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Abstract
We use a set of 477 lexicosyntactic, acoustic, and semantic fea-
tures extracted from 393 speech samples in DementiaBank to
predict clinical MMSE scores, an indicator of the severity of
cognitive decline associated with dementia. We use a bivari-
ate dynamic Bayes net to represent the longitudinal progression
of observed linguistic features and MMSE scores over time,
and obtain a mean absolute error (MAE) of 3.83 in predicting
MMSE, comparable to within-subject interrater standard devia-
tion of 3.9 to 4.8 [1]. When focusing on individuals with more
longitudinal samples, we improve MAE to 2.91, which suggests
at the importance of longitudinal data collection.
Index Terms- Alzheimer’s disease, dementia, Mini-Mental
State Examination (MMSE), dynamic Bayes network, feature
selection

1. Introduction
Research into the early assessment, pathogenesis, and progres-
sion of dementia is becoming increasingly important, as the pro-
portion of people it affects grows every year. Alzheimer’s dis-
ease (AD), the most common type of dementia, affects more
than half of the population above 80 years of age and its impact
on society is expected to grow as the “baby boomer” generation
ages [2, 3, 4].

There is no single laboratory test that can identify demen-
tia with absolute certainty. Typically, probable dementia is di-
agnosed using the Mini Mental State Examination (MMSE),
which provides a score on a scale of 0 (greatest cognitive de-
cline) to 30 (no cognitive decline), based on a series of ques-
tions in five areas: orientation, registration, attention, memory,
and language [5]. While MMSE provides a unified scale for
measuring the severity of the disease, it can be time-consuming
and relatively costly, often requiring a trained neuropsycholo-
gist or physician to administer the test in a clinical setting.

Changes in cognitive ability due to neurodegeneration as-
sociated with AD lead to a progressive decline in memory and
language quality. Patients experience deterioration in sensory,
working, declarative, and non-declarative memory, which leads
to a decrease in the grammatical complexity and lexical con-
tent of their speech [6]. Such changes differ from the pattern of
decline expected in older adults [6], which suggests that tempo-
ral changes in linguistic features can aid in disambiguation of
healthy older adults from those with dementia.

Some previous work used machine learning classifiers with
linguistic features for two-class separation of patients with AD
from controls (see section 1.1), but there appears to be no pre-
vious research that has used them to infer a clinical score for
dementia — an indicator of the degree of cognitive decline. The

present work uses a set of automatically-extracted lexicosyntac-
tic, acoustic, and semantic (LSAS) features for estimating con-
tinuous MMSE scores on a scale of 0 to 30, using a dynamic
Bayes network for representing relationships between observed
linguistic measures and underlying clinical scores.

Since dynamic changes in linguistic ability in patients with
AD differ from those in typical healthy older adults [6], we
hypothesize that considering speech samples over time would
aid in estimating underlying cognitive status. Previous stud-
ies analyzing dynamic progression of language features in pa-
tients with AD did not employ machine learning techniques,
and are characterized by a small number of subjects (between 3
and 6) and a limited set of features that do not include acous-
tics. The present work improves on these analyses by extracting
LSAS features from a relatively large collection of longitudinal
speech, in order to estimate MMSE scores.

1.1. Related Work

Previous work has explored the use of lexicosyntactic features
for identifying individuals with AD from controls. Orimaye et
al. [7] used DementiaBank1, one of the largest existing datasets
of pathological speech [8], to perform binary classification of
242 patients with dementia and 242 controls; a support vector
machine classifier achieved their best F-measure of 0.74 [7].
Another experiment by Jarrold et al. collected spontaneous
speech data from 9 controls, 9 patients with AD, and 30 pa-
tients with frontotemporal lobar degeneration (FTLD) [9]. A
multi-layer perceptron model obtained classification accuracy
of 88% on a two-class task (AD:controls, and FTLD:controls),
and 80% on a three-class task (AD:FTLD:controls).

While these studies have obtained promising results in clas-
sifying patients with dementia based on linguistic features, there
is limited work modelling the progression of such features over
time. Le et al. [10] examined the longitudinal changes in a
small set of hand-selected lexicosyntactic measures, such as vo-
cabulary size, repetition, word class deficit, and syntactic com-
plexity, in 57 novels of three British authors written over a pe-
riod of several decades. They found statistically significant lex-
ical deterioration in Agatha Christie’s work evidenced by vo-
cabulary impoverishment and a pronounced increase in word
repetitions [10], but the measures for syntactic complexity did
not yield conclusive results. A similar analysis performed by
Sundermann examined the progression of a small set of lexi-
cosyntactic features, such as length, frequency, and vocabulary
measures in 6 patients with AD or mild cognitive impairment
(MCI), with a minimum of 3 longitudinal samples in Dementia-
Bank [11]. Analysis of the features over time did not reveal con-

1http://talkbank.org/DementiaBank/



clusive patterns; Sundermann suggested that the limited sample
size and feature set selection may be the cause. Neither study
involved acoustics or machine learning techniques.

2. Methodology
2.1. Data

We use data from DementiaBank, a large dataset of speech
produced by people with dementia (including probable AD,
possible AD, vascular dementia, and MCI) and healthy older
adults, recorded longitudinally at the University of Pittsburgh’s
Alzheimer’s Disease Research Center [8]. Annual visits with
each subject consist of a recording of speech data, its tex-
tual transcription, and an MMSE score. Subjects have a vari-
able number of longitudinal samples (min = 1, max = 5,
M = 1.54, SD = 0.79). Each speech sample consists of a
verbal description of the Boston Cookie Theft picture, which
typical lasts about a minute. We partition subjects between con-
trols (CT) and those with probable AD, possible AD or MCI (or,
collectively,“AD” 2). Considering only subjects with associated
MMSE scores, the working set consists of 393 speech samples
from 255 subjects (165 AD, 90 CT).

2.2. Features

Three major types of features are extracted from the speech
samples and their transcriptions: (1) lexicosyntactic measures,
extracted from syntactic parse trees constructed with the Brown
parser and POS-tagged transcriptions of the narratives [12, 13,
14, 15, 16]; (2) acoustic measures, including the standard Mel-
frequency cepstral coefficients (MFCCs), formant features, and
measures of disruptions in vocal fold vibration regularity [17];
and (3) semantic measures, pertaining to the ability to describe
concepts and objects in the Cookie Theft picture. The full list
of features, along with their major type and subtype, is shown
in Table 1.

2.3. Feature Analysis

Two feature selection methods are used to identify the most in-
formative features for disambiguating AD from CT. Since the
MMSE score is a measure of the progression of cognitive im-
pairment and is used to distinguish AD from CT generally,
we hypothesize that highly discriminating features of the two
groups would also be good predictors of MMSE. This is quan-
tified by Spearman’s rank-order correlation between the most
informative features and the MMSE score, ρMMSE , shown in
Table 2.

The first feature ranking method is a two-sample t-test
(α = 0.001, two-tailed) which quantifies the significance of
the difference in each feature value between the two classes;
the features are ordered by increasing p-value. Table 2 shows
the type and p-value of the top 10 features, along with their cor-
relation with MMSE. Control subjects use longer utterances,
more gerund + prepositional phrase constructions (VP→ VBG
PP, e.g., standing on the chair), more content words such as
noun phrases (NP) and verbs, and are more likely to talk about
what they see through the window (info_window), which is in
the background of the scene (e.g., it seems to be summer out).
On the other hand, subjects with AD use more words not found
in the dictionary (NID), and more function words such as pro-
nouns (PRP). Honoré’s statistic measures lexical richness, ex-

2Ongoing work distinguishes between AD and MCI.

tending type-token ratio, which is decreased in AD. These find-
ings are consistent with expectations.

Table 2: The top 10 features selected by a two-sample t-test
(α = 0.001, two-tailed) as the most informative discriminators
of AD versus CT. ρMMSE is Spearman’s rank-order correlation
coefficient between the given feature and the MMSE score. The
features in bold are among the top 10 selected by mRMR.

Feature Feature type p ρMMSE

avelength lexicosyntactic 1.24E-13 0.3837
VP→ VBG PP lexicosyntactic 1.90E-13 0.3757
NID lexicosyntactic 3.23E-11 -0.3712
NP→ DT NN lexicosyntactic 1.12E-10 0.3438
NP→ PRP lexicosyntactic 2.14E-10 -0.3186
prp_ratio lexicosyntactic 1.16E-09 -0.3089
honoré lexicosyntactic 2.53E-09 0.3400
verbs lexicosyntactic 4.81E-09 0.2604
frequency lexicosyntactic 9.37E-09 -0.3725
info_window semantic 1.27E-08 0.3420

Since the majority of the extracted acoustic features consist
of MFCCs and measures related to aperiodicity of vocal fold
vibration, the lack of significance of the acoustic features as
discriminators between the two classes may be attributed to the
fact that AD is not strongly associated with motor impairment
of the articulators involved in speech production.

The second feature selection method is minimum-
redundancy-maximum-relevance (mRMR), which minimizes
the average mutual information between features and maxi-
mizes the mutual information between each feature and the
class [18]; the features were ranked from most relevant to least.
The results of this technique generally corroborate the selection
made by the t-test, with no acoustic features among the top 10
selected. Here, mRMR selects a greater proportion of semantic
features (e.g., mentions of the window and sink, and the number
of occurrences of curtain and stool), placing more weight on the
content of what the speaker is saying as a way of discriminating
the two classes.

All of the features displayed in Table 2 have moderate
statistically significant correlation with MMSE (p < 0.001).
Since we are interested in the task of predicting clinical MMSE
scores, the experiments described in Sec. 3 use correlation it-
self as a third feature selection method. The features are ranked
by their correlation with MMSE, and the ones with the highest
correlations are selected.

3. Experiments
3.1. Predicting MMSE score using LSAS features

To model the longitudinal progression of MMSE scores and
LSAS features, we constructed a dynamic Bayes network
(DBN) with continuous nodes, i.e., a Kalman filter with 2 vari-
ables, shown in Figure 1. Each time slice (Qt, Yt) represents
one annual visit for a subject. Each conditioning node Qt rep-
resents the underlying continuous MMSE score for that visit
(R1×1), while each node Yt represents the vector of observed
continuous LSAS features (R477×1). A Kolmogorov-Smirnov
test for normality was performed on the MMSE scores of all AD
subjects, with the null hypothesis that they come from a normal
distribution. The test did not reject this null hypothesis at the
5% confidence level, demonstrating that the data come from a



Table 1: Summary of all extracted features (477 in total). The number of features in each type and subtype is shown in parentheses.

Type Feature Subtype Description and examples

L
ex

ic
os

yn
ta

ct
ic

(1
82

)

Production rule (121) Number of times a production rule is used, divided by the total number of productions.
Phrase type (9) Phrase type proportion, rate and mean length.
Syntactic complexity (4) Depth of the syntactic parse tree.
Subordination/coordination (3) Proportion of subordinate and coordinate phrases to the total number of phrases, and ratio

of subordinate to coordinate phrases.
Word type (25) Word type proportion; type-to-token ratio, Honoré’s statistic.
Word quality (10) Imageability; age of acquisition (AoA); familiarity; transitivity.
Length measures (5) Average length of utterance, T-unit and clause, and total words per transcript.
Perseveration (5) Cosine distance between pairs of utterances within a transcript.

A
co

us
tic

(2
10

)

MFCCs (170) The first 42 MFCC parameters, along with their means, kurtosis and skewness, and the
kurtosis and skewness of the mean of means.

Pauses and fillers (8) Total and mean duration of pauses; long and short pause counts; pause to word ratio; fillers
(um, uh).

Pitch and Formants (8) Mean and variance of F0, F1, F2, F3.
Aperiodicity (13) Jitter, shimmer, recurrence rate, recurrence period density entropy, determinism, length of

diagonal structures, laminarity.
Other speech measures (11) Total duration of speech, zero-crossing rate, autocorrelation, linear prediction coefficients,

transitivity.

Se
m

.(
85

) Mention of a concept (21) Presence of mentions of indicator lemmas, related to key concepts in the Cookie Theft
picture.

Word frequency (64) Number of times a given lemmatized word, relating to the Cookie Theft picture, was men-
tioned

normal distribution with M=18.52, SD=5.16. There are three
conditional probability densities: the MMSE prior probability
P (Q1), the MMSE transition probability P (Qt|Qt−1), and the
LSAS feature observation probability P (Yt|Qt).

Q1 Q2 Q3

Y1 Y2 Y3

· · ·

· · ·

Figure 1: Temporal Bayes network (TBN) with continuous hid-
den (Qt) and observed (Yt) nodes. Hidden nodes represent
MMSE score, and observed vectors represent LSAS features
extracted from speech.

The feature set described in Sec. 2.2 is preprocessed to (i)
remove features with zero variance across all samples, and (ii)
normalize feature values to zero-mean and unit-variance, as is
standard practice. Since the number of features (477) is large
compared to the number of samples (393), the three feature se-
lection methods described in Sec. 2.3 (i.e., a paired two-tailed
t-test, mRMR, and correlation with MMSE score) are used to
avoid overfitting, by varying the number of features selected by
each method in order to determine the optimal feature set size.

The parameters of the three probability distributions in our
model are trained using maximum likelihood estimation (MLE)
since all training data are fully observed. During testing, the
observed features for each test case are provided and junction

tree inference on the trained model computes the marginal dis-
tribution of the now hidden (MMSE) nodes. Performance is
measured as the mean absolute error (MAE) between actual and
predicted MMSE scores. Since not all subjects have the same
number of longitudinal samples, MAE is evaluated at the first
and last hidden node, and averaged. Experiments are performed
with leave-one-out cross-validation, where data from each sub-
ject, in turn, are used for testing and all other data for training,
over all 255 subjects.

The results, with varying feature set sizes and feature se-
lection methods, are shown in Table 3. The lowest MAE of
3.83 (σ = 0.49) is achieved when correlation is used to select
the top 40 features. A two-factor repeated measures ANOVA
performed on the mean MAE shows that both main effects are
statistically significant, i.e., feature set size (F7,24 = 8.67,
p < 0.001) and the feature selection method (F2,24 = 4.07,
p < 0.05). The interaction effect is not significant (F14,24 =
0.16, ns), as expected given that the factors are independent.

To illustrate the longitudinal changes in cognitive and lin-
guistic ability, Fig. 2 shows the pattern of decline of MMSE
and the top 5 most correlated features for the subset of subjects
with AD. This demonstrates the MMSE score declining non-
monotonically over four annual visits (the maximum number
of visits for AD subjects in DementiaBank), along with similar
patterns across the indicated LSAS features.

3.2. Effect of longitudinal data on predicted MMSE score

To test the hypothesis that using longitudinal speech data aids in
identifying underlying cognitive status (i.e., improving MMSE
estimation), the Kalman filter experiment described in 3.1 is re-
peated for subsets of the dataset consisting of different amounts



Table 3: MAE in predicting MMSE scores using three feature
selection methods and different feature set sizes. The lowest
error for each feature selection method is highlighted in bold.

Nfeatures t-test mRMR ρMMSE

1 5.9788 5.3034 5.6396
5 5.6575 4.4440 5.0758
10 5.5148 4.3403 4.2098
20 5.2264 4.0426 4.1518
30 4.9066 4.1420 3.8628
40 4.8073 4.0648 3.8333
50 4.8520 3.8551 3.9180
all 7.3106 7.3106 7.3106
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Figure 2: Pattern of decline of mean MMSE score and top 5
LSAS features most correlated with it, plotted versus annual
visit number, for the subset of subjects with AD in Dementia-
Bank. Standard deviation for MMSE is shown shaded in blue.

of longitudinal samples, T : (i) entire dataset (393 samples, 255
subjects, 1 ≤ T ≤ 5), (ii) subset of subjects with 1 visit (154
samples, 154 subjects, T = 1), (iii) subset of subjects with at
least two visits (239 samples, 101 subjects, T ≥ 2), and (iv)
subset of subjects with at least three visits (91 samples, 27 sub-
jects, T ≥ 3). The number of subjects with at least four visits
is too low to conduct statistical experiments. The number of
features used in the model is fixed to the optimal feature set
size found in 3.1, and the feature selection method is varied
(t-test, mRMR, correlation). Leave-one-out cross-validation is
performed on each of the four datasets. The results are pre-
sented in Table 4. The lowest MAE for each feature selection
method occurs on the dataset consisting of the highest number
of longitudinal visits (T ≥ 3). A two-factor repeated measures
ANOVA performed on the mean MAE shows that the main ef-
fect of the data subset is statistically significant (F3,9 = 5.43,
p < 0.05) while neither the second main effect (F2,9 = 0.94,
ns) nor the interaction effect (F6,9 = 0.54, ns) is significant.

4. Discussion
Automatically extracted linguistic features can be used to ef-
fectively estimate underlying cognitive status, in terms of the
most predominant clinical measure of dementia. The best re-
sult obtained with leave-one-out cross-validation on the entire
dataset of 393 samples is an MAE of 3.83 (σ = 0.49), using

Table 4: MAE in predicting MMSE score using three feature
selection methods and different subsets of subjects with varied
number of longitudinal datapoints. The lowest error for each
feature selection method is highlighted in bold.

Dataset t-test mRMR ρMMSE

all 4.807311 4.064823 3.8332502
1 visit 5.030811 4.978016 4.4916474
≥ 2 visits 4.334934 3.534478 3.430414
≥ 3 visits 2.905163 3.063524 3.3577102

correlation to select the top 40 features. This corresponds to a
mean absolute relative error (MARE) of 21.0% (obtained as the
absolute difference between predicted and actual MMSE score,
divided by the actual MMSE score, and averaged over all runs).
Molloy and Standish [19] reported that different rating styles
among clinicians administering the MMSE and variance in test-
retest scoring can lead to a within-subject interrater standard
deviation of 3.9 to 4.8 and within-subject intrarater standard de-
viation of 4.8, with higher variation in low-scoring subgroups of
subjects [1, 19]. The MAE obtained through statistical speech
analysis in our present work is comparable to such variabil-
ity. Further, the results obtained with the Kalman filter model
significantly outperform an initial baseline multilinear regres-
sor ran with leave-one-out cross-validation on the same dataset
(t = 2.31, p < 0.05). This is being explored further.

The fact that correlation outperforms the other two feature
selection methods is expected, as it computes the relationship
between the features and the MMSE score directly whereas the
others use the presumed diagnosis to dichotomize the data into
classes. The majority of features selected on each iteration of
cross-validation are typically lexicosyntactic and semantic, with
acoustic features typically not being among the most relevant.
While this may suggest that anatomical irregularities in speech
production are less meaningful, we note that the lexicosyntac-
tic features depend, to a large extent, on the free expression
of language through speech. Specifically, the working memory
impairment associated with AD affects preferred syntactic con-
structions in speech, leading to shorter utterances, fewer com-
plex noun and verb phrases, a higher number of pronouns, and
lexical impoverishment indicated by Honoré’s statistic.

We also show that focussing on subsets of subjects with a
higher number of longitudinal samples improves the accuracy
of inference in the Kalman filter model, lowering MAE to 2.91
(σ = 0.31) or equivalently lowering MARE to 12.5%, using a t-
test for selecting the top 40 features. Since DementiaBank con-
tains a variable number of samples for each subject, the number
of subjects and the proportion of subjects with AD in each sub-
group explored in Sec. 3.2 is not balanced. We therefore sug-
gest that future data collection of pathological speech should
involve more longitudinal samples across participants.

While MMSE is one of the most widely used clinical tests
for cognitive ability, it is somewhat coarse, lacking sensitivity to
subtle changes in cognition in the early stages of dementia, as
well as having a high false-negative rate in addition to inter-
annotator disagreement and test-retest variability [20, 1, 19].
While automated prediction of the MMSE score may aid the
screening process for AD by reducing the cost and time in-
volved, and improving reliability, future work will explore more
precise measures of cognitive decline. The Montreal Cognitive
Assessent (MoCA) and the Repeatable Battery for the Assess-
ment of Neuropsychological Status (RBANS) [21] are screen-
ing tests which have been shown to have higher sensitivity than



MMSE to subtle changes in cognitive decline in populations
with MCI and mild dementia [22]; future studies are needed to
assess the validity of automatic scoring of such tests as a more
fine-grained measure of the progression of cognitive decline.
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