
Jeblee et al. BMCMedical Informatics and DecisionMaking          (2019) 19:127 
https://doi.org/10.1186/s12911-019-0841-9

RESEARCH ARTICLE Open Access

Automatically determining cause of
death from verbal autopsy narratives
Serena Jeblee1,2* , Mireille Gomes3,4, Prabhat Jha3,4, Frank Rudzicz1,2,5,6 and Graeme Hirst1,2

Abstract

Background: A verbal autopsy (VA) is a post-hoc written interview report of the symptoms preceding a person’s
death in cases where no official cause of death (CoD) was determined by a physician. Current leading automated VA
coding methods primarily use structured data from VAs to assign a CoD category. We present a method to
automatically determine CoD categories from VA free-text narratives alone.

Methods: After preprocessing and spelling correction, our method extracts word frequency counts from the
narratives and uses them as input to four different machine learning classifiers: naïve Bayes, random forest, support
vector machines, and a neural network.

Results: For individual CoD classification, our best classifier achieves a sensitivity of .770 for adult deaths for 15 CoD
categories (as compared to the current best reported sensitivity of .57), and .662 with 48 WHO categories. When
predicting the CoD distribution at the population level, our best classifier achieves .962 cause-specific mortality
fraction accuracy for 15 categories and .908 for 48 categories, which is on par with leading CoD distribution estimation
methods.

Conclusions: Our narrative-based machine learning classifier performs as well as classifiers based on structured data
at the individual level. Moreover, our method demonstrates that VA narratives provide important information that can
be used by a machine learning system for automated CoD classification. Unlike the structured questionnaire-based
methods, this method can be applied to any verbal autopsy dataset, regardless of the collection process or country of
origin.

Keywords: Cause of death, Computer-coded verbal autopsy (CCVA), Physician-certified verbal autopsy (PCVA),
Machine learning, Natural language processing, Tariff method, Verbal autopsy

Background
Verbal autopsies
Two-thirds of the world’s 60 million deaths each year
do not have a known cause of death (CoD). The largest
gap between known and unknown CoDs is in develop-
ing countries, where many deaths occur at home rather
than in health facilities [1]. Verbal autopsy (VA) surveys
can help to bridge this gap by providing information about
the most prevalent causes, which helps to inform public
health planning and resource allocation [2]. A VA survey
typically involves interviews with family members of the
deceased, conducted by non-medical staff who complete
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a structured questionnaire about the person’s symptoms
and risk factors before death. They also ask the fam-
ily members about the events and circumstances around
the time of death and record the responses in a free-text
narrative. Typically, two or more physicians review each
completed VA survey and independently make a CoD
diagnosis [3], with reconciliation done by another more
senior physician if necessary.
Although there have been criticisms of physician-coded

VAs [4], there is no other gold standard for VA coding that
we can evaluate against, since for most VAs we have no
way of knowing the true CoD. Records of hospital deaths
cannot be considered a gold standard for non-hospital
deaths because of the differences in the distribution of
CoDs, as well as the differences between the character-
istics of patients who receive care in hospitals and those
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who die at home without medical attention (such as edu-
cation level, access to hospital care, types of pathogens,
etc.) [3, 5, 6]. For this reason, physician-coded VAs are
often used for training and testing automated CoD coding
methods.
Automated CoD coding may help to reduce physician

time and costs when coding VA surveys. For exam-
ple, an automated system could be used as a first pass
for coding new VA records, where the results could
be reviewed (and corrected if necessary) by one physi-
cian. This process would still allow for human veri-
fication, but would reduce the time and number of
physicians needed to look at each record. Since these
models can also produce a confidence score for each
code, low-confidence output could be flagged for human
review.
So far, machine learning techniques have been pri-

marily applied to data from the structured question-
naires only, with the best sensitivity scores around .60
for individual CoD classification, using various numbers
of CoD categories (typically 15–30) [7]. Some studies
have suggested that the narrative section is unneces-
sary or of limited use for determining CoD [8]. How-
ever, we hypothesize that using the structured questions
alone results in insufficient accuracy because informa-
tion that appears only in the free-text narrative is often
essential to making a correct diagnosis, such as symp-
tom chronology and treatment history [9]. Our method
uses word frequency counts from the narrative to deter-
mine the appropriate CoD category for a VA record. We
explore several different models including naïve Bayes,
random forests, support vector machines, and a neural
network.

Metrics
In the absence of medical death certification in low- and
middle-income countries, VAs are primarily used to esti-
mate the proportion of deaths from various causes at the
population level, so as to inform public health planning.
Subsequently, individual level VA CoD assignments are
often aggregated to determine the CoD distribution in the
population.
To evaluate CoD classification at the individual level,

we report precision (positive predictive value), sensitivity
(recall), and F1-measure (the harmonic mean of precision
and sensitivity), as well as partial chance-corrected con-
cordance (PCCC). Chance-corrected concordance (CCC)
is ameasure of howwell the predicted CoD categories cor-
respond to the correct CoD categories, and PCCC is the
same measure adjusted for the number of possible cate-
gories [10]. To evaluate the CoD distribution prediction
at the population level, we report Cause-Specific Mortal-
ity Fraction (CSMF) accuracy [10, 11]. CSMFs measure
the relative proportions of CoDs in a population, and

CSMF accuracy measures the similarity of the distribu-
tion of CoD categories assigned by the classifier to the true
distribution.
However, CSMF accuracy scores of .50 or above can

often be achieved by random guessing, especially if the
method takes into account the training distribution. So
we also report chance-corrected CSMF accuracy (CCC-
SMFA) [12], which produces a score of 0 for chance
performance, and a negative score for performance worse
than chance.

Previous work
Several expert-driven andmachine learningmethods have
been used for automatically categorizing VAs by CoD,
at both the individual and the population level [13–19].
Many of these methods are based on questionnaires such
as the World Health Organization (WHO) 2016 Verbal
Autopsy Instrument [20], which is a standardized VA
questionnaire with detailed questions about the subject’s
symptoms and medical history.
Boulle et al. [13] were among the first to use neu-

ral networks for VA CoD classification in 2001. They
used a small set of structured questionnaire data
with a neural network and achieved a sensitivity of
.453 for individual classification into 16 CoD cate-
gories. However, to our knowledge, no current VA cod-
ing method uses neural networks despite their recent
popularity.
The King-Lumethod [21] uses the conditional probabil-

ity distributions of symptoms to estimate the CoD distri-
bution of a dataset over 13 categories. It does not provide
a CoD for individual records. Desai et al. [7] reported a
CSMF accuracy of .96 using the King-Lu method on the
Indian Million Death Study dataset [3].
InterVA-4, a popular automated VA coding method

developed by Byass et al. [14], uses a predetermined list
of symptoms and risk factors extracted from a structured
questionnaire. Records are assigned one of 62 CoD cate-
gories from the WHO 2012 VA Instrument [22] based on
conditional probabilities for each symptom given a CoD,
as assigned by medical experts, as well as the probabilities
of the CoDs themselves. Miasnikof et al. [17] reported a
sensitivity of .43 and CSMF accuracy of .71 for InterVA-4
on data from the Million Death Study [3].
InSilicoVA, described by McCormick et al. [15], is a sta-

tistical tool that uses a hierarchical Bayesian framework to
estimate the CoD for individual records as well as the pop-
ulation distribution. They reported a mean sensitivity of
.341 across 34 CoD categories for individual records, and
.85 CSMF accuracy.
The Tariff Method, presented by James et al. [16, 23],

uses a sum of weighted scores (tariffs) to determine the
most probable CoD. The score for each of the possible
CoDs is the weighted sum of different tariffs, which are
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each calculated from the value of a certain indicator (usu-
ally a symptom or risk factor). Most of these indicators are
taken from the structured questionnaire, although there
are also tariffs that represent the presence of some fre-
quent narrative words (50 or more occurrences in the
training data). James et al. reported .505 CCC and .770
CSMF accuracy for adult records from the Population
Health Metrics Research Consortium (PHMRC) dataset
[24], using 53 CoD categories.
Miasnikof et al. [17] used a naïve Bayes classifier to

assign CoD categories. They evaluated their classifier on
several different datasets, including the PHMRC dataset
and the Million Death Study dataset [3, 25], which we will
use in this paper (see “Results” section), with 16 CoD cat-
egories. They obtained results that surpassed those of the
Tariff Method and InterVA-4, including a sensitivity of .57
and CSMF accuracy of .88. However, their model used
only data from the structured questionnaire.
Danso et al. [18] used word frequency counts and tf·idf

scores (the frequency of a term divided by the frequency
of documents in which it occurs) from VA narratives as
features (measurable characteristics of data that are used
as input to computational models) with a support vec-
tor machine (SVM) classifier, achieving a maximum F1
score of .419. They also used a naïve Bayes classifier and a
random forest classifier, which achieved F1 scores of .373
and .149 respectively. They did not report population level
metrics.
Danso et al. [19] used a variety of linguistic features

such as part-of-speech tags, noun phrases, and word pairs
from 6407 VA narratives of infant deaths fromGhana, and
classified the records into 16 CoD categories, achieving a
sensitivity of .406 using only the narrative-based features
and .616 using a combination of narrative and structured
questionnaire features. They noted that they achieved bet-
ter performance with the linguistic features than with only
word occurrence features, though their dataset was small
and the part-of-speech tagger was not trained on medical
data, and thus is likely to produce incorrect part-of-speech
information.

Methods
Data
Our main dataset comes from the Million Death Study
(MDS), the goal of which is to provide a national estimate
of the leading CoDs in India in order to enable evidence-
based health programming [3, 25]. Since the majority of
available records in MDS are scans of handwritten forms,
which are not usable by our automated prediction tool, we
use a subset consisting of the records with narratives that
have been transcribed into a digital format. This dataset
consists mostly of English narratives, which tend to come
from southern and northeastern India. However, all states
are represented in this dataset. The remaining narratives

have been translated into English from various local lan-
guages. In addition to this dataset, we also have a set of
records from a recent multi-centre randomized control
trial (RCT) that was conducted in four districts within two
states of India: Gujarat and Punjab, on 9374 deaths [26].
The aim of this RCTwas to assess whether current leading
machine learning algorithms perform as well as physician
diagnosis when determining the CoD for VAs at the popu-
lation level. The RCT collected VAs on all deaths from the
study sites up to age 70 that occurred within five years pre-
ceding the study. Approximately half of these deaths were
randomly assigned for coding by physicians, for which VA
structured questions and narratives were collected, and
the remainder of the deaths were assigned to automated
methods for coding using VA questionnaires with struc-
tured questions only. A randomly selected subset of the
narratives from this RCTwere translated into English, and
are used in this study.
In the MDS and RCT datasets, each record is assigned

a WHO International Classification of Diseases (ICD)
version 10 code [27] by two specially trained physicians
who independently and anonymously review each record.
When the two assigned codes do not match (about 30% of
records), the records undergo anonymous reconciliation,
and persisting disagreements (about 15%) are adjudicated
by a third senior physician. This process is standard for
physician-coded VAs [20] and was conducted indepen-
dently of developing our automated method.
In the combined datasets there are over 500 individ-

ual ICD-10 codes. As the number of CoD categories
used by other published VA studies ranges from 6 to 62
[14–18, 21], we use previously published CoD groupings
[17] which are broader groupings of the WHO VA 2012
standardized CoD categories [22]. In this categorization
scheme, the codes are grouped into 15 CoD categories
for records of adult (15–69 years) and child (29 days–14
years) deaths, and 5 categories for records of neonatal (<
29 days) deaths. These groupings are based on an earlier
evaluation [3] that best outlined the ability to use the max-
imal number of ICD-10 codes, which were all available for
unrestricted use by the coding physicians in the MDS. See
Tables 1 and 2 for CoD categories, and Additional file 1
for the complete mapping of ICD-10 codes to CoD cate-
gories. Figures 1, 2, and 3 show the distribution of CoD
categories for each age group.
For comparison, we also present results using the stan-

dard WHO 2016 categories, although we note that the
distribution of these categories in the MDS data is very
skewed, with many classes having only a few examples and
a few classes having thousands of examples. Of the 62 pos-
sible categories, only 48 appear in the adult dataset, 39
in the child dataset, and 17 in the neonatal dataset. See
Figs. 4, 5, and 6 for the distribution of theWHO categories
in the dataset.
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Table 1 CoD categories used for adult deaths (15–69 years), and
child deaths (29 days–14 years)

Acute respiratory infections

Diarrhea

Pulmonary Tuberculosis

Other and unspecified infections

Neoplasms

Nutrition

Cardiovascular disease

Chronic respiratory disease

Liver cirrhosis

Other non-communicable diseases

Road and transport injuries

Other injuries

Ill-defined

Suicide

Maternal

We also train and test our models on the Agincourt
dataset, which is composed of coded VA records of com-
munity deaths in South Africa [28]. See Table 3 for details
of the datasets.
Since VA narratives are often handwritten and then

transcribed and perhaps translated, there are frequent
spelling errors and grammatical inconsistencies due to
varying levels of experience of the surveyors and quality of
the translations. In addition, medical symptoms are often
described in non-medical or colloquial terms by the non-
medical surveyors. Although the information is very often
interpretable by medical professionals, the grammatical
inconsistencies can make it difficult for automated sys-
tems to handle. In order to avoid some of these issues, we
focus on individual words. See Table 4 for some examples
of narrative text from the MDS dataset.

Implementation of metrics
In order to evaluate chance-corrected CSMF accuracy, we
applied the Monte Carlo calculation described by Flax-
man et al. [12] with 10,000 iterations, and found the mean
CSMF accuracy of randomly assigning CoD categories to
be .646 for the neonatal dataset (5 CoD categories), .641
for the child dataset (15 CoD categories), and .643 for the

Table 2 CoD categories used for neonatal deaths (<29 days)

Prematurity/low birth weight

Neonatal infections (not including tetanus)

Birth asphyxia/trauma

Ill-defined or cause unknown

Other (all other ICDs not included in above)

adult dataset (15 CoD categories). We use these values as
the mean for chance-correcting CSMF accuracy because
they are specific to our dataset, although they are very
close to the value of .632 that Flaxman et al. reported.
Since the records for each test set and training set are

selected randomly for each crossvalidation iteration, we
expect the test distributions to be similar to the train-
ing distributions. Some VA studies have re-sampled their
training and test set to create uniform distributions in
order to avoid the model learning to assign CoD cate-
gories to individual records based on the frequency of the
CoD categories [17, 23]. However, we chose not to do
so because some CoD categories have a very small num-
ber of records and achieving a reasonably sized test set
would require us to oversample some categories exten-
sively, which would not constitute a rigorous evaluation of
our method.

Machine learning models for text classification
Like the MDS, the RCT data was also collected in India
and follows a similar protocol to the MDS [3, 25, 26],
so the two sets were combined to create a larger dataset
with which to train and test our method. Unlike these
datasets, the Agincourt data was captured in South Africa
and has greater variations in protocol [28], and hence
was not combined with the other datasets. Early experi-
ments showed that the model performed better with more
training data, which is typical of machine learning classi-
fiers. The datasets were preprocessed as follows. Spelling
was corrected by using the PyEnchant Python library
[29] with an English dictionary and a short hand-crafted
dictionary containing common terms that appear in the
narratives. The text was subsequently lowercased and
punctuation separated fromwords. A set of 160 stopwords
(such as and, because, for) were removed from the nar-
ratives1. The remaining words were stemmed (i.e. mor-
phological endings removed)2; for example, the stem of
crying is cry.
The features that we use for CoD classification are

word frequency counts from the narrative and one fea-
ture that indicates whether the record is of an adult, child,
or neonatal death. We compute the ANOVA F-value3
for each feature, which calculates the ratio of the vari-
ance between the means of the feature values for each of
the CoD categories, to the variance within each class. If
the means are significantly different between CoD cate-
gories and the variance within categories is small, then
the feature is likely to be discriminative. We keep only
the features with the highest F-values, reducing the space
from over 4000 to several hundred features, depending
on the model (the actual number is chosen by hyper-
optimization).
For our classifiers, all models except the neural network

are created in Python with scikit-learn [30]. Each classifier
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Fig. 1 Adult CoD category distribution (15 categories)

is optimized4 for 100 runs for model parameters and the
number of features, using a small subset of the MDS data.
The models are optimized separately so we are comparing
the best version of each model. The naïve Bayes classifier,
which assigns a CoD category to a record using the inde-
pendent conditional probabilities for each feature, uses
the best 200 features (as chosen by ANOVA). The random
forest model, which uses a combination of learned deci-
sion trees to classify new data points, uses the best 414
features and 26 trees.
Support vector machines (SVMs) are commonly used

models that learn to classify data by maximizing the
margin between categories in the training data, using a
kernel function that maps the input features to higher
dimensional space. Our SVM model is an aggregate of
one-vs-rest SVMs with linear kernel functions, using 378
features.

Neural networks are made up of layers of simulated
neurons with connections between the layers that can
transmit information. The neural network model we use
is a feed-forward network with one hidden layer (297
nodes, chosen by optimization) created with Keras [31],
using Theano [32] as the backend. It uses 398 features
and rectified linear units (ReLUs) as the activation func-
tion (the function that computes the output of an artificial
neuron in the network given input values and learned
weights).
For the adult and child datasets, each training set is aug-

mented with all the data from the other two datasets. In
general, we found that the classifiers perform better with
extra training data, especially for the smaller child dataset.
For neonatal records, the models are trained only with
neonatal data because these records use a different set of
CoD categories.

Fig. 2 Child CoD category distribution (15 categories)
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Fig. 3 Neonate CoD category distribution (5 categories)

Results
Table 5 shows the mean scores for each classifier using 10-
fold cross-validation with the combined MDS and RCT
data. Each of the 10 test splits contained approximately
1,204 adult records, 185 child records, and 57 neona-
tal records. Overall, the neural network performs the
best in terms of sensitivity, with .770 for adults, .695 for
child records, and .576 for neonatal records. However,
for CSMF accuracy the best performance is achieved by
the SVM and neural network classifiers on adult records
(.962), and the SVM on child records (.914) and neona-
tal records (.857). See Figs. 7 and 8 for a comparison of

the PCCC and CSMF accuracy scores of the four machine
learning models.
In comparison to our model’s sensitivity of .770 for

adult deaths and .695 for child deaths, Miasnikof et al.
[17] reported a mean sensitivity of .57 on MDS check-
list data from child and adult deaths with their naïve
Bayes classifier and 16 CoD categories. They compared
their results to InterVA-4 on the Million Death Study
data, which achieved .43, and the Tariff Method, which
achieved .50 sensitivity. InSilicoVA reported a sensitivity
of .341 using 34 CoD categories for adult deaths from
the PHMRC dataset [24]. Danso et al. [19] reported a

Fig. 4 Adult CoD category distribution (48 WHO categories)
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Fig. 5 Child CoD category distribution (39 WHO categories)

sensitivity of .406 with their SVM classifier using nar-
rative features from a dataset of 6407 neonatal records
and 16 CoD categories, and .616 using narrative and
structured data features, while our model achieved .576
sensitivity for records of neonatal deaths using only the
narrative.
In comparison to our neural network classifier’s CSMF

accuracy scores of .962 for adult deaths and .914 for child
deaths, the King-Lu method achieved .96 onMDS data [7]
(although the King-Lu method does not assign CoD cate-
gories to individual records), Miasnikof reported a CSMF
accuracy of .88 for their model, .71 for InterVA-4, .57

for the Tariff Method, and InsilicoVA reported .85 CSMF
accuracy.
Using the WHO categories, the SVM model performs

the best for individual classification, as seen in Table 6
(.654 PCCC for adult records, .512 for child records, and
.431 for neonatal records). The larger number of WHO
CoD categories (48 for adult records, 39 for child records,
and 17 for neonatal records) may account for the lower
scores across all models due to limited training data for
each CoD category. The poor performance of the neural
network on the neonatal datasets is likely the result of the
limited number of records available for training, as neural

Fig. 6 Neonate CoD category distribution (17 WHO categories)
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Table 3 Description of datasets used. MDS: Million Death Study dataset, RCT: Randomized Control Trial dataset

MDS RCT MDS+RCT Agincourt

Adult records (15–69 years) 9,207 5,105 14,312 8,151

Child records (29 days–14 years) 1,717 255 1,972 1,674

Neonatal records (<29 days) 451 170 621 197

Region India India (Gujarat, Punjab) India South Africa

networks typically require a large amount of data to learn
good parameters.
See Table 7 for results on the Agincourt dataset. As with

theMDS dataset, the neural network performs the best for
adult records, with a sensitivity of .578 and PCCC of .547.
For the Agincourt neonatal records, the naïve Bayesmodel
performs the best (.526 sensitivity and .404 PCCC), likely
because the dataset is so small. By comparison, Miasnikof
et al. [17] reported an overall sensitivity of .48 and PCCC
of .43 on the Agincourt dataset, and Desai et al. reported
a PCC of .38 using the open source Tariff method and
.39 using InterVA-4. Table 8 shows the results using the
WHO categories, which are generally lower, as with the
MDS+RCT dataset.

Discussion
Some have suggested that it might be better to replace
the free-text portions with more detailed checklist items
to avoid the overhead of manually collecting, transcribing,
translating, and processing the narrative [24].While struc-
tured data can be very useful, it is more time-consuming
to collect, and currently does not capture information
such as chronology and health-seeking behaviors that is
often made available via the narrative. We have demon-
strated that despite the varying quality of the narrative
text, it can still be used to achieve high agreement with
physician-determined CoD.
While most other methods achieve their results by using

expert-driven features or a large amount of data from the
structured questionnaire in addition to some narrative-

Table 4 Two example narratives (adult deaths)

Narrative Physician certified CoD category

Heart failure. The patient death due to
breathlessness. The person suffering
paralysis and stroke lost on year with
chest pain very pressure after then
person was head.

Cardiovascular disease

One day 13/03/01 he fell ill with some
fever and chest pain who called the
Doctor. On 15/03/01 the deceased
was crying in the chest pain and high
fever. We were ready to shift. The
patient to the Hospital, some water
came out from the deceased mouth
and closed his eyes and passed away.

Acute respiratory infections

based features (in the case of the Tariff method [23] and
Danso et al. [18, 19]), our model uses only the narra-
tive and thus can be trained and tested on any set of
verbal autopsies that contain free-text narratives, and we
are able to achieve comparable performance to previously
reported automated methods using the MDS, RCT and
Agincourt datasets.
The datasets we use are very similar, but not exactly the

same as the ones used by Miasnikof et al. [17], because
we only use the records that have transcribed narratives.
Unfortunately, at the time of writing there was currently
no freely available dataset with narratives that would facil-
itate a direct comparison on the individual level. How-
ever, these records are taken from the same populations
and therefore we expect the distribution of causes to be
similar.
A possible explanation for why our narrative-based clas-

sifiers performed better than that of Danso et al. [18],
besides the differences in the dataset, is that not only did
we train on more data, but we also performed feature
selection and parameter optimization for each classifier,
while Danso et al. only performed feature reduction for
the SVM, and used the default parameters for all models.
Our feature selection based on the correlation between
features and categories helps to prevent overfitting to the
training data and reduce computation time for our mod-
els. Some of the highest ranked features that were selected
by the ANOVA module are words like yellow, abdomen,
weak, fever, cough, etc, which clearly describe symptoms.
Some of the features seemed to describe conditions or sit-
uations, such as pregnancy, cancer, and tuberculosis, and
some were less obvious, such as help, gradually, and one.
Certain CoD categories have fewer misclassifications,

most notably “Suicide" and “Road and transport injuries".
Those narratives tend to be less complex since the CoD
is well identified within the text. The most commonly
confounded CoD categories were “Other non-
communicable diseases" and “Ill-defined". The classifiers
seem to have more trouble distinguishing between CoD
categories that have a large variation in symptom patterns,
which are also more difficult for humans to diagnose.
Given that physicians do not agree with each other 100%

of the time on CoD, we cannot expect automatic classifiers
to achieve perfect agreement with humans. Because the
model reports its own level of confidence for each record,
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Table 5 Mean scores on the combined MDS and RCT datasets for each of the four classifiers

Precision Sensitivity F1 PCCC CSMFA CCCSMFA

Adult (15–69 years)

Naïve Bayes .710 .710 .704 .689 .929 .801

Random forest .733 .730 .728 .711 .948 .854

SVM .746 .737 .740 .718 .962 .894

Neural network .773 .770 .770 .764 .962 .894

Child (29 days–14 years)

Naïve Bayes .647 .595 .608 .565 .851 .585

Random forest .687 .620 .638 .591 .872 .643

SVM .686 .658 .666 .632 .914 .760

Neural network .719 .695 .698 .672 .904 .733

Neonate (<29 days)

Naïve Bayes .507 .516 .493 .376 .826 .509

Random forest .534 .542 .524 .411 .852 .581

SVM .537 .538 .524 .404 .857 .597

Neural network .579 .576 .556 .453 .825 .507

Adult and child results classified into 15 categories; neonatal records into 5 categories. Bold indicates the best score in each column for each age group. PCCC: partially
chance-corrected concordance, CSMFA: cause-specific mortality fraction (CSMF) accuracy, CCCSMFA: chance-corrected CSMFA

we can use these confidence scores to decide which codes
to send for physician review and which to accept without
review.
One disadvantage of our method is that some narratives

are long and include background information that is not
ultimately relevant to the CoD, such as a history of smok-
ing or asthma when the subject died in a car accident.
Sometimes the respondents mention what they believe

to be the CoD in the narrative, which might or might
not be the CoD that is subsequently determined by the
physicians. The presence of these elements in the narra-
tive could potentially cause a misclassification. While we
may be willing to accept the same kinds of errors from
the system that a physicianmight make, the system should
not make simple mistakes that a human wouldn’t, such
as ignoring more recent events (hit by car) and instead

Fig. 7 Individual level results comparison (MDS+RCT)
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Fig. 8 Population level results comparison (MDS+RCT)

focusing only on earlier events from the person’s medical
history (asthma).
This kind of error can arise because the word fre-

quency counts do not take word order into account, and
consequently, higher-level linguistic information such as
negation and chronology is not captured. We plan to han-
dle some of these issues in the future by using models that
capture the sequence of the words, and we also plan to

use temporal relation extraction to account for chronol-
ogy. However, the present work provides a strong baseline
for narrative-based automated VA coding.

Conclusions
We have shown that a variety of narrative-based machine
learning classifiers can be used for automated VA cod-
ing. This was previously demonstrated by Danso et al.,

Table 6 Mean scores using WHO categories on the combined MDS and RCT datasets for each of the four classifiers

Precision Sensitivity F1 PCCC CSMFA CCCSMFA

Adult (15–69 years)

Naïve Bayes .591 .593 .580 .583 .869 .643

Random forest .644 .647 .634 .638 .905 .742

SVM .665 .662 .655 .654 .908 .751

Neural network .630 .654 .620 .646 .840 .567

Child (29 days–14 years)

Naïve Bayes .493 .402 .427 .379 .768 .369

Random forest .570 .507 .514 .488 .807 .476

SVM .567 .530 .528 .512 .796 .446

Neural network .512 .494 .474 .474 .753 .330

Neonate (<29 days)

Naïve Bayes .434 .469 .435 .399 .797 .448

Random forest .424 .455 .426 .384 .798 .450

SVM .505 .497 .476 .431 .813 .492

Neural network .328 .361 .306 .278 .634 .007

Adult: 48 categories, child: 39 categories, neonate: 17 categories. Bold indicates the best score in each column for each age group. PCCC: partially chance-corrected
concordance, CSMFA: cause-specific mortality fraction (CSMF) accuracy, CCCSMFA: chance-corrected CSMFA
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Table 7 Mean scores on the Agincourt dataset

Precision Sensitivity F1 PCCC CSMFA CCCSMFA

Adult (15–69 years)

Naïve Bayes .517 .517 .513 .481 .932 .814

Random forest .511 .517 .496 .480 .844 .577

SVM .569 .566 .561 .543 .901 .730

Neural network .575 .578 .570 .547 .918 .777

Child (29 days–14 years)

Naïve Bayes .488 .440 .435 .395 .761 .351

Random forest .521 .502 .487 .463 .816 .501

SVM .535 .518 .512 .479 .872 .653

Neural network .572 .562 .552 .527 .869 .645

Neonate (<29 days)

Naïve Bayes .532 .526 .483 .404 .702 .191

Random forest .409 .496 .427 .366 .710 .213

SVM .387 .417 .371 .266 .693 .165

Neural network .356 .412 .354 .259 .636 .012

CCCSMFA was calculated using .632 as the mean of random allocation, as suggested in [12]

but we extend this work to include neural network mod-
els and datasets from India and South Africa. Unlike most
other methods, ours does not rely on a specific struc-
tured data format or questionnaire; it can be applied to
any English VA narrative, and is more adaptable to differ-
ent datasets and populations than methods that rely on
structured data.

No current method for automatically determining CoD
for VA records has sufficient accuracy to be a replace-
ment for human doctors. However, we have shown that
for adult deaths, the largest group of deaths in our dataset,
that our method can achieve .770 sensitivity and over
.90 agreement (CSMF accuracy) at the population level
with physician-assigned CoDs. This demonstrates that

Table 8 Mean scores on the Agincourt dataset using the WHO categories

Precision Sensitivity F1 PCCC CSMFA CCCSMFA

Adult (15–69 years)

Naïve Bayes .433 .448 .431 .432 .876 .662

Random forest .438 .464 .436 .448 .832 .543

SVM .502 .505 .491 .490 .857 .612

Neural network .470 .495 .451 .480 .750 .322

Child (29 days–14 years)

Naïve Bayes .378 .388 .370 .360 .793 .437

Random forest .456 .450 .431 .425 .799 .453

SVM .471 .465 .452 .440 .816 .499

Neural network .388 .428 .374 .402 .667 .095

Neonate (<29 days)

Naïve Bayes .276 .384 .305 .296 .610 -.060

Random forest .292 .369 .314 .279 .673 .111

SVM .391 .405 .373 .320 .733 .274

Neural network .156 .265 .179 .160 .502 -.353

CCCSMFA was calculated using .632 as the mean of random allocation, as suggested in [12]
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narrative-based machine learning methods are a promis-
ing option for automated CoD coding of VA records. A
large repository of openly available VA data with full nar-
ratives and physician-assigned cause of death would help
in further development of such computational methods.
Similar methods of text-based machine learning could
be applied to other tasks in the healthcare domain, such
as automatic diagnosis or treatment recommendations
based on hospital records.
To improve our VA classification method, we are cur-

rently considering combinations of features from the
structured data and the narrative in order to produce an
automated CoD coding tool that is robust and reliable
enough to be used in the field. In our ongoing work, we are
using more linguistically motivated features that take into
account context, chronology, and semantics, and we are
also exploring alternative neural network architectures.

Endnotes
1Danso et al. [18] also lowercased the text in their

dataset but removed punctuation and did not remove
stopwords or perform spelling correction.

2We use the implementation of the Porter Stemmer
provided in NLTK [33].

3We use scikit-learn’s SelectKBest module with the
f_classif function [30].

4 For optimization we use the hyperopt Python
library[34].
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Additional file 1: Cause of death categories with corresponding ICD-10
codes (PDF 59 kb)
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