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Abstract

Spelling errors that happen to result in a real word in the lexicon cannot be detected by a
conventional spelling checker. We present a method for detecting and correcting many such
errors by identifying tokens that are semantically unrelated to their context and are spelling
variations of words that would be related to the context. Relatedness to context is determined
by a measure of semantic distance initially proposed by Jiang and Conrath (1997). We tested
the method on an artificial corpus of errors; it achieved recall of 23 to 50% and precision of 18
to 25%.

1 Real-word spelling errors

Conventional spelling checkers detect typing errors simply by comparing each token of a text

against a dictionary of words that are known to be correctly spelled. Any token that matches an

element of the dictionary, possibly after some minimal morphological analysis, is deemed to be

correctly spelled; any token that matches no element is flagged as a possible error, with near-

matches displayed as suggested corrections. Typing errors that happen to result in a token that

is a correctly spelled word, albeit not the one that the user intended, cannot be detected by such

systems. Such errors are not uncommon; Mitton [1987, 1996] found that “real-word errors account

for about a quarter to a third of all spelling errors, perhaps more if you include word-division
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errors”. A fortiori, it is now common for real-word errors to beintroducedby auto-correction

mechanisms1 and by conventional spelling checkers when the user carelessly accepts an incorrect

recommendation by the system or inadvertently chooses the wrong correction from a menu. By

contrast, a human proofreader, using linguistic and world knowledge, will usually notice an error

of this kind because it will cause the text to be set somehow awry. If the erroneous token is of a

different part of speech from that intended, then the sentence that it is in might not be parsable:

Example 1 The instrumental parts were recorded at different times andthem [then]later com-

bined on the master tape to produce special effects.

If the erroneous token is semantically unrelated to the intended one, then the sentence might not

make sense:

Example 2 It is my sincerehole [hope]that you will recover swiftly.

Some typing errors will cause both conditions to occur:

Example 3 We allhole [hope]that you will recover swiftly.

And, of course, some errors result in a perfectly well-formed text, even if they produce a meaning

other than that intended, and hence cannot be detected without knowledge or inference of the

writer’s intention:
1 An auto-correction mechanism watches out for certain pre-defined “errors” as the user types, replacing them

with a “correction” and giving no indication or warning of the change. Such mechanisms are intended for undoubted
typing errors for which only one correction is plausible, such as correctingaccomodateto accommodate; deliberate
misspellings (as in this footnote) are precluded. However, the ‘AutoCorrect’ feature of Microsoft Word contains by
default many “corrections” for which other possibilities are also plausible. For example (in Microsoft Word v.X for
Macintosh, with all updates to December 2003),wierd is changed toweird, althoughwiredandwieldare also plausible;
eyt is changed toyet, althougheyeis plausible; andHerat is changed toHeart, althoughHerat is plausibly correct as
it stands. Thus, a typing error that could have been subsequently detected by a spelling-checker may be replaced by a
real-word error that can’t be.
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Example 4 The committee isnow [not]prepared to grant your request.

See Kukich [1992] or Mitton [1996] for an extensive survey of types of spelling errors and early

approaches to the problem.

In this paper, we will discuss the detection and correction of errors that result in semantic

anomaly, as in example 2. To distinguish these errors from the other kinds, we will refer to them,

somewhat loosely, asmalapropisms. Strictly speaking, a malapropism is an amusing substitution,

due to ignorance and pretentiousness on the part of the writer or speaker, of one word for another

of similar spelling or sound:2

Example 5 She has reached thepinochle [pinnacle]of success.

For our purposes in this paper, it is immaterial whether the cause of the error is ignorance, preten-

tiousness, poor typing, or careless use of a conventional spelling checker (and whether or not the

error is cause for amusement). Our goal is thus considerably broader than that of other recent work

on real-word errors that aims simply at detecting occurrences of any of a small, pre-defined set of

common errors; see section 7 below for discussion of this work.

2 Malapropisms as perturbations of cohesion

By their nature, naturally occurring coherent, meaningful texts contain many instances of the

mechanisms oflinguistic cohesion, such as word repetitions, coreference, and sets of semanti-

cally related words [Halliday and Hasan 1976, Hoey 1991]. A coherent text will naturally refer to
2The term is sometimes used even more loosely; for example, many of the spoken “malapropisms” at-

tributed to George W. Bush, while possibly both amusing and due to ignorance, are actually non-word errors
(They misunderestimated me; This issue doesn’t seem to resignate with the people) or other kinds of linguistic
or non-linguistic error (Families is . . . where wings take dream; Our nation must come together to unite); see
http://slate.msn.com/Features/bushisms/bushisms.asp.
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various concepts that are related to its topic or topics and hence are related to one another. The

recurrence in a text of lexemes related to a particular concept is often characterized metaphor-

ically as a ‘chain’ of words running through the text, linked by lexical and semantic relation-

ships such as literal repetition, coreference, synonymy, and hyponymy [Halliday and Hasan 1976,

Morris and Hirst 1991, Hoey 1991]. A coherent text will have many suchlexical chains, each

running through part or all of the text and pertaining to some aspect of the topic or topics of the

text; and, conversely, most content words of the text will be members of one or more chains.

Because they are indicative of the structure and content of a text, lexical chains have been ap-

plied in computational linguistics for tasks such as text segmentation [Morris and Hirst 1991,

Okumura and Honda 1994], lexical disambiguation [Okumura and Honda 1994], automatic cre-

ation of hypertext [Green 1999], and text summarization [Barzilay and Elhadad 1999, Silber and

McCoy 2002]; see Budanitsky [1999] for a detailed review. However, it remains an open research

question as to just what kinds and degrees of semantic relationship should qualify as links for a

lexical chain; we discuss this issue in a separate paper [Budanitsky and Hirst in preparation].

A malapropism is a perturbation of the cohesion (and coherence) of a text. By definition, it

is semantically inappropriate in its immediate context, and is probably therefore also semantically

inappropriate in the broader context of the text itself. It is therefore unlikely that a malapropism

can be linked into any of the lexical chains of the nearby text; it will probably bear no semantic

relationship to any other word in the text.3 On the other hand, it is likely (though not assured)
3There are two qualifications to this statement. First, the malapropisms that we are considering are primarily

performance errors — slips in typing. So if the malapropism is instead a competence error and is repeated within the
text — consistently typingpinochlefor pinnacle, for example, in the belief that the former is the correct spelling of
the latter — then the malapropisms will form a lexical chain by their repetition. Such a text would be incoherent but
cohesive, and the methods to be discussed below will not apply. Second, there is actually a mild cognitive bias in
performance errors to words that are indeed related to the intended word or its context [Fromkin 1980], but we ignore
this effect here.
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that the intended wordwould fit into a lexical chain in the text. Thus the problem of detecting

and correcting malapropisms can be cast as the problem of detecting tokens that fit into no lexical

chain of the text and replacing them with words for which they are plausible mistypings that do fit

into a lexical chain.

This idea was first tried by Hirst and St-Onge [1998], who reported modest success; while the

system’s performance in both detecting and correcting malapropisms was well above baseline, it

was nonetheless prone to far too many false alarms: for every true malapropism that it found, it

would flag about ten other tokens that were not malapropisms at all. It was especially vulnerable

to confusion by proper names and by common words of minimal topical content; for example,

it suggested thatyearwas a mistyping ofpear in the context ofLotus Development Corporation,

becauselotusandpearare both hyponyms offruit and hence could form a lexical chain. One of the

serious problems underlying the system was an inadequate account of semantic relatedness in its

construction of lexical chains. Two non-identical lexemes were considered to be related if and only

if a short path of an allowable shape could be found between their synsets in the noun portion of

WordNet. Paths could follow any of the WordNet relationships. (The details of ‘allowable shape’

and requisite shortness are not necessary here; the interested reader may see [Hirst and St-Onge

1998].)

3 A new algorithm for detecting and correcting malapropisms

We have developed a new algorithm for malapropism detection and correction that, like Hirst and

St-Onge’s, is based on the idea of detecting and eliminating perturbations of cohesion in text.

However, the new algorithm does not use lexical chains per se; rather, it treats a text as a bag of
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words (more precisely, as a list of paragraph-sized bags of words). Forgoing the chain structures

enables the search to be bidirectional instead of left-to-right and to wrap around from the end of

the text to the start, thereby recognizing the potential cohesion between introduction and conclu-

sion. In addition, the measure of semantic relatedness that the algorithm employs can be varied

independently; the scope of search is an additional parameter; distances in the text are measured in

paragraphs rather than sentences; and disambiguation of words may be only partial. The new algo-

rithm also includes proper-name recognition and addresses problems of ambiguity in inflectional

morphology.

In accordance with the discussion above, the algorithm makes the following assumptions:

� A real-word spelling error is unlikely to be semantically related to the text.

� Usually, the writer’s intended word will be semantically related to nearby words.

� It is unlikely that an intended word that is semantically unrelated to all those nearby will

have a spelling variation thatis related.

In addition, the algorithm requires the definition of two independent mechanisms. First, it

requires a mechanism that, given a word (or any string), returns a list of all the words in the lexicon

for which that word is a plausible misspelling — itsspelling variations. Such a mechanism can be

found in any conventional spelling checker. In the system to be described in section 4 below, we

define the spelling variations of a wordw to be those words in the lexicon that are derived fromw

by the insertion, deletion, or replacement of a single character, or the transposition of two adjacent

characters. However, broader or narrower definitions are possible. For example, one might allow

only substitutions of characters that are close to one another on the keyboard [Al-Mubaid and
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Truemper forthcoming], or take into account the probability of each particular typing error, using

the data of Kernighan, Church, and Gale [1990]. At the risk of becoming dialect-dependent, the

definition might permit homophones and other phonetic near-matches such askettle–cattleand

pour–poor. [Al-Mubaid and Truemper forthcoming].4

Second, the algorithm requires a mechanism that, given two words, determines whether or not

those words aresemantically related(or semantically close). It’s important to observe that seman-

tic relatedness is not just similarity; similar entities are usually assumed to be semantically related

by virtue of their likeness (bank–trust company), but dissimilar entities may also be semantically

related by lexical relationships such as meronymy (car–wheel) and antonymy (hot–cold), or just by

any kind of functional relationship or frequent association or co-occurrence of ideas (soap–wash,

penguin–Antarctica). Here, we require relatedness in the broadest sense — pertaining to or associ-

ated with the same topic. Nonetheless, taking relatedness too broadly will result in failing to detect

malapropisms; they will be spuriously found to be related to their context. We will discuss a con-

strained measure of semantic relatedness in section 4.1 below. A more-general discussion of such

measures and the theoretical issues that they raise is given by Budanitsky [1999] and Budanitsky

and Hirst [in preparation].

In outline, the algorithm for detecting and correcting malapropisms is as follows: Words are
4 Some commercial spelling checkers are extremely liberal in their notion of spelling variation, allowing multiple

insertions, deletions, and transpositions — a strategy that taken to extremes could propose any word for any other.
For example, the spelling checker in Microsoft Word, given a list of uncommon names, suggests implausible changes
such as these:Procopiato Porkpieor Preoccupied, Prunellato Runnels, andPhilenato Phalanxor Hyena. (This is in
contrast with the auto-correction mechanism in the same software, whose definition of spelling variation is much too
narrow; see footnote 1 above.) Overly broad definitions will reduce the precision of our algorithm, as it becomes more
likely that some spelling variation will be wrongly preferred to the original word — see section 6 below. Nonetheless,
in practical use, the definition of spelling variation used with the algorithm should be the same as that used with any
associated non-word spelling corrector or auto-correct mechanism so that the errors that they make can be undone.

Pedler [2001a, 2001b] studied the performance of four spelling checkers on a corpus of writing by dyslexics (in
which the error rate was greater than one word in every five) and found that while 47% of the errors involved more
than one addition, deletion, or substitution, Word’s broad definition of spelling variation gave it no practical advantage
over other spelling checkers with more-conservative definitions.
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0a. Look for non-word errors in the text, and make corrections (with help from user).

0b. Identify for consideration all words in the text that are in the lexicon but are not on the
stop-list nor used as (part of) the name of a named entity.

1. Mark a word asconfirmedif it occurs more than once in the text, if it occurs in the text as
part of a known phrase, or if, within a window ofn paragraphs (wrapping around to the start
or end of the text if necessary), there are one or more words with a sense that is semantically
related to at least one sense of the word under consideration. When a word is confirmed,
remove from consideration all of its senses that were not involved in its confirmation.

2. If an unconfirmed wordw (a suspect) has a spelling variationw0 that would have been con-
firmed if it had appeared in the text instead ofw, alert the user to the possibility thatw0 was
intended wherew appears (raise an alarm).

Figure 1: Algorithm for malapropism detection and correction.

(crudely) disambiguated where possible by accepting senses that are semantically related to pos-

sible senses of other nearby words. If all senses of any open-class, non–stop-list word that occurs

only once in the text are found to be semantically unrelated to accepted senses of all other nearby

words, but some sense of a spelling variation of that word is related (or is identical to another token

in the context), then it is hypothesized that the original word is an error and the variation is what

the writer intended; the user is warned of this possibility. For example, if no nearby word in a text

is related todiary but one or more are related todairy, we suggest to the user that it is the latter

that was intended. The exact window size implied by “nearby” is a parameter to the algorithm.

A statement of the algorithm is given in figure 1. We now explain each step in detail.

Step 0: Preprocessing

Steps 0a and 0b of the algorithm are preprocessing. The first substep is correction of non-

word spelling errors (perhaps by a conventional spelling checker). This should occur before
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malapropisms are sought (rather than after or in parallel), in order to maximize the number of

words in the text available to check for semantic relatedness to each word considered by the algo-

rithm. Moreover, as we observed earlier, it is not unusual for malapropisms to beintroducedduring

conventional spelling checking, so malapropism detection should follow that — but see also our

remarks in section 8 below on integration of the two processes.

The second substep identifies words in the document that are to be checked for error by remov-

ing from further consideration those that are not in the lexicon at all and those that are on a stop-list.

The algorithm, by its nature, applies only to words whose meaning or meanings are known and

have content that is likely to be topical. We therefore exclude closed-class words and common

non-topical words. Closed-class words are excluded as their role in a text is almost always purely

functional and unrelated to content or topic. It is of course possible that a typing error could turn

a highly contentful word into a closed-class word or vice versa; but the former case will not be

considered by the algorithm and the latter will be considered but not detected. The exclusion of

‘untopical’ open-class words, such asknow, find, andworld, is well-precedented in information

retrieval. Here, there is a trade-off between making the list as short as possible, in order to let

as many words as possible be checked, and making the list as long as possible in order to avoid

spurious relationships, such as theyear–pear–Lotusexample mentioned above.

Step 1: Suspicion

The first step of the algorithm itself is to confirm as correct any word found to be related to at

least one other word in the text. This relationship can be identity — another occurrence of a word

with the same lemma — or it can be a semantic relationship to another word, as discussed above.

In searching for an identical token, the entire text is scanned; but in searching for a semantically
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related word, thescopeof the search may be limited to words that are physically not too far away.

The rationale for this is that in a large text with many topics, there is too high a chance of finding

a spurious semantic relationship between a malapropism and a word in some other part of the text

on a different topic; but this is less likely in the case of identity. (Pollock and Zamora [1983] found

that, with the exception of a handful of frequently misspelled words, misspellings rarely tend to

be repeated in a document.) Of course, the risk of finding a spurious relationship depends on the

nature and length of the text, and different kinds of text could be treated differently. (In the system

to be described in section 4 below, we experimented with search scopes ranging from a single

paragraph to the entire text of a newspaper article.)

When the word under consideration has more than one sense, semantic relationships are sought

between all its senses and all the senses of other words in the search scope. If any relationships are

found between the word under consideration and any others, then only the senses that participate

in those relationships are retained for subsequent searches. Thus words are, rather roughly, disam-

biguated or at least partially disambiguated. For example, if relationships are sought for (senses

of) the wordfile, and a relationship to the tool sense of the wordplaneis the only one found, then

only the tool sense offile will be retained.

In addition to identity and semantic relatedness, we follow St-Onge’s [1995] intuition that the

probability of accidentally forming a multiword compound that can be found in the lexicon (e.g.,

abdominal cavity, chief executive officer, automated teller machine, withdrawal symptom) is so low

that the words of any such phrase occurring in the text can be regarded as mutually confirming.

Any word that cannot be confirmed in this step thus appears unrelated to its context, and might

therefore be a real-word spelling error. We refer to such words assuspects; but it should be under-
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stood that this, by itself, is not sufficient cause to flag the word as a likely malapropism. It is not

at all unusual for a text to contain such words, especially if the search scope — the context — is

limited to a single paragraph or little more than that.

Step 2: Detection

To determine whether a suspect is a likely real-word spelling error, we look for positive evidence:

a spelling variation of the suspect that would fit better into context than the suspect itself does. We

therefore generate all spelling variations and for each one, attempt to confirm it as in Step 1 above.

If at least one spelling variation is confirmed, then we take this as indicating that the variation is a

better fit and hence more likely to be the intended word. The user is then alerted to this possibility.

4 A system for detecting and correcting malapropisms

We have built and evaluated a prototype system to detect and correct the malapropisms in our test

corpus by means of the algorithm above. In this section, we explain the components of the system,

and in the following section, we describe an evaluation of the system.

4.1 Semantic relatedness measure

We tried five different measures of semantic relatedness in our system, all of which rely on a

WordNet-like hierarchical thesaurus [Fellbaum 1998] as their lexical resource. The measures were

those of Hirst and St-Onge [1998], Jiang and Conrath [1997], Leacock and Chodorow [1998], Lin

[1997, 1998], and Resnik [1995]. By comparing the performance of the different measures, which

varied widely, we were able to study theories of semantic relatedness, and we describe this work

in a separate paper [Budanitsky and Hirst in preparation]. Because these issues are orthogonal to
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malapropism detection, we report here only our experiments with the best-performing measure,

which was that of Jiang and Conrath.

Jiang and Conrath’s [1997] measure of semantic relatedness (strictly speaking, of semantic

distance, the inverse of relatedness) is based on both the hierarchical structure of a taxonomy and

the information content (IC) of its nodes. Given a nodec in the hierarchy (a synset in the case

of WordNet), the information content ofc is the negative logarithm of the probability p(c) of

encountering aninstanceof conceptc in a corpus — that is, any lexeme that maps toc (the words

of the synset) or its hyponyms. Then the relatedness of two lexemes that map to nodesc1 andc2

in the hierarchy is computed from the information content of those nodes and that of theirlowest

superordinate(or most specific subsumer), lso(c1;c2), the lowest node in the hierarchy that is an

ancestor to both. Specifically, Jiang and Conrath define the semantic distance between a child-node

c and its parent-nodepar(c) as:

distJC(c; par(c)) = IC(cj par(c)) = IC(c)� IC(par(c)) :

Then the semantic distance between two arbitrary nodesc1 andc2 is the sum of the child-parent

distances along the shortest path that connects them, path(c1;c2). Let N(c1;c2) be the set of nodes

in path(c1;c2), includingc1 andc2 themselves. Then we have:

distJC(c1;c2) = ∑
c2N(c1;c2)rlso(c1;c2)

distJC(c; par(c))

= IC(c1)+ IC(c2)�2� IC(lso(c1;c2))

= 2log(p(lso(c1;c2)))� (log(p(c1))+ log(p(c2))) : (1)

Observe that, as a special case, the distance between two words in the same synset is zero. For

a detailed explication and interpretation of the derivation and justification of Jiang and Conrath’s
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magnitude

extentamount

number limit

Figure 2: Shortest path fromnumberto limit in WordNet 1.5.

measure, see Budanitsky [1999].

For example, in WordNet 1.5,5 the conceptsnumber (‘a sum or total or indefinite quantity

of units or individuals’) andlimit/bounds/boundary (‘the greatest possible extent or degree of

something’) are related through theirlso, magnitude (‘relative size or extent’) ,as shown in fig-

ure 2. The probability of encountering an instance of these concepts in the Brown Corpus (see

below) is respectively 1:746986� 10�3, 9:889191� 10�4, and 3:748222� 10�2, implying re-

spective information content of 9:160916, 9:98186, and 4:73765. Hence distJC(number; limit) =

9:160916+9:98186�2�4:73765= 9:667477.

Corpus Following Resnik [1995], we obtained information content values for each node in

WordNet from frequency counts of words in the complete, untagged Brown Corpus. In their origi-

nal experiments, Jiang and Conrath used SemCor [Milleret al. 1993], a sense-tagged subset of the

Brown Corpus. Choosing the Brown Corpus over SemCor essentially means trading away accu-

racy for size, but, like Resnik, we believe that using a non-disambiguated corpus constitutes a more
5We began this work with WordNet 1.5, and stayed with this version despite newer releases in order to maintain

strict comparability. Our experiments were complete before WordNet 2.0 was released. See section 6 for further
comments.
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general approach. The availability of disambiguated texts such as SemCor is highly limited, due to

the fact that automatic sense-tagging of text remains an open problem and manual sense-tagging

of large corpora is prohibitively labor-intensive. On the other hand, the volume of raw textual data

in electronic form is steadily growing.

Calibrating the measure Because the Jiang–Conrath function returns a numerical measure of

distance on an essentially arbitrary scale, and not the booleanrelated–unrelatedjudgment required

by the malapropism-detection algorithm, we needed to set a threshold distance below which two

lexemes would be deemed close enough to be related. We did this by calibrating the measure

against human judgments of semantic relatedness.

The data that we used were obtained and published by Rubenstein and Goodenough [1965],

who asked 51 human subjects to make “synonymy judgments” on 65 pairs of words. The pairs

ranged from “highly synonymous” (gem–jewel) to “semantically unrelated” (noon–string). Sub-

jects were asked to rate them on the scale of 0.0 to 4.0 according to their “similarity of meaning”

and ignoring any other observed semantic relationships (such as in the pairjourney–car). Ruben-

stein and Goodenough’s results are shown in figure 3; they-axis shows average similarity rating,

and thex-axis shows pairs enumerated by increasing similarity. Observe the broad gap between

pair numbers 37 and 38 that separates the pairs into a more-similar group and a less-similar group.

To calibrate the Jiang–Conrath measure with this data, we evaluated each of the 65 Rubenstein–

Goodenough pairs with the measure. The correlation between the measure and the human simi-

larity judgments was�:781. (The correlation is negative because semantic distance is inversely

related to similarity.) We therefore set the Jiang–Conrath measure’s threshold of relatedness at the

point at which it best separates the two Rubenstein–Goodenough groups.
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Figure 3: Human judgments of similarity on 65 pairs of words, in order of increasing similarity
[Rubenstein and Goodenough 1965].
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4.2 Other components of the system

Lexicon and thesaurus Because the Jiang–Conrath measure requires a hierarchical thesaurus,

we used the noun portion of WordNet 1.5 as our lexicon and thesaurus. However, we did not limit

use of the system to nouns in the text; semantic relatedness is independent of part of speech, and

the algorithm applies to any non–stop-list word found in the lexicon. For our prototype system, we

relied on the fact that, in English, verb lemmas and adjectives that are orthographically identical

to a noun are almost always closely semantically related to that noun and so it was immaterial

to our algorithm what the actual part of speech of the token was.6 For example, for the sentence

Nadia hoped for a miracle, we use the noun synset forhopeeven though it occurs as a verb in the

sentence. While this leads to an obvious limitation on the prototype system — it simply cannot deal

with words that do not have a noun form — there is no reason to think that this will not be resolved

by the advent of a more-integrated hierarchical thesaurus that connects all parts of speech, such

as the wordnets of EuroWordNet [Vossen 1998], the recently released WordNet 2.0, or an on-line

Roget-structured thesaurus. See section 6 for additional discussion.

Stop-list and proper name recognition We use St-Onge’s [1995] stop-list of 221 closed-class

and high-frequency words, which is rather small compared to the lists used in systems for informa-

tion retrieval and other applications in natural language processing. Thus we have opted for wider

coverage over higher precision.

Proper names are filtered out by a module based on a lexical analyzer that was generously made

available to us by Dekang Lin and Nalante Inc.
6There are exceptions to this heuristic, of course. For example, the verbto spell‘to set down the orthographic form

of a word’ is not related to the nounspell ‘magic incantation’ or ‘period of time’.
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Spelling variations To generate spelling variations in Step 2 of the algorithm, we used code from

ispell, an open-source spelling checker for non-word errors,7 whose definition of spelling variation

is as described in section 3 above: a single insertion, deletion, replacement, or transposition.

Lemmas and surface forms Although different occurrences of the same word in a text are rec-

ognized through their having the same lemma, the original surface forms must also be stored in

order to generate spelling-variations. For example, if the lemmalie surfaces in the text as the token

lain, its spelling variations aregain, lair , loin, lawn, plain, etc., and notdie, lee, life, lieu, or pie.

5 Evaluation of the system

5.1 Test data

To test the algorithm, we need a sufficiently large corpus of malapropisms in their context,

each identified and annotated with its correction. Since no such corpus of naturally occurring

malapropisms exists, we created one artificially. Following Hirst and St-Onge [1998], we took 500

articles from the 1987–89Wall Street Journalcorpus, with lengths ranging from 90 to 2763 tokens

(an average of just over 600 words each), and replaced one word in every 200 with a spelling vari-

ation. To be a candidate for replacement, a word had to be present in our lexicon (see section 4.2

above), have at least one spelling variation that was also in the lexicon, and not be a stop-list word

or proper noun. The corpus contained 107,233 such words, of which 1408 (1.31%) were replaced

by malapropisms — an average of 2.8 malapropisms per article. In 19 articles that contained few

malapropizable words, no word was replaced; these articles were removed from the data. We gen-

erated the spelling variations with the same code fromispell that we used in the implementation
7ispell is a program that has evolved in PDP-10, Unix, and Usenet circles for more than 20 years, with contributions

from many authors. Principal contributors to the current version include Pace Willisson and Geoff Kuenning.
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of the algorithm. (This does not lead to circularity, but rather to a consistent definition of what

constitutes a spelling variation.)

In evaluating the system, we tried four different search scopes in determinations of semantic

relatedness: just the paragraph containing the target word (scope = 1), that paragraph plus one or

two adjacent paragraphs on each side (scope = 3 and 5), and the complete article (scope =MAX ).

The baseline algorithm for malapropism detection is random choice (“chance”), flagging words

as real-word spelling errors in the same proportion as they are expected to occur in the data. In

addition, we compare our results to those of Hirst and St-Onge [1998].

5.2 Example results

In this section, we give examples of situations in which the algorithm succeeded and those in which

it failed. In the subsequent section, we analyze the results quantitatively.

The malapropism in the following example was detected and corrected in all search scopes:

Example 6 Maybe the reasons the House Democrats won’t let the contras stand and fight for what

they believe in is because the Democrats themselves no longer stand and fight for their beliefs. The

House’s liberals want to pull the plug on the rebels but, lacking the courage to hold a straight up or

down vote on that policy and expose its consequences to the U.S. electorate, they have to disguise

their intension [intention]as a funding “moratorium.”

No relationship was found betweenintensionand any other word in the search scope;intention

was the only possible spelling variation, and it was found to be related toreason, want, policy,

vote, stand,andbelief.

This malapropism was detected, but in some conditions was wrongly corrected:
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Example 7 American Express says . . . it doesn’t know what themuss [fuss]is all about.

Although no connections could be found formussin most search scopes, connections were found

not only for fussbut also for other spelling variations, such asmass(connected tonumberin an

adjacent sentence) andmugs(in the sense of gullible people, connected togroup nearby). And

with scope = 1,fussitself was not among the candidate corrections butmugswas.

The algorithm failed completely on this example:

Example 8 Mr. Russell argues that usuryflaw [law] depressed rates below market levels year

ago . . .

The wordflaw was found to be related to the wordstatein a nearby sentence (flaw IS-A imperfec-

tion IS-A state), althoughstatewas used in that sentence in the sense of ‘nation’. This example

shows the limitations of the very rough disambiguation method in the algorithm.

Last, we illustrate two particular problems for the algorithm. The first is idiomatic expressions

that use words unrelated to the topic:

Example 9 Banks need to realize that there is afox in thehenhouse. . .

The wordfox had no relationships in narrower search scopes;boxwas suggested in its place. (In

broader search scopes,foxwas accepted because of a spurious relationship withAmericannearby:

in WordNet, bothFoxandAmericanare hyponyms ofnatural language.) The wordhenhousewas

also suspected of being a malapropism, but had no spelling variations. The second problem is rare

words that do not appear in the corpus that was used to generate the word probabilities for the

method:
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Example 10 Charles T. Russell used to playtrombonein Pittsburgh burlesque houses and with

big bands in the Southeast.

The wordtrombonedoes not appear the Brown Corpus, and so has zero probability, which leads to

taking the logarithm of zero in equation 1. (There is no smoothing in Jiang and Conrath’s measure.)

5.3 Quantitative results

We view malapropism detection as a retrieval task and present our results below in terms of preci-

sion, recall, andF-measure for each different search scope. In the first step of the algorithm, we

say that a suspect is atrue suspectif it is indeed a malapropism and afalse suspectif it isn’t. In

the second step, if an alarm word is indeed a malapropism, we say that the alarm is atrue alarm

and that the malapropism has beendetected; otherwise, it is afalse alarm. Then we can define

precision (P), recall (R), andF-measure (F) for suspicion (S), involving only the first step, and for

detection (D), involving both steps, as follows:

Suspicion:

PS =
number of true suspects

number of suspects
; (2)

RS =
number of true suspects

number of malapropisms in text
; (3)

FS =
2�PS�RS

PS+RS
: (4)

Detection:

PD =
number of true alarms

number of alarms
; (5)

RD =
number of true alarms

number of malapropisms in text
; (6)

FD =
2�PD�RD

PD+RD
: (7)
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5.3.1 Suspicion

We look first at the results for suspicion — just identifying words that have no semantically related

word nearby. Obviously, the chance of finding some word that is judged to be related to the target

word will increase with the size of the scope of the search (with a large enough scope,e.g., a

complete book, we would probably find a relative for just about any word). So we expect recall

to decrease as scope increases, because some relationships will be found even for malapropisms;

that is, there will be more false negatives. But we expect that precision will increase with scope,

as it becomes more likely that (genuine) relationships will be found for non-malapropisms; that is,

there will be fewer false positives, and this factor will outweigh the decrease in the overall number

of suspects found.

Figure 4 and the left-hand side of table 1 show suspicion precision, recall, andF for each of the

search scopes, computed as the mean values of these statistics across our collection of 481 articles

(which constitute a random sample from the population of allWSJarticles.) The values of pre-

cision range from 6.4% to 11.1%, increasing significantly from scope 1 to the larger scopes8 and

those of recall range from 23.3% to 53.6%, decreasing, as expected, with scope (significantly ev-

erywhere except from 3 to 5). The value ofF ranges between 11.2% and 14.1%, with a significant

performance improvement from scope 1 to scope 5. All these values are significantly (p < :001)

better than chance, for which all measures are 1.29% (and, of course, this is merely the first stage

of a two-stage algorithm).9 Moreover, the value for precision is inherently limited by the likeli-

hood, as mentioned above, that, especially for small search scopes, there will be words other than
8All the comparisons presented, except those with the baseline, were performed with the Bonferroni multiple-

comparison technique [Agresti and Finlay 1997], with anoverallsignificance level of .01.
9To make statistically meaningful comparisons possible, we calculated a separate proportion for eachWSJarticle

in the test data, by analogy with the method used to compute the performance of our system. Themeanwas 1.29%,
slightly different from theoverall proportionof 1.31%.
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Table 1: Precision, recall, andF after the first step (suspicion) and second step (detection) of the
algorithm, varying the scope of the search for related words to 1, 3, or 5 paragraphs or the complete
news article (MAX ).

Suspicion Detection
Scope PS RS FS PD RD FD

1 .064 .536 .112 .184 .498 .254
3 .086 .383 .135 .205 .372 .245
5 .097 .326 .141 .219 .322 .243
MAX .111 .233 .137 .247 .231 .211

Chance .0129 .0129 .0129 .0129 .0129 .0129

Table 2: Overall (single-point) precision, recall, andF after the first step (suspicion) and second
step (detection) of Hirst and St-Onge’s (1998) system and of our system, varying the scope of the
search for related words to 1, 3, or 5 paragraphs or the complete news article (MAX ).

Suspicion Detection
Scope PS RS FS PD RD FD

Hirst–St-Onge .055 .314 .094 .125 .282 .174
1 .060 .516 .107 .157 .484 .237
3 .079 .373 .131 .199 .365 .258
5 .089 .309 .139 .225 .306 .260
MAX .103 .193 .134 .274 .192 .226

our deliberate malapropisms that are genuinely unrelated to all others in the scope.

Although Hirst and St-Onge used their own, custom-made, measures of system performance

(see St-Onge [1995]), we can use their figures to compute overall precision, recall, andF for their

system; this is shown in the top row of the left side of table 2. These can then be compared with the

corresponding quantities computed for our system (shown in the remaining rows of the left side of

the table), which are seen to be far superior — with the crucial qualification that this comparison

bears no statistical significance because, unlike the figures in table 1, these are single-point figures,

not per-article means (which is why they differ from those in table 1).
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Figure 4: Suspicion precision (PS), recall (RS), andF-measure (FS), by scope.

23



Figure 5: Detection precision (PD), recall (RD), andF-measure (FD), by scope.

5.3.2 Detection

We now turn to the results for malapropism detection, after the second step of the algorithm.

In the detection step, the suspects are winnowed by checking the spelling variations of each for

relatedness to context. Since (true) alarms can only result from (true) suspects, recall can only

decrease (more precisely, not increase) from that for suspicion (cf equations 3 and 6). However,

if the system is any good, the proportion of false alarms will reduce more considerably — far

fewer false suspects will become alarms than true suspects — thus resulting in higher precision for

detection than for suspicion (cf equations 2 and 5).
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Figure 5 and the right-hand side of table 1 show precision, recall, andF for detection, de-

termined by the same method as those for suspicion. The values of recall range from 23.1% to

just under 50%. While these values are, as expected, lower than those for suspicion recall, the

decline (of 0.3–3.7 percentage points) isnot statistically significant. The values of precision range

from 18.4% to 24.7%, increasing, as expected, from suspicion precision — and the increase (of

between 11.9 and 13.6 percentage points)is statistically significant at each scope. Furthermore,

the increase in precision outweighs the decline in recall, andF , which now ranges from 21.1% to

25.4%, increases by 10.7 percentage points on average; this increase is also statistically significant

for all scopes. Again, even the lower ends of the precision, recall, andF ranges are significantly

(p < :001) better than chance (which again is 1.29%), and the results are quite impressive (e.g.,

18% precision, 50% recall for scope= 1, which had the highestFD). The right-hand side of table 2

shows that this performance again far exceeds that of Hirst and St-Onge.

Scope differences As in the suspicion stage, detection recall goes down with scope (statistically

significantly, except from 3 to 5); precision appears to go up, but the increase is in fact statistically

significant only between 1 andMAX . These overall flatter precision and recall graphs explain

the picture forFD: there are no significant differences among the scopes, and so theF graph is

not significantly different from being flat. Thus we can choose scope = 1 — the smallest, most

efficient search — as the optimal scope for our malapropism detector.

5.3.3 Correction

Last, we look at how often detection of a malapropism led to correction of the error. Our algo-

rithm is founded on the assumption that a spelling variation that is more related to context than a
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malapropism is will be the correct word that the writer intended (or, if there is more than one such

spelling variation, then the correct word will be a member of the set). But it is nonetheless possi-

ble that a true malapropism could be detected and yet the spelling variation (or set of variations)

responsible for this detection is not correct either — in effect, it would be another malapropism,

and the detection of the initial malapropism would have been just a lucky accident. We saw this in

thefuss–mugsexample earlier (example 7 in section 5.2).

In our experiments, we observed only a few such “lucky accidents”; as expected, in almost all

cases the correct word was the spelling variation, or one of the variations, responsible for detection

of the malapropism, and thus would be suggested to the user in an interactive system. Specifically,

the proportion of detected malapropisms for which the correct replacement was found ranged from

92% for scope = 1 to 97.4% for scope =MAX .

6 Discussion

With a recall of 50% and precision of nearly 20%, our system approaches what we believe is a

level of practical usability for malapropism detection and correction. It is not realistic to expect

absolute correctness, 100% precision and recall, nor is this level of performance necessary for the

system to be useful. In conventional interactive spelling correction, it is generally assumed that

very high recall is imperative but precision of 25% or even less is acceptable — that is, the user

may reject more than 3 out of 4 of the system’s suggestions without deprecating the system as

‘dumb’ or not worth using. Very high recall is not yet achievable in unconstrained, open-ended

real-word spelling correction, but it is presently unknown just what a typical user would consider

to be an acceptable performance level. Nonetheless, we believe that the performance of our system
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is competitive, especially in light of the constraints under which it presently operates.

Limitations of WordNet In particular, the performance of our prototype is constrained by limi-

tations that arise from the use of WordNet, many of which are likely to be eliminated or attenuated

in the future. For example, we have already mentioned in section 4.2 that our prototype uses only

the noun portion of WordNet (though adjectives and verb lemmas are taken as equivalent to any

noun to which they are identical in spelling) and that a complete system would require links be-

tween synsets for different parts of speech, as WordNet 2.0 now permits. Another limitation arises

from the fine-grainedness of WordNet; its fine division of word-senses and its inclusion of obscure

and metaphoric senses (not labeled as such) are more likely to lead our algorithm astray than to

help it. The coarse-grained WordNet presently under development by Mihalcea and Moldovan

[2001] could help alleviate this.

Efficiency In our present system, we perform a search in WordNet for each pair of words whose

semantic relatedness we wish to know. If semantic-relatedness measures were pre-compiled for

all possible pairs of synsets in WordNet, this search could be replaced by table look-up. While

the integrated WordNet of the future might contain, say, 100,000 distinct synsets, implying 1010

ordered pairs, in practice the table would be symmetric and very sparse; if each word has an above-

threshold semantic relationship to no more than a couple of hundred others, and probably fewer,

the size of the table might not need to be significantly greater than that of WordNet itself. For more

discussion of this point, see Budanitsky and Hirst [in preparation].

Similarity versus semantic relatedness Although we have spoken throughout the paper of se-

mantic relatedness, the Jiang–Conrath measure that we have used is actually a measure of similarity
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(expressed as its inverse, semantic distance) rather than semantic relatedness per se: the only links

of WordNet that it uses are hypernymy, hyponymy, and the implicit link of synonymy. This is in

contrast to the measure of Hirst and St-Onge, which used all WordNet noun synset links, including

antonymy, meronymy, and holonymy. In a separate paper [Budanitsky and Hirst in preparation], in

which we compare and evaluate a number of measures of semantic relatedness, we explain in de-

tail why the Jiang–Conrath measure is superior overall to the Hirst–St-Onge measure, even though

it will not find non-hypernymic semantic relationships (such asyacht–keel) that would clearly be

helpful in our task. But regardless of which WordNet relationships are and aren’t used, “non-

classical” semantic relationships [Morris, Beghtol, and Hirst 2003] that do not appear in WordNet

at all, especially those that are merely matters of typical association (e.g., penguin–Antarctica)

will not be found. EuroWordNet [Vossen 1998] employs additional lexical relationships, such as

non-factitive causality (search–find), that might begin to help with this. In [Budanitsky and Hirst

in preparation], we discuss this matter, including consideration of the effects of using a Roget-style

thesaurus in place of WordNet. (We are presently experimenting with theMacquarie Thesaurus

[Bernard 1986].) Here, it suffices to point out that because the essence of our method lies in a

sensitivity to cohesion and perturbations of cohesion, the success of its performance depends on

having an excellent measure of semantic relatedness. The Jiang–Conrath measure for WordNet

has done well, but there is still much room for improvement.

Setting the threshold of relatedness The algorithm treats semantic relatedness as boolean: two

words are either related or they aren’t. So if the underlying measure of relatedness is a continuous

function (and most of the measures that have been proposed are — see Budanitsky [1999]), then it

is necessary to find the breakpoint at which relatedness is separated from unrelatedness. We cali-
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brated the Jiang–Conrath measure with data on human judgments of “similarity of meaning” from

Rubenstein and Goodenough’s experiments, taking the breakpoint to correspond to that observed

in their data. This was justified by the strong correlation that we found between the measure and

the human judgments. But the correlation was by no means perfect; the Rubenstein–Goodenough

dataset is very small; and of course, similarity of meaning is not the same thing as semantic relat-

edness. However, there is at present no large dataset of human judgments of semantic relatedness

and no better way to calibrate a computational measure.10

Proper names Last, our method is limited by its inability to use proper nouns in its consider-

ations of semantic relatedness. As we pointed out in section 2, misleading proper names (such

asLotus Development Corporation) could get Hirst and St-Onge’s system into serious difficulty,

and for that reason we simply excluded them from consideration in our system. But this is also

unsatisfactory; many company names contain words used with their ordinary meaning that are po-

tentially helpful in our task — for example,United Parcel Service— and it would be helpful to

have some method of identifying such words. In addition, many widely known brand names carry

meaning that we could usefully relate to other words — for example,McDonald’s–hamburger;

Visa–MasterCard–credit— and the same is true of the names of well-known places and people,

some of which are indeed listed in WordNet (e.g., New York, Statue of Liberty, Bill Clinton). But

any thesaurus that we choose will contain comparatively few proper nouns, and a topical supple-

ment would be desirable.
10Evgeniy Gabrilovich has recently made available a dataset of similarity judgments of 353 English word pairs that

were used by Finkelstein et al [2002]. This is still very small, but we plan nonetheless to try recalibrating with this
dataset in future work.
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Limitations of our method of evaluation In addition to limitations in the algorithm itself, our

method of evaluation also has its limitations: the use of artificial test data and our somewhat narrow

definition of “spelling variation”. The need for artificial data is obvious: there is no large-enough,

naturally occurring annotated corpus of malapropisms. But, following Hirst and St-Onge, we chose

theWall Street Journalas the basis for our corpus merely as a matter of convenience. Thus our re-

sults do not necessarily hold for other genres of text. The malapropism-insertion rate of one word

in 200 was an arbitrary choice that seemed “sparse enough” to prevent the malapropisms from

interacting with one another. Inserting too many malapropisms (one word in ten, say) would be

unrealistic and would not just perturb the cohesion of the text but completely destroy it, undermin-

ing the very basis of the algorithm. Thus there is an underlying assumption that humans, likewise,

do not normally make malapropisms so frequently as to render their text wholly incoherent.

Our results are in part dependent upon the definition of “spelling variation” that we chose —

that used by the open-source spelling checkerispell. Clearly, the broader the definition, the greater

the chance of false alarms and the less well the algorithm will perform. (In the limit, any word

could be a spelling variation of any other, so a spurious connection could always be found.) We

could not try our algorithm with the extremely liberal definition of spelling variation that is used

in Microsoft Word (see footnote 4) as this is proprietary information, but our results would almost

certainly be poorer. However, this must be seen as a weakness of Word’s overly broad definition,

not of our algorithm.
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7 Related research

Kukich [1992] reviews early approaches to the detection of real-word spelling errors; such tech-

niques included looking for unlikely part-of-speech bigrams [Atwell and Elliott 1987], and look-

ing for unlikely word trigrams [Mays, Damerau, and Mercer 1991]. Some of the more recent

work on spelling correction has focused on smarter identification of non-word errors [Zhao and

Truemper 1999], the use of syntax [Vosse 1994, Zhao and Truemper 1999], and methods for

improving the suggested corrections offered for non-word errors [Mc Hale and Crowter 1996,

Agirre, Gojenola, Sarasola, and Voutilainen 1998].

The word-trigram method of Mays, Damerau, and Mercer [1991] used ideas from a project in

speech recognition [Bahlet al. 1983]. They attempted to apply a statistical language model in

which “syntactic, semantic, and pragmatic knowledge is conflated into word trigram conditional

probabilities . . . derived from statistics gathered from large bodies of text”. By itself, the model

can be used “to judge the relative well-formedness of sentences”. This model was combined with

the noisy-channel model, thereby making it possible to express the “a priori belief that the observed

input word is correct”. Briefly, their approach was to consider all variant sentencess0=w0

1w0

2 : : :w
0

k

of a given sentences= w1w2 : : :wk, wherew0

i is a spelling variation ofwi for eachi, choosing the

sentence (possiblys itself) with the highest likelihood.

Mays, Damerau, and Mercer report the results of a preliminary experiment, intended to “as-

sess the viability” of their approach, in which it was applied to just 100 sentences from “the AP

newswire and transcripts of the Canadian Parliament”, with 8,628 spelling variations; the trigram

probabilities were borrowed from the IBM speech recognition project [Bahlet al. 1983]. All of

these contained only words from the 20,000 word vocabulary of the IBM corpus, and, to avoid
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a combinatorial explosion, eachs0 was a result of a single-word perturbation — that is, for each

variant sentence,w0

i 6= wi for exactly onei. Unfortunately, the idiosyncratic terms used to express

their results, coupled with the unavailability of their training corpus, preclude a direct comparison

with our work. We are presently reconstructing and re-implementing their method, and will report

on a comparison of word-trigram and coherence-based methods in a future paper.

More recently, Verberne [2002] developed a word-trigram method that, instead of using prob-

abilities, considered a trigram to be probably wrong if and only if it does not occur in the British

National Corpus. Her evaluation of the method was both small and, on her own test data, method-

ologically problematic. On a 7000-word sample of ourWall Street Journaltest data, the method

showed a recall of .33 for correction at the price of a precision of only .05.

Much recent work specifically on real-word spelling correction, especially that of Golding

and colleagues [Golding and Roth 1996, Golding and Schabes 1996, Golding and Roth 1999] on

methods for what they call “context-sensitive spelling correction”, has viewed the task as one of

“word disambiguation” [Golding and Roth 1996]. Ambiguity among words is modeled by pre-

specifiedconfusion sets: a confusion setC = fw1; : : : ;wng means that each wordwi 2C “could

mistakenly be typed” [Golding and Schabes 1996] when another wordwj 2 C was intended —

for example,fprincipal, principleg. Given an occurrence of a word fromC in the text, then,

the task is to decide, from the context, whichwk 2 C was actually intended. The specific tech-

niques of addressing the issue are what distinguish the methods.WinSpell[Golding and Roth 1996,

Golding and Roth 1999] uses a machine-learning algorithm in which weights are updated multi-

plicatively and members of confusion sets are represented ascloudsof “simple and slow neuron-

like” nodes that correspond toco-occurrenceandcollocationfeatures.TriBaySpell[Golding and
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Schabes 1996] combines a part-of-speech trigram method and a Bayesian hybrid method from

Golding [1995], both statistical in nature: the trigram method relies on probabilities of part-of-

speech sequences and fires for confusion sets whose members would differ as parts of speech

when substituted in a given sentence (e.g.,fhear, hereg, fcite, sight, siteg, and some cases of

fraise, riseg); the Bayesian hybrid method relies on probabilities of the presence of particular

words, as well as collocations and sequences of part-of-speech tags, within a window around a

target word and is applied in all the other cases (e.g., for confusion sets likefcountry, countyg

and (most cases of)fpeace, pieceg). When tested on 21 confusion sets (taken mostly from the

list of commonly confused words that is given as an appendix of theRandom House Unabridged

Dictionary [Flexner 1983]), these methods were correct, on average, 93% to 96.4% of the time,

compared with a baseline of 74.8% by choosing the most frequent member of the confusion set

[Golding and Roth 1999]. Carlson, Rosen, and Roth [2001] subsequently scaled the method up to

265 confusion sets with up to 99% accuracy.

Other researchers have also used the confusion set model of correction, but with other dis-

ambiguation methods. Mangu and Brill [1997], put off by the idea of extracting “large sets of

opaque features and weights”, as in the Golding methods, applieddata-driven transformation-

based learningto “automatically learn simple, small . . . sets” of rules for correcting probable

instances of confusion-set errors. The rules acquired were intended to account for transformations

that correspond toco-occurrences, collocations, andcollocations with wildcards. An example of

a rule is “Changeexceptto acceptif the word three before ishe and the immediately preceding

word isnot.” The method was tested on 14 confusion sets, with results that were “comparable” to

those of Golding and colleagues despite the relative simplicity of the method. Jones and Martin

33



[1997] appliedlatent semantic analysis[Landauer, Foltz, and Laham 1998] to the task of discrim-

inating members of confusion sets. Treating sentences asdocumentsand words and word bigrams

(stemmed and weighted) asterms, they constructed a separate predictor space for each confusion

set, then formedprojectionsof a test sentence onto the space (by computing a weighted average

of its term vectors), and chose the member of the confusion set whose vector is closest (in the

Euclidean sense). Testing the method with 18 of the confusion sets that Golding and colleagues

used, they found the results to be “competitive” with those of TriBayes.

One advantage of these machine-learning–based confusion-set methods over semantic methods

such as ours is that they can handle function-word and low-semantic-content–word errors with ap-

parent ease, simply by considering confusion sets such asfthan, theng andfto, toog. Furthermore,

they are not restricted to spelling variations:famount, numberg is a perfectly valid confusion set.

Their principal drawback, however, is that all the confusion sets must be defined in advance: they

can look only for specific errors that they know about ahead of time. Thus the process ofdetection

is reduced to what might be termedverification: a word will be checked for being an error only if

it belongs to a confusion set; moreover, every occurrence of such a word will undergo an attempt

to becorrected(i.e., its confusions will be considered in its place every time the word is encoun-

tered). We therefore see confusion-set methods as complementary to our own; each is suitable for

a particular kind of error, and a complete spelling checker should draw on both.

Al-Mubaid and Truemper [forthcoming] present a method that is based on the classification

of lexical context. Their system aims to find slips in typing or performance errors rather than

competence errors; like our system, it will be misled by consistent mistakes. The method is quite

complex, but in outline their idea is as follows. In the training phase, deliberate real-word spelling
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errors are introduced into a “training text”. Each word in the text is characterized by a vector

that represents its immediate context (�2 tokens), and a classifier then derives rules to distinguish

words that are erroneous in their context, as exemplified in the training text, from words that

are correct in their context, as exemplified by a separate, unaltered “history text” from the same

domain. The method is limited by the fact that both the target word and each of its spelling

variations must occur at least three times in each of the training and history texts. It is therefore

unable to derive rules for many words, though it performs fairly well on those words that it is able

to check. Moreover, a separate set of classification rules must be derived for each domain (with

training times of many hours), and the original history text for each domain must be present along

with the classification rules whenever the system is used to check a text.

8 Conclusion

The method of detecting and correcting real-word spelling errors that we have presented in this

paper is, of course, a research prototype that still awaits integration with a conventional spelling

checker for non-word errors and a suitable user interface in a word-processor (or similar software)

in order to be tested in a realistic setting. While we speculated above that the performance of our

system, in terms of precision and recall, approaches practical usability, only a trial in an integrated

system could test this and perhaps determine just what level of performance users would find

sufficient in order to gladly use such a system.

We do not claim that our method by itself is sufficient for finding real-word errors. As we

remarked above, a practical spelling checker would also employ a confusion set method on words

for which it was appropriate, and would probably, in addition, use syntactic methods to detect
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errors, especially those in closed-class words, that result in syntactic ill-formedness.

We have not attempted to address issues in the user interface. Conventional spelling checkers

have very spare interfaces; typically, the suspect word is highlighted in some way and a list of

alternatives is presented; it is the user’s job to recognize whether the original word or one of the

alternatives is what was intended. An integrated system must be careful to distinguish possible

malapropisms from non-word errors, or else the user is likely to too-rapidly recognize the high-

lighted word as correctly spelled and move on. So some message relating to the meaning must be

presented; for example:

Wrong word?
Ontologistmeans someone who studies the nature of existence.
Did you meanoncologist, someone who studies or treats cancer?

If WordNet is present in the system anyway, its glosses and other words in the synset can be used

as the basis for such messages. However, the precise nature of the message is a matter for study.

By recognizing that malapropisms will usually perturb the lexical cohesion of a text, we have

demonstrated a practical method for detecting and correcting real-word spelling errors by looking

for spelling variations that restore cohesion. Further development of the approach will depend, in

turn, upon the development of more-appropriate lexical resources and better models of semantic

relatedness.
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