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1. Introduction

•  Dysarthria is a set of neuromuscular motor 
 disorders that limit speech intelligibility.
•  Dysarthric speakers often prefer spoken expression 
 over other physical means to increase naturalness 
 and speed.
•  Automatic speech recognition (ASR) is essentially
 inaccessible for individuals with dysarthria.

•  We compare the following types of acoustic model:
•  Speaker-dependent (SD): Trained solely to 
 an individual.

•  Speaker-adaptive (SA): Initialized by
 models trained on a larger population,
 later adjusted to a single user.

•  SD models tend to become more accurate as user-
 specific training increases, but are initially less 
 accurate than SA models.
 

2. Previous Work

•  Raghavendra et al. [4] compared a SA phoneme- 
 and a SD word-recognizer on dysarthric speech.

•  They concluded that SA is appropriate for 
 mild or moderate dysarthria, with empirical 
 relative error reduction (RER) of 22%.

• Severely dysarthric speakers are better served 
 by SD, with 47% RER.

• Noyes and Frankish [3] report SD models attaining 
 between 75% and 99% word accuracy for impaired 
 speakers on a small vocabulary.

• Humans are accurate between 7% and 61% of
 the time.

•  Sawhney and Wheeler [5] found pronounced gains 
 from SD models, with an RER of ~22% over 
 independent models using unsupervised 
 segmental phoneme recognizer.

•  Most work suffers from using too few (≤ 5) 
 speakers for training.
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3. Data

•  We use the annotated Nemours database [1].

•  This contains 11 dysarthric male speakers, each 
 producing 74 nonsense sentences of the form
   The (N0) is (V)ing the (N1).

•  Target words were randomly selected without
 replacement to provide closed-set phonetic
 contrasts (e.g., place, manner, voicing).

•  One non-dysarthric speaker repeated each
 sentence in the database.

•  Speakers are grouped according to recognition 
 rate with baseline acoustic models trained on 
 spoken Wall Street Journal (WSJ) transcripts [2].

•  Subjective sentence-level human intelligibility 
 scores are similarly distributed.
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6. Discussion
•  Pre-existing models from the non-dysarthric 
 population may best suit dysarthric speakers with 
 higher intelligibility.

• Our results support Raghavendra et al. [4], 
 except we do not observe a clear superiority of 
 SD models for severely dysarthric speakers.

•  In contrast, we measure only slight SD gains 
 as the number of Gaussians increases.

•  Phonemic substitution is the most common
 phenomenon across all speakers, especially
  /ng/ → /n/ (125), /t/ → /uw/ (87), /ey/ → /ih/ (84)

•  Deletions mostly involve dropped consonants
  /b/ (118), /s/ (111), /w/ (60), /f/ (55), /l/ (48)

•  There is not enough data to represent intra-
 speakervariation. What are the alternatives?
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7. Current Work
•  We are designing a generic classifier framework 
 that includes neural networks and support vectors. 

•  Experiments will explore alternatives to GMM
 emission probabilities (e.g., Bayes nets).

• Data collection combines acoustics and kinetics 
 using electromagnetic midsagittal articulography.

• This will incorporate physical models into ASR
 and contain more linguistically varied texts 
 amenable to syntactic and semantic language 
 modeling.

• Future work includes development of a general
 dictation system accessible to dysarthric speakers.    

4. Model and Training Mechanism

•  Both the SD and SA models are continuous 3-state 
 triphone Hidden Markov Models (HMMs) decoded 
 by the Viterbi algorithm.

• Emission probabilities bi are Gaussian mixture
  models (GMMs), with K Gaussians Nk.

•  Language model contains lexical tree structures
  augmented with a context-free grammar.

 

•  Baseline: Use WSJ corpus, don’t train.

• Dependent Training: Initialize bi randomly.

•  Adaptive Training: Initialize with WSJ corpus.

•  For training, we independently vary the number 
 of Gaussians in bi, and apply the iterative Baum-
 Welch training algorithm on each speaker.

•  Word-level accuracy is measured using our
 automated system on test data.
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5. Results

•  Increasing the amount of training data from 20 to
  132 training sentences per speaker does not show
 any definite improvement (accuracy fluctuates 
 around ±3% from mean).
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