
Proceedings of the BioNLP 2018 workshop, pages 12–17
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

12

Multi-task learning for interpretable cause-of-death classification
using key phrase prediction

Serena Jeblee
Dept of Computer Science

University of Toronto
Toronto, Ontario, Canada

sjeblee@cs.toronto.edu

Mireille Gomes
St. Michael’s Hospital

Toronto, Ontario, Canada
mireille.m.gomes@gmail.com

Graeme Hirst
Dept of Computer Science

University of Toronto
Toronto, Ontario, Canada
gh@cs.toronto.edu

Abstract

We introduce a multi-task learning model
for cause-of-death classification of verbal
autopsy narratives that jointly learns to
output interpretable key phrases. Adding
these key phrases outperforms the baseline
model and topic modeling features.

1 Introduction

Verbal autopsies (VAs) are written records of the
events leading up to a person’s death, typically
in situations where there was no physical autopsy
and the cause of death (CoD) was not determined
by a physician. As per World Health Organiza-
tion recommendations, most VAs contain struc-
tured information from answers to a questionnaire,
and may also contain a free-text narrative that cap-
tures additional information, such as the time and
sequence of the subject’s symptoms and details of
their medical history (Nichols et al., 2018). VAs
are used in countries such as India to gain a better
idea of the most prevalent causes of death, which
are not accurately captured by only the small num-
ber of well-documented deaths that occur in health
facilities.

Typically, VAs are collected by non-medical
surveyors who record the information on a form
that is later reviewed by physicians who assign
the record an International Classification of Dis-
eases (ICD-10) code (World Health Organization,
2008). Automating some of this coding process
would reduce the time and costs of VA surveys.

Previous work has shown that machine learning
methods can be useful for medical text classifica-
tion. However, many models do not provide inter-
pretable explanations for their output, which are
crucial in health care.

Multi-task learning methods use a shared archi-
tecture to learn several classification tasks, which

has been shown to improve performance espe-
cially when the tasks are closely related. In this
work we aim to use a multi-task learning model
to classify VA narratives according to CoD and
simultaneously provide automatically determined
key phrases in order to increase the interpretability
of the model.

2 Related work

Several automated methods for coding VAs are
currently in use, including InterVA (Byass et al.,
2012), InSilicoVA (McCormick et al., 2016), and
the Tariff Method (Serina et al., 2015). However,
these methods are largely based on the structured
data (which varies depending on the particular VA
survey form used) and on physician-curated con-
ditional probabilities of symptoms and diseases,
which are time-consuming to collect. The perfor-
mance of these methods is typically less than .60
precision for 15 to 30 CoD categories (Desai et al.,
2014).

Miasnikof et al. (2015) used a naı̈ve Bayes clas-
sifier with structured data and achieved compara-
ble or better results than the expert-driven models.
Danso et al. (2013) used linguistic features to clas-
sify VA narratives of neonatal deaths into 16 CoD
categories with a support vector machine (SVM),
achieving .406 recall.

TextRank (Mihalcea and Tarau, 2004) is a pop-
ular method that uses document graphs to extract
key phrases. However, unsupervised models such
as TextRank can extract text only from the docu-
ment itself, in which the physician-generated key
phrases that we use in this work might or might
not be explicitly present. Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) is a topic modeling
framework that is often used for text classification.
We will compare our key phrase clusters to LDA
topics learned from the same narrative data.
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3 Data

Our dataset consists of 12,045 records of adult
deaths from the Million Death Study (MDS)
(Westly, 2013; Aleksandrowicz et al., 2014;
Gomes et al., 2017), which is a program to col-
lect and code VAs from India. In the MDS cod-
ing process, two physicians separately assign an
ICD-10 code to each record and disagreements are
resolved by a third physician if necessary. Because
there are hundreds of possible ICD-10 codes and
our dataset is fairly small, the codes are grouped
into 18 CoD categories, which are broader group-
ings of the WHO 2012 VA categories (World
Health Organization, 2012).

The narratives, written by non-medical survey-
ors, range from a couple of sentences to a few
paragraphs and describe the person’s medical his-
tory and symptoms before death. In addition to the
free-text narratives, the VA records from the MDS
also contain key phrases assigned by the coding
physicians. By highlighting important symptoms
and events, these phrases are meant to explain the
code assigned. They may be taken directly from
the narrative or written in by the physician.

We represent the narrative text and key phrases
with 100-dimensional word embeddings trained
with the word2vec CBOW algorithm1, which
learns vector space representations for words
based on their context (Mikolov et al., 2013).
The key phrase representation for clustering is the
average of the embeddings of each word in the
phrase. The narrative representation is a matrix
containing the embeddings for each word in order,
padded with zero vectors to a maximum length of
200 words.

Because the dataset is rather small for training
word2vec, we include Indian English text from the
International Corpus of English2 and 1.7M posts
from MedHelp3, an online medical advice forum
that contains informal health-related language.

The text of both the narratives and the key
phrases is lowercased, punctuation is removed,
and spelling is corrected using PyEnchant’s En-
glish dictionary (Kelly, 2015) and a 5-gram lan-
guage model for scoring candidate replacements,
using KenLM (Heafield et al., 2013). After pre-
processing we remove duplicate key phrases.

1We used a context window of 5, min count of 1 (due to
the small dataset), and no negative sampling.

2http://ice-corpora.net/ice/avail.htm
3http://www.medhelp.org

4 Model

The model used for both key phrase cluster pre-
diction and CoD classification is a neural network
that contains a gated recurrent unit layer (GRU)
(Cho et al., 2014) with 0.1 dropout followed by a
convolutional layer (CNN) with filters of size 1×d
through 5×d where d is the word embedding size
(100), followed by a max-pooling layer. The out-
put of the pooling layer is then used as input to
a dense softmax layer that outputs the classifica-
tion. The models are implemented in Python using
Keras (Chollet, 2015), with the Theano backend
(Theano Development Team, 2016).

For CoD classification, the prediction layer out-
puts the probabilities over the 18 CoD categories,
and we choose the one with the highest probabil-
ity. For key phrase prediction, it outputs the prob-
abilities over the key phrase clusters, and we take
each cluster as a label if it has a probability of
0.1 or higher (since there can be any number of
key phrases per record). A higher cutoff will re-
sult in slightly higher precision but lower recall.
The loss functions are categorical cross-entropy
for CoD classification and mean squared error for
key phrase cluster prediction.

The multi-task learning model consists of a
shared GRU/CNN model that generates a vector
representation that is then used by two parallel pre-
diction layers, one for the CoD category and one
for the key phrase clusters. The key phrase loss
function has a weight of 0.1 to emphasize the CoD
coding task. All three of these models use only the
narrative word embedding matrix as input.

5 Key phrase clustering

5.1 Unsupervised clustering

The key phrases from the training data are grouped
into 100 clusters using the k-means algorithm with
Euclidean distance from scikit-learn (Pedregosa
et al., 2011).

We need a sufficient number of clusters to
capture specific symptoms and event, but not so
many that we cannot predict them accurately. In
our case, we want to favor precision over recall
because we would rather generate fewer, more-
correct key phrases than more phrases that are less
accurate. We chose 100 clusters based on early
experiments to maximize precision and the num-
ber of clusters.
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Label Key phrases in cluster

cough cough, cough with sputum, cough with phlegm, had sputum cough, . . .
rigours fear, sudden chest pain one day and died in short while, h/o headache, epileptic, . . .
h/o chest pain sudden chest pain, occasional chest pain, sudden pain in middle of chest, . . .
breathing difficulty difficulty in eating, difficulty in urination, . . .

Table 1: Examples of key phrase clusters with generated labels (‘h/o’ means ‘history of’)

Model CoD classification Key phrase cluster prediction
Precision Recall F1 Precision Recall F1

Majority class .027 .163 .046 .292 .070 .105
Key phrase only - - - .498 .283 .317
CoD only .755 .746 .743 - - -
Multi-task .760 .753 .750 .481 .276 .310

Table 2: Weighted average scores from 10-fold cross-validation using the GRU/CNN model

CoD classification
Features Precision Recall F1

Majority class .027 .163 .046
Embeddings .757 .752 .747
Emb + LDA .726 .703 .699
Emb + key phrases .779 .778 .774

Table 3: Results using a CNN model with a paral-
lel feed-forward network (inputs are word embed-
dings and key phrases or LDA topics respectively)

5.2 Cluster prediction

For new, uncoded records, we will have only the
narrative and therefore will need to predict the key
phrase clusters. For evaluation, because the clus-
tering is unsupervised and we have no gold stan-
dard mapping of key phrases in the test data to
clusters, we assign each test key phrase to a cluster
using a k-nearest neighbor classifier (k = 5). We
treat these clusters as the “true” labels for the key
phrase prediction task.

5.3 Cluster interpretation

In order for these clusters to be useful to physi-
cians, we need a text label for each. We could
simply take the most frequent key phrase in each
cluster as the label, but many key phrases are vari-
ations of the the same idea, or have extra details
in them, so the most frequent phrase might not be
the most representative. Therefore, to get a text la-
bel that is representative of the cluster, we choose

the key phrase that is closest to the center of the
cluster in vector space.

However, there are some key phrases which are
much longer than average. Since the vector repre-
sentation of each phrase is the average of the word
embeddings, a phrase with many words is more
likely to be closer to the center. Also, we want
to favor shorter labels that are general enough to
describe the members of the cluster. Therefore
we introduce a length penalty: the score used for
selecting the label phrase is the distance of the
phrase embedding from the center of the cluster
multiplied by the number of words in the phrase.
This gives us cluster labels that are usually one or
two words.

Table 1 shows some of the generated cluster la-
bels and the associated key phrases.4

6 Results

Table 2 shows the results from 10-fold cross-
validation for key phrase cluster prediction and
CoD classification, using the multi-task learning
model, as well as separate models. The majority-
class baseline is the scores obtained by assigning
every record to the most frequent class in the train-
ing set (‘road traffic incidents’).

Some key phrase clusters are much larger and
more frequent than others, which can render them
unhelpful if too many different key phrases are
grouped together. For the key phrase majority

4All examples are from the first iteration of 10-fold cross-
validation, since different clusters are generated for each
training set.
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Record CoD category Physician-assigned key
phrases

Nearest-neighbor
clusters

Predicted
clusters

Ischemic heart disease

stroke patient, fever,
dizziness for days, severe
abdominal pain, diggings’s,
sudden pain abd.

oliguria, fever,
sometime, abdominal
pain, oliguria, diahorrea

pain abdomen,
fever

Chronic respiratory
infections

cough, wheezing,
breathlessness edema

cough, h/o cough,
breathlessness, h/o
edema

h/o cough,
breathlessness

Liver and alcohol

heavy alcohol intake, less
food, not having food at
regular interval, excess
consumption of alcohol

pesticide, pesticide,
oliguria, pesticide

died in5 mts.,
oliguria,
progressive

Table 4: Examples of predicted key phrase clusters and CoD categories from the test set. Nearest
neighbor clusters are the clusters from the training set that are closest to the embeddings of the physician
key phrases.

baseline, we assign the most frequent key phrase
cluster from the training set to each record in the
test set. Even though there are 100 possible clus-
ters and multiple clusters per record, we get .292
precision from the most frequent cluster alone.

We also use the predicted key phrase clusters as
features for CoD classification. We use the clus-
ters predicted by the ‘key phrase only’ model as
input to a CNN CoD classifier. The input to the
CNN layer is the matrix of word embeddings from
the narratives, as in the previous model, and key
phrase clusters are represented as a binary array
that is the input to a feed-forward layer of 100
nodes. The outputs of the CNN module and the
feed-forward module are concatenated and used
as input for the final softmax classification layer,
which outputs the CoD category.

Table 3 shows the results of this model, com-
pared to the same model architecture using 100
LDA topics as the second feature set. The
model using predicted key phrase features per-
forms much better than that using the LDA top-
ics. It also outperforms both the CNN model using
only the narrative embeddings (without the feed-
forward layer), and the majority class baseline.

7 Discussion

Table 4 shows some examples of the key phrase
clusters predicted by the multi-task model. As we
can see from the first two examples, many of the
predicted phrases capture the same type of infor-
mation as the physician-generated key phrases, al-
though not as thoroughly.

However, as seen in Table 1, the clustering
doesn’t always capture the type of similarity we’re
interested in, such as the ‘breathing difficulty’
cluster, which captures phrases containing ‘dif-
ficulty’, although these often represent different
symptoms. In Table 4 we see that the cluster rep-
resenting alcohol intake has been labeled as ‘pest-
icide’ (along with several other clusters), and the
predicted clusters for the third record do not con-
tain any useful information related to the CoD (al-
cohol consumption).

Despite the key phrase prediction accuracy be-
ing fairly low, adding these predicted clusters as
features for CoD classification improves both the
precision and recall of the model.

We suspect that topic modeling does not help
in this case because the distribution of words is
very similar between documents, since they all
deal with symptoms leading up to death. In addi-
tion, the key phrases are generated by physicians,
and can capture information that is not explicitly
present in the narrative.

8 Conclusion

We have demonstrated that learning key phrases
along with CoD categories can improve CoD clas-
sification accuracy for verbal autopsies. The text
representation of the key phrase clusters also adds
interpretability to the model. In future work, we
will aim to improve the cluster prediction accu-
racy, and we will investigate unsupervised meth-
ods of extracting important information from VA
narratives.
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