
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2014/0195227 A1 

US 2014O195227A1 

RUDZICZ. et al. (43) Pub. Date: Jul. 10, 2014 9 

(54) SYSTEMAND METHOD FOR ACOUSTIC (60) Provisional application No. 61/511,275, filed on Jul. 
TRANSFORMATION 25, 2011. 

(71) Applicants: Frank RUDZICZ, Toronto (CA); Publication Classificati 
Graeme John HIRST, Toronto (CA): DCOSSO 
Pascal Hubert Henri Marie VAN (51) Int. Cl. 
LIESHOUT, Oakville (CA); Graham GIOL 15/22 (2006.01) 
Fraser SHEIN, Toronto (CA); Gerald (52) U.S. Cl 
Bradley PENN, Thornhill (CA) CPC ...................................... G10L 15/22 (2013.01) 

(72) Inventors: Frank RUDZICZ, Toronto (CA); USPC .......................................................... 704/231 
Graeme John HIRST, Toronto (CA): 
Pascal Hubert Henri Marie VAN (57) ABSTRACT 
LIESHOUT. Oakville (CA): Grah 
Fraser SHEIN. it. & E. An acoustic transformation system and method. A specific 
Bradley PENN, Thornhill (CA) embodiment is the transformation of acoustic speech signals 

s produced by speakers with speech disabilities in order to 
(21) Appl. No.: 14/153,942 make those utterances more intelligible to typical listeners. 
(22) Filed Jan. 13, 2014 These modifications include the correction of tempo or 

1C al. 15. rhythm, the adjustment of formant frequencies in Sonorants, 
Related U.S. Application Data the removal of adjustment of aberrant voicing, the deletion of 

.S. App phoneme insertion errors, and the replacement of erroneously 
(63) Continuation of application No. PCT/CA2012/ dropped phonemes. These methods may also be applied to 

050502, filed on Jul. 25, 2012. general correction of musical or acoustic sequences. 

  



US 2014/0195227A1 

(9Z) ?OunOS punOS 

Jul. 10, 2014 Sheet 1 of 3 

?OunOS punOS 

(8L) 

euou dolo! WN 

Patent Application Publication 

    

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  



US 2014/0195227A1 Jul. 10, 2014 Sheet 2 of 3 Patent Application Publication 

  



Patent Application Publication Jul. 10, 2014 Sheet 3 of 3 US 2014/O195227 A1 

aa 

O 

r 

a 
s 

jouane 
(Y) V 

9 9 
L L 

ar 

its 

ea 
t 
se 

Áouanb3. 

  

  



US 2014/O 195227 A1 

SYSTEMAND METHOD FORACOUSTIC 
TRANSFORMATION 

CROSS REFERENCE 

0001. This application claims priority from U.S. patent 
application Ser. No. 61/511.275 filed Jul. 25, 2011, incorpo 
rated herein by reference. 

FIELD OF THE INVENTION 

0002 The present invention relates generally to acoustic 
transformation. The present invention relates more specifi 
cally to acoustic transformation to improve the intelligibility 
of a speaker or sound. 

BACKGROUND 

0003. There are several instances where a sound is pro 
duced inaccurately, so that the sound that is heard is not the 
Sound that was intended. Sounds of speech are routinely 
uttered inaccurately by speakers with dysarthria. 
0004. Dysarthria is a set of neuromotor disorders that 
impair the physical production of speech. These impairments 
reduce the normal control of the primary vocal articulators 
but do not affect the regular comprehension or production of 
meaningful, Syntactically correct language. For example, 
damage to the recurrent laryngeal nerve reduces control of 
Vocal fold vibration (i.e., phonation), which can result in 
aberrant voicing. Inadequate control of soft palate movement 
caused by disruption of the vagus cranial nerve may lead to a 
disproportionate amount of air being released through the 
nose during speech (i.e., hypernasality). It has also been 
observed that the lack of articulatory control also leads to 
various involuntary non-speech Sounds including velopha 
ryngeal or glottal noise. More commonly, it has been shown 
that a lack of tongue and lip dexterity often produces heavily 
slurred speech and a more diffuse and less differentiable 
Vowel target space. 
0005. The neurological damage that causes dysarthria 
usually affects other physical activity as well which can have 
a drastically adverse affect on mobility and computer inter 
action. For instance, it has been shown that severely dysar 
thric speakers are 150 to 300 times slower than typical users 
in keyboard interaction. However, since dysarthric speech has 
been observed to often be only 10 to 17 times slower than that 
of typical speakers, speech has been identified as a viable 
input modality for computer-assisted interaction. 
0006 For example, a dysarthric individual who must 
travel into a city by public transportation may purchase tick 
ets, ask for directions, or indicate intentions to fellow passen 
gers, all within a noisy and crowded environment. Thus, some 
proposed solutions have involved a personal portable com 
munication device (either handheld or attached to a wheel 
chair) that would transform relatively unintelligible speech 
spoken into a microphone to make it more intelligible before 
being played over a set of speakers. Some of these proposed 
devices result in the loss of any personal aspects, including 
individual affectation or natural expression, of the speaker, as 
the devices output a robotic Sounding Voice. The use of 
prosody to convey personal information Such as one's emo 
tional state is generally not supported by Such systems but is 
nevertheless understood to be important to general commu 
nicative ability. 
0007 Furthermore, the use of natural language processing 
Software is increasing, particularly in consumer facing appli 
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cations. The limitations of persons afflicted with speech con 
ditions become more pronounced as the use of and reliance 
upon Such software increases. 
0008. It is an object of the present invention to overcome 
or mitigate at least one of the above disadvantages. 

SUMMARY OF THE INVENTION 

0009. The present invention provides a system and method 
for acoustic transformation. 
0010. In one aspect, a system for transforming an acoustic 
signal is provided, the system comprising an acoustic trans 
formation engine operable to apply one or more transforma 
tions to the acoustic signal in accordance with one or more 
transformation rules configured to determine the correctness 
of each of one or more temporal segments of the acoustic 
signal. 
0011. In another aspect, a method for transforming an 
acoustic signal is provided, the method comprising: (a) con 
figuring one or more transformation rules to determine the 
correctness of each of one or more temporal segments of the 
acoustic signal; and (b) applying, by an acoustic transforma 
tion engine, one or more transformations to the acoustic sig 
nal in accordance with the one or more transformation rules. 

DESCRIPTION OF THE DRAWINGS 

0012. The features of the invention will become more 
apparent in the following detailed description in which refer 
ence is made to the appended drawings wherein: 
0013 FIG. 1 is a block diagram of an example of a system 
providing an acoustic transformation engine; 
0014 FIG. 2 is a flowchart illustrating an example of an 
acoustic transformation method; 
0015 FIG. 3 is a graphical representation of an obtained 
acoustic signal for a dysarthric speaker and a control speaker; 
and 
0016 FIG. 4 is a spectrogram showing an obtained acous 

tic signal (a) and corresponding transformed signal (b). 

DETAILED DESCRIPTION 

0017. The present invention provides a system and method 
of acoustic transformation. The invention comprises an 
acoustic transformation engine operable to transform an 
acoustic signal by applying one or more transformations to 
the acoustic signal in accordance with one or more transfor 
mation rules. The transformation rules are configured to 
enable the acoustic transformation engine to determine the 
correctness of each of one or more temporal segments of the 
acoustic signal. 
0018 Segments that are determine to be incorrect may be 
morphed, transformed, replaced or deleted. A segment can be 
inserted into an acoustic signal having segments that are 
determined to be incorrectly adjacent. Incorrectness may be 
defined as being perceptually different than that which is 
expected. 
0019 Referring to FIG. 1, a system providing an acoustic 
transformation engine (2) is shown. The acoustic transforma 
tion engine (2) comprises an input device (4), a filtering utility 
(8), a splicing utility (10), a time transformation utility (12), a 
frequency transformation utility (14) and an output device 
(16). The acoustic transformation engine further includes an 
acoustic rules engine (18) and an acoustic sample database 
(20). The acoustic transformation engine may further com 
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prise a noise reduction utility (6), an acoustic sample synthe 
sizer (22) and a combining utility (46). 
0020. The input device is operable to obtain an acoustic 
signal that is to be transformed. The input device may be a 
microphone (24) or other Sound Source (26), or may be an 
input communicatively linked to a microphone (28) or other 
sound source (30). A sound source could be a sound file stored 
on a memory or an output of a sound producing device, for 
example. 
0021. The noise reduction utility may apply noise reduc 
tion on the acoustic signal by applying a noise reduction 
algorithm, such as spectral Subtraction, for example. The 
filtering utility, splicing utility, time transformation utility 
and frequency transformation utility then apply transforma 
tions on the acoustic signal. The transformed signal may then 
be output by the output device. The output device may be a 
speaker (32) or a memory (34) configured to store the trans 
formed signal, or may be an output communicatively linked 
to a speaker (36), a memory (38) configured to store the 
transformed signal, or another device (40) that receives the 
transformed signal as an input. 
0022. The acoustic transformation engine may be imple 
mented by a computerized device. Such as a desktop com 
puter, laptop computer, tablet, mobile device, or other device 
having a memory (42) and one or more computer processors 
(44). The memory has stored thereon computer instructions 
which, when executed by the one or more computer proces 
sors, provide the functionality described herein. 
0023 The acoustic transformation engine may be embod 
ied in an acoustic transformation device. The acoustic trans 
formation device could, for example, be a handheld comput 
erized device comprising a microphone as the input device, a 
speaker as the output device, and one or more processors, 
controllers and/or electric circuitry implementing the filtering 
utility, splicing utility, time transformation utility and fre 
quency transformation utility. 
0024. One particular example of such an acoustic trans 
formation device is a mobile device embeddable within a 
wheelchair. Another example of Such an acoustic transforma 
tion device is an implantable or wearable device (which may 
preferably be chip-based or another small form factor). 
Another example of such an acoustic transformation device is 
a headset wearable by a listener of the acoustic signal. 
0025. The acoustic transformation engine may be applied 
to any Sound represented by an acoustic signal to transform, 
normalize, or otherwise adjust the sound. In one example, the 
sound may be the speech of an individual. For example, the 
acoustic transformation engine may be applied to the speech 
ofan individual with a speech disorder in order to correct their 
pronunciation, tempo, and tone. 
0026. In another example, the sound may be from a musi 
cal instrument. In this example, the acoustic transformation 
engine is operable to correct the pitch of an untuned musical 
instrument or modify incorrect notes and chords but it may 
also insert or remove missed or accidental sounds, respec 
tively, and correct for the length of those Sounds in time. 
0027. In yet another example, the sound may be a pre 
recorded sound that is synthesized to resemble a natural 
Sound. For example, a vehicle computer may be programmed 
to output a particular sound that resembles an engine Sound. 
In time, the outputting sound can be affected by external 
factors. The acoustic transformation engine may be applied to 
correct the outputted sound of the vehicle computer. 
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0028. The acoustic transformation engine may also be 
applied to the synthetic imitation of a specific human Voice. 
For example, one Voice actor can be made to Sound more like 
another by modifying voice characteristics of the former to 
more closely resemble the latter. 
0029 While there are numerous additional examples for 
the application of the acoustic transformation engine, for 
simplicity the present disclosure describes the transformation 
of speech. It more particularly describes the transformation of 
dysarthric speech. It will be appreciated that transformation 
of other speech and other sounds could be provided using 
Substantially similar techniques as those described herein. 
0030 The acoustic transformation engine can preserve the 
natural prosody (including pitch and emphasis) of an indi 
viduals speech in order to preserve extra-lexical information 
Such as emotions. 
0031. The acoustic sample database may be populated 
with a set of synthesized sample sounds produced by an 
acoustic sample synthesizer. The acoustic sample synthesizer 
may be provided by a third-party (e.g., a text-to-speech 
engine) or may be included in the acoustic transformation 
engine. This may involve, for example, resampling the Syn 
thesized speech using a polyphase filter with low-pass filter 
ing to avoid aliasing with the original spoken source speech. 
0032. In another example, an administrator or user of the 
acoustic transformation engine could populate the acoustic 
sample database with a set of sample sound recordings. In an 
example where the acoustic transformation engine is applied 
to speech, the sample sounds correspond to versions of appro 
priate or expected speech, Such as pre-recorded words. 
0033. In the example of dysarthric speech, a text-to 
speech algorithm may synthesize phonemes using a method 
based on linear predictive coding with a pronunciation lexi 
con and part-of-speech tagger that assists in the selection of 
intonation parameters. In this example, the acoustic sample 
database is populated with expected speech given text or 
language uttered by the dysarthric speaker. Since the discrete 
phoneme sequences themselves can differ, an ideal alignment 
can be found between the two by the Levenshtein algorithm, 
which provides the total number of insertion, deletion, and 
substitution errors. 
0034. The acoustic rules engine may be configured with 
rules relating to empirical findings of improper input acoustic 
signals. For example, where the acoustic transformation 
engine is applied to speech that is produced by a dysarthric 
speaker, the acoustic rules engine may be configured with 
rules relating to common speech problems for dysarthric 
speakers. Furthermore, the acoustic rules engine could 
include a learning algorithm or heuristics to adapt the rules to 
a particular user or users of the acoustic transformation 
engine, which provides customization for the user or users. 
0035. In the example of dysarthric speech, the acoustic 
rules engine may be configured with one or more transforma 
tion rules corresponding to the various transformations of 
acoustics. Each rule is provided to correct a particular type of 
error likely to be caused by dysarthria as determined by 
empirical observation. An example of a source of such obser 
vation is the TORGO database of dysarthric speech. 
0036. The acoustic transformation engine applies the 
transformations to an acoustic signal provided by the input 
device in accordance with the rules. 
0037. The acoustic rules engine may apply automated or 
semi-automated annotation of the Source speech to enable 
more accurate word identification. This is accomplished by 
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advanced classification techniques similar to those used in 
automatic speech recognition, but to restricted tasks. There 
are a number of automated annotation techniques that can be 
applied, including, for example, applying a variety of neural 
networks and rough sets to the task of classifying segments of 
speech according to the presence of stop-gaps, vowel prolon 
gations, and incorrect syllable repetitions. In each case, input 
includes source waveforms and detected formant frequen 
cies. Stop-gaps and vowel prolongations may be detected 
with high (about 97.2%) accuracy and vowel repetitions may 
be detected with high (about up to 90%) accuracy using a 
rough set method. Accuracy may be similar using more tra 
ditional neural networks. These results may be generally 
invariant even under frequency modifications to the Source 
speech. For example, disfluent repetitions can be identified 
reliably through the use of pitch, duration, and pause detec 
tion (with precision up to about 93%). If more traditional 
models of speech recognition to identify vowels are imple 
mented, the probabilities that they generate across hypoth 
esized words might be used to weight the manner in which 
acoustic transformations are made. If word-prediction is to be 
incorporated, the predicted continuations of uttered sentence 
fragments can be synthesized without requiring acoustic 
input. 
0038 Referring now to FIG. 2, an example method of 
acoustic transformation provided by the acoustic transforma 
tion engine is shown. The input device obtains an acoustic 
signal; the acoustic signal may comprise a recording of 
acoustics on multiple channels simultaneously, possibly 
recombining them later as in beam-forming. Prior to applying 
the transformations, the acoustic transformation engine may 
apply noise reduction or enhancement (for example, using 
spectral Subtraction), and automatic phonological, phonemic, 
or lexical annotations. The transformations applied by the 
acoustic transformation engine may be aided by annotations 
that provide knowledge of the manner of articulation, the 
identities of the vowel segments, and/or other abstracted 
speech and language representations to process an acoustic 
signal. 
0039. The spectrogram or other frequency-based or fre 
quency-derived (e.g. cepstral) representation of the acoustic 
signal may be obtained with a fast Fourier transform (FFT), 
linear predictive coding, or other such method (typically by 
analyzing short windows of the time signal). This will typi 
cally (but not necessarily) involve a frequency-based or fre 
quency-derived representation in which that domain is 
encoded by a vector of values (e.g., frequency bands). This 
will typically involve a restricted range for this domain (e.g., 
0 to 8 kHz in the frequency domain). Voicing boundaries may 
extracted in a unidimensional vector aligned with the spec 
trogram; this can be accomplished by using Gaussian Mixture 
Models (GMMs) or other probability functions trained with 
Zero-crossing rate, amplitude, energy and/or the spectrum as 
input parameters, for example. A pitch (based on the funda 
mental frequency Fo) contour may he extracted from the 
spectrogram by a method which uses a Viterbi-like potential 
decoding of Fo traces described by cepstral and temporal 
features. It can be shown that an error rate of less than about 
0.14% in estimating Fo contours can be achieved, as com 
pared with simultaneously-recorded electroglottograph data. 
Preferably, these contours are not modified by the transfor 
mations, since in Some applications of the acoustic transfor 
mation engine, using the original Fo results in the highest 
possible intelligibility. 
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0040. The transformations may comprise filtering, splic 
ing, time morphing and frequency morphing. In one example 
of applying the acoustic transformation to dysarthric speech, 
each of the transformations may be applied. In other applica 
tions, one or more of the transformations may not need to be 
applied. The transformations to apply can be selected based 
on expected issues with the acoustic signal, which may be a 
product of what the acoustic signal represents. 
0041 Furthermore, the transformations may be applied in 
any order. The order of applying transformations may be a 
product of the implementation or embodiment of the acoustic 
transformation engine. For example, a particular processor 
implementing the acoustic transformation engine may be 
more efficiently utilized when applying transformations in a 
particular order, whether based on the particular instruction 
set of the processor, the efficiency of utilizing pipelining in 
the processor, etc. 

0042. Furthermore, certain transformations may be 
applied independently, including in parallel. These indepen 
dently transformed signals can then be combined to produce 
a transformed signal. For example, formant frequencies of 
vowels in a word can be modified while the correction of 
dropped or inserted phonemes is performed in parallel, and 
these can be combined thereafter by the combining utility 
using, for example, time-domain pitch-synchronous overlap 
add (TD-PSOLA). Other transformations may be applied in 
Series (e.g., in certain examples, parallel application of 
removal of acoustic noise with formant modifications may 
not provide optimal output). 
0043. The filtering utility applies a filtering transforma 
tion. In an example of applying the acoustic transformation 
engine to dysarthric speech, the filtering utility may be con 
figured to apply a filter based on information provided by the 
annotation source 

0044) For example, the TORGO database indicates that 
unvoiced consonants are improperly voiced in up to 18.7% of 
plosives (e.g. /d/ for /t/) and up to 8.5% of fricatives (e.g. /v/ 
for /f/) in dysarthric speech. Voiced consonants are typically 
differentiated from their unvoiced counterparts by the pres 
ence of the Voice bar, which is a concentration of energy 
below 150 Hz, indicative of vocal fold vibration that often 
persists throughout the consonant or during the closure before 
a plosive. The TORGO database also indicates that for at least 
two male dysarthric speakers this voice bar extends consid 
erably higher, up to 250 Hz. 

0045. In order to correct these mispronunciations, the fil 
tering utility filters out the voice bar of all acoustic sub 
sequences annotated as unvoiced consonants. The filter, in 
this example, may he a high-pass Butterworth filter, which is 
maximally flat in the passband and monotonic in magnitude 
in the frequency domain. The Butterworth filter may be con 
figured using on a normalized frequency range respecting the 
Nyquist frequency, so that ifa waveforms sampling rate is 16 
kHz, the normalized cutoff frequency for this component is 
f* =250/(1.6x10/2)=3.125x10°. This Butterworth filter 
is an all-pole transfer function between signals. The filtering 
utility may apply a 10"-order low-pass Butterworth filter 
whose magnitude response is 



US 2014/O 195227 A1 

18(g: 10) = H(: 10) = 
is 2x10 

1 +( * KNorm 

where Z is the complex frequency in polar coordinates and 
Z, is the cutoff frequency in that domain. This provides 
the transfer function 

3(3; 10) = H(X: 10) = O 

whose poles occur at known symmetric intervals around the 
unit complex-domain circle. These poles may then be trans 
formed by a function that produces the state-space coeffi 
cients C, and B, that describe the output signal resulting from 
applying the low-pass Butterworth filter to the discrete signal 
xn). These coefficients may further be converted by 

- 
(2xC. 

giving the high-pass Butterworth filter with the same cutoff 
frequency of Z. This continuous system may be con 
Verted to a discrete equivalent thereof using an impulse-in 
variant discretization method, which may be provided by the 
difference equation 

0046. As previously mentioned, this difference equation 
may be applied to each acoustic Sub-sequence annotated as 
unvoiced consonants, thereby smoothly removing energy 
below 250 Hz. Thresholds other than 250 Hz, can also be used. 

0047. The splicing utility applies a splicing transforma 
tion to the acoustic signal. The splicing transformation iden 
tifies errors with the acoustic signal and splices the acoustic 
signal to remove an error or splices into the acoustic signal a 
respective one of the set of synthesized sample sounds pro 
vided by the acoustic sample synthesizer (22) to correct an 
eO. 

0.048. In an example of applying the acoustic transforma 
tion engine to dysarthric speech, the splicing transformation 
may implement the Levenshtein algorithm to obtain an align 
ment of the phoneme sequence inactually uttered speech and 
the expected phoneme sequence, given the known word 
sequence. Isolating phoneme insertions and deletions 
includes iteratively adjusting the Source speech according to 
that alignment. There may be two cases where action is 
required, insertion error and deletion error. 
0049 Insertion error refers to an instance that a phoneme 

is present where it ought not be. This information may be 
obtained from the annotation source. In the TORGO data 
base, for example, insertion errors tend to be repetitions of 
phonemes occurring in the first syllable of a word. When an 
insertion error is identified the entire associated segment of 
the acoustic signal may be removed. In the case that the 
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associated segment is not surrounded by silence, adjacent 
phonemes may be merged together with TD-PSOLA. 
0050 Deletion error refers to an instance that a phoneme is 
not present where it ought to be. This information may be 
obtained from the annotation source. In the TORGO data 
base, the vast majority of accidentally deleted phonemes are 
fricatives, affricates, and plosives. Often, these involve not 
properly pluralizing nouns (e.g., book instead of books). 
Given their high preponderance of error, these phonemes may 
be the only ones inserted into the dysarthric source speech. 
Specifically, when the deletion of a phoneme is recognized 
with the Levenshtein algorithm, the associated segment from 
the aligned synthesized speech may be extracted and inserted 
into the appropriate segment in the uttered speech. For all 
unvoiced fricatives, affricates, and plosives, no further action 
may be required. When these phonemes are voiced, however, 
the Fo curve from the synthetic speech may be extracted and 
removed, the Fo curve may be linearly interpolated from 
adjacent phonemes in the Source dysarthric speech, and the 
synthetic spectrum may be resynthesized with the interpo 
lated Fo. If interpolation is not possible (e.g., the synthetic 
voiced phoneme is to be inserted beside an unvoiced pho 
neme), a flat F equal to the nearest natural Fo curve can be 
generated. 
0051. The time transformation utility applies a time trans 
formation. The time transformation transforms particular 
phonemes or phoneme sequences based on information 
obtained from the annotation source. The time transformation 
transforms the acoustic signal to normalize, in time, the sev 
eral phonemes and phoneme sequences that comprise the 
acoustic signal. Normalization may comprise contraction or 
expansion in time, depending on whether the particular pho 
neme or phoneme sequence is longer or shorter, respectively, 
than expected. 
0.052 Referring now to FIG. 3, which corresponds to 
information obtained from the TORGO database, in an 
example of applying the acoustic transformation engine to 
dysarthric speech, it can be observed that vowels uttered by 
dysarthric speakers are significantly slower than those uttered 
by typical speakers. In fact, it can be observed that Sonorants 
are about twice as long in dysarthric speech, on average. In the 
time transformation, phoneme sequences identified as Sono 
rant may be contracted in time in order to be equal in extent to 
the greater of half their original length or the equivalent 
synthetic phoneme's length. 
0053. The time transformation preferably contracts or 
expands the phoneme orphoneme sequence without affecting 
its pitch or frequency characteristics. The time transformation 
utility may apply a phase Vocoder, Such as a Vocoder based on 
digital short-time Fourier analysis, for example. In this 
example, Hamming-windowed segments of the uttered pho 
neme are analyzed with a Z-transform providing both fre 
quency and phase estimates for up to 2048 frequency bands. 
During pitch-preserving timescaled warping, the magnitude 
spectrum is specified directly from the input magnitude spec 
trum with phase values chosen to ensure continuity. Specifi 
cally, for the frequency band at frequency F and frames and 
kin the modified spectrogram, the phase 0 may be predicted 
by 

0.)=0,42atf(-k) 
0054. In this case the discrete warping of the spectrogram 
may comprise decimation by a constant factor. The spectro 
gram may then be converted into a time-domain signal modi 
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fied in tempo but not in pitch relative to the original phoneme 
segment. This conversion may be accomplished using an 
inverse Fourier transform. 

0055. The frequency transformation utility applies a fre 
quency transformation. The frequency transformation trans 
forms particular formants based on information obtained 
from the annotation Source. The frequency transformation 
transforms the acoustic signal to enable a listener to better 
differentiate between formants. The frequency transforma 
tion identifies formant trajectories in the acoustic signal and 
transforms them according to an expected identity of a seg 
ment of the acoustic signal. 
0056. In an example of applying the acoustic transforma 
tion engine to dysarthric speech, formant trajectories inform 
the listener as to the identities of vowels, but the vowel space 
of dysarthric speakers tends to be constrained. In order to 
improve a listener's ability to differentiate between the vow 
els, the frequency transformation identifies formant trajecto 
ries in the acoustics and modifies these according to the 
known vowel identity of a segment. 
0057 Formants may be identified with a 14th-orderlinear 
predictive coder with continuity constraints on the identified 
resonances between adjacent frames, for example. Band 
widths may be determined by a negative natural logarithm of 
the pole magnitude, for example as implemented in the 
STRAIGHTTM analysis system. 

0058 For each identified vowel and each accidentally 
inserted vowel (unless previously removed by the splicing 
utility) in the uttered speech, formant candidates may be 
identified at each frame in time up to 5 kHz. Only those time 
frames having at least 3 such candidates within 250 Hz of 
expected values may be considered (other ranges can also be 
applied instead). The first three formants in general contain 
the most information pertaining to the identity of the Sono 
rant, but this method can easily be extended to 4 or more 
formants, or reduced to 2 or less. The expected values of 
formants may, for example, be derived by identifying average 
values for formant frequencies and bandwidths given large 
amounts of English data. Any other look-up table of formant 
bandwidths and frequencies would be equally appropriate, 
and can include manually selected targets not obtained 
directly from data analysis. Given these subsets of candidate 
time frames in the Vowel, the one having the highest spectral 
energy within the middle portion, for example 50%, of the 
length of the vowel may be selected as the anchor position, 
and the formant candidates within the expected ranges may be 
selected as the anchor frequencies for formants F to F. If 
more than one formant candidate falls within expected 
ranges, the one with the lowest bandwidth may be selected as 
the anchor frequency. 
0059 Given identified anchor points and target sonorant 
specific frequencies and bandwidths, there are several meth 
ods to modify the spectrum. One Such method, for example, is 
to learn a statistical conversion function based on Gaussian 
mixture mapping, which may be preceded by alignment of 
sequences using dynamic time warping. This may include the 
STRAIGHT morphing, as previously described, among oth 
ers. The frequency transformation of a frame of speech X for 
speaker A may be performed with a multivariate frequency 
transformation function T. given known targets fusing 
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where w is the frame-based time dimension and Osrs 1 is an 
-tive rate at which to perform morphing (i.e., r-1 implies 
complete conversion of the parameters of speaker A to param 
eter set f and r–0 implies no conversion.) Referring now to 
FIG. 4, an example of the results of this morphing technique 
may have three identified formants shifted to their expected 
frequencies. The indicated black lines labelled F1, F2, F3, and 
F4 are example formants, which are concentrations of high 
energy within a frequency band over time and which are 
indicative of the sound being uttered. The locations of these 
formants being changed changes the way the utterance 
Sounds. 
0060. The frequency transformation tracks formants and 
warps the frequency space automatically. The frequency 
transformation may additionally implement Kalman filters to 
reduce noise caused by trajectory tracking. This may provide 
significant improvements in formant tracking, especially for 
F. 
0061 The transformed signal may be output using the 
output device, saved onto a storage device, or transmitted 
over a transmission line 
0062 An experiment was performed in which the intelli 
gibility of both purely synthetic and modified speech signals 
were measured objectively by a set of participants who tran 
scribe what they hear from a selection of word, phrase, or 
sentence prompts. Orthographic transcriptions are under 
stood to provide a more accurate predictor of intelligibility 
among dysarthric speakers than the more Subjective estimates 
used in clinical settings. 
0063. In one particular experiment each participant was 
seated at a personal computer with a simple graphical user 
interface with a button which plays or replays the audio (up to 
5 times), a textbox in which to write responses, and a second 
button to Submit those responses. Audio was played over a 
pair of headphones. The participants were told to only tran 
scribe the words with which they are reasonably confident 
and to ignore those that they could not discern. They were also 
informed that the sentences are grammatically correct but not 
necessarily semantically coherent, and that there is no pro 
fanity. Each participant listened to 20 sentences selected at 
random with the constraints that at least two utterances were 
taken from each category of audio, described below, and that 
at least five utterances were also provided to another listener, 
in order to evaluate inter-annotator agreement. Participants 
were self-selected to have no extensive prior experience in 
speaking with individuals with dysarthria, in order to reflect 
the general population. No cues as to the topic or semantic 
context of the sentences were given. In this experiment, sen 
tence-level utterances from the TORGO database were used. 
0064. Baseline performance was measured on the original 
dysarthric speech. Two other systems were used for refer 
ence, a commercial text-to-speech system and the Gaussian 
mixture mapping method. 
0065. In the commercial text-to-speech system, word 
sequences are produced by the CepstralTM software using the 
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U.S. English voice David, which is similar to the text-to 
speech application described previously herein. This 
approach has the disadvantage that synthesized speech will 
not mimic the user's own acoustic patterns, and will often 
Sound more mechanical or robotic due to artificial prosody. 
0066. The Gaussian mixture mapping model involves the 
FestVoxTM implementation which includes pitch extraction, 
Some phonological knowledge, and a method for resynthesis. 
Parameters for this model are trained by the FestVox system 
using a standard expectation-maximization approach with 
24th-order cepstral coefficients and four Gaussian compo 
nents. The training set consists of all vowels uttered by a male 
speaker in the TORGO database and their synthetic realiza 
tions produced by the method above. 
0067 Performance was evaluated on the three transforma 
tions provided by the acoustic transformation engine, namely 
splicing, time transformation and frequency transformation. 
In each case, annotator transcriptions were aligned with the 
true’ or expected sequences using the Levenshtein algorithm 
previously described herein. Plural forms of singular words, 
for example, were considered incorrect in word alignment. 
Words were split into component phonemes according to the 
CMUTM dictionary, with words having multiple pronuncia 
tions given the first decomposition therein. 
0068. The experiment showed that the transformations 
applied by the acoustic transformation engine increased intel 
ligibility of a dysarthric speaker. 
0069. There are several applications for the acoustic trans 
formation engine. 
0070. One example application is a mobile device appli 
cation that can be used by a speaker with a speech disability 
to transform their speech so as to be more intelligible to a 
listener. The speaker can speak into a microphone of the 
mobile device and the transformed signal can be provided 
through a speaker of the mobile device, or sent across a 
communication path to a receiving device. The communica 
tion path could be a phone line, cellular connection, internet 
connection, WiFi, BluetoothTM, etc. The receiving device 
may or may not require an application to receive the trans 
formed signal, as the transformed signal could be transmitted 
as a regular voice signal would be typically transmitted 
according to the protocol of the communication path. 
0071. In another example application, two speakers on 
opposite ends of a communication path could be provided 
with a real time or near real time pronunciation translation to 
better engage in a dialogue. For example, two English speak 
ers from different locations, wherein each has a particular 
accent, can be situated on opposite ends of a communication 
path. In communication between speaker A to speaker B, a 
first annotation source can be automatically annotated in 
accordance with annotations using speaker B's accent so that 
utterances by speaker A can be transformed to speaker B's 
accent, while a second annotation source can be automati 
cally annotated in accordance with annotations using speaker 
As accent so that utterances by speaker B can be transformed 
to speaker A's accent. This example application scales to 
n-speakers, as each speaker has their own annotation Source 
with which each other speaker's utterances can be trans 
formed. 

0072 Similarly, in another example application, a speak 
er's (A) voice could be transformed to sound like another 
speaker (B). The annotation Source may be annotated in 
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accordance with speaker B's speech, so that speaker A's Voice 
is transformed to acquire speaker B's pronunciation, tempo, 
and frequency characteristics. 
0073. In another example application, acoustic signals 
that have been undesirably transformed in frequency (for 
example, by atmospheric conditions or unpredictable Dop 
pler shifts) can be transformed to their expected signals. This 
includes a scenario in which speech uttered in a noisy envi 
ronment (e.g., yelled) can be separated from the noise and 
modified to be more appropriate. 
0074 Another example application is to automatically 
tune a speaker's voice to transformit to make it sound as if the 
speaker is singing in tune with a musical recording, or music 
being played. The annotation Source may be annotated using 
the music being played so that the speaker's voice follows the 
rhythm and pitch of the music. 
0075. These transformations can also be applied to the 
modification of musical sequences. For instance, in addition 
to the modification of frequency characteristics that modify 
one note or chord to Sound more like another note or chord 
(e.g., key changes), these modifications can also be used to 
correct for aberrant tempo, to insert notes or chords that were 
accidentally omitted, or to delete notes or chords that were 
accidentally inserted. 
0076 Although the invention has been described with ref 
erence to certain specific embodiments, various modifica 
tions thereof will be apparent to those skilled in the art with 
out departing from the spirit and scope of the invention as 
outlined in the claims appended hereto. The entire disclosures 
of all references recited above are incorporated herein by 
reference. 

We claim: 
1. A system for transforming an acoustic signal comprising 

an acoustic transformation engine operable to apply one or 
more transformations to the acoustic signal in accordance 
with one or more transformation rules configured to deter 
mine the correctness of each of one or more temporal seg 
ments of the acoustic signal. 

2. The system of claim 1, wherein the acoustic transforma 
tion engine is operable to morph or transform a segment 
determined to be incorrect. 

3. The system of claim 1, wherein the acoustic transforma 
tion engine is operable to replace a segment determined to be 
incorrect with a sample sound. 

4. The system of claim 1, wherein the acoustic transforma 
tion engine is operable to delete a segment determined to be 
incorrect. 

5. The system of claim 1, wherein the acoustic transforma 
tion engine is operable to insert a sample sound or synthesize 
a sound between two segments determined to be incorrectly 
adjacent. 

6. The system of claim 1, wherein the transformations 
comprise one or more offiltering, splicing, time transforming 
and frequency transforming. 

7. The system of claim 1, wherein the transformation rules 
relate to empirical findings of improper acoustic signals. 

8. The system of claim 1, wherein the transformation rules 
apply automated or semi-automated annotation of the acous 
tic signal to identify the segments. 

9. The system of claim 1, wherein applying the transfor 
mations comprises obtaining a reference signal or reference 
parameters from an acoustic sample database. 
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10. The system of claim 1, wherein the acoustic transfor 
mation engine applies the transformations in parallel and 
combines transformed acoustic signals to produce a trans 
formed signal. 

11. A method for transforming an acoustic signal compris 
ing: 

(a) configuring one or more transformation rules to deter 
mine the correctness of each of one or more temporal 
segments of the acoustic signal; and 

(b) applying, by an acoustic transformation engine, one or 
more transformations to the acoustic signal in accor 
dance with the one or more transformation rules. 

12. The method of claim 11, further comprising morphing 
or transforming a segment determined to be incorrect. 

13. The method of claim 11, further comprising replacing 
a segment determined to be incorrect with a sample sound. 

14. The method of claim 11, further comprising deleting a 
segment determined to be incorrect. 
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15. The method of claim 11, further comprising inserting a 
sample sound or synthesizing a sound between two segments 
determined to be incorrectly adjacent. 

16. The method of claim 11, wherein the transformations 
comprise one or more offiltering, splicing, time transforming 
and frequency transforming. 

17. The method of claim 11, wherein the transformation 
rules relate to empirical findings of improperacoustic signals. 

18. The method of claim 11, wherein the transformation 
rules apply automated or semi-automated annotation of the 
acoustic signal to identify the segments. 

19. The method of claim 11, wherein applying the trans 
formations comprises obtaining a reference signal or refer 
ence parameters from an acoustic sample database. 

20. The method of claim 11, further comprising applying 
the transformations in parallel and combining transformed 
acoustic signals to produce a transformed signal. 

k k k k k 


