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Abstract This paper describes the acquisition of a new database of dysarthric

speech in terms of aligned acoustics and articulatory data. This database currently

includes data from seven individuals with speech impediments caused by cerebral

palsy or amyotrophic lateral sclerosis and age- and gender-matched control subjects.

Each of the individuals with speech impediments are given standardized assess-

ments of speech-motor function by a speech-language pathologist. Acoustic data is

obtained by one head-mounted and one directional microphone. Articulatory data is

obtained by electromagnetic articulography, which allows the measurement of the

tongue and other articulators during speech, and by 3D reconstruction from bin-

ocular video sequences. The stimuli are obtained from a variety of sources including

the TIMIT database, lists of identified phonetic contrasts, and assessments of speech

intelligibility. This paper also includes some analysis as to how dysarthric speech

differs from non-dysarthric speech according to features such as length of pho-

nemes, and pronunciation errors.
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1 Introduction

This paper describes the collection of a new English speech database of aligned

acoustics and measured 2D and 3D articulatory features from speakers with either

cerebral palsy (CP) or amyotrophic lateral sclerosis (ALS), which are two of the

most prevalent causes of speech disability (Kent and Rosen 2004). This database,

called TORGO, is the result of a collaboration between the departments of

Computer Science and Speech-Language Pathology at the University of Toronto

and the Holland-Bloorview Kids Rehab hospital in Toronto.

Both CP and ALS are examples of a set of speech impairments, collectively

called dysarthria, which are caused by disruptions in the neuro-motor interface.

These disruptions do not affect the comprehension and cognitive aspects of the

production of natural language, but distort motor commands to the articulators of

speech, resulting in atypical and relatively unintelligible speech in most cases (Kent

2000). This unintelligibility adversely affects the use of traditional automatic speech

recognition (ASR) software to the point where severely dysarthric subjects may

have a word-error rate of 97.5% on modern systems against 15.5% for the general

population (Rudzicz 2007). The inability of modern ASR to effectively understand

dysarthric speech is a major problem, since the more general physical disabilities

often associated with the causative neuro-motor disruptions can make other forms of

computer input, such as keyboards or touch screens, especially difficult (Hosom

et al. 2003). Since speakers with dysarthria differ from the general population in the

manner of their articulation, measuring that articulation empirically is essential.

The TORGO database is primarily a resource for developing ASR models more

suited to the needs of people with atypical speech production, although it is equally

useful to the more general ASR community. A primary reason for collecting

detailed physiological information is to be able to explicitly learn ‘hidden’

articulatory parameters automatically in computer speech models via statistical

pattern recognition. Recent research has shown that modelling conditional

relationships between articulation and acoustics in Bayesian networks can reduce

error by about 28% (Markov et al. 2006; Rudzicz 2009) relative to acoustic-only

models for regular speakers. Research in this area has been relatively preliminary,

however there has been a marked increase in the use of articulatory models in

speech recognition recently (Livescu et al. 2007).

This database is also useful in the clinical domain, especially by linguists and

pathologists interested in studying atypical speech production. The stimuli uttered

by the participants in this study have been carefully chosen to emphasize

articulatory contrasts, which in turn can be compared against thorough assessments

of speech-motor function, as described below.

1.1 Existing databases

To date, no database combining the acoustics and endogenous articulation

(e.g., tongue movement) of dysarthric speech is publicly available. Data

collection with dysarthric speakers has usually involved fewer than 5 participants
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(Hasegawa-Johnson et al. 2006), frequently producing only about 25 utterances

each (Jayaram and Abdelhamied 1995). One exception is the A. I. duPont Institute’s

Nemours database, which is composed of 11 male speakers with varying degrees of

dysarthria, each of whom speaks 74 nonsense sentences and two sensible paragraphs

(Menendez-Pidal et al. 1996). Each nonsense sentence has the form The N0 is Ving
the N1, where N0 and N1 are unique monosyllabic nouns and V is a monosyllabic

verb. The target words, N0, V, and N1, were randomly selected without replacement

in order to provide closed-set phonetic contrasts (e.g., place, manner, voicing).

Additionally, one non-dysarthric speaker repeated each sentence in the database.

This database costs $100USD to license. In our work on building ASR systems for

people with dysarthria, we found that the phonemic distribution in the Nemours

database was relatively sparse (Rudzicz 2007, 2009). Naturally, the absense of

articulatory measurements in this database prohibits its use in the construction of

more complex models in speech recognition, and in the study of the underlying

effects of dysarthria.

Public databases of endogenous articulation exist, but only for non-dysarthric

speakers. The University of Edinburgh’s free MOCHA database consists of 460

sentences derived from the TIMIT database (Zue et al. 1989) and consists of

articulatory measurements from electromagnetic articulography (EMA) (500 Hz

sample rate), laryngography (16 kHz sample rate) and electropalatography (EPG,

200 Hz sample rate) (Wrench 1999). Each of the 460 phrases in this database were

uttered by both a male and a female British speaker without dysarthria. The EMA

system measured the 2D midsagittal co-ordinates of 8 points of interest in the vocal

tract, namely the upper lip, lower lip, upper incisor, lower incisor, tongue tip, tongue

blade (1 cm from the tongue tip), tongue dorsum (1 cm from the tongue blade), and

velum.

Recently, Yunusova et al. (2008) have collected X-ray microbeam data with 7

individuals with Parkinson’s disease and 8 with ALS. This data includes point-data

in similar positions to the MOCHA database and generally follows the protocol and

methodology of the Wisconsin X-ray microbeam database for non-dysarthric

speakers (Westbury 1994). This database only includes 10 stimuli per speaker,

however, which is not enough to train ASR systems. This database may be freely

procured from the authors for academic use. The University of Illinois also provides

data from 10 dysarthric individuals with cerebral palsy (Kim et al. 2008), although

this data does not include measurements of the tongue, for instance.

The following sections describe our study population, their speech-motor

assessment, and the data collection process.

2 Data collection

Data collection began in 2008 through collaboration between the departments of

Computer Science and Speech-Language Pathology at the University of Toronto,

Holland-Bloorview Kids Rehab hospital in Toronto, and the Ontario Federation for

Cerebral Palsy. The following section describes various aspects of the data

collection process.
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2.1 Subjects

Seven dysarthric subjects (4 male, 3 female) have so far been assessed in this study,

covering a wide range of intelligibility. Dysarthric subjects were recruited by a

speech-language pathologist at the Bloorview Research Institute in Toronto. The

subjects were between the ages of 16 and 50 years old and have dysarthria resulting

from cerebral palsy (e.g., spastic, athetoid, or ataxic). In addition, one subject with a

confirmed diagnosis of amyotrophic lateral sclerosis (ALS) was recruited. These

individuals were matched according to age and gender with non-dysarthric subjects

from the general population. Having an equal number of dysarthric and control

speakers is useful for comparing acoustic and articulatory differences, and for

analyzing these relationships mathematically and functionally (Hosom et al. 2003;

Kain et al. 2007). Data has since been collected from two additional subjects with

cerebral palsy, although that data has not yet been analyzed.

Each subject began the data collection process with a short questionnaire that

covers general demographic data and health-related questions that can impact

speech and language function including various types of motor problems, both gross

(e.g., standing, balancing) and fine (e.g., writing, swallowing). All participants were

required to have a negative history of severe hearing or visual problems and of

substance abuse, and to be able to read at a 6th grade elementary level. This was

further quantified by requiring that their cognitive function lie above or at level VIII

(i.e., Purposeful-Appropriate) on the Rancho scale (Herndon 1997), which is

determined during a pre-visit questionnaire.

2.2 Assessment

The motor functions of each experimental subject were assessed according to the

standardized Frenchay Dysarthria Assessment (FDA; Enderby 1983) by a speech-

language pathologist. This assessment is designed to categorize and diagnose

individuals with dysarthria while being easily applicable to therapy, sensitive to

changes in speech, simple and quick to administer, and easily communicable within

professional teams. There exist other assessment measures of oral motor ability,

such as the Assessment of Intelligibility of Dysarthric Speech (AIDS; Yorkston and

Beukelman 1981), which quantifies the intelligibility of single words, sentences, and

speaking rates of adults and adolescents with dysarthria. However, these tend to

focus only on speech production, whereas the FDA also includes analysis of the

movement of the articulators in non-linguistic contexts.

The Frenchay assessment measures 28 relevant perceptual dimensions of speech

grouped into 8 categories, namely reflex, respiration, lips, jaw, soft palate,

laryngeal, tongue, and intelligibility as described in Table 1. Influencing factors

such as rate and sensation are also recorded. To measure most of these dimensions,

the administering clinician either engages the subject in communication or has the

subject perform a simple task (e.g., drinking from a cup of water) while observing

their oral movements. The subject’s oral behaviour is rated on a 9-point scale and

plotted with a simple bar graph. The assessment provides characterizations of
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Table 1 Frenchay dysarthria assessment dimensions (Enderby 1983), each on a scale of 0 (no function)

to 8 (normal function)

Category Test Observation Males Females All

l(r) l(r) l(r)

Reflex Cough Presence of cough during eating and

drinking.

6(2.45) 7.3(0.96) 6.6(1.85)

Swallow Speed and ease of swallowing liquid 7(2.0) 8(0.0) 7.5(1.41)

Dribble Presence of drool generally 6.5(2.38) 7.5(1.0) 7(1.77)

Respiration At rest Ability to control breathing during rest 4(2.71) 8(0.0) 6(2.78)

In speech Breaks in fluency caused by poor

respiratory control

4(2) 6.5(3) 5.3(2.71)

Lips At rest Asymetry of lips during rest 6.3(2.36) 8(0.0) 7.1(1.81)

Spread Distortion during smile 6(2.31) 8(0.0) 7(1.85)

Seal Ability to maintain pressure at lips over

time

3.3(3.4) 7(2) 5.1(3.27)

Alternate Variability in repetitions of ‘‘oo ee’’ 3.8(2.87) 7(2) 5.4(2.88)

In speech Excessive briskness or weakness during

regular speech

4.3(1.89) 6.5(1.91) 5.4(2.13)

Jaw At rest Hanging open of jaw at rest 7(1.15) 8(0.0) 7.5(0.93)

In speech Fixed position or sudden jerks of jaw

during speech

5.8(2.63) 6.3(2.36) 6.1(2.42)

Velum Fluids Liquid passing through velum while

eating

7(2.0) 8(0.0) 7.5(1.41)

Maintenance Elevation of palate in repetitions of ‘‘ah
ah ah’’

5.8(2.06) 7.5(1.0) 6.6(1.77)

In speech Hypernasality or imbalanced nasal

resonance in speech

6.3(2.36) 6(2.83) 6.1(2.42)

Laryngeal Time Sustainability of vowels in time 5.3(2.5) 7.5(1.0) 6.4(2.13)

Pitch Ability to sing a scale of distinct notes 2(2.16) 5.3(2.5) 3.6(2.77)

Volume Ability to control volume of voice 3.5(3.11) 4.8(3.2) 4.1(3.0)

In speech Phonation, volume, and pitch in

conversational speech

3.3(2.87) 6(2.83) 4.6(3.02)

Tongue At rest Deviation of tongue to one side, or

involuntary movement

5.5(2.08) 5.5(1.73) 5.5(1.77)

Protrusion Variability, irregularity, or tremor during

repeated tongue protrusion and

retraction

3.8(3.1) 5.3(1.5) 4.5(2.39)

Elevation Laboriousness and speed of repeated

motion of tongue tip towards nose and

chin

3.3(3.2) 4.3(1.71) 3.7(2.43)

Lateral Laboriousness and speed of repeated

motion of tongue tip from side to side

3.8(3.1) 3.5(1.91) 3.6(2.39)

Alternate Deterioration or variability in repetitions

of phrase ‘‘ka la’’

4(2.71) 5.3(1.91) 4.9(2.9)

In speech Correctness of articulation points and

laboriousness of tongue motion during

speech generally

4(2.71) 6(2.83) 5(2.78)
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behaviours across this 9-point scale. For example, for the cough reflex dimension, a

subject would receive a grade of ‘a’(8) for no difficulty, ‘b’(6) for occasional

choking, ‘c’(4) if the patient requires particular care in breathing, ‘d’(2) if the

patient chokes frequently on food or drink, and ‘e’(0) if they are unable to have a

cough reflex. The resulting graph provides a high-level overview to the clinician to

quickly identify problematic aspects of speech or non-speech (e.g., swallowing).

The mildly dysarthric speakers were able to participate in all tasks required of

them for the assessment. The more severely dysarthric speakers also engaged in all

tasks but levels of fatigue and poor breath control inhibited them from completing

some of these tasks. Assessment data of this type is useful in analyzing how

modifications to ASR software affects achievable accuracy across the spectrum of

intelligibility levels. For example, alterations to the process by which vowels are

categorized by the machine may have greater impact for those individuals with

more atypical tongue movement, as opposed to pronounced velum differences.

Table 1 shows the mean (l) and standard deviation (r) of our participants, split by

gender, across each of the 28 dimensions of the Frenchay assessment.

2.3 Speech stimuli

All subjects read English text from a 19-inch LCD screen placed 60 cm in front of

them. One subject experienced some visual exhaustion near the end of one session,

and therefore repeated a small section of verbal stimuli spoken by an experimenter

rather than read these stimuli. No discernible effect of this approach was measured.

The stimuli were presented to the participants in randomized order from within fixed-

sized collections of stimuli in order to avoid priming or dependency effects. Dividing

the stimuli into collections in this manner guaranteed overlap between subjects who

speak at vastly different rates, which is the case when dealing with severely

dysarthric speakers, especially when the time allowable for each session is limited.

There is no dependency relation between the sessions and the presented stimuli. The

collected speech data covers a wide range of articulatory contrasts, is phonetically

balanced, and simulates simple command vocabularies typical of assistive ASR

technology. The following types of stimuli are included across all collections of data:

Non-words These are used to control for the baseline abilities of the dysarthric

speakers, especially to gauge their articulatory control in the presence of plosives

and prosody. Speakers are asked to perform the following:

Table 1 continued

Category Test Observation Males Females All

l(r) l(r) l(r)

Intelligibility Words Interpretability of 10 isolated spoken

words from a closed set

4(2.94) 4.5(2.52) 4.3(2.55)

Sentences Interpretability of 10 spoken sentences

from a closed set

3.5(3.32) 5.3(3.4) 4.4(3.25)

Conversation General distortion or decipherability of

speech in casual conversation

4.5(2.38) 6.5(1.91) 5.5(2.27)
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– 5–10 repetitions of /iy-p-ah/, /ah-p-iy/, and /p-ah-t-ah-k-ah/, respectively. These

sequences allow us to observe phonetic contrasts around plosive consonants in

the presence of high and low vowels, and have been used in other studies

(Bennett et al. 2007).

– High-pitch and low-pitch vowels maintained over 5 s (e.g., ‘‘Say ‘eee’ in a high
pitch for 5 s’’). This allows us to explore the use of prosody in assistive

technology, as many dysarthric speakers who have difficulty with articulation

can control pitch to some degree (Patel 2002).

Short words These are useful for studying speech acoustics without the need for

word-boundary detection. These stimuli include formant transitions between conso-

nants and vowels, the formant frequencies of vowels, and acoustic energy during plosive

phonemes, as explored by Roy et al. (2001). This category includes the following:

– Repetitions of the English digits 1–10, yes, no, up, down, left, right, forward,

back, select, menu, and the international radio alphabet (i.e., alpha, bravo,

charlie, etc.). These words are useful for hypothetical command-and-control

software for accessibility.

– 50 words from the the word intelligibility section of the Frenchay Dysarthria

Assessment (Enderby 1983).

– 360 words from the word intelligibility section of the Yorkston-Beukelman

Assessment of Intelligibility of Dysarthric Speech (Yorkston and Beukelman

1981). These are grouped into phonetically similar words, as was presented in

the Nemours database (Menendez-Pidal et al. 1996) (e.g., hit, hat, and hut are a

trio of monosyllabic words differing only in their vowel).

– The 10 most common words in the British National Corpus (Clear 1993).

– All phonetically contrasting pairs of words from Kent et al. (1989). These are

grouped into 18 articulation-relevant categories that affect intelligibility,

including glottal/null, voiced/voiceless, alveolar/palatal fricatives and stops/

nasals; these are shown in Table 3 in Appendix.

Restricted sentences In order to utilize lexical, syntactic, and semantic

processing in ASR, full and syntactically correct sentences are recorded. These

include the following:

– Preselected phoneme-rich sentences such as ‘‘The quick brown fox jumps over
the lazy dog’’, ‘‘She had your dark suit in greasy wash water all year’’, and

‘‘Don’t ask me to carry an oily rag like that’’.
– The Grandfather passage from the Nemours database (Menendez-Pidal et al.

1996).

– 162 sentences from the sentence intelligibility section of the Yorkston-

Beukelman Assessment of Intelligibility of Dysarthric Speech (Yorkston and

Beukelman 1981).

– The 460 TIMIT-derived sentences used as prompts in the MOCHA database

(Wrench 1999; Zue et al. 1989).

Unrestricted sentences Since a long-term goal is to develop applications capable

of accepting unrestricted and novel sentences, we elicited natural descriptive text by
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asking participants to spontaneously describe 30 images of interesting situations

taken randomly from among the cards in the Webber Photo Cards: Story Starters

collection (Webber 2005). These are similar in nature to images used in other

standardized tests of linguistic proficiency (Campbell et al. 2001). This data

complements restricted sentences in that they more accurately represent naturally

spoken speech, including disfluencies and syntactic variation.

2.4 Instrumentation

In each of three sessions, subjects are prepared for either of two instrumental

studies. The first involves the use of EMA and the other involves video recordings

of facial markers using specialized software to extract their positions over time. For

EMA, the preparation takes approximately 30 min in which sensors are placed on

the relevant locations of the speech articulators as described below in Sect. 2.4.1. In

the video-based setup, preparation takes about 20 min and involves the placement

of phosphorescent markers on relevant landmark positions of the face, as described

in Sect. 2.4.2. The actual data collection process takes no more than 1 h thereafter in

either the EMA or video configurations. Of the three recording sessions, two are

within the EMA environment since we are interested in the motion parameters of

the tongue, which are unavailable in the video setup. We perform three sessions for

each participant in order to check the reliability and variability of our data over

time. Moreover, the literature suggests that EMA can provide a reliable estimate of

speaker variability of speech parameters over time (van Lieshout et al. 1997).

2.4.1 Electromagnetic articulograph kinematics

The collection of movement data and time-aligned acoustic data is carried out using

the three-dimensional AG500 electro-magnetic articulograph (EMA) system

(Carstens Medizinelektronik GmbH, Lenglern, Germany) with fully-automated

calibration. The 3D-EMA system is considered state-of-the-art technology for

studying speech movements and its principles have been elaborated elsewhere

(Hoole et al. 2003; van Lieshout et al. 2008; Yunusova et al. 2009; Zierdt et al.

2000). This system allows for 3D recordings of articulatory movements inside and

outside the vocal tract, thus providing a detailed window on the nature and direction

of speech related activity.

In the AG500 system, six transmitters attached to a clear cube-shaped acrylic

plastic structure (dimensions L 58.4 9 W 53.3 9 H 49.5 cm) generate alter-

nating electromagnetic fields as shown in Fig. 1a. Each transmitter coil has a

characteristic oscillating frequency ranging from 7.5 to 13.75 kHz (Yunusova et al.

2009). When sensors (also called transducers) are brought into the field, induction

generates a weak current oscillating with the same frequencies. The energy in each

frequency of the induced complex signal depends on the distance of the sensor from

the transmitters and its orientation. The spatial position of the sensor coil in the field

is then determined by identifying the strength of the contribution of each transmitter

coil via a process of demodulation of the complex signal induced in the sensor
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(Yunusova et al. 2009). The induced voltage values in the sensors are compared to

expected values based on a known field model (Zierdt et al. 1999) and the

difference is expressed as root-mean-square (RMS) error. The system translates

these voltages into 3D coordinates of sensor positions over time. As will be

discussed later, the RMS error is used to position the subject within the recording

field and in part to measure the recording accuracy of the system.

As recommended by the manufacturer, the AG500 system is calibrated prior to

each session subsequent to a minimum of a 3 h warm-up time. It is reported that, at

or close to the cube’s centre, positional errors are significantly smaller (Yunusova

et al. 2009) compared to the peripheral regions of the recording field within the

cube. For our system, the stable volume around the center was roughly 0.008 m3

(approximately the size of a basketball). Thus, care was taken to ensure that all

participants were as close to the cube centre as possible, as shown in Fig. 1a. The

subject positioning within the cube was aided visually by the Cs5view real-time

position display program (Carstens Medizinelektronik GmbH, Lenglern, Germany).

This allowed the experimenter to continuously monitor the subject’s position within

the cube (repositioning the subject if required) and thereby maintain low RMS error

values1 to ensure good tracking of the sensor coils.

Sensor coils were attached to three points on the surface of the tongue, namely

tongue tip (TT—1 cm behind the anatomical tongue tip), the tongue middle (TM—

3 cm behind the tongue tip coil), and tongue back (approximately 2 cm behind the

tongue middle coil). A sensor for tracking jaw movements (JA) is attached to a

custom mould made from polymer thermoplastic that fits the surface of the lower

incisors and which is necessary for a more accurate and reproducible recording.

(a)

RM

UL

LM

TT

TM

TB

(b)

Fig. 1 The AG500 electromagnetic articulography system. a shows a participant seated in the center of
the EMA cube. b shows the placement coils on the right mouth (RM), left mouth (LM), upper lip (UL),
tongue tip (TT), tongue middle (TM), and tongue back (TB)

1 The Cs5view real-time position display flags a coil in red if the RMS error exceeds 30 units;

however, the RMS during rarely exceeded 8 units across all coils, which is suitable for minimizing

position tracking errors (Kroos 2008; Yunusova et al. 2009).
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Four additional coils are placed on the upper and lower lips (UL and LL) and the left

and right corners of the mouth (LM and RM). The placement of some of these coils

is shown in Fig. 1b. Further coils are placed on the subject’s forehead, nose bridge,

and behind each ear above the mastoid bone for reference purposes and to record

head motion. Except for the left and right mouth corners, all sensors that measure

the vocal tract lie generally on the midsagittal plane on which most of the relevant

motion of speech takes place. Sensors are attached by thin and light-weight cables to

recording equipment but do not impede free motion of the head within the EMA

cube. Many cerebrally palsied individuals require metal wheelchairs for transpor-

tation, but these individuals were easily moved to a wooden chair that does not

interfere with the electromagnetic field for the purposes of recording.

2.4.2 Video-based articulatory kinematics

Although EMA provides detailed recordings of the tongue, which is not normally

visible, typical use of speech recognition software will not likely involve such

measurements. Therefore, we implement a second recording environment whose

purpose is to derive more varied surface-level facial information using digital

cameras. Here, recorded positions are meant to mimic the type of information that

can be extracted from webcam-based face-recognition software.

Here, two digital video cameras are placed equidistant from the subject, at

approximately 45 degree angles to their midsagittal plane, to the front-left and front-

right of the subject. Video is captured at 60 frames per second and audio at

16,000 Hz on both cameras. This audio is used for synchronizing the frames from

both cameras and for separate acoustic measurements.

Two 250 W black lights are used to illuminate small (2 mm radii) glow-in-the-

dark markers placed on the surface of the subject’s face at selected points around the

lips and over the orbicularis oris, depressor anguli oris, and depressor labii inferioris

muscles as in previous studies on speech production (Craig et al. 2007) and as

shown in Fig. 2.

Facial markers are tracked by specialized vision software based on strong

contrasts between the reflection of the markers and the relatively darker

background. These positions are converted into 3-dimensional co-ordinates using

pairs of aligned video images and an estimated inter-camera calibration (Tsai 1987).

Calibration between cameras is performed by first filming a reference object with a

known geometry, namely a cube with 30 cm sides.

2.4.3 Acoustics and microphones

All acoustic data is recorded simultaneously through two microphones. The first is

an Acoustic Magic Voice Tracker array microphone with 8 recording elements

generally arranged horizontally along a span of 45.7 cm. The device uses amplitude

information at each of these microphones to pinpoint the physical location of the

speaker within its 60-degree range and to reduce acoustic noise by spatial filtering

and typical amplitude filtering in firmware. This microphone records audio at
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44.1 kHz and is placed facing the participant at a distance of 61 cm. The second

microphone is a head-mounted electret microphone which records audio at 16 kHz.

The electromagnetic field produced by this microphone does not demonstrably

affect the field of the EMA system, and so it can be worn during all recordings.

Signals from the two microphones are temporally aligned using simple cross-

correlation. Namely, given the two discrete signals f and g, we compute the complex

conjugate of the first, giving signal f � consisting of real and phase values, and

compute the cross-correlation by

ðf HgÞ½n� ¼
X

m

¼ �NNf �½m�g½nþ m�

where N is the length of the longer of the two sequences. The maximum value of

this cross-correlation signal is the time delay between the jointly stationary signals,

which is the speech signal recorded by both microphones. An example of this

alignment is shown in Fig. 3.

Finally, acoustic noise reduction is performed using the minimum mean squared

error estimate of the spectral amplitude (Ephraim and Malah 1985; Martin 2001).

Furthermore, the use of multiple microphones permits the use of various noise-reduction

algorithms not suitable for single sources (Aarabi and Shi 2004; Shi et al. 2007).

3 Data post-processing

The AG500 EMA system has an expected error specification of up to 0.5 mm in

each dimension (X, Y, and Z) and an angular error (h) of less than half of a degree.

However, in reality it is possible that accuracy may vary slightly across different

AG500 systems due to set-up and environmental conditions such as ambient room

temperature, type of sensor coils used, and existing electromagnetic fields in the

room. These conditions may also vary across time (Kaburagi et al. 2005; Yunusova

et al. 2009). To estimate more realistic values, we carried out a series of static and

Fig. 2 The binocular video recording setup showing the placement of phosphorescent dots on the
subject’s face
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dynamic accuracy measurements for the AG500 system. For static measurement, 3-

dimensional Euclidean distances between pairs of sensor coils were calculated. The

sensors used here were those located on relatively rigid surfaces, namely the

forehead, nose bridge, and behind the ear on the skin covering the right and left

mastoid bone. Under ideal conditions, the distance between the pairs of sensors

should remain constant throughout all trials for a given session. In other words,

smaller average standard deviations for the 3D Euclidean distances between pairs of

reference coils would imply lower static system noise or relative error. Similar

methods have been applied to a camera-based marker tracking system (Craig et al.

2007) and in other 3D EMA systems (Hoole and Zierdt 2010; Yunusova et al.

2009). This Euclidean RMS method provides a real and accurate measure of

intrinsic system noise and relative error for each recording session. The average

value was 0.2 mm across all pairs. These numbers may be taken roughly as the

lower limit of the system’s resolution (Kroos 2008).

Recent studies have indicated that position errors in dynamic measurements, as

opposed to static measurements, may be larger in magnitude and may vary across

the three spatial dimensions (Kroos 2008; Yunusova et al. 2009). We therefore ran a

set of dynamic accuracy measurements for all coils using a specific tool
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Fig. 3 Alignment of two acoustic sources with the cross-correlation method. The top waveform is the
signal recorded by the head-mounted microphone. The middle waveform is the signal recorded by the
directional microphone. The bottom superposition of waveforms is produced by cross-correlation
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recommended by the manufacturer. This allows us to estimate dynamic spatial

errors as a function of sensor orientation. This accuracy checking tool is a

mechanical device that is rigidly fixed in the centre of the cube’s recording field and

allows user defined manipulations of sets of coils in different orientations and

directions. The device is constructed such that sets of coils placed on it can only

travel a fixed distance (70 mm) in a particular direction. For the current study, we

displaced 3 sets of 4 coils (i.e. hð1::4; 5::8; 9::12i) across the entire 70 mm distance

six times in a row in each dimension (X, Y, and Z). A custom Matlab algorithm

calculated the maximum 3D Euclidean displacement between points in that trial, as

well as the average 3D Euclidean displacement. The algorithm automatically finds

the coils that are being moved and the dimensions in which they are moving using

maximum variance. Ideally, the maximum and average 3D Euclidean displacement

values should be as close to 70 mm as possible. The amount of deviation from

70 mm provides an estimate of direction specific spatial accuracy of the system. We

calculated the accuracy averaged across all 12 sensor coils per dimension. This was

in the range of 0.54–0.60 mm in the Z (up/down) dimension, 0.34–0.59 mm in the

X (front/back) dimension, and 0.84–1.07 mm in the Y (left/right) dimension.

3.1 Data normalization

Position normalizations and corrections for head movements were carried out using

custom-made NormPos software from the manufacturer of the AG500. The

NormPos program does a sample-by-sample head normalization by rotating and

shifting the coordinate system such that all reference sensors remain in the same 3D

location across all samples and trials. Computationally, this is carried out using

algorithms similar to 3D pose estimation methods (Kroos 2008). Such algorithms

calculate transformation parameters that can transform head position of a given

sample to an experimenter chosen arbitrary reference position (that defines the

orientation of the head and the origin of the coordinate system). The transformation

parameters are derived by minimizing the sum of the squared distances between the

reference sensor coils in the reference position and the actual position in other trials

using linear least squares approaches such as (Kroos 2008). The NormPos program

stores these transformational parameters as a normalization pattern file. This

normalization pattern file is then used to rotate and translate all other (non-

reference) sensor coils positions in the remaining trails of the experiment to yield

articulation trajectories that are corrected for head movements and with a fixed

head-orientation that is identical across trials (and across subjects).

Since the NormPos program uses a normalization pattern file that is based on a

single trial, the quality of the head movement correction for the entire experiment

depends on the quality of the data from the reference sensor coils in that trial. At

times, the quality of data may not be equally good in all reference coils (as in the

case of coil detachment and/or position tracking errors). For this reason, researchers

have recommended the use of more than two reference sensor coils,2 typically four,

2 Two sensors, in principle, are sufficient to characterize the six degrees of freedom related to rigid-body

motions (Hoole and Zierdt 2010).
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to allow for redundancy in the available reference sensor coils (Hoole and Zierdt

2010). For the present study, the two noise measures that were previously discussed

were used to decide which two or three reference sensor coils (of the four available)

were suitable to create the normalization pattern file (Hoole and Zierdt 2010).

Generally, the nose bridge and the two sensor coils behind the ears had the least

amount of noise and were chosen to create the normalization pattern.

4 Aspects of dysarthric speech in TORGO

There are a number of features which differentiate dysarthric and non-dysarthric

speech in our recorded data. Table 2 shows the proportion of phonemes that were

mispronounced according to manner of articulation for dysarthric speech. Plosives

are mispronounced most often, with substitution errors exclusively caused by errant

voicing (e.g. /d/ for /t/). By comparison, only 5% of corresponding plosives in total

are mispronounced in non-dysarthric speech. Furthermore, the prevalence of deleted

affricates and plosives in word-final positions, almost all of which are alveolar, does

not occur in the corresponding non-dysarthric speech data.

Figures 4 and 5 show the durations of various steady-state phonemes (i.e.,

vowels and consonants, respectively) averaged across the dysarthric and control

groups of TORGO. All vowels produced by dysarthric speakers are significantly

slower than their non-dysarthric counterparts at the 95% confidence interval and

can be up to twice as long, on average. We note that the divergence of the nasal

consonants are most severe, which may be indicative of poor control of the velum,

but the degree of this divergence does not significantly outweigh those among the

other consonants.

5 Ongoing work

All data in this paper, including noise-reduced audio and articulatory data, can

be obtained by contacting the authors at the University of Toronto. This data is

Table 2 Proportion of phoneme substitution (SUB) and deletion (DEL) errors in word-initial (i), word-

medial (m), and word-final (f) positions across categories of manner for dysarthric data

SUB (%) DEL (%)

i m f i m f

Plosives 13.8 18.7 7.1 1.9 1.0 12.1

Affricates 0.0 8.3 0.0 0.0 0.0 23.2

Fricatives 8.5 3.1 5.3 22.0 5.5 13.2

Nasals 0.0 0.0 1.5 0.0 0.0 1.5

Glides 0.0 0.7 0.4 11.4 2.5 0.9

Vowels 0.9 0.9 0.0 0.0 0.2 0.0
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currently being used as input to automatic statistical pattern recognition software

that identify relationships between the source features of speech and their

intended linguistic meanings. Features such as frequency, energy, and pitch are
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Fig. 4 Duration of vowels among dysarthric speakers (filled circles) and control speakers (unfilled
circles). The heights of the circles correspond to the average duration, in milliseconds, of the associated
vowel and the radii of the circles represent one standard deviation of the data. Vowels are sorted from left
to right according to increasing divergence between groups
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Fig. 5 Duration of selected consonants among dysarthric speakers (filled circles) and control speakers
(unfilled circles). The heights of the circles correspond to the average duration, in milliseconds, of the
associated consonant and the radii of the circles represent one standard deviation of the data. Consonants
are sorted from left to right according to increasing divergence between groups
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automatically extracted from the raw audio signal using standard feature

extraction techniques (e.g., Mel-frequency cepstral coefficients). These sorts of

features are typical input to speech recognition programs that identify spoken

phonemes through various multivariate Bayesian methods or by probabilistic

regression. Articulatory models learned from kinematic data have been embedded

directly within standard recognition systems, which has been shown to improve

overall accuracy within the Hidden Markov Model (Markov et al. 2006; Rudzicz

2009).

The data described in this paper reveals that a lack of articulatory control can

often lead to observable acoustic consequences. For example, our dysarthric data

contain considerable involuntary types of speech and non-speech noise such as

velopharyngeal or glottal noise (often associated with respiration), noisy swallowing

problems, hesitation (e.g., false starts), and repetition. We intend to work towards

methods of explicitly identifying regions of non-speech noise in our speech

recognition systems for dysarthric speakers. Since real-world applications of such

technology are not likely to have access to measurements of the vocal tract, we are

currently developing methods that estimate the configuration of the vocal tract given

only acoustic data (Rudzicz 2010). Similar approaches have been shown to

accurately estimate such positions within an average error of less than 1 mm

(Richmond et al. 2003; Toda et al. 2008).

Data collection with individuals with dysarthria is ongoing according to the

protocols described in this paper. All data described in this journal will be made

available online in early 2011. The University of Toronto will not charge any fee for

access to this data. Audio for each utterance is encoded in individual wave files

encoded in the linear PCM format at 16 and 44.1 kHz. Both raw and normalized

articulatory data are provided in EMA-format files at 200 Hz. Open-source

programs will be provided to access the EMA file format; no proprietary EMA

system or analysis software will be required to access this data. This database will

occupy approximately 45 GB of disk space.
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Appendix: Articulatory contrasts

See Table 3.
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Table 3 Articulatory contrasts, from Kent et al. (1989)

Front-back vowel Knew/knee Pat/pot Him/hum Shoot/sheet Beet/boot

Geese/goose Feed/food Air/are Chop/chap Fill/full

High-low vowel Knew/know Knew/gnaw Him/hem Him/ham Shoot/shot

Geese/gas Geese/guess Pit/pet Pit/pat Feet/fat

Heat/hate Had/hid

Vowel duration Beat/bit Slip/sleep Leak/lick Knot/nut Read/rid

Ship/sheep Feet/fit Lip/leap Ease/is Reap/rip

Voicing, initial consonants Pat/bat Bad/pad Pit/bit Sip/zip Coat/goat

Dug/tug Cash/gash Tile/dial Bunch/punch

Voicing, final consonants Feet/feed Bad/bat Leak/league Knot/nod Write/ride

Side/sight Coat/code Dug/duck Ate/aid At/add

Alveolar-palatal Sip/ship Shoot/suit Shy/sigh Sell/shell Sin/shin

Sew/show See/she Sheet/seat

Consonant place Bug/dug Tile/pile Cake/take Meat/neat Bill/dill

Bill/gill Ache/ape Ache/ate Lip/lit

Other fricative Sheet/feet Sigh/thigh Hill/fill Hand/sand Sew/foe

See/he Nice/knife Hat/fat Sell/fell Feet/heat

Hat/that Hold/fold Hail/sail Harm/farm Seed/feed

Fricative-affricate Chair/share Wish/witch Much/mush Ship/chip Chop/shop

Cash/catch Sheer/cheer Hash/hatch Harm/charm

Stop-affricate Chair/tear Much/mut Chop/top Witch/wit Much/muck

Stop-nasal Beat/meat Knot/dot Side/sign Nice/dice Steak/snake

Bill/mill Dock/mock Dock/knock Bunch/munch Tile/mile

Initial glottal-null Air/hair Ate/hate At/hat Hand/and Hold/old

Heat/eat Hash/ash Harm/arm Had/add Hail/ail

Initial consonant-null Air/fair Ate/fate At/at Sin/in Sheet/eat

Chair/air Spit/it Blend/end Ease/peas Ease/cheese

Sink/ink Cake/ache Rise/eyes Row/ow

Final consonant-null Feed/fee Side/sigh Blow/bloat Fork/four Rake/ray

Leak/lee Meat/me Bunch/bun Seed/see

Initial cluster-initial singleton Slip/sip Slip/lip Spit/pit Spit/sit Blend/bend

Blend/lend Sticks/six Sticks/ticks Steak/take Steak/sake

Blow/low Blow/bow

Final cluster-final singleton Sticks/stick Rock/rocks Seed/seeds Sink/sing Cake/cakes

Meat/meats Fork/forks Rake/rakes Leak/leaks Ache/aches

Wax/wack Docks/dock

/r/-/l/ Read/lead Write/light Leak/reek Rock/lock Rake/lake

Lip/rip Reap/leap Rise/lies Row/low Racks/lax

/r/-/w/ Read/weed Write/white Rich/witch Rock/walk Reap/weep

Rise/wise Row/woe Racks/wax
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