
Can Character Embeddings Improve Cause-of-Death Classification for
Verbal Autopsy Narratives?

Zhaodong Yan
Dept of Electrical and
Computer Engineering
University of Toronto

Toronto, Ontario, Canada
zhaodong.yan@mail.utoronto.ca

Serena Jeblee
Dept of Computer Science

University of Toronto
Toronto, Ontario, Canada

sjeblee@cs.toronto.edu

Graeme Hirst
Dept of Computer Science

University of Toronto
Toronto, Ontario, Canada
gh@cs.toronto.edu

Abstract

We present two models for combining word
and character embeddings for cause-of-death
classification of verbal autopsy reports using
the text of the narratives. We find that for
smaller datasets (500 to 1000 records), adding
character information to the model improves
classification, making character-based CNNs
a promising method for automated verbal au-
topsy coding.

1 Introduction

1.1 Verbal autopsies
Each year, two-thirds of the 60 million deaths
in low-and-middle-income countries do not have
a known cause of death (CoD), usually because
they occurred outside of health facilities and no
physical autopsy was performed (United Nations,
2013). Verbal autopsy (VA) surveys are one
method of assessing the true distribution of CoDs
in these regions. These surveys are conducted
by lay interviewers and typically include demo-
graphic data, multiple-choice questions, and a
free-text narrative, which details the events lead-
ing up to the person’s death. These records are
later coded by physicians for cause of death.

Although several attempts have been made to
automate this coding process, including systems
such as InterVA (Byass et al., 2012), InSilicoVA
(McCormick et al., 2016), the Tariff method (Se-
rina et al., 2015), and others (Miasnikof et al.,
2015), the results have not been adequate, in part
because they have focused only on the multiple-
choice questions and not at all, or only to a limited
extent, on the narrative text. However, using the
narrative is more convenient because it does not
require a specific questionnaire format, and also
because it takes less time to collect a short ques-
tionnaire and narrative than a long, very detailed
survey. Although the narratives present some text

processing problems, they allow for more detail
and explanation than the structured data alone.

Only a few methods have used the full text of
the narrative for CoD classification. Danso et al.
(2013) used term frequency and TF-IDF (term
frequency–inverse document frequency) features
to classify CoD from VA narratives of neonatal
deaths. The Tariff method (Serina et al., 2015)
uses a small set of word occurrence features from
the narrative, but both of these methods ignore
word order. Jeblee et al. (2018) used VA narrative
text to jointly predict CoD and a list of keywords
for each record using a neural network model with
word embeddings.

In our work, we therefore focus on the narrative
text. However, the models that have been devel-
oped to date for VA classification using the nar-
rative, including SVMs (Danso et al., 2013) and
neural networks (Jeblee et al., 2018), have used
only word-level information. However, recent re-
search has shown that character-level information
can improve text classification models, especially
in cases where there are many spelling errors and
variations, which is the case with VA narratives.
Therefore, we investigate here the use of character
embeddings for the VA CoD classification task.

1.2 Character embedding models

Instead of representing each word as a vector, as is
typically done with word embeddings, we can rep-
resent each character in the text as a vector. With
traditional word embeddings, any word that is not
found in the vocabulary is represented as a vec-
tor of zeros, essentially losing all the information
from that word. The character-based model does
not have this limitation, and therefore can repre-
sent unseen words as well as misspelled words.

Another benefit to character-based models is
that because of the much smaller vocabulary size,
they result in less variation in the input representa-



tion, which can be especially useful for very small
datasets such as our verbal autopsy records.

Zhang et al. (2015) used a character-level con-
volutional neural network (CNN) for text classifi-
cation tasks on a dataset of news articles and in-
ternet reviews, demonstrating that the character-
level model could outperform word-level models.
Verwimp et al. (2017) combined character-level
and word-level embeddings by concatenation with
padding, and used them with a Long Short-Term
Memory (LSTM) language model, achieving bet-
ter perplexity than similar word-based models.

Si and Roberts (2018) used an LSTM model to
learn character embeddings, which were then con-
catenated with pre-trained word embeddings to ex-
tract cancer-related information such as diagnosis,
showing that combined character and word-based
models can be used successfully for tasks in the
medical domain.

2 Data: The Million Death Study

Our dataset of informal medical narratives con-
sists of verbal autopsy reports from the Million
Death Study (MDS) (Westly, 2013), a program
that collects VAs in India that cover adult, child,
and neonatal deaths. We currently have a dataset
of 12,045 adult records, 1851 child records, and
572 neonatal records with English narratives (tran-
scribed from handwritten forms). The records are
classified into several broad CoD categories: 18
for adult deaths, 9 for child deaths, and 5 for
neonatal deaths. (See Table 4 in the Appendix for
the list of CoD categories.)

The process of translating the local languages
and converting handwritten texts to digital format
creates many errors. Many narratives have fre-
quent spelling and grammar errors, such as in-
consistent pronouns, sentence fragments, incorrect
punctuation, and transcription errors, in addition
to many local terms. See Table 1 for an exam-
ple narrative. The nature of the text means that
purely word-based models, especially ones trained
on other corpora, are likely to miss key informa-
tion. In order to address this issue, we add char-
acter embedding representations to the classifica-
tion model to see whether it will improve the re-
sults. We also compare this model to the word-
only model.

Narrative

Heart failure. The patient death due to breath-
lessness. The person sufering paralysis and
stroke lost on year with chest pain very pres-
sure after then person was head.

CoD category: Other cardiovascular diseases

Table 1: A verbal autopsy narrative with spelling and
grammar errors, and the associated CoD category.

3 Models

3.1 Pre-processing
All text is lowercased before being passed to the
model, and punctuation is separated from words.
Spelling is corrected using PyEnchant’s English
dictionary (Kelly, 2015) and a 5-gram language
model for scoring candidate replacements, using
KenLM (Heafield et al., 2013). However, many
instances remain where misspellings result in an-
other valid word (such as dead being mistyped as
head) or are too badly misspelled to be corrected.
Moreover, many local terms are not handled prop-
erly by our automated spelling correction, so while
the spelling correction model fixes some of the
more apparent errors, many misspellings persist
even after this step.

3.2 Word–based model
For the word-based model, we represent each
word in the narrative as a 100-dimensional word
embedding. The embeddings are trained using the
word2vec CBOW algorithm (Mikolov et al., 2013)
on the training set of the VA narratives, as well as
data from the ICE corpus of Indian English1 and
about 1M posts from MedHelp, an online medical
advice forum for patients2. The maximum length
of input is 200 words, and shorter narratives are
padded with zeros.

The classification model is a convolutional
neural network (CNN) implemented in PyTorch
(Paszke et al., 2017), with windows of 1 to 5
words, max-pooling, and 0.1 dropout.

3.3 Character–based model
For the character-based model we use publicly
available pre-trained character embeddings3 de-

1http://ice-corpora.net/ice/avail.htm
2http://www.medhelp.org
3https://github.com/minimaxir/

char-embeddings

http://ice-corpora.net/ice/avail.htm
http://www.medhelp.org
https://github.com/minimaxir/char-embeddings
https://github.com/minimaxir/char-embeddings


Figure 1: Embedding concatenation model architec-
ture. d1 is the dimensionality of the word embedding
(100), and d2 is the dimensionality of the character em-
bedding (24).

rived from GloVe vectors (Pennington et al., 2014)
trained on Common Crawl. The dimensionality of
the character embeddings is reduced from 300 to
24 with principal component analysis (PCA).

We also tried learning the embeddings directly
as a first layer in the model, but the model was
unable to learn useful embeddings, likely because
our training set is too small.

The character-based classification model is also
a CNN, with a maximum of 1000 characters for
each narrative. We also remove punctuation for
the character-based model.

3.4 Combined models

We use two different methods of combining the
word and character embeddings: embedding con-
catenation and model combination.

For embedding concatenation, we simply con-
catenate the word embedding for each word with
the ordered character embeddings for the charac-
ters in the word. Since words have different num-
bers of characters, we keep only the first 7 charac-
ters of the word, and if the word is shorter than
7 characters we pad the embedding with zeros.
In the dataset, 87% of words have 7 characters
or fewer, and no improvement was seen by using
thresholds of 5, 6, 8, 9, or 10 characters. See Fig-
ure 1 for a diagram of the embedding concatena-
tion.

For the model combination, we use all but the
final layer of both the word-based CNN and the
character-based CNN in parallel, which each pro-
duce a feature vector. Before the final classifica-
tion layer, we concatenate the output vectors from
these two networks, and use the combined vector
as input to the final feed-forward layer that pro-
duces the classification probabilities. See Figure 2

Figure 2: Model combination architecture.

for the diagram of the model architecture4. This
model allows us to combine the full information
from both the word-level and character-level mod-
els. However, it also requires the model to learn
almost twice as many parameters.

4 Results

We evaluate the four different models using pre-
cision, recall, and F1 score. We also report cause-
specific mortality fraction accuracy (Murray et al.,
2011, 2014), which measures how similar the pre-
dicted CoD distribution is to the true distribution.
A cause-specific mortality fraction (CSMF) is the
fraction of a population whose death is attributable
to a specific cause. CSMF accuracy (CSMFA) is
then defined in terms of the difference between the
true and predicted fraction for each of k causes:

CSMFA = 1−
∑

k
j=1 |CSMF true

j −CSMF pred
j |

2(1−min(CSMF true
j )

The results of CoD classification using 10-fold
cross-validation are presented in Table 2.

Since we hypothesized that the character in-
formation would improve results particularly for
smaller datasets, we also evaluated the models on
a subset of the adult data, which consists of 10%
of the original adult dataset, evaluated with 10-
fold cross-validation (about 137 records in each
test set). We call this dataset “Adult small”.

5 Discussion

Overall, the embedding concatenation model per-
forms the best across all individual-level metrics,
except on the full adult dataset, where the word

4The model code is available at: https://github.
com/sjeblee/verbal-autopsy

https://github.com/sjeblee/verbal-autopsy
https://github.com/sjeblee/verbal-autopsy


Model Precision Recall F1 CSMFA

Adult (18 categories)

Word embedding .759 .755 .751 .933
Char. embedding .690 .684 .680 .922
Emb. concatenation .716 .699 .699 .912
Model combination .629 .620 .609 .872

Adult small (18 categories)

Word embedding .453 .500 .456 .773
Char. embedding .609 .603 .589 .837
Emb. concatenation .691 .669 .660 .861
Model combination .590 .596 .571 .827

Child (11 categories)

Word embedding .713 .707 .697 .902
Char. embedding .655 .638 .623 .851
Emb. concatenation .740 .718 .712 .890
Model combination .640 .638 .627 .890

Neonate (5 categories)

Word embedding .515 .556 .515 .795
Char. embedding .504 .502 .482 .795
Emb. concatenation .562 .585 .556 .819
Model combination .502 .530 .495 .807

Table 2: Results from 10-fold cross-validation for each
age group in the MDS dataset.

Cat 1 2 3 4 5 n
1 0.870 0.043 0.000 0.043 0.043 23
2 0.294 0.588 0.118 0 0 17
3 0.818 0.091 0.091 0 0 11
4 0.500 0.250 0 0.250 0 4
5 0.500 0.333 0.167 0 0 6

Cat 1 2 3 4 5 n
1 0.826 0.043 0.043 0 0.0869 23
2 0.235 0.588 0.176 0 0 17
3 0.545 0.182 0.273 0 0 11
4 0.500 0 0.250 0 0 4
5 0.500 0 0.333 0 0.167 6

Table 3: Confusion matrices for the neonatal test set
(iteration 0). Top: results from the word embedding
model. Bottom: results from the embedding concate-
nation model. Rows are the correct CoD categories and
columns are the predicted categories. n is the number
of records belonging to that category in the test set.

embedding model performs the best. For the child
dataset, the word-based model performs the best
in terms of CSMF accuracy, which means that it
best captures the distribution of CoD categories,
but the character-based model achieves better ac-
curacy on classifying individual records.

For the adult data, reducing the dataset size to
10% of the original size causes a sharp decrease

in accuracy for the word-based model, but only a
smaller decrease for the character-based and com-
bined models, showing that the character embed-
dings are more robust to data size.

Table 3 shows the confusion matrix for the five
classes of the neonatal test set from the word em-
bedding model versus the embedding concatena-
tion model. We can see that both models have a
heavy preference for the most frequent class (1
Prematurity and low birthweight). The embed-
ding concatenation model achieves better accuracy
on class 3 (Birth asphyxia and birth trauma) and
class 5 (Ill-defined), but performs worse on class
4 (Congenital anomalies), which is the smallest
class.

For the child data, the embedding concatena-
tion performs much better on class 1 (Pneumo-
nia) (68% accuracy vs. 44%) and class 6 (Non-
communicable diseases) (83% vs.78%), and class
10 (Ill-defined) (33% vs. 11%), while the word-
based model performs better on class 4 (Other in-
fections) (76% with the embedding concatenation
model vs. 84% with the word model).

The best performing classes for the adult dataset
are class 5 (Maternal), 15 (Road traffic incidents),
and 16 (Suicide), which are also the categories
which have the highest physician agreement. For
the small adult dataset, the embedding concatena-
tion model performs noticeably better on classes
4 (Unspecified infection), 8 (Neoplasms), 16 (Sui-
cide), and 18 (Ill-defined).

Overall the character information seems to im-
prove accuracy with the smaller datasets, due to
its much smaller vocabulary size and its ability
to handle spelling variations and unknown words.
The combined model performs the best on all of
the small datasets, regardless of the number of
categories, and especially seems to perform bet-
ter on more ambiguous categories like Ill-defined
and Unspecified infections.

6 Conclusion and future work

We have shown that character information can im-
prove classification of CoD for verbal autopsies,
for smaller datasets, which are very common in
the case of VAs. To our knowledge, this is the
first application of character-based neural network
models to VA narratives.

Due to differences in the datasets, we cannot
make direct comparisons to other automated meth-
ods. However, since they typically have recall



scores around 0.6, our method is competitive. In
addition, this method can be applied to any VA
dataset with narratives, regardless of the country
of origin or the specific survey form.

Future work may include using a language
model with character information, such as ELMo
(Peters et al., 2018), but we would have to rely
on out-of-domain data since the VA dataset is too
small to effectively train ELMo or a similar model.
The paucity of VA data is one of the biggest obsta-
cles to automated coding.

In the future we also plan to expand these
models to other languages, as there are larger
VA datasets in languages such as Portuguese and
Hindi. We will also investigate using the struc-
tured data in addition to the narrative to improve
performance.
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A Appendix

Num Category

Adult

1 Acute respiratory infections
2 Tuberculosis
3 Diarrhoeal
4 Unspecified infections
5 Maternal
6 Nutrition
7 Chronic respiratory diseases
8 Neoplasms
9 Ischemic heart disease
10 Stroke
11 Diabetes
12 Other cardiovascular diseases
13 Liver and alcohol
14 Other non-communicable diseases
15 Road traffic incidents
16 Suicide
17 Other injuries
18 Ill-defined

Child

1 Pneumonia
2 Diarrhoea
3 Malaria
4 Other infections
5 Congenital anomalies
6 Non-communicable diseases
7 Injuries
8 Nutritional
9 Other
10 Ill-defined
11 Cancer

Neonate

1 Prematurity and low birthweight
2 Neonatal infections
3 Birth asphyxia and birth trauma
4 Congenital anomalies
5 Ill-defined

Table 4: Cause of death categories used for the MDS
data.
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