach was to consider all

variant sentences s′ = w′
1w

′
2 . . . w

′
k of a given sentence s = w1w2 . . . wk , where w′

i is a

spelling variation of wi for each i, choosing the sentence (possibly s itself) with the

highest likelihood.

Mays, Damerau and Mercer (1991) report the results of a preliminary experiment,

intended to “assess the viability” of their approach, in which it was applied to just

100 sentences from “the AP newswire and transcripts of the Canadian Parliament”,

with 8628 spelling variations; the trigram probabilities were borrowed from the

IBM speech recognition project (Bahl et al. 1983). All of these contained only words

from the 20,000 word vocabulary of the IBM corpus, and, to avoid a combinatorial

explosion, each s′ was a result of a single-word perturbation – that is, for each

variant sentence, w′
i �= wi for exactly one i. Unfortunately, the idiosyncratic terms

used to express their results, coupled with the unavailability of their training corpus,

preclude a direct comparison with our work. We are presently reconstructing and

re-implementing their method, and will report on a comparison of word-trigram

and coherence-based methods in a future paper.

More recently, Verberne (2002) developed a word-trigram method that, instead of

using probabilities, considered a trigram to be probably wrong if and only if it does

not occur in the British National Corpus. Her evaluation of the method was both

small and, on her own test data, methodologically problematic. On a 7000-word

sample of our Wall Street Journal test data, the method showed a recall of 33% for

correction at the price of a precision of only 5%.

Much recent work specifically on real-word spelling correction, especially that of

Golding and colleagues (Golding and Roth 1996, 1999; Golding and Schabes 1996)

on methods for what they call “context-sensitive spelling correction”, has viewed the

task as one of “word disambiguation” (Golding and Roth 1996). Ambiguity among

words is modeled by pre-specified confusion sets: a confusion set C = {w1, . . . , wn}
means that each word wi ∈ C “could mistakenly be typed” (Golding and Schabes
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1996) when another word wj ∈ C was intended – for example, {principal, principle}.
Given an occurrence of a word from C in the text, then, the task is to decide, from the

context, which wk ∈ C was actually intended. The specific techniques of addressing

the issue are what distinguish the methods. WinSpell (Golding and Roth 1996, 1999)

uses a machine-learning algorithm in which weights are updated multiplicatively and

members of confusion sets are represented as clouds of “simple and slow neuron-like”

nodes that correspond to co-occurrence and collocation features. Tribayes (Golding

and Schabes 1996) combines a part-of-speech trigram method and a Bayesian hybrid

method from Golding (1995), both statistical in nature: the trigram method relies on

probabilities of part-of-speech sequences and fires for confusion sets whose members

would differ as parts of speech when substituted in a given sentence (e.g. {hear, here},
{cite, sight, site}, and some cases of {raise, rise}); the Bayesian hybrid method relies

on probabilities of the presence of particular words, as well as collocations and

sequences of part-of-speech tags, within a window around a target word and is

applied in all the other cases (e.g. for confusion sets like {country, county} and (most

cases of) {peace, piece}). When tested on 21 confusion sets (taken mostly from the

list of commonly confused words that is given as an appendix of the Random House

Unabridged Dictionary (Flexner 1983)), these methods were correct, on average, 93%

to 96.4% of the time, compared with a baseline of 74.8% by choosing the most

frequent member of the confusion set (Golding and Roth 1999). Carlson, Rosen and

Roth (2001) subsequently scaled the method up to 265 confusion sets with up to

99% accuracy.

Other researchers have also used the confusion set model of correction, but with

other disambiguation methods. Mangu and Brill (1997), put off by the idea of

extracting “large sets of opaque features and weights”, as in the Golding methods,

applied data-driven transformation-based learning to “automatically learn simple,

small . . . sets” of rules for correcting probable instances of confusion-set errors. The

rules acquired were intended to account for transformations that correspond to

co-occurrences, collocations, and collocations with wildcards. An example of a rule is

“Change except to accept if the word three before is he and the immediately preceding

word is not.” The method was tested on 14 confusion sets, with results that were

“comparable” to those of Golding and colleagues despite the relative simplicity of the

method. Jones and Martin (1997) applied latent semantic analysis (Landauer, Foltz

and Laham 1998) to the task of discriminating members of confusion sets. Treating

sentences as documents and words and word bigrams (stemmed and weighted) as

terms, they constructed a separate predictor space for each confusion set, then formed

projections of a test sentence onto the space (by computing a weighted average of

its term vectors), and chose the member of the confusion set whose vector is closest

(in the Euclidean sense). Testing the method with 18 of the confusion sets that

Golding and colleagues used, they found the results to be “competitive” with those

of Tribayes.

One advantage of these machine-learning-based confusion-set methods over

semantic methods such as ours is that they can handle function-word and low-

semantic-content–word errors with apparent ease, simply by considering confusion

sets such as {than, then} and {to, too}. Furthermore, they are not restricted to spelling
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variations: {amount, number} is a perfectly valid confusion set. Their principal

drawback, however, is that all the confusion sets must be defined in advance: they

can look only for specific errors that they know about ahead of time. Thus the

process of detection is reduced to what might be termed verification: a word will

be checked for being an error only if it belongs to a confusion set; moreover, every

occurrence of such a word will undergo an attempt to be corrected (i.e. its confusions

will be considered in its place every time the word is encountered). We therefore

see confusion-set methods as complementary to our own; each is suitable for a

particular kind of error, and a complete spelling checker should draw on both.

Al-Mubaid and Truemper (forthcoming) present a method that is based on the

classification of lexical context. Their system aims to find slips in typing or perfor-

mance errors rather than competence errors; like our system, it will be misled by

consistent mistakes. The method is quite complex, but in outline their idea is as

follows. In the training phase, deliberate real-word spelling errors are introduced into

a “training text”. Each word in the text is characterized by a vector that represents

its immediate context (±2 tokens), and a classifier then derives rules to distinguish

words that are erroneous in their context, as exemplified in the training text, from

words that are correct in their context, as exemplified by a separate, unaltered

“history text” from the same domain. The method is limited by the fact that both

the target word and each of its spelling variations must occur at least three times

in each of the training and history texts. It is therefore unable to derive rules for

many words, though it performs fairly well on those words that it is able to check.

Moreover, a separate set of classification rules must be derived for each domain

(with training times of many hours), and the original history text for each domain

must be present along with the classification rules whenever the system is used to

check a text.

8 Conclusion

The method of detecting and correcting real-word spelling errors that we have

presented in this paper is, of course, a research prototype that still awaits integration

with a conventional spelling checker for non-word errors and a suitable user interface

in a word-processor (or similar software) in order to be tested in a realistic setting.

While we speculated above that the performance of our system, in terms of precision

and recall, approaches practical usability, only a trial in an integrated system could

test this and perhaps determine just what level of performance users would find

sufficient in order to gladly use such a system.

We do not claim that our method by itself is sufficient for finding real-word errors.

As we remarked above, a practical spelling checker would also employ a confusion

set method on words for which it was appropriate, and would probably, in addition,

use syntactic methods to detect errors, especially those in closed-class words, that

result in syntactic ill-formedness.

We have not attempted to address issues in the user interface. Conventional

spelling checkers have very spare interfaces; typically, the suspect word is highlighted

in some way and a list of alternatives is presented; it is the user’s job to recognize
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whether the original word or one of the alternatives is what was intended. An

integrated system must be careful to distinguish possible malapropisms from non-

word errors, or else the user is likely to too-rapidly recognize the highlighted word

as correctly spelled and move on. So some message relating to the meaning must be

presented; for example:

Wrong word?

Ontologist means someone who studies the nature of existence.

Did you mean oncologist, someone who studies or treats cancer?

If WordNet is present in the system anyway, its glosses and other words in the

synset can be used as the basis for such messages. However, the precise nature of

the message is a matter for study.

By recognizing that malapropisms will usually perturb the lexical cohesion of a

text, we have demonstrated a practical method for detecting and correcting real-

word spelling errors by looking for spelling variations that restore cohesion. Further

development of the approach will depend, in turn, upon the development of more-

appropriate lexical resources and better models of semantic relatedness.
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