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Vocal Tract Representation in the Recognition
of Cerebral Palsied Speech

Frank Rudzicz,a Graeme Hirst,a and Pascal van Lieshouta,b,c

Purpose: In this study, the authors explored articulatory information
as a means of improving the recognition of dysarthric speech by
machine.
Method: Data were derived chiefly from the TORGO database of
dysarthric articulation (Rudzicz, Namasivayam, & Wolff, 2011)
in which motions of various points in the vocal tract are measured
during speech. In the 1st experiment, the authors provided a
baseline model indicating a relatively low performance with
traditional automatic speech recognition (ASR) using only acoustic
data from dysarthric individuals. In the 2nd experiment, the
authors used various measures of entropy (statistical disorder)
to determine whether characteristics of dysarthric articulation
can reduce uncertainty in features of dysarthric acoustics. These
findings led to the 3rd experiment, in which recorded dysarthric

articulation was directly encoded into the speech recognition
process.
Results: The authors found that 18.3% of the statistical disorder
in the acoustics of speakers with dysarthria can be removed if
articulatory parameters are known. Using articulatory models
reduces phoneme recognition errors relatively by up to 6% for
speakers with dysarthria in speaker-dependent systems.
Conclusions: Articulatory knowledge is useful in reducing rates
of error in ASR for speakers with dysarthria and in reducing
statistical uncertainty of their acoustic signals. These findings may
help to guide clinical decisions related to the use of ASR in the
future.
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D ysarthria classifies a group of motor speech dis-
orders that can be associated with “weakness,
slowness, and /or lack of coordination of the

speech musculature as the result of damage to the cen-
tral or peripheral nervous system. Phonation, respira-
tion, resonance, articulation, and prosody are affected.
Movements may be impaired in force, timing, endur-
ance, direction, and range of motion. Symptoms may in-
clude slurred speech, weak or imprecise articulatory
contacts, weak respiratory support, low volume, incoor-
dination of the respiratory stream, hypernasality, and
reduced intelligibility” (American Speech-Language-
Hearing Association, 2011, p. 38).

Dysarthria can be caused by genetic or traumatic
factors and may occur at any age (including prenatal
stages). Dysarthria differs from another motor speech
disorder, known as verbal apraxia, in that the latter
reduces a speaker’s ability to plan speech movements,
whereas dysarthria strictly reflects an inability to exe-
cute those movements and does not typically affect the
regular comprehension or production of meaningful,
syntactically correct language. Usually, dysarthrias
are classified according to perceived speech symptoms
and the assumed affected neurological systems caus-
ing these symptoms (Duffy, 1995). For example, dam-
age to the recurrent laryngeal nerve introduces a
weakness or paralysis of the intrinsic laryngeal mus-
culature, which will affect the quality and intensity
of voice signals. Inadequate control of velar movement
caused by a lesion that would affect the pharyngeal
branches of the vagus cranial nerve may lead to
a disproportionate amount of air being released
through the nose during speech (i.e., hypernasality).
Lesions that more generally affect the ability to ade-
quately control articulator movements will often
produce heavily slurred speech and a more diffuse
and less differentiable vowel target space (Kent &
Rosen, 2004). Moreover, the lack of articulatory control
often leads to various involuntary sounds caused by
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velopharyngeal or glottal noise or by noisy swallowing
problems (Rosen & Yampolsky, 2000).

Later-onset causes of dysarthria are typically trau-
matic, including cerebrovascular stroke,with the severity
of impairment varyingwith the amount of cerebral dam-
age (Rudzicz, 2011b). Other sources of dysarthria include
multiple sclerosis, Parkinson’s disease, myasthenia
gravis (i.e., blocked acetylcholine receptors), and amyo-
trophic lateral sclerosis (Kent&Rosen, 2004). Childhood
manifestations of dysarthric speech are often the result
of trauma (e.g., stroke, asphyxia, infections) or congeni-
tal malformations of the brain, inhibiting normal devel-
opment in the speechmotor areas.Cerebral palsy (CP) is
the most common physical impairment in pediatrics, af-
fecting approximately 2.5 per 1,000 children in Western
countries (Shevell, Miller, Scherer, Yager, & Fehlings,
2011), 88% of whom are dysarthric throughout adulthood
(Augmentative Communication Inc., 2007). It is a non-
progressive symptom complex with a movement disorder
as a central defining characteristic that is quite hetero-
geneous in terms of etiology, presentation (including the
presence of learning disabilities and both cognitive and
linguistic problems in many of these children), severity,
and many other factors (Shevell et al., 2011). This is also
reflected in the speech symptoms that, if present in cer-
tain individuals suffering from CP, may show different
degrees and combinations of types of dysarthria.

By definition, dysarthria can have dramatic conse-
quences for speech intelligibility amonghuman listeners
(Hustad, Gorton, & Lee, 2010). In this article, we focus
on the problems experienced by artificial listeners—
that is, speech recognition systems.

Background: Automatic
Speech Recognition

Current automatic speech recognition (ASR) has
produced tools for the general public that are in wide-
spread use, but a high error rate in recognizing and
adapting to dysarthric speech has kept such software ef-
fectively inaccessible to individuals with severe speech
disorders. Depending on the severity of the speech disor-
der, as few as 3% of the words uttered by speakers with
dysarthria might be recognized by traditional software
in contexts in which approximately 85% of the words
spoken by an individual without dysarthria might be
recognized correctly (Rudzicz, 2007).

The goal of ASR, in general, is to decide on the opti-
mal phoneme sequence rc = p1 p2 . . . pn that describes
an acoustic input speech signal X:

rc ¼ argmax
r

PðrÞPðX jrÞ
PðXÞ ; ð1Þ

where P(r) and P(X|r) are the language model and the
acoustic model, respectively. For example, a particular
sequence of phonemes, r1, might have a very high lexical
probability, P(r1), but might have a very low acoustic
probability, P(X|r1). Naturally, given a particular acous-
tic observation, X, there are many possible phoneme
sequences, r, that one can use to evaluate P(r)P(X|r)
(some of them are very unlikely), and it can be computa-
tionally expensive to consider them all. However, one can
use various techniques to determine which phoneme
sequences are themost likely—a process called decoding.
The decoding process essentially classifies an observed
input by assigning a particular sequence of phonemes
to it.

The process of deciding the optimal phoneme se-
quence depends on probability distributions P(r) and
P(X|r) that are representative of realistic data. There-
fore, a crucial component of speech recognition is the au-
tomatic adjustment of those probabilities given large
amounts of sample data, a process calledmachine learning
or automatic training. In this work, as in most work with
ASR, the observable sequences,X, are sequences of vectors
of mel-frequency cepstral coefficients, each representing
subsequent windows of approximately 20 ms of speech.
To compute these representative features of speech, we
use the first 13 cepstral dimensions, the total log energy,
and their first-order (d) and second-order (dd) derivatives,
giving sequences ofT 42-dimensional real-valued observa-
tions, O = o1o2. . .oT, for variable T.

The purpose of this studywas to understand towhat
extent relevant articulatory data can instruct us on how
to manage the acoustic behaviors of speakers with
dysarthria, particularly in specialized ASR. The stan-
dard ASR configuration is explored in Experiment 1, in
which baseline recognition results were obtained with
systems that use only acoustic input. Experiment 2
was an attempt to characterize data from speakers with
dysarthria in terms of alternative representations—
for example, distortions of underlying task dynamics
(Saltzman & Munhall, 1989)—and to analyze the en-
tropy (statistical disorder) in dysarthric acoustics and
articulation. Ifmeasurements of the vocal tract of speak-
ers with dysarthria are unavailable or sparse, then char-
acterizing (or synthesizing) such data as a distortion of
other representations forwhich data are availablewould
be useful in training or initializing ASR systems. A re-
duction in entropy in the acoustics given articulatory
information provides a theoretical argument for in-
corporating vocal tract data in ASR. In Experiment 3,
we provided an empirical argument of such incorpora-
tion by describing models that are initialized with ex-
plicit articulatory measurements. In the experiments
described in this article, we used a new database called
TORGO (Rudzicz, Namasivayam, &Wolff, 2011), which
consists of dysarthric speech including articulation
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data acquired using three-dimensional (3D) video and
articulography.

Materials
Because speakers with dysarthria are especially

susceptible to fatigue, collecting data from this popula-
tion can be challenging. The Alfred I. duPont Institute’s
Nemours database (Menéndez-Pidal, Polikoff, Peters,
Leonzjo, & Bunnell, 1996) consists of 11 male partici-
pantswith dysarthriawhohave varying degrees of intel-
ligibility and one male participant without dysarthria.
Each participant uttered 74 syntactically invariant and
semantically meaningless short sentences and two addi-
tional paragraphs designed to provide closed-set phonetic
contrasts (e.g., place, manner, voicing; Menéndez-Pidal
et al., 1996). TheNemours database includes assessments
of each speaker’s motor function by a speech-language
pathologist (SLP), but it does not include any articulatory
data.

The University of Edinburgh’s MOCHA database
(Wrench, 1999) consists of 460 sentences uttered by
onemale British speaker and one female British speaker,
both of whom do not have dysarthria. All acoustic data
were temporally aligned with electromagnetic articulo-
graphy (EMA; recorded at 500 Hz), laryngography (at
16 kHz), and electropalatography (at 200 Hz). The EMA
data consist of bivariate positional information fromeight
articulatory locations—namely, the upper lip lower lip,
upper incisor, lower incisor, tongue tip, tongue blade
(1 cm from the tongue tip), tongue dorsum (1 cm from
the tongue blade), and velum. Each parameter wasmea-
sured in the two dimensions of the midsagittal plane.

The TORGO database of dysarthric articulation
consists of aligned acoustic and articulatory measure-
ments from eight individuals (five male, three female)
with dysarthria (Rudzicz et al., 2011). The data used in
the following experiments are fromparticipantswithCP
(spastic, athetoid, or ataxic) who are between the ages of
16 and 50 years. These individuals were matched ac-
cording to age and gender with control participants
from the general population. Each participant recorded
3 hr of data. In that time, speakers with dysarthria re-
corded approximately 500 utterances, on average, and
control speakers recordedapproximately 1,000utterances,
on average. Themotor functions of each participant in the
TORGO database were assessed according to the stan-
dardized Frenchay Dysarthria Assessment (Enderby,
1983) by an SLP affiliated with Holland Bloorview Kids
Rehabilitation Hospital and the University of Toronto.

Individual prompts were presented to participants
in random order. They were derived from nonwords
(e.g., to collect information on plosive consonants in the
presence of high and low vowels; Bennett, van Lieshout,

& Steele, 2007), short words (e.g., contrasting pairs from
Kent, Weismer, Kent, & Rosenbek, 1989), and restricted
sentences (e.g., the sentence intelligibility section of the
Yorkston–BeukelmanAssessment [Yorkston&Beukelman,
1981] and sentences used in the MOCHA database
[Wrench, 1999]).

We collected the EMA data using the 3D Carstens
Medizinelektronik AG500 system (Zierdt, Hoole, &
Tillmann, 1999; van Lieshout, Merrick, & Goldstein,
2008). Sensors were attached to three points on the sur-
face of the tongue—namely, the tongue tip (1 cm behind
theanatomical tongue tip), the tonguemiddle (3 cmbehind
the tongue tip coil), and the tongue back (approximately
2 cm behind the tongue middle coil). A sensor for track-
ing jaw movements was attached to a custom mold that
fits the surface of the lower incisors as described by van
Lieshout and Moussa (2000). Four additional coils were
placed on the upper and lower lips and the left and right
corners of the mouth. Further coils were placed on the
participant’s forehead, nose bridge, and behind each
ear above the mastoid bone for reference purposes.
Except for the left and right mouth corners, all sensors
that measure the vocal tract were generally on the mid-
sagittal plane, on which much of the relevant motion of
speech takes place.

Aspects of Dysarthric Speech in TORGO
A number of features differentiate dysarthric and

nondysarthric speech in our recorded data. Table 1
shows the proportion of phonemes that were mispro-
nounced according to manner of articulation for dysar-
thric speech. Plosives are mispronounced most often,
with substitution errors exclusively caused by errant
voicing (e.g., /d / for /t/ ). By comparison, 5% of corre-
sponding plosives in total are mispronounced in non-
dysarthric speech. Furthermore, the prevalence of
deleted affricates and plosives in word-final positions,
almost all of which are alveolar, does not occur in the
corresponding nondysarthric speech data.

Table 1. Proportion of phoneme substitution (SUB) and deletion (DEL)
errors in word-initial (i), word-medial (m), and word-final (f) positions
across categories of manner for dysarthric data.

Source

SUB (%) DEL (%)

i m f i m f

Plosives 13.8 18.7 7.1 1.9 1.0 12.1
Affricates 0.0 8.3 0.0 0.0 0.0 23.2
Fricatives 8.5 3.1 5.3 22.0 5.5 13.2
Nasals 0.0 0.0 1.5 0.0 0.0 1.5
Glides 0.0 0.7 0.4 11.4 2.5 0.9
Vowels 0.9 0.9 0.0 0.0 0.2 0.0
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Figure 1 shows the durations of various vowels aver-
aged across speakers from the dysarthria and control
groups of TORGO. All vowels produced by speakers with
dysarthria are significantly slower than those produced
by speakers without dysarthria at the 95% confidence in-
terval and can be up to twice as long, on average. This
might partially be explained by an increase of brief gaps
in exhalation during sonorants. The vowels produced by
speakers with dysarthria have variances that are similar
to those of their counterparts without dysarthria.

Experiment 1: Hidden Markov
Model (HMM) Baselines

The most common model used in ASR is the hidden
Markov model (HMM), which categorizes observable
temporal data sequences according to hidden (i.e., unob-
servable) statistical parameters and an underlying
connected-state structure. In speech recognition re-
search, the unobservable state is typically an unspeci-
fied high-level abstraction of a relatively invariant
section of speech whose distribution is described by a
weighted mixture of Gaussian components, the number
of which is a manually specified parameter that we can
empirically alter. Mathematical details are provided in
the Appendix.

In our study, each phoneme was represented by its
ownHMM.Three states indicatedwhether the phoneme
was in its initial phase, its relatively steady central
phase, or its final phase. This tri-state model allowed
for variation that can occur at the beginning and end
of phonemes, given their context. These states were hid-
den because one cannot directly observe whether the
speaker is producing these segments in their initial, cen-
tral, or final phase—this is an approximation of the un-
derlying dynamics.

Finding the state sequence having the highest prob-
ability given an observation sequence is tantamount to
finding the most likely phoneme sequence, assuming
that phoneme HMMs are concatenated to form words.
TheViterbi algorithm is used todetermine themost likely
state sequence that represents an observation, given a set
of an HMM’s parameters (Huang, Acero, & Hon, 2001).

Alternatives to HMMs for speech recognition have
been explored in previous work (Rudzicz, 2011a). Some of
these alternatives, including neural networks and support
vector machines, are discriminative models in that their
parameters are adjusted to minimize the expected rates
of error on unseen test material. The HMM, by contrast,
isgenerative in that its parameters are adjusted so that un-
seen test material obtains the highest expected likelihood.
One practical advantage that the HMM has over other
mechanisms is that it explicitly encodes the notion of tem-
poral dynamics into its parameters, which is useful for

Figure 1. Duration of vowels among dysarthric (filled circles) and control (unfilled circles) speakers. Circle
positions correspond to the average duration (in ms) of the associated vowel, and the radii of the circles represent
1 SD of the data.
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speech data. It is also still the most common mechanism
used for commercial ASR and for ASR research (Lamere
et al., 2003; Vertanen, 2006).We studied one generative al-
ternative to theHMM,namely, thedynamicBayesnetwork
(DBN), in Experiment 3.

Method: Maximum a Posteriori
and Maximum Liklihood Linear
Regression Adaptation

When the statistics of HMMs are trained solely
with data from an individual speaker, they constitute
speaker-dependent models, which are theoretically resil-
ient to any loss of precision caused by interspeaker vari-
ation. However, when these models are trained using
data from several (usually many) speakers, they consti-
tute speaker-independentmodels,which are less sensitive
to individual characteristics (due to interspeaker varia-
tion) but can be trained withmore data and can therefore
capture the most common aspects of speech.

Adaptation of model parameters is used when the
conditions in which those parameters were trained no
longer reflect the conditions in which new data will be
observed. For example, if a model is trained in a quiet
environment but will be used in a noisy one, model pa-
rametersmust be adjusted to reflect this newenvironment
using a small amount of calibration data,which typically
is much smaller in scope than the original training data
set. HMMadaptation is employed here using a combina-
tion of two standard techniques—namely, maximum a
posteriori (MAP) estimation and maximum likelihood
linear regression (MLLR). These techniques are de-
scribed in detail in the second section of the Appendix.

This process of MAP followed by MLLR constitutes
a speaker-adaptive system. It is iterative and can be con-
sidered as an interpolation between speaker-dependent
and speaker-independent models, compromising be-
tween the advantages and drawbacks of each approach
(Huang et al., 2001). Dysarthric speech is atypical, so it
is important to study the benefits and limitations of both
dependent and adaptive models. For instance, speakers
with a limited but very uncommon range of acoustic
characteristics may, in theory, bemore accurately repre-
sented by dependent models, whereas those with more
typical vocal characteristics but limited available data
(or diffuse data) may be more accurately represented
by adaptive models in which data from other speakers
fill in the gaps. The relative merits of adaptive versus de-
pendent models for dysarthric speech is still a matter of
ongoing research (Raghavendra, Rosengren, &Hunnicutt,
2001; Sharma & Hasegawa-Johnson, 2010). Although
speaker adaptation typically involves more data than
speaker dependence, the additional data are derived

from other speakers whose patterns of speech may
vary significantly from those of the target speaker and
are not used during the adaptation phase.

Comparing speaker-independent, speaker-adaptive,
and speaker-dependent models with dysarthric speech
indicates to what extent ASR will be useful for these
speakers using traditional acoustic-only models. This
also provides the baseline againstwhichwe can compare
results in Experiment 3. Splitting analysis according to
severity is relevant to clinicians who work with a spec-
trum of vocal capabilities.

Results
We categorized each of the 10 speakers with dysar-

thria in theNemours database according to the speakers’
recognition rate using a baseline HMM with acoustic
input only. This acoustic model is trained with approxi-
mately 211 hr of spoken transcripts of The Wall Street
Journal (WSJ) frommore than 100 individuals with typ-
ically developing speech (Lamere et al., 2003; Vertanen,
2006). Because this model encapsulates the statistics of
a large amount of speech from the general population, it
is a speaker-independent model that is not necessarily
representative of dysarthric speech. The four speakers
having word-level recognition rates below 10% with the
baseline model were grouped as severe, the four speakers
with rates between 11% and 30%were grouped asmoder-
ate, and the three speakers with rates between 31% and
60% were grouped as mild. The word-level recognition
rate with the control speaker was 84.8%.

Both the dependent and adaptive models for each
speakerwere tri-state left–rightHMMs. For each speaker,
we initialized the HMM acoustic parameters of the de-
pendent model randomly and initialized the adaptive
model with the commonWSJ-trained baseline. As an ex-
perimental parameter, we independently varied the
number of Gaussians (M in Equation 7 of the Appendix)
and the amount of training utterances in order to mea-
sure how precision and data coverage accommodate the
variability of dysarthric speech; we applied the itera-
tive Baum-Welch training algorithm on both models
for each speaker. Language models consisted of com-
bined bigram (i.e., two-word) and unigram (i.e., one-
word) statistics gathered with maximum likelihood
estimation over the textual representation of the WSJ
corpus and were not adjusted iteratively during
HMM training. Evaluation and training materials con-
sisted of 74 syntactically invariant sentences with the
template <<The (NOUN) is (GERUND VERB) the
(NOUN).>>,where nouns and verbs were selected with-
out replacement.

Figure 2 shows word-level accuracy increasing
monotonically with the number of Gaussians for the
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speakers with mild and severe dysarthria. In all cases,
word accuracy is determined as the proportion of words
correctly recognized over the total number of words in
the true orthography, as determined by the Levenshtein
alignment algorithm. Reported results are averages
over accuracies within the specified group, as deter-
mined above, and across a tenfold cross-validation. The
horizontal bars denote average baseline recognition ac-
curacy obtained with the speaker-independent model
averaged across the speakers in the respective groups.
In all cases but themost severe, the adaptivemodels out-
performed their dependent counterparts and reduced
relative error by up to 23.1% for the mild group, by
4.9% for the moderate group, and by 30.7% for the con-
trol speaker. This suggests that taking advantage of pre-
existing models on the basis of speech samples from
individuals who do not have dysarthria may best suit
speakers with dysarthria who have higher intelligibil-
ity scores. By contrast, there are only slight gains over
the baseline as the number of Gaussians increases for
speaker-dependent models, as seen for the speakers
with severe dysarthria.

Carnegie Mellon’s Sphinx system allows the recog-
nition process to decompose its output into a string of
phonemes, effectively ignoring word order in the genera-
tion of this hypothesis (Lamere et al., 2003). Using this
method, we can analyze themore low-level sources of con-
fusion thatmay confound the higher-level classification—
namely, in terms of phoneme insertion, deletion, and
substitution errors made by the ASR system. Of the
485 insertion errors made by the model with dysarthric
speech, /ih/ and /d/ are the most common, with 63 and
51 errors, respectively. The most commonly dropped

phonemes by these speakers are /b/ (118), /s/ (111), /w/
(60), /f/ (55), and /l/ (48), among 649 deletion errors in
total. The most common substitutions are /ng/ for /n/
(125) and, surprisingly, /t/ for /uw/ (87), /ey/ for /ih/ (84),
and /t/ for /n/ (77). These observations suggest that ASR
software might be made more accessible to speakers
with dysarthria by increasing robustness against conso-
nant variations in general.

Experiment 2: A Noisy-Channel
Model of Dysarthria

Dysarthria is sometimes characterized as a distor-
tion of parallel biological pathways that corrupt motor
signals before execution (Freund, Jeannerod, Hallett,
& Leiguarda, 2005). This type of degradation is charac-
teristic of the noisy-channel model, in which signals are
distorted according to known statistics. Therefore, in
this experiment, the speech–motor interface was cast
within the framework of the noisy-channel model.
First, we asked whether the incorporation of articulatory
data was theoretically useful in reducing uncertainty in
dysarthric acoustics.

Second, we asked which of two alternative noisy-
channel models best described the observed variations
in dysarthric speech. This work was based on Rudzicz
(2010c). In this experiment, the author used TORGO
data from three speakers with dysarthria who have CP
(male participants M01 andM04, and female participant
F03) as well as their age- and gender-matched counter-
parts from the general population (male participants

Figure 2. Automatic speech recognition accuracy measured against acoustic model precision (i.e., number of Gaussians). Baselines represent
models trained on theWall Street Journal corpus. We did not alter the parameters of the baseline model, hence the constant accuracy; we provide
their performance here for comparison.
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MC01 and MC03, and female participant FC02). This
subset of the data from speakers with dysarthria was
used because, at the time of these experiments, it
contained the most phonemic annotation, which is a nec-
essary precondition to some of our analyses. Experiments
were restricted to 100 phrases uttered in common by all
six speakers.

Method: Entropy
We wanted to measure the degree of statistical dis-

order in both acoustic and articulatory data for speakers
with and without dysarthria as well as the posterior dis-
order of one type of data given the other. Thesemeasure-
mentsweremade on the data directly, rather than on the
models trained in Experiment 1, in order to obtain a rep-
resentative characterization of the observation spaces
themselves. This quantification would inform us as to
the relative merits of incorporating knowledge of articu-
latory behavior into ASR systems for speakers with dys-
arthria. Entropy (also called Shannon entropy), H(X ), is
ameasure from information theory of the degree of uncer-
tainty in a randomvariable,X.When observed values are
continuous—as they are in our acoustic and articulatory
database—we must use differential entropy, defined by

HðXÞ ¼ �
Z
X
f ðXÞ log f ðXÞdX ; ð2Þ

where f (X ) is the probability density function of X. For
a number of distributions, f (X ), the differential entropy
has known forms (Lazo & Rathie, 1978). However, be-
cause both acoustic and articulatory data follow non-
Gaussiandistributions, these spacesmustbe represented
bymixtures ofGaussians.Huber, Bailey,Durrant-Whyte,
andHanebeck (2008) developed anaccurate algorithm for
estimating differential entropy of Gaussian mixtures on
the basis of iteratively merging Gaussians and the ap-
proximate upper bound of the entropy,

~
HðXÞ ¼

XL
i¼1

wi

�
�logwi þ 1

2
logðð2peÞN jPij

�
; ð3Þ

wherewi is theweight of the ith (1≤ i≤L) Gaussian, andP
i is that Gaussian’s covariance matrix. This method

was used to approximate entropies here, with L = 32
being determined empirically. Although differential
entropies can be negative and not invariant under change
of variables, other properties of entropy are retained
(Huber et al., 2008), such as the chain rule for conditional
entropy, H(Y|X ) = H(Y, X ) – H(X ), which describes the
uncertainty inY given knowledge ofX, and the chain rule
for mutual information, I(Y; X) =H(X) +H(Y ) – H(X, Y),
which describes the mutual dependence between X and

Y. Here, we quantized entropy with the nat, which is
the natural logarithmic unit (, 1.44 bits).

Our purpose inmeasuring the statistical disorder in
our data was to provide a theoretical justification for the
use of the data in Experiment 3. Specifically, if articula-
tory measurements sufficiently reduce the entropy in
the acoustics, ASR systems that encode the former
when recognizing words in the latter should be more
accurate.

Results: Entropy
We measured the differential entropy of acoustics

[H(Ac)], of articulation [H(Ar)], and of acoustics given
knowledge of the vocal tract [H(Ac|Ar)] in order to ob-
tain theoretical estimates of the utility of articulatory
data. Table 2 shows these quantities across the six
speakers in this study. As expected, the acoustics of
speakers with dysarthria were much more statistically
disordered than for speakers without dysarthria. One
unexpected finding is that there was very little differ-
ence between speakers in terms of their entropy of artic-
ulation. Although speakers with dysarthria clearly lack
articulatorydexterity, the comparable statistical disorder
implies that they nonetheless articulate with a level of
consistency similar to that of their counterparts with-
out dysarthria.1 However, the equivocation H(Ac|Ar) is
1 order-of-magnitude lower for speakers without dysar-
thria. This implies that there is very little ambiguity left
in the acoustics of speakers without dysarthria, given
simultaneous knowledge of the vocal tract, but that
quite a bit of ambiguity remains for our speakers with
dysarthria, despite significant reductions. Further in-
vestigation should confirm the causes of this remnant
ambiguity. Potential sources include unmeasured inter-
action between articulators and unmeasured lateral
asymmetry in the tongue.

Table 3 shows the average mutual information be-
tweenacoustics andarticulation for each type of speaker,
given knowledge of the manner of articulation. Table 1
showsaprevalenceof pronunciationerrorsamongspeakers
with dysarthria for plosives, but Table 3 shows no par-
ticularly low congruity between acoustics and articula-
tion for this type of phoneme. Those pronunciation errors
tended to be voicing errors, which would involve glottal
activity—something that was not measured in this study.

In Table 3, it appears that there is little mutual in-
formation between acoustics and articulation in vowels
across all speakers. However, this is almost certainly the
result of our exclusion of tongue-blade and tongue-
dorsum measurements2 in order to standardize across

1This is borne out in the literature (Kent & Rosen, 2004).
2We retained the tongue-tip, jaw, and four lip measurements.
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the speakers who could not accept these sensors. Indeed,
the configuration of the entire tongue is known to be use-
ful in discriminating among the vowels (O’Shaughnessy,
2000). An ad hoc analysis including all three tongue sen-
sors for Speakers F03, MC01, MC03, and FC02 revealed
mutual information between acoustics and articulation
of 16.81 nats for F03 and 18.73 nats for the control speak-
ers, for vowels. We compared this with mutual informa-
tion of 11.82 nats for F03 and 13.88 nats for the control
speakers across all other manners of articulation. The
trend is that acoustics are better predicted given more
tongue measurements, as expected (Mefferd & Green,
2010).

Method: The Noisy Channel
In the noisy-channel model, a signal x Z X is dis-

torted by a medium that transmits signal y Z Yaccord-
ing to some distribution P(Y|X ). Given some probability
that the received signal y is corrupted, the message pro-
duced by the decoder may differ from the original mes-
sage (Shannon, 1949). To what extent can the effects of
dysarthria be described within an information-theoretic
noisy-channel model? We pursued two competing hy-
potheses. The first hypothesis modeled the assumption

that dysarthric speech is a distorted version of typical
speech. Here, signals X and Y represent the vocal char-
acteristics of the general population and the population
with dysarthria, respectively, and P(Y|X ) models the
distortion between them. The second hypothesis mod-
eled the assumption that both dysarthric and typical
speech are different distorted versions of some common
abstraction. Here, Yd and Yc represent the vocal charac-
teristics of speakers with and without dysarthria, re-
spectively, and X represents a common, underlying
representation and that P(Yd|X ) and P(Yc|X ) model
distortions from that representation. These two hypoth-
eses are visualized in Figure 3. In each of these cases,
signals can be acoustic, articulatory, or some combina-
tion thereof.

To test the hypothesis that both dysarthric and
control speech are (different types of) distortions of
a common abstraction of the vocal tract, we incorpo-
rated the theory of task dynamics, in which the dy-
namic patterns of speech are represented as the result
of overlapping gestures, which are high-level reconfig-
urations of the vocal tract such as bilabial closure or
velar opening (Saltzman, 1986). The open-source
TADA system (Nam & Goldstein, 2006) estimates
the positions of various articulators during speech
according to parameters that have been carefully
tuned by the authors of TADA according to a generic,
speaker-independent representation of the vocal tract
(Saltzman & Munhall, 1989). Given a word sequence
and a syllable-to-gesture dictionary, TADA produces
the continuous-tract variable paths that are necessary
to produce that sequence. This takes into account vari-
ous physiological aspects of human speech production,
such as interarticulator coordination and timing (Nam
& Saltzman, 2003).

We used TADA to produce estimates of a global,
high-level representation of speech common to speak-
ers both with and without dysarthria. Given a word
sequence uttered by both groups, TADA produced
five continuous curves prescribed by that word se-
quence in order to match our available EMA data.
Those curves were lip aperture and protrusion,
tongue-tip constriction location and degree (represent-
ing front–back and top-down positions of the tongue

Table 3. Mutual information I (Ac;Ar) ofAc andAr for speakers with dysarthria and for control participants, across
phonological manner of articulation.

Manner of articulation Plosives Affricates Fricatives Nasals Glides Vowels

I (Ac; Ar)
Speakers with dysarthria 10.92 8.71 9.30 13.29 11.92 6.76
Control participants 16.47 9.23 10.94 15.10 12.68 7.15

Table 2. Differential entropy in nats across speakers in the dysarthria
group and the control group for acoustics (Ac), articulation (Ar), and
acoustics given articulation (Ac kAr).

Variable H (Ac ) H (Ar ) H (Ac|Ar )

Dysarthria group
M01 66.37 17.16 50.30
M04 33.36 11.31 26.25
F03 42.28 19.33 39.47
Average 47.34 15.93 38.68

Control group
MC01 24.40 21.49 1.14
MC03 18.63 18.34 3.93
FC02 16.12 15.97 3.11
Average 19.72 18.60 2.73

Note. H (x ) = entropy; H (x kx ) = conditional entropy.
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tip, respectively), and lower incisor height. These
curves are then compared against observed EMA
data, as described below.

Results: The Noisy Channel
To compare the scenarios in Figure 3, we designed a

transformation system that produced the most likely ob-
servation in one data space given its counterpart in anoth-
er. This transformation in effect implements the noisy
channel itself. To accomplish this, probability distributions
were automatically computed given our EMA data. First,
we pooled all dysarthric data together, and we did the
same for nondysarthric data. We then considered the
acoustic (Ac) and articulatory (Ar) subsets of these data.
In each case, Gaussian mixtures, each with 60 compo-
nents, were trained over 90%of the data in both dysarthric
and nondysarthric speech. Here, each of the 60 phonemes
in the data is represented by one Gaussian component,
with the weight of that component determined by the rel-
ative proportion of 10-ms frames for that phoneme. Simi-
larly, all training word sequences were passed to TADA,
and amixture of Gaussianswas trained on its articulatory
output. As with our experiments with entropy, these mea-
surements were made on the data directly rather than on
the HMMs trained in Experiment 1.

Across all Gaussianmixtures, five types of Gaussians
were tuned to various aspects of each phoneme p:
its dysarthric acoustics and articulation, NAc

p ðYdÞ and
NAr

p ðYdÞ; its nondysarthric acoustics and articulation,
NAc

p ðYcÞ and NAr
p ðYcÞ; and its prescribed articulation

from TADA, NAr
p ðXÞ. Each Gaussian, NA

p ðBÞ; is repre-
sented by its mean mðA;BÞ

p and its covariance,
PðA;BÞ

p . Fur-
thermore, the cross-covariance matrix is computed
between Gaussians for a given phoneme; for example,PðAc;YcÞðAc;YdÞ

p is the cross-covariance matrix of the acous-
tics of the control (Yc) and dysarthric (Yd) speech for
phoneme p. Associating each phoneme with its own
Gaussian allowed us to build in some useful prior
categorical knowledge, but this technique was used
mainly to reliably compute cross-covariance matricesPðAc;YcÞðAc;YdÞ

p , which required pairing each component
in the Gaussian mixture that models all control acous-
tics with a component in the Gaussian mixture that
models all dysarthric acoustics. Given these parameters,

the most likely frame in one domain is estimated given
its counterpart in another. For example, given a frame of
acoustics from a control speaker yc, this approach can
synthesize themost likely frame of acoustics for a speaker
with dysarthria, yd, given an application of the noisy
channel proposed by Hosom et al. (2003) using

fAcðycÞ ¼ EðydjycÞ

¼
XP
i¼1

hiðycÞ mðAc ;YdÞ
i þPðAc;YcÞðAc;YdÞ

i

h
� PðAc;YcÞ

i

� ��1
� yc � mðAc;YcÞ

i

� ��
;

ð4Þ
where

hiðycÞ ¼
aiN yc;m

ðAc;YcÞ
i ;

PðAc;YcÞ
i

� �
PP

j¼1 ajN yc;m
ðAc;YcÞ
j ;

PðAc;YcÞ
j

� � ; ð5Þ

and ap is the proportion of the frames of phoneme p in
the data. Transforming between different sources of
data was accomplished merely by substituting with
the appropriate Gaussians.

We thenmeasured how closely the transformed data
spacesmatched their true target spaces. In each case, test
utterances (recorded or synthesized with TADA) were
transformed according to functions learned in training
(i.e., the remaining 10% of the data were used for each
speaker type). We then compared these transformed
spaces against their target space in our data. Table 4

Figure 3. Sections of alternative noisy channel models for the neuromotor interface in speakers with dysarthria.

Table 4. Average phoneme-level Kullback–Leibler (KL) divergences
of acoustic and articulatory spaces given transformed and original
control and dysarthric models, weighted by the relative proportions of
the phoneme.

Type 1 Type 2

KL divergence (10–2 nats)

Acoustic Articulatory

Control Dysarthric 25.36 3.23
Control Y Dysarthric Dysarthric 17.78 2.11
TADA Y Control Control N/A 1.69
TADA Y Dysarthric Dysarthric N/A 1.84

Note. See Goldberger et al. (2003).
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shows the Gaussian mixture phoneme-level Kullback–
Leibler divergences given various types of source and
target data, weighted by the relative proportions of
the phonemes. It is not generally tractable to compute
Kullback–Leibler directly for arbitrary pairs of Gaussian
mixtures; however, several methods approximate this
measure. We implemented the technique proposed by
Goldberger, Gordon, and Greenspan (2003), which takes
advantage of a known matching function between com
ponents across mixtures. Each pair of N-dimensional
Gaussians (Ni with mean mi and covariance

P
i ) for a

given phoneme and data type was compared with

DKLðN0jjN1Þ ¼ 1
2

ln
jP1 j
jP0 j
� �

þ trace
�P�1

1
P

0

��

þ ðm1 � m0ÞT
P�1

1 ðm1 � m0Þ �N
�
;

ð6Þ

where ln () is the natural logarithm, trace () is the sum of
the elements on the main diagonal of the supplied
square matrix,

P
1
–1 is the inverse of the covariance ma-

trix
P

1, and (m1 – m0)
T is the transpose of the difference

between means m1 and m0. The baseline showed that the
speech from the control participants and the speakers
with dysarthria was far more similar in articulation
than in acoustics, according to this measure. When our
control data (both acoustic and articulatory) were trans-
formed to match the dysarthric data, the result was
predictably more similar to the latter than if the conver-
sion had not taken place. This corresponds to the noisy-
channel model seen in Figure 3a, in which dysarthric
speech is modeled as a distortion of nondysarthric
speech. However, when dysarthric and control speech
are modeled as distortions of a common abstraction
(i.e., task dynamics) as shown in Figure 3b, the resulting
synthesized articulatory spaces aremore similar to their
respective observed data than the articulation
predicted by the first noisy-channel model. Dysarthric
articulation predicted by transformations from task-
dynamics space differ significantly from those predicted
by transformations from control EMA data at the 95%
confidence interval. From a purely statistical perspec-
tive, this demonstrates that an abstract continuous rep-
resentation of speech is a more effective basis for the
analysis of dysarthric speech than one derived fromnon-
dysarthric data. This may be due to constraints in task
dynamics that help restrict analysis in dysarthric data.
That is, becauseEMAdata derived from controls contain
more noise than the abstract representations in TADA,
it is simpler to train the latter noisy-channel model. In
practice, if an accurate synthetic representation of dys-
arthric speech was required, then this would not miti-
gate the utility of the abstract model: The end result is
all that is required. From a more clinical perspective,
this observation implies that the effects of dysarthria

may be more appropriately mitigated by considering
them as a distortion of gestural goals rather than as a
distortion of preferred acoustics. However, given the
possible statistical effects associated with training,
more work is required to answer this question.

Discussion: Entropy in Dysarthric Speech
We have considered the amount of statistical disor-

der (i.e., entropy) in both acoustic and articulatory data
in speakers with and without dysarthria. The use of
articulatory knowledge reduces the degree of this disor-
der significantly for speakers with dysarthria (relatively
18.3%), although far less so than for speakers without
dysarthria (relatively 86.2%). In real-world applica-
tions, we are not likely to have access to measurements
of the vocal tract; however, there are many approaches
that estimate the configuration of the vocal tract given
only acoustic data (Richmond, King, & Taylor, 2003;
Toda, Black, & Tokuda, 2008), often to an average error
of less than 1 mm. The generalizability of such work to
new speakers (particularly those with dysarthria) with-
out training is an open research question.

We have argued for noisy-channel models of the
neuromotor interface, assuming that the pathway of
motor command to motor activity is a linear sequence of
dynamics. Thebiological reality ismuchmore complicated.
In particular, the pathway of verbal motor commands
includes several sources of sensory feedback (Seikel,
King, & Drumright, 2005) that modulate control param-
eters during speech (Gracco, 1995). These senses in-
clude exteroceptive stimuli (auditory and tactile) and
interoceptive stimuli (in particular, proprioception and
its kinesthetic sense; Seikel et al., 2005), the disruption
of which can lead to a number of production changes. For
instance, Abbs, Folkins, and Sivarajan (1976) showed
that when conduction in the mandibular branches of
the trigeminal nerve is blocked, the resulting speech
has considerably more pronunciation errors, although
it is generally intelligible. Barlow (1989) argued that
the redundancy of sensory messages provides the neces-
sary input to the motor planning stage, which relates
abstract goals to motor activity in the cerebellum
(Guenther & Perkell, 2004, described a speech motor
productionmodel based on similar principles). However,
despite the fact that the noisy-channel models described
here do not incorporate feedback, they do provide some
clear insight into the possible underlying mechanisms
of control in speakers both with and without dysarthria.
In particular, the data seem to suggest that articulation
in both groups can be derived from a common abstract
gestural representation with a high degree of consis-
tency, even though the nature of the distortion to these
abstract representations differs for the two groups.
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Acoustic signals, on the other hand, are less consistent
in this respect; this finding highlights the nonlinear
transformation of articulation to acoustics and the pos-
sible interference of other sources (e.g., vocalization,
nasalization) on the acoustic spectrum.

Experiment 3: Incorporating EMA Data
Given the theoretical support in the previous exper-

iment for the use of articulatory data in the reduction of
acoustic uncertainty, Experiment 3 involved combining
those sources into a single system for speech recognition
and was based upon our previous work (see Rudzicz,
2009). Although it is impractical to perform articulogra-
phy on each speaker to be modeled, kinematic models
can be adapted to speakers for whom only acoustic
data are available.

Traditional Bayes learning is a popular statistical
framework that determines instantaneous and immuta-
ble conditional relationships between variables. DBNs
are directed acyclic graphs connecting random variables
that generalize stochastic Bayesian learning to time
sequences. This temporal model generalizes the HMM,
the Kalman filter, and many other statistical models
(Murphy, 2002). In general, a DBN will have hidden
variables; therefore, the likelihood of training data can-
not be decomposed into a sum over individual variables,
and one must use expectation-maximization to update
DBN parameters, generalizing the approach used
with HMMs. In this experiment, we compared DBNs
augmented with articulatory data during training with
HMMs.

Results: DBNs
We conflated instantaneous EMA position data

from the MOCHA and TORGO databases by first re-
ducing their dimension from 16 to Np=4 orNp=8 prin-
cipal components by singular value decomposition
specific to each phoneme in which K = 4, K = 8, or K =
16 mean vectors are computed according to the sum-of-
squares error function. That is, we automatically found
the Np directions in the data along which variation is
greatest (and therefore, most relevant), and found the
K clearest clusters within that data. In a way, this
allowed us to find themost characteristic discrete config-
urations of the data.MOCHAdatawere included here to
ensure that themodelswe employedwere not dependent
on a single source of data. During training, the dynamic
Bayes network variable Awas the observed index of the
mean vector nearest to the current frame of EMAdata at
time t. During inference, this variable was hidden, and

we marginalized over all its values when computing the
likelihood. In this way, DBN-A is essentially a DBN
representation of an HMM with the hidden mixture
index replaced by observed quantized articulation.We
also applied this procedure to the velocities andaccelera-
tions of the articulators, producing indicesAv and Aa. We
used these variables in alternative DBN topologies
DBN-A2 andDBN-A3. InDBN-A2, the observation vector
was trisected, with each 14-dimensional vector (i.e., mel-
frequency cepstral coefficients, d, and dd) being condi-
tioned on phoneme Ph, state Q, and one of A, Av, and
Aa. In a way, this modeled independence between posi-
tion, velocity, and acceleration. The second alternative
structure, DBN-A3, conditioned Aa on Av, and Av on A
and conditioned the 42-dimensional observation vector
on all variables. In general, this modeled dependence
betweenpositionandvelocity andbetweenvelocity andac-
celeration. The three kinematic DBN topologies
are shown in Figure 4.

Recognition with nondysarthric speech. We com-
pared the three DBN models on nondysarthric speech
across the number of principal components, Np, and
the number of GaussiansK used in quantization. Previous
research (Fukuda & Nitta, 2003; Wrench & Richmond,
2000) has shown that reducing dimensionality across
heterogeneous acoustic/articulatory observations in
this way preserves important features of both articula-
tion and acoustics. Results of frame-level phoneme recog-
nition are summarized in Table 5. Across all topologies,
Np = 16 is significantly more accurate than Np = 8 at
the 95% confidence level andNp = 4 at the 99% confidence
level. Results across MOCHA and TORGO and across
the three topologies are statistically indistinguishable.
However, both DBN-A2 and DBN-A3 are several times
slower than DBN-A to train.

Retraining with dysarthric acoustics. We retrained
models initialized on nondysarthric data given new dys-
arthric acoustics. That is, first we trained each kinematic
DBN with nondysarthric acoustic/articulatory data
(MOCHA and TORGO), then made indices A, Av, and
Aa and retrained on dysarthric acoustics (Nemours
and TORGO). We trained all models with Expectation–
Maximization and smoothed junction-tree inference,
given their hidden variables. When retraining to dysarth-
ric speech, we initialized new instantiations with the dis-
tributions learned on regular speech and retrained on
speaker-specific acoustics until convergence. In all cases,
training data included all phonemes observed during test-
ing and were applied to the 46 phones that MOCHA,
Nemours, and TORGO have in common. Data were ran-
domly split into 90% training and 10% test data. Dysarth-
ric TORGO and Nemours data were split by speaker into
three categories according to the level of intelligibility as
determined by the Frenchay assessment (Enderby,
1983). We designated individuals with intelligibility levels
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between 0% and 25% as “severe,” between 25% and 62.5%
as “moderate,” and between 62.5% and 87.5% as “mild.”

Table 6 shows the frame-level accuracy of unseg-
mented phoneme labeling on speaker-dependent and
speaker-retrained distributions for eachmodel, according
to the severity of dysarthria. Here, DBN-A, DBN-A2, and
DBN-A3 are trained to mixtures of 16 Gaussian clusters
determined by unreduced (16-dimensional) articulatory
data. In all cases, DBN models trained to the speech of
the target speaker are more accurate than the equiva-
lent speaker-dependent HMM, with significant relative
error reductions of up to 2.68%, 4.85%, and 5.99% for
severely, moderate, and mild speakers, respectively,
relative to the HMM baseline. However, although re-
trained DBN models are typically more accurate than
their speaker-dependent equivalents, in all cases,
retrained HMM models are more accurate than all

equivalent retrained DBN models. Data from Experi-
ment 2 in Table 2 show that articulation removed far
more uncertainty from nondysarthric speech than from
dysarthric speech. There is a considerable amount of
interspeaker variation in articulation, which may ex-
plain, in part, the success of retrained HMMs. In fact,
the data inTable 6 confirm this hypothesis somewhat be-
cause there is a generally increasing benefit of retrained
models over speaker-dependent models as intelligibility
increases.

These results are generally consistent with similar
work that retrained acoustic-only DBNs to Japanese ki-
nematic data (Markov, Dang, & Nakamura, 2006) over
one or two iterations of EM. That work showed an
error reduction of between 0.7% and 3.8% on phoneme

Table 5. Accuracies of frame-level phoneme recognition across
kinematic dynamic Bayes networks (DBNs) with varying
quantities of principal components (Np) and Gaussians (K ) for
speaker-dependent, nondysarthric speech.

Np K

DBN-A DBN-A2 DBN-A3

MOCHA TORGO MOCHA TORGO MOCHA TORGO

4 4 57.6 58.9 56.9 57.4 57.8 57.5
8 66.8 67.2 66.5 67.2 66.8 67.1
4 68.9 69.0 69.1 68.8 69.3 69.3

8 4 63.3 62.7 63.4 63.0 63.8 63.6
8 71.0 70.8 71.1 71.3 71.3 71.6

16 72.4 72.4 72.2 72.1 72.7 72.7
16 4 64.7 65.0 65.1 65.2 65.2 65.2

8 72.5 72.6 72.4 72.4 72.7 72.5
16 73.6 73.8 73.6 73.9 74.0 74.1

Table 6. Average accuracy (%) of correctly labeled phones of
speaker-dependent and speaker-retrained EMA-initialized models,
according to the severity of dysarthria.

Model Severe Moderate Mild Control

HMM
Dependent 14.1 27.8 51.6 72.8
Retrained 16.8 32.1 58.9

DBN-A
Dependent 16.4 31.1 54.2 73.6
Retrained 16.2 31.7 58.3

DBN-A2
Dependent 16.3 31.1 54.3 73.6
Retrained 16.3 31.9 58.4

DBN-A3
Dependent 16.4 31.3 54.5 73.8
Retrained 16.5 32.0 58.7

Note. EMA = electromagnetic articulography; HMM = hidden Markov
model.

Figure 4. Two-frame dynamic Bayes networkswith electromagnetic articulography (EMA)measurements differing by their connectivity.
Nodes Ph, Q, O, A, Av, and Aa represent phoneme, state, mel-frequency cepstral coefficient observations, and EMA position, velocity,
and acceleration, respectively. Interframe conditional links are dashed for clarity. DBN = dynamic Bayes network.
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classification among a selection of alternative speaker-
dependent DBNs relative to a baseline DBN.

The use of language models. Often, researchers use
bigraphs to weigh the likelihood of transitioning from
one phoneme or word to another. Because our data con-
sist of many single-word utterances, we considered
phoneme bigraphs, in which the conditional probability
of one phoneme pt following another pt–1 at time t is
given by the total number of times in which pt immedi-
ately follows pt–1 in the data over the total number of
occurrences (i.e., whole sequences of frames) of pt–1. We
gathered these counts from the TIMIT database (Zue,
Seneff, & Glass, 1989), which includes 2,472 unique
bigraphs covering 172,460 adjacent pairs of phonemes,
as determined by the included phonemic annotations. In
a similarmanner, we determined the unigraph probability
of phonemept from the samedata byP( pt) =N(pt) /

P
rN(r) ,

where r was iterated over all 61 phonemes in the training
data.

In order to implement systems that incorporate bio-
graphs or unigraphs, we trained individual HMM and
DBN-Amodels for each phoneme, as before, where train-
ing data consisted of whole sequences of phonemes. The
result was 61 HMMs and 61 DBN-A models, each con-
sisting of three states with reflexive and left-to-right
transitions. We connected the HMMs together and the
DBN-As together by creating transitions from the last
state of each phoneme model to the first state of all other
phoneme models of the same type. The probabilities as-
sociated with these transitions were their bigraph prob-
abilities. We then performed expectation-maximization
for two iterations on each of the large connected HMM
and DBN-A models in order to learn reflexive transition
probabilities on the last state for each phoneme without
overfitting. This is a common approach producing all-
phoneme ergodic models (Miyazawa, 1993). We then
repeated this process but with initial transition prob-
abilities between phoneme models derived from their
unigraph probabilities.

Given these connected models, we used the same
data used to adapt to new acoustics to measure the av-
erage proportion of correctly labeled phones given pho-
nememodels trained by the speaker-dependentmethod.
Table 7 shows the frame-level phoneme recognition
accuracies of each model across the same speaker in-
telligibility levels shown in Table 6. There are clear
improvements in accuracy, but these improvements
are still less than one would expect if full word-level
bigrams were to be used, given more testing data.

Discussion: Incorporating EMA Data
In general, the results of Experiment 3 con-

firm the theoretical implications of Experiment 2 by

demonstrating that statistical models that condition
acoustic observations on their observed articulatory
causes (i.e., the dynamic Bayes networks) aremore accu-
rate than acoustic-only models of speech production—
but only when each of thesemodels is trained to a partic-
ular speaker. When retrained acoustic–articulatory
models were combined, the results were less impressive,
possibly due to greater interspeaker variability at the
articulatory level relative to the acoustic level. These
results are expanded upon in work by Rudzicz (2011a),
in which the articulatory DBN model was shown to be
more accurate than several types of discriminative clas-
sifiers, including artificial neural networks that use only
acoustic information. This indicates the utility of articu-
latory information, as discriminative classifiers often
tend to be more accurate than generative models in cat-
egorizing sounds.

General Discussion and Conclusion
The purpose of this work was to determine whether

an understanding of the articulatory sources of dis-
order in CP speech can instruct and improve automatic
models of speech recognition. This work is based mainly
on measurements in the new TORGO database of
dysarthric articulation (Rudzicz et al., 2011). In Experi-
ment 1, we explored adaptive and dependent speaker
modeling techniques in HMMs given only acoustics, pro-
viding the baseline for what is possible with traditional
technology. Here, speakers with severe dysarthria could
expect no more than 10% of their words to be recognized
by machine in a scenario in which a speaker with mild
dysarthria might expect up to 60% of his or her words
to be recognized. In Experiment 2, we examined whether
articulatory data could theoretically be useful in reducing
the ambiguities in the acoustics that can confound
modern speech recognition systems. In fact, 18.3% of
the statistical disorder in the acoustics can be removed
if articulatory parameters are known, which is a signifi-
cant reduction in entropy. This reduction in confusion

Table 7. Average frame-level accuracy (%) of unsegmented phoneme
labeling given ergodic HMMs and DBN-As with unigraph and
bigraph phoneme transition probabilities.

Level of
severity

HMM DBN-A

Unigraph Biograph Unigraph Biograph

Severe 17.2 20.8 17.4 21.0
Moderate 33.4 37.3 34.1 37.9
Mild 60.1 63.5 60.5 63.7
Control 74.0 74.2 74.2 74.6
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was evident in Experiment 3, in which the rate of pho-
neme errorswas relatively reduced by up to 6% for speak-
ers with dysarthria in speaker-dependent systems that
incorporated measured kinematics of the vocal tract.
However, there is an increasing benefit of using retrained
models rather thandependentmodels as dysarthric intel-
ligibility increases. These results may guide clinicians
and SLPs in ascertaining how to introduce alternative
and augmentative communication systems on the basis
of speech recognition to their clients.

This study represents an initial step toward a new
type of speech recognition that incorporates long-term
dynamics. Representing speech as a sequence of non-
overlapping (though restricted) syllabic or phonemic
units is the basis for ASR, and it has been useful in de-
scribing certain types of dysarthria in which speech is
broken into syllables either due to respiratory problems
or to improve overall intelligibility (Ziegler & Maassen,
2004). Thework highlighted in this article demonstrates
that articulatory measurements are both theoretically
and practically useful in removing uncertainty and
error from the acoustics of speakers with dysarthria
who have CP. However, such models cannot inherently
account for more complex aspects of articulatory organi-
zation, for which parallel and self-organizing theories
may be more appropriate (Smith & Goffman, 2004; van
Lieshout, 2004). In order to study the long-term dynam-
ics of dysarthria in particular, we require a framework of
dynamic systems in which our data can be analyzed.

Future work should be based on the study of dys-
arthric data within the framework of task dynamics,
as introduced in Experiment 2. Indeed, the quantal the-
ory of speech is based on the empirical observation that
acoustics depend on a relatively discrete set of distinc-
tive underlying articulatory configurations (Stevens &
Keyser, 2010). Articulatory behavior of speakers with
dysarthria should be compared against the behavior of
control speakers by applying and extending methods
that automatically compute the parameters of second-
order differential equations with principal differential
analysis (Ramsay & Silverman, 2005). In practice, how-
ever, several other aspects of task dynamics are not
represented by its fundamental underlying spring-
mass equations. For each speaker and each linguistic
unit (i.e., syllable), several parameters can be derived.
By adapting the parameters of this system (specifically,
those that relate tract-variable positions to acoustics as
discussed in Experiment 2) and repeating the experi-
ments conducted in this study, researchers are currently
attempting to measure the usefulness of task dynamics
in speech recognition for speakers with dysarthria. Specif-
ically, we are currently studying a newmethod for automat-
ically reevaluating competing acoustic-based hypotheses by
a speech recognizer according to the likelihoods of their
articulatory realizations (Rudzicz, 2010b). In that work,

we are measuring articulatory likelihood by evaluat-
ing continuous task-dynamics trajectories within prob-
ability distributions determined by acoustic–articulatory
inversion (Rudzicz, 2010a).

The state-based models that are used in speech rec-
ognition (specifically, in HMMs and DBNs) provide con-
venient statistical representations that adapt to speech
data for the purposes of deciphering future acoustic
observations. However, thesemodels are not necessarily
representative of biological speech production (or per-
ception). In order to more completely model the speech
apparatus, future extensions to the dynamic Bayes
model should incorporate some manner of feedback be-
tween the acoustics and the articulatory variables, for
example. The results of Experiment 2 also suggest that
explicit statistical relationships between some under-
lying control mechanism (task dynamics or otherwise)
might be appropriate, although alternative relationships
to those evaluated here should be considered. As future
models are developed with these types of additional con-
straints, we expect accuracy to increase further, although
there is not enough evidence to predict what a maximum
rate of accuracy might be for these populations nor to
what degree such accuracy would validate the biological
plausibility of those models.

In general, this research represents a confluence of
disparate disciplines and related research areas within
speech recognition. Greater interaction between artifi-
cial intelligence and speech science would likely result
in further shared increases in perspective and knowl-
edge in the future.
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Appendix. Hidden Markov models (HMMs).

Definition
The parameters of the HMM include a state space Q (where qt is the state at time t ), an initial state distribution pi = P (q0 = i ) describing the probability

of starting a sequence in a particular state i, a state transitionmatrixA(qi, qj) describing the a priori probability of transitioning from stateqi toqj, andaprobability
Bi (o) of observing vector o while in state i. F is defined as the set of all adjustable parameters, namely F = {aij = A(qi, qj), Bi (o), pi }.
Except where noted, the probability Bi(o) of observing a set of cepstral features o while in temporal state i is described by a mixture of Gaussians. This

distribution weights and combines several standard Gaussian (normal) distributions to allow for more complex probability spaces and is defined by

Biðo;w, m,PÞ =
XM
m=1

wmNðo;mm,
P

mÞ, (7)

where mm and
P

m are the mean and covariance of the mth Gaussian, respectively, and wm is the weight of that Gaussian. The result is a valid probability
subject to the constraint that

P
mwm = 1. Crucially, the total number of Gaussians used in Bi (o) is a manually specified parameter that we can empirically

alter.
It is desirable to find values ofF such that P (O;F) is maximized for a large collection of observation sequences,O . Since the hidden states are inaccessible,

F cannot be estimated with maximum likelihood estimation. Instead, expectation-maximization (EM) is used as a “hill-climbing” approach that iteratively
approximates the values of the hidden states given the current best parameters ofF, then updates F. Prior to training each HMM, the Gaussian mixtures for
all states are initialized to a common Gaussian mixture obtained by k-means clustering with full covariance over all data for the associated phoneme.

Adaptation in HMMs
In maximum a posteriori (MAP) estimation, given a parameter space F defined on HMMs as described above, prior knowledge can characterize a

probability density p(F). Given a set of observation sequences X, the MAP estimate for the ideal parameters is

F̂ = argmax
F

pðFjXÞ = argmax
F

½pðXjFÞpðFÞ�: (8)

This estimate reduces to the maximum likelihood estimate if p(F) is uniform, that is, when there is no prior knowledge. Since we use continuous Gaussian
mixture HMMs, we assume that the different components are mutually independent, which is standard practice (Huang et al., 2001) and allows us to
split
the optimization problem into subcomponents. For example, to obtain a more appropriate weight, ŵi ½m� for the mth Gaussian in the ith state, we use the
Lagrange method

d
dŵi ½m� log pwi ð→wiÞ +

XM
m¼1

X
t
xt ði;mÞlogŵi ½m�

 !
+ l ¼ 0;8m; (9)

with the constraint that
PM

m¼1 ŵi ½m� = 1. In equation 9 , l is the Lagrangemultiplier, and xt (i, m) is the probability that the observation at time twas generated
by the m th Gaussian of the i th state. The solution is

ŵi½m� ¼ ai ½m� � 1 +
P

t xt ði,mÞPM
l¼1ðai ½l � � 1+

P
t xt ði, l ÞÞ

: (10)

Optimization with respect to the means and covariances of the Gaussians is accomplished in the same manner (Goto, Hochberg, Mashao, & Silverman,
1995; Woodland, 2001). Here, MAP adaptation is embedded within maximum likelihood regression, as described by Chesta, Siohan, and Lee (1999).
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