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Abstract

Agents act upon and perceive the world from a particular perspective. It is important to
recognize this relativity to perspective if one is not to be overly demanding in specifying
what they need to know in order to be able to achieve goals through action. An agent may
not know where he is, what time it is, which objects are around him, what the absolute
positions of these objects are, and even who he is, and still be able to achieve his goals.
This is because the knowledge required is indexical knowledge, knowledge about how one
is related to things in one’s environment or to events in one’s history.

This thesis develops a formal theory of knowledge and action that handles the distinction
between indexical and objective knowledge and allows a proper specification of the knowl-
edge prerequisites and effects of action. The theory is embodied in a logic. The semantics of
knowledge proposed is a natural extension of the standard possible-world semantic scheme.
The notion of “ability to achieve a goal by doing an action” is formalized within the logic;
the formalization does not require an agent to know in an absolute sense who he is or what
time it is.

We then formalize various domains within the logical system proposed. These examples
show how actions can be specified so as to avoid making excessive requirement upon the
knowledge of agents, and how such specifications can be used to prove that an agent is able
to achieve a goal by doing an action if he knows certain facts. We direct a significant part
of our formalization efforts at a robotics domain, since this kind of application provides
the most intuitive examples of situations where indexical knowledge is sufficient for ability.
But we also formalize other domains involving temporal knowledge, knowledge of the phone
system, and knowledge of one’s position in a data structure. The examples involved show
that the notion of indexical knowledge is more abstract than one might first imagine. On
the basis of evidence provided by the temporal 'exa.mples, we provide an argument to the
effect that the distinction between indexical and ob jective knowledge accommodated by our

framework is of practical interest and that it cannot be handled within previous theories.
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Chapter 1

Introduction

1.1 Motivation

Agents need knowledge to be able to achieve goals by doing actions. For example, to be
able to withdraw funds at a teller machine, one must know what procedure to use (i.e., how
to insert one’s bank card, what keys to press, etc.), one must know what one’s identification
code is, one must know that the machine is in operation at the time, that one has sufficient
funds, etc. It may be physically possible for someone to withdraw money with his bank
card, but if he does not remember his identification code, he will not be able to do it. But
he may be able to plan his way around his ignorance, for example, he could decide to first
look on the back cover of his address book, where he has written the code; after doing this

action, he will have the requisite knowledge. Agents must reason about:

o the effects various actions would have upon their knowledge

e the knowledge prerequisites of the actions they might do — the conditions under

which they are able to achieve goals by doing actions.

A satisfactory theory of the relationship between knowledge and action would need to
formalize enough aspects of these notions and how they relate to support reasoning about
them — the kind of reasoning that an agent must do in devising a plan to achieve its
goals. Within such a theory, it should be possible to represent what an agent knows about
a situation and then reason about whether he is able to achieve various goals by doing

various actions in the situation.



Most existing planners have completely ignored the need to reason about what agents
know and need to know by unrealistically assuming that agents always have perfect knowl-
edge of the domain under consideration. But in the past decade, Moore (1985; 1980),
Morgenstern (1987; 1988), and other researchers have proposed theories of knowledge and
action that do address this need. These theories do provide reasonable answers to the
question of what the relationship between knowledge and action is and have considerably
advanced our understanding of the issues involved in reasoning about that relationship. But
ma:ny problems remain.

This thesis deals with one aspect of the relationship between knowledge and action
that has been neglected and is inadequately handled by these theories: the fact that the
knowledge required for action is generally relative to the agent’s perspective — that it is

generally indezical (or relative) knowledge rather than objective knowledge. For example,

o if a robot knows the relative position of an object he can go and pick it up — he need

not know what his or the object’s absolute positions are
e one can soft-boil an egg using a timer without knowing what time it is.

In these cases, the agent has very incomplete knowledge of his situation, at least as far as
objective facts are concerned, but this does not interfere with his ability to achieve his goals
by doing actions. More generally, an agent may have sufficient knowledge to be able to

achieve his goals even if he does not know

o where he is

what time it is

which objects are around him

where these objects are located (in absolute terms)

who he is.

This is the case because the knowledge required is indexical knowledge, knowledge about
how one is related to things in one’s environment or to events in one’s history. This should
not come as a surprise, since agents act upon their environment from a particular perspec-

tive, a particular place and moment in time. The same action done at different places and



times has different effects. So it makes sense that the prerequisites of an action should
involve knowledge that is relative to this perspective. Similarly, the knowledge supplied by
perception is indexical knowledge. For example, by using his sonar, a robot comes to know
how far from him an object is (at the current time); he does not learn anything about the
object’s absolute position.

In some cases where an agent has indexical knowledge of some fact, he also has objective
knowledge of the same fact. Then, one can perhaps substitute the latter for the former in
a specification of the knowledge prerequisites or effects of an action. Take, for example, a
situation where at 10 a.m. December 7, 1990, Rob the robot knows that there is currently
a pop can one meter in front of him; if Rob knows who he is (i.e., knows of someone that
he, Rob, is that person) and knows what time it is (i.e., knows of some time ¢ that ¢ is the
present time), then he must also know of Rob and of 10 a.m. December 7, 1990 that there
is a pop can one meter in front of that person at that time (de re).! In this case, it would
not be too inaccurate to say that Rob must have the latter knowledge if he is to be able
to achieve the goal of holding a pop can by extending his arm one meter and grasping. In
such situations, we can use the latter objective form to represent the former relative form.
But in cases where the agent does not know what time it is or who he is, the relativity of
knowledge cannot be eliminated. For instance, in the egg-boiling example discussed earlier,
at some point the agent knows from the timer that the egg started boiling 5 minutes earlier
(and thus that he should be removing it from boiling); since the agent does not know what
time it is, he does not know of the current time ¢ that the egg started boiling 5 minutes
before ¢ — there is no objective way in which the agent knows the requisite fact. So a
specification of ability that would require objective knowledge would not do justice to the
situation. Cases where an agent does not know who he is seem more unusual, but they can

nonetheless arise.?

! De re knowledge attributions assert the existence of some kind of epistemic relation between the knower
and some individual or thing. The intuition behind such attributions is that they apply to cases where
the agent’s knowledge is sufficiently precise to pick up a particular individual or thing, as opposed to being
about whoever satisfies a description. The latter cases are said to involve mere de dicto knowledge. For
example, if John is told that someone among his co-workers has been selected to be the new manager, but
is not told whom, he may then come to believe that the new manager (whoever he is) must be happy —
a de dicto rather than de re belief. If he is later told that the new manager is Paul, he will then come to
have a de re belief of Paul that he must be happy. Note that we take the de re-de dicto distinction to be
orthogonal to the objective-indexical distinction; the latter has to do with whether the information known
refers to the agent’s perspective or not. This is discussed further in section 3.1.

?Moreover from a theoretical standpoint, one could argue that in the case of the robot above, it is only
because he knows that he is a and that the current time is ¢ that his knowing of ¢ and ¢ that there is an

3



Existing theories of the relationship between knowledge and action cannot handle these
cases properly as they do not accommodate the distinction between indexical knowledge
and objective knowledge. They impose unnecessarily strong knowledge requirements upon
agents before sanctioning their ability; they tend to require de re knowledge when mere
indexical knowledge would be sufficient. They also cannot represent accurately the effects
of action upon knowledge. We need an account of ability that squares with the fact that
agents may be missing very Ba.sic facts about his objective situation and that of the things
around him and still be capable of achieving his goals. The reason we care about this is
that this form of incomplete knowledge is the norm rather than the exception for agents in

the world.3

1.2 Methodology

The goal of this thesis is to develop a theory of knowledge and action that handles the
distinction between indexical and objective knowledge and accounts for indexical knowledge
prerequisites and effects of action. The theory should capture the kind of reasoning that an
agent must do in devising a plan that achieves his goals.

The approach taken is to develop a quantified modal logic that embodies the theory. The
logic includes primitives that formalize notions of knowledge, time, action, and historical
necessity — the latter notion is used to capture that of a course of action being physically
possible for an agent. The notion of ability is formalized as a derived operator (i.e., defined
in terms of the notions mentioned above). The epistemic and temporal parts of the logic
adequately support the representation of indexical knowledge, keeping it distinct from de
re knowledge. We provide a formal semantics for the knowledge operator that handles
indexicality; it is a simple and natural extension of the standard possible-world semantic
scheme for the logic of knowledge (Hintikka 1969; Halpern and Moses 1985).

The specification of the theory as a logical system has several advantages. First, it

object one meter in front of a at time ¢ implies that he is able to achieve his goal (a similar argument is made
by Perry (1979)). An account of knowledge and action that ignored this would seem to miss an important
part of the explanation for why the agent is able to achieve his goal.

3In fact, we think that cases where one only has indexical knowledge are generally more fundamental than
cases where one has de re knowledge. Having de re knowledge of some entity generally presupposes having
previously had indexical knowledge of that entity. Moreover, it seems that even very simple autonomous
cognitive agents (e.g., robot ants) would need indexical knowledge, while the kind of systems that do not
have much indexical knowledge (e.g., large data bases) depend on other agents who do for their usefulness.



ensures that the specification of the theory is precise. Secondly, the provision of a formal
semantics clarifies the meaning of the theory’s claims and the ontological commitments
involved; this makes it easier to judge whether these claims are correct or at least reasonable.
Thirdly and perhaps most importantly, the properties of the notions formalized can be
studied within the logic; these properties are reflected in which sentences are valid in the
logic. For example, if the theory ensures that whenever an agent knows that ®, he must
know that he knows that , then the sentence that expresses this in the logic must be valid.
Fourthly, the specification of the theory as a logic makes it easier to prove various results
about it, for instance, results concerning the decidability or tractability of the validity
problem for certain classes of sentences; often, established results concerning similar logics
can be used or adapted. Finally, one can use such a logic to obtain a Pprecise specification of
a system that implements some of the reasoning formalized by the logic. Following Levesque
(1984a), it has become common in- knowledge representation to specify the behavior of a
knowledge representation module in terms of a logic of belief. From our logic, it would be
easy to obtain a specification for a planning program — a program that given a goal and
-a representation of what is known about a situation, generates a plan to achieve the goal.
Note that our methodology differs little from that used by Moore (1985; 1980), Morgenstern
(1987; 1988), and others who have previously worked on theories of knowledge and action
“(although the kinds of logical systems used have been different).

Of course, this methodology does not directly address the issue of how one could develop
a planning program that handles the kind of situations covered by this theory. But it is
generally agreed that planning programs that are truly general and extensible need to be
based upon a satisfactory theory of the kind of reasoning required. Our theory attempts to
provide this kind of foundation.

A major part of this thesis is involved with the formalization of various domains within
the logical system proposed. This is essential to ensure that the theory is truly useful
and that it handles adequately the kind of situations that it is designed for. Moreover,
the formalization of actions involves many decisions that have a crucial effect upon what
knowledge is required from an agent, but are not settled by the theory; for example, decisions
concerning the kind of parameters an action should take. The examples we develop show
how actions can be specified so as to avoid making excessive requirement upon the knowledge

of agents, and how such specifications can be used to prove that an agent is able to achieve



a goal by doing an action if he knows certain facts. We direct a significant part of our
formalization efforts at a robotics domain, since this kind of application provides the most
intuitive examples of situations where indexical knowledge is sufficient for ability. But we
also formalize other domains involving temporal knowledge, knowledge of the phone system,
and knowledge of one’s position in a data structure. The examples involved show that the
notion of indexical knowledge is more abstract than one might first imagine. On the basis of
evidence provided by the temporal examples, we provide an argument to the effect that the
distinction between indexical and objective knowledge accommodated by our framework is

of practical interest and that it cannot be handled within previous theories.

1.3 Outline of the Thesis

In chapter 2, we review previous work in artificial intelligence, logic, and philosophy that
is directly relevant to our objective of developing an adequate formalization of indexical
knowledge and its relation to action. We focus on previous attempts to formalize the
relationship between knowledge and action, previous work on indexical knowledge, and
recent work on reactive planning and situated action, where the important role played by
indexicality in action has been recognized.

In chapter 3, we develop the logical system that forms the basis of our framework, a
system that formalizes notions of knowledge, time, action, and ability. The epistemic and
temporal part of the logic adequately support the representation of indexical knowledge,
keeping it distinct from de re knowledge. The complete system permits an adequate char-
acterization of indexical knowledge prerequisites and effects of actions in a wide range of
circumstances. The chapter includes a thorough introduction to the logic, a formal spec-
ification of its syntax and semantics, a set of useful definitions, a complete review of the
properties of the notions formalized, a formalization of ability as a derived notion, and
finally a discussion of the contributions and limitations of the system.

In the next two chapters, we apply the logic developed in chapter 3 to the formalization
of various domains where agents have goals to achieve and certain repertories of actions to
do so. We show how the resulting theory allows us to prove that the agent is able to achieve
certain goals if he knows certain facts. We also show how the actions involved should be

formalized so as to avoid making excessive requirements upon the knowledge of agents —
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so that only indexical knowledge, as opposed to de re knowledge, is required when that is
sufficient.

Chapter 4 examines applications of the framework in the robotics domain, where index-
icality plays a particularly important role. We show how actions can be formalized, given
that perception yields indexical knowledge, and that ability to act upon an object does not
require de re knowledge of the object or its absolute position. We also show how indexical
knowledge and objective knowledge can be related in our framework to deal with the use of
maps for navigation. We discuss the representational issues tha,t- arise, which have general
relevance to the formalization of actions with indexical knowledge prerequisites or effects.
Finally, we discuss problems that arise in handling some higher-level actions with object
parameters.

Chapter 5 shows that the distinction between indexical and de re knowledge is quite
abstract and not tied to the notion of physical space; it shows that our framework can
be usefully applied in several other domains. We first discuss an example involving an
agent who wants to make a phone call; we show how this can be handled in a way that
- reflects the fact that the agent need not always know what his area-code is. We next look
at a very abstract domain, that of data structure search and manipulation; we show how
indexical knowledge is also relevant in this case. We then look at three cases where temporal
knowledge is required for ability. We find that the distinctions between various kinds of
knowledge that proved useful in spatial contexts are similarly useful in dealing with ability
in temporal contexts. Our ability to handle all of these kinds of situation provides strong
evidence for the adequacy of our theory. We then discuss problems with the notion of de re
knowledge and its role in action. We conclude by arguing that the applications discussed,
in particular the ones involving temporal knowledge, provide convincing evidence that the
distinction between indexical and objective knowledge supported by our framework has
substantial practical value and that it cannot be done justice within existing accounts of
ability.

Chapter 6 summarizes the main results of the thesis and suggests various directions for
further research.

For a quick overview of the thesis, one may want to go directly to the introduction to
the logic in section 3.1, then look at the definitions in section 3.4 and the formalization

of ability in section 3.6, then go through some of the examples in chapters 4 and 5, and



. conclude with the summary of the contributions of the thesis in section 6.1. Also going
through sections 3.5.2 and 3.5.7 will give a much better understanding of the properties of
knowledge in the logic.



Chapter 2

Background

In this chapter, we review previous work in artificial intelliéénce, logic, and philosophy
that is directly relevant to our goal of developing a theoty of .knowledge and action that
handles the distinction between indexical and objective knowledge and accounts for indexical
knowledge prerequisites and effects of action. This thesis straddles the research areas of
reasoning about knowledge, and reasoning about action and planning. The volume of work
that has been produced in each of these areas is very large, so we will not attempt to do a
comprehensive review of each. Good surveys have been produced by McArthur (1988) for
the area of reasoning about knowledge and by Georgeff (1987) for reasoning about action
and planning. The review in this chapter will focus on previous attempts to formalize
the relationship between knowledge and action, previous philosophical work on indexical
knowledge, and recent work on reactive planning and situated action, where the important

role played by indexicality in action has been recognized.

2.1 Knowledge and Action

As argued in section 1.1, agents need knowledge in order to be able to achieve their goals
by doing actions; for example, to be able to open a safe, one must know its combination;
to be able to bake a soufflé, one must know how to prepare it. Also, lacking some required
piece of information need not be the end of one’s hopes of achieving a goal, as one can
also acquire knowledge by doing actions; for example, by looking the method up in a recipe
book, one can find out how to bake a soufflé. Agents can thus plan their way around their

ignorance. As mentioned earlier, to do this, agents must reason about:



o the effects various actions would have upon their knowledge

e the knowledge prerequisites of the actions they might do — the conditions under

which they are able to achieve goals by doing actions.

A good theory of the relationship between knowledge and action must formalize these
notions and how they relate, to an extent sufficient for capturing this kind of reasoning.
Within such a theory, it should be possible to prove that if an agent knows certain facts,
then he must be able to achieve a goal by doing an action.

Most of the work aimed at developing relatively efficient planning programs, starting
from STRIPS (Fikes and Nilsson 1971) and continuing with numerous successors (Sacerdoti
1977, Chapman 1987), has simply sidesteped these issues by assuming that agents have
perfect knowledge of the domain under consideration.!

But over the past decade, significant progress has been made in the development of a
satisfactory theory of the relationship between knowledge and action. In this section, we

will review the various accounts that have been proposed.

2.1.1 Moore

The need for agents to reason about their ability to achieve goals by doing actions was first
recognized by McCarthy and Hayes (1979). Their solution to the problem involved adding
axioms that stated explicitly what the knowledge prerequisites of actions are. Moore (1980;
1985) was the first researcher to propose a theory of the relationship between knowledge
and action that accounted for the knowledge prerequisites of action from general principles.
The theory he developed is remarkable in its elegance and explanatory power. Subsequent
accounts have borrowed extensively from the ideas it advances. The theory developed in
this thesis is more closely related to Moore’s than to any other. So we will go over it in
more detail than we will do for other accounts.

Moore’s first contribution was to develop a logical framework in which one can talk about

!This is a bit of an overstatement. As Lifschitz (1987) has shown, STRIPS can handle some cases where
the world model it maintains includes disjunctive and existentially quantified formulas. But the framework
does not distingnish between what is known and what is true; so it"cannot deal with knowledge acquisition
actions. For example, consider a robot who can determine the shape of the block he is facing by doing
the “sense” action; what formulas would the STRIPS operator corresponding to “sense” add to the world
model? None that is expressible without talking about what is known! Yet it is clear that some goals cannot
be achieved without such actions being done (e.g., holding a pyramid, when both pyramids and cubes are
present).
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knowledge, action, and the interaction between the two. Simplifying a little, we can describe
this framework as the combination of first-order dynamic logic (a modal logic of action; see
Goldblatt (1987)) with the S4 modal logic of knowledge (Hintikka 1962; Halpern and Moses
1985).2 Both of these logics have possible-world semantics; Moore obtains a semantics for
the combined system by interpreting the worlds as possible states (i.e., snapshots of the
world at a given moment) and taking the accessibility relations that are used to interpret
the modal operators “know” and “after action §” to both hold over these possible states.3
Strictly speaking, Moore’s framework is not the modal logic just described, but rather the
specification in ordinary first-order logic of the semantics of this modal logic, that is, of a
truth predicate for it. By taking this approach, Moore can take advantage of the conciseness
of the modal object language, while retaining the ability to prove facts about the theory in
the metalanguage with an ordinary theorem prover. (Much like the situation calculus, the
resulting system is not efficient enough for practical applications, but can be used to prove
small examples.)

Within this framework, Moore can specify the effects of an informative action upon the
agent’s knowledge in a straightforward manner, that is, by adding an axiom to the effect
that after doing the action, the agent has that information. For example, in a block-world
domain, one might state that after doing the action of looking, the robot would know
whether there is a block in front of him. Note that Moore assumes that after doing any
action, an agent always knows that he has just done this action and remembers whatever he
knew before doing it. As we will see in section 3.1 this assumption is pretty much necessary
if agents are to be judged able to achieve goals by doing actions involving more than a single
step. This is also axiomatized in a straightforward way.

The major part of Moore’s efforts was directed at obtaining a satisfactory specification
of the knowledge prerequisites of actions, that is, of the conditions under which an agent
is able to achieve a goal by doing an action. Note that ability is understood as requiring
not just that it be physically possible for the agent to achieve the goal by doing the action,

but also that he have the necessary knowledge to do so. The account he produces does

*Moore actually presents the framework as being based on the situation calculus (McCarthy and Hayes
1979) rather than dynamic logic. But since the latter is essentially a generalization of the former and since
Moore uses the complex action forms of dynamic logic, it seems just as accurate to describe it as we do.

3In the logic of knowledge case, the worlds are usually viewed as modeling possible complete world
histories, and in the dynamic logic case, they are normally taken to model possible states of a computation.
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not involve an explicit axiomatization of the knowledge prerequisites of each action; his
specification of the conditions under which an agent is able to achieve a goal by doing an
action is based on general principles.

The account involves a modal operator CAN, where CAN(#°, 6, ) is intended to hold
if and only if agent 8° is able to achieve the goal ¢ by doing action é. A specification of
the truth conditions of such formulas is given. The axioms involved make the ability of
an agent to achieve a goal by doing an action dependent upon his having the necessary
knowledge. The conditions imposed yield an ability operator that corresponds fairly well
to the intuitive notion of ability.

The formalization makes use of the fact that actions are represented by a type of term
and that, since we are in a modal framework, we can distinguish between the action de-
scription or concept corresponding to an action term and the sequence of primitive actions
denoted by the term in a particular possible world. In particular, it makes sense to talk
about an agent knowing what an action description is or an agent having de re knowledge
of an action.? This notion is important because an agent may well know that an action
described in a given way achieves his goal without being able to do it because he does not
know what primitive actions the description denotes. For example, one may well know that
cooking beef bourguignon would impress one’s guests without knowing how to do it, that is,
without knowing what primitive actions “cooking beef bourguignon” really stands for. This
also applies to actions that are instances of general procedures: if one does not know the
combination of a safe, then one does not know what dialing the safe’s combination amounts
to (even though one knows the procedure for dialing any given combination).

The possible-world semantics’ account of de re knowledge goes as follows: in a world
w, an agent a knows of an entity x that it is ¢ if and only if x is ¢ in all worlds that are
compatible with what a knows in w (i.e., in all worlds that are knowledge-accessible for a in
w). Following Hintikka (1962), knowing who/what 4 is is taken to be equivalent to knowing
of some x that it is #. This does not however say much about what is actually required for
an agent to have de re knowledge; the question is recast into that of what is required for

the same individual to exist in distinct epistemically possible worlds. Actually, Moore uses

*Moore states that “knowing what action is referred to by an action description means having a rigid
designator for the action described ...a rigid designator for an action must be an ezecutable description of
the action”.
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a substitutional interpretation of quantifiers, but since rigid designators are substituted for
variables, this has little effect on the issue. There has been much philosophical debate on
this question but the common answer in Al circles has been that knowing who someone is
requires having a standard name for that person and similarly for knowing-what (Konolige
1986; Levesque 1984a).> Moore (1985) is not very clear as to whether he actually holds this
view, but his assertion that “in describing standard identifiers we assumed that everyone
knew what they referred to” seems to indicate that this is the case. The account works
well for some kinds of objects (e.g. phonés) and some tasks (e.g. question answering) but
requires some serious stretching in other contexts; for example, what are standard names
for a mobile vision-equipped robot?

Let us now go over Moore’s specification of the truth conditions of CAN formulas. The
specification is recursive; each axiom handles a particular form of action expression.® When
the action is simple, that is, contains no control structures, the specification says that an
agent is able to achieve a goal by doing it if and only if he knows what the action is, knows of
himself (de re) that it is physically possible for him to do it next, and knows of himself that
if he does it next, the goal will necessarily hold afterwards. For a sequentially composed
action, the specification says that an agent can achieve a goal by doing it if and only if by
doing the first action, he can achieve the goal of being able to achieve the original goal by
doing the second action. For a conditional action, one is said to be able to achieve a goal
by doing it if and only if either one knows that the condition holds and is able to achieve
the goal by doing the action described by the “then” case, or one knows that the condition
doesn’t hold and is able to achieve the goal by doing the action described by the “else”
case. Finally, one is said to be able to achieve a goal by doing the action “while ¢ do 6”
if and only if one is able to achieve it by doing the action “if ¢ then (6 ; while ¢ do §)
else skip”. “skip” is the empty action; one is said to be able to achieve a goal by doing
it if and only if one knows that the goal presently holds.

Note that the specification captures the fact that the agent need not initially know

what all the steps that he would need to do to execute a complex plan are; all that is

5This idea was originally proposed by Kaplan (1969). We think that formal study of the relationship
between knowledge and action holds potential for improving our understanding of this and other epistemo-
logical questions.

®The version described here is the one stated in (Moore 1980); the version presented in (Moore 1985) is
much more concise, but less explicit about what the truth conditions are when the action is a conditional
or a while-loop.
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required is that he know that he would know what to do next at each step of the plan.
Also note how the requirement that the agent know what the initial action is eliminates the
need for an explicit specification of the knowledge prerequisites of actions; in particular, if
an action is an instance of a general procedure and the procedure is known (formally, an
epistemically rigid function), then one knows what the action is if and only if one knows
what the arguments to the procedure stand for. Notice too that the agent is required to
know who he is. More generally, note that the only way to talk about time is through the
dynamic logic operators. Statements that are not in the scope of a dynamic logic operator
may be thought to be about the current time.

It should be clear why Moore’s theory has been so well received. The theory handles
many cases very well, the logical framework he proposes is relatively simple, and his account
of ability involves general principles rather than explicit specification of each particular
case. Let us now discuss the limitations of the theory. Since this work is concerned with
indexicality, we will start with this issue. As argued in section 1.1, it is important for
a theory of knowledge and action to capture the facts that informative actions generally
yield indexical knowledge and that indexical knowledge is generally sufficient for ability to
achieve goals by doing actions. We mentioned the example of a robot who is able to go and
Pick up an object because he knows its relative position; the robot need not know where he
is or what the absolute position of the object is. We also gave the example of an agent who
can soft-boil an egg with a timer in spite of the fact that he does not know what time it
is. The agent can have very incomplete knowledge of his situation as far as objective facts
are concerned, but still be able to achieve goals by doing actions. Moore’s work simply
does not address this issue; whatever role there might be for indexical knowledge in the
examples he formalizes is ignored. Moreover, his framework does not accommodate the
distinction between indexical and objective knowledge. Knowledge about absolute times is
not handled. Thus for instance, it is not possible to formalize the fact that after looking at
a clock, one knows what time it is. Knowledge that is indexical with respect to the agent
is also not handled. Due to this, the account must require that an agent know who he is
(know a standard name for himself, something clearly objective) in order to be judged able
to achieve a goal by doing an action. But this is clearly unnecessary. What need would
very simple agents (e.g., robot ants) have for knowing who they are? As pointed out in

section 1.1, this also limits the value of the account as an explanation for why agents are
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able to act. Because his framework does not support the distinction between indexical and
objective knowledge and because he does not recognize the issue, Moore tends to formalize
his example situations in a way that imposes unnecessarily strong knowledge requirements
upon agents before they are judged able to achieve their goals; he tends to require objective
de re knowledge when mere indexical knowledge would be sufficient. As mentioned before,
the reason why we care about this is that lack of objective knowledge is the norm rather
than the exception for agents that live in the world.

Going beyond the issues of particular concern to this thesis, perhaps the most serious
deficiency with Moore’s theory is the relatively narrow range of actions it handles; it does
not deal with concurrent actions, plans involving several agents, continuous processes, etc.
Even within its limited range of application, the formalization has a few problems. Its
specification of the conditions under which an agent is able to achieve a goal by doing a
while-loop action is inadequate. The problem is that the conditions imposed in this case
are too weak. So an assertion of ability to achieve a goal by doing a while-loop action can
be true in a semantic structure in spite of the fact that the loop never terminates (the loop
condition never becomes false) and the goal is never achieved. This leaves the ability of
agents to achieve goals only partly determined by their knowledge of the situation; thus
ability is ontologically primitive in this formalization (just like knowledge or time); but this
is clearly incorrect. Note that as a theory of the truth conditions of ability formulas —
the way Moore specifies it — this is merely too weak, in that it has undesirable models;
but if one were to take it as a truth definition for ability formulas, this definition would be

circular.

2.1.2 Other Work

One of the most unrealistic features of Moore’s theory is that the knowledge that agents have
is closed under logical consequence. Konolige (1982) has proposed a theory of knowledge
and action based on an account of knowledge as a syntactic predicate, which avoids this
defect. In contrast to the modal approach, the syntactic approach treats knowledge as an
ordinary predicate that takes a string argument; the framework used is ordinary first-order
logic augmented with quotation. Konolige avoids the consequential closure problem by
ascribing an incomplete set of inference rules to agents.

The syntactic approach also yields a more expressive logic than the modal one. One
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can make very weak statements like “John knows something that Paul doesn’t know.” But
this expressiveness leads to potential problems with paradoxes such as “This sentence is
known to be false”; systems based on the syntactic approach must find a way to block the
derivation of such paradoxes. Konolige handles this problem by adapting Tarski’s approach
to the formalization of a language that includes its own truth predicate; this involves a
hierarchy of languages and truth (knowledge) predicates over these languages; the truth
(knowledge) predicate of a given level can be applied only to sentences from a lower level,
which prevents the paradoxes from being expressible.

While syntactic approaches do avoid defects like consequential closure, it can be argued
that their model of knowledge is now too fine-grained (Levesque 1984b). For instance, it
is far from clear that a belief that ¢ and ¢’ is any different from a belief that ¢’ and .
Much progress has been made in recent years in the development of non-syntactic logics of
knowledge that avoid the consequential closure problem (Lakemeyer 1990).

Konolige’s treatment of knowledge prerequisites and effects of actions is essentially a
recasting of Moore’s account into his framework. Only the same restricted class of actions
is handled.

A theory that significantly extends this coverage has been developed by Morgenstern
(1987; 1988). Her account of ability handles concurrent actions and plans involving multiple
agents. Her treatment of the simpler cases is very similar to Moore’s; she retains the key
idea that an agent knows how to do an instance of a procedure (parametrized action) if he
knows the standard names of the parameters and knows how to do the procedure.

Morgenstern’s account of knowledge is also syntactic, but differs significantly from Kono-
lige’s. She does not use the Tarskian approach to the paradoxes and there is a single truth
predicate for all the languages in the hierarchy.

Note that knowledge is, in fact, closed under logical consequence in her account. Morgen-
stern’s argumentation against modal logics of knowledge is not based on the consequential
closure problem but on the claim that the logics cannot express the very weak knowledge
requirements involved in multi-agent planning. For example, if Paul does not know how to
make sushi, but knows that his friend John knows how (i.e., knows of some action that it
yields sushi), he is then able to prepare sushi by first asking John how it is done, and then
doing whatever he has been told to do. However, recent work by Nunes (1990) undermines

this argument; Nunes shows that the notion of “being able to achieve a goal (by doing some
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action)” can in fact be formalized in a modal framework.

Note also that agents need not know all valid sentences in Morgenstern’s system (i.e., she
does not have the knowledge generalization rule). She claims that this is a highly desirable
feature in that it allows agents to differ in the amount of procedural knowledge they have.
But we fail to see why domain axioms need to be treated in the same way as logical axioms;
one could simply look at what the consequences of the domain axioms are according to the
logic.

Neither Konolige’s nor Morgenstern’s work addresses the issue of indexical knowledge;
their frameworks do not accommodate the distinction between indexical and objective
knowledge and they do not formalize or discuss cases where the distinction is important.

The important role of indexical knowledge with respect to action has been pointed out
by Haas (1986), as part of a thorough critique of Moore’s theory. He gives an informal
sketch of how one might take indexical knowledge into account in a specification of ability
in the context of a syntactic account of belief; but he does not formalize his proposals.

Finally, let us point out the work of Davis (1988; 1989b; 1989a), who formalizes the
effects of perception upon knowledge within a framework similar to Moore’s. He treats
“perceiving” as a propositional attitude rather than as an action. He looks at how inferences

can be made about agents’ ignorance of events outside their perceptual range.

2.2 Philosophical Theories of De Se Attitudes

Most of the work on the semantics of indexical knowledge and other indexical attitudes has
been done by philosophers. This section reviews this work. At the end of the section, we

briefly discuss a few Al references on the topic.

2.2.1 Castaneda

In the mid-60’s Castafieda (1968) published several influential papers on the logic of index-
ical or de se propositional attitudes and the various problems it raises. He starts out by
claiming that the pronoun ‘he (himself)’, to be abbreviated by ‘he*’, used in third-person
statements that attribute self-knowledge (self-belief) to others (e.g., ‘The editor of Soul
knows that he* is a millionaire’), is not a true indexical, like ‘I’, ‘you’, or ‘now’; rather, such

reports attribute to the agent an attitude towards an object that the agent would voice by
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asserting a sentence containing the indexical ‘I’ ( e.g., ‘I am a millionaire’). For this reason,
he calls ‘he*’ a quasi-indicator (he uses ‘indicator’ for ‘indexical’).”

Castaiieda also points out that iterated attitude reports containing occurrences of ‘he*’
must be disambiguated by specifying the antecedents of these occurrences. For example,
if the antecedent of ‘he*’ in an utterance of ‘Paul knows that John knows that he* is a
millionaire’ is ‘John’, then the statement attributes to Paul the knowledge that John has
some self-knowledge; if on the other hand the antecedent of ‘he*’ is ‘Paul’, then the state-
ment attributes self-knowledge to Paul. Castafieda argues convincingly that occurrences of
‘he*’ can be moved out of nested attitude scopes to appear immediately within the scope of
the attitude operator whose subject is their antecedent. For example, a statement of ‘Paul
knows that John knows that he* is a millionaire’ where the antecedent of ‘he*’ is ‘Paul’
can be rewritten as ‘Paunl knows that 3z(z = hex A John knows that z is a millionaire).’
But he also claims that the remaining occurrences of the quasi-indicator cannot be elimi-
nated. This contrasts with Hintikka’s proposal that de se knowledge be analyzed in terms
of knowing who — for example, that ‘John knows that he* is a millionaire’ be analyzed in
terms of ‘Jz(z = John A John knows that z is a millionaire).” Castaifieda argues that this
proposal is misguided, since it is easy to imagine situations where an agent would be said to
know who some individual is in spite of his failure to realize that he* is that individual; for
example, if John were the world’s foremost authority on a certain war hero and yet failed
to realize that he* is that war hero.

The main drawback of Castafieda’s early work is that it does not provide a semantic
account that would support the various logical principles advanced. This would seem to
leave the correctness and even consistency of these principles very much in doubt — expe-
rience with other aspects of the logic of attitudes has shown that intuitions often lead to
incoherent accounts. So we will immediately move on to theories that include proposals on

the semantics of de se attitudes.®

"Not everyone agrees with this claim. Perry (1979) and later Barwise and Perry (1983) claim that there
are really no such things as de se attitude reports; attitude reports containing ‘he*’ are merely de re reports
from which the hearer typically draws the pragmatic inference that the agent has a de se attitude. Since
this work is not really concerned with the semantics of natural language attitude reports, the issue is of
peripheral importance to us. But note that in the absence of counter indication, any use of ‘he*’ in the
following discussion will be intended as an attribution of a de se attitude.

8Castafieda later attempted to provide a semantic account for de se attitudes within phenomenalist
framework. Due to differences in approach and lack of time, we have not attempted to study and discuss
his theory.
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2.2.2 Perry

The standard view of attitudes such as belief and knowledge is that they are relations
between an agent and a proposition (at a time), where a proposition is some kind of object
that has a truth-value that depends only on how the world is; in particular, it doesn’t
depend on time, place, or person.® Classical semantic accounts of attitude reports based on
possible worlds seem consistent with this view.

Perry (1979; 1977) argues that if one is interested in characterizing mental states in
a way that supports the explanation and prediction of behavior, that is, a way that is
consistent with them playing causal roles in determining action, then this characterization
is inadequate. His argument is based on instances of de se belief, that is, beliefs about
where one is, who one is, what time it is (Perry calls them “locating beliefs”). Note that,
as Lewis (1979) points out, it makes sense to consider attitudes about the current time to
be de se if one takes the subject of an attitude to be a person-state (i.e., a person at a
time) rather than a time-extended individual. In one example, Perry (1979) describes the
case of a shopper who, noticing a trail of sugar on the supermarket floor, follows it with the
intention of advising the culprit that he was making a mess, unaware that he himself was
that culprit. Eventually, the shopper realizes that he himself is making the mess and thus
ceases following the trail and proceeds to rearrange the torn sack of sugar. The problem for
the standard view with instances of de se belief, such as this, is that the sentence that the
agent would use in sincerely describing what he believes, ‘I am making a mess’, does not
identify a specific proposition; it identifies different propositions in different contexts. In
order to sustain the standard view, one must argue that the use of the indexical ‘I’ is really
a communicative shortcut, and what the shopper really believes is a proposition of the form
‘a is making a mess’, where a is a concept that uniquely fits him (in all contexts).1® But as
Perry points out, this is insufficient because ‘the shopper believes that 8 is making a mess’,
where 8 is a term that expresses concept o, would not be an adequate explanation of why
the shopper straightened the sack unless one were to also grant ‘the shopper believes that
he* is 6. Moreover it is unnecessary because ‘the shopper believes that he* is a making a

mess’ explains his behavior even if all the concepts he has of himself don’t actually fit him

®This view is associated with an emphasis on de dicto attitudes and either a downplaying of de re attitudes
or the assumption that the latter can be reduced to the former.
®Ignore for the moment that people having such concepts in all cases is highly unlikely.
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(he may think he’s Napoleon in the army stocks). The problem is that believing that a
is making a mess does not characterize the state in a way that is adequate for explaining
action.

Perry goes on to discuss whether it might be possible to resolve the problem by ex-
plaining de se attitudes in terms of de re attitudes. This seems reasonable because initial
observations clearly indicate that having a de se attitude implies also having a de re atti-
tude. Moreover, the problems raised by de re attitudes for the standard view appear similar
to that raised by de se attitudes: the sentential argument of the attitude report seems to
lack a concept needed to obtain a complete proposition. One approach to de re attitudes
attempts to explain them in terms of de dicto attitudes, the idea being that an agent has a
de re attitude of some object if he has a de dicto attitude involving a concept that uniquely
fits the object and where some additional relation holds between the agent, the concept, and
the object (e.g., being a vivid name (Kaplan 1969) or denoting the object in all accessible
worlds (Hintikka 1962; Hintikka 1969)). But if Perry’s earlier argument is right, then such
approaches offer no hope for a solution to the de se problem because they merely augment
the requirements.

Another view of de re attitudes is that they are irreducible and that they relate the
agent to a new kind of proposition composed of a property and the object itself (rather
than a concept of the object)—call them singular propositions. But Perry claims that even
this deviation from the standard line does not help in solving the problem of de se attitudes.
More must be involved in having a de se attitude than just having a de re attitude of oneself.
For example, the shopper may see the culprit in a mirror without realizing that he is seeing
himself. His behavior is likely to be different in each case. According to Perry, singular
propositions cannot help in characterizing this additional feature of de se attitudes because
they do not have the requisite indexical character. ‘

Perry proposes to resolve the problem in the following way. What we seem to be
doing when we explain or predict behavior is to classify agents according to the sentences
containing indexicals that they would sincerely utter. Abstracting away from language, this
seems to amount to classifying agents in terms of functions from contexts to propositions—
what Perry calls relativized propositions and Kaplan (1977) calls characters (of sentences).
It is attitude states thus classified that enter into intentional theories of behavior and not

properties such as believing that such and such a proposition (whether standard, singular, or
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relativized) is true. There is a systematic relation between the attitude states that an agent
is in and the propositions he has attitudes towards, but no isomorphism. The attitude state
together with the context determine what proposition the agent has an attitude towards.
A classification of agents in terms of what attitudes they have towards what propositions is
still useful. “For instance, usually, when a believer moves from context to context, his beliefs
states adjust to preserve beliefs held.” But it is not the classification used in intentional
theories of behavior. Note that Perry rules out attitudes being relations to relativized
propositions, because for him having an attitude seems to necessarily involve having an
attitude that some object is true, and relativized propositions can only be true with respect
to some context, which reintroduces the de se problem. This account of de se attitudes is
a key element of Barwise and Perry’s recent comprehensive theory of meaning, situation

semantics (Barwise and Perry 1983).

2.2.3 Lewis

Lewis (1979) agrees with Perry that de se attitudes raise insurmountable problems for the
standard view that attitudes are relations to ‘objective’ propositions. In keeping with his
possibilist position (i.e., his view that possible worlds have the same metaphysical status as
the real world), he motivates the required changes in a different way. He proposes that we
look at the problem according to the following spatial metaphor: ordinary de dicto attitudes
locate the agent within ‘logical space’ — they locate him and his world within some set of
possible worlds; de se attitudes, on the other hand, locate the agent within ordinary space
and time (one may view position in logical space as a fifth dimension). So all attitudes
correspond to self-ascription of a property by the agent: that of being located in such and
such region of logical space or ordinary space-time. The standard view that attitudes are
relations to propositions amounts to restricting the agent to self-ascribe only properties that
locate him within logical space; in possible world semantics terms: only properties that map
a world into the set of all agents (or agent-time pairs) that exist in this world (if the world
is in the given region of logical space) or the empty set of agents (if the world is not in
the given region of logical space). From his point of view, this appears to be an arbitrary
restriction. :

So Lewis proposes that we analyze an attitude as a relation between an agent and a time

and a property of individuals and times. This is quite similar to what Perry was proposing;
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if Perry’s contexts are restricted to agent-time pairs, it becomes equivalent.

2.2.4 A Comparison of Lewis’s and Perry’s Accounts

There seems to be two major areas of disagreement between Lewis and Perry with respect
to these matters. The first seems to be mostly terminological. For Perry, agents still have
attitudes toward propositions, even though they only have these attitudes in virtue of being
in certain attitude states. The attitude states are what enter into intentional theories of
behavior, while the attitudes toward propositions are used to explain agreement in attitudes,
determine whether the agent is right or wrong, etc. For Lewis, the behavior-determining role
of the attitudes is primary — an attitude is in the head. So he objects to Perry’s talk about
an agent believing a proposition; a belief is a relation to a property; believing a proposition
is not a property of agents; an agent’s helief in a proposition is a state of affairs involving
both the internal state of the agent and contextual facts. Lewis’s arguments have a lot
of intuitive appeal. But Perry can also defend his position. Common-sense psychological
discourse uses largely the same locutions to talk about both roles of attitudes. From this
point of view the choice of which role to associate with ‘have an attitude’ seems arbitrary.
Moreover, de re attitude reports leave the description under which the agent has the attitude
towards the object unspecified, but we still call them attitudes.!?

The other area of disagreement between Lewis and Perry is more substantive. Lewis
claims that de re attitudes can be explained in terms of de se attitudes and non-intentional
relations holding between the agent and the object of the attitude. Specifically, Lewis
proposes that an agent believes of an individual x that it has property P if and only if the
agent believes that he* stands in relation R to some unique individual y and that y is P,
the agent in fact uniquely bears relation R to x, and R is a relation of acquaintance. Lewis
does not give a definition of what a relation of acquaintance is, but says that there has to
be an extensive causal dependence of the agent’s mental states upon the object and this
causal dependence must be of a sort apt for the reliable transmission of information. (Lewis
only talks about de re belief of people, but I presume that he could extend his account to

deal with arbitrary attitudes of arbitrary objects.) Examples of relations of acquaintance

11We have also mentioned Perry’s claim that no attitude reports are really de se; reports containing ‘he*’
are merely de re reports from which the hearer typically draws the pragmatic inference that the agent has
a de se attitude.
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would be those one holds with one’s acquaintances, present or absent, with public figures
prominent in the news, with famous dead figures prominent in history, with strangers one
sees, etc. Identity is a relation of acquaintance, so de se attitudes are also de re.

In view of this claim, Lewis finds Perry’s account unnecessarily general: if de re attitudes
can be reduced to de se attitudes, the only singular propositions that one would ever have
an attitude towards would be those that attribute a property to oneself; under these con-
ditions, the explanatory contribution of ‘having an attitude towards a singular proposition’
in addition to ‘being in an attitude state characterized by a property’ appears negligible.
For singular propositions to play a significant explanatory role, the attitude states must be
characterized by functions that map more than just an agent and a time into a proposition;

the context mapped must involve individuals other than the agent.

2.2.5 Stalnaker

Stalnaker (1981) rejects the conclusion of Perry and Lewis that de se attitudes cannot be
accommodated within the standard view that attitudes are relations to ‘objective’ proposi-
- tions. He argues on behalf of this position by proposing ways to handle puzzles similar to
Perry’s messy shopper within the possible-world semantic framework associated with stan-
dard modal logics of knowledge, and by pointing out advantages that his account would
have over the more complex accounts of Perry and Lewis. We will see that his proposed
solutions to the puzzles turn crucially on the fact that, under the version of the metaphysics
of possible worlds that he uses, it is considered meaningful to have a possible individual
exist in more than one world (independently of any properties he may have).

The main example discussed by Stalnaker (introduced earlier by Perry (1977)) in;/olves
Lingens, an amnesiac lost in a library who has read an extensive biography of himself; he
knows that the subject of the biography is named ‘Lingens’ and is the cousin of a SPY,
but he doesn’t know that he* is the subject of the biography and therefore is the cousin
of a spy; in fact he has no opinion as to whether he* is or is not Lingens. Stalnaker
proposes the following characterization of Lingens’s mental state: in all of Lingens’s belief
alternatives (i.e., in all of the alternative possible worlds compatible with his beliefs), there
is an individual i, that has read the biography and has a belief state (the belief state under
discussion); some of these worlds are like w;, where i, is named ‘Lingens’, and is the cousin

of a spy; but some are like world wq, where i; is not the cousin of a spy, and another
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possible individual i; is named ‘Lingens’ and is the cousin of a spy. Note that the possible
individuals in the extension of the concept of the agent who has read the biography are
identified across worlds. Under this characterization, Lingens knows who he* is, but his
belief that Lingens is the cousin of a spy is not really a belief of Lingens but a belief about
whoever falls under the concept of being the person named ‘Lingens’ and the subject of
the biography (assuming the standard account of ‘knowing who’ and de re belief due to
Hintikka (1962)).12

Stalnaker notes that his account seems to violate the “independently plausible” semantic
view that names, such as ‘Lingens’, are ;igid designators. But he goes on to propose an
account of the relationship between the semantics of the sentence ‘Lingens is the cousin of
a spy’ and the belief state of an agent who would sincerely assert such a sentence. Roughly,
the sentence corresponds to a function from contexts, which determine the reference of the
name ‘Lingens;, to propositions; but the object of the belief of the agent who is disposed to
sincerely assert such a sentence is not the associated function from context to proposition,
nor the proposition associated with the sentence in the actual context, but the proposition
that the sentence ezpresses a irue proposition (whatever that proposition is), that is, the
set of worlds w such that the sentence if uttered in w would be true in w. This fits with the
characterization given earlier of Lingens’s belief state. Stalnaker claims that this account
is compatible with the view that names are rigid designators and that their reference is
determined by some kind of causal chain: “the proposition in question [believed by Lingens]
is a function of the propositions determined by, in the various alternative possible situations,
the semantic account which assumes that names are rigid designators”. I take this to mean
that ‘Lingens’ is rigid with respect to necessity in all the belief alternatives of the agent,
but is not rigid with respect to these belief alternatives.

This also fits with other comments of Stalnaker concerning Kripke’s arguments for the
view that names are rigid designators. He says that Kripke is probably right in claiming
that one does not need a criterion of identity to make counterfactual suppositions concern-

ing particular individuals, one can just stipulate that the counterfactual situation involves

12Gtalnaker mentions that in his view, there is another equally valid characterization of the example:
Lingens knows who Lingens is, that is, the same individual is named ‘Lingens’ in all his belief alternatives,
but Lingens does not know who has read the biography and has the belief state in question. In having two
equally good characterizations, Stalnaker says that the Lingens example resembles the better known puzzles
of de re belief (such as Quine’s famous Ortcutt example (Quine 1956)). In fact, he says that his account of
the example, that is, of de se belief, treats it as a special case of a more general problem about de re belief.
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these individuals. But one cannot stipulate what individuals are in one’s belief alternatives
because one’s ability to make such stipulations presumably depends on the fact that one can
have beliefs of these individuals. Stalnaker envisions that an account of de re belief would
also be based on causal dependencies, but says that “no matter how this kind of answer
is filled out, it would be highly implausible to expect that there should always be a nice
one-to-one correspondence between certain individuals in the actual world and those who
inhabit the possible worlds which define a state of belief. ... In cases where two individuals
in a possible situation have equal claim to be identified with an individual in the actual
world (or the reverse), how the identification is made may depend more on the context of
belief ascription that it does on the character of the belief state itself”.13

Given the complexity of the issues raised by Stalnaker’s account of the Lingens example,
it is easy to lose track of what is essential to his proposal with respect to de se attitudes in
general. Let me point out some aspects of his account.of Lingens that I believe cannot be
essential to a general account. Lingens has learned about the Lingens character by reading
his biography, that is, through language. This is what allows Stalnaker to characterize
Lingens’s belief state based on the various individuals that may have the property of being
named ‘Lingens’— a linguistic property if there is one. Lingens’s belief alternatives are all
(in part) linguistic contexts for the sentence ‘Lingens is the cousin of a spy’. This is also
why Stalnaker can describe the situation by saying that Lingens believes that “whichever
proposition the sentence expresses, it is a true one”. But clearly, one can imagine similar
situations where the agent has achieved an attitude about himself through non-linguistic
means, for instance, Perry’s shopper example. Nor could a sentence that the agent might
utter to describe his attitude play the same role in general because the agent may not know
any language or at least may not have in mind any linguistic way of expressing his belief at
a given time.

Another aspect of Stalnaker’s account that seems inconsequential, as far as a general

characterization of de se attitudes is concerned, is the fact that the belief alternatives of an

!3Note that Stalnaker does not claim his explanation of the relationship between Lingens’s belief state
and the sentence ‘Lingens is the cousin of a spy’ to constitute an adequate account of the semantics of belief
reports in general, only that it seems to fit intuitions in the Lingens case; he adds that the proposition
denoted by the sentential argument of a belief report appears to be context-dependent and due to this such
a general account would likely be more complicated than is generally supposed. This is to be expected:
if it were not context-dependent, how could names be ‘semantically rigid’ while sometimes contributing a
non-rigid concept to the proposition believed by the agent, as in the Lingens example?
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agent will always contain a representation of the belief itself. In the Lingens example, all of
Lingens’s belief alternatives contain some individual who has read the biography and has a
belief that Lingens is the cousin of a spy. This feature will be present in all cases and does
not appear objectionable. But it does not seem to be of any help in capturing the difference
between de se and non—de se attitudes becanse there might be a lot of other beliefs with
different agents in these worlds; the fact that an individual has a belief in an agent’s belief
alternatives in no way implies that that individual is the agent. I will come back to this
later in this section.

Another example discussed by Stalnaker brings forth an important assumption under-
lying his account: it must make sense to talk about whether a possible individual that
exists in one world also exists in another world (without reference to common attributes
and behavior), that is, cross-world identity must be possible and must be a primitive — this
position is referred to in the philosophical literature as Haecceitism (Kaplan 1975). The
example, due to Lewis (1979), involves two gods who are omniscient with respect to non-
indexical propositions; there are two mountains in the gods’ world and each god wonders
which mountain he* lives on. Stalnaker claims to handle the example by having each god’s
belief alternatives contain two worlds that are identical in the (objective) facts that they
support, but where the possible individuals corresponding to the gods are interchanged.
Thus, Stalnaker’s metaphysics contains more propositions than can be constructed from
strictly objective facts.

Stalnaker also discusses examples where an agent does not know what time it is. He
points out that for his approach to work in all such cases, “we must be referring to the
particular thought token that O’Leary [the agent] is thinking”. But he is not clear as to
how exactly one should model such situations. It seems that one way to do it would be
include times in the ontology; then, the attitude of the agent can be characterized by a
set of alternatives analogous to the other examples, but where the alternatives differ in the

times at which the agent has the attitude.

2.2.6 A Comparison of Stalnaker’s Account with Perry’s and Lewis’s

Now that we have looked at what Stalnaker was proposing, let’s see what arguments he
gives as to why one should prefer his account to that of Lewis and Perry, which he appears

to take as adequately capturing the distinction between de se and non-de se attitudes.
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Stalnaker (1981, p. 143) says:

But I think that the identification of such possible situations with centered
worlds in Lewis’s sense [equivalent to properties of individuals and times], would
make it more difficult to give an adequate account of the relations between differ-
ent states of mind. Specifically, it would make it more difficult to compare past
with present beliefs, and more important, to explain the relations between the
beliefs of different persons — relations that are essential to a natural explanation

of the exchange of information.

It easy to understand why Stalnaker thinks his account allows a simpler explanation of such
relations: for him the objects of attitudes are the same kind of entities as the content of
statements — propositions; moreover, the objects that Lewis and Perry use to characterize
attitude states are relative to the agent and time of the attitude and thus must be adjusted
when transferred to the perspective of a different agent and/or time if their content is to
be preserved.

Consider how one would explain Lingen’s learning that he* is Lingens through being told
‘You are Lingens’ by a reliable source. Stalnaker can claim that the proposition expressed
by this sentence in the given utterance context is one that distinguishes between the possible
situations that were compatible with Lingens’s beliefs in a way that resolves his doubt. But
Lewis’s explanation must be more complicated. If he takes the objects of speech acts to be
properties, then the pérson uttering the sentence resolves Lingens doubt by self-ascribing a
property which is distinct from the property that would resolve Lingens’s doubt if he were
to self-ascribe it; the resolution of his doubt must involve an inference on Lingens’s part. If
Lewis, on the other hand, takes the objects of speech acts to be propositions, then “he must
deny that speech is a straightforward expression of thought”. Stalnaker would probably
apply the same criticisms to Perry’s framework, since his account of communication would
surely involve a combination of both objects (as this is the case in situation semantics
(Barwise and Perry 1983)).

Stalnaker also criticizes Perry’s account on the grounds that neither his belief states nor
his belief contents (propositions believed) are adequate characterizations of the information
content of the statement that resolves Lingens’s doubt. The proposition expressed by the
statement and believed by both agents cannot do the job because it is the trivial proposi-

tion that Lingens is Lingens, which was already believed by Lingens before the statement
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was made. Perry’s propositions are just “too extensional to characterize the information
conveyed in acts of communication”. But Perry’s belief states are also inadequate to charac-
terize information content because they are “too subjective”: the belief state of the speaker
is different from that of Lingens. I think that if this criticism is valid, it applies just as
well to Lewis, since his properties are also “too subjective” and his propositions are not
fine-grained enough because he rejects the kind of cross-world identity necessary to obtain
Stalnaker’s ‘fine-grained’ propositions.

Should one accept Stalnaker’s arguments that his account, which espouses the standard
view that attitudes are relations to propositions, shows that such a view is adequate for
characterizing de se attitudes, and that it leads to simpler accounts of communication,
interpersonal agreement, belief retention, etc.? Lewis (1979) anticipates the kind of account
that Stalnaker proposes and presents an argument against it. The argument involves the
situation described earlier where two gods who are omniscient with respect to non-indexical
facts are wondering which mountains they* live on. Remember that Stalnaker’s account
of the example has the gods’ belief alternatives contain two worlds where the same facts
hold but where the individuals corresponding to the gods are interchanged. Lewis claims
that Stalnaker’s characterization of the belief state of a god when he does know that he*
lives on a given mountain is inadequate. In this case, Stalnaker would have the god’s belief
alternatives contain only one of the possible worlds described above, call it w. But, says
Lewis, “There are still two mountains in w where he might, for all he knows, be living”. For
any given proposition, the god knows whether it is true in w; he knows that the proposition
that he would express by saying ‘I am the god on the tallest mountain’ is true; but he
doesn’t know whether he would be making a true statement by saying it because he doesn’t
know which proposition the statement would assert.

Stalnaker opposes Lewis’s argument by saying that “One cannot just stipulate that the
god knows that he is in w, and not in w’, for on the proposed explanation, that amounts to
the assumption that he knows which mountain he is on.” He points out that Lewis must
admit the kind of account he is proposing works for ignorance of the location of others. If
one were unclear as to whether Ronald Reagan is now in Washington or California, and
one were to learn that he is in fact in Washington, it would be correct to characterize one’s
belief state as going from a set of alternatives that includes worlds where the individual

that corresponds to Reagan is in Washington and worlds where the same individual is in
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California, to a set of alternatives that contains only worlds where the individual is in
Washington.!4

Stalnaker’s proposals and argumentation are quite seductive. At first, it appears that
he may have found a way of distinguishing between de se and non-de se attitudes without
representing the agent’s perspective. In the ‘Lingens’ case, he is able to produce an account
within the confines of the ‘attitudes as relations to objective propositions’ framework be-
cause of a seemingly incidental fact: there is one fewer agent in the de se case than in the
non-de se case. It is hard to pinpoint why his account of the ‘gods’ example seems to work,
but harder still to locate a flaw. But deeper analysis reveals what appear to be very serious
problems with Stalnaker’s proposals.

Firstly, Stalnaker’s account of de se belief, when joined to the standard treatment of de
re belief he uses (due to Hintikka (1962)), leads to very counterintuitive results. We have
seen that in the Lingens example, Stalnaker’s approach produces two characterizations
(claimed to be equally valid): one where Lingens knows who he* is but does not know
who Lingens is, and another where Lingens knows who Lingens is but does not know who
he* is. But Stalnaker cannot have Lingens’s beliefs about himself and about the subject
of the biography both be de re without having Lingens know that he* is Lingens. His
characterization of Lingens’s ignorance that he* is Lingens depends on the presence among
Lingens’s belief alternatives of worlds where the subject of the biography and the agent of
the belief are different possible individuals. But it seems that there are analogous situations
where both beliefs must be de re without being de se, for example, the situation described
earlier where Perry’s shopper sees the culprit in a mirror without realizing that he is seeing
himself.

It may be claimed that this argument fails to be compelling because it is based on an
unexplained notion of de re belief and because it has not been shown that Stalnaker’s notion
of de re belief is inadequate in general. But there is another line of criticism that strikes at
the heart of Stalnaker’s proposal; this line is in fact very similar to Perry’s argument (Perry

1979) against the view that attitudes are relations to ‘objective’ propositions (discussed

M (Clearly, it is not’s the agent’s role to know which mountain he lives on in W; his belief alternatives
are determined objectively by his belief state. It is Stalnaker’s assumption that if the agent does not know
which mountain he* lives on, his alternatives must also include w’. I am not implying that Lewis makes this
mistake. But his argument is not convincing, because he fails to clearly identify circumstances under which
the god may be in a state where his only belief alternative is W without knowing which mountain he* lives
on.
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earlier in this section).

The argument goes as follows. Suppose that Lingens has an individual concept a that
uniquely fits him in all possible worlds (in which he exists, and all contexts) and believes
that « is named ‘Lingens’ and is the cousin of a spy, but does not realize that he* is @.1®
Then under Stalnaker’s characterization of belief states, Lingens’s state is indistinguishable
from that ascribed to him when he believes that he* is named ‘Lingens’ and is the cousin
of a spy, that is, realizes that he* is a; in both cases, there is a possible individual who
appears in all of Lingens’s belief alternatives and who is named ‘Lingens’, is the cousin of
a spy, and is the agent of a belief in every alternative. The problem is that these belief
states would likely lead Lingens to adopt different courses of action, and if the theory is to
be adequate for supporting intentional explanations of behavior, then it should characterize
these states as different. This appears to confirm the view that the concept of the self is
essentially indexical.and that this indexicality must be modeled in any adequate theory of
belief.

Stalnaker has some possible avenues of defense left. He might try to deny that such a
concept could be knowable in principle. Or he might try to argue that whenever an agent
believes that a has property P, where a is a concept that uniquely fits him in all possible
worlds, he also believes that he* has property P.1® But I fail to see how such positions

could be sustained.l”

2.2.7 Conclusion

Thus it appears that, even though it might have been nice for Stalnaker’s account to work
out so that the simple kind of account of communication he sketches could be supported,
one will have to live with the additional complexity. The two kinds of classifications of
attitude states proposed by Perry, the first in terms of functions from contexts to ‘objec-

tive’ propositions, and the second in terms of ‘objective’ propositions (or the corresponding

130f course, it is unclear what such a concept would involve, personal identity being a notably tricky
notion. But the existence of such individual concepts seems to be generally accepted in possible world
semantics. :

18Note that this would involve more than the kind of idealization that gave us ‘logically omniscient’ agents.
No matter how logically competent the agent would be in the situations described above, he could not deduce
that he* is Lingens.

17By the way, note that if we replace ‘an individual concept a that uniquely fits him in all possible worlds’
in the above argument by ‘an individual concept o that uniquely fits him in all of his belief alternatives’,
then the argument becomes essentially the same as the prior argument concerning de re belief.
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kinds of objects in Lewis’s framework), appear to have a distinct and essential role to play
in theories of cognition and communication. For Perry, it is wrong to attempt to locate the
totality of the information conveyed by a statement in the ‘objective’ proposition that it
expresses, as proposed by Stalnaker. In situation semantics (1983), the meaning of state-
ments is explained in terms of the constraints they impose on the context of utterance and
the ‘objective’ proposition expressed; the hearer’s (tacit) knowledge of these constraints is
what explains his understanding of statements containing indexicals, where more informa-
tion is conveyed than is contained in the ‘objective’ proposition expressed. For example,
my answer ‘I am Yves Lespérance’ to a request of information on my identity conveys more
information than that contained in the trivially true ‘objective’ proposition expressed ‘Yves
Lespérance is Yves Lespérance’; the hearer acquires the information that the speaker is
Yves Lespérance because he knows that the sentence used constrains the context to be such
that the speaker believes that he* is named ‘Yves Lespérance’ under normal conditions.
Before moving on, we should mention some AI work that has dealt with indexical at-
titudes (there is very little). Smith (1986) has investigated the role of indexicality in our
common sense attributions of semantic content to computational agents. He finds that
context sensitivity is a much more ubiquitous phenomenon than is commonly thought and
argues that it needs to be accounted for if we are to obtain theories of computation that
explain how information processing systems fit within their social environment. Similar
observations and arguments are made in a more philosophical work by Barwise (1986).
In a more practical vein, Rapaport (1986) has developed ways of representing indexical
knowledge in a knowledge representation system; no formal semantics is proposed, how-
ever. Finally, let us mention very recent work by Grove and Halpern (1989) on the logic of

indexical knowledge and its applications in the area of distributed systems.

2.3 Reactive Behavior and Situated Action

In this section, we discuss recent work on reactive agents, that is, agents that can react in
a timely manner to conditions in their environment that require it. This work is related
to ours because it has been recognized that indexical information plays a major role in the
production of reactive behavior. It provides additional motivation for our work and points

to significant areas of potential application.
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The classical Al paradigm with respect to the production of intelligent behavior involves
a smart planner that searches for a plan that achieves the agent’s goal and a dumb executor
that carries out the plan in a mechanical way. In recent years, there has been a definite
movement towards exploring alternatives to this paradigm. It is felt that because of the
emphasis it places on search for complete plans, classical deliberative planning is too slow
for producing reactive behavior (e.g., avoiding collisions with movi.ng objects). Moreover,
it is not sufficiently grounded in perception; much of the effort expended on constructing
an appropriate plan may be wasted if environmental conditions change in the meantime.
The alternative architectures proposed achieve reactivity by emphasizing environment mon-
itoring and the selection of actions appropriate to conditions; the focus is on developing a
sophisticated executor.

Agre and Chapman (1987; 1990) have been among the most radical in their reevaluation
of the classical paradigm. Their views have been influenced by anthropological theories of
action (Agre 1990; Suchman 1987). They empha.size.the complexity of the real situations in
which action occurs, the uncertainty of the information the agent may have about them, and
the need for reactivity. This leads them to argue that the production of most activity does
not involve the construction and manipulation of explicit representations of the world; the

associated computational costs are just too prohibitive. They say that (Agre and Chapman
1987, p. 268):

Rather than relying on reasoning to intervene between perception and action, we
believe activity mostly derives from very simple sorts of machinery interacting
with the immediate situation. This machinery exploits regularities in its inter-
action with the world to engage in complex, apparently planful activity without

requiring explicit models of the world.

The architecture they propose involves peripheral modules for perception and effector con-
trol and a central system that mediates between the two. They argue that combinational
networks, that is, circuits computing logic functions, can form an adequate central system
for most activities; thus in such cases, the central system has no state. They have built
various application systems to provide support for their analysis. One of these systems,
called Pengi, plays a videogame where one controls a penguin that navigates in a maze,
pushes away ice blocks, and confronts malicious “killer bees” (Agre and Chapman 1987).

From our point of view, the most interesting elements of Agre and Chapman’s scheme
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are their notions of indexical-functional entities and aspects.!® They claim that traditional
domain representations involving objective facts such as “(AT BLOCK-213 427 991)” are
inappropriate because they do not make reference to the agent’s situation or goals. They
see the machinery in their networks as registering indexical-functional entities such as “the
block I'm pushing” and indexical-functional aspects such as “the bee I intend to clobber
is closer to the projectile than I am”. These entities and aspects are indexical because
they depend on the agent’s situation; they are also functional because they depend on his
purposes. In Agree and Chapman’s scheme, such indexical “representations” play a crucial
role in the production of reactive behavior.

The main limitations of Agree and Chapman’s work are that they have not proposed
any framework for the design of reactive agents or any formal version of their account of
activity.

A theory of action that deals with the role of indexical representations in reactive be-
havior has recently been proposed by Subramanian and Woodfill (1989). Their work is very
significant in that it includes an analysis of the efficiency gains associated with the use of
indexicals.

To provide a setting for their analysis, Subramanian and Woodfill develop a variant of
the situation calculus (McCarthy and Hayes 1979) that allows indexical propositions to be
stated. They do this by introducing a distinguished constant Now, which is intended to
denote the current situation. Other indexical terms such as “the block that is currently
nearest to the agent” can then be specified in terms of Now. Constraints are also introduced
to ensure that every situation has at most one predecessor; the function Before is used
to refer to a situation’s predecessor. Note that this amounts essentially to introducing
indexical entities into the ontology.

They then show how the kind of indexical control rules (indexical because they refer to
the current situation) that determine what a reactive agent will do next (one-step planning)
can be specified in such a framework. This is also done for plan monitoring rules, which
are used to deduce what should be the case after an action has been performed. They
then show how the rules can be propositionalized . Their analysis of this kind of setting

traces the efficiency gains of using indexical representations to the fact that one can thus

18This is Agre and Chapman’s terminology. There are of course no such things as indexical (or agent-
relative) entities; but there are indexical (or agent-relative) concepts or notions of things.
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reduce the number of entities to be considered in the domain and thus, the theory can be
propositionalized without the usual combinatorial explosion. The resulting propositional
theory can be reasoned with in exponential time. They also argue that if one assumes that
only one action is done at each step and the theory is suitably reformulated, then one can
determine which action should be done next in time linear in the number of possible actions.
Finally, they claim that if the reformulated theory is then compiled into a logic circuit, then
one can decide which action should be done next in constant time. Subramanian and
Woodfill could be clearer about the assumptions on which their results depend and about
the limitations associated with the kind of theories they analyze. But the analysis is very
helpful in clarifying the source of the efficiency gains associated with the use of indexical
representations (it is really a case of trading expressiveness for efficiency).

For dealing with the kind of situations that this thesis is particularly concerned with,
that is, cases where the agent is ignorant of various aspects of the domain, Subramanian
and Woodfill’s framework suffers from much the same limitations as the ordinary situation
calculus. It forces one to assume that the agent has perfect knowledge of the domain,
although now some of that knowledge may be indexical. It does not handle the basic
indexical “I”. It also does not allow indexical knowledge to be related to objective knowledge
(e.g., after looking at a clock, agent knows what time it is).

Another conception of how reactive behavior can be produced has been proposed by
Rosenschein and Kaelbling (1986) (Kaelbling and Rosenschein 1990). Their approach is
of particular interest to us because a logic is used to specify reactive agents and the envi-
ronments in which they operate. Design tools based on the logic are also provided; these
tools facilitate the specification of complex agents and allow high-level specifications to be
“compiled” into circuit-level ones.

The architecture they propose for reactive agents also avoids formal manipulation of
explicit representations due to its inefficiency. But their agents are not purely functional
machines; they do have state (registers). They also argue that the lack of explicit repre-
sentations does not mean that one loses the ability to ascribe semantic content to machine
states. They propose an alternative way of doing this — the situated automata view. It
invalves viewing the agent and its environment as coupled automata. A machine state
contains the information that ¢ (i.e., in that state, the machine knows that ¢) if given the

state transition function of the machine and world, the fact that the machine is in that
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state implies that ¢ must be the case. For example, the fact that a certain wire in a robot
carries a “1” would mean that there is an object within a certain radius of his position, if
given the state transition function, the wire can only be carrying a “1” if there is an object
within that radius. Thus the information content of a machine state is defined in terms of
how it is correlated to environmental conditions.

Rosenschein and Kaelbling do not discuss the role of indexical information in the produc-
tion of reactive behavior, nor how their framework handles it. It appears to accommodate
temporally indexical knowledge but not temporally objective knowledge (much like the logic
used by Moore (1980; 1985)). Indexicality with respect to the agent is not handled. It seems
that a theory of knowledge and action that handles the distinction between indexical and
objective knowledge might be very useful for producing better accounts of reactive behavior |

and better tools for the design of reactive agents.
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Chapter 3

A Logic of Knowledge, Time,
Action, and Ability

In this chapter, we propose a logical system that formalizes notions of knowledge, time,
action, and ability. The epistemic and temporal parts of the logic adequately support the
representation of indexical knowledge, keeping it distinct from de re knowledge. The com-
plete system permits an adequate characterization of the indexical knowledge prerequisites
and effects of actions in a wide range of circumstances. The first section gives an intro-
duction to the main elements of the formalization and their semantics. The following two
sections are precise specifications of the syntax and semantics of the system. Section 3.4
presents definitions for a large set of derived operators, as well as complex action expres-
sions. Section 3.5 goes through all the notions formalized in the logic and discusses their
properties. Section 3.6 proposes a formalization of ability as a derived notion. The last

section discusses the main contributions and limitations of the system.

3.1 Introduction

Our theory of knowledge, time, action, and ability is embodied in a first-order modal logic.!
The primary concern of our theory is the formalization of indexical knowledge, so let’s start

there. When one has indexical knowledge, for example, when one knows that one is currently

1An abridged description of the logic was published in (Lespérance and Levesque 1990). An early version
was published in (Lespérance 1989). For general references to modal logic, see (Hughes and Cresswell 1968)
or (Chellas 1980).
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hungry, what is known is a “proposition” that is relative. It may be relative to the knower,
or to the time of the knowing, or perhaps to other aspects of the context. One typically
expresses such relative propositions with sentences containing context-sensitive elements
such as ‘T’, ‘now’, ‘here’, ‘this person’, etc. Our logic reflects this: its formulas contain
elements whose interpretation depends on the context as well as the objective circumstances.
The logical symbols self and now are indexical terms that refer respectively to the agent
component and time component of the context.? Non-logical symbols will also typically
depend on the time of the context for their evaluation; for example, HUNGRY(a) might
represent the fact that the agent assigned to variable a is hungry at the time of the context.
They can also depend on the agent component of the context; for example, THIRSTY might
mean that the agent of the context is thirsty at the time of the context.3

We model a context simply as a pair consisting of an agent and a time. This provides
adequate semantics for many indexical expressions. For instance, the indexical here can be
taken to stand for the term Pos(self), that is, ‘the position of the agent of the context’ —
we will in fact use this definition throughout this thesis.# In other cases, one may be forced
to be more specific than would be required in a natural language; for instance, one may have
to say something like ‘the person at such and such relative position from self at time now’
rather than ‘this person’. Informally, our logic only captures indexical expressions that are
functions of self and now.® We view the question of whether the semantics of indexicals like
‘you’ and demonstratives like ‘this person’ can be captured by treating them as functions
of self and now as open. Such a reduction would undoubtedly be complex, but it is not
clear how such indexical expressions could play a causal role in cognition without there
being such a reduction. But since we are primarily concerned with modeling action and its
relationship to knowledge rather with providing a formal semantics for natural language,

we can afford to remain uncommitted on this issue.®

?Note that self and now are not intended to be formal counterparts of particular natural language words
and often behave quite differently from any such counterparts.

3The idea of having formulas depend on the agent as well as the time of the context came from Grove
and Halpern (1989).

*Such definitions also have the advantage of capturing the relationships between the indexical terms
involved.

Other choices of primitives are also possible. One might take here instead of self as a primitive and
define the latter as ‘the agent at position here’. Or one might even have a single primitive ‘self-now’ that
refers to the current agent-state. We prefer the proposed approach because it seems most natural to take
knowing or having a belief to be properties of an agent and a time.

®Lewis (1979) also appears to hold the view that the only contextual primitives needed are an agent and
a time.
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Thus, our semantics evaluates formulas with respect to indices, which consist of a pos-
sible world, modeling the objective circumstances, and an agent and time, modeling the
context. We talk about a formula being satisfied by a model, index, and variable assign-
ment.

Our semantics for knowledge is a simple generalization of the standard possible-world
scheme (Kripke 1963; Hintikka 1969): the knowledge accessibility relation K is taken to
hold over indices. {{w,a, t),(w’,a’,t")) € K iff as far as agent a at time t in world w knows,
it may be the case that w’ is the way the world actually is and he is a’ and the current
time is t’. Thus, we model the knowledge state of an agent at a time in a world by a set
of indices, which characterizes not only which worlds are compatible with what the agent
knows but also which points of view upon these worlds are compatible with what he knows.

The formula Know(y) is used to represent the fact that at time now (i.e., the time of the
context), self (i.e., the agent of the context) knows that ¢. If ¢ contains indexical elements,
Know(¢y) should be taken as attributing indexical knowledge, that is, knowledge the agent
has about himself and the current time. For example, if we use HOLDING(z) to represent the
fact that self is holding the object denoted by z at time now, then Know(HoLDING(z))
would mean that self knows that he himself is currently holding the object denoted by z.

To get a better feel for how the account works, let’s look at a few examples. The relevant
parts of a semantic structure that models the knowledge state of an agent ag at a time 0 in
a world wp are represented in figure 3.1. The domain of possible worlds W, that of agents
A, and that of times 7, are specified at the top of the figure. As represented, there are
two indices that are compatible with what ap knows at time 0 in wg (i.e., K-accessible):
(wo, ag, 0) itself and (w,,a;,1). This means that as far as ap knows in wp at time 0, it may
be the case that the actual world is wg, that he is ag, and that the current time is time 0,
or it may be the case that the actual world is wy, that he is a;, and that the current time
is time 1; he cannot rule out either of these possibilities. Thus, we have that in world wg
at time 0, agent ap does not know who he is — as far as he is concerned, he might be ag or
he might be a;. This is formally represented by statement (1a) at the bottom of the figure;
it says that at index (wg, ap,0), it is not the case that there is someone whom the agent
knows to be himself. Similarly, in world wp at time 0, agent ag does not know what time
it is — as far as he is concerned, it might currently be time 0 or it might be time 1; this is

what statement (1b) says. Also, in the two K-accessible indices, the denotation of here is
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different; in one case it is pg, while in the other, it is p;. So the agent does not know where
he is — statement (1c).

In spite of being ignorant about all this, the agent can have a lot of indexical knowledge,
and our framework allows this to be modeled. For instance in the situation represented in
figure 3.1, the agent knows that there is a block where he currently is — statement (1d).
This is the case because 3b(BLock(b) A POs(b) = here) is true at all K-accessible indices.
However, the agent does not have the de re knowledge that corresponds to this indexical
knowledge; he does not know of himself and of the current time that there is a block
where that agent is at that time — statement (le). (The At operator serves to have its
propositional argument evaluated at an index whose time component is ¢; this is explained
below.) Note that (1le) is true at index (wp, ap,0) because index (w;,a;, 1) is K-accessible
from (wo, 2, 0), and at (wy,a;, 1), it is not the case that there is a block where ag is at time
to, that is, at the earlier index (wj,a,,0) (the box on the bottom left), there is no block
where ag currently is. (The = represents time flow; the indices {w;,a;,0) and (wy,ay,1)
model different states of the same world history wy, from the point of view of agent a;.)
This situation (the agent having indexical knowledge (1d) without having the corresponding
de re knowledge (1e)) arises from the fact that he does not know who he is or what time it
is.

Our framework also handles cases where the agent has some de re knowledge of himself
and of the current time without having the corresponding indexical knowledge. For example,
consider the variant of the previous situation modeled in figure 3.2. Agent ag at time 0 in
world wo knows of himself and of the current time that there is a block where that agent is
at that time — statement (2e). But ap in wp at time 0 does not know that there is a block
where he himself currently is — statement (2d). This can occur because as in the previous
situation, the agent fails to know who he is and what time it is.

Of course, it is also possible for an agent to know who he is and what time it is, and
thus to have both indexical knowledge and the corresponding de re knowledge; this case is
also handled by the framework. In the variant of the situation above represented in figure
3.3, agent ag at time 0 in world wo knows who he is, knows what time it is, and where he is
(statements (3a), (3b), and (3¢c)). ap in wp at time 0 do;as know that there is a block where
he himself currently is — statement (3d). And so ag in wp at time 0 also knows of himself

and of the current time that there is a block where that agent is at that time — statement
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(wo,20,0) |= Ja3t(a = self AL = now A 9
Know(At(t, J(Biock(b) A pos(b) = ros(a))))) (2¢)

Figure 3.2: A structure in which an agent has de re knowledge without having the corre-
sponding indexical knowledge
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(wo, ap, 0) | 3t Know(now = t) (3b)
(wo, a9, 0) = 3p Know(here = p) (3¢)
(wo, 29, 0) = Know(3b(Brock(b) A Pos(b) = here)) (3d)

(wo,20,0) = JaTt(a = self At = now A 3
Know(At(t,3b(BLock(b) A pos(b) = Pos(a))))) e)

Figure 3.3: A structure in which an agent has both indexical knowledge and the correspond-
ing de re knowledge
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(3e).

By the way, we can use these examples to clarify the claim, made in section 1.1, that
the objective-indexical distinction is orthogonal to the de re-de dicto distinction. In the
situation described in figure 3.1, agent ag at time to in world wg knows that there is a block
where he himself currently is — statement (1d); this is de dicto indexical knowledge. But
he does not know of himself and of the current time that there is a block where that agent
is at that time — statement (1le); he does not have objective de re knowledge of the fact
that there is a block where ag is at to in wp. In the situation represented in figure 3.2,
the reverse holds; the agent knows of himself and of the current time that there is a block
where that agent is at that time — statement (2¢) — but does not know that there is a
block where he himself currently is -— statement (2d); he has objective de re knowledge of
the fact involved, but does not have de dicto indexical knowledge of it. In the situation
described in figure 3.3, the agent knows this fact in both of the above ways and also knows
it in an indexical de re way: he knows of himself and of the current time that that agent is
himself and that that time is the current time and that there is a block where he currently

is; formally, this yields:
(wo, 20, 0) = JaJt(Know(a = self Az = now A 3b(BLock(b) A Pos(b) = here)))

Finally, a case where the agent would know the same fact in an objective de dicto way could
be described by saying that the agent knows that there is a block where the shortest robot
is at the moment that this robot turned two years old, when he is in fact the shortest robot

and is just turning two years old; this can be represented formally as:

{wo, 29, 0) [=self = SHORTROB A now = SECBIRTH(SHORTROB) A

Know(At(secBIRTH(sEORTROB), 3b(BLOCK(b) A POS(b) = POS(SHORTROB))))

Clearly, the agent need not have either the indexical knowledge corresponding to this or
the de re knowledge corresponding to this. The de re-de dicto distinction has to do with
whether the agent’s knowledge is about a specific individual or about whoever satisfies
a description. The objective-indexical distinction has to do with whether the knowledge
refers to the agent himself or the current time, or whether it is about an objective fact.

An important advantage of our approach is that one can still model properties of knowl-
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edge by imposing constraints upon the accessibility relation K. We require K to be reflexive
and transitive, which means that the principles of modal system S4 hold for knowledge. The
approach can be adapted for modeling belief by changing the constraints. This treatment
of indexical knowledge was inspired by informal proposals by Perry (1979) and especially
Lewis (1979).

We want to be able to make both eternal and indexical temporal assertions, express
relations between indexically specified and objectively specified times, talk about agents
knowing what time it is, etc. Due to this, time is reified in our logic, that is, terms that
denote time points are included. Ordinary predicates, for instance HOLDING in the example
above, are taken to represent static relations. As we have seen, atomic formulas involving
such predicates are taken to assert that the associated relation holds at time now. One
asserts that an agent does an action using the logical symbol Does, which functions as a
predicate. For example, Does(GRASP,?) can be used to represent the fact that self does
the action of grasping, from now to time t. The operator At is used to say that a state
. of affairs holds at a time other than now. For example, At(¢, HOLDING(z)) could mean
that self is holding z at time ¢. The argument formula is evaluated at an index whose time
is the denotation of . We assume a linear ordering on times. Note that in combination
with knowledge, a reified temporal logic such as ours is definitely more expressive than
the alternatives; for instance, we can say that an agent knows that another agent knows
what time it is without himself knowing it. The temporal aspects of the formalism were
influenced by the work of Shoham (1987), Allen (1984), and McDermott (1982), as well as
by the first-order temporal logic R described by Rescher and Urquhart (1971). '

It is possible to express the occurrence of many types of complex actions using the
constructs introduced above. We have developed a set of definitions that make it easy to
state the occurrence of sequentially composed or conditional actions.” The action expression
(61; 62) represents the sequential composition of the actions 6, and §,. The expression
if(yp, 61, 62) represents the action that consists in doing action §; if the condition ¢ holds,
and action d; otherwise. One asserts that self does the action represented by expression §

from now to time ¢ using the form Does(4,?).

"Note that the expressive power of our temporal logic is not limited to this class of actions; actions
involving nondeterminism, concurrency, multiple agents, definite times, etc. can be represented. But our
formalization of ability is limited to actions belonging to this class.
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The operator By is used to change the agent component of the context just as At is used
to change its time component; one can thus say that an indexical “proposition” holds for
an agent other than that of the context currently in effect. For example, By(a, Know(yp))
would say that agent a knows that ¢. The argument formula is evaluated at an index whose
agent component is the denotation of a.

Any account of the ability of agents to achieve goals by doing actions must consider
not only the actions that are actually done by the agents, but also those that are merely
physically possible for them; it must look at possible courses of events that differ from
the actual course of events in the way the future unfolds.® In the framework of dynamic
logic (Goldblatt 1987), upon which Moore’s account of action is based (Moore 1980), both
the operators available and the semantics do not separate the modal (possible courses of
events) aspect involved in this kind of consideration from the temporal aspect.® But this
is inadequate for our purposes. We want to be able to say that a state of affairs holds at a
given absolute time, not just that it holds whenever some sequence of actions terminates.
We want a single absolute time frame to apply globally across all possible courses of events
(this would reflect the common-sense view that time, like space, is a neutral medium where
events happen, one whose topography is unaffected by these events). And we also want
to be able to say that something has actually happened. Due to this, we do not follow
the dynamic logic scheme; instead, we develop an approach based on work in the area of
Ockhamist logic; see (Thomason 1984) for a review of this area of philosophical logic. Our
approach is based on one of the simplest system of Ockhamist logic, one that Thomason
calls T X W necessity. In this scheme, there is a unique global domain of times, which is
linearly ordered, and states of affairs are taken to hold with respect to both a world and
a time. To account for the fact that in a given world at a given time, there will usually
be several possible future courses of events besides the actual one, there is an additional

accessibility relation that links the worlds that correspond to these possible futures to the

8This should not be taken to reflect a metaphysical commitment to some kind of irreducible notion of
free will. In fact, we do believe that the actions of an agent are fully determined by its physical state and
natural laws. Perhaps one could explain the notion of an action being physically possible for an agent as
that of an action that would be done by another agent that is in the same physical state as the original one
except for his beliefs and goals.

®In dynamic logic, one uses the form [6] ¢ to say that in all states where the action § terminates (when
started now), ¢ holds. And the semantics involves a set of possible states and a family of accessibility
relations over these states, one for each primitive action; a state s, is accessible from another state ss by the
relation associated with an action d if and only if d initiated in state s, might terminate in s..
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current world at the given time; in fact, we view this as a family of accessibility relations, one
for each time point. And these relations are used to interpret an additional modal operator
O, where Oy means that ¢ is historically necessary at time now, that is, necessary given
everything that has happened until now.!? The dual operator < for historical possibility
is defined in the usual way. Using these operators one can state that an action is possible
for an agent at a time, in the sense that all its physical prerequisites are satisfied,!! or that
some effects necessarily hold at the conclusion of an action.

Consider the following example: an agent has been cooking, he has a roast in the oven
which is now ready; if he turns the oven off, then the roast will be done, if he fails to do so,
then the roast will get burnt. It is possible for him to follow either course of action. Figure
3.4 shows how this can be handled in our framework. There are two possible worlds, wp and
wy, which are mutually accessible in the historical necessity sense at time 0 (i.e., formally,
Wo ¢ W), meaning that they are identical in every respect up to time 0 inclusively. In
wo, agent ag does the action of turning the oven off from time 0 to time 1, and so the
roast is done in wp at time 1. In wy on the other hand, ap does not turn off the oven, so
the roast is burnt in w; at time 1. wp and w; are of course not mutually accessible in the
historical necessity sense at time 1, as they differ in what happens after time 0. Given such
a semantic structure, we have that it is historically possible for agent ag at time 0 in world
wo to do the action TURNOFF from then until time 1, that is, OCDoes(TURNOFF, 1) holds
at index (wg, ap, 0) — statement (1). This is the case because wy is accessible to itself at
time 0 and ag does TURNOFF in wg from time 0 to time 1. But we also have that it is
historically possible for ap at time 0 in wp not to do action TURNOFF from then until time
1 — statement (2). This is because w; is accessible from wp at time 0 and ap does not do
TURNOFF in w; from time 0 to time 1.

We can also talk about the effects of chosing either of these courses of action. At
(wo, ag, 0), if the agent does TURNOFF from now until time 1, it necessarily follows that
the roast is done at time 1 — statement (3). This is because in all worlds accessible from

wp at time 0 where ag does TURNOFF from time 0 to time 1, that is wg, ROASTDONE holds

19We are probably not using the term ‘historical necessity’ in exactly the same sense as philosophers such
as Thomason (1984): we take what is historically possible to be constrained by all sorts of assumptions
regarding physical laws, properties of knowledge, etc.; thus, our notion of what is historically necessary goes
well beyond the idea that it is impossible to change what has already happened.

1 This should not be confused with ability, which requires the agent to know of the action that it is
possible and results in the goal being achieved.
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{wo,0,0) = Does(TURNOFF,1)  (wp,ap, 1) = RoAsSTDONE
{w1,20,0) = ~Does(TURNOFF,1) (wj,ap,1) = ROASTBURNT
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- . ag does TURNOFF .
0 1
A
)
RoASTBURNT
Y l
i 0 1
{wo, 20, 0) | ©Does(TURNOFF, 1) (1)
(wo, 20, 0) | O-Does(TURNOFF, 1) (2)

(wo, ag, 0) = O(Does(TURNOFF,1) D At(1, RoASTDONE)) (3)
{wo,20,0) = O(~Does(TurRNOFF,1) D At(1, ROASTBURNT)) (4)
(wo, ag, 1) | O(DoneFrom(TURNOFF,0) A RoASTDONE) (5)
(w1,20,1) F O(-DoneFrom(TurRNOFF, 0) A RoasTBURNT) (6)

Figure 3.4: Modeling possible actions and their effects
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at time 1. And we also have that at (wo, ag, 0), it is necessary that if the agent does not do
TURNOFF from now until time 1, then the roast must be burnt at time 1 — statement (4).
This is because in all worlds accessible from wg at time 0 where ag does not do TURNOFF
from time 0 to time 1, that is w;, ROASTBURNT holds at time 1.

Finally, notice that in world wg at time 1 it has become necessary that ap has done
TURNOFF from time 0 to now and that the roast is done — statement (5). This is because
these facts are no longer in the future and so must be necessary if they do hold. The
semantic structure reflects this in that there are no worlds accessible from wg at time 1
where ag has not done TURNOFF from time 0 to now or the roast is not done. For similar
reasons, in world w; at time 1 it is necessary that ap has not done TURNOFF from time 0
to now and that the roast is burnt — statement (6).

Finally, our theory includes a formalization of ability that is a revised version of that of
Moore (1980). Recall from section 2.1.1 that one may well know that cooking beef bour-
guignon would impress the party’s guests without knowing how to do it, that is, without
knowing what primitive actions “cooking beef bourguignon” really stands for. This also
applies to actions that are instances of general procedures: if one does not know the com-
bination of a safe, then one does not know what dialing the safe’s combination amounts to
(even though one knows the procedure for dialing any given combination). One can view
this distinction as an instance of de dicto as opposed to de re knowledge. Moore exploits
this in his formalization of ability. For simple actions, his account goes as follows: an agent
is able to achieve a goal by doing an action if and only if he knows what the given action is,
and knows of himself that it is physically possible for him to do the action next and that his
doing the action next necessarily results in the goal being achieved. By requiring that the
agent know what the action is, Moore eliminates the need for explicit specification of the
“knowledge prerequisites of actions”: if an action is an instance of a general procedure and
the procedure is known (formally, an epistemically rigid function), then the action is known
iff the agent knows what its arguments stand for. Complex actions are handled recursively.
Note that the agent is required to know who he is. Also note that it is not required that
the agent initially know all the actions that make up a successful plan as long as he knows
that he will know what to do next at each step of his plan.

Our formalization improves over Moore’s in several ways. Firstly, we eliminate Moore’s

requirement that the agent know who he is; instead, we require indexical knowledge. Thus,
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in the simple action case we require the agent to know that it is physically possible for
himself to do the action and that if he himself does the action, the goal will necessarily hold
afterwards (as well as knowing what the action is). Mere de re knowledge is neither necessary
nor sufficient for the agent to be able to achieve the goal (we give a concrete example of this
in chapter 4). Secondly, it is based on a very expressive temporal logic. We can thus handle
prerequisites or effects of actions that involve knowledge of absolute times and knowing
what time it is, as well as several cases of actions that refer to times (e.g., locking up at 5
p-m.; see section 5.3). This would also make it easier to extend the formalization to handle
more complex actions than are currently treated, for instance concurrent actions, actions
involving several agents, and actions that refer to time in very general ways. Finally, the
underlying logic includes an adequate treatment of indexical knowledge in general, which
permits a more accurate specification of the knowledge prerequisites and effects of actions;
the applications developed in chapters 4 and 5 are evidence for this. We use the formula
Can(4, ) to express the fact that self is able to achieve the goal ¢ by doing action §.

Before moving on, we should discuss one last aspect of our framework. The formal notion
of ability developed in this work is a highly simplified and idealized version of its common
sense counterpart. It requires the agent to know enough to be absolutely guaranteed to
achieve the goal, should he decide to do so and make effective use of his knowledge in the
process. The real world is too complex and unpredictable to ever permit such a high degree
of certitude and the common sense notion of ability that we use in deciding which intentions
to form and which plans to adopt is more of the type “knowing a plan that leads to the
goal being achieved with an appropriately high likelihood” rather than the “perfect” ability
that we formalize.12

To ensure that agents do fulfill these requirements for ability in an interesting number
of cases, we will need to make equally strong assumptions about the dynamics of agents’
knowledge. Consider a typical situation where an agent must do an action involving several
steps in order to achieve a goal. From his knowledge of the current state of affairs and of
the first action, the agent comes to know that his doing this first step would result in some
intermediate state of affairs holding. And from his knowledge of the remaining actions, it

must be the case that he would be able to achieve his goal by doing these remaining steps,

12The same high degree of idealization is involved in our formalization of knowledge; this applies to nearly
all current formalizations of the various propositional attitudes.
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if he were to know that this intermediate state of affairs holds. Now if he is to be able to
achieve the goal by doing the whole action, we must ensure that he would realize that the
intermediate state of affairs holds after doing the first step. How do we do this? We could
simply add the required assumptions in each individual case, but this would enormously
complicate the modeling of such situations. What generalization would we be missing?
Notice that if we assume that the agent must know what action he has just done and that
he must remember what he knew, in this case, that his doing the first action would result in
the intermediate state of affairs holding, then he must realize that this intermediate state
of affairs holds. It is generally reasonable to assume that knowledge is persistent and that
agents are aware of what primitive actions they have just done, and doing so removes the
need for all the ad-hoc assumptions that must be made otherwise. So we will make this
general assumption. Now in reality of course, agents not only happen to forget what they
knew, but they may also have weak justifications for their knowledge or be convinced to
renounce a true belief in spite of it being well justified. The assumption is another instance
where we must idealize in order to get a workable formalization. Note that assuming
persistence is much more reasonable for knowledge than for belief, since knowledge must
be correct and (under the standard interpretation) justified; this is why our formalization
involves knowledge rather than belief. Moore (1980) also makes this assumption. But the
specification of the assumption is more complex in our framework because the temporal part
of the logic is richer. Note also that indexical knowledge must be adjusted for the passage
of time; for example, John’s knowing that it is now raining must later become something
like John’s knowing that it was raining earlier. The exact form that the assumption takes

and its main consequences are discussed in section 3.5.7.

3.2 Syntax

Our logic uses a many-sorted first-order modal language with equality L;,4... Table 3.1
includes a list of the syntactic categories involved, followed by a BNF-style specification of .
the non-primitive categories. The list of syntactic categories associates the name of each
category (e.g., “Agent variable”) with a symbol that is used to denote a typical member of
the category (e.g., v*). For primitive categories, the membership is also given. Different

occurrences of the same symbol in a BNF rule are subscripted to allow reference to the
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Syntactic categories

Category name
Agent variables
Individual variables
Temporal variables
Action variables
Agent functions
Individual functions
Temporal functions
Action functions
Predicate symbols
Variables

Agent terms
Individual terms
Temporal terms
Action terms
Formulas

Syntactic variable

Formation rules

o* | o | ot | v

v® | self | £2(65,...,6})
0 | v' | £i(6,...,6)

v' | now | f‘(0§lt,. .., 01
vt | 7465, - -, 0%)

R(6:,...

Membership
{aD7 al’ L) '}
(o )
{to, Unp oo }
{do,d,,...}
{Fg,Fi’, )
{Fd, P,y )
{F§, T%,...}
{rd,¥d,..}

{Ro,R1,...}

~ | (912 2) | Yo | At(6*,¢) | By(6*,0) | Know(s) | Op

Table 3.1: Formal syntax of the logic.

51

,0n) | Does(67,6°) | (6 = 65) | (6 = 63) | (8% = 65) | (6% = 62) | (6% < 62) |



expression denoted. |

The syntax specified here is for the pure version of the logic. When the logic is used
to formalize a particular domain, a theory is built on top of the logic — a theory that
includes the validities of the logic as a subset of its own. In this case, a set of predicate and
function symbols appropriate for modeling the domain is decided upon and the language of
the theory is generated according to the rules as usual. This is the same distinction as that
between the language of the predicate calculus and that of a particular first-order theory.!3

We now go over the various forms in the language, giving for each an informal sketch of
the intended meaning; the precise semantics is given in the next section. There are four sorts
of terms: individual terms, agent terms, which are a subset of individual terms, action terms,
which denote simple actions, and temporal terms, which denote time points. Compound
terms of all four sorts may be formed; the arguments must be individual terms except
in the case of temporal function applications, where the arguments can also be temporal
terms. Constants are 0-argument functions; in this case, the parentheses are dropped. Also
included are two indexical terms, self and now. As explained in the previous section, self
and now respectively stand for the agent and time component of the index. The notions of
free variable, bound variable, and term that is free for a variable in a formula are assumed
to have their usual definition (Mendelson 1979). We use @{v + 8} to stand for the result
of substituting @ for all free occurrences of v in ¢, provided that v and # belong to the same
sort.

An atomic formula of the form R(6i,...,6:) is intended to mean that individuals
8i,...,6; (strictly speaking, we should say the individuals denoted by 6i,...,68: and simi-
larly hereafter) stand in static relation R at time now. As explained earlier, the denotation
of predicate and function symbols usually depends on the time of the index and may also
depend on its agent. Another kind of atomic formula, Does(#4, ), means that self does
action 8¢ from now to time #%. Other atomic formulas are identity statements and assertions
concerning temporal ordering.

Formulas may be composed using the connectives and quantifiers of standard first-

order logic, as well as a set of modal operators. At(6%,¢) means that ¢ holds at time 6°.

13For readability, we often use variables without subscripts or with non-numerical subscripts, as well as
variables other than a, d, and t to stand for individuals; we assume that some systematic mapping of such
abbreviations to variables actually in the langunage is used.
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By(6°, p) means that ¢ holds from the point of view of agent #° (i.e., ¢ holds at the index
that only differs from the current one in that its agent component is that denoted by 6*).
Know(y) means that self knows at time now that ¢; when ¢ contains indexical elements,
the formula is meant to attribute indexical knowledge. Oy means that ¢ is historically
necessary at time now, that is, necessary given everything that has happened up to and at
time now. This completes the list of the primitives of our logic. Several derived forms are

defined in section 3.4.

3.3 Semantics

In this section, we formally specify the semantics of our logic. The rationale behind the

specification should generally be clear from the discussion in section 3.1.

3.3.1 Model Theory

A semantic structure M is a tuple
(‘A7 07 T? D) w7 -<7 K’ z’ Q’ A)

The first four components are non-empty domains for the appropriate sorts: A is the domain
of agents, O is the domain of objects, 7 is the domain of times, and D is the domain of
primitive actions. The domain of individuals 7 is defined as AUO. W is a set of temporally
extended possible worlds. £ = W x A x T is the set of indices. We take a,0,i,t,d,w, and e
(possibly subscripted, primed, etc.), as ranging over arbitrary elements of A, 0,Z,7,D, W,
and £ respectively. < is a relation over 7 whose intended interpretation is “is earlier than”.
K C €2 is the knowledge accessibility relation. The rationale behind this formulation was
explained in the previous section. % is a family of accessibility relations — one for each time
point — that is used to interpret the historical necessity operator O. Intuitively, w ~¢ w*
if and only if w and w* differ only in what happens after time t.

The denotation of terms and satisfaction of formulas are defined relative to indices.
® gives the extension of predicate and function symbols at an index. A C Dx Ex T
determines which actions are done by which agents in which worlds over which time intervals:

(d,{w,a,t,),t.) € A iff action d is done by agent a from time t, to time t. in world w.
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3.3.2 Denotation and Satisfaction

An assignment is a function that maps variables into elements of the domain appropriate
to them. g{v — x} is the assignment that is identical to g except that it maps variable v
into the entity x.

The denotation of a term # in a structure M at an index e = (w,a,t) under an as-
signment g, written |[o]]2{'g is defined as follows (from now on, we omit the structure under

consideration when it is clear from context):

[vleg = g(v).
[self]eg = a
[now]eg =t

I[.f(oh veey on)]IE.g = Q(f’ e)([01]0,87 00 [[on]]e,g)

We can now define what it means for a formula ¢ to be satisfied by a structure M, an

index e = (w, a,t), and an assignment g, which we write M,e,g |= ¢:
e,g = R(6%,...,0%) iff ([6ileg,-.-,[6i]eg) € B(R,e€)
e,g = Does(6?,6*) iff A([6%e,g, ¢, [6%]e,g)
e,g =01 = 63 iff [h1]e,g = [f2]eg
e,g |= 6} < 04 iff [Bi]e,g < [05)eg
e, g = —~p iff it is not the case that e,g |= ¢
e, g FE (1 D 2) iff either it is not the case that e, g |= 1, or e, g = 2
e, g | Yvp iff for every entity x in the domain appropriate to v, e,g{v— x} E ¢
e,g = At(6', ) iff (w,3,[0]eg).8 = ¢
e,g = By(6°,¢) iff (W, [6"]e,g,t) 8= ¢
e, g = Know( ) iff for all ¢, such that (e,e’) € K, e',g = ¢
e, g |= Oy iff for all w* such that w o w*, (w*a,t),gkE ¢
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A formula ¢ is satisfiable if there exists a structure M, index e, and assignment g, such
that M,e,g |= ¢. A formula ¢ is valid (written |= o) if it is satisfied by all structures,

indices, and assignments.

3.3.3 Semantic Constraints

To ensure that the semantics adequately models the notions that we are trying to capture
(knowledge, historical necessity, etc.), we impose various constraints on semantic structures.
Our first constraint ensures that what is known is true and that agents correctly intro-

spect about what they know:
Constraint 3.1 K must be reflexive and transitive

As a result of this, the Know operator conforms to the principles of modal system S4. This
is discussed in detail in section 3.5.2.
Constraints 3.2 and 3.3 are concerned with the modeling of time. Firstly, we require

that time be linear:

Constraint 3.2

- < must be a strict total order, that is, transitive, connected, and irreflexive.
Secondly, we require that the ending time of any action not be earlier than its starting time:
Constraint 3.3 If (d, (w,a,t,),tc) € A, then t, < t..

Note that t; X t; stands for the fact that either t; < t; or t; = t,.
The next four constraints are concerned with the modeling of historical necessity. They
ensure that historical alternatives at a given time differ only in what happens after that

time. Constraint 3.4 specifies the static behavior of the historical necessity operator:
Constraint 3.4 For all t € 7, ~t must be an equivalence relation.

Note that an equivalence relation may be characterized as one that is reflexive and euclidean.
A relation R is euclidean if and only if x; Rxs and x; Rx3 implies x;Rx3. As a consequence of
constraint 3.4, O and < obey the principles of modal system S5. This is discussed further
in section 3.5.5.

The other three constraints specify how what is necessary can change over time. Con-

straint 3.5 says essentially that possibilities do not increase as time passes:
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Constraint 3.5 If w ¢, w* and t; < t3, then w =, w*.

Constraint 3.6 ensures that historical alternatives at a given time are identical in what facts

hold and what is known up to that time:

Constraint 3.6

If w=i, w* and t; < t3, then
1. for any predicate R, ®(R, (w*,2a,t1)) = ®(R, (w,a,t1)),
2. for any function symbol f, ®(f,(w*,a,t1))(i1,...,in) = &(F, (w,a,t1))(i1,.-+,in),
3. ((w*,a,t1),e) € Kiff ((w,a,t;),e) € K.

And constraint 3.7 deals with action. It says that if w and w* are historical alternatives at
time t, then (1) they should be identical in what primitive actions have been completed up
to t, and (2) they should be identical in what primitive actions are under way at t, even

though these actions can end at different times in w and w*.

Constraint 3.7
1. If w ¢ w* and t, < t, then A(d, (w*a,t,),t.) iff A(d, (w,a,t,),t.),
2. if wmgw*, t; <tand t <t, then

a) if A(d, (w,a,t,),t.), then there exists t; such that t < t, and A(d, (w*,a,t,),t.),
e €

(b) if A(d, (w*,a,ts),t.), then there exists t such that t < t, and A(d, (w,a,t,),t.).

The effects of these constraints are discussed further in section 3.5.5.

Finally, to simplify reasoning about agents’ ability to achieve goals by doing multi-step
actions, we will assume that knowledge is persistent, that is, that agents keep on knowing
what they knew previously, and that agents know what actions they have done. The

following constraint enforces this:

Constraint 3.8

If ((w,a,t),(w',a',t')) € K and t, < t, then there exists a time t},, where t}, < t/, such that
((w,a, 1), (w',a",1,)) € K and if A(d, (w,a,tp),t) then A(d, (w/,a’,t}),t).

A detailed explanation of how this works is given in section 3.5.7. Note this formulation

does not require agents to know at what time they start or finish acting, or how much time

the action takes.
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3.4 Definitions

In this section, we extend our language by defining various derived operators in terms of
the primitives of the logic. In addition to providing useful tools for the developments in the
remainder of the thesis, these definitions serve to display the expressive range of our logic.

Firstly, the standard propositional connectives, the existential quantifier, and various
relational operators have their standard definitions. The historical possibility operator < is

also defined in the usual way.

Definition 3.1

V,A,=,3,#,>,%,> are defined in the usual way;
Op def -0-¢.

Next, using the operator By, we define a more common version of Know that specifies
which agent knows the given proposition. Similar definitions are assumed for other operators
that implicitly refer to an agent, such as Does, and others that are introduced below (Res,

Can, etc.).
Definition 3.2
Know(ﬂ“,cp)_déf By(6°, Know(¢)) and similarly for Does, Res, Can, etc.

We have developed a set of definitions that make it easy to state the occurrence of a
large class of complex actions. Let us first define a new syntactic category, that of action
ezpressions. We use syntactic variable § to represent members of this category. The category

is defined by the following BNF rule:
6 == 8% | skip | (61;62) | if (¢, 61, 62)

It includes action terms, which represent simple actions, skip, which represents the empty
action and takes no time, (4;; 63), which represents the sequential composition of the actions
61 and 62, and if(¢p, 61, 62), which represents the action that consists in doing action & if
the condition ¢ holds, and in doing action §, otherwise. One asserts that self does the
action represented by expression ¢ from now to time #* using the form Does(6,6%), which

is now extended inductively to handle expressions as follows:
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Definition 3.3 :
Does(skip, §) L' (6t = now)

Does((61; 62),6%) 4 Jvi(Does(61,vf) A At(v}, Does(dz,6'))), provided that v} does not

occur anywhere in 6, 8y, or 8,
Does(if(¢, 61, 62), 6t) & (o A Does(6y,6%)) V (¢ A Does(d, %))

One base case is that where the action expression is an action term, in which case Does(§?, §*)
is a primitive of the language. The case where § is the empty action is also non-inductive:
Does(skip, 6*) simply stands for the requirement that the starting time now be equal to
the ending time 6*. The other two cases work inductively. For sequentially composed ac-
tions, the definition says that Does((;;62), ') stands for the fact that self does 6, from
now to some intermediate time v} and also does é; from v} to 6¢.1* The final case is that
of conditional actions: Does(if(¢, 61, 62), %) stands for the fact that either the condition ¢
holds and self does the action §; from now to 6%, or ¢ doesn’t hold and he does 6, from
now to 6%,

We also introduce three other forms, which are defined in terms of the previous ones:
6", which represents the sequential composition of k instances of § (k € N), ifThen(¢, §),
a special case of if where there is nothing to be done if the condition does not hold, and
whiley (¢, 6), which represents the action of doing § up to k times as long as ¢ remains true*

(k € N) — a bounded form of “while loop”. These forms are defined as follows:

Definition 3.4

6k dﬁf Skip if k= 0
(8;6%-1) ifk >0

ifThen(p,§) &' if(y, 6, skip)

14The proviso ensures that no free variable in 8 or 82, or in 6° accidentally gets bound by the quantifier
introduced by the definition. Since tests are the only places where a temporal variable can occur in an action
expression, it would in fact be sufficient to require that v} not occur free in 8* or in any test of a conditional
in 6, or 62 (this also applies to the other definitions in this section that introduce quantifiers and place
an action expression within their scope). Note that the requirement that v{ not be free in 8* also ensures

that v{ does not get accidentally bound in the expansion of Does(5), v{); for example if 6; = (63; 64), then
Does(61, v}) = 3v}(Does(83, v}) A At(v}, Does(8s, v}))), where v! is a different variable from v} (and does

not occur free in a test of 83 or &).
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skip ifk=0

. def
whiley (p,6) =
ifThen(yp, (6; while,_,(¢,6))) ifk >0

By the way, note that the expressive power of our temporal logic is not limited to the
class of actions that can be represented by our action expressions; the occurrence of actions
involving nondeterminism, concurrency, multiple agents, definite times, etc. can also be
expressed. Our special interest in this class comes from the fact that our formalization of
ability is limited to actions that belong to it. Note however that actions involving indefinite
iteration (or unbounded recursion) cannot be expressed in the logic. Since one can generally
come up with a bound on the number of times an actual agent will be willing or able to
repeat an action, this limitation does not appear to raise serious problems in practice.
Moreover as discussed in section 2.1.1, the formalization of ability to do actions involving
indefinite iteration is problematic.1®

The next definitions introduce a set of operators that provide more flexibility in the

specification of the times at which actions start and end:
Definition 3.5
DoesNext(5) & 3ot Does(6, v*), provided that v* does not occur anywhere in 6

DoneFromTo(6, 8, 6) % Jug(ve = 6% A At(6:, Does(6,v%))), provided that v! does not

occur anywhere in 6%, 8¢, or 6
DoneFrom(é, ) %f DoneFromTo($4, ', now)
Done(5) %f 3v; DoneFrom(6, v}), provided that v} does not occur anywhere in §

The formula DoesNext(§) means that self does action § from now to some future time.
DoneFromTo($, 6%, 6}) n;eans that self does § from time 6% to time §:. DoneFrom(s, §*)
means that self does § from time 6* to now. And finally, Done(6) means that self does §
from some past time to now.

To facilitate reasoning about ability, we define the following notions:

15 Also, extending the logic to handle indefinite iteration would seem to lead to incompleteness, as it
involves quantification over all finite sequences of the iterated action.
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Definition 3.6

PhyPoss(6) 4l ©3vt Does(6, vt), where vt is a temporal variable that does not occur free

iné

AfterNec(5, o) & OVvt(Does(s,v!) D At(vt,)), where vt is a temporal variable that

does not occur free in § and ¢

Res(4, ) e PhyPoss(6) A AfterNec(d, p)

PhyPoss(6) means that it is “physically possible” for self to do action § next (even though
he may not be able to it because he does not know what primitive actions § stands for). We
say that ¢ must hold after §, formally AfterNec(d, ), if and only if it is necessary that if
self does § next, then ¢ holds afterwards. We say that § results in ¢, formally Res(é, ¢),
if and only if é is physically possible and ¢ must hold after 4.

Finally, a few additional operators:

Definition 3.7
Kwhether(yp) def Know(yp) V Know(-p)

DoneWhen(6, ) &' 3vt(DoneFrom(é, vt) A At(v!,)), provided that vt does not occur
anywhere in ¢ or §

AllPast(y) o Vvt(v? < now A At(v?, )), where v* does not occur free in ¢

SomePast(y) def - AllPast(-¢)

AllFut(yp) 4 Vut(now < vt A At(v!,p)), where vt does not occur free in ¢

SomeFut(y) & -AllFut(~y)

AllPastN(p) &' AllPast(¢) A ¢, and similarly for AllIFutN

SomePastN(p) def SomePast(p) V ¢, and similarly for SomeFutN

Kwhether(y) means that self knows whether ¢ holds, DoneWhen(§, ¢) means that self
has just done § and that ¢ was true when he started, AllPast(¢) means that ¢ was true
at all past times, SomePast(¢) means that ¢ was true at some past time, AllFut(y)
means that ¢ will be true at all future times, and SomeFut(y) means that ¢ will be
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true at some future time. The above temporal operators also have variants AllPastN,
SomePastN, AllFutN, and SomeFutN that talk about the present as well as the past
or future. AllPastN(yp) means that ¢ holds now and at all past times, SomePastN(p)
means that ¢ holds either now or at some past time, and similarly for AllFutN and
SomeFutN.

The ability operator Can is also defined in terms of the primitives; the definition is

given in section 3.6.

3.5 Properties of the Logic

In this section, we present a fairly comprehensive set of properties that are validated by
our logic. This clarifies the assumptions that are implicit in our semantics. Many of the
properties will be useful in deriving proofs of ability, when we start formalizing particu-
lar domains. This should be viewed as only a first step toward obtaining a satisfactory

axiomatization (a complete one, if possible).

3.5.1 The Basis

In this section, we present a set of properties that characterize the basis of our logic, that is,
the part concerned with first-order logic with equality. This set of properties is basically the
axiomatization proposed by Mendelson (1979) for first-order logic with equality with one
.importa.nt change (affecting proposition 3.3). This change reflects the fact that substitution
of identicals does not necessarily preserve truth-value in our logic; using Quine’s terminology,

our modal operators are referentially opaque (Quine 1971). For example, we have that

- Know(PRESUS = PrRESUS)

¥ BUsH = PRESUS D Know(BUSH = PRESUS)

that is, the fact that everyone knows that the president of the U.S.A. is the president of the
U.S.A., together with the fact that George Bush happens to be the president of the U.S.A.
does not imply one must know that the president of the U.S.A. is George Bush. Similar
examples can be constructed for the other modal operators.

To reflect this we strengthen the normal restriction on the “axiom” of specialization.

The result is proposition 3.3, which says that if Vv is true, then p{v — 68} is also true,
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provided that @ is free for v in @, no occurrence of a function symbol gets substituted into
the scope of a modal operator, no occurrence of self gets substituted into the scope of Know
or By, and no occurrence of now gets substituted into the scope of Know or At. This is
similar to the approach taken by Levesque (1984a).

Let us then list the properties that characterize our basis:

Proposition 3.1 |= ¢, where y is an instance of a propositional tautology ©

Proof:

Clearly, = ¢1 D (w2 O ¥1), E (1 D (92 D 93)) D ({11 D ¢2) D (p1 D ¥3)), and
E (=2 D =¢1) D (=2 D ¢1) D p2). It is well known that these validities combined with
the rule in proposition 3.4 form a complete axiomatization for the propositional calculus
(Mendelson 1979). So all propositional tautologies must be valid in our logic. =

Proposition 3.2 | Yvu(yp1 D ¢2) D (¢1 D Yvys), where v is not free in ¢,

Proof:

Assume that the formula is not valid. Then there exists e and g in some structure, such
that e, g | Vu(p1 D ¢2), e,8 | 1, and yet e, g = Yvp,. The latter means that there exists
an x, such that e, gx & o2, where gx = g{v — x}. Since v is not free in ¢, (by the proviso)
and e, g |= ¢, we must also have that M,e,gx = ¢1.17 Since e,g |= Yu(p1 D ¢2), we must
have that e,gx |= ¢1 O 2. Combining the last two results yields that e,gx |= 2, which
contradicts an earlier consequence of our assumption that the formula is not valid. m

The following two lemmas set the stage for the statement and proof of our version of the

axiom of specialization, proposition 3.3.

Lemma 3.1 [0{v— @'}]eg = |[0]]e1g{v,_,[9,]e'g}

Proof: By induction on the number of function symbols in 6.

Lemma 3.2

e,g = p{vr— 0} iff e,g{v— [0leg} = ¢, provided that 8 is free for v in ¢, no occurrence
of a function symbol gets substituted into the scope of a Know, At, By, or O
operator, no occurrence of self gets substituted into the scope of Know or By, and

no occurrence of now gets substituted into the scope of Know or At.

16This “axiom® might seem strange to those unfamiliar with the way modal logics are axiomatized; but
this is perfectly legitimate since the set of instances of propositional tantologies is a recursive set.

17This assumes that if v is not free in a formula ¢, then e,g{v — x} = ¢ iff e,g = v. This obviously
holds and can be proved by induction on the structure of ¢.
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Proof:
We prove this by induction on the number of connectives, quantifiers, and modal operators
in ¢.
1. If o = R(6i,...,6:). Then
&g k= R(0y,...,0,){v — 6}
iff ([61{v 0}]eg,.-- [6a{v — 08}]e,g) € B(R,e) by the definition of satisfaction
iff (I[ol]]e,g{m-.[a]e,g}, ceny IIen]Ie,g{m—v[a]e'g}) € ®(R,e) bylemma 3.1
iff e,g{v— [0leg} = R(61,...,0,) by the definition of satisfaction

2. If ¢ = Does(#9, 6*). Then

e,g |= Does(6%,6*){v — 6}
iff A([6{v > 6}]eg, e, [0°{v — 0}]eg) by the definition of satisfaction
iff A([0)e.giomioleg) & [0leg(umialeg)) by lemma 3.1
iff e,g{v [0]eg} = Does(6%,6") by the definition of satisfaction

3. If ¢ = (6, = 62). Then

e,g | 61 = 2{v — 6}
iff [61{v— 6}]eg = [02{v— 6}]eg Dy the definition of satisfaction
iff [[ol]e,g{,,,_,[,,]e'g} = [[02]3,8{0H[9]e,g} by lemma 3.1
iff e,g{vr [fleg} = 61 =0, by the definition of satisfaction

4. ¢ = (61 < 6;). The proof is similar to case 3.

For the remaining cases, assume that the property holds for all subformulas.
5. If p = =¢’. Then

e,g = —¢'{vr 6}
iff e,gl~ ¢'{v— 0} Dby the definition of satisfaction
iff e,g{v [fleg} - ¢’ by the induction hypothesis
iff e,g{vrs [0leg} = 7¢’ by the definition of satisfaction

6. If ¢ = 1 D 3. The proof is similar to case 5.
7. In case p = Yo'y, If v = v/, then the property trivially holds because there are no free
occurrences of v in ¢. If v # v/, we have that

e,g = (V'¢'){v 6}
iff for all x in the appropriate domain, e, g{v’' — x} | ¢'{v — 6} by the def. of satisfaction
iff for allx, e,g{v' = x}{v — [fleg{vmx}} E ¢’ by the induction hypothesis
iff for allx, e,g{v— [fleg}{v' — x} E ¢’
since by the proviso,  must be free for v in ¢, and so [0)e.g{visxy = [Oleg
iff e,g{vi [fleg} = Vv'¢’ by the definition of satisfaction
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8. If ¢ = Know(y'). In this case the proviso means we only need to prove the case where
the term substituted is a variable, that is, where 6 = v’ .

e,g = Know(y'){v — v’}
iff for all e such that {e,e’) € K, ¢/,g = ¢'{v — v’} by the def. of satisfaction
iff for all ¢ such that {e,e’) € K, ¢’,g{v— [v]er,g} = ¢’ by the induction hypothesis
iff for all ¢’ such that (e,e’) € K, ¢/, g{v— [v']eg) = ¢’ since [v]eg = [v]eg
iff e,g{vr [v]eg} | Know(¢') by the definition of satisfaction

9. If o = At(6*,¢'). Let e = (w,a,t) and g’ = g{v — [f]eg}. Then
e,g | At(¢',¢'){v — 6}
iff (w,a,[6'{v — 0}]eg) g = ¢{v— 6} by the definition of satisfaction

iff (W,a, [[0 ]Ie,g'):g l= w {’U = 0}
since by lemma 3.1, [0*{v — 0}]e,g = [0*]eg’

iff (w,a,[6%]eg), g{v— [0lw,a, e eg 8} F ¢’ by the induction hypothesis

iff (w,3,[6eg) 8 = ¢
since the proviso means that if ¢’{v — 6} # <p , then # can only be a variable or self,
in which case [0](w,a t).g = [0liw,at).g

iff e,g’ = At(6%,¢') by the definition of satisfaction

10. If o = By(6*,¢'). The proof is similar to case 9.
11. If ¢ = O¢'. Then

(w,a,t),g = (O {v— 6}
iff for all w* such thatw =~ w*, (w*,a,t),g = ¢'{v — 6} by the definition of satisfaction

iff for all w* such that w ~¢ w”, (w",a,t),g{v > [fliw*atye} F ¢’ by the induction hyp.
iff for all w* such thatw =t w”, (w*,a,t),g{v— [0w,aty.g} E ¢

since the proviso implies that if ¢/{v — 6} # ¢/, then 6 can only be a variable, self
or now, in which case [flw,a,t).g = [0}(w=a,t).g

iff e,g{v [0]eg} = O¢’' by the definition of satisfaction

Proposition 3.3 (Specialization)

Yvy D ¢{v — 0}, provided that 8 is free for v in ¢, no occurrence of a function symbol
POy p
gets substituted into the scope of a Know, At, By, or O operator, no occurrence of
self gets substituted into the scope of Know or By, and no occurrence of now gets

substituted into the scope of Know or At.

Proof:
Assume that e,g |= Vvp. This means that for all x in the appropriate domain, e,g{v —
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x} | . So in particular, e,g{v — [f]e,g} = . By lemma 3.2 therefore, e,g |= @{v > 6},
provided that 8 is free for v in ¢, no occurrence of a function symbol gets substituted into
the scope of a Know, At, By, or O operator, no occurrence of self gets substituted into
the scope of Know or By, and no occurrence of now gets substituted into the scope of
Knowor At. =

Proposition 3.4 (Modus Ponens) If = ¢; and | ¢; D 3, then |= ¢,
Proposition 3.5 (Universal Generalization) If |= ¢, then |= Yuyp
Proposition 3.6 (Reflexivity of Equality) Fv=1v

The proofs of propositions 3.4, 3.5, and 3.6 are trivial.
The next lemma and proposition show that the substitution of identicals still preserves

truth-value when only variables are substituted.

Lemma 3.3

I [v]eg = [v]eg, then [Oleg = [0']e,g, where ¢ arises from replacing some, but not

necessarily all, occurrences of v by v/ in §,

Proof: By induction on the number of function symbols in 6.

Proposition 3.7

E v =1 D (p D ¢'), where ¢ arises from replacing some, but not necessarily all, free
occurrences of v by v’ in ¢, provided that v’ is free for the occurrences of v that it

replaces,

Proof: By induction on the number of connectives, quantifiers, and modal operators in
®.

Note that the fact that the substitution of identicals preserves truth-value when only vari-
ables are substituted, combined with the fact that Vz(Know(z = z)) is valid (proposition
3.18 below), implies that VzVy(z = y D Know(z = y)) is also valid (proposition 3.19
below). We do not see this as really objectionable, since we take it to concern de re as
opposed to de dicto modality. But note that for example, it means that if one knows of
someone seen on a beach that he is a pillar of the community and also knows of someone

seen in a dark alley that he is a spy, and if the person seen on the beach and that seen in
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the dark alley are actually the same, then one must also know of the person on the beach
that he is a spy (Quine 1971). This suggests that if one wants to explain people’s behavior
in terms of what de re knowledge they have, then one should exercise caution in ascribing
de re knowledge to them.

Finally, we prove an additional important and useful property — that the substitution

of equivalents preserves equivalence:

Proposition 3.8 (Substitution of Equivalents)
If = s = @), then |= @ = ¢/, where ¢’ arises from ¢ by replacing some occurrences of ;

by 5.

Proof: By induction on the number of connectives, quantifiers, and modal operators in

®.

3.5.2 Knowledge

In this section, we go over the basic properties of knowledge in the logic, in order to clarify
the results of the formalization and emphasize its differences from standard modal logics of
knowledge (Hintikka 1962; Halpern and Moses 1985). Additional properties relating to the
dynamics of knowledge are discussed in section 3.5.7.
Let us first establish that the logic really differentiates between indexical knowledge and
_de re knowledge. The following proposition shows that the logic does not require agents
to know who they are (1), nor does it require them to know what time it is (2); they may
have such de re knowledge (the formulas are satisfiable), but they need not (the formulas
are not valid). .

Proposition 3.9
1. 3a Know(a = self) is satisfiable, but not valid
2. 3t Know(t = now) is satisfiable, but not valid

As a result, our logic captures the fact that one can have indexical knowledge without
having the corresponding de re knowledge and vice-versa. As the following proposition
shows, one can know that some state of affairs holds now without knowing of some time

that the state of affairs holds at that time (1); for example, I might know that I have just
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arrived home without knowing at what time I arrived. Also conversely, one can know of the
current time that some state of affairs holds at that time without knowing that the state of
affairs currently holds (3); for example, I might know that I have a meeting that starts at
noon without knowing that my meeting is starting now. The same applies to indexicality
with respect to the agent as opposed to time: someone might know that he himself has
some property without knowing of anyone that he has the property (2), and an agent might
know of himself that he has a property without knowing that he himself has the property

(4).
Proposition 3.10
1. Know(p) O 3t Know(At(t, )
2. - Know(p) D 3a Know(By(a, v))
3. [£ 3t(t = now A Know(At(t,¢))) D Know(yp)
4. I 3a(a = self A Know(By(a, ¢))) > Know(y)

The purely epistemic part of the logic verifies all the validities of the modal system
54+ BF. Note however that these valid schemas do not have the quite the same interpretation
as in standard epistemic logic. In our system, the knowledge of an agent at a time does
not only consist of objective propositions, but also of “indexical propositions”, propositions
whose truth-value depends on the context. So Know(y) is perhaps best read as saying
that the agent now knows that he himself currently has property ¢. As we will see, this
sometimes has unexpected effects. Now, let’s go over these schemas. The first says that if

the agent knows that ¢, implies ¢, and knows that ¢, then he must also know that P2t
Proposition 3.11 | Know(p; D ¢2) O (Know(p;) D Know(yps))

In the epistemic logic literature, this is called the distribution axiom and in modal logic
generally, it is called the K axiom. This reflects the fact that under our semantics, agents
must know all logical consequences of what they know. The logic also validates the fact

that what is known must be true:
Proposition 3.12 = Know(y) D ¢

This is called the knowledge axiom in epistemic logic and the T axiom in modal logic

generally. It holds as a result of the fact that the accessibility relation K is required to be
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reflexive (constraint 3.1). Note in this case how indexicality affects the way the schema
should be read. Strictly speaking, the above says that if the agent knows that he himself
currently has property ¢, then he actually has property ¢ now. In saying that the indexical
proposition ¢ is true, we must ensure that the indexical elements it contains are evaluated in
the right context, that is, the one that has the knower as its agent component and the time
at which the knowing is taking place as its time component. Thus the following variants of

the above schema are not valid:
Proposition 3.13

1. [ Know(6%,9) D ¢

2. = At(6', Know(p)) D ¢

In 1, the consequent need not hold because self may denote a different agent from 6°; for
example, the fact that John knows that he is hungry does not imply that the current agent
is hungry. Similarly in 2, the consequent need not hold because now may denote a different
time from #%; for example if I knew that I was hungry at noon, it does not mean that I am
hungry now.

The logic also takes the view that agents introspect correctly about what they know.
This yields the following proposition, which says that if the agent knows something, he
knows that he knows it:

Proposition 3.14 (Positive Introspection) = Know(yp) O Know(Know(yp))

This is called the positive introspection axiom in epistemic logic and the 4 axiom in general
modal logic. It corresponds to our requirement that the accessibility relation K be transitive
(constraint 3.1). Note again that our handling of indexical knowledge affects how the above
statement should be read; it says that if the agent knows that ¢, then he knows that he
himself currently knows that ¢. Since an agent may not know who he is or what time it is,

the following variants of the above formula are not valid:
Proposition 3.15
1. = Know(a, ¢) O Know(a, Know(a, ¢))

2. = At(t, Know(y)) D At(t, Know(At(t, Know(y))))
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Proof:
We construct a counter model for the formulas:

W = {wo,w1} A={ag,a1} T = {to,t;}
K = {(e,e), for alle € £} U {((wo, 20, to), (w1, 21,t1))}
{(wo,a0,t0),g E R (wi1,a1,t1),g =R (wi,a0,t1),g £ R (wi,a1,t0),g ¢ R
g(as) = a0 g(to) =to

1. {e|({wo,a0,t0),e) € K} = {(wo,a0,t0),(w1,a1,t1)}. R is satisfied by g and each
of these indices, so we must have that (wo,ap,to),g = Know(R), and thus also that
(wo, ag, to), g = Know(a,, R). However, (wy,a0,t1),8 I£ R, so we have that (wy,a;,t;),g }&
Know(a,,R). Thus, (wo,a,t),g £ Know(Know(a,,(R)), as well as, (wp,ao,to),g b
Know(a,, Know(a,, R)). So 1 is not valid.

2. Similartol. m

We do not assume that agents correctly introspect about what they don’t know; thus
we have that & ~Know(p) O Know(~Know(p)).!® Our semantics assumes that there is
a unique global domain of quantification that applies for all indices; thus the same agents,
objects, actions, and times are assumed to exist at all indices. Agents cannot be ignorant
as to which entities exist. This yields the following proposition, which says essentially that
if everything is known to be ¢, then it is known that everything is ¢:

Proposition 3.16 |= Vv Know(y) O Know(Vuyp)

This is called the Barcan formula in modal logic. Note that the converse must also hold
(E Know(Yvp) O Vv Know(p)); it is a consequence of propositions 3.11, 3.17, and the

basis.

Finally, we have that all the validities of the logic are known:
Proposition 3.17 (Knowledge Generalization) If = ¢, then |= Know(y)

This is called the knowledge generalization rule in epistemic logic and the necessitation rule

in general modal logic.

Note that from propositions 3.17, 3.6, and 3.5, it is easy to show that agents must know

of any entity that it is identical to itself:
Proposition 3.18 |= Vz(Know(z = z))

Combined with proposition 3.7, this leads immediately to the indiscernibility of equals in

knowledge contexts, which was discussed in section 3.5.1:

18This becomes valid if one requires K to be euclidean, that is, iff for all e, €', and e”, if (e,e’) € K and
(e,e") € K, then (¢/,e") € K.
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Proposition 3.19 |= VzVy(z = y O Know(z = y))

But note that this applies only to variables (i.e., de re knowledge), not to arbitrary terms;
in general, knowledge contexts are still opaque. .

Propositions 3.12 and 3.14 provide justificatien for a point made earlier about our ap-
proach: that it remains possible to model important properties of knowledge by imposing
constraints upon the knowledge accessibility relation, this being one of the most attractive
features of standard possible-world semantics. In fact, the exact same constraints that give
rise to major properties of knowledge in standard possible-world semantics yield suitable
indexical versions of these properties in our scheme. This suggests that our specification
of semantic structures for indexical knowledge is the right one to adopt if one wants to
presérve compatibility with standard possible-world semantics.

Let us also point out that the approach can be adapted for modeling belief by changing
some of the constraints imposed upon the accessibility relation, just as in standard possible-
world semantics. If instead of requiring that K be reflexive, we require that it be serial,!®
then we get that knowledge need no longer be true (proposition 3.12 no longer holds), but
must be consistent (= Know(y) D ~Know(~yp)).

3.5.3 The Temporal Elements

In this section, we state and prove a set of properties describing the behavior of the temporal
operator At, indexical now, and temporal predicates < and Does. Semantic constraint
3.2 requires time to be linearly ordered. The following three propositions simply reflect this

requirement:

Proposition 3.20 (Transitivity of <) |= VuiVuiVui(vi < v A vd < v D vt < o)
Proposition 3.21 (Connectedness of <)) = VuiVui(vi < vi Vvl = vi Vvl > vh)
Proposition 3.22 (Irreflexivity of <) | Vvi-(v! < vt)

We next describe the behavior of the At operator and its interactions with the indexical
now. Note that this part of the logic is based on the first-order temporal logic R described
by Rescher and Urquhart (1971). The following three propositions describe how the At

19K is serial iff for all e, there exists an e’ such that (e,e’) € K.
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operator interacts with connectives and quantifiers. Essentially, the operator may be pushed
in or pulled out of connectives and quantifiers without affecting the truth-value of the
formula (a change of bound variable may be needed in the quantifier case). The first
proposition may be read as saying that ~¢ holds at time #* if and only if it is not the case

that ¢ holds at 6.
Proposition 3.23 = At(6}, -p) = ~At(8, ¢)

The second proposition says essentially that ¢; O ¢, holds at time 8¢ if and only if ¢y’s
holding at time 6* implies that ¢, also holds at time 6.

Proposition 3.24 = At(6*,¢; D p2) = At(6%, 1) D At(8, p,)

The third proposition can be read as saying that at time 6 everything is ¢ if and only if it
is the case that for everything, ¢ holds at time 6¢.

Proposition 3.25 |= At(8%,Vvyp) = Vv At(6?, ), provided that v does not occur in 6t

Proof:

(w,a,t),g = At(6", Yop)

iff (W7 a, H:ot]](w,a,t),g)a g l= Vv

iff for all x in the appropriate domain, (w,a, [[Gtﬂ(w,a,t),g), g{v— x} | At(6%, )

iff for all x in the appropriate domain, (w, a, ﬂot]](w,a,t),g{u.-»x}), g{v— x} | At(6, )

since v does not occur in ¢
iff for all x in the appropriate domain, (w,a,t), g{v— x} = At(6", )
iff (w,a,t),g = Vv At(8, )
n

The next two propositions deal with the interactions between the indexical now and
the At operator, and the effects of iterating At operators. On the matter of now, notice
that saying that something holds at time now is redundant because formulas are always

evaluated with respect to now. So a state of affairs ¢ holds at time now if and only if it

(simply) holds. This yields the following proposition:
Proposition 3.26 = At(now,p) = ¢

In effect, now behaves much like an identity element for At.
On the matter of iterated At modalities, notice that asserting that a state of affairs holds

at a given time, where the time is objectively specified, for instance by means of a variable,
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results in a proposition that is temporally objective, one whose truth is independent of
the time of evaluation; so nesting such a proposition in additional At operators has no
effect. For example, if I say that it rained in Toronto on September 21, 1990, the resulting
proposition is temporally objective; saying that on September 22, 1990, it was the case that
on September 21, 1990 it rained in Toronto yields an equivalent proposition and is totally
redundant. The following proposition expresses this; it says that ¢’s holding at time v’

holds at time #* if and only if ¢ holds at time v*.
Proposition 3.27 = At(6¢, At(vt,p)) = At(v!, @)

Note that the formula is no longer valid if v? is replaced by a term that is not temporally
rigid.
Finally, we have a generalization rule for At. As the following proposition says, if some

proposition is valid, then it must hold at all times:
Proposition 3.28 (Temporal Generalization) If = ¢, then = At(6%, )

There is only one logical restriction on the predicate Does: as required by semantic
constraint 3.3, the ending time of an action cannot be earlier that its starting time. This

yields the following proposition:

Proposition 3.29 k= Does(8%,6) D now < 6¢

3.5.4 The By Operator

The logical behavior of the modal operator By and the associated indexical self are in
almost perfect correspondence with that of the At operator and the indexical now; all the
logical principles respected by the latter pair are also obeyed by the former. Like At, the
By operator may be pushed in or pulled out of connectives and quantifiers without affecting
the truth-value of the formula (in the case of quantifiers, one may need to change bound
variables). The next three propositions verify this. The first says that - holds for agent
6° if and only if it is not the case that ¢ holds for §* (perhaps a better reading is that 6¢
has the property - iff it is not the case that §* has property ¢).

Proposition 3.30 = By(8°,-¢) = -By(6%,¢)

We omit the proofs for this and subsequent propositions, as they are exact analogues of

those given for the corresponding principles for At in the previous section. The second
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proposition says that ¢; D @, holds for agent 6 if and only if ¢,’s holding for agent §°
implies that ¢, also holds for §°.

Proposition 3.31 |= By(6%,¢; D ¢2) = By(6°,¢1) D By(8°, ¢2)

The third proposition says that for agent 6° everything is ¢ if and only if it is the case that
for everything, ¢ holds for agent 6.

Proposition 8.832 = By(6*,Vvyp) = Vv By(6°, ), provided that v does not occur in §°

Now let’s talk about how self and By interact and the effects of iterating By operators.
Saying that something holds for agent self is just as redundant as saying that something
holds at time now, since formulas are always evaluated with respect to self. As the following

Proposition says, ¢ holds for agent self if and only if it (simply) holds.
Proposition 3.33 |= By(self,¢) = ¢

Thus, self behaves like an identity element for By. As far as iterated By operators are
concerned, the situation is similar to that with At: to say that something holds for an
agent, where the agent is objectively specified, for instance by means of a variable, is to say
something that no longer depends on the agent of the context; so nesting such an assertion
in further By operators has no effects. Thus we get the following proposition, which says

that ¢’s holding for agent v* holds for agent #° if and only if ¢ holds for v°.
Proposition 3.34 |= By(6%, By(v?,¢)) = By(v?, ¢)

The formula is no longer valid if v* is replaced by a term that may be indexical with respect
to the agent. )

We also have a generalization rule for By, which says that if some proposition is‘va.lid,
then it must hold for all agents:

Proposition 3.35 If |= ¢, then |= By(6°, )

Finally, let’s describe how the By operator interacts with the At operator. Essentially,
the operators commute provided that the agent argument of By and the time argument of
At contain no function symbols. Thus, we get the following proposition, which says that
from the point of view of agent 8%, ¢ holds at time 6* if and only if at time 6¢, ¢ holds for

agent 6%, given that the proviso holds provided that #° and #* contain no function symbols
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(if 6° or #* did contain a function symbol, then its denotation may be affected by the change

in context).

Proposition 3.36
k= By(6°, At(6,9)) = At(6,By(6°, ¢)), provided 6* and 6 contain no function symbols

38.5.5 Historical Necessity

In this section we describe the logical behavior of the historical necessity operator O (and
the historical possibility operator < derived from it). As we have seen in section 3.1, the
intuition behind historical necessity is that at any given point in time, what has happened
until then is nécessa.ry (it’s impossible to change it), while what will happen in the future
still depends on what agents decide to do. The future is viewed as holding many possibilities.
As time passes, some of these possibilities are actualized and thus become necessary, while
others are not and thus become impossible.

From a logical standpoint, the behavior of the historical necessity operator is probably
best understood by viewing it as an S5 modality that obeys some additional principles
specific to historical necessity. Let us first describe the principles of the S5 modal system,
as they apply to historical necessity. The first is a kind of distribution principle as we had
for knowledge (in modal logic terminology, the K axiom). It says that if it is (historically)

necessary that ¢; implies o, and ¢, is necessary, then 2 must also be necessary.
Proposition 3.37 = O(p1 O ¢2) D (Opr D Ops)

The second principle says that if something is necessary, then it must be true.
Proposition 3.38 = 0Oy D ¢

This is called the T axiom in modal logic. Its validity results from our requirement that
the historical necessity accessibility relation ¢ be reflexive, in semantic constraint 3.4. The
third principle says that if something is possible, then it is necessarily the case that it is

possible.
Proposition 3.39 = Op D O0p

This is called the “5” axiom in modal logic. It arises from the requirement that = be
euclidean, as part of constraint 3.4. Finally, we have the following “necessitation” rule: if

@ is valid, then O¢ must also be valid.
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Proposition 3.40 (Necessitation) If = ¢, then = Op

Before moving on, let us mention a few consequences of the S5 principles together with

our basis. Firstly, if ¢ is necessary, then it is necessarily the case that ¢ is necessary.
Proposition 3.41 | Oy D OOy

This is called the “4” axiom in modal logic and it is well known to be valid in S5. Another
consequence of S5 and our basis is that everything is necessarily ¢ if and only if it is

necessarily the case that everything is (.
Proposition 3.42 = YvOyp = OVuyp

The left-to-right part of this double implication is the Barcan formula. Finally, another

consequence is that if something is necessarily ¢, then it is necessary that something is ¢.
Proposition 3.43 |= Jv0yp D OJve

Note that the converse of this formula is not valid; the fact that in all ~-accessible worlds
some entity is ¢ does not imply that there is an entity that is ¢ in all these accessible
worlds. Hughes and Cresswell (1968) provide proofs of the above validities from a basis
that is slightly different from ours; the proofs are easily adapted to our system.

Let’s now talk about the logical properties of historical necessity that are specific to the
notion, that is, that are not consequences of the basis and the S5 principles. The main idea
behind these principles is roughly the following: any true statement that does not make
claims about the future is historically necessary. Let us deﬁne the notion of a future-blind

formula;:

¢ is future-blind if and only if ¢ contains no occurrences of the At operator or Does pred-
icate outside the scope of a Know operator except in forms that can be represented

as SomePast and DoneWhen.

Note that this notion does not cover all cases where a formula makes no claims about the
future, but it does cover most cases of interest to us. The rest of this section will be mainly
concerned with showing that a future-blind formula is historically necessary if and only if
it is true (proposition 3.59).

To set the stage for this, we need to establish various results about how the various

syntactic forms behave with respect to historical necessity. First, let’s look at terms. In
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our logic, only the present attributes of an entity may play a role in determining whether
it is denoted by a term; terms cannot refer to entities on the basis of their past or future
attributes. This is reflected in the formal semantics, where function symbols are evaluated
at time now. Thus, it would be inappropriate to try to represent a description that talks
about future attributes such as “the president of the U.S.A. in year 2000” by a term in our
language; rather, one should use an open formula ¢(a) that contains an At operator, such
as 3t At(t,ISYEAR2000 A @ = PRESUS). Since the present is necessary, this means that
whatever a term denotes, it must necessarily denote it, that is formally, that the term must
have the same denotation in all historical alternatives to the current world. This is exactly

what the following proposition says:
Lemma 3.4 If w & w*, then ‘Io]](w,a,t),g = ﬂo]l(w',a,t),g-

Proof: By induction on the structure of 4.

The situation is similar for atomic formulas, except for those of the form Does(8¢, 6).
An ordinary predicate application R(#%,...,6:) is intended to assert that the individuals
denoted by the arguments stand in the static relation denoted by the predicate at the current
time. This, together with what was just observed about the denotation conditions of terms,
means that the truth of such an assertion cannot depend on future (or past) attributes of
entities. Thus, if the state of affairs described by such an assertion holds, then it must
necessarily hold, and if it doesn’t hold, then it must be necessary that it doesn’t hold. For
assertions of identity and assertions about temporal ordering, the same principle applies,
since these relations hold or fail to hold independently of time. However, the principle fails
for assertions of the form Does(62, §*), since such assertions state that the agent does action

6% from now to some future time §*. The following two propositions verify this.
Proposition 3.44 |= Op V O~¢, provided ¢ is atomic and not of the form Does(8?, )

Proposition 3.45 - ODoes(6?,6t) v O-Does(6?,6*)

Proof:

We construct a counter model. Let W = {wo,w1}, 7 = {to,t1}, and wp ~t, wi. Let
(d, (wo,a,to),t1) € A and (d, (wi,3,t0),t1) € A. Finally, let g(d) = d and g(¢,) = t;. Then
we have that (wo, a, to), g |= Does(d,t,) and yet (wo, a, to),g |= O-Does(d,t,). =

Now, let us look at the interactions between historical necessity and the other modal

operators: under what conditions is a modal formula necessary? Assertions of the form
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Know(¢p) state that the agent knows at time now that ¢. Such formulas really talk only
about the present knowledge state of the agent, even when the propositional argument
( contains references to the future. Thus, the same principle that we had for ordinary
predicate applications must hold: if the agent knows that ¢, then he necessarily knows it,

and if he doesn’t know that ¢, then it is necessary that he doesn’t know it.

Proposition 3.46 = OKnow(y) v O-Know(yp)

Proof:
1. Let’s first show that |= Know(p) D OKnow(y). Assume that (w,a,t),g = Know(¢p).
Take an arbitrary w*, such that w ~ w*. Let’s show that (w*,a,t), g = Know().

(w,a,t), g = Know(y)
iff for all &’ such that ((w,a,t),e') € K, e/,g = ¢ by the definition of satisfaction
iff for all ¢ such that ((w*,a,t),e’) € K, ¢, g = ¢
since by constraint 3.6, ((w*,a,t),e) € Kiff ((w,a,t),¢) € K
iff (w*a,t),g|= Know(yp) by the definition of satisfaction

(b) Let’s now show that = ~Know(y) D O-Know(p). Assume that (w,a,t),g
~Know(yp). Take an arbitrary w*, such that w = w*.

(w,3,1),g k= ~Know(y)
iff there exists an e such that ((w,a,t),e’) € K, ¢/,g j£ ¢ by the definition of satisfaction
iff there exists an e’ such that ((w*,a,t),e’) € K, ¢/,g j£ ¢
since by constraint 3.6, ((w*,a,t),e) € Kiff ((w,a,t),¢) € K
iff (w",a,t),g = “Know(p) by the definition of satisfaction

»
For the other modal operators, the above principle is not valid, but weaker principles

are. Thus for formulas of the form By(8°, ), we have that it is necessary that ¢ holds for

agent 6 if and only if for 6%, ¢ is necessary:

Proposition 3.47 |= OBy(6%,¢) = By(6°,0¢)

Proof:

(w,a,t),g = By(6°,0¢)
iff (w, [[0"]](w,a,t),g,t), g = Op by the definition of satisfaction
iff for all w* such thatw =~ w*, (w”, [[0"]|<w,a,t)'g,t),g = ¢ by the definition of satisfaction
iff for all w* such thatw =z w*, (w”, |[0"]](w.,a,t),g,t), gFE ¢ bylemma 3.4
iff for all w* such that w ¢ w*, (w*,a,t),g By(6°,¢) by the definition of satisfaction
iff (w,a,t),gl= OBy(6%,¢) by the definition of satisfaction
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It easily follows from this that it is possible that ¢ holds for #* if and only if for 6%, it is
possible that ¢ holds:

Proposition 3.48 = OBy(6°,¢) = By(6°,<p)

Proof:

1. |= -OBy(6°,~p) = ~By(#*,0~¢), by proposition 3.47.

2. | O-By(6%,~p) = ~By(6°,~C¢p), the definition of ¢ and substitution of equivalents.
3. = OBy(6%, ) = By(6°, +~COp), the proposition 3.30.

4. = OBy(6%,¢) = By(6,Oyp), by substitution of equivalents. =

Finally, we need to look at the interactions between historical necessity and the temporal
operator At. First note that the At operator does not commute with either historical
necessity or historical possibility. As the following proposition shows, we have that: (1)
even if it is now necessary that ¢ holds at time 6%, it need not be the case that ¢ is
necessary at time 6*; (2) even if  is possible at time 6%, it need not be the case that it is
now possible that ¢ holds at time 8* (3) even if ¢ is necessary at time 6*, it need not be the
case that it is now necessary that ¢ holds at time 6*; and (4) even if it is now possible that

¢ holds at time #, it need not be the case that ¢ is possible at time 6*.

Proposition 3.49
1. £ OAt(6,¢) D At(6,0¢)
2. £ At(6%, Op) D CAL(8, p)
3. £ At(6%,0¢) D DAL(6,p)

4. [ CAL(6*, ) D At(6, Op)

Proof:

We construct a counter model for the formulas. Let W = {wo,w1} and 7 = {to,t1}.
Let to < t1, ~t,= W?, and =t,= {(wo,wo),{w1,w1)}. Finally, let (wo,a,t1),g = R,
(wlaa’ tl)ag V: R, g(to) = to and g(tl) =11. '

1. We have (wo,a,t1),g F DAt(to, At(t,, R)), and yet (wo,a,t1),g & At(to, DAt(2,, R));
so 1 is not valid.

2. We have (wy,a,t1),g | At(t,, OAL(t,, R)), and yet (wy,a,t1),g & CAt(to, At(t,,R));
so 2 is not valid.

3. We have that {wo, a, to), g |= At(,,0R), and yet (wo, a, to), g = OAL(t,, R); so 3 is not
valid.

4. We have that (w,a, to),g | OAt(t,, R), and yet (wq,a,to),g [~ At(t,, OR); so 4 is not
valid either. m

However, if we look at various restricted forms of the At operator, we see that some

useful principles do emerge. We first examine the interactions of historical necessity and
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possibility with the tense logic operators, starting with the ones that talk about the past.
The following proposition shows that it must be the case that if at some past time ¢ was

necessary, then it is now necessary that ¢ held at some past time.

Proposition 3.50 = SomePast(Op) D OSomePast(y)

Proof:

Assume that (w,a,t),g |= SomePast(Oyp), that is, that there exists a tp, such thatt, <t
and for all wy such that w Rt, Wy, (Wp,a,1,),g = @. Take an arbitrary w*, such that
w =t w*. By constraint 3.5, it must be the case that w ~t, w*. By the assumption, it
must also be the case that (w*,a,t,),g = ¢. So it must be the case that (w*,a,t),g
SomePast(p). And since w* is an arbitrary world, such that w ~; w*, it must also be the
case that (w,a,t),g |= OSomePast(p). =

This is easily shown to imply that = CAllPast(p) D AllPast(Op). We also have that if
it is now possible that ¢ held at some past time, then at some past time, ¢ must have been

possible.

Proposition 3.51 |= O0SomePast(y) D SomePast(<Oyp)

Proof:

Assume that (w,a,t),g = OSomePast(yp), that is, that there exist a w* and a tp, such
that w =t w*, t, < t, and (w",a,t,),g = . By constraint 3.5, it must be the case that
w ~t, w*. So it must be the case that there exist a tp, and a w*, such that t, <t, w ~¢ w*,
and (w",a,tp),g |= ¢. This means that (w,a,t),g = SomePast(Op). =

Note that this trivially implies that = AllPast(O¢) D OAllPast(¢). On the other hand,
" we have that (1) even if it is now necessary that ¢ held at some past time, it need not be
the case that ¢ was necessary at some past time, and (2) even if ¢ was possible at some

past time, it need not be the case that it is now possible that ¢ held at some past time:
Proposition 3.52
1. | OSomePast(p) D SomePast(O¢p)

2. | SomePast(Op) D OSomePast(yp)

Proof:

We use the structure specified in the proof of proposition 3.49 to show that the formulas
are falsifiable.

1. We have (wo, a,1,),g = OSomePast(At(t,, R)),

and yet that (wo,a,t),g [¢ SomePast(0OAt(t,, R)); so 1 is not valid.

2. We have (w1, a,t1), g |= SomePast(OAt(t,, R)),

and yet (w1,a,t1),g £ OSomePast(At(t,,R)); so 2is not valid. m
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Note that as a consequence of 1 we have that [ AllPast(Oyp) D CAllPast(y). Similarly,
2 implies that [£ OAllPast(y) D AllPast(O¢p).

Now let’s look at tense logic claims about the future. All we have in this case is that if
at some future time, ¢ is possible, then it must now be possible that ¢ will hold at some

later time.

Proposition 3.53 |= SomeFut(<Cp) D OSomeFut(y)

Proof:

Assume that (w,a,t),g = SomeFut(<Oy), that is, that there exist a t; and a w*, such
that t < t;, w ~t, w”, and (w*,a,ts),g = . By constraint 3.5, it must be the case that
w =~ w*. So it must be the case that there exist a w* and a ty, such that w =~y w*, t < ty,
and (w*,a,ts),g |= ¢. This means that (w,a,t),g = OSomeFut(y). =

This trivially yields that |= OAllFut(¢) D AllFut(Oyp). On the other hand we have that:
(1) even if at some point in the future ¢ will be necessary, it need not be the case that it is
now necessary that ¢ will hold; (2) even if it is currently possible that ¢ will later hold, it
need not be the case that ¢ will be possible later; and (3) even if it is currently necessary
that ¢ will hold at some future time, this does not mean that ¢ will be necessary at some

future time.

Proposition 3.54
1. }£ SomeFut(Oy) D OSomeFut(yp)
2. £ OSomeFut(yp) O SomeFut(<Cyp)

3. £ OSomeFut(y) O SomeFut(O¢p)

Proof:

1. Consider the structure specified in the proof of proposition 3.49. We have (wo, a, to),g |
SomeFut(OR), and yet (wp, a, to), g £ OSomeFut(R); so 1 is not valid.

2. Again, consider the structure specified in the proof of proposition 3.49. We have
(w1, a,t0), g F OSomeFut(R), and yet (wy,a, to), g [ SomeFut(OR); so 2 is not valid.
3. Let W = {wo,w1} and 7 = {to,t1,t2,t3}. Let tg < t1 < t2 < t3, =, ==, = W2,
and Rt, =Rty = {(W07 W0)7 (Wlawl)}' Finally, let A = {(da (Wova’tl),t2)7 (d7 (Wl’ a, t2),t3)}
and g(d) = d. Then, we have that {wo,a,to),g = OSomeFut(DoesNext(d)), and yet
(wo, 2, to), g - SomeFut(ODoesNext(d)); so 3 is not valid. m

Note that 1 implies that (£ CAllFut(p) O AllFut(Oyp), 2 implies that £ AllFut(Og) D
OAllFut(p), and 3 implies that ¢ AllFut(Cyp) O CAllFut(p).
We have already seen that whether an action will be done next or not is historically

contingent (proposition 3.45). However, what has already been done is necessary. More
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generally, we have that if #% has just been done and that ¢ was necessary beforehand, then

it must be the case that it is now necessary that 4 has just been done and that ¢ held

beforehand:

Proposition 3.55 = DoneWhen(8?,0¢) > ODoneWhen(6?, )

Proof:

1. Assume that (w,a,t),g |- DoneWhen(#¢, Op). This means that there exists a t,, such
that A([[Gd]](w,a,t,),g, (w,a,t5),t) and for all w} such that w =, w¥, (wi,a,t5),8 E o

2. Suppose that (w,a,t),g £ ODoneWhen(6?, ), that is, that there exists a w* such
that w ~¢ w*, for all t/, either it is not the case that A([8%)we 3,15 (W", 3, 1), 1), or
(w*,a,t,), 8 [~ o.

3. By 1, 2, and lemma 3.4, we have that [0%)yy» a1, = [6%](w,a t.).g- So by 1, we must
have that A(l[ed]l(w.'a,t,),g, (w,a,t5),t). Then by constraint 3.6, we must also have that
A([[od]](w',a,t,),g, (W*7 a, t3)7t)'

4. Thus, by this and 2, we must have that (w*,a,t,),g I .

5. By 1 and constraint 3.3, we must have that t, < t. Since w = w*, by constraint 3.5, it
must also be the case that w =, w*.

6. By 4 and 5, we have that w ~¢, w* and (w*,a,t,),g }~ . This contradicts 1. m

We also have that if it is now possible that 8¢ has just been done and that ¢ held beforehand,

then it must be the case that ¢ has just been done and that  was possible beforehand:

Proposition 8.56 = ODoneWhen(8?,p) D DoneWhen(6%, Ogp)

Proof:

1. Assume that (w,a,t),g = ODoneWhen(#%,¢). This means that there exists a w*
such that w ~; w* and there exists a t,, such that A([0%)iwe,a,t.).87 (W, 3, 1), t) and

(w*,a,1,),8 = .
2. Since w =t w*, by lemma 3.4, we have that ﬂﬂd](w.,a,t,),g = [[9d]](w,a,t,),g- So by 1, we

must have that A(I[Gd]](w,a,t.),g, (w*,a,t,),t). Then by constraint 3.6, we must also have
that A(llod]](w,a,t,),g, (w,a, ts),t).

3. By constraint 3.3, we must have that t, < t. Since w ~t w*, by constraint 3.5, it must
also be the case that w ~¢, w*. Thus by 1, we have that there exists a w* such that w R, w*
and (w*,a,t,),g |= @, that is, that (w,a,t,),g | Op.

4. Thus, by 1, 2, and 3, we have that there exists a t,, such that A([[ed]](w,a,t,),g, (w,a,t;),t)
and (w,a,t,),g = Cp. m

Note that since |- Done(6%) = DoneWhen(%, True) (we take True to stand for RV -R),
it follows easily from the last two propositions that = ODone(6?) v O~Done(8%).

On the other hand, we have that (1) even if it is now necessary that ¢ has just been
done and that ¢ held beforehand, it need not be the case that 8¢ has just been done and
that ¢ necessarily held beforehand, and (2) even if 6% has just been done and ¢ was possible
beforehand, it need not be the case that it is now possible that 8% has just been done and
that ¢ held beforehand:
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Proposition 3.57 ot
1. £ ODoneWhen(6?,p) D DoneWhen(6?, Dyp)

2. - DoneWhen(8%, Op) D ODoneWhen(8?, ¢)

Proof:

Consider a structure as in the proof of proposition 3.49, with the additional requirements
that A(d, {(wo, a,to),t1) and A(d,(wy,a,to),t1). Also let g(t,) = t; and g(d) = d.

1. In this structure we have that (wg,a,t;),g = ODoneWhen(d, At(¢,,R)), and yet
{wo, 3, t1), g £ DoneWhen(d, OAt(t,,R)); so 1 is not valid.

2. It is also the case that (wj,a,t;),g | DoneWhen(d, CAt(t,, R)), while (w1,a,t1),g
ODoneWhen(d, At(t,,R)); so 2is not valid. m

Now that we have proven that the historical necessity and possibility operators obey all
the above principles, we are able to establish the general result set out earlier. The following

proposition says that if ¢ is future-blind, then either it is necessary or its negation is:

Proposition 3.58 |= Op V O-y, provided that ¢ is future-blind,

Proof:

We prove this by structural induction.

(1) In case ¢ is atomic. Then by the proviso it cannot be of the form Does(8%,6%), so by
proposition 3.44, the statement must hold.

(2) In case ¢ = . Assume that the proviso holds for ¢. Then it must also hold for
¢'. Thus by the induction hypothesis, | O¢’ V O-¢’. By substitution of equivalents and
propositional reasoning, it follows that |= O-¢’ vV O,

(3) In case ¢ = (¢1 D ¥2). Assume that the proviso holds for ¢. Then it must also hold
for ¢; and ;. Thus by the induction hypothesis, = Oy, V O-¢p; and = Op, V O-p,. We
must show that |= O(p1 D w2) V O-(p1 D ¥2).

(a) If e,g = @2. Then by the induction hypothesis, we must have that e,g |= Op,. This
implies that e,g = O(¢1 D ¢2).

(b) If on the other hand e, g |= —¢2. By the induction hypothesis, we have that e, g |= O-¢s.
We must consider whether or not ¢, is satisfied by e and g. If it is, then by the induction
hypothesis, we have that e,g | D¢y, which implies that e,g = O-(p1 D ¢2). I it is
not, then by the induction hypothesis, we have that e,g | O-¢;, which implies that
e,g = O(p1 D w2).

(4) In case ¢ = Yvy'. Assume that the proviso holds for . Then it must also hold for ¢’.
Thus by the induction hypothesis, |= O¢' vV O-¢’. We must show that = OVvy' V O-Voy'.
Consider the following cases:

(a) If e,g | Vvg'. This means that for all x in the appropriate domain, e,g{v — x} |=
¢’. By the induction hypothesis, we must have that for all x in the appropriate domain,
e,g{v — x} |E O¢/, that is, that (w,a,t),g | YvO¢'. By proposition 3.42, this implies that
(w,3,t), g = OVvig'.

(b) If e,g = ~Vvy'. This means that there exists an x in the appropriate domain, such
that e,g{v — x} | =¢/. By the induction hypothesis, we must have that there exists an x
in the appropriate domain, such that e,g{v — x} | O-¢/, that is, that e,g |5 JvO-¢'. By
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proposition 3.43, this implies that e, g |= O3v-¢/, and thus that e,g = O-Vouy'.

(5) If ¢ = Know(¢'), then by proposition 3.46, the statement holds.

(6) In case ¢ = By(6*,¢'). Assume that the proviso holds for ¢. Then it must also
hold for ¢'. Thus by the induction hypothesis, = O¢’ v O-¢'. We must show that =
OBy(6°,¢') v O-By(6%,¢'). Consider the following cases:

(a) ¥ (w, [6°)(w,at),g:t)>8 = ¢'. Then by the induction hypothesis, it must be the case that
(w, [0°)(w,a,ty.g,1), 8 = O, that is, that (w,a,t),g = By(6°,0¢’). By proposition 3.47,
this implies that (w,a,t),g = OBy(6°, ¢').

(b) If on the other hand (w, [6°Liw.a,t).g:t)>8 = ~¢'. Then by the induction hypothesis, we
must have that (w, [0*}(w,a,t).g,t), 8 |E O-¢’, that is, that (w,a,t),g = By(8°, O-¢’). By
proposition 3.47, this implies that (w,a,t),g | OBy(6*,-¢'). By propositions 3.30, 3.37,
and 3.40, this implies that (w,a,t),g | O-By(8°, ¢').

(7) In case p = O¢'. Assume that the proviso holds for ¢. Then it must also hold for ¢
Thus by the induction hypothesis, = O¢’ vV O-¢’. We must show that |z OOy’ v O-0y'.
Consider the following cases:

(a) X e,g = Op'. Then by proposition 3.41, e,g = DOy’

(b) If e,g = -O¢'. By the definition of ¢ and substitution of equivalents, this means that
e,g F O—y'. By proposition 3.39, it must then be the case that e,g E 0O-¢'. By the
definition of ¢ and substitution of equivalents, this means that e, g = O-0¢'.

(8) In case ¢ = SomePast(y’). Assume that the proviso holds for ¢. Then it must
also hold for ¢’. Thus by the induction hypothesis, = O¢' V O-¢'. We must show that
|= OSomePast(y') V 0-SomePast(¢’). Consider the following cases:

(a) If (w,a,t), g = SomePast(¢’). This means that there exists a tp, such that t, < t and
(w,a,t,),8 |= ¢'. By the induction hypothesis, it must then be the case that there exists
a t,, such that t, < t and (w,a,t,),g |= O¢/, that is, that (w,a,t),g SomePast(0¢’).
Then by proposition 3.50, we must thus have that (w,a,t),g|= OSomePast(¢’).

(b) I (w,a,t),g = ~SomePast(¢’). This means that for all t, such that t, < t, it is the
case that (w,a,t,),g = —¢/. By the induction hypothesis, it must then be the case that
for all t, such that t, < t, (w,a,t,),g = O-¢’. By the definition of & and substitution of
equivalents, this means that for all t, such that t, < t, (w,a,t,),g8 = =Oy’, which means
that (w,a,t),g | “SomePast(Oy’). Then by proposition 3.51, we must thus have that
(w,a,t),g = ~OSomePast(y'). And by the definition of ¢ and substitution of equivalents,
this means that (w, a, t), g | O-SomePast(y’).

(9) In case ¢ = DoneWhen(6%,¢'). Assume that the proviso holds for . Then it must
also hold for ¢/. Thus by the induction hypothesis, |5 O¢’ v O~¢'. We must show that
= ODoneWhen(6?, ¢') v 0-DoneWhen(6¢, ¢'). Consider the following cases:

(a) If (w,a,t),g = DoneWhen(#?,¢'). This means that there exists a t,, such that
A([[Gd]](w,a't‘),g, (w,a,t,),t) and (w,a,t,),g |= ¢'. By the induction hypothesis, it must then
be the case that there exists a t,, such that A(I[Gd]](w,a,t,),g, (w,a,t,),t) and (w,a,t,),g =
O¢/, that is, that (w,a,t),g = DoneWhen(69, O¢’). Then by proposition 3.55, we must
thus have that (w, a,t),g = ODoneWhen(8?, ¢).

(b) If {w, a, t),g | ~DoneWhen(6?, ¢'). This means that for all t,, either it is not the case
that A(I[Hd]](w,a,t,),g, (w,a,1,),t) or (w,a,t,),g = =¢’. By the induction hypothesis, it must
then be the case that for all t,, either it is not the case that A(l[ﬂd]](w’a,t,),g, (w,a,t,),t) or
(w,a,t,),g = O-~¢'. By the definition of © and substitution of equivalents, this means that
for all t,, either it is not the case that A([Od]l(w,a,t,),g, (w,a,t,),t) or (w,a,t,),g = O,
which means that (w,a,t),g | “DoneWhen(#%,&p’). Then by proposition 3.56, we
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must thus have that (w,a,t),g = ~ODoneWhen(6¢,¢'). And by the definition of ¢ and
substitution of equivalents, this means that (w,a,t),g = O-DoneWhen(6?,¢'). m

From this, it follows straightforwardly that if ¢ is future-blind, then it is necessary if and
only if it is true:

Proposition 3.59 = O = ¢, provided that ¢ is future-blind

Proof:

Proposition 3.38 verifies that = Op D ¢. Let’s now show that the converse must hold.
Assume that e,g |= ¢. Assume also that the proviso holds. Then by proposition 3.58, we
must have that e,g | O V O-y. Suppose that e,g |= O-¢; by proposition 3.38, this
implies that e,g |= -, which contradict our earlier assumption. So we must have that

egFDOp. m

3.5.6 PhyPoss, AfterNec, and Res

In this section, we discuss various properties of the derived operators AfterNec, PhyPoss,
and Res (which are defined on page 60). The propositions stated will turn out to be very
useful tools for proving that agents are able to achieve goals in later chapters; they allow
us to reason at a more abstract level in developing proofs of ability.

The first three propositions show essentially that the action parameter of the AfterNec,
PhyPoss, and Res opera.tofs is transparent, that is, that action terms that have the same
denotation can be substituted in the action parameter of these operators without affecting
the truth-value of the formula. Thus, the following proposition says that if 6f stands for
the same action as 64, then o must hold after the agent does action 6§ if and only if ¢ must

hold after the agent does 63:

Proposition 3.60 |= 8¢ = 64 O (AfterNec(6¢,p) = AfterNec(84, ©))

Proof:

Assume that e, g = 6¢ = 8. We only show that e, g = AfterNec(8?, p) D AfterNec(8%, ¢);
since = is symmetric, it trivially follows that if the statement holds in one direction, it must
also hold in the other. So assume that e, g |= AfterNec(6, ), that is, that for all w* and
te, such that w =~y w*, e*,gt, = Does(8%,v*) D At(v?, p), where v! is a variable that does
not occur free in ¢, e* = (w*,a,t), and g, = {v' — t.}. By lemma 3.4, it must be that case
that [6]e- g, = [03]e+g; - Thus, it follows that e*,gt, |= Does(84,v!) D At(vt,p). =

The next proposition says that the same holds for PhyPoss, that is, that if 0‘11 stands for
the same action as 6%, then it is possible for the agent to do 8% next if and only if it is

possible for him to do 8% next:
Proposition 3.61 k= 6¢ = 4 5 (PhyPoss(%) = PhyPoss(64))
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The proof is similar to that of proposition 3.60. From these two results, it follows trivially
that Res is also transparent in its action parameter. So we get that if 8¢ stands for the
same action as 6%, then the agent’s doing action 6% next must result in ¢ holding if and

only if his doing ¢ next must also result in p:
Proposition 3.62 = 6 = 64 D (Res(69,¢) = Res(62, ))

The next two propositions assert that AfterNec and Res distribute over implication
(i.e., the K axiom holds for them). The first says that if ¢; O @, must hold after the agent
does action 6, and if ¢, must hold after he does 6%, then @, must also hold after he does
64:

Proposition 3.63 |= AfterNec(6%, ¢ D ¢;) D (AfterNec(6?, ¢;) D AfterNec(64, v,)).

Proof:

We prove the result by contradiction.

1. Assume that e, g |= AfterNec(8%,¢; D ;) and e, g = AfterNec(6%,¢;), where e =
{w,a,t). This means that for all w* and t,, such that w Rt w*,

(w*,a,t),g{v* = t.} = Does(6¢,v') D At(v?, ¢ D @,)
and
(w*,a,t),g{v" = t.} |= Does(6%,v') D At(v', 1)

where v* does not occur free in ¢; and ¢,.
- 2. Assume that e, g [~ AfterNec(89, p;), that is, that

e gl DVvt(Does(ﬂd,v') o) A1;(.v',¢2))

This means that there exist wy and t;, such that w =~ wy and (wy,a,t),gt, = Does(6?, vt)
and (Wf’a,tf),gt! % P2, where gt! = {vt b= tf}'

3. Combining this with 1, we obtain that (w,,a,tf),gt! E ¢1 D ¢z and (Wf,B,tf),gt! E ¢r.
Therefore, we must also have (wy, a, t;), gt s E 2, which contradicts 2. m

From this, it trivially follows that the same property holds for Res, that is, that if the
agent’s doing action 6% next must result in ¢1 D p2 holding and if his doing 6% next must

result in ¢;, then his doing 6% next must also result in pa:
Proposition 3.64 |= Res(6?,¢; D ¢2) D (Res(6%,¢,) D Res(84, ©2))

The necessitation rule also holds for AfterNec, as shown by the following proposition.
It says that if ¢ is valid, then it must be the case that ¢ must hold afterwards if the agent

does action % next:
Proposition 3.65 If |= ¢, then |= AfterNec(6?, o)

85



Proof:

We prove the result by contradiction.

1. Assume that |= .

2. Assume that ¢ AfterNec(6?,¢), that is, that £ OVvt(Does(8?,v) D At(vt,p)),
where ! is not free in . This means that (in some structure) there exist e = (w,a,t) and
g, such that e, g j& OVovt(Does(6%,vt) D At(v',)). Thus, there exist w* and t., such that
w ~t w* and e*,g;, [£ Does(6%,vt) D At(v!, ), where e* = (w*,a,t) and gt, = {v' — t.}.
This means that e*,gi, = Does(8%,v*) and e*,g, £ At(v', ). The latter means that
(w*,a,tc), 8t, [~ ¢, which contradicts 1. m

The same rule need not hold for Res since the validity of ¢ fails to ensure that it is possible
to do the action next.

The next two propositions show that AfterNec and Res also distribute over conjunc-
tions. The first proposition says that ¢; A @z must hold after the agent does action 6% if
and only if ¢, must hold after he does 8¢ and ¢, must hold after he does 69:

Proposition 3.66 |= AfterNec(8?, 1 A ) = AfterNec(6?, 1) A AfterNec(6¢, ¢2)

The second proposition, which trivially follows from the first, says that the agent’s doing
action 8% next must result in ¢y A @2 holding if and only if his doing #% next must result in

1 and his doing 8¢ next must also result in ¢:
Proposition 3.67 |= Res(6%, 01 A ¢3) = Res(8?, ;1) A Res(6?, ¢2)

We can also apply existential generalization inside AfterNec and Res operators. Thus,
we have that if the agent’s doing action 8% next implies that ¢ must hold afterwards, then

his doing it next implies that something is ¢ afterwards:

Proposition 3.68 = AfterNec(8?, ) D AfterNec(8¢,3vy)

Proof:

Clearly, = ¢ D Jvp. Thus by proposition 3.65, we have that |= AfterNec(6?, ¢ D Jvp).
The result follows from this by proposition 3.63. =

The analogous result for Res trivially follows: if the agent’s doing 6% next results in ¢
holding, then his doing it must also result in something being ¢.

Proposition 3.69 = Res(8%, ) D Res(6¢,3vp)

The next proposition clarifies one aspect of AfterNec that may not be obvious. Re-
member that the empty action skip is the one that is done over a time interval if and only

if the interval has a null duration; thus it does not require the agent to do anything and is
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always possible. Now as the following proposition shows, ¢ must hold after the agent does

the empty action if and only if ¢ is necessary:
Proposition 3.70 |= AfterNec(skip, ) = Op

This clearly implies that the mere fact that ¢ holds is insufficient for AfterNec(skip, ¢) to
hold. Remember that ¢ may be contingent because it it may be making a claim about the
future. And AfterNec requires its propositional argument to be necessary after the action
has been done, even if the action takes no time.

The next result provides evidence that claims about states of affairs holding at an
indexically specified time (e.g., now) receive proper temporal adjustment in the context of
AfterNec. The proposition says that if ¢ necessarily holds now, then after the agent does

6% next, it must be the case that he has just done 62 from some time when @ held:

Proposition 3.71 |= Op O AfterNec(6?, DoneWhen(6?, p))

Proof:

1. Assume that e, g |= O¢p.

2. Assume that e, g £ AfterNec(6?, DoneWhen(8?, ).

3. Let e = (w,a,t). Step 2 means that there exists w*, and t, such that w =~ w*,

(w*,a,t),g. = Does(89, vt) (3a)
and
(w*,a,tc), 8. £ DoneWhen(6% ) (3b)

where v} is distinct from v* and neither occurs free in ¢, and where g, = {vt — t.}.
4. Combining 3a with 1, we obtain that (w*,a,t),g. = Does(#%, vt) A p, which contradicts
3b. m

The consequent does not hold if we just assume that ¢ holds. Proposition 3.70 should help
in understanding why: if ¢ is makes a claim about the future and is merely contingent, it
need not have been true in all ~-accessible worlds where the action has been done.

The next proposition looks at the same issue of temporal projection, but from the past
_ to the present. It says that if action §¢ was done from some past time v* to now and if at

v%, it was necessary that ¢ hold after 6¢ was done, then ¢ necessarily holds now.

Proposition 3.72 |- DoneWhen(6¢, AfterNec(8¢, ¢)) D O¢p

Proof:

1. Assume that (w,a,t),g = DoneWhen(6¢, AfterNec(#?, p)). This means that there
exists ty such that A(I[Gd]](w,a,t‘),g, (w,a,t,),t) and for all w* and t,., such that w Ry, w*,
either it is not the case that A(I[Hd]](w.,a,t’),g,(w*,a,t.,),t), or (w*,a,t.),g E ¢ (we can
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ignore the effects of expanding DoneFrom and AfterNec on g, because the variables
introduced can’t occur free in ¢ and 6%).
2 Suppose that (w,a,t),g £ O, that is, that there exists a w., such that w = w. and

(Wc7 a, t)7 g bé p.

3. By 1 and constraint 3.3, we must have that t; < t.

4. By this, 2, and constraint 3.5, we must have that w &, w,.

5. By this, 2, and 1, we must have that it is not the case that A(llgd]](wc,a,t,),g, (we,a,ts),t).
6. By 4 and lemma 3.4, we must have that ﬂed]](w,_.,a,t,),g = [[Bd]](w'a,t,),g. Thus by 5, we
must have that A(I[Gd]l(w,a,t‘),g, (we,a,ts), 1).

7. By this, 4 and constraint 3.6, we must then have that A(ﬂﬂd]](w,a,t‘),g, (w,a,ts),t). This
contradicts 1. m

Our final result shows that AfterNec applied to sequences of simple actions has the
expected meaning. It says that ¢ must hold after ¢ and 63 are done in sequence if and

only if after doing %, it must be the case that after doing 6%, ¢ must hold.

Proposition 3.73 |= AfterNec((6%;6%),p) = AfterNec(6§, AfterNec(#4, ©))

Proof:

1. (w,a,t),g = AfterNec((6f;63),¢)
iff (w,a,t),g = OVvi(Does((6%;69),v) D At(v,)), where v} doesn’t occur free in ¢

iff (w,a,t),g = OVvi(3vi(Does(67, vi) AAt(vi, Does(6%,vE))) D At(vé,)), where v} and
v} are distinct and don’t occur free in ¢

iff for all w* such that w =t w* and for all t;, either it is not the case that there ex-
ists a t; such that A([[Hf]](w-,a,t)'g, (w*,a,t),t1) and A(l[eg]](w.’a,tl),g, (w*,a,t1),t2) or
(W*aa’tZ)rg }= 14

iff for all w* such that w ~¢{ w* and for all t; and t;, either it is not the case that
A([[Gf]l(w-,a,t),g, (w*,a,t),t;) or it is not the case that A(ﬂﬂg](w-,a,tl),g, (w*,a,t1),t2)
or (W*7 a,tZ)’g |= 14

2. (w,a,t),g = AfterNec(6f, AfterNec(84, ©))

iff (w,a,t),g = OVoi(Does(6¢,vt) D At(vi, OVvi(Does(63,vi) D At(vi,)))), where vi
and v} are distinct and don’t occur free in ¢

iff for all w* such that w ~¢ w* and for all t;, if A([eﬂ(wna,t),g: (w*,a,t),t;) then for
all w** such that w* =, w** and for all t, if A(l[ﬂg]](w..,a,tl)’g,(w*"‘,a,tl),tg), then
(w**,a,t2),8 = ¢

3. Since by constraint 3.4, &t, must be reflexive, 2 implies that for all w* such that w ~¢ w*
and for all ty, if A([65](w-,a ). (w*,a,t),t;) then for all t,, if A(ﬂﬂz]](w. ati).g (W™ a,t1),t2),
then (w*,a,ts),g | ¢, which is clearly equivalent to 1.

4. Now let’s show that 1 implies 2. Suppose that 1 holds and that 2 does not. The latter
means that there exists a w* and a t;, such that w =t w*, A([0¢)iws,a,1).8, (W, 3, 1), t1),
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and there exists a w** and a t,, such that wx Ry, W, A([[eg]](w..,a,tl),g,(w",a,tl),tg),
and (w™,a,t2),g £ . Since A([[Gf]](w.,a,t),g,(w*,a,t),tl), by constraint 3.3, we must
have that t < t;. By constraint 3.5, this and wx ~t, w** imply that w+ ~; w**. Thus
by lemma 3.4, we must have that [0f](w at)g = [6](w=+2,t).g- Since w# ~, w™ and
A(I[Oﬂ(w.,a,t),g, (w*,a,t),t;), by the above and constraint 3.6, we must then have that
A(I[G‘f]](w.-,a't),g, (w™*,a,t),t;). Finally, since w ~¢ w* and w* = w**, by constraint 3.4,
we must have that w =¢ w**. So it must be the case that there exists w**, t;, and t,,
such that w = w**, A(l[ai'l]](w',a,t),g, (w**,a,t),t;), A([[Gg]](w..'a,tl),g,(w“*,a,tl),tg), and
(w**,a,t2),8 £ @. This contradicts 1, so 1 must imply 2.

3.5.7 The Dynamics of Knowledge

Now let’s move on to the issue of how what is known changes over time. In section 3.1,
we argued that in order to be able to show in a reasonably simple way that agents can
achieve goals by doing multi-step actions, we should assume that knowledge is persistent,
that is, that agents keep on knowing what they knew previously, and that agents know
what primitive actions they have just done. We will now discuss the exact form that this
assumption will take and examine some of its consequences.

If we ignore indexical knowledge, it is easy to formalize the requirement that knowledge
be persistent. In this case, the knowledge states of a set of agents over time can be modeled
by an indexed family of accessibility relations over possible worlds — one relation for each
combination of agent and time. To ensure that knowledge is persistént, we need to require
something like the following: that once a world has been ruled out by an agent, it can never
be ruled in again later. More technically then, knowledge will be persistent if we require
that if (w,w’) € Kat and t, < t, then (w,w’) € Kat,-

When we start taking indexical knowledge into account, this must be adapted. Tem-
porally indexical knowledge must be adjusted for the passage of time; for example, John’s
knowing that it is now raining must later become something like John’s knowing that it
was raining earlier. We are now modeling knowledge using a relation over indices. If we
simply replace “K-accessible world” by “K-accessible index” in the above constraint, we get
the following requirement: if ((w,a,t),e’) € K and t, < t, then ({(w,a,t,),€¢’) € K. But this
is incorrect! The intuition behind K-accessible indices is that they model the world plus
point-of-view combinations that are not ruled out by what the agent knows at the time.
But to say that if an index is K-accessible at one time, it must be K-accessible at any earlier

time, implies that agents always think that time stands still. It must be possible to adjust

89



the time component of the index to take into account the passage of time. But on the other
hand, we do not want to go as far as requiring agents to know exactly how much time has
elapsed since some previous state.

Additionally, we want agents to be aware of what primitive actions they have just done.
And we also want them to remember the association between the temporally indexical
knowledge they had and the action they have done: if they knew that some state of affairs
was holding at the time they started doing the action, then they should know after the
action that that state of affairs was holding at whatever time they started doing it.

The following constraint on semantic structures, reproduced from section 3.3.3, captures

all these requirements:

Constraint 3.8
I ({w,a,t), (w,a’,t")) € K and t, < t, then there exists a time t;, where t;, X t', such that
((w,a,tp), (w',a’,1)) € K and if A(d, (w,a,1,),t) then A(d, (W', a',ty), t').

Let’s look at what this is saying. If we ignore for the moment the last part concerning
A, this says essentially that if an index is ruled in at a given time, then that index, with
an appropriate temporal adjustment, must have been ruled in at any earlier time. The
adjustment involves a change to thg temporal component of the index so that it is earlier or
equal to what it originally was. More formally, the constraint says that if an index (w’, a’,t')
is compatible with what an agent a knows at a time t in world w, then an adjusted version
of that index (w’,a’,t) must have been compatible with what a knew at an earlier time t,
in world w, where this adjusted version must be identical to the original index in all but its
temporal component, and where this temporal component t, must be prior to or equal to
the temporal component t’ of the original index.

The following proposition shows that the constraint effectively requires knowledge to be
persistent and that temporally indexical knowledge is properly adjusted. The proposition
can be liberally paraphrased as saying that if an agent knows that ¢, then he will later
know that it used to be the case that ¢.

Proposition 3.74 (Persistence of Knowledge)

E Know(yp) O AllFutN(Know(SomePastN(yp)))
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Proof:

1. Assume that (w,a,t),g = Know(yp).

2. Take an arbitrary time ty, such that t <t f, and take an arbitrary index (w’,a’, t%), such
that ((w,a, ty), (w’,a’, t7)) € K. By constraint 3.8, it must be the case that there exists t’
such that t' Xt} and ((w,a, t), (w2, t')) € K.

3. By 1 and 2, it must then be the case that (w’,a’, t'),g = . Since t’ < t;, we must also
have that (w',a’,t}), g = SomePastN(¢).

4. Since (w', 2/, t’:) is an arbitrary K-alternative to (w,a,ts), 3 implies that (w,a,ts),g |=
Know(SomePastN(yp)).

5. Finally since t; is an arbitrary time such that t < ty, 4 implies that (w,a,t),g =
AllFutN(Know(SomePastN(¢p))). =

Now let’s look at the part of the constraint involving A. It requires that if the agent a
has actually done some primitive action d from time tp to time t, then the agent a’ of the
K-accessible index (the one a thinks he might be) must have done d from time t, (the time
a used to think might be the current time) to time t’ (the time a now thinks might be the
current time) in the world w’ of the K-accessible index. Thus, the agent must know at time

t that he has just done primitive action d. The following proposition verifies this:

Proposition 3.75 (Awareness of Own Primitive Actions)

= Vd AfterNec(d, Know(Done(d)))

Proof:
1. Suppose that [# Vd AfterNec(d, Know(Done(d))).

¢ Vd AfterNec(d, Know(Done(d)))
iff  there exists w, a, t, g, and d, such that

(w,a,t),g{d d} [ AfterNec(d, Know(Done(d)))
iff there exists w, a, t, g, d, w,, and t. such that

W Rt Wa, A(d, (W, a,t), ), and (w,,a,t.),g{d — d} j£ Know(Done(d))
iff  there exists w, a, t, g, d, w,, and t, such that w Rt Wa, A(d, (wa,a,t), t), and

there exists w}, a’, and t, such that ((w.,a,tc), (w),a’, t)) eK

and (w},a’,1.),g{d — d} £ Done(d)
iff ~ there exists w, a, t, g, d, w,, and t, such that w = W., A(d, (w,, 3, t),t.), and
there exists w,, a’, and t/ such that ({(wa, 3, te), (WS, a',t)) € K and

for all t, such that t, < t., it is not the case that A(d, (w,,a',t,),1.)
2. Notice that we have that ((w.,a,t.), (w/,a’,t})) € K, t < t., and A(d, (wy, a,t),t.). So
by constraint 3.8, we have that there exists t’ such that t’ 2 tand A(d,(w},a’,t’),t.). This
contradicts 1. m

But note that this only applies to primitive actions, not to arbitrary action description.

Thus, AfterNec(6?, Know(Done(6%))) is not valid. This is because the agent may not
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know that 6% denotes the primitive action he has just done. For example, I may be aware
that I have just done the action of “turning right” without realizing that in virtue of that I
have also done the action of “turning towards Kingston”, which is in the opposite direction
from where I want to go.

Yet, there is still more to our constraint. The agent must also know that the time at
which he started doing the action d is just the time that he used to think of as the current
time when he started doing d, and therefore that whatever was then known to be currently
true is now known to be true at whatever time he started doing the just completed action d.
The following proposition shows that the constraint ensures that agents know what action
they have just done and that if they knew that some state of affairs was holding when they
started doing the action, they now know that that state of affairs was holding at whatever

time they started doing the action:2°

Proposition 3.76 |= Vd(Know(p) D AfterNec(d, Know(DoneWhen(d, ¢))))

Proof:
1. Suppose that

¥ Vd(Know(yp) D AfterNec(d, Know(DoneWhen(d, ¢))))

Now by the definition of satisfaction,

£ Vd(Know(y) D AfterNec(d, Know(DoneWhen(d, ¢))))
iff there exists w, a, t, g, and d, such that (w,a,t),g{d— d} = Know(y) and
. (w,a,t),g{d— d} |¢ AfterNec(d, Know(DoneWhen(d, y)))
iff there exists w, a, t, g, and d, such that (w,a,t),g{d — d} = Know(yp)
and there exists w,, and t. such that w =t w., A(d, (w.,a,t),t.),
and (w.,a, te),g{d — d} [ Know(DoneWhen(d, ¢))
iff there exists w, a, t, g, and d, such that (w,a,t),g{d — d} = Know(y)
and there exists w,, and t. such that w =t w., A(d, (W.,a,t),t.), and
there exists w/, a’, and t/ such that ({(w,,a,t.), (w},a’,t.)) € K
and (w,,a’,t.),g{d — d} |- DoneWhen(d, ¢)
iff  there exists w, a, t, g, and d, such that (w,a,t),g{d — d} = Know(y) and
there exists w,, and t. such that w =t w,, A(d, (w,,a,t),t.), and
there exists w/,, a’, and t/, such that ({w.,a, te), (w},a’,t.)) € K and
for all t, such that t, X t,, either it is not the case
that A(d, (w},a’,ts),1.), or (w),a’,t;),g{d—d} £ ¢

2. Notice that we have that {{w.,a,t.), (w},a’,t.)) € K, t X t., and A(d, (w.,a,t),t.). So
by constraint 3.8, we have that there exists t’ such that t’ < t, ({(w«,a,t),(w},a’,t')) € K,
and A(d, (w},a’,t"),t.).

20(Jiven what our constraint says, it should be possible to prove an analogous result for cases where the
agent does several actions concurrently.
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3. We have that (w,a,t),g{d — d} | Know(y), so by proposition 3.46, we must also have
that (w,a,t),g{d — d} F OKnow(yp).

4. Since by 1, w =t w, and by 2, ((w.,a,t),(w),,a’,t'})) € K, 3 means that it must be the
case that (w),a’,t,),g{d — d} = ¢. This, together with 2 means that there exists t’ such
that t' < t, A(d, (w),a’,t'),t), and (w,,a’,t,),g{d — d} = ¢. This contradicts 1. m

The above result can be “chained” to show that after doing a sequence of primitive
actions, the agent knows that he has just done that sequence of actions, and whatever
states of affairs were then known to hold are now known to have been holding at whatever

time he started doing the actions. Thus, we get the following proposition:

Proposition 3.77

| Vd,Vd,(Know(yp) O AfterNec((d,;d.), Know(DoneWhen((d;;d,), ®))))

Proof:
1. Assume that e,g = Know(¢p).
2. By propositions 3.76 and 3.3, this implies that

e,g |= AfterNec(d,, Know(DoneWhen(d,, ¢)))
3. By propositions 3.76, 3.3, and 3.65, we have that
|= AfterNec(d,, Know(¢') O AfterNec(d,, Know(DoneWhen(d,, ¢"))))
And by proposition 3.63, this yields that

EAfterNec(d,, Know(¢')) D
AfterNec(d,, AfterNec(d;, Know(DoneWhen(d,, ¢))))

4. So by 2 and 3, we get that

e,g = AfterNec(d,,AfterNec(d,, Know(
DoneWhen(d,, Know(DoneWhen(d,, ¢))))))

5. Let us show that
= DoneWhen(d,, Know(DoneWhen(d,, ¢))) D DoneWhen((d,;d.), ¢)
(a) Assume that
(w,2,t),g |- DoneWhen(d,, Know(DoneWhen(d,, ¢)))
This means that there exists t; such that A(g(d,), (w,a,t;),t) and
(w,3,t;), g | Know(DoneWhen(d,, ¢))

(b) By proposition 3.12, this implies that there exists t; such that A(g(dy), (w,a,t;),t) and
there exists t; such that A(g(d,), (w,a,t,),t;) and (w,a,t,),g = ¢.
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(c) This holds

iff there exists t, such that A(g(d,), (w,a,t;),t;) and there exists t; such that
A(g(da), (w,a,t),t) and (w,a,ts),8 | ¢

iff (w,a,t),gl=
Jvt(Jui(vi = now A At(v?, Jvf(Does(d,, vi) A At(vf, Does(d,, v7))))) A At(vi, )

iff (w,a,t),g E Jvi(Ivi(vi = now A At(v, Does((d,; d,), v2))) A At(vh, p))
iff {w,a,t),g = Jv'(DoneFrom((d,; d,), v¥) A At(v?,p))

iff (w,a,t),g = DoneWhen({d,;d,), )

6. By proposition 3.17 and 3.11, we have that

if £ g1 D 2, then = Know(yp;) D Know(p,)
Then by proposition 3.65 and 3.63, we have that
if E ¢1 D @2, then = AfterNec(d,, Know(p;)) O AfterNec(d,, Know(yz))
And by the same propositions, we finally get that

if E o1 D 2, then
= AfterNec(d,, AfterNec(d,, Know(p;))) D AfterNec(d,, AfterNec(d,, Know(y;)))

Then, this together with 4 and 5 implies that
e,g = AfterNec(d,, AfterNec(d,, Know(DoneWhen((d,; d,), ¢))))
7. By proposition 3.73, this implies that

e,g = AfterNec((d,;d;), Know(DoneWhen((d,; d,), ¥)))

u

This implies that agents effectively remember the entire history of their own primitive
actions and retain associations between the various pieces of temporally indexical knowledge
they have with particular points (or intervals) in this history. An agent’s knowledge of the
history of his primitive actions provides him with something akin to an internal clock, which
he can use to “time stamp” his indexical knowledge.

When reasoning about the ability of an agent to achieve goals by doing actions, sequences
of actions in particular, it is not so much in the agent’s remembering of what states of affairs
held when he started that we are interested, but in the following: if he knows that some
state of affairs, typically an intermediate state on the way to a goal state, would result from
his doing an action, then his doing it would result in his knowing that that state is in fact

holding; this would ensure that he would have enough knowledge to be able achieve the
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goal state by doing the remaining actions in the sequence. The next two propositions show

that, as a result of constraint 3.8, knowledge does in fact have this property:

Proposition 3.78 |= Vd(Know(AfterNec(d,¢)) D AfterNec(d, Know(yp)))

Proof:
1. By proposition 3.76, we have that

F Know(AfterNec(d, p)) D AfterNec(d, Know(DoneWhen(d, AfterNec(d, ¢))))
2. By propositions 3.72 and 3.38, we have that
= DoneWhen(d, AfterNec(d, ¢)) D ¢
So by propositions 3.17 and 3.11, it must be the case that
F Know(DoneWhen(d, AfterNec(d, ¢))) D Know(yp)
Then by propositions 3.65 and 3.63, we must also have that
|= AfterNec(d, Know(DoneWhen(d, AfterNec(d, ¢)))) D AfterNec(d, Know(y))

This combines with 1 to yield the desired result. m
It follows trivially that:

Proposition 3.79 |= Vd(Know(Res(d, ¢)) D Res(d, Know(y)))

3.6 A Formalization of Ability

In this section, we describe our formalization of ability. Its advantages and shortcomings
are discussed in the next section. Our primary objective in developing this formalization
is not to obtain an ability operator that will correspond perfectly to the intuitive notion
or that will handle any kind of goal or action. Rather, it is to show that our account of
indexical knowledge can be exploited in order to make existing formalizations of ability less
demanding in terms of the knowledge that they require. The kind of situations where this
yields significant benefits are cases where mere indexical knowledge is sufficient for ability
to achieve a goal and de re knowledge is unnecessary. For example, even if I am lost in a
foreign city, if I see a phone booth across the street, I am still able to phone my hotel and
find out how to get back there. Even if I have been working so hard that I lost track of time,
I can still get up and go make some coffee. Even if I drive off the road, bump my head, and

forget who I am, I can still wave to a passing car to get some help. Existing frameworks for
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talking about ability cannot handle these cases properly as they do not accommodate the
distinction between indexical knowledge and de re knowledge. Thus, they tend to require
de re knowledge when mere indexical knowledge would be sufficient for ability. Because our
framework does capture the distinction, we can reflect more faithfully the true requirements
of such situations.

We base our formalization of ability on that of Moore (1980), which in spite of its relative
simplicity, does get at the essential connection between the ability of agents to achieve goals
and the knowledge they have about relevant actions. It is simpler than his because we do
not attempt to handle indefinite iteration (while-loop actions). As discussed in section 2.1.1,
Moore’s formalization of this case is actually defective because it does not require the agent
to know that the action will eventually terminate. We leave this case for future research.

Since we are not treating indefinite iteration, we can simply define ability in terms of

the other constructs of the logic as follows:

Definition 3.8

Can(6?, p) & 30¢ Know(v? = ¢4 A Res(6%, )), where action variable v? does not occur

free in ¢ and 64
Can(skip, ¢) e Know(yp)
def
Can((é1;62),) = Can(é,, Can(d2,))

Can(if(¢s, b1, 62), 05) &' (Know(¢.) A Can(8y,9,)) V (Know (=) A Can(62,¢,))

The various cases of the definition are in most respects straight adaptations of Moore’s
axioms into our framework. As mentioned earlier, their point is to make an agent’s ability
to achieve various goals dependent upon his having the right kind of knowledge. What
knowledge an agent must have in order to be able to achieve a goal by doing an action
depends on the structure of that action. The definition works by recursion on the structure
of the action expressions involved.

The first case takes care of simple actions — actions that are represented by action
terms. In this case, self is said to be able to achieve a goal ¢ by doing a simple action

6% if and only if he knows what that action is and knows that his doing it results in the
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goal holding afterwards.?! Note that the definition involves quantifying-in over the class
of primitive actions (e.g. “send grasping signal to hand”), as opposed to arbitrary action
descriptions. The second case handles the empty action skip: self is able to achieve a goal
by doing skip if and only if he knows that the goal currently holds. The third assumption
handles sequentially composed actions: self is able to achieve a goal ¢ by doing (6;; 62) if
and only if by doing 6y, he is able to achieve the goal that consists in himself being able
to achieve the original goal ¢ by doing action é;. The final case takes care of conditional
actions: self can achieve a goal by doing if(y,, 61,8,) if and only if he either knows that
the condition ¢ holds and is able to achieve the goal by doing 6;, or knows that it does
not hold and is able to achieve the goal by doing 4.

Note that we eliminate Moore’s requirement that the agent know who he is; instead,
we require indexical knowledge. Thus, in the simple action case we require that the agent
know what the action is, that he know that it is physically possible for himself to do it, and
that he know that if he himself does it, the goal will necessarily hold afterwards. Similarly,
in the sequential action case, we require that by doing the first action, the agent be able to
achieve the goal of himself being able to achieve the original goal ¢ by doing the second
action. Mere de re knowledge is neither necessary nor sufficient for being able to achieve a
goal; we discuss this further and give a concrete example in section 4.3.

Note also that the adequacy of this formalization depends on adopting a particular
interpretation of ability assertions, in particular, of the role that the given action plays in
the ability of the agent to achieve the goal: it requires the agent to be able to achieve the
goal by executing in a dumb manner a program that corresponds to the action expression
given. This manifests itself in the constraint that is imposed on ability assertions involving
conditional actions; this constraint requires that the agent know whether the condition
holds before doing either branch of the action, even though nothing requires the branches
to involve distinct actions. A smart interpreter might be able to detect that the branches
share an initial action sequence and thus delay the need to know whether the condition

holds. One could also view the action given as a description in the eye of an external

1By proposition 3.62,

= 3v? Know(v® = 0% A Res(6?, ¢)) = 3v® Know(v® = 8% A Res(v?, 0)),
where action variable v% does not occur free in ¢ and 8¢

Although it might be more natural to use the formula on the right in our definition, we prefer to use the
one on the left because it leads to simpler proofs of ability.
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observer of what courses of action one should consider in judging whether the agent is able
to achieve the goal, in which case, any action expression that specify the same courses of
action should result in the same ability requirements (this is the view taken by Cohen and
Levesque (1987)). Each of these views seems coherent and each seems to have its domain
of relevance. It is not clear that the one adopted here is the most appropriate for the kind
of theory we are developing, but it is more easily formalized, and this is why it was taken.

For sequentially composed actions, it is rather unwieldy to develop proofs of ability that
directly establish the formula that the desired ability statement stands for. The following

proposition provides a convenient rule for decomposing the task of proving such results:

Pr_oposition 3.80 If |= ¢; D Can(é,p.), then = Can(6?,p;) O Can((6¢;6), p.)

Proof:
1. Assume that |= ¢; D Can(é, ¢.).
2. Assume also that e,g = Can(6?, ;). This means that there exists a d, such that for all
¢, (e,¢) €K,
¢',g4 = d = 6 A PhyPoss(6%) A AfterNec(8%, ¢;)

where g4 = g{d — d}.
3. By 1 and proposition 3.65, we must have that |= AfterNec(6%,p; O Can(é, ¢.)).
4. By proposition 3.63, we have that

= AfterNec(6%, ¢; D Can(6, p.)) O (AfterNec(8?, ¢;) O AfterNec(%, Can(é, ¢.)))

5. So by 2, 3, and 4, it must be the case that ¢’,g4 = AfterNec(6?, Can(é,.)). Putting
this together with 2, we obtain that e, g |= Can(6¢, Can(§, ¢.)). =

On the basis of this rule, one can prove in the following manner that the agent is able to
achieve a goal ¢, by doing the action (%;6): first show that the agent is able to achieve
some intermediate goal ¢; by doing the first action 8%, and then show that ¢;’s holding is
sufficient for the agent being able to achieve the main goal ¢, by doing the second action 4.
Since ability to achieve the main goal by doing the second action requires knowledge, the
intermediate goal should represent the appropriate knowledge requirements.

From a planning point of view, what is most interesting is perhaps not what agents are
actually able to do, but what they know that they are able to do. The next proposition
shows that if the agent is able to achieve a goal by doing an action, then he must know that
he is:

Proposition 3.81 | Can(4,¢) D Know(Can(é, ¢))

Proof:
We show this by induction on the number of action composition operators in é.
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Base case: (a) In case § = 4. By proposition 3.14, we have that FE JuvKnow(yp) D
Know(3vKnow(yp)). The desired results follows immediately.

(b) In case § = skip. Then, Can($, ¢) def Know(¢p). The desired results follows immedi-
ately by proposition 3.14.

Induction step: Assume that the result holds for all subactions of §. We will show that
it must then also hold for 6.

(a) In case é = if(y, 61,62). Then

Can(6, ¢) &' (Know(g.) A Can(é1,¢)) v (Know(~¢,) A Can(és, )
By proposition 3.14 and the induction hypothesis, we must have that

I= Can(é, ¢) = (Know(Know(p.)) A Know(Can(é;, ¢))) v
(Know(Know(-¢,.)) A Know(Can(éz, ¢)))

The desired result follows easily.

(b) In case § = (61;82). Then Can(é, ) &f Can(§;, Can(éz, ¢)). The desired result follows
immediately by the induction hypothesis. =

The converse is also valid (by proposition 3.12). So even if one is concerned with Planning,

nothing is lost by looking at what agents are actually able to do.

3.7 Conclusion

In this section, we discuss the ways in which our logic improves on previous frameworks
dealing with the relationship between knowledge and action; we also discuss the limitations

of the system.

3.7.1 Time and Action

The temporal part of our logic is simple and very expressive. One can make both eternal
and indexical temporal assertions, as well as express relations between indexically specified
and ob jectively specified times. It also meshes well with the epistemic part of the logic. The
fact that time is reified (i.e., that there are temporal terms) allows quantification over times
into epistemic contexts, so one can make very weak ascriptions of temporal knowledge; for
example, one can say that an agent knows that another agent knows what time it is without
himself knowing it. One can assert that actions are done over arbitrary time intervals, so it
is possible to state that several actions are being done concurrently or that some continuous
process is happening. It is also possible to talk about actions involving several agents. We

do not exploit all this expressiveness, as there is already sufficient difficulty in accounting
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for (indexical) knowledge prerequisites of simple sequential actions involving a single agent;
but its presence makes the framework easier to extend or adapt to other applications. There
is one major limitation: in contrast to dynamic logic, we do not provide a way of expressing -

the occurrence of actions involving indefinite iteration (unbounded while-loops).

3.7.2 Knowledge

What are the advantages of our account of knowledge over previous accounts? Firstly, it
does capture the distinction between indexical and de re knowledge: an agent may know
something in an indexical way without knowing it de re and vice-versa. Moreover our ac-
count fully handles time, in particular, temporally indexical knowledge. The account has
a simple syntax which makes it easy to make assertions involving indexical knowledge. Its
model-theoretic semantics is a simple and natural extension of standard possible-world se-
mantics. It retains what is perhaps the most important feature of possible-world semantics:
the correspondence between constraints on the accessibility relation and important proper-
ties of the notion formalized. Finally, we have proposed a formalization of the requirement
that knowledge be persistent that works well with both temporally indexical and temporally
absolute knowledge.

There are several limitations to our account of knowledge. Since it is based on standard
possible-world semantics, it only accounts for a very idealized notion of knowledge, a notion
that ascribes logical omniscience to agents (i.e., knowledge of all validities and knowledge
of all logical consequences of one’s knowledge). It is also the case that our interpretation of
de re knowledge as requiring knowledge of an objective standard name for the object does
not always fit well with intuitions about the notion. But this is a problem that we have
in common with all logics of knowledge, as there seems to be no commonly agreed upon
theory of de re knowledge. More work is clearly required on this front, but since the relation
between knowledge and action is crucial to our understanding of the notion, it can be hoped
that our account and applications of it to various domains can lead to new insights into the
question (see Grove and Halpern (1989) for an interesting attempt at formal analysis).

Finally, it would also be desirable to have a more thorough axiomatization of the logic, a
complete one if that is possible. This would provide a more explicit characterization of the
system, an immediately understandable account of the logic’s properties. It might also be a

step towards doing theorem-proving in the logic, which would have many applications. The
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set of properties identified in section 3.5 would provide a good starting point. Developing .
an axiomatization should not be an insurmountable task since most aspects of the logic are
based on previously axiomatized systems; but handling interactions between these elements
may be a difficult task.

Before moving on, we should also mention some alternatives to our formalization of
indexical knowledge. In our logic, the interpretation of formulas is context dependent.
Instead, one could have required this context dependence to be made explicit: the agent
and time of the context could have been represented by ordinary variables, which are either
bound directly by the Know operator or lambda-abstracted. For example, to say that agent
6° knows at time 6* that he himselfis currently thirsty, we write At(8%, Know(6, THIRSTY))
or At(6*, Know(6*, THIRSTY(self))); instead of that one might want to write something
like Know, ;(6°, 6%, THIRSTY(a, 1)), or Know(6%, 6%, A\(a,t). THIRSTY(a, t)), where a and ¢
represent the agent and time of the context (Richard (1983) follows the latter approach).
This could be done without changing our semantics for knowledge in any essential way.
It would perhaps clarify the fact that our account is compatible with Lewis’s view that
having knowledge involves self-ascription of properties (Lewis 1979). But, it would have
made for much heavier syntax and, given our modal treatment of knowledge, the approach
followed is quite natural. Note that these alternative approaches could also be applied to

the formalization of action and ability.

3.7.3 Ability

Our formalization of ability is an improvement over previous accounts (and in particular,
Moore’s) in several ways. Firstly, it does not require an agent to know who he is in order to
be able to achieve a goal by doing an action. This is accomplished by having all references
to the agent within the knowledge required be indexical references. Mere de re knowledge
is neither necessary nor sufficient for the agent to be able to achieve the goal. We ;give
a concrete example of this in the next chapter. As argued earlier, situations where an
agent does not know who he is (in the sense of not knowing an objective standard name
for himself) may not be common, but they should nonetheless be handled, since they can
actually arise, they are at the root of the phenomenon of indexicality, and the framework
required to handle other aspects of indexicality will also work for them.

A second way in which our account improves over previous work arises from the fact that
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it is based upon a logic that is more expressive with respect to temporal knowledge. The
temporal and epistemic elements of our system do distinguish between temporally indexical
knowledge and de re knowledge of times; they accommodate both kinds of knowledge; and
they allow the two kinds of knowledge to be interrelated, for example, one can talk about an
agent knowing what time it is. In section 5.3, we show that it is possible within the current
framework to handle cases of actions with temporal knowledge prerequisites or effects (e.g.,
looking at one’s watch) and actions that refer to absolute times (e.g., locking up at 5 p.m.).

Finally, other benefits accrue from the basing of our formalization upon a logic that
includes a proper treatment of indexical knowledge in general. It sets the stage for the
approach to the formalization of actions developed in the next chapter, whose main point
is the minimization of the knowledge requirements of actions through the judicious use of
indexical knowledge.

There are many limitations to our formalization of ability. Firstly, it is iimited by the
basic assumptions of the models we are working under and a high degree of idealization in the
notions inv_olved. The model of action on which our formalization is based is essentially the
“planning” paradigm, which comes with all sort of strong assumptions, such as, the notion
that action is thoroughly under rational control. The account of knowledge that we are
using involves idealizations that yield properties such as consequential closure and absolute
persistence, properties that simplify the formalization, but that also widen the gap that
separate it from the phenomena it seeks to model. The formalization of ability itself, with its
requirement that the action absolutely guarantee that the goal will be achieved, also brings
its share of idealization. But how to relax any of these assumptions is a difficult research
question in its own right and it seems impossible to avoid making this kind of simplification
if we are to obtain any kind of formal account of the relation between indexical knowledge
and action. As pointed out earlier, the treatment of indexical knowledge in relation to action
in itself constitutes a major relaxation of the limitations associated with the standard view
of knowledge and action.

The formalization only handles a basic class of actions, that of deterministic sequen-
tial single-agent actions without indefinite iteration (unbounded while-loops). This leaves
plenty of room for extensions. The case of indefinite iteration should definitely be looked
at. One could also extend coverage along standard directions, so as to handle classes of con-

current actions or plans involving multiple agents. Perhaps of a deeper significance would
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be extensions that exploit the additional expressive power of our formalism with respect to
temporal knowledge: actions with temporal knowledge effects or prerequisites, or actions
referring to absolute times; in general, actions that involve patterns of temporal reference
(to both absolute and relative times) that go beyond the simple ones currently treated. As
mentioned above, we take a stab at handling some of these in section 5.3 and we find that
many can be handled within the current framework, albeit not as elegantly as one might
want. More work on this is needed.

Finally, as mentioned previously, it would be nice to have a complete or at least thorough

axiomatization of the logic.
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Chapter 4
Robotics Applications

4.1 Introduction

In the previous chapter, we developed a theory of indexical knowledge, action, and ability
that was claimed to form an adequate framework for the formalization of actions involving
indexical knowledge prerequisites or effects. In this and the following chapter, we back up
~t-his claim by showing how various domains involving such actions can be formalized within
the theory and how given an adequate formalization of a domain, one can prove that an
agent is able to achieve certain goals by doing certain actions.

As will become clear, the framework we provide does not turn the formalization of
actions which may have indexical knowledge prerequisites or effects into a trivial task.
Many decisions must still be made in developing a formalization that have a crucial bearing
on its adequacy from the point of view how much and what kind of knowledge it requires
from an agent; for example, decisions as to which parameters a procedure should take.
What we provide on this front is some general advice on what to watch for, as well as, the
exemplary value of the domains that we formalize. Our central admonition in this respect
is that one should be careful not to impose exzcessive knowledge requirements upon agents in
formalizing actions; in particular, one should merely require indezical knowledge, as opposed
to de re knowledge, when that is sufficient. Together with our formalization of the various
domains, we provide a discussion of how this guideline has been put into practice. We also
discuss various issues that arise in formalizing the knowledge prerequisites and effects of

actions, in particular, what place de re knowledge should have in the result.
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4.2 A Robotics Domain

We will now use the theory to formalize aspects of a simple robotics domain and show how
the resulting formalization can be used to prove various statements concerning the ability
of agents to achieve goals by doing actions. We will argue that our framework allows a
much more accurate modeling of these situations than frameworks that ignore indexicality.
Our domain involves a robot, call him ROB, that moves about on a two-dimensional grid.
Since our purpose is not to model complex patterns of interactions, but to present and
justify our account of indexical knowledge and action, our formalization will be based on
the assumption that the robot is the only source of activity in the domain. We take our
robot to have the following repertory of basic actions (primitives of his architecture): he
may move fbrwa.rd by one square, he may turn right or left 90°, he may sense whether an
object is on the square where he is currently positioned and if there is one, what shape it has,
and he may pick up an object from the current square or put down the object he is holding
on the current square. It should be clear that in spite of the simplicity of this domain,
it contains analogues to a large number of problems encountered in planning actual robot
navigation, manipulation, and perception. For instance, one can view objects of particular
shapes as landmarks and the robot can then navigate by recognizing such landmarks. We
assume that there are no physical obstacles to the robot’s movements; in particular, an
object being on a square does not prevent the robot from being on it too (one can imagine

the robot as standing over the object).

4.3 Ability to Manipulate an Object

The indexicality of action manifests itself in many ways in this domain. One key way is
that a robot can act upon (manipulate) an object as long as he knows where that object
is relative to himself, he need not know either the object’s absolute position or his own.
First consider a simple instance of this where the robot wants to pick up an object and is
actually positioned where that object is. Relevant aspects of the domain are formalized by

making various assumptions,! most of which have to do with the types of action involved.

1 Assumptions are essentially like non-logical axioms in a theory. Thus, we will only deal with semantic
structures where the assumptions come out true. Note that due to this, assumptions not only hold at time
now, but at all times, and it is common knowledge that this is the case.
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The following assumption specifies the effects of the action PICKUP:

Assumption 4.1 (Effects of PICKUP)
E Vz(OBiECT(2) A POS(z) = here A -3y HoLDING(y) D Res(PicKUP, HOLDING(zZ)))

It says that if some object z is positioned where the agent currently is and he is not currently
holding anything, then his doing the action PICKUP next will result in his holding .2 This
means that under these conditions, it is both physically possible for him to do PickuP, and
his doing so necessarily results in his holding the object. In fact we assume that all basic
actions are always possible. The view adopted is that such actions characterize essentially
internal events which may have various external effects depending on the circumstances.>
We also assume that agents always know how to do basic actions, that is, know what

primitive actions they denote. This is formalized as follows:

Assumption 4.2 (Basic actions are known)
E 3d Know(d = ), where 6 is any basic action constant

We omit the frame assumptions for PICKUP, which say that it does not affect the position
or orientation of anything and that unheld objects that are not where the agent is remain
unheld.

Now clearly, just having de re knowledge of some object (i.e., 3z Know(OBIECT(z)))
is insufficient for being able to pick it up; something must be known about the object’s
position. If we only wanted to model the agent at a high level of abstraction, we might
be willing to assume that as soon as an agent knows which object is involved, he would
know how to get to it (or how to find out). But there clearly are circumstances where such
assumptions are invalid and modeling at such an abstract level would leave out a great deal
about how action is actually produced. We want an account that addresses the issue of

what information the agent must exploit in order to be able to get at the object.

?Note that even though we' are specifically talking about the agent of the context in the above, the
attribution in fact applies to all agents, since it is assumed that the assertion is valid, that is, satisfied at all
indices (it is a property of our logic that if |= ¢, then |= VaBy(a, v)). This is not a problem because we are
assuming that there are no interactions between agents in this domain.

3Note that assumption 4.1 only specifies what happens when PICKUP is done under the conditions stated.
What its effects are in other circumstances is not addressed.
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In a discussion of the robot action of “putting a block on another block”, Moore (1985)
recognizes this and suggests that it be defined in terms of lower-level actions involving arm
motions to the objects’ positions, grasping, and ungrasping. Now, knowledge of an object’s
absolute position is not sufficient for being able to act upon it (and nor is it necessary).
One may not know what one’s absolute position and orientation is and therefore may not
be able to deduce where the object is relative to oneself. Our formalization reflects this fact.
For instance, one can prove the following proposition with respect to the simple situation
discussed earlier. It says that even if the agent is currently at some position 7 and knows
that the absolute position of some object is # and that he is not holding anything, he still
might not be able to achieve the goal of holding some object by doing the action PiCKUP.

The reason for this is simply that he may not know that he is at 7.

Proposition 4.1

¥3p(here = 5 A Know(3z(OBIECT(z) A POS(z) = ) A =3y HoLpING(y)))

D Can(PickuP, 3z HOLDING(z))

Proof:
We produce a structure that falsifies the formula.
1. Let an index e in some semantic structure and an assignment g be such that

e,g |= here = 5 A Know(3z(OBIECT(z) A POS(z) = ) A =3z HorpiNG(z))
Let an index ¢’ be such that (e, e’) € K, [here]e g # g(5), and
¢/, |= Does(PICKUP, t) A ~At(t, 3z HOLDING(z))

Note that this is consistent with assumptions 4.1 and 4.2. It is easy to verify that this
satisfies all our semantic constraints.

2. Now suppose that e, g |= Can(PICKUP, 3z HoLDING(z)). By the definition of Can, this
means that

e,g = 3d Know(d = PICKUP A Res(PIcKUP, 3z HOLDING(z)))
which implies that for all e’ such that (e,e’) € K, it must be the case that
¢/,g = Res(pPickuP, 3z HoLDING(z)))
By the definition of Res and AfterNec, this implies that

¢, g |= OVt(Does(PICKUP, t) D At(t, 3z HoLDING(z)))
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Since =~ is reflexive, we must then have,
¢', g = Does(PICKUP, t) D At(t,3z HoLDING(z))

which contradicts the stipulation in step 1. m

On the other hand, we can also prove that if the agent knows that some object is where
he currently is and that he is not holding anything, then he must be able to achieve the
goal of holding some object by doing PICKUP:

Proposition 4.2

E=Xnow(3z(0BI1ECT(z) A POS(z) = here) A -3y HOLDING(y))

D Can(PICKUP, 3z HOLDING(z))

Proof:
1. Let’s assume that

e, g = Know(3z(OBiECT(z) A POS(z) = here) A -3y HoLDING(y))
that is, that for all &’ = (w/,a/,t), (e,€’) € K,
¢/,g = 32(0OBIECT(2) A POS(z) = here) A -3y HOLDING(y)

We must show that e,g | Can(PickuP,3z HOLDING(z)). By the definition of Can, this

. means that

e,g |= 3d Know(d = PICKUP A Res(PICKUP, 3z HOLDING(z)))
that is, that there exists a d, such that for all ¢/, {e,¢’) € K,
¢/,g4 E d = PIckUP A Res(PICKUP, 32 HOLDING(z))

where g4 = g{d — d}.

2. Let’s first show that there exists a d, such that for all ¢, {e,e’) € K, ¢/, g4 |= d = PICKUP
(i.e., that the agent knows what the action is). By assumption 4.2, we must have that
e,g F 3d Know(d = PICKUP), and so the above must hold.

3. So what remains to be proven is that ¢’,g4 = Res(PickuP, 3z HOLDING(z)) (i.e., that
the agent knows that his doing PICKUP next results in the goal being achieved aftérwards).
We must use assumption 4.1, which says that

E Vz(OBiECT(2) A POS(2z) = here A -3y HOLDING(y) D Res(PICKUP, HOLDING(%)))
By step 1, we have that for all ¢/, (e, e’) € K, there exists an x such that

¢',gx | OBIECT(z) A POS(z) = here A -3y HOLDING(y)
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where gy = g{z — x}. So by assumption 4.1, we have that
e’,gx |= Res(Pickup, HOLDING(z))

By proposition 3.69, this implies that ¢/, g4 |= Res(PicKkuP, 3z HorpING(z)). =
The agent can be totally ignorant of what his (and the ob ject’s) absolute position is and
still be able to achieve the goal.

Note that proposition 4.2 makes no requirement that the object that the agent ends
up holding be the same as the one that was at his position before the action. This may
appear too weak and an easy fix would involve assuming that the agent knows which ob ject
is involved. But it is possible to strengthen the above proposition without requiring such
de re knowledge. For example, the following proposition captures the fact that the agent
knows that after the action, he would be holding some object that was where he was before
doing the action. Specifically, it says that if the agent knows that some object is currently
at his position and that he is not currently holding anything, then he can by doing action
PICKUP achieve the goal of holding some object that was at his own position before the

PICKUP he has just done.

Proposition 4.3

=Know(3z(OBIECT(z) A POS(z) = here) A -3y HorpiNg(y)) D

Can(PickuP, 3z(HOLDING(z) A DoneWhen(PICKUP, OBIECT(Z) A POS(z) = here)))

Proof:

1. Let Ox(z) e OBIECT(z) A POS(z) = here. Assume that e,g |= Know(3z(OH(z)) A
-3y HoLDING(y)), that is, that for all & = (w',a',t'), such that (e,e’) € K, ¢,g =
3z(OH(z)) A -3y HOLDING(y). Let ¢, % Jz(HoLDING(z) A DoneWhen(Pickup, On(z))).

We must show that e, g |= Can(PICKUP, ;). By the definition of Can, this requires showing
that

e,g | 3d Know(d = PICKUP A Res(PICKUP, ¢,))
that is, that there exists a d, such that for all ¢’, (e,€") € K,

¢,g4 = d = PICKUP A Res(PICKUP, ¢,)

where g4 = g{d — d}.

2. By assumption 4.2, we must have that e,g = 3d Know(d = PICKUP), and so it must be
the case that there exists a d, such that for all ¢/, (e,€) € K, ¢,gq4 = d = PICKUP.

3. So what remains to be proven is that e/, g4 = Res(PICKUP, ¢,). By 1, we have that for
all ¢, such that (e,e’) € K, there exists an x such that

¢',gx = OBIECT(z) A POS(z) = here A ~3y HoLDING(y)
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where gx = g{z — x}. So by assumption 4.1, we have that
¢/,gx |= Res(pPickuP, HOLDING(z))

Note that this implies that PhyPoss(PICKUP).
4. By 3 and proposition 3.58, we must have that

¢’,gx = O(OBIECT(z) A POS(z) = here)
So by proposition 3.71, it must be the case that
¢,gx |= AfterNec(PickuP, DoneWhen(PicKUP, OH(z)))
5. By proposition 3.66, this combines with 3 to yield that
¢/,gx = Res(pickuP, HoLDING(z) A DoneWhen(PICcKUP, OH(z)))

By proposition 3.69, this implies that ¢/, g4 = Res(PICKUP, ;). m

This can be strengthened further to require uniqueness. But it should be clear that iden-
tifying the objects involved in the initial and goal situations, without requiring that it be
known what objects they are, is not a trivial matter.

Before moving on, let’s examine another variant of this situation. First, imagine that an
agent a knows that there is an object where he himselfis and that he is not holding anything.
Then a is able to achieve the goal of holding something by doing PICKUP. Formally, if we
let ¢ be the formula of proposition 4.2, then |= By(a, ). However, if we imagine that a
instead knows that there is an object where @ is, it no longer follows that he is able to

achieve the goal.

Proposition 4.4

£ By(a,Know(3z(OBiECT(2) A POS(z) = POS(a)) A ~Jy HOLDING(y))

D Can(PickuP, 3z HOLDING(z))

The reason why this is not valid is simply that @ may not know that he is a. This shows
that knowing of oneself (de re) that if one does the action, the goal will necessarily hold
afterwards, as Moore’s formalization of ability requires, is not sufficient for ability. One
can similarly show that such de re knowledge is not necessary either (in some models of

proposition 4.2, the agent does not have such knowledge).
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4.4 Going to a Relative Position

Let us now look at navigation. Since there are no obstacles in our robot’s world, it seems
that given any relative position, the robot should be able to go there. Of course, he may
not be able to go to a given absolute position, if he does not know where he is. Let us show
formally that this is the case. We first consider the restricted case where the robot wants
to go to a position directly in front of him.

The effects of action FORWARD are specified as follows:

Assumption 4.3 (Effects of FORWARD)
|= VBVo(here = 5 A selfori = 0 > Res(FORWARD, here = '+ (1, 0) X ROT(0)))
Definition 4.1 selfori & ori(self)

i cosf: siné:
Definition 4.2 roT(6} def < o. o >
—sinf; cos@}

Assumption 4.4 = Vz(HoLDING(z) D POS(z) = here)

Assumption 4.3 says that as a result of doing FORWARD, the agent moves one square further
along the direction he is facing; selfori represents the orientation of the agent with respect
to the absolute frame of reference and ROT(6:) is the rotation matrix associated with angle
6i. Assumption 4.4 says that objects held by the agent are where he is.

We also need the following frame assumptions:

Assumption 4.5 (FORWARD does not affect selfori)
= Vo(selfori = 0 5 AfterNec(FORWARD, selfori = 0))
Assumption 4.6 (FORWARD does not affect POs of unheld objects)
= VpVz(Pos(z) = p A ~HOLDING(z) D AfterNec(FORWARD, POS(z) = P))
Assumption 4.7 (FORWARD does not affect ~HOLDING)

= Vz(-~HoLDING(z) D AfterNec(FORWARD, ~HOLDING(z)))
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Assumption 4.5 states that after doing FORWARD, the agent’s orientation must remain
unchanged. Assumption 4.6 says that after the agent does FORWARD, the position of objects
that are not held by him must remain the same as before. Assumption 4.7 states that objects
that are not held by the agent must remain unheld after he does FORWARD.

We will also need the following assumption; it says that any overlapping instances of
the FORWARD action must be the same instance (in the sense that they have the same

endpoints).
Definition 4.3 OVERLAPS(0s1,0e1, 052, 0e2) = 0,1 < Bez A Os2 < O

Assumption 4.8 (FORWARD is solid)

E V5, Vie, Vs Viea(DoneFromTo(FORWARD, 25, , te; ) A DoneFromTo(FORWARD, 45, tes)
A OVERLAPS(tn,tentsm tez) Diss =tz ANty = tea)

Actions that have this property are called “solid” by Shoham (1987).
One will have noticed that we use expressions from the language of arithmetics and
analytic geometry in formalizing this domain. We make the following assumptions regarding

these forms:

Assumption 4.9

All the constants and function symbols from arithmetics and analytic geometry used are
rigid. -

Assumption 4.10

E Yvp O ¢{v — 0}, provided that 0 is free for v in ¢ and all constants and function

symbols @ contains are arithmetic or from analytic geometry

Assumption 4.11

All facts from arithmetics and analytic geometry are valid.

Assumption 4.10 essentially say that the usual restrictions on specialization do not apply to

arithmetic or analytic geometry expressions. It should be easily provable from assumption
4.9.

Finally, let us add a few more definitions. RPOSTOAPOS is a function that converts a

relative position into an absolute one; similarly, RORITOAORI converts a relative orientation
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to an absolute one. MOVEDTOBY(6%,8:, §) means that the agent has just moved to relative

position 0;', and relative orientation 8 by doing action 6.

Definition 4.4 RrPosToAPos(6}) df (here + 6 x ROT(selfori))

Definition 4.5 RORITOAORI(6:) % MOD,,(selfori + 6}

Definition 4.6

MoveDToBY(6;,6:,6) &
ViV, (DoneWhen(5, v = RPOSTOAPOS(6}) A v} = RORITOAORI(6:)) D
here = v;; A selfori = v})),

where vf, and v; do not occur in 6, 6}, or &

Let us now proceed with the proof that the robot can go to any relative position that
is directly in front of him. First, we prove the following proposition, which says that doing
FORWARD results in the agent’s being on the square that was at relative position (1,0)

before the action and that his orientation is unchanged.

Proposition 4.5 |= Res(FORWARD, MOVEDTOBY((1,0), 0, FORWARD))

Proof:

1. Let us first show that | PhyPoss(FORWARD). By assumption 4.3 and the definition of
Res, we have that

I= 3p30(here = 7 A selfori = 0) D PhyPoss(FORWARD)

By proposition 3.6, the desired result must follow.

2. Let us now show that |= AfterNec(ForRwAaRD, MovEDTOBY((1,0),0, FORWARD)). Take
arbitrary e = (w,a,t) and w* and t. such that w ~¢ w*. Let e* = (w*,a,t) and e =
(w*,a,t.). Assume that A([FORWARD]e- g,€*,t.).

3. Assume that

e;, = DoneWhen(FORWARD, 5 = RPOSTOAPOS((1, 0)) A 0 = RORITOAORI(0))

We must now show that e}, g |= here = 7' A selfori = o.
4. 3 means that

ez, g = Ji(DoneFrom(FORWARD, t) A
At(2,p'= RPOSTOAPOS((1,0)) A 0 = RORITOAORI(0)))

By 2 and assumption 4.8, we must then have that

e",g |= 7= rRPosTOAPOs((1,0)) A 0 = RORITOAORI(0)
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5. By assumption 4.5 and the reflexivity of =~ (constraint 3.4), we must have that
[selforile;,¢ = [selforiles g. And by the definition of RORITOAORI, this implies that
[selfori]es g = [RORITOAORI(0)]er,g (We assume that |= 0 < ORI(6*) < 2m).

6. By assumption 4.3 and the reflexivity of ~t, we have that

[here]e:,g = [here]es g + (1,0) X ROT([selforie- )

By the definition of RPOSTOAPOS, this means that [here]es,g = [RPOSTOAPOS((1,0))]er g
7. By 3, 4, 5, and 6, we must then have that

e’,g FDoneWhen(FORWARD, 7 = RPOSTOAPOS((1,0)) A 0 = RORITOAORI(0))
D here = § A selfori = o

Since g is arbitrary, we must also have that

el,g |= VpVo(DoneWhen(FORWARD, § = RPOSTOAPOS((1,0)) A 0 = RORITOAORI(0))
D here = § A selfori = o)

that is, that e, g | MovEDToBY((1, 0), 0, FORWARD). Since e, w*, t., and g are arbitrary,
this together with 2 implies that

E AfterNec(FORWARD, MOVEDTOBY((1, 0), 0, FORWARD))
n

From this, we can now prove the desired result, which says that by doing FORWARD, one is
able to achieve the goal of knowing that one is on the square that was at relative position

(1,0) before doing the action and that one’s orientation is unchanged.

Proposition 4.6 |= Can(FORWARD, Know(MovEDT0BY((1,0),0,FORWARD)))

Proof:
1. Let ¢ def MovepToBY((1,0),0, FORWARD). Take arbitrary e and g. We must show

that e, g = Can(FORWARD, Know(y)). By the definition of Can, this amounts to showing
that

e,g |= 3d Know(d = FORWARD A Res(FORWARD, Know(y)))
that is, that there exists a d, such that for all ¢/, (e,e’) € K,

¢/,g4 |E d = FORWARD A Res(FORWARD, Know(yp))

where g4 = g{d — d}.

2. Let’s first show that there exists a d, such that for all ¢/, (e, ¢’) € K, ¢/, g4 = d = FORWARD
(i.e., that the agent knows what the action is). By assumption 4.2, we must have that
e,g = 3d Know(d = FORWARD), and so the above must hold.

3. So what remains to be proven is that e’,gy = Res(FORWARD,Know(y)) (i.e., that
the agent knows that his doing FORWARD next results in the goal being achieved after-
wards). By 1 and lemma 4.5, we must have that ¢’,gq |= Res(FORWARD,p). So by 2
and proposition 3.62, we have that e’,gq |= Res(d,p). Now since K is transitive, we
must then have that ¢/,gg = Know(Res(d,y)). Then, by proposition 3.79, it follows
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that ¢/,g4 = Res(d, Know(y)). Finally, by 2 and proposition 3.62, we must have that
¢’,g4 = Res(FORWARD, Know(p)). =

It should be possible to extend this and prove the following conjecture;? it says that by
doing FORWARD n times in sequence, one is able to achieve the goal of knowing that one is
on the square that was at relative position (n,0) before doing these actions and that one’s

orientation is unchanged.

Conjecture 4.1
For all n € N, = Can(rorwarD", Know(MovEDT0BY((n, 0),0, FORWARD")))

Now, let us look at the general case. The action of going to a relative position is
defined below. The definition goes as follows: to go to relative position (n,0), where n € N,
one simply goes forward n times; to go to relative position (n,0), where n is a negative
integer, that is, to a position behind oneself, one turns left twice (i.e., 180°), then goes
to relative position (—n,0), and then one turns left twice again, so as to return to one’s
original orientation; finally, to go to an arbitrary relative position (n, m), one first goes to
(n,0), that is, the right position on the x axis, then one turns left 90°, then goes to (m,0),

and then turns left three times (i.e., 270°), to return to the original orientation.
Definition 4.7
def o
GORPOS((n,0)) = FORWARD", where n € N
GoRpos({—n,0)) & LEFT?; GORPOS((n, 0)); LEFT?, where n € N+
GoRros((n, m)) o GORPOs((n, 0)); LEFT; GORPOS({m, 0)); LEFT®, where n,m € Z

It should now be fairly clear how a formalization for the actions of turning left and turning
right would go, so we will omit it and simply make the following assumption, which says
that by doing LEFT, one is able to achieve the goal of knowing that one’s orientation is 90°

to the left of what it was before doing the action and that one’s position is unchanged.

Assumption 4.12 |= Can(LEFT, Know(MovEDTOBY((0, 0, 7/2, LEFT)))

*We label “conjecture” statements which we believe are provable (with perhaps minor adjustments), but
for which we have no proof in hand. We discuss such conjectures in order to give a more complete view of
the kinds of phenomena that can be formalized in our framework.
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It should then be possible to show that by doing LEFT n times in sequence, one is able to
achieve the goal of knowing that one’s orientation is rotated by n times 90° to the left of

what it was before doing the action and that one’s position is unchanged.

Conjecture 4.2
For all n € N, = Can(LEFT", Know(MovEDTOBY((0,0), n7/2,LEFT")))

Finally, from conjectures 4.2 and 4.1, it should follow that one can, by doing GORP0OS((n, m})),
achieve the goal of knowing that one is on the square that was at relative position (n, m)

before doing these actions and that one’s orientation is unchanged.

Conjecture 4.3

Foralln,me Z,
= Can(GoRros((n, m)), Know(MovebToBY({n, m),0,GoRpros({n,m)))))

4.5 Picking Up an Object at a Relative Position

A common reason for going somewhere is that one wants to get hold of or manipulate
something that is there. Thus, extending the results of the previous two sections, we
note that knowing the relative position of an object is sufficient for being able to go and
manipulate it. Let.us now prove an instance of this kind of situation.

We must first make one additional assumption: that whether an entity is an object is

not affected by any action.

Assumption 4.13 (actions don’t affect OBIECT)
k= Vz(OBIECT(2) = AfterNec(6?, 0BIECT(2)))

We can now proceed with our proof. First, given the specifications of the action
FORWARD, we can show the following proposition, which says that if there is an object
at position P relative to the agent and he is not holding anything, then his doing FORWARD
must result in some object being at position 7 — (1,0) relative to him and him still not
holding anything. RPOS(z) represents the position of z relative to self; it is defined as

follows:
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Definition 4.8 rPOs(#*) def ((Pos(6) — here) x rROT(—selfori))

Proposition 4.7

I= V5(3z(OBIECT(2) A RPOS(Z) = §) A ~Iy HoLDING(y) D
Res(FORWARD, 3z(OBIECT(z) A RPOS(z) = ' — (1,0)) A =3y HoLbinG(y)))

Proof:
1. Assume that in some arbitrary structure

e, g |= 3z(OBIECT(z) A RPOS(2) = §) A -3y HoLDING(y)
that is, that there exists an x such that
e,8x = OBIECT(z) A RPOS(z) = 5'A Iy HOLDING(y)

where gx = g{z — x}.
2. By assumption 4.3, we have that

e,g |- here = p; A selfori = 0 D Res(FORWARD, here = 5} + (1,0) x roT(0))
From this, it follows that e, g |= PhyPoss(FORWARD) and that
e, g |= here = p; A selfori = 0 O AfterNec(FORWARD, here = 7, + (1,0) x rROT(0))

3. Let e = (w,a,t). Take arbitrary w* and t. such that w ~; w* and assume that
A(IIFORWARD]](W-,a,t)’g, (W, a,t),t.). Also let e, = (w*, a,t,).

4. By 2, we have that [here]e, g = [here]e,g + (1,0) x ROT([selfori]e g).

5. By assumption 4.5, we have that [selfori]e, g = [selfori]e .

6. By 1 and assumption 4.6, we have that [Pos(z)]e..gx = [POS(Z)]e,gx-

7. [RPOS(2)]e. g5
= ([Pos(z)]e. gx — [here]e, ) x ROT(—[selfori]e, g) by the definition of RPOS
([Pos(z)]e,gx — [here]e, ) x ROT(~[selfori]e,g) by 5 and 6
([Pos(z)]e gy — ([here]eg + (1,0) x ROT([selfori]e g))) x ROT(—[selfori]eg) by 4
= ([ros(z)legy — [here]eg) x ROT(—[selfori]e,g)
—(1,0) x ROT([selfori]e g) x ROT(—[selfori]e,g)
= [rPos(z)]e,gx — (1,0) by definition of RPOS

8. By 1 and proposition 4.13, we have that e, gy = OBiECT(Z).

9. By assumption 4.7, we have that if e,g = —~HOLDING(y), then e.,g |= ~HoLDING(y).
Therefore by 1, we must have that e., g |= -3yHOLDING(y) (note that = Yy D OVye).
10. So by 3, 7, 8, and 9, it must be the case that

Res(FORWARD, 3z(OBIECT(2) A RPOS(z) = F'— (1,0)) A =3y HoLpING(y))
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Given the above result we can now show that if the robot knows that there is an object at
position 7 relative to himself and that he is not holding anything, then by doing FORWARD
he is able to achieve the goal that some object be at position 7 — (1,0) relative to himself
and that he still not hold anything.

Proposition 4.8

k= V5{Xnow(3z(OBIECT(z) A RPOS(z) = §) A -3y HOLDING(y)) D
Can(roRWARD, Know(3z(OBIECT(z) A RPOS(z) = 7 — (1,0)) A ~3y HOLDING(y))))

Proof:
1. Let’s assume that in some arbitrary structure,

e,g = Know(3z(OBIECT(z) A RPOS(z) = P) A ~Jy HOLDING(y))
This means that for all €, such that (e,e’) € K,
¢',g = 3z(0OBIECT(2) A RPOS(2) = ) A ~Iy HOLDING(Yy)
We must show that
e,g = Can(FORWARD, Know(3z(OBIECT(z) A RPOS(z) = 7 — (1,0)) A ~Iy HOLDING(y)))
By definition 3.8, this amounts to showing that

e,g |= 3d Know(d = FORWARD A Res(FORWARD,
Know(3z(OBIECT(z) A RPOS(2) = §— (1,0)) A ~Iy HOLDING(y))))

that is, that there exists a d, such that for all &, (e,€’) € K,

¢/, g4 =d = FORWARD A
Res(FORWARD, Know(3z(OBIECT(z) A RPOS(z) = '~ (1,0)) A ~Jy HOLDING(y)))

where gg = g{d — d}.

2. Let’s first show that there exists a d, such that for all ¢/, (e, ¢') € K, ¢/, g4 = d = FORWARD
(i.e., that the agent knows what the action is). By assumption 4.2, we must have that
e,g = 3d Know(d = FORWARD), and so the above must hold.

3. So what remains to be proven is that

¢’,g4 |= Res(FORWARD, Know(3z(OBIECT(z) A RPOS(2) = p'— (1,0)) A ~IyHOLDING(y)))

(i.e., that the agent knows that his doing FORWARD next results in the goal being achieved
afterwards). By 1 and lemma 4.7, we must have that

¢’,g4 = Res(FORWARD, 3z(OBIECT(z) A RPOS(z) = 7 — (1,0)) A -3y HOoLDING(y))
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So by 2 and proposition 3.62, we have that
¢',84 = Res(d, 3z(OBIECT(2) A RPOS(z) = '~ (1,0)) A ~Jy HoLDING(3))

Now since K is transitive, we must then have that

¢’,g4 = Know(Res(d,3z(OBIECT(z) A RPOS(Z) = 5 — (1,0)) A =3y HoLDING(y)))
Then, by proposition 3.79, it follows that

¢, g4 |= Res(d, Know(3z(OBIECT(z) A RPOS(z) = §— (1,0)) A =3y HoLDING(y)))
Finally, by 2 and proposition 3.62, we must have that
e’,g4 = Res(ForwaRD, Know(3z(OBIECT(z) A RPOS(z) = F— (1,0)) A =3y HoLDING(3)))

[

Then, we can prove by induction that if the robot knows that there is an object at position
P relative to himself and that he is not holding anything, then by doing FORWARD n times

in sequence, he is able to achieve the goal that some object be at position 7#— (n,0) relative

to himself and that he still not hold anything.

Proposition 4.9

Foralln €N,
= VP(Know(3z(OBIECT(z) A RPOS(z) = ) A -3y HoLDING(¥)) D
Can(ForRwARD", Know(3z(OBIECT(z) A RPOS(z) = 7' — (n,0)) A ~3y HoLDING(Y))))

Proof:
We prove this by induction over n.

Base case: n = 0. Then since 6° % skip and Can(skip, ¢) def Know(¢), all we need to
show is that

FEKnow(3z(OBiECT(2) A RPOS(z) = ) A 3y HOLDING(3)) D
Know(Know(3z(OBIECT(z) A RPOS(z) = 5~ (0,0)) A =3y HoLDING(y)))

This easily follows by proposition 3.14.
Induction step: Assume that the formula is valid for n and show that it must then be
valid for n + 1. By the induction hypothesis and assumption 4.10, we have that

[-Know(3z(OBIECT(z) A RPOS(z) = §— (1,0)) A -3y HoLDING(y)) D '
Can(ForRWARD", Know(3z( OBIECT(2) A RPOS(z) = §— (n + 1,0)) A ~3y HoLbinG(y))))

By proposition 3.80, it follows from this and proposition 4.8 that the formula is valid for
n+1l. m

Finally, we can chain this with our earlier result concerning ability to achieve holding an
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object by doing PICKUP (proposition 4.2), to obtain the following proposition; it says that
if the robot knows that there is an object at position {n,0) relative to himself, that is, on
the n’th square directly in front of him, and knows that he is not holding anything, then he
is able to achieve the goal of holding some object by doing FORWARD n times followed by

PICKUP.

Proposition 4.10

Foralln € N,
EKnow(3z(OBiECT(2) A RPOS(z) = (n,0)) A =3Iy HOLDING(y)) D

Can((FORWARD"; PICKUP), 3z HOLDING(z))

Proof:
By induction over n.
Base case: n = 0.

Can((FORWARD?; PICKUP),(,D) Can((sklp,PlCKUP),(p) Know(Can(PICKUP,(p))

Thus, we must show that

EKnow(3z(OBiECT(z) A RPOS(z) = (0,0)) A -3y HOLmNG(y)) o)
Know(Can(PICKUP, 3z HOLDING(z)))

This easily follows from propositions 4.2 and 3.14.
Induction step: Similar that in the proof of proposition 4.9. =

It should be straightforward to generalize this result and prove the following conjecture,
which says that if the agent knows that there is an object at relative position (n,m) and
that he is not holding anything, then he is able to achieve the goal of holding some object

by first going to relative position (n,m) and then doing PICKUP.
Conjecture 4.4

Foralln,meZ,
F=Know(3z(OBIECT(2) A RPOS(Z) = (n,m)) A =3y HoLDING(y)) D

Can((GoRpros((n, m)); PICKUP), 3z HOLDING(z))

The proof would be similar to that of conjecture 4.3; it would require additional assumptions
about action LEFT, namely that it does not affect the position of objects, as well as whether

or not the agent is holding some object.
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4.6 Perception .

We will come back to this issue of what one must know in order to be able to go and
manipulate an object, but now let’s have a look at perception. As observed earlier, it too
yields indexical knowledge.® In our domain, the action SENSE constitutes a limited form of

perception. We formalize the effects of SENSE as follows:

Assumption 4.14

= Res(SENSE, Kwhether(3z(OBIECT(z) A POS(z) = here)))

Assumption 4.15

= Vs(-3yHoLpiNG(y) D
Res(SENSE, Kwhether(3z(OBJECT(z) A POS(z) = here A OFSHAPE(z, 5)))))

Assumption 4.14 says that doing SENSE results in the agent knowing whether an object
is present at his current position. Assumption 4.15 says that if the agent is not holding
anything, then his doing SENSE results in him knowing whether there is an object of a given
shape where he is.® From this and the fact that basic actions are assumed to be known, it
follows trivially that by doing SENSE, the agent can find out if there is an object where he
is and, if there is one, what its shape is.

The frame assumptions for sense are as follows:

Assumption 4.16 (SENSE does not affect Pos)

= VzV5(Pos(z) = § O AfterNec(SENSE, POs(z) = p)

®Davis (1988; 1989b; 1989a) has done interesting work on the topic of reasoning about knowledge and
perception; however, he does not address the fact that the knowledge obtained from perception is indexical
knowledge.

®One domain assumption that has been left unstated until now is that there is only room for a single
object to be resting on a square. But we are also assuming that there are no obstacles to the movement of
agents and that an agent can move onto a square even if there is an object on it (by standing above the
object). Since the agent may be holding an object, this means that there are situations where two objects
have the same position. This is why assumption 4.15 is restricted to situations where the agent is not holding
anything; if he were holding something, the sensors might confuse the shapes of the held object with that
of the object resting on the square.
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Assumption 4.17 (SENSE does nét affect selfori)
k= Vo(selfori = 0 O AfterNec(SENSE, selfori = 0))
Assumption 4.18 (SENSE does not affect ~HOLDING)
= Vz(-HoLDING(z) O AfterNec(SENSE, ~HOLDING(z)))

Finally, we assume that the shapes of objects are not affected by any action:

Assumption 4.19 (actions don’t affect OFSHAPE)

k= VzVs(OFSHAPE(z, s) = AfterNec(6?, OFSHAPE(z, 5)))

4.7 Ability to Go Where an Object Is

Let’s now go back to the issue of what one must know in order to be able to go and act
upon an object. We said that knowing the relative position of the object was sufficient for
this. But in real life, agents rarely know exactly what the relative locations of objects are.
More typically, they know roughly where objects are and scan the general area until they
find the object. For instance, if our robot knows that he is not holding anything and that
there is an object either on the square where he is or on the one directly in front of him,
then he can achieve the goal of being where an object is by first doing SENSE, and then

doing FORWARD if the object turns out not to be where he is.”

Conjecture 4.5

For all k € N,
F=Know(3z(OBIECT(2) A (POS(z) = here V RPOS(z) = (1,0))) A ~3yHoLDING(y)) D
Can((SENSE; if'].:'hen(ﬁaa:(OBJECT(z) A POs(z) = here), FORWARD)),

3z(OBIECT(z) A POS(z) = here))

"In this and the following example, the requirement that the agent know that he is not holding anything
is not really necessary. But if the agent is holding something, then he should know that he is, and thus also
know that the goal is already holding; so there would be ro point in looking for an object. If on the other
hand he is not holding anything, then he should know it.
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The proposition below formalizes another instance; it says that if our robot knows that
there is an object that is positioned at most k squares away along the row he is facing and
that he is not holding anything, then he can get where some object is by sensing and then
scanning forward, up to k squares, until he senses that an object is present. The ScANy(p)
action involves repetitively moving forward and sensing (up to k times) until ¢ becomes

true.

Definition 4.9 scany(¢) % while, (~p, FORWARD; SENSE)

Proposition 4.11

For all k € N,
FKnow(3z(OBIECT(z) A 3n(RPOS(2) = (n,0) A 0 < n < k)) A -3yHordIiNG(y)) D
Can((SENSE; SCANy(3z(OBIECT(z) A POS(z) = here))),

3z(OBIECT(Z) A POS(z) = here))

Let us now prove this proposition. First, let us introduce the following abbreviated

forms:
Definition 4.10
OH ¥ 3z(OBIECT(2) A POS(Z) = here)
HS % JyHoLDING(y)
OIF(k) o 3z(OBIECT(z) A In(RPOS(Z) = (n,0) A 0 < n < k)), where k € N

We first extend the result of proposition 4.7 into the following lemma, which says that if
the robot is not holding anything, and there is an object positioned at most k + 1 squares
away along the row he is facing, and that there is no object where he is, then his doing
FORWARD must result in him not holding anything and in some object being positioned at

most k squares in front of him.
Lemma 4.1

For all k € N,
[= OIF(k + 1) A -OH A =HS D Res(ForwARD, OIF(k) A ~HS)
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Proof:

1. Assume that in some arbitrary structure e,g |= OIF(k+ 1) A -OH A -HS. This implies
that there exist x and n such that

e,gxn = OBIECT(z) A RPOS(z) = (1,00 A1 <n < k+1A-HS

where gx défg{a: — X,m — n}.

2. Let e = (w,a,t). Take arbitrary w* and t. and such that w ~; w* and assume that
A([FORWARD] (w2 ty,g> (W*, 3, 1), te). Also let e. = (w*,a,te).

3. By 1 and proposition 4.7, we must have that

€., 8xn = OBJECT(z) A RPOS(z) = (n — 1,0) A ~HS

4. By 1, we must also have that e.,gxn 1 < 7 < k+ 1. Combined with 3, this yields that
e,g = OIF(k)A-HS. =

We can now prove the following lemma, which says that if the robot knows that he is not
holding anything, that there is an object positioned at most k + 1 squares away along the
row he is facing, and that there is no object where he is, then by doing FORWARD, he is able
to achieve knowing that he is not holding anything and that there is an object positioned

at most k squares in front of him.

Lemma 4.2

Forallk € N,
= Know(-HS A OIF(k + 1)) A Know(-~OH) D Can(ForRWARD, Know(-HS A OIF(k)))

Proof:
1. Let’s assume that in some arbitrary structure,

e,g = Know(-HS A OIF(k + 1)) A Know(-~OH)

This means that for all ¢/, such that (e,e’) € K, ¢/,g |= " HS A OIF(k + 1) A ~OH. Now
we must show that e,g = Can(FORWARD, Know(-HS A OIF(k))). By definition 3.8, this
amounts to showing that

e,g = 3d Know(d = FORWARD A Res(FORWARD, Know(-HS A OIF(k))))
that is, that there exists a d, such that for all ¢/, (e, ¢’} € K,
¢’,84 £ d = FORWARD A Res(FORWARD, Know(-HS A OIF(k)))

where gq = g{d — d}.
2. Let’s first show that there exists a d, such that for all ¢/,(e,¢) € K, e',gq  d =

FORWARD. By assumption 4.2, we must have that e,g |= 3d Know(d = FORWARD), and so
the above must hold.
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3. So what remains to be proven is that ¢’, gy = Res(FORWARD, Know(-~HS A OIF(k))).
By 1 and lemma 4.1, we must have that ¢/,g4 = Res(FORWARD, “HSAOIF(k)). So by 2 and
proposition 3.62, we have that ¢/, g4 |= Res(d,-HS A OIF(k)). Now since K is transitive,
we must then have that ¢/, g4 |= Know(Res(d, ~HSA OIF(k))). Then, by proposition 3.78,
it follows that ¢/, g4 |= Res(d, Know(-HS A OIF(k))). Finally, by 2 and proposition 3.62,
we must have that ¢/, gy |= Res(FORWARD, Know(-HS A OIF(k))). =

Next, we must prove the following lemma about the SENSE action; it says that if the robot
is not holding anything and there is an object positioned at most k squares in front of him,
then after he does SENSE, it must still be the case that he is not holding anything and there

is an object positioned at most k squares in front of him.

Lemma 4.3

For all k € N, |= “HS A OIF(k) D AfterNec(SENSE, ~HS A OIF(k))

Proof: From assumptions 4.16,4.17, 4.13, and 4.18.

From this, the assumption specifying the effects of SENSE, and the one stating that all basic
actions are known (assumptions 4.14 and 4.2), we can now prove the following lemma, which
says that if the robot knows that he is not holding anything and that there is an object
positioned at most k squares in front of him, then by doing SENSE, he is able to achieve
knowing that he is not holding anything and that there is an object positioned at most k

squares in front of him, and knowing whether there is an object where he is.

Lemma 4.4

For all k € N,
= Know(-HS A OIF(k)) O Can(sensE, Know(-HS A OIF(k)) A Kwhether(OH))

Proof: From assumptions 4.2 and 4.14, and lemma 4.3.

Then, we can prove the following proposition about the scanning action; it says that if the
robot knows that he is not holding a.nything and that there is an object positioned at most
k squares in front of him and knows whether there is an object where he is, then he can
achieve the goal of being where an object is by scanning forward up to k squares until he

senses that an object is present.

Lemma 4.5
For all k € N, |z Know(-HS A OIF(k)) A Kwhether(OH) > Can(scan,(OH), OH)

Proof:
We prove this by induction over k.
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Base case: We must show that

= Know(-HS A OIF(0)) A Kwhether(OH) D Can(scaNg(OH), OH)

It is easy to see that this must hold. scanNg(OH) def skip, and Can(skip, OH) &=

Know(OH), so Can(scang(OH), OH) def Know(OH). Now by the facts of analytic
geometry,
E OIF(0) = 3z(0OBiECT(z) A RPOS(2z) = (0,0)) = OH

so by propositions 3.17 and 3.11, we have that | Know(-HS A OIF(0)) D Know(OH).
Induction step: We must show that if

E Know(-HS A OIF(k)) A Kwhether(OH) D Can(scaN,(OH), OH)

then it must be the case that

= Know(-HS A OIF(k 4 1)) A Kwhether(OH) D Can(scany,,(OH), OH)
Now scany_,(OH) &ef if(~OH, FORWARD; SENSE; SCAN) (OH), skip), and thus,
Can(sCANy,, (OH), OH) ¥/ Know(OH) v
(Know(-~OH) A Can(FORWARD;SENSE; SCAN) (OH), OH))

The antecedent says that Kwhether(OH), that is, Know(OH) V Know(-~OH), so all we
need to prove is that

E Know(-HS A OIF(k + 1)) A Know(~OH) D Can(FORWARD;SENSE; SCANy(OH), OH)
From lemma 4.4 and the induction hypothesis, it follows by proposition 3.80 that
E Know(-HS A OIF(k)) D Can(SENSE; SCANy, OH)

From this and lemma 4.2, the desired result follows by proposition 3.80. m

From this, we easily obtain the desired result, that is, that if the robot knows that there is
an object that is positioned at most k squares away along the row he is facing and that he
is not holding anything, then he can get where some object is by sensing and then scanning

forward, up to k squares, until he senses that an object is present.

Proposition 4.11
For all k € N, = Know(-HS A OIF(k)) D Can((sENsE;scan,(OH)), OH)

Proof:
This follows trivially from lemmas 4.5 and 4.4 by proposition 3.80. =

Soit is quite clear that ability to act upon an object does not require knowing its relative
position. But then what is required? It seems that the best we can say is that the agent

must know of some procedure that will take him to where the object is.
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But this creates problems in the formalization of ability to do certain high-level pa-
rametrized actions, for example, the action of “going to the position of an object 6
GOWHERE(f). It would be inappropriate to treat this action as a primitive because we
want to model how knowledge enables action at a more detailed level. The other vJa.y to
way to deal with such an action within our (and Moore’s) framework would involve defin-
ing it in terms of lower-level actions that are parametrized with the information that must
actually be known in order to be able to do the high-level action (recall Moore’s proposal
for the action of “putting a block on another”). This allows knowledge prerequisites to be
enforced by the requirement that one know which primitive action to do next and removes
the need to formalize them explicitly. But for actions like GOWHERE(9), it is not clear how
this could be put into practice.

However, notice that GOWHERE(#) is a strange kind of action in that it appears to refer
to anything that would achieve the goal that the agent be where 6 is; it is as much like a goal
as like an action. Perhaps we should rule out the introduction of such actions, but instead
provide an action-less version of the Can operator: CanAch(p) would mean that self is
able to achieve ¢ in one way or another. Then, we may use CanAch(Pos(6) = here A ¢)
instead of something like Can(GOWHERE(S),p).8 A coarse “syntactic” way of formalizing
CanAch goes as follows: e,g |= CanAch(yp) iff there exists an action expression § such
that e,g |= Can(6, ). A more general and robust approach is being developed by Nunes
(1990).

4.8 Map Navigation

Before moving on, let us examine one last area of robotics, that of navigation with the help
of a map. In order to fully take advantage of the information contained in a map, say to find
out how to get to a destination, an agent must first orient himself with respect to it, that
is, find out where he is on the map, what his absolute position is. If he does not already
know this, he must try to match the landmarks represented on the map with features of his
current environment. Our simple domain provides instances of this if we treat objects of

various shapes as landmarks. Consider a variant of the scanning example of the previous

8This assumes that it is known that 8 refers to the same entity before and after the action is done; the
assumption can be dispensed with by referring to the denotation of 8 prior to the action as illustrated earlier.
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section, where the robot knows what the absolute position of the unique object of shape
s is and knows that this object is positioned at most k squares in front of him; the robot
should be able get into a state where he knows where he is by scanning forward until he
detects that object. The following proposition shows that this is essentially correct. It
says that if the robot knows that the unique object with shape s is at absolute position 7,
that it is positioned at most k squares away along the row he is facing, and that he is not
holding anything, then he can achieve the goal of knowing that he is at absolute position 7
by sensing and then scanning forward, up to k squares, until he senses that an object with

shape s is present.?
Proposition 4.12

For all k € N,
E VpVs(Know(3z(OBIECT(z) A POS(z) = PAVy(OFSHAPE(y,s) =y = z) A
In(rPOS(z) = (n,0) A0 < n < k)) A -3yHOLDING(y)) D
Can((SENSE; SCANy(Iz(OBIECT(z) A POS(z) = here A OFSHAPE(z, 3)))),
Know(here = p)))

We prove this proposition in a similar manner to proposition 4.11. First, let us introduce

the following abbreviations:
Definition 4.11
US(é:,6') def Vvi(OFSHAPE(VY, 8}) = v = 65), provided v* does not occur free in 6% and
A
OHS(6%) ef 3vi(OBIECT(v*) A POS(v') = here A OFSHAPE(v',8}) provided v' does not
occur free in 6}
OSPIF(6:, 65, k) &
Ju(OBIECT(VE) APOS(vL) = 65 AUS(vi, 65) A v (RPOS(vE) = (vi,0) A0 < v}, < K)), .

where k € N, provided v} and v}, do not occur free in 6} and 6}

We first extend the result of lemma 4.1 about action FORWARD into the following lemma,

which says that if the unique object with shape s is at absolute position # and is positioned

®In this case, the requirement that the agent know that he is not holding anything is necessary, because
he must sense the shape of whatever object he encounters, and if he were holding something, his sensors
might get confused between the two objects (see assumption 4.15).
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at most k + 1 squares in front of the agent, and he is not holding anything, and there is
no object of shape s here he is, then his doing FORWARD must result in the unique object
with shape s being at absolute position 7 and being positioned at most k squares in front

of him, and his not holding anything.

Lemma 4.6

For all k € N,
= VpVs(OSPIF(s, 5,k + 1) A ~HS A ~OHS D Res(FORWARD, OSPIF (s, p,k) A -HS))

Proof: From lemma 4.1, and assumptions 4.6 and 4.19.

From this, we can then prove the following ability result about FORWARD; it says that if the
robot knows that the unique object with shape s is at absolute position # and is positioned
at most k + 1 squares in front of him, and that he is not holding anything, and knows that
there is no object of shape s where he is, then by doing FORWARD, he is able to achieve
knowing that the unique object with shape s is at absolute position 7 and is positioned at

most k squares in front of him, and that he is not holding anything.

Lemma 4.7

For allk € N,
= VpVs(Know(OSPIF(s, 7,k + 1) A ~HS) A Know(-OH) D
Can(rorwaRD, Know(OSPIF(s, 7, k) A -HS)))

Proof:

Same argument as for lemma 4.2, except that lemma 4.6 instead of lemma 4.1 is used at
step3. m

Next, we must extend the result of lemma 4.3 about action sENSE. This yields the following
lemma, which says that if the unique object with shape s is at absolute position 7 and is
positioned at most k squares in front of the agent, and he is not holding anything, then his
doing SENSE must result in the unique object with shape s being at absolute position 7 and

being positioned at most k squares in front of him, and his not holding anything.

Lemma 4.8

For all k € N, |= VpVs(OSPIF(s, k) A -HS D AfterNec(SENSE, OSPIF(s, p, k) A -HS))
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Proof: From lemma 4.3, and assumptions 4.16 and 4.19.

From this, we can then prove the following ability result about SENSE; it says that if the
robot knows that the unique object with shape s is at absolute position p and is positioned
at most k squares in front of him, and that he is not holding anything, then by doing SENSE,
he is able to achieve knowing that the unique object with shape s is at absolute position 7
and is positioned at most k squares in front of him, and that he is not holding anything,

and knowing whether there is an object of shape s where he is.

Lemma 4.9

For allk € N,
= VpVs(Know(OSPIF (s, 7, k) A ~HS) D
Can(sENSE, Know(OSPIF(s, p,k) A ~HS) A Kwhether(OHS(s))))

Proof: :

Same argument as for lemma 4.4, except that lemma 4.8 instead of lemma 4.3 and assump-
tion 4.15 instead of assumption 4.14 are used at step3. m

Then, we can prove the following proposition about the scanning action; it says that if
the robot knows that the unique object with shape s is at absolute position 7, that it is
positioned at most k squares away along the row he is facing, and that he is not holding
anything, and knows whether there is an object of shape s where he is, then he can achieve
the goal of knowing that he is at absolute position 7 by scanning forward, up to k squares,

until he senses that an object with shape s is present.

Lemma 4.10

For allk € N,
E VpVs(Know(OSPIF(s, §,k) A -HS) A Kwhether(OHS(s)) D
Can(scaN, (OHS(s)), Know(here = 7)))

Proof:
We prove this by induction over k.
Base case: We must show that

= V3¥s(Know(OSPIF(s, #,0) A ~HS) A Kwhether(OHS(s)) D
Can(scaNg(OHS(s)), Know(here = p)))
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It is easy to see that this must hold. sCANg(yp) def skip, and Can(skip, ) e Know(y), so

Can(scaNo(OHS(s)), Know(here = 5))) & Know(Know(here = 5)). Now by the facts
of analytic geometry,

= OSPIF(s, 5,0) = 32(0OBIECT(2) A POS(2) = § A US(2,8) A RPOS(Z) = (0, 0))

and thus, | OSPIF(s,7,0) O here = 5. Thus by propositions 3.17, 3.11, and 3.14, we
have that = Know(OSPIF(s,7,0) A ~HS) D Know(Know(here = 7)).
Induction step: We must show that if

FKnow(OSPIF(s, 5, k) A ~HS) A Kwhether(OHS(s)) D
Can(scany(OHS(s)), Know(here = p))

then it must be the case that
[FKnow(OSPIF(s, 5,k + 1) A =HS) A Kwhether(OHS(s)) D
Can(scaNy,,(OHS(s)), Know(here = 7))

Now scany,(p) def if (-, FORWARD; SENSE; SCAN) (), skip), and thus,

Can(scaNy,,(OHS(s)), Know(here = 7)) &
(Know(OHS(s)) A Know(here = 5)) v
(Know(-OHS(s)) A Can(PORWARD; SENSE; SCAN, (OHS(s)), Know(here = 7))

The antecedent says that Kwhether(OHS(s)), that is, Know(OHS(s))VKnow(~OHS(s)).
So let’s consider each alternative in turn. In the former case, we need to prove that

= Know(OSPIF(s, 5,k + 1) A =HS) A Know(OHS(s)) D Know(here = 5)

Since = OSPIF(s, 7,k + 1) A OHS(s) D here = 7, the above must hold by propositions
3.17 and 3.11. In the latter case, we must prove that

[=Know(OSPIF(s, 7, k + 1) A ~HS) A Know(-OHS(s)) D
Can(FORWARD; SENSE; SCAN, (OHS(s)), Know(here = 7))

From lemma 4.9 and the induction hypothesis, it follows by proposition 3.80 that
= Know(OSPIF(s, 5, k) A mHS) D Can(SENSE; scaN,(OHS(s)), Know(here = 7))

From this and lemma 4.7, the desired result follows by proposition 3.80. m

From this, it is easy to show that the desired result holds, that is, that if the robot knows
that the unique object with shape s is at absolute position P, that it is positioned at most
k squares away along the row he is facing, and that he is not holding anything, then he can
achieve the goal of knowing that he is at absolute position 7 by sensing, and then scanning

forward, up to k squares, until he senses that an object with shape s is present.
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Proposition 4.12

For allk € N,
E VpVs(Know(OSPIF(s, 7, k) A -HS) D
Can((SENSE; SCAN) (OHS(3))), Know(here = p)))

Proof:
This follows trivially from lemmas 4.10 and 4.9 by proposition 3.80. =

We could also show that an agent can find out what his absolute orientation is by rec-
ognizing objects that have a known orientation with respect to each other. And it is clear
that once an agent knows his absolute position, he can use the map to navigate to some
object represented on it. These map navigation examples exploit a key feature of our frame-
work, which is that it allows both indexical and absolute knowledge to be represented, and
relations between the two to be expressed (this feature of the map navigation problem was
pointed out by Israel (1987)). This distinguishes it from the indexical version of the situa-
tion calculus proposed by Subramanian and Woodfill (1989), where one simply introduces

indexical entities in the ontology.
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Chapter 5

Other Applications

The need for the notion of indexical knowledge in the formalization of the prerequisites and
effects of actions is most easily motivated by looking at actions in the robotics domain —
actions taking place in physical space — as in the previous chapter. The notion itself is
most clearly understood in terms of such instances, where the agent has knowledge that is
relative to his point of view in physical space. This might suggest that the notion is bound
to that of physical space. But this is not the case. The notion is really rather abstract. It
appears useful as long as thé domain involves agents that operate in some kind of space,
from some kind of point of view into that space.

In this chapter we provide evidence for this claim by formalizing various non-robotics
applications, some of which involve very abstract notions of space. The phone system can
be viewed as one such kind of space and an agent can be quite ignorant of what characterizes
his absolute position in that space, things like area-code, country code, etc. In section 5.1,
we formalize an example that reflects this indexicality. In the following section, we look at
the domain of data structure search and manipulation. At first, it might seem strange to
look at this in terms of an agent located in some kind of space and having knowledge about
that space that is relative to his point of view, yet this seems very much to be the outlook
taken by many algorithms; one talks about following pointers and searching graphs. We
show that our framework has good claims of applicability to this domain. Following this
in section 5.3, we look at three examples where temporal knowledge is required for ability.
There is as much of a need for keeping track of one’s place in time as of one’s place in space.

We find that the distinctions between various kinds of knowledge that proved useful in
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spatial contexts like the robotics situations of chapter 4 (i.e., knowing the absolute position
of something, knowing the relative position of something, and knowing how to get where
something is) are similarly useful in dealing with ability in temporal contexts. We also find
that our framework provides the necessary tools for producing a reasonable formalization
of these temporal examples. In the section 5.4, we discuss problems with the notion of de
re knowledge and its role in action. In the last section, we review the main points that the
examples of this chapter are trying to make. We also argue that the distinction between
indexical and objective knowledge supported by our framework has substantial practical
value and that it cannot be done justice within existing accounts of ability. Note that
complete proofs are supplied only for the example in section 5.1; for the others, we only

sketch how the proofs would go.

5.1 Making a Phone Call

Our first application is concerned with the ability of an agent to make a phone call. This
involves an action that is rather abstract, in comparison with the robotics actions discussed
earlier. We will take calling to be a procedure that takes a destination phone as parameter; it
requires the presence of a source phone at the agent’s current position, and involves dialing
on the source phone the sequence of digits required for a connection to be established
between it and the destination phone. We will represent an instance of the procedure being
applied to a destination phone denoted by 0;;4 by the expression CALL(0;;d). If we were to
develop a formalization that takes this as a primitive, we would end up requiring an agent
to know which phone H;d is in order to be judged able to establish a connection to it by
doing the action. It is far from obvious what having de re knowledge of a phone should
amount to: perhaps knowing the complete number of the phone including area code, perhaps
knowing its manufacturer and serial number, or perhaps knowing its absolute position. But
no matter which interpretation we take, this requirement is unnecessary. This is obvious in
the latter two cases. In the former case: if the agent knows that the call is local, that is,
that his own area code is the same as that of the phone he wants to call, then he does not
need to know what that area code is in order to be able to make the call.

We will now develop a solution that captures more adequately the knowledge prerequi-

sites of the action. Qur approach involves defining CALL in terms of less abstract actions
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th'a,t take more appropriate — more indexical — parameters. For simplicity, we will as-
sume that calls belong to one of two classes: local calls, which require only the number
of the destination phone to be dialed, and long-distance calls, which also require its area
code to be dialed (thus, we ignore international calls, non-local calls within the same area,
etc.). CALL is defined as a conditional action that selects between the actions DIALLOC
and DIALLD depending on which class the call belongs to. To make a local call, one does
action DIALLOC, which takes as parameter the number of the destination phone; the action
involves dialing this number on a source phone that should be positioned where the agent
is. For a long-distance call, one does action DIALLD, which takes an additional parameter,
the area code of the destination phone; the action involves dialing the appropriate prefix
for long-distance, the area code, and the number on a source phone that is at the agent’s

current position. Formally, this yields the following:
Definition 5.1.1 (Action caALL)

; \ def
caLL(fiy) =

if(ac(here) = ac(Pos(6i,)), DIALLOG(NO(8: ;) DIALLD(AC(POS(6:,)), No(6:4)))

This says that that calling a destination phone 0;',4 (on a source phone that is here) amounts
to doing a local dialing of the number of 0;4 if the area codes of the positions of the agent
and O;d are the same, and doing a long-distance dialing of the area code of the position of
634 and number of 6, otherwise.!

We will be assuming that the agent knows how to do the procedures DIALLOC and
DAILLD, that is technically, that they are epistemically rigid functions. Given this, the way

CALL is defined has the following consequences:

e the agent need not know which phone he is calling; if the call is long-distance, knowing
its area code and number is sufficient, and if the call is local, knowing its number is

sufficient;

* the agent need not know which phone he is calling from, since the source phone is not

a parameter; whatever phone happens to be where he is positioned is used.

In reality, the source phone need not be exactly where the agent is, it need only be within reach; but our
treatment of this action involves the same simplifications as were present in the treatment of manipulation
actions in chapter 4.
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This is much more realistic as a characterization of the knowledge prerequisites of CALL
than what we had with the first approach outlined.

We will soon prove that if these knowledge prerequisites are satisfied, then the agent is
able to make a phone call. But first, we must complete our formalization of the domain.

The effects of the action DIALLOC are specified by the following assumption:

Assumption 5.1.1 (Effects of DIALLOC)

= Vp,Vps(PHONE(p;) A POS(ps) = here A “INUSE(p;) A
PHONE(pg) A Ac(here) = Ac(Pos(pg)) D

Res(DIALLOC(NO(pg)), CONNECTED(ps, Pd)))

This says that if p, is an unused phone positioned where the agent is and the area code of
the absolute position of a phone py is the same as that of the agent, then the agent’s doing
a local dialing of the number of py (on the phone that is here) results in a connection being
established between the two phones.

We also assume that the agent knows how to accomplish the DIALLOC procedure, that

is, that DIALLOC is an epistemically rigid function. We specify this as follows:

Assumption 5.1.2 (DIALLOC is epistemically rigid)
= Vn(Know(IspaNo(n)) D 3d Know(d = p1aLLoC(n)))

This says that the agent knows what the action of making a local dialing of a phone number

n is if he knows what = is.
We make similar assumptions concerning the effects and epistemic rigidity of the action

of making a long-distance dialing DIALLD. Note that 1SAC(#*) means that 6 is an area code.

Assumption 5.1.3 (Effects of DIALLD)

= VpsVps(PHONE(p,) A POS(p,) = here A —INUSE(p;) A
PHONE(pg) A Ac(here) # ac(Pos(pq)) D

Res(DIALLD(AC(POS(pa)), NO(p4)), CONNECTED(ps, Pd)))
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Assumption 5.1.4 (DIALLD is epistemically rigid)
[= VeVn(Know(Ispuno(n) A Isac(c)) D 3d Know(d = DiaLLD(c, n)))

We need a few additional assumptions about the domain. Assumption 5.1.5 says that
n is a phone number if it is the number of some phone and assumption 5.1.6 says that cis

an area code if it is the area code of the position of something.

Assumption 5.1.5 |= VpVa(PEONE(p) A n = No(p) D IsPENO(n))
Assumption 5.1.6 |= VeVz(c = ac(z) D Isac(c))

Now that we have developed a suitable formalization of the domain, we are ready to
prove some results concerning the agent’s ability to make phone calls. Our main ob jective
is to prove that if the agent’s knowledge satisfies certain requirements, he must then be able
to achieve the goal of establishing a connection between two phones by doing the action
CALL. Now to show ability to achieve a conditional action such as CALL, one must show
that either the agent knows that the test condition holds and is able to achieve the goal by
doing the “then” branch, or knows that the condition does not hold and is able to achieve
the goal by doing the “else” branch. Thus before proving ability to achieve the goal by
doing cALL, we will prove ability results involving its sub-actions DIALLOC and DIALLD.

We first prove proposition 5.1.1, which says that if the agent knows that there is an
unused phone positioned where he is, and knows what the number of a destination phone
Bpd is, and knows that his own area code is the same as that of 0p4, then he can achieve the
goal of establishing a connection between some two phones by doing a local dialing of the

number of 6,4 (on the phone that is here):

Proposition 5.1.1

[=3n Know(3p,(PHONE(p,) A POS(p,) = here A ~INUSE(p,)) A
PRONE(6pa) A n = NO(8,4) A Ac(here) = AC(POS(6,4))) D

Can(DIALLOC(NO(fpa)), Ip,Ips CONNECTED(p,, pa))

Proof:
1. Assume that

e,g |= 3n Know(3p,(PHONE(p;) A POS(p,) = here A -INUSE(p,)) A
PRONE(fpd) A n = NO(8pa) A AC(here) = AC(POS(6,4)))
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that is, that there exists n, such that for all ¢’ = (w,a/,t'), (e, €’) € K,

e’',gn =3p,(PHONE(p;) A POS(ps) = here A =INUSE(p,)) A
PHONE(fpq) A n = NO(6pq) A AC(here) = AC(POS(6yq))

where gn = g{n — n}. We must show that

e,g |= Can(DIALLOC(NO(0p4)), IpsIps CONNECTED(Ps, Pa))
By the definition of Can, this means that

e,g |= 3d Know(d = DIALLOC(NO(fp4)) A
Res(DIALLOC(NO(6,4)), IpsIps CONNECTED(ps, Pg)))

that is, that there exists a d, such that for all €/, (e,e’) € K,

e',gq4 Ed = DIALLOC(NO(6pa)) A
Res(DIALLOC(NO(fpa)), 3psIps CONNECTED(Ps, Pa))

where gq = g{d — d}.

2. Let’s show that there exists a d, such that for all ¢/, such that {e,e’) € K, ¢’,gq4 = d =
DIALLOC(NO(6pg))- By 1 and assumption 5.1.5, we must have that e,gn |= IsPENO(R). So
by 1 and assumption 5.1.2, we must have that e,gn = 3d Know(d = p1ALLOC(n)). Since
by 1, we have that ¢/,gn |= 7 = NO(0,4), the above must also hold.

3. It remains to be proven that

¢',g4 = Res(D1aLLOC(NO(0pa)), 3psIpsg CONNECTED(ps, Pa))
By assumption 5.1.1 and proposition 3.69, we have that

=3ps(PHONE(ps) A POS(p,) = here A =INUSE(p,)) A
PHONE(p4) A Ac(here) = ac(Pos(pg)) D
Res(DIALLOC(NO(P4)), 3psIps CONNECTED(Ds, Pd))

From this and proposition 3.62, we obtain that

e',gn =3p,(PHONE(p;) A POS(p,) = here A -INUSE(p;)) A
PHONE(fpa) A AC(POS(0ps)) = AC(POS(64)) D
Res(DIALLOC(NO(b,4)), IpsIpg CONNECTED(ps, Pd))

From this and 1, the desired result follows. m
Note that the agent is required only to have de re knowledge of the number of the destination
phone; he need not have de re knowledge of either the destination or source phone. Note
also how no requirement is made that the agent know who he is; all the knowledge that the
agent is required to have about himself is indexical rather than absolute.

The goal specified in this proposition is not as strong as one might want, in that it does

not require the actual phones involved in the call to be connected. One could strengthen

138



the goal in various ways without requiring the agent to know which phones were involved.
For example, one could establish that the phone with the number dialed was connected to
the one that is positioned where the agent is, assuming that dialing does not change the
number or position of phones. Or it could be established that the phone denoted by bpa
before the action is now connected to the one that was positioned where the agent was
before the action (assuming that the action does not change the denotation of f,4). This
issue was discussed in chapter 4 and the suggestions given there are applicable.

We next prove a similar proposition for the long distance case (action DIALLD). The
knowledge required is the same as in the DIALLOC case except that the agent must now
know that his area code is different from that of the destination phone and know what the

area code of this phone is.

Proposition 5.1.2

[=3n3c Know(3p,(PHONE(p,) A POS(ps) = here A -INUSE(p,)) A
PHONE(6pa) A n = NO(fpa) A ¢ = AC(POS(6,a)) A AC(here) # AC(POS(8,4)))
D Can(DIALLD(AC(POS(6a)), NO(854)), Ips3ps CONNECTED(ps, Pa))

Proof:

Since the proof of this proposition is very similar to that of proposition 5.1.1, we do not
state it fully; we describe only how it differs from the proof of proposition 5.1.1.

1. We assume that there exist n, and c, such that for all e’ = (w/,a’,t'), (e,e’) € K,

¢/, 8nc =3p;(PHONE(p,) A POS(p,) = here A ~INUSE(p,)) A
PHONE(fpa) A n = NO(fpa) A ¢ = AC(POS(6,pa)) A AC(here) # AC(POS(6,4))

where gne = g{n — n,c — c}. We must show that there exists a d, such that for all
¢, (e, €) €K,

¢/, 84 [=d = DIALLD(AC(POS(8pq)), NO(6,4)) A
Res(DIALLD(AC(POS(8pa)), NO(8pa)), 3psIps CONNECTED(ps, pg))

where g4 = g{d — d}.

2. We show that there exists a d, such that for all ¢/, such that {e,¢’) € K, ¢/,g4 = d =
DIALLD(AC(POS(6pa)), NO(fpa)). By 1 and assumption 5.1.5, we must have that e,gne =
IspENO(7). By 1 and assumption 5.1.6, we must have that e, gnc = Isac(c). So by 1 and
assumption 5.1.4, we must have that e, gnc |= 3d Know(d = D1aLLD(c,)). Since by 1, we
have that ¢/, gnc |= ¢ = AC(POS(8pa)) A 7 = NO(fpa), the above must also hold.

3. What remains to be proven is that

¢',g4 |= Res(DIALLD(AC(POS(6pd)), NO(B,a)), 3psTpa CONNECTED (ps, pa))
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By assumption 5.1.3 and propositions 3.69 and 3.62, we obtain that

¢/, gnc FIps(PHONE(p,) A POS(ps) = here A ~INUSE(p;s)) A
PHONE(0pq) A Ac(here) # Ac(POS(6,4)) D
Res(DIALLD(AC(POS(0pa)), NO(6pa)), IpsIps CONNECTED(ps, Pa))

By this and 1, the desired result follows. m

Finally, given these results, we can now prove that the agent can achieve the goal of
establishing a connection between some two phones by calling phone 6,4, if he knows that
an unused phone is positioned where he is, knows what the number of 8,4 is, and either
knows that his own area code is the same as that of 6,4, or knows that they are different

and knows what the area code of Opa is:
Proposition 5.1.3

F=3nKnow(3p,(PHONE(p,) A POS(ps) = here A ~INUSE(p,)) A PHONE(fpq) A n = NO(0pa))
A (Know(ac(here) = ac(P0s(6,4))) V
Jec Know(Aac(here) # Ac(Pos(0pq)) A ¢ = Ac(POS(0pq)))) D
Can(CALL(fpq),3psIps CONNECTED(ps, pa))

Proof:

Can(cALL(0pq), 3ps3ps CONNECTED(Ds, Pd))
def Can(if(ac(here) = AC(POS(fpa)), DIALLOC(NO(fpa)), DIALLD(AC(POS(0p4)), NO(8pa))),
3ps3ps CONNEGTED(ps, pa))
(by the definition of cALL)
& (Know(ac(here) = AC(POS(6p4))) A
Can(DIALLOC(NO(8pa)), 3p,Ips CONNECTED(p,, pa))) V
(Know(ac(here) # Ac(Pos(0pa))) A
Can(DIALLD(AC(POS(0p4)), NO(6p4)), IpsIps CONNECTED(ps, Pa)))
(by the definition of Can)

By propositions 5.1.1 and 5.1.2, = Know(p; A ¢2) = Know(p;) A Know(y;) and propo-

sitional reasoning (= (¢1 D w2) A (v3 D w4) D (p1V 3 D w2V 4)), it must be the case
that:

F=3n Know(3p;(PHONE(p,) A POS(p;) = here A -INUSE(p,)) A
PHONE(6pa) A n = NO(B,4) A Ac(here) = AC(POS(6,4))) V
In3cKnow(3ps(PHONE(p,) A POS(p,) = here A -INUSE(p;)) A
PHONE(fpa) A n = NO(6pq) A ¢ = AC(POS(0p4)) A AC(here) # AC(POS(6,4)))
O(Know(ac(here) = Ac(P0s(6pq))) A
Can(DIALLOC(NO(0pa)), IpsIps CONNECTED(ps,24))) V
(Know(ac(here) # ac(Pos(fp4))) A
Can(DIALLD(AC(POS(6,4)), NO(8pa)), 3psIps CONNECTED(ps, Pa)))
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By = Know(¢; A @2) = Know(p;) A Know(y;) and elementary reasoning about quanti-
fiers, we must also have that

I=(3nKnow(3p;(PHONE(p,) A POS(p,) = here A ~INUSE(p,)) A PHONE(6pa) A 1 = NO(0p4))

A Know(ac(here) = Ac(Pos(6,4)))) V

(InKnow(3p,(PHONE(p,) A POS(P,) = here A SINUSE(p,)) A PHONE(6pa) A 7 = NO(6,a))
A 3c Know(Ac(here) # AC(POS(6pq)) A ¢ = AC(POS(6,4)))) D

(Know(ac(here) = AC(POS(0pq))) A
Can(DIALLOC(NO(0,a)), IpsIps CONNECTED(ps, pa))) V

(Know(ac(here) # AC(POS(0pq))) A
Can(DIALLD(AC(POS(8pa)), NO(0p4)), IpsIps CONNECTED(s, p4)))

Then since |= (¢1 A 92) V (1 A @3) = @1 A (92 V 3), it must also be the case that

[=3nKnow (3ps(PHONE(ps) A POS(p,) = here A ~INUSE(p,)) A PHONE(8,4) A n = NO(6pa))
A (Know(ac(here) = ac(Pos(,4))) v
Jc Know(ac(here) # AC(POS(0p4)) A ¢ = AC(POS(6,4)))) D
(Know(ac(here) = AC(POS(8pa))) A
Can(DIALLOC(NO(0pa)), IpsIps CONNECTED(ps, pa))) V
(Know(ac(here) # Ac(POs(0pa))) A
Can(DIALLD(AC(POS(6pa)), NO(;4)), IpsIps CONNECTED(ps, p4)))

n
This result shows that our earlier description of the knowledge prerequisites of the “making
a phone call” action as formalized here was accurate. It is clear that this characterization
of the knowledge prerequisites of the action is much more reasonable than that yielded by

the obvious approach described at the outset.

5.2 Traversing a Data Structure

We mentioned earlier that the notion of indexical knowledge is quite abstract; it need
not involve relativity to a point of view into any kind of physical space. The “space” in
which the agent is located, in which he moves about, could be an abstraction, a purely
conceptual structure. The computational domain contains a wealth of instances that are
naturally viewed as involving some kind of agent navigatingin an abstract space, say a data
structure or a search space in problem solving.

Consider the following example: an agent is using a stack to accomplish some task, say
reversing a list. There is strong analogy between some of the robotics situations discussed
in chapter 4 and this situation (especially if the stack is stored as a contiguous array).
According to the stack access discipline, only the top element of the stack is “visible”;

analogously, the robot of chapter 4 could sense only what was here. When one pops the
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stack, what happens is similar to the robot clearing the current square and going forward
onto the next square. When one pushes an new data element on the stack, this is similar
to our robot going backward one square and putting (or writing) the element down on that
square. It would be straightforward to formalize this indexical interpretation of the stack
situation: we would take here to stand for a position in the stack area; the immediate
accessibility of the top of the stack would be captured by the agent’s knowing what element
is here; the push and pop operations would change the position that here stands for, their
effects being specified in relative terms.

We could develop the stack example in details, but we will rather look at another
example, one involving a “heap”, as one sees in the heapsort algorithm (Aho, Hopcroft and
Ullman 1974). A heap is a binary tree that satisfies the “heap property”, that is, where the
key stored at any node is greater or equal to the ones stored at its left and right sons (if
they exist). By transitivity, this means that the key at a node must be at least as large as
any other key in the subtree rooted there. In this case too, it is very natural to describe the
algorithm in terms of an “agent” being at some node and navigating down the tree. This
example is probably more interesting than the stack one because the “space” involved has
a very different topology from that of physical space; one is not moving along a line, or on
a plane, or in 3-dimensional space, but along the edges of a tree.

In the heapsort algorithm, the heap is stored in an array where the left and right sons
of node A(%) are in A(2i) and A(2¢ + 1) respectively. The algorithm is built around a
subprocedure, call it HEAPIFY, that takes a binary tree where the proper subtrees of the
root (the ones that start with its sons) satisfy the heap property, but where the whole tree
might not, and sifts the element at the root down until the whole tree is a heap (this takes
O(log(n)) time where n is the number of nodes). The main procedure of heapsort works in
two phases: first, one starts at the end of the array and keeps enlarging the trees by adding
elements from the beginning (new roots) and running HEAPIFY on them until the whole
array is a heap; then one keeps exchanging the root (the largest element) with the element
at the end of the heap part of the array, shrinking the tree by one, and running HEAPIFY
on the result, until the whole array is sorted.

We will develop a formalization of the HEAPIFY part of the algorithm; this should be
sufficient to demonstrate the applicability of our framework and the notion of indexical

knowledge to this kind of situation. Our specification of the HEAPIFY procedure goes as
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follows:

Definition 5.2.1

»

HEAPIFY), &f while, (SMALLERTHANSON,
if(LEFTSONLARGEST,
(swAPKEYS(LEFT(here), here); GOLEFT),

(swAPKEYS(RIGHT(here), here); GORIGHT)))

SMALLERTHANSON d=ef(ISLEFT(here) A KEY(LEFT(here)) > KEY(here)) V

IsRiGHT(here) A KEY(RIGHT(here)) > KEY(here))

LEFTSONLARGEST = KEY(LEFT(here)) > KEY(RIGET(here))

Doing BEAPIFY involves repeatedly swapping the key of the node where one is (i.e., the

node at position here) with that of its largest son and then moving down to this son; one

keeps doing this for as long as the key at node here is smaller than that of either of its sons

(but at most k times).

We would like to prove something like the following conjecture; it says that if it is known

that the tree rooted here has a depth of at most k, that both the left and right subtrees

are heaps and if various facts about the current node and its immediate sons are known

(KNOWLOCALSIT), then one is able to achieve the goal of making the tree rooted here into

a heap by doing HEAPIFY):

Conjecture 5.2.1

For all k € N,

[EKnow(pEPTH(here) < k A HEAP(LEFT(here)) A HEAP(RIGET(here))

A KNowLocaLSIT D

Can(HEAPIFY), Know(3p(DoneWhen(HEAPIFYy, p = here) A HEaP(p))))

Definition 5.2.2

KNowLocaLSiT % JkKnow(k = KEY(here)) A
Kwhether(IsLErT(here)) A Kwhether(IsRiGET(here)) A
(IsLeEFT(here) D IkKnow(k = KEY(LEFT(here)))) A
(IsRicET(here) D IkKnow(k = KEY(RIGHT(here))))
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KNowLocALSIT holds if and only if the agent knows what the key at its current position
is, knows whether the current node has a left and/or right son, and if it does, knows what
their keys are.

We will not develop a full formalization of this situation, but we will describe how it
would go and sketch how one would show that conjecture 5.2.1 holds.?

The effects of GOLEFT and GORIGHT are formalized as follows:

Assumption 5.2.1 (Effects of GOLEFT)

= Res(GOLEFT,
Jdp(DoneWhen(GOLEFT, here = p) A here = LEFT(p)) A KNowLoCALSIT)

Assumption 5.2.2 (Effects of GORIGHT)

= Res(GORIGHT,
dp(DoneWhen(GORIGHT, here = p) A here = RIGET(p)) A KNOWLoOCALSIT)

We would also need frame assumptions stating that these actions change no other aspects
of the situation. Assumptions specifying the SWAPKEYS action would also be needed.

Now, let us show how a proof of our main conjecture (5.2.1) would go. First, we should
be able to show that given what the agent knows about the current node and its sons
(KNowLoCALSIT), he must know whether the tests of the while-loop and the conditional
hold:

Conjecture 5.2.2
= KNowLocaLSiT O Kwhether(SMALLERTHANSON) A Kwhether(LEFTSONLARGEST)

It should also be possible to show that given what the agent knows, if the test of the while-
loop is false, then he must know that the tree rooted here is already a heap; this is what

the following conjecture says:

2We {feel that the earlier examples have adequately shown how one goes about developing formal proofs
in the framework. At this point, it seems more important to show the applicability of the framework in a
wide range of situations.
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Conjecture 5.2.3

For all k € N,
[= Know(DEPTH(here) < k A HEAP(LEFT(here)) A HEAP(RIGHT(here))

A ~SMALLERTHANSON) A KNOWLOCALSIT D Know(HEeAP(here))

The next two conjectures cover each alternative of the conditional:
Conjeci:ure 5.2.4

For all k € N,
= Know(DEPTH(here) < k A HEAP(LEFT(here)) A HEAP(RIGHT(here)) A
SMALLERTHANSON A LEFTSONLARGEST) A KNOWLOCALSIT D
Can((swAPKEYS(LEFT(here), here); GOLEFT), KNOWLOCALSIT A
Know(pEPTH(here) < k — 1 A HEAP(LEFT (here)) A HEAP(RIGET(here)) A
3p(DoneWhen((sWAPKEYS(LEFT(here), here); GOLEFT), p = here) A

HEAP(RIGHT(p)) A KEY(here) > KEY(RIGET(p)) A KEY(p) > KEY(here))))

Conjecture 5.2.5

For all k € N,
= Know(pEPTH(here) < k A HEAP(LEFT(here)) A HeaP(RIGHT(here)) A
SMALLERTHANSON A ~LEFTSONLARGEST) A KNOWLOCALSIT D
Can((swAPKEYS(RIGHT(here), here); GORIGET), KNOWLOCALSIT A
Know(pEPTH(here) < k ~ 1 A HEAP(LEFT(here)) A HEAP(RIGHT(here)) A
3p(DoneWhen((swAPKEYS(RIGHT(here), here); GORIGHT), p = here)

A HEAP(LEFT(p)) A KEY(here) > KEY(LEFT(p)) A KEY(p) > KEY (here))))

Given these results, one should then be able to develop an induction proof of the main

conjecture (5.2.1).

5.3 Temporally Constrained Goals

In chapter 4, we used spatial examples to motivate the distinction between indexical knowl-
edge and de re knowledge and its usefulness in accounting for ability. We described cases

where the agent is required to know his absolute position, other cases where he need only
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know where something is relative to himself, that is, know its relative position, and other
cases where neither kind of knowledge is needed — the agent needs only know a navigation
procedure that gets him where he wants. In this section, we will show that the same kind of
distinctions are useful in handling goals that require temporal knowledge. In section 5.3.2,
we develop an example where one must know what time it is to be able to achieve a goal;
it involves an agent who must ensure that a room is locked after 5 p.m. In the following
section, we describe a case where knowing how much time has elapsed since some event
occurred is sufficient for ability; the example involves an agent who wants to soft-boil an
egg. Finally in section 5.3.4, we describe a case where an agent knows that a process has
gone on for an appropriate length of time, but not how long that was, simply by monitoring
the situation; the example involves an agent who wants to fry a fish filet for just the right
amount of time and who achieves this by frying it until its flesh is no longer transparent.
These examples, involviﬁg situations that are in no way unusual, constitute strong
evidence that the distinction between indexical and objective knowledge is an essential
one for a formalization of knowledge and ability, one that cannot be mimicked or defined

away. This is discussed further in section 5.5.

5.3.1 Preliminaries

For the examples in this section, we assume that the domain of times is (or is isomorphic to)
the integers. As in chapter 4, we will assume that arithmetic constants and function symbols
are rigid and that all facts about integer arithmetic that we need are valid (assumptions
4.9, 4.10, and 4.11).3

The first two examples require the agent to keep track of time by looking at a clock. We
say that a clock is CORRECT (at some point in time) if and only if the time it indicates, its

VALUE, is the current time. Formally, this amounts to:
Definition 5.3.1 CORRECT(c) e VALUE(c) = now

We use the predicate ACCURATE to say that a clock is working accurately at a given point
in time. This attribute is important because if a clock works accurately over a time interval,
it correctly measures how much time passes over the interval. The following assumption

formalizes this:

3Lipson (1981) gives an axiomatization of the integers.
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Assumption 5.3.1

= Vt1ViaVeVic(At(t1, VALUE(c) = 1) A VEi(th < t; < 12 D At(t;, AccURATE(c)))
D At(t2, VALUE(c) =t + 12 — ;)

The next conjecture expresses a useful consequence of this; it says that if a clock is CORRECT
and works accurately from now to some future time ¢, then it will still be CORRECT at

time ¢.

Conjecture 5.3.1
= Vi(CorRECT(c) A Vi'(now < #' < ¢ D At(t, ACCURATE(c))) D At(t, CORRECT(c)))

5.3.2 Locking Up at 5 p.m.

Our first temporal example concerns a case where an agent is required to know what time
it is in order to be able to achieve a goal. It involves an agent who is supposed to control
access to a room (shop, safe, ATM access room, etc.); in particular, he is supposed to ensure
that the room is locked after 5 p.m. The agent’s goal, OBSERVESCHED, is specified formally
below; it is stated to hold if and only if it is presently between time 500 and time 550, the
door is locked, and it was unlocked at all times before 500. We also state that the agent’s
plan, WAITLOCKUP, involves first looking at clock ¢, then for as long as it is not yet time
500, to keep waiting and looking at the clock, and then when time 500 arrives, to lock up

(the number of iterations being at most 250).
Definition 5.3.2

OBSERVESCHED = 500 < now < 550 A LOCKED A Vi(t < 500 D At(t, ~LOCKED))

waITLock Up(6%) % Look AT(6}); while;s0(now < 500, (WAIT; LOOKAT(6:))); LocKUP
We would like to show that if the agent knows that clock c is correct and accurate, that the
room has always been unlocked, and that it is presently between time 0 and time 500, then
he is able to achieve the goal OBSERVESCHED by doing the action wAITLockUP(e). This

is stated formally in the following conjecture:
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Conjecture 5.3.2

= Ve(Xnow(CORRECT(c) A ACCURATE(c) A AllPastN(~LocKED) A 0 < now < 500) D

Can(wAITLocKUP(c), OBSERVESCHED))

We will give a sketch of how this could be proven, but first, we must specify the relevant
aspects of the domain, in particular, the properties of the actions involved. First note that
we must specify an appropriate limit on the duration of the WAIT, LOOKAT, and LockUP
actions, otherwise they might take so much time as to prevent the goal from being achieved.
But note also that we cannot have these actions always take a fixed length of time that
is known to the agent, for otherwise, he could use one of them to measure time and thus
dispense with the clock. We will thus specify that these basic actions take a indeterminate
amount of time that must be between 1 and 10 units. The following assumption states this
for action WAIT in a slightly indirect way; it says that WAIT results in the fact that between

1 and 10 units have passed since the action was undertaken:

Assumption 5.3.2 (Effects of wWAIT)
= Res(WAIT, 3{(now — 10 < ¢t < now — 1 A DoneFrom(WAIT, t)))

Note that this implicitly says that it is always physically possible to do wAIT (by the
definition of Res). Also, since we assume that this is valid, it must be common knowledge
that these limits on the duration of WAIT apply. We assume that all the basic actions
introduced in this section are “solid”, that is, that any overlapping instances of them must
be the same instance (in the sense that they have the same endpoints); this specified as

follows:

Assumption 5.1 (Basic actions are solid)

= Vis, Vie, VisaVies (DoneFromTo(Gd, ts1,te:) A DoneFromTo(64, 1., te,)
A OVERLAPS(tn 1te17tamte2) Dty =lsaAte, = tea)

The latter assumption is necessary if, for instance, assumption 5.3.2 is to mean that all
instances of WAIT must take between 1 and 10 units.

We also assume that agents always know what the WAIT action is:
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Assumption 5.3.3 (WAIT is known) | 3dKnow(d = WAIT)

We also have the following frame assumption, which says that WAIT does not affect whether

the room is locked or not:

Assumption 5.3.4 (WAIT does not affect LOCKED)

k= AfterNec(WAIT, 3t(DoneFrom(WAIT, ) A
Vt'(t < ' < now D (At(t', LocKED) = At(¢, LOCKED))))

As a consequence of this, it should be the case that if the room has always been unlocked
when the agent starts doing WAIT, then it must always have been unlocked afterwards:

Conjecture 5.3.3
= AfterNec(waIlT, DoneWhen(WAIT, AllPastN(~LockED)) D AllPastN(-LoCKED))

Similarly, we also assume that WAIT does not affect whether or not a clock is working

accurately:

Assumption 5.3.5 (WAIT does not affect ACCURATE)

= AfterNec(waIT, 3¢(DoneFrom(WAIT, t) A
Vt'(t < t' < now D Ve(At(t', ACCURATE(c)) = At(t, ACCURATE(c)))))

Now, let’s specify the properties of the action of “looking at a clock”. We assume that
LOOKAT also takes between 1 and 10 time units. We also assume that after doing LOOKAT,
the agent knows what time the clock is indicating as the action ends.? This yields the

following:

Assumption 5.3.6 (Effects of LOOKAT)

= VcRes(LOOKAT(c),3t(now — 10 < ¢ < now — 1 A DoneFrom(WAIT, t))
A 3tKnow(t = VALUE(c)))

As a consequence of this assumption, it should be the case that if the agent looks at a clock

and knows that this clock is correct, then he must know what time it is:

*It would be more realistic to say that the agent gets to know what time the clock indicated at some
point in the performance of the action; but this would needlessly complicate the example.
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Conjecture 5.3.4
= VeAfterNec(LoOKAT(c), Know(CoRrRECT(c)) D 3tKnow(t = now))

We assume that agents always know what the action of looking at a clock is when they

know which clock is involved:
Assumption 5.3.7 (LOOKAT is known) [ VYc3dKnow(d = LOOKAT(c))

This is not realistic; it would be better to require the agent to know the position of the clock
relative to himself, as we did for the source phone in the example of section 5.1; but this
is not central to the formalization of this example. As for WAIT, we assume that LOOKAT

does not affect whether the room is locked or not:

Assumption 5.3.8 (LOOKAT does not affect LOCKED)

k= VcAfterNec(LoOKAT(c), 3t(DoneFrom(LOOKAT(c), ) A
Vi'(t < ' < now D (At(#,LocKED) = At(t, LOCKED))))

Thus it should be the case that if the room has always been unlocked when LOOKAT is

done, then it must always have been unlocked afterwards.

Conjecture 5.3.5

k= VeAfterNec(LOOKAT(c),
DoneWhen(L00KAT(c), AllPastN(-LocKED)) D AllPastN(-~LOCKED))

We also assume that LOOKAT does not affect whether or not any clock is working accurately:

Assumption 5.3.9 (LOOKAT does not affect ACCURATE)

k= VcAfterNec(LoOKAT(c), 3((DoneFrom(WAIT, t) A
Vt'(t < ¢’ < mow D V¢/(At(¥, ACCURATE(c)) = At(t, ACCURATE(c")))))

Finally, we assume that the action LoCcKUP also takes between 1 and 10 time units and

that it results in the room being locked:

Assumption 5.3.10 (Effects of LockUp)

k= Res(LockUP,3t(now — 10 < ¢ < now — 1A DoneFrom(LockUP,t)) A LOCKED)
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And we assume that agents always know how to do LockUp:
Assumption 5.3.11 (LockUP is known) | 3dKnow(d = LockUP)

We are now ready to sketch the proof of our main result, conjecture 5.3.2.  First, let
CAATU(#:) stand for the claim that clock # is correct and accurate and that the room has

always been unlocked:
Definition 5.3.3
CAAU(6}) & CorrECT(6:) A ACCURATE(6:) A AllPastN(~LOCKED)

Now let us consider the LOOKAT action. From the assumptions, it should be possible to
prove the following conjecture, which says that if the agent knows it is presently between
time ¢; and time 5, that clock c is correct and accurate, and that the room has always been
unlocked, then by looking at ¢, he is able to achieve the goal of knowing what time it is and
knowing that it is presently between time ¢; + 1 and time ¢, + 10, that clock c is correct

and accurate, and that the room has always been unlocked.
Conjecture 5.3.6

= Vit VtaVe(Know(?; < now < t, A CAAU(c)) D
Can(L00KAT(c), It Know(t = now A t; + 1 < now < t, + 10 A CAATU(c))))

By instantiating this with the time bounds that apply initially, we should get that by looking
at c, the agent is initially able to achieve the goal of knowing what time it is and knowing
that it is presently between time 1 and time 510, that clock ¢ is correct and accurate, and

that the room has always been unlocked.
Conjecture 5.3.7

= Ve(Know(0 < now < 500 A CAAU(c)) D
Can(L0OKAT(c), 3tKnow(t = now A 1 < now < 510 A CAAU(c))))

Next, we need to deal with the while-loop action. First, we should be able to prove the
following conjecture about the WAIT action; it says that if the agent knows it is presently
between time ¢; and time tj, that clock c is correct and accurate, and that the room has
always been unlocked, then by doing WAIT, he is able to achieve the goal of knowing that
it is presently between time #; + 1 and time ¢, + 10, that clock ¢ is correct and accurate,

and that the room has always been unlocked:
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Conjecture 5.3.8

E VtiVtpVe(Know(t; < now <ty A CAATU(c)) D
Can(waIT, Know(?; + 1 < now < i, + 10 A CAAU(c))))

By chaining this result with conjecture 5.3.6, we should obtain that if the agent knows it
is presently between time #; and time ?5, that clock c is correct and accurate, and that the
room has always been unlocked, then by doing WAIT and then looking at ¢, he is able to
achieve the goal of knowing what time it is and knowing that it is presently between time

t; + 2 and time ¢, + 20, that clock c is correct and accurate, and that the room has always
been unlocked:

Conjecture 5.3.9

E VtiVtaVe(Know(t; < now < t, A CAAU(c)) D
Can((WAIT; LOOKAT(c)),

3tKnow(t = now At; + 2 < now < t, + 20 A CAATU(c))))

Then by induction on k, we should be able show that if the agent knows what time it is and
knows that it is presently between time ¢; and time 520, that clock c is correct and accurate,
and that the room has always been unlocked, then by repeatedly waiting and looking at ¢
for as long as it is not yet time 500 (up to k times), he is able to achieve the goal of knowing
what time it is and knowing that the current time is greater or equal to the least of time
2k +1; and time 500, and less or equal to time 520, and that clock c is correct and accurate,

and that the room has always been unlocked:
Conjecture 5.3.10

For all k €N,
k= Vt;Ve(ItKnow(t = now A ¢ < now < 520 A CAAU(c)) D
Can(while, (now < 500, (WAIT; LOOKAT(c))),
3tKnow(t = now A MIN(2k + #;,500) < now < 520 A CAAU(c))))

To sketch the proof of this: in the base case (k = 0), the action amounts to skip, in which
case we must show that the agent already knows that the goal holds, and this follows from
the antecedent by proposition 3.14; for the induction case, the antecedent clearly implies

that the agent knows whether the loop condition holds, and then in case it does not hold,
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then the action again amounts to skip, and this and the antecedent imply that the goal is
known to hold, and in case loop condition does hold, we can prove the result from conjecture
5.3.9 and the induction hypothesis.

We can then instantiate the above conjecture to get the following, which says that if the
agent knows what time it is and knows that it is presently between time 1 and time 520,
that clock ¢ is correct and accurate, and that the room has always been unlocked, then by
repeatedly waiting and looking at ¢ for as long as it is not yet time 500 (up to 250 times),
he is able to achieve the goal of knowing what time it is and knowing that it is presently
between time 500 and time 520, that clock c is correct and accurate, and that the room has

always been unlocked:
Conjecture 5.3.11

= Ve(3tKnow(t = now A 1 < now < 520 A CAAU(c)) D
Can(whileyso(now < 500, (WAIT; LOOKAT(c))),
JtKnow(t = now A 500 < now < 520 A CAAU(c))))

Next we should be able to prove the following conjecture about action Lock Up; it says
~ that if the agent knows that it is presently between time 500 and time 520, that clock ¢ is
correct and accurate, and that the room has always been unlocked, then by locking up, the
agent is able to achieve the main goal of observing his schedule:

Conjecture 5.3.12
= Ve(Know(500 < now < 520 A CAAU(c)) D Can(LockUP, OBSERVESCHED))

Then by chaining conjectures 5.3.7, 5.3.11, and 5.3.12, it should be easy to prove the
main conjecture, which says that if the agent knows that clock ¢ is correct and accurate,
that the room has always been locked, and that it is presently between time 0 and time 500,

then he is able to achieve the goal OBSERVESCHED by doing the action warTLockUp(c):

Conjecture 5.3.2

l= Ve(Know(CoRRECT(c) A ACCURATE(c) A AllPastN(~LOCKED) A 0 < now < 500) D

Can(wAITLocKkUP(c), OBSERVESCHED))
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5.3.3 Soft-Boiling an Egg

Now let’s look at a different example, one that does not require knowing what time it is,
one for which knowing how much time has passed since a previous event is sufficient. This
makes it analogous to cases where one has to know what the relative position of something
is. The example is drawn from the cooking domain. The goal is to soft-boil an egg, that is,
to boil it so that it is cooked but that its yolk is still soft. This can normally be done for a
large egg by boiling it for approximately five minutes. To be able to achieve this, an agent
needs only a clock (or timer) that works accurately; it need not be correct (i.e., on time).
This is formalized in the following conjecture; it says that if the agent knows of a clock
c that it is accurate and of an egg e that it is uncooked, then he is able to achieve the goal
of having soft-boiled e by doing the action of first putting e to boil, then looking at ¢, then

waiting for about 500 time units, and then removing e from boiling:

Conjecture 5.3.13

= Vch(Know(ACCURA’I:E(c) A UNCooKED(e)) D

Can((sTARTBoIL(e); LOOKAT(c); WAIT500U250,0; STOPBOIL(€)), SOFTBOILED(¢)))

The goal is defined precisely below. We first say that an egg 6% has just been soft-boiled if
and only if it is not currently boiling, it was uncooked at some point in time between 500
and 520 units ago, and for the whole period between then and now, it was boiling. Then,
we say that an egg 8} is soft-boiled if and only if it was just soft-boiled at some time tp, no

later than now and it has not been boiling since.
Definition 5.3.4

JusTSorTBoOILED(f:) E-Bowina(8i) A
3n(500 < n < 520 A At(now — n, UNCOOKED(#:)) A
Vi(now — n < t < now D At(t, BOILING(6:))))

SoFTBOILED(6?) dz-e-fatp(tp < now A At(t,, JUSTSOFTBOILED(6})) A
Vi(t, < t < now D At(t,~BoILING(}))))

The action WAIT500U) , is defined below. The definition is similar to that of an ordinary
while-loop. Essentially one repeatedly waits and looks at the clock until it indicates 500
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units more than at the beginning. We cannot specify this action using the standard while
form because the termination condition refers back to the time at which the loop was
entered. To do this, we must keep track of the number of iterations done, which is the role
of parameter n in the definition below. k is a bound on the number of iterations as for

ordinary while-loops.
Definition 5.3.5

skip ifk =0
WAIT500U) ,(67) &' ifThen(500UEq(c),

_ . ifk>0
WAIT; LOOKAT(6); WAIT500Uy_; ., (6%))

500UE,(67) %
3t(DoneWhen((WAIT; LOOKAT(6;))", VALUE(6:) = t) A VALUE(6}) < ¢ + 500)

Let us then formalize the actions involved in this example and sketch how a proof
of conjecture 5.3.13 would go. We begin with action STARTBOIL. The next assumption
specifies the effects of this action; it says that if some egg e is initially uncooked, then
starting to boil e would result in a state of affairs where e is boiling, between 1 and 10 time

units have elapsed since the action started, and e was uncooked from the time the action

started until the moment before it ended:
Assumption 5.3.12 (Effects of sTARTBOIL)

= Ve(UNCOOKED(e) D
Res(sTARTBoIL(e),

BoiLiNG(e) A 3t(now — 10 < ¢ < now — 1 A DoneFrom(sTarTBo1L(e), t)
AV (t < t' < mow — 1D At(#, UNCoOKED(e))))))

We also assume that agents know how to start boiling some entity e if they know which

entity e is:
Assumption 5.3.13 (STARTBOIL is known) | Ve3dKnow(d = sTaRTBOIL(e))

And we also assume that STARTBOIL does not affect the accuracy of any clocks:
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Assumption 5.3.14 (STARTBoOIL does not affect ACCURATE)

= VeAfterNec(sTARTBoIL(e), 3t(DoneFrom(WAIT, t) A
Vt'(t < ' < now D Ve(At(t', ACCURATE(c)) = At(t, ACCURATE(c)))))

Now let us look at action sTopBoIL. The following assumption specifies the effects of
this action; it says that if some egg e is initially boiling, then stopping e from boiling would
result in a state of affairs where e is no longer boiling, between 1 and 10 time units have
elapsed since the action started, and e was boiling from the time the action started until

the moment before it ended:
Assumption 5.3.15 (Effects of sTorBoIL)

= Ve(BoILING(e) D
Res(sToPBoIL(e),
~BoILING(e) A 3t(now — 10 < ¢t < now — 1 A DoneFrom(sTorBoiL(e), )
AV(t < t' £ now — 1 D At(t/, BoILING(e))))))

We also assume that one knows how to stop an entity e from boiling if one knows which

entity e is:
Assumption 5.3.16 (sTorPBoIL is known) |= VeddKnow(d = sToPBOIL(e))

For the actions WAIT and LOOKAT, we need to supplement the assumptions stated in
the previous section with the following frame assumptions, which say that neither action

affects whether any entity is boiling:

Assumption 5.3.17 (WAIT does not affect BOILING)

F AfterNec(WAIT, 3t((DoneFrom(WAIT, 1) A
Vt'(t < ' < now D Ve(At(t', BoIiLiNG(e)) = At(t, BoILING(e)))))

Assumption 5.3.18 (LOOKAT does not affect BoILING)

= VcAfterNec(LooKAT(c), 3¢(DoneFrom(LookAT(c),t) A
Vi'(t < t' < now D Ve(At(t', BoiLING(e)) = At(?, Bo1LING(e))))))

Finally, let us define BoILINGFOR(6:,6¢,6%) to stand for the claim that 6% has been

boiling for between 6} and 6}, units, and was uncooked before that:
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Definition 5.3.6

BoIiLinGFor(#:, ¢, 6t ) &
Jvt(now — 0} < vl < now — 6} A At(v:, UNCOOKED(6:)) A
Voi(vi < v* < now D At(vt, BolLing(6})),

where v} and vt do not occur free in 6%, 6}, and 6%

We can now sketch how a proof of our main result (conjecture 5.3.13) would go. Let’s
first look at STARTBOIL, the initial action. We should be able to show that given that the
agent initially knows of a clock ¢ that it is accurate and of an egg e that it is uncooked,
he must be able to achieve the goal of knowing that ¢ is still accurate and that e has been

boiling for 0 time units by doing the action of starting to boil e:

Conjecture 5.3.14

= VeVe(Know(AccUuRATE(c) A UNCOOKED(e)) D

Can(sTARTBoIL(e), Know(ACCURATE(c) A BoiLINGFOR(e, 0, 0))))

Now let us consider the LOOKAT action. From the assumptions, it should be possible to
prove the following conjecture, which says that if the agent knows of clock ¢ that it is
accurate and of egg e that it has been boiling for between ! and A time units, then by
looking at c, he is able to achieve the goal of knowing what time ¢ indicates and knowing
that ¢ is still accurate and that e has been boiling for between ! + 1 and A + 10 time units

(since LOOKAT must have taken between 1 and 10 units):

Conjecture 5.3.15

= VIVhVeVc(Know(AcCURATE(c) A BoiLINGFoR(e, [, h)) D
Can(LOOKAT(c), 3. Know(VALUE(c) = . A ACCURATE(c) A

BoiLINGFor(e,! + 1,h + 10))))

By instantiating this, we get the following claim, which applies to the LOOKAT done fol-

lowing the initial STARTBOIL:

Conjecture 5.3.16

F= VeVe(Know(AccURATE(c) A BoiLingFor(e, 0,0)) D

Can(100KAT(c), 3t Know(VALUE(c) = t. A ACCURATE(c) A BoILINGFOR(e, 1,10))))
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Now for the WAIT action, we should be able to prove the following conjecture, which says
that if the agent knows of clock ¢ that it is accurate and of egg e that it has been boiling for
between ! and h time units, then by doing WAIT, he is able to achieve the goal of knowing

that c is still accurate and that e has been boiling for between ! + 1 and & + 10 time units:

Conjecture 5.3.17

= VIVhVeVe(Know(AccuRATE(c) A BoiLINGFoRr(e, 1, h)) D
Can(wAIT, Know(AcCURATE(c) A BoiLINGFoRr(e,l + 1,k + 10))))

Then by induction on k, we should be able show that if the agent knows what time clock
c indicates, knows of ¢ that it is accurate, and knows of egg e that it has been boiling for
between [ and h time units, then by repeatedly waiting and looking at ¢ (up to k times) for
as long as 500 time units have not elapsed, he is able to achieve the goal of knowing what
time c indicates and knowing that c is still accurate and that e has been boiling for a length
of time that is at least as large as the least of / + 2k and 500 units and at most as large as

the least of A 4 20k and 520 units:
Conjecture 5.3.18

For all k €N,
= VIVhVeVYc(3t. Know(VALUE(c) = t. A ACCURATE(c) A BoiLingFor(e, [, k)) D
Can(WAIT500U o, 3t Know(VALUE(c) = t. A ACCURATE(c) A

BoiLINGFoRr(e, MIN(I + 2k, 500), MIN(h + 20k, 520)))))

By instantiating this with the values used in our example, we obtain that if the agent knows
what time clock ¢ indicates, knows of ¢ that it is accurate, and knows of egg e that it has
been boiling for between 1 and 10 urits, then by repeatedly waiting and looking at ¢ (up
to 250 times) for as long as 500 time units have not elapsed, he is able to achieve the goal
of knowing what time ¢ indicates and knowing that c is still accurate and that e has been

boiling for between 500 and 520 units:

Conjecture 5.3.19

k= VeVe(3t. Know(VALUE(c) = t. A ACCURATE(c) A BoiLINGFOR(e, 1,10)) D
Can(WAIT500U 50,0, 3t Know(VALUE(c) = t, A AcCu RATE(c) A

BoiLINGFOR(e, 500, 520))))
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Finally, for the concluding action sTOPBOIL, we should be able to show that if the agent
knows what time clock ¢ indicates, knows of ¢ that it is accurate, and knows of egg e that it
has been boiling for between 500 and 520 units, then by stopping e from boiling, the agent

is able to achieve the main goal of having soft-boiled e:®

Conjecture 5.3.20

F= VeVe(3t. Know(VALUE(c) = t. A ACCURATE(c) A BoiLINGFOR(e, 500, 520)) D

Can(sToPBoiL(e), SOFTBOILED(¢)))

Then by chaining conjectures 5.3.14, 5.3.16, 5.3.19, and 5.3.20, if should be easy to prove
the main conjecture, which says that if the agent knows of a clock ¢ that it is accurate and
of an egg e that it is uncooked, then he is able to achieve the goal of having soft-boiled e
by first putting e to boil, then looking at ¢, then repeatedly waiting and looking at ¢ (up to

k times) for as long as 500 time units have not elapsed, and then removing e from boiling:

Conjecture 5.3.13

k= VeVe(Know(AccuRATE(c) A UNCOOKED(e)) D

Can((sTARTBOIL(e); LOOKAT(c); WAIT500U250,0; STOPBoIL(e)), SOFTBOILED(e)))

5.3.4 Frying Fish Until Flesh Is Opaque

Our last temporal example is a case where one need not even know how long some process
needs to be left going in order to achieve a desired state, as one can simply look for signs
that the process has gone on for long enough in the situation itself. This is analogous to the
scanning example in chapter 4, where one did not even need to know the relative position of
the target object. The example is based on a common cooking technique used to determine
if a fish filet has been frying for the right amount of time: one simply keeps looking at
the flesh of the fish and once it stops being “transparent”, the fish is ready and should be
taken off the heat. Using this technique, it is possible to avoid overcooking or undercooking
the fish. It is often easier and more effective to do this kind of monitoring of the situation
rather than to attempt to calculate the required duration of the process in advance (which

would often depend on the details of the situation, for example, the exact size of the fish)

®In fact, it should be possible to show that in these conditions the agent is able to achieve the stronger
goal JUSTSOFTBOILED(e); this also applies to the main conjecture (5.3.13).
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and timing its progression.

The conjecture below is a formal version of the example. It says that if the agent knows
that a fish f is uncooked, then he is able to achieve the goal that f be ready by first putting
it to fry, then looking at it, then repeatedly waiting and looking at it again for as long as its
flesh is still transparent, and then removing it from frying (the number of iterations being

at most 250).
Conjecture 5.3.21

= Vf(Knov;r(UNCOOKED(f)) o)
Can((STARTFRY( f); LOOKAT( f); whileyso( TRANSPA( f), (WAIT; LOOKAT( f)));
sToPFRY(f)), READY(f)))

We will not develop a formalization of this situation, but the specification of the actions
involved should be straightforward and a proof for conjecture 5.3.21 should be similar in

structure to the ones developed in the last two sections.

5.4 De Re Knowledge and its Role in Action

It should be possible to exploit the insights gained as we apply our theory to obtain a
better understanding of the various notions of knowing-who and de re knowledge and of
what role they play in action. As we pointed out earlier, the standard-name account of
these notions is in many cases unsatisfactory. Moreover, there seems to be another notion
of de re knowledge that has more to do with having a certain kind of causal connection
with the object; for example, if I see the person by the punch bowl, there seems to be a
sense in which my perceptual state is of that person even though I need not know who
she is. This notion of de re seems to have mainly to do with knowing how to act upon
the object (even perception is an activity). For an agent like the robot of the previous
section, it would seems quite appropriate to take knowing what an object is in this “causal
contact” sense to amount to knowing how to get to the object’s location. If this view is
correct, then given a particular type of agent and its action repertory, it may be possible
to formally reduce this notion of de re to that of ability to act upon the object (perhaps in
a restricted set of ways), where ability would involve only knowledge of primitive actions

and other entities whose characterization as mental representations is unproblematic, such
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as relative locations, joint rotation angles, phone numbers, etc. Then it may be possible to
develop an account of actions with object parameters where ability to do the action follows
automatically from the ability to act upon the object. This would mean, for example, that
the action of going where an object is and picking it up discussed in section 4.7 would not
need to be explicitly defined; it would follow from the fact that an agent must know how
to get to an object in order to “know what object it is” that the agent can do the action if
he “knows what the object is”.

In simple domains such as that of our robot, this analysis of de re seems quite appealing.
But, the approach has some counterintuitive consequences: there is no requirement to even
appeal to knowledge of relatively high-level entities such as relative locations; ability to
do high-level actions, such as sending an electronic message to someone giving a talk at a
remote institution, can be reduced to knowledge of what primitive actions to do in what
circumstances, such as knowing what finger movements to do. But a real person would be
prepared to deal with a huge number of unforeseen eventualities arising during the execution
of his plan to send a message; he might have to track down the speaker who has moved, etc.
It seems that for agents with open-ended action repertories, the flexibility and robustness
of behavior cannot be explained without appealing to knowledge of at least some of the
objects acted upon, for example, without the agent at some point knowing who the speaker
was. The reduction does not capture the right generalizations. But if some other kind of de
re knowledge is required in these cases, what does it really amount to and how is it related
to the “causal contact” notion, which seems equally required for action? Perhaps what is
needed is some kind of notion of internal identification; a kind of relaxed version of “having

a standard name” that acknowledges the possibility of various forms of misidentification.

5.5 Conclusion

The examples discussed in the last two chapters show that the distinction between indexical
and objective knowledge is useful and applicable across a whole range of domains. Some
of these examples, in particular the ones about data structure traversal, also show that the
notions involved are quite abstract and not tied to physical space.

The examples dealing with temporally constrained goals have a significance beyond

merely showing that the distinction between indexical and objective knowledge is applica-
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ble to the temporal domain; they also indicate that the distinction is an essential one, one of
great practical importance, one that cannot be mimicked or defined away. The other exam-
ples involve mostly spatial indexicality, the distinction between knowing where something
is relative to oneself and knowing where it is in absolute terms. As mentioned in section
1.1, one could argue that it is possible to handle these spatial cases within frameworks, such
as Moore’s, that are simpler than the one developed here: one should treat the indexical
cases, that is, the ones involving knowledge about where something is relative to here, as
de re cases, that is, as cases involving the agent knowing of himself that something is at
such and such position relative to that agent; this works, of course, only if one assumes that
agents always know who they are; but in many domains, this assumption seems reasonable.

However, to define temporally indexical knowledge in terms of de re knowledge of times
in a similar fashion would amount to ignoring the distinction between indexical and absolute
temporal knowledge. This distinction is clearly required by our temporal examples. One
certainly cannot assume that agents always know what time it is. One needs to capture the
fact that even if one knows that ¢ holds at absolute time v* and knows that if ¢ currently
holds, then ¢’ must also currently hold, and v* happens to be the current time, one need

not know that ¢’ currently holds:
I 3vt(v' = now A Know(At(v%, 9))) A Know(p D ¢') D Know(y')
But if one also knows what time it is, then one must know that ¢’ currently holds:
= Jvf (Know(At(vf, ¢)) A Know(v' = now)) A Know(y D ¢’) D Know(y')

now appears to behave much like an ordinary non-rigid constant, but it cannot just be
treated as such. It has many properties that ordinary temporal constants do not have; for
example, the positive introspection “axiom” }= Know(yp) D Know(At(now, Know(y)))
(proposition 3.14); this is no longer valid if now is replaced by an arbitrary temporal
constant. Other examples are the proposition that says that agents know what primitive
actions they have just done (proposition 3.75) and the “axiom” of specialization (proposition
3.3). A framework where these properties did not hold could not claim to capture the logic
of temporally indexical knowledge. We fail to see how these properties could be captured

without using a language and a semantics that goes very much along the lines of our
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proposal. :

Note that we are not claiming that the misguided strategy of translating temporally
indexical knowledge to de re temporal knowledge is attractive from the point of view of
Moore’s framework; it would be a more likely suggestion if one had a logic of temporal
knowledge that dealt only with absolute time.® As discussed in sections 2.1.1 and 3.7, the
problem with Moore’s framework is not so much with temporally indexical knowledge as
with knowledge of absolute times. Moore’s semantics is based on a domain of states, rather
than separate domains of worlds and times. So he can only talk about what holds in the
current state or in the states that would result from doing an action. His framework is not
a true logic of time, but only a logic of action.

It would be nice to have analogous examples to show that the distinction between
knowing and ignoring who one is also is of more than philosophical significance (the usual
amnesia examples are not too convincing in this regard). For agents that are much simpler
than humans, it would not seem all that unusual to have them not know who they are;
in fact, one is hard pressed to come up with good reasons for them to need to know who
they are. Perhaps the area of distributed systems and communication protocols would be
a good place to look for cases where the distinction is really useful. The work of Grove and
Halpern (1989) seems to suggest that it is.

The issues raised in the previous section as well as the difficulties encountered with the
action GOWHERE in section 4.7 also show that many questions remain with respect to the
nature of de re knowledge and the role it needs to play in action. Let us conclude by claiming
that the examples we have presented provide convincing evidence that our framework allows
a much more accurate modeling of the knowledge prerequisites and effects of actions than

frameworks that ignore indexicality.

®We sketched what the semantics of such a logic would look like at the beginning of section 3.5.7.
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Chapter 6

Conclusion

Agents act upon and perceive the world from a particular perspective. It is important to
recognize this relativity to perspective if one is not to be overly demanding in specifying
what they need to know in order to be able to achieve goals through action. They need
not know much about their objective situation; what they need is'indexica.l knowledge,
knowledge about how they are related to things in their environment or to events in their
history. And perception yields just the kind of indexical knowledge that is needed for action.

Previous formal accounts of the ability .of agents to achieve goals by doing actions, such
as that of Moore (1980; 1985) and Morgenstern (1987; 1988), have ignored this, and thus
end up imposing knowledge requirements that are neither necessary nor sufficient for ability;
they fail to properly specify the knowledge prerequisites and effects of actions. In this thesis,
we have developed a formal solution to the problem of indexical knowledge prerequisites

and effects of action.

6.1 Contributions

In this section, we discuss the ways in which our theory improves over previous accounts of
the relationship between knowledge and action.

Our account of knowledge is the first to formally capture the distinction between in-
dexical and de re knowledge: it allows an agent to know something in an indexical way
without knowing it de re and vice-versa. Also, the account fully handles time, in particu-
lar, temporally indexical knowledge. It has a simple syntax which ma.kes‘ it easy to make

assertions involving indexical knowledge. Its model-theoretic semantics is a simple and nat-
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ural extension of standard possible-world semantic schemes for the logic of knowledge. It
retains what is perhaps the most important feature of possible-world semantics: the cor-
respondence between constraints on the accessibility relation and important properties of
the notion formalized. Finally, our account includes a formalization of the requirement that
knowledge be persistent that works well with both temporally indexical and temporally
absolute knowledge.

Note also that the temporal part of our logic is simple and very expressive. Both eternal
and indexical temporal assertions can be made. Relations between indexically specified
and objectively specified times can also be expressed. The fact that time is reified allows
quantification over times into epistemic contexts, so one can make very weak ascriptions
of temporal knowledge; for example, one can say that an agent knows that another agent
knows what time it is without himself knowing it. The occurrence of concurrent actions,
continuous processes, and actions involving several agents can be expressed.

Our formalization of ability improves over previous accounts in several ways. Firstly,
it does not require an agent to know who he is in order to be able to achieve a goal by
doing an action. All references to the agent within the knowledge requireed are indexical
references. For instance, in the simple action case we require the agent to know that it is
physically possible for himself to do the action and that if he himself does the action, the
goal will necessarily hold afterwards (as well as knowing what the action is). Mere de re
knowledge is neither necessary nor sufficient for the agent to be able to achieve the goal (a
concrete example of this was given in chapter 4). Situations where an agent does not know
who he is (in the sense of not knowing an objective standard name for himself) are perhaps
unusual, but our theory could not claim to reflect a real understanding of the phenomenon
of indexicality if it did not deal with such cases.

Secondly, our account of ability is based on a very expressive temporal logic. We can
thus handle prerequisites or effects of actions that involve knowledge of absolute times and
knowing what time it is, as well as many cases of actions that refer to times (for example,
the action of locking up at 5 p.m., which is formalized in section 5.3). This would also make
it easier to extend the formalization to handle more complex actions than are currently
treated, for instance concurrent actions, actions involving several agents, and actions that
refer to time in very general ways.

Finally, the underlying logic includes an adequate treatment of indexical knowledge in
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general, which permits a more accurate specification of the knowledge prerequisites and
effects of actions.

We have then applied the framework developed to the formalization of various domains
where agents have goals to achieve and certain repertories of actions to do so. We have
shown how the resulting theory allows us to prove that the agent is able to achieve certain
goals if he knows certain facts. We have also shown how the actions involved should bé
formalized so as to avoid making excessive requirements upon the knowledge of agents —
so that only indexical knowledge, as opposed to de re knowledge, is required when that is
sufficient.

We first examined applications of the theory in the robotics domain, where indexicality
plays a particularly important role. We have shown how actions can be formalized, given
that perception yields indexical knowledge, and that ability to act upon an object does
not require de re knowledge of the object or its absolute position. We have also shown
how indexical knowledge and objective knowledge can be related in our framework to deal
with the use of maps for navigation. We have discussed the representational issues that
arise, which have general relevance to the formalization of actions with indexical knowledge
prerequisites or effects. Finally, we discussed problems that arise in handling certain higher-
level parametrized actions and proposed a solution.

We then developed applications of the theory in several other domains, which show
that the distinction between indexical and objective knowledge is generally useful and more
abstract than initial impressions might suggest, in particular, that it is in no way tied to the
notion of physical space. An example involving an agent who wants to make a phone call was
first formalized; we showed how this could be handled in a way that reflects the fact that the
agent need not always know what his area code is. We next looked at a very abstract domain,
that of data structure search and manipulation; it was shown how indexical knowledge was
also relevant in this case. Three situations where temporal knowledge is required for ability
were next examined. We found that the distinctions between various kinds of knowledge
that proved useful in spatial contexts are similarly useful in dealing with ability in temporal
contexts. Various problems with the notion of de re knowledge and its role in action were
then discussed. We concluded by arguing that the applications developed, in particular
the ones involving temporal knowledge, provide convincing evidence that the distinction

between indexical and objective knowledge supported by our framework has substantial
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practical value and that it cannot be done justice within existing accounts of ability.

6.2 Directions for Future Research

We now conclude by discussing various ways in which this work could be extended or applied
to other areas.

Situations involving temporally constrained goals and actions that refer to times, like
those discussed in section 5.3, play a major role in motivating the distinction between
indexical and objective knowledge that is central to our theory. They show that there are
practically significant cases that cannot be handled without accommodating this distinction
at a primitive level. But the examples discussed in that section do not nearly exhaust the
kinds of situations involving temporal knowledge that would be worth examining. For
instance, making use of a schedule raises the same kind of issues as that involved in the use
of maps in spatial domains. Moreover, the way the examples are treated is rather tentative;
it should be possible to develop more elegant and general treatments. Insights as to how
this could be done might be obtainable from existing work on programming languages
targeted at real-time applications and verification techniques applicable to such languages.
The work of Davis (1989a) on the formalization of actions involving the monitoring of the
agent’s environment for the occurrence of perceivable conditions should also be looked at.

Also, as pointed out in section 5.5, it would be desirable to obtain examples of commoniy
occurring situations where the distinction between knowing and ignoring who one is proves
useful; this would provide additional motivation for our framework. The work of Grove and
Halpern (1989) suggests that the area of distributed systems may be a good place to look
for such examples.

Many questions remain concerning the nature of de re knowledge and the role it plays
. in action, as the discussion in sections 5.4 and 4.7 makes clear. The issues involved in this
should be examined further; we believe that the theory developed in this thesis and the
examples discussed should provide new insights into these issues and could perhaps lead to
a better account of de re knowledge.

Our account of ability should also be extended to handle more complex types of actions,
such as those involving indefinite iteration and concurrency, as well as plans involving

multiple agents. Such cases are handled by Morgenstern (1987; 1988) and Nunes (1990),
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but their accounts do not deal with indexicality. Situations involving interacting agents
would be especially interesting from the indexicality point of view, since the difference in
perspective between agents must be accounted for if they are to have indexical knowledge
of the same facts. For example, if we were cooperating in the dismantling of a motor, and
were facing each other, and if we needed to agree that a particular wrench was to be used
next, I would need to know that it was the wrench on my left and you would need to know
that it was the wrench on your right.

It would also be desirable to have a mathematically satisfactory axiomatization of the
logic — one that is complete, if this is achievable. This might require a re-examination of
some aspects of the logic.

One should also examine how a planning program based on the theory could be imple-
mented, one that can handle situations where agents have only indexical (and incomplete)
knowledge. Various approaches to the development of planners based on theories of ability
have been tried. Moore (1980) formalizes the semantics of his theory within first-order logic
and then uses a normal theorem prover to reason with it; but this yields a planner that is
too inefficient to be applied to realistic situations. Morgenstern (1988) discusses work by
Meth and Davis directed at developing a relatively efficient STRIPS-style planner that is
sound but not complete with respect to her theory.

As it is, however, our theory is far from realistic in the reasoning power it ascribes to
agents: it assumes that agents know all logical consequences of what they know; it is also
subject to the frame problem. This limits its usefulness as a specification for a planner. One
should look for principled ways of restricting the inferential power of agents in the theory
so that in well defined classes of situations, the planning problem is tractable or at least
decidable.

There are two application areas where the theory developed in this thesis has the po-
tential for yielding very significant benefits. The first is that of discourse processing, in
particular, formal models of linguistic communication. Some existing models of language
use, such as that developed by Cohen and Levesque (1990), include sophisticated accounts
of how the knowledge and intentions of agents are involved in speech acts, but these ac-
counts generally ignore indexicality, both in utterances and mental attitudes. Other less
computationally oriented models, such as that of Barwise and Perry (1983) and Katagiri
(1989), include elaborate treatments of indexicality, but have little to say about what hap-
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pens after one has obtained a representation of the interpretation of the utterance; they
do not address the issue of how the agent can draw inferences from these indexical repre-
sentations and his prior knowledge, and ultimately take action. An integrated account of
reasoning and action, both linguistic and non-linguistic, that accommodates indexicality is
needed. Our theory would provide a good foundation for such an account. Some of the
key issues that would have to be addressed are how one should account for the perspective
shift that occurs as information is communicated by one agent to another, and how one
should deal with indexicals like ‘you’ and demonstratives like ‘this person’, which do not
have obvious definitions in terms of self and now. It would also be interesting to see if the
so called “self-referentiality” of speech acts could not be treated as a case of indexicality.
Speech acts are “self-referential” in the sense that the speaker must utter the sentence with
a particular intention, intention that refers to the act itself in its specification of how the
ultimate intended effects are to be achieved, that is, through the addressee’s understanding
of the act itself.

The other a.pplica.tion area for which this theory would appear to hold much promise is
that of logical formalisms for the design of reactive agents, such as autonomous robots. In
many domains, it is essential that agents be able to respond in a timely manner to certain
environmental conditions (e.g., to avoid colliding with a moving object). As mentioned
in section 2.3, architectures have been proposed for such reactive agents that emphasize
environment monitoring and the selection of actions appropriate to conditions; the focus
is on plan execution as opposed to plan generation. Rosenschein and Kaelbling (1986)
have developed a framework for the design of reactive agents that involves specifying the
desired behavior in a logical language and using tools to compile the specification into a
machine-level description that satisfies it; plan generation occurs not at run-time but at
compile-time (Kaelbling and Rosenschein 1990). Moreover, it has been argued repeatedly
that indexical representations play a major role in the production of reactive behavior (Agre
and Chapman 1987; Subramanian and Woodfill 1989). Thus, it would appear that aspects
of our logic could prove useful as part of a formalism for the design of reactive agents. Also,
studying the role of indexical representations in such agents could yield further insights into

indexicality and suggest refinements to our theory.
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Formal Syntax of the Logic

Syntactic categories

Category name Syntactic variable Membership
Agent variables e {ao,a,,...}
Individual variables vt {t0y%1y. -}
Temporal variables vt {to,t:,. -}
Action variables ve {do,d;,...}
Agent functions i {rg,rs,...}
Individual functions i {r§,F,.. .}
Temporal functions F {rt,T3,...}
Action functions 7 {rd,7%,..}
Predicate symbols R {Ro,Ry,...}
Variables v

Agent terms 6°

Individual terms 6

Temporal terms 6

Action terms 64

Formulas . p

Formation rules
v® | v | vt | v?
v°® | self | 7263, ...,6%)
0° | v'| £i(6i,...,6.)
vt | now | Fi(6F, ..., 6
v ] 7465, .-, 05)
R(6},...,6,) | Does(6%,6") | (65 = 05) | (65 = 05) | (6% = 6%) | (65 = 65) | (6% < 6%) |
¢ | (1 D 92) | Yop | At(6, ) | By(6°,¢) | Know(e) | Op
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Glossary

Primitive Symbols

Symbol Meaning

self the agent of the context
now the time of the context
(6% < 6%) 6% is earlier than 6}

Does(8,6') self does action 8% from now to time 6
At(6%,¢) ¢ holds at time ¢

By(6°, ) agent 0° has property ¢

Know(p) self knows that ¢

Op  is historically necessary

Action Operators
Definitions on page 58

Expression Meaning

skip doing nothing

(61;62) doing 6, and 6 in sequence

if(¢, 61,62) doing 6; if o holds and 6, otherwise

sk - doing § k times in sequence

ifThen(yp,8) doing § if ¢ holds and nothing otherwise
whiley(p,6) doing § up to k times as long as ¢ remains true

177



Formula
Cp
Know(62, )

Glossary

Derived Operators

Meaning
¢ is historically possible
6* knows that ¢

and similarly for Does(#%, §), Can(6°, 6, ¢), etc.

DoesNext(4)
DoneFromTo(4, 6, 6¢)
DoneFrom(é, 6?)
Done(§)
PhyPoss(§)
AfterNec(d, )
Res(é, p)
Kwhether(yp)
DoneWhen(6, ¢)
AllPast(yp)
SomePast(yp)
AllFut(yp)
SomeFut(y)
AllPastN(p)

self does action é from now to some future time
self does § from time 8¢ to time 6}

self does § from time 6* to now

self does § from some past time to now

it is “physically possible” for self to do action § next
if self does § next, then ¢ must hold afterwards

6 results in ¢

self knows whether ¢ holds

self has just done § and ¢ was true when he started
¢ was true at all past times

 was true at some past time

¢ will be true at all future times

¢ will be true at some future time

¢ was true at all past times and is true now

and similarly for SomePastN, AllFutN, and SomeFutN

Can(é, ¢)

self can achieve ¢ by doing
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Def.
57
57

59
59
59
59
60
60
60
60
60
60
60
60
60
60
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