PAGE
709

<CN>12</CN>
<CT>Socialcentric Design of Multiagent Architectures</CT>
<CA>Manuel Kolp, Stéphane Faulkner, and Yves Wautelet</CA>
<H1>12.1 Introduction</H1>
Information systems are deeply linked to human activities. Unfortunately, development methodologies have traditionally been inspired by programming concepts, not by organizational and enterprise concepts. This leads to ontological and semantic gaps between systems and their environments. The adoption of multiagent systems (MASs) helps to bridge these gaps by offering modeling tools based on organizational concepts such as actor, agent, goal, objective, responsibility, and social dependency, which serve as fundamentals to conceive systems throughout the entire development process. Moreover, software development is becoming increasingly complex. Stakeholder expectations are ever more demanding, and development times are supposed to be shorter. Project managers, analysts, and software developers need adequate processes to model the organizational context, capture requirements, and build efficient and flexible software systems. Software development methodologies have to cover the whole life cycle (Kruchten, 2003) of a project while reducing risk as much as possible, offer tools to manage the complexity of human organizations, and provide features to develop applications in a correct way.

At the architectural design level, an important technique that helps handle software construction and documentation complexity is the reuse of development experience and know-how. Styles and patterns have become an attractive approach to reusing architectural design knowledge. Architectural styles are intellectually manageable abstractions of system structure that describe how system components interact and work together (Shaw & Garlan, 1996). A design pattern describes a problem commonly found in software designs and prescribes a flexible solution to the problem, so as to ease the reuse of the solution, which can be repeatedly applied from one design to the next, producing design structures that look quite similar across different applications (Gamma, Helm, Johnson, & Vlissides ,1995).

Taking real-world social structures as metaphors, the SKwyRL
 (Faulkner, Kolp, Coyette, & Do, 2004) framework proposes a set of generic architectural structures (Kolp, Giorgini, & Mylopoulos, 2001). SKwyRL, as well as i*, Tropos, and SPEM, are supported by the DesCARTES tool (Kolp & Wautelet, 2007). The aim is to offer and validate a software architectural design process specifically for agent-based systems:

<BL>
· At the architectural level, organizational styles inspired by organization theory and strategic alliances are used to design the overall MAS architecture. Styles from organization theory describe the internal structure and design of the MAS architecture, and styles from strategic alliances model the cooperation of independent architectural organizational entities that pursue shared goals.

· At the detailed design level, social design patterns drawn from research on cooperative and distributed architectures offer a more microscopic view of the social MAS architecture description. They define the agents and the social dependencies that are necessary for the achievement of agent goals.</BL>
The chapter uses a running example to illustrate our approach: E-Media is a typical business-to-consumer application supporting the following features:

<BL>
· An online Web interface allows customers to examine the items in the E-Media catalogue, and place orders.

· Customers can search the online store by either browsing the catalogue or querying the item database. An online search engine allows customers to search title, author/artist, and description fields through key words or full-text search.

· Internet communications are supported.

· Online financial transactions, including credit card and anonymity, are protected.

· All Web information (e.g., product and customer turnover, sales average, …) of strategic importance is recorded for monthly or on-demand statistical analysis.

· Based on this statistical and strategic information, the system permanently manages and adapts the stock, pricing, and promotions policies. For example, for each product, the system can decide to increase or decrease stocks or profit margins. It can also adapt the customer online interface with new product promotions.</BL>
The chapter is organized as follows. Section 12.2 formalizes the software engineering process disciplines
 in which the architectural and detailed design structures are used. The objectives of each discipline, as well as the workflow and artifacts used as input or output, are described. Section 12.3 overviews architectural organizational styles, details one of them (the structure-in-5), and applies it to design the architecture of the e-business application. Section 12.4 presents the social design patterns, details one of them (the broker), and applies the social design patterns to the detailed design of the e-business application. Section 12.5 overviews the agent-oriented e-business system implementation. Section 12.6 overviews related work. Finally, section 12.7 concludes the chapter.

<H1>12.2 SKwyRL: An i*-Centric Architectural Process</H1>
The idioms proposed in this chapter take place originally in the architectural design and detailed design disciplines of the agent-oriented Tropos methodology (Castro, Kolp, & Mylopoulos, 2002). The present section first describes the process used to fulfill both disciplines as well as the implementation one.
 This process is part of a broader methodology called I-Tropos (see Wautelet, Kolp, & Achbany, 2006) that is based on Tropos. It is driven by the i* framework and organized following an iterative software development life cycle. Due to lack of space, we focus here only on social and organizational aspects of the process. These are the most relevant elements in the context of this book. Disciplines are presented as sequential workflows, and the reader must keep in mind that they are “small” parts of a broader, highly iterative process. Case studies—the development of a coking plant
production management information system at Carsid S.A. and of a bed allocation and management information system at the St.-Luc University Clinics—aiming to validate the whole process are currently under development (Wautelet et al., 2006).

The process description that follows uses the SPEM (Software Process Engineering Metamodel) notation. Each discipline (architectural design, detailed design, and implementation) is modeled as a workflow in which each ProcessRole performs a series of Activities. WorkProducts (Documents or UMLModels) are inputs or outputs of those activities. Figure 12.1 summarizes the SPEM concepts we use. A complete specification of the SPEM notation can be found in Object Management Group (2005), and the SPEM description of the disciplines is described in Wautelet et al. (2006).

[Figure 12.1 here]

SPEM, i*, and NFR (Chung, Nixon, Yu, & Mylopoulos, 2000)
 diagrams in this chapter are all designed and drawn with the DesCARTES tool (Kolp & Wautelet, 2007).

<H2>12.2.1 Architectural Design</H2>
The objective of the architectural design discipline is to organize the dependencies between various subactors identified in prior disciplines in the software development process, in order to meet functional and nonfunctional requirements of the system.

Figure 12.2 describes the architectural design discipline workflow. The software architect uses a nonfunctional requirements analysis (see subsection 12.3.5) to select the most appropriate architectural style for the module-to-be from the architectural styles catalogue described in section 12.3. If such a style has been selected, new actors and their identified intentions are added to the Strategic Dependency and Strategic Rationale models according to the semantics of the selected style. Finally, the system architecture is formally specified with an architecture description language (ADL).

[Figure 12.2 here]

As we will see in section 12.3, the E-Media system uses the structure-in-5 style. The Strategic Dependency model and the Strategic Rationale model developed during the early and late requirements disciplines are refined to include new actors and intentions inherent in the selected structure. The selection of the style through a nonfunctional requirements analysis for the case study is developed in subsection 12.3.5.

<2>12.2.2 Detailed Design</2>
Detailed design defines the behavior of each architectural component. This discipline is concerned with the specification of agent microlevels with respect to the features of the implementation platforms. The objective is to create a design that will naturally map into code.

Figure 12.3 describes the workflow of the detailed design discipline. The software architect selects the most appropriate social patterns for the components under development from the catalogue overviewed in section 12.4. New goals are included in the Strategic Dependency model (social dimension) according to the semantics of the pattern. The agent designer identifies services provided by each agent to achieve goal dependencies. Each service belongs to an agent and is represented with a nonfunctional requirements goal analysis to refine the Strategic Rationale diagram (intentional dimension). The structure of each agent and its components, such as plans, events, and beliefs, is then specified with an agent UML class diagram (structural dimension). Agents communicate through events exchanged in the system and modeled in a temporal manner with extended Agent UML sequence diagrams (communicational dimension). The synchronization and the relationships between plans and events are designed through agent-oriented activity diagrams (dynamic dimension).

[Figure 12.3 here]

In the E-Media case study, the broker pattern is notably selected during the detailed design discipline, as we will see in section 12.4. Consequently, the Strategic Dependency model is refined to include new intentions inherent in the selected pattern of the concerned agents. The social, intentional, structural, communicational, and dynamic dimensions are also developed.

<H2>12.2.3 Implementation</H2>
The implementation discipline aims to produce an executable release of the application on the basis of the detailed design specification. To achieve it in the context of our design process framework, an agent-oriented programming platform is required.

Figure 12.4 describes the implementation discipline workflow. First, code recycling is considered. The integration of previously developed components/modules is tried first, driven by styles and patterns selected earlier. Second, the incorporation of code through the use of external libraries, such as open-source software or COTS components, is considered. The next step in the process is the creation of an agent skeleton based on the specification developed during detailed design. The user interfaces of the application are also sketched, and previously developed interfaces are refined on the basis of the user’s feedback. The code associated with the beliefs, desires, and intentions of each agent is written and the user interfaces are developed.

[Figure 12.4 here]

In the E-Media case study, a skeleton of the application for the JACK Intelligent Agents language (Agent Oriented Software, 2007)
 has been generated, using the DesCARTES CASE Tool (Kolp & Wautelet, 2007) and user interfaces have been sketched using SketchXML (Coyette, Faulkner, Kolp, Limbourg, & Vanderdonckt, 2004). The developed application is discussed in section 12.5.

<H1>12.3 Architectural Design with Organizational Styles</H1>
System architectural design has been the focus of considerable research since the mid-1990s,
 with the result that there are now well-established architectural styles and frameworks for evaluating the effectiveness of an architectural design with respect to particular software qualities (Bass, Clements, & Kazman, 1998).
 Examples of styles are pipes-and-filters, event-based, layered, control loops, and the like (Shaw & Garlan, 1996). Examples of software qualities include maintainability, modifiability, and portability (Kruchten, 2003). We are interested in developing a suitable set of architectural styles for multiagent software systems. Because the fundamental concepts of an MAS are intentional and social, rather than implementation-oriented, we turn to theories that study social structures for motivation and insights. But what kind of social theory should we turn to? There are theories that study group psychology, communities (virtual or otherwise), and social networks. Such theories study social structure as an emergent property of a social context. Instead, we are interested in social structures that result from a design process. For this, we turn for guidance, in SKwyRL, to organization theories: organization theory and strategic alliances. Organization theory (e.g., Mintzberg, 1992; Scott, 1998; Yoshino & Srinivasa Rangan, 1995) describe the internal structure and design of an organization, whereas Strategic Alliances (e.g., Dussauge & Garrette, 1999; Morabito, Sack, & Bhate, 1999; Segil, 1996) model the strategic cooperation of independent organizational stakeholders who pursue a set of shared goals.

<H2>12.3.1 Organization Theory</H2>
 “An organization is a consciously coordinated social entity, with a relatively identifiable boundary, that functions on a relatively continuous basis to achieve a common goal or a set of goals" (Morabito et al., 1999, p. 39). Organization theory is the discipline that studies both structure and design in such social entities. Structure deals with the descriptive aspects, and design refers to the prescriptive aspects of a social entity. Organization theory describes how practical organizations are actually structured, and offers suggestions on how new ones can be constructed and how old ones can change to improve effectiveness. To this end, schools of organization theory have proposed model patterns
 to try to find and formalize recurring organizational structures and behaviors.

In the following, we briefly present organizational styles identified in organization theory. The structure-in-5 style will be studied in detail in subsection 12.3.3.

<H3>The Structure-in-5 Style</H3>
 An organization can be considered an aggregate of five substructures, as proposed by Mintzberg (1992). At the base level sits the operational core that carries out the basic tasks and procedures directly linked to the production of products and services (acquisition of inputs, transformation of inputs into outputs, distribution of outputs). At the top lies the strategic apex that makes executive decisions ensuring that the organization fulfills its mission in an effective way, and defines the overall strategy of the organization in its environment. The middle line establishes a hierarchy of authority between the strategic apex and the operational core. It consists of managers responsible for supervising and coordinating the activities of the operational core. The technostructure and the support are separated from the main line of authority and influence the operating core only indirectly. The technostructure serves the organization by making the work of others more effective, typically by standardizing work processes, outputs, and skills. It is also in charge of applying analytical procedures to adapt the organization to its operational environment. The support provides specialized services, at various levels of the hierarchy, outside the basic operating workflow (e.g., legal counsel, R&D, payroll, cafeteria).

The pyramid style is the well-known hierarchical authority structure. Actors at lower levels depend on those at higher levels. The crucial mechanism is the direct supervision from the apex. Managers and supervisors at intermediate levels only route strategic decisions and authority from the apex to the operating (low) level. They can coordinate behaviors or take decisions on their own, but only at a local level.

The chain of values merges, backward or forward, several actors engaged in achieving or realizing related goals or tasks at different stages of a supply or production process. Participants, who act as intermediaries, add value at each step of the chain. For instance, for the domain of goods distribution, providers are expected to supply quality products, wholesalers are responsible for ensuring their mass exposure, and retailers take care of the direct delivery to the consumers.

The matrix style proposes a multiple command structure: vertical and horizontal channels of information and authority operate simultaneously. The principle of unity of command is set aside, and competing bases of authority are allowed to jointly govern the workflow. The vertical lines are typically those of functional departments that operate as "home bases" for all participants, and the horizontal lines represent project groups or geographical areas in which managers combine and coordinate the services of the functional specialists around particular projects or areas.

The auction style competitively involves mechanisms, and actors behave as if they are taking part in an auction. An auctioneer actor runs the show, advertises the auction issued by the auction issuer, receives bids from bidder actors, and ensures communication and feedback with the auction issuer. who is responsible for issuing the bidding.

<H2>12.3.2 Strategic Alliances</H2>
A strategic alliance links specific facets of two or more organizations. At its core, this structure is a trading partnership that enhances the effectiveness of the competitive strategies of the participant organizations by providing for the mutually beneficial trade of technologies, skills, or products based upon them. An alliance can take a variety of forms, ranging from arm's-length contracts to joint ventures, from multinational corporations to university spin-offs, from franchises to equity arrangements. Varied interpretations of the term exist, but a strategic alliance can be defined as simultaneously possessing the following three necessary and sufficient characteristics:

<BL>
· The two or more organizations that unite to pursue a set of agreed- upon goals remain independent subsequent to the formation of the alliance.
· The partner organizations share the benefits of the alliance and control over the performance of assigned tasks.
· The partner organizations contribute on a continuing basis in one or more key strategic areas (e.g., technology, products, and so forth).</BL>
In the following, we briefly present organizational styles identified in Strategic Alliances.
The joint venture style involves agreement between two or more intra-industry partners to obtain the benefits of larger scale, partial investment, and lower maintenance costs. A specific joint management actor coordinates tasks and manages the sharing of resources between partner actors. Each partner can manage and control itself on a local dimension and interact directly with other partners to exchange resources, such as data and knowledge. However, the strategic operation and coordination of such an organization and its actors, on a global dimension, are ensured only by the joint management actor in which the original actors possess equity participations.

The arm's-length style implies agreements between independent and competitive, but partner, actors. Partners keep their autonomy and independence, but act and put their resources and knowledge together to accomplish precise common goals. No authority is lost, or delegated from one collaborator to another.

The hierarchical contracting style identifies coordinating mechanisms that combine arm's-length agreement features with aspects of pyramidal authority. Coordination mechanisms developed for arm's-length (independent) characteristics involve a variety of negotiators, mediators, and observers at different levels handling conditional clauses to monitor and manage possible contingencies, negotiate and resolve conflicts, and, finally, deliberate and take decisions. Hierarchical relationships, from the executive apex to the arm's-length contractors, restrict autonomy and underlie a cooperative venture between the parties.

The co-optation style involves the incorporation of representatives of external systems into the decision-making or advisory structure and the behavior of an initiating organization. By co-opting representatives of external systems, organizations are, in effect, trading confidentiality and authority for resources, knowledge assets, and support. The initiating system has to come to terms with the contractors for what is being done on its behalf; and each co-opted actor has to reconcile and adjust its own views to the policy of the system it has to communicate with.

<H2>12.3.3 An Organizational Style in Detail</H2>
Figure 12.5 details the structure-in-5 style using the i* framework. As previously mentioned, i* diagrams in this chapter are drawn with DesCARTES.

[Figure 12.5 here]

The Technostructure, Middle Line, and Support actors depend on the Apex for strategic management. Since the goal Strategic Management does not have a precise description, it is represented as a softgoal (cloud shape). The Middle Line depends on Technostructure and Support through goal dependencies Planning and Logistics, respectively, represented as oval-shaped icons. The Operational Core is related to the Technostructure and Support actors through Standardization task dependencies, and in addition is related to Technostructure through the Procedure Information resource dependency, and to Support through the Nonoperational Service resource dependency.

A number of constraints can also be applied to supplement the basic style:

<BL>
· The dependencies between the Strategic Apex as depender and the Technostructure, Middle Line, and Support as dependees must be of type goal.
· A softgoal dependency models the strategic dependence of the Technostructure, Middle Line, and Support on the Strategic Apex.
· The relationships between the Middle Line and Technostructure and Support must be goal dependencies.
· The Operational Core relies on the Technostructure and Support through task and resource dependencies.
· Only task dependencies are allowed between the Middle Line (as depender or dependee) and the Operational Core (as dependee or depender).</BL>
<H2>12.3.4 Applying Organizational Styles</H2>
Figure 12.6 models the agent-oriented architecture for E-Media following the structure-in-5 style.

[Figure 12.6 here]

The Store Front plays the role of the structure-in-5’s Operational Core. It interacts with customers and provides them with a usable front-end Web application for consulting, searching, and shopping for media items.

The Back Store constitutes the structure-in-5’s Support component. It manages the product database and communicates relevant product information to the Store Front. It stores and backs up all Web information about customers, products, and sales to be able to produce statistical information (e.g., analyses, average charts, and turnover reports). Such kinds of information are computed either for a predefined product (when the Coordinator asks for it) or on a monthly basis for every product. Based on this monthly statistical information, it also provides the Decision Maker with Strategic Information (e.g., sales increase or decrease, performance charts, best sales, sales predictions, etc.).

The Billing Processor plays the role of the structure-in-5’s Technostructure by handling customer orders and bills. To this end, it provides the customer with online shopping cart capabilities. It also ensures the secure management of financial transactions for the Decision Maker. Finally, it handles, under the responsibility of the Coordinator component, stock orders to avoid shortages or congestions.

As the structure-in-5’s Middle Line, the Coordinator assumes the central position of the architecture. It is responsible to implements strategic decisions for the Decision Maker (Strategic Apex). It supervises and coordinates the activities of the Billing Processor (initiating the stock and pricing policies), the Front Store (adapting the front-end interface with new promotions and recommendations), and the Back Store.

 <H2>12.3.5 Selecting an Architecture</H2>
Software quality attributes (i.e., nonfunctional requirements describing how well the system accomplishes its functions) relevant for multiagent systems have been studied in Kolp et al. (2001). These are, for instance: predictability, security, adaptability, coordinability, cooperativity, competitivity, availability, fallibility tolerance, modularity, and aggregability.

Three of them (adaptability, security, availability) have been identified as particularly strategic for e-business systems (Do, Faulkner, & Kolp, 2003).
 Due to the lack of space, we will focus only on these three qualities for the structure-in-5 style.
Adaptability deals with the way the system can be designed using generic mechanisms to allow Web pages to be dynamically changed. It also concerns the catalogue update for inventory consistency.

The structure-in-5 independently separates each typical component of the E-Media architecture, isolating them from each other and allowing dynamic manipulation.

Security. Clients exposed to the Internet are, like servers, at risk when using Web applications. It is possible for Web browsers and application servers to download or upload content and programs that could open the client system to crackers and automated agents. JavaScript, Java applets, ActiveX controls, and plug-ins represent a certain risk to the system and the information it manages. Equally important are the procedures checking the consistency of data transactions.

In the structure-in-5, checks and control mechanisms can be integrated at different levels assuming redundancy from different perspectives. Contrary to the classical layered architecture (Shaw & Garlan, 1996), checks and controls are not restricted to adjacent levels. Besides, since the structure-in-5 permits the designer to separate process (Store Front, Billing Processor, and Back Store) from control (Decision Maker and Monitor), the security and consistency of these two hierarchies can also be verified independently.

Availability. Network communication may not be very reliable, causing sporadic loss of the server. There are data integrity concerns with the capability of the e-business system to do what needs to be done, as quickly and efficiently as possible, in particular with the ability of the system to respond in time to client requests for its services.

The structure-in-5 architecture makes agents more tolerant of network availability problems by differentiating process from control. Besides, higher levels are more abstract than lower levels: lower levels involve only resources and task dependencies, whereas higher levels propose intentional (goals and softgoals) relationships.

To cope with software quality attributes and select the architecture of the system, we go through a means-ends analysis using the NFR (Nonfunctional Requirements) framework (Chung et al., 2000).
 In the NFR framework, software quality attributes are called nonfunctional requirements and are represented as softgoals (cloud shapes). The analysis involves refining these softgoals to subgoals that are more specific and more precise, and then evaluating alternative architectural styles against them, as shown in figure 12.7. The styles are represented as operationalized softgoals (saying, roughly, “make the architecture of the new system pyramid-/joint venture-/co-optation-based,…”). Design rationale is represented by claim softgoals drawn as dashed clouds. These can represent contextual information (such as priorities) to be considered and properly rejected from
 the decision-making process. Exclamation marks (! and !!)
 are used to mark priority softgoals. A checkmark (indicates a fulfilled softgoal, and a cross (labels an unfulfillable one.

[Figure 12.7 here]

In figure 12.7, Adaptability is AND-decomposed into Dynamicity and Updatability. For our e-commerce example, Dynamicity should deal with the way the system can be designed using generic mechanisms to allow Web pages and user interfaces to be dynamically and easily changed. Indeed, information content and layout need to be frequently refreshed to give correct information to customers or simply to be fashionable for marketing reasons. Using frameworks such as Active Server Pages (ASP) and Server Side Includes (SSI) to create dynamic pages makes this attribute easier to achieve. Updatability should be strategically important for the viability of the application, the stock management, and the business itself because E-Media administrators have to update the catalogue very regularly for inventory consistency.

Availability is decomposed into Usability, Integrity, and Response Time. Network communication may not be very reliable, causing sporadic loss of the server. There should be data integrity concerns about the capability of the e-business system to do what needs to be done, as quickly and efficiently as possible: in particular, the ability of the system to respond in time to client requests for its services. It is also important to provide the customer with a usable application (i.e., comprehensible at first glimpse, intuitive, and ergonomic). Equally strategic to usability concerns are the portability of the application across browser implementations and the quality of the interface.

Security has been decomposed into Authorization, Confidentiality, and External Consistency.

Eventually, the analysis shown in figure 12.7 allows us to choose the structure-in-5 architectural style for our e-commerce example (the operationalized attribute is marked with a (). More details about the selection and nonfunctional requirements decomposition process, as well as evaluation and comparison of the styles with respect to architectural criteria, can be found in Castro et al. (2002) and Kolp et al. (2001).

<H1>12.4 Detailed Design with Social Patterns</H1>
The organizational abstraction sketched during the architectural design discipline gives information about the system architecture to be: applying an organizational style points out the required organizational agents to the designer.

Once the organizational agents are identified, the next step in MAS architectural design refines the characterization of agent behavior by detailing and relating identified organizational agents to more specific, software agents. For example, each agent in figure 12.6 is much closer to real- world system actor behavior than to the software agent behavior that we ultimately aim to achieve. Once the organizational architecture determines the MAS global structure in terms of actors and their intentional relationships, deeper analysis is required to detail the agent behaviors and interdependencies necessary for agents to accomplish their roles in the software organization.
To proceed with this analysis, design patterns are used to describe problems commonly encountered in software design and to prescribe flexible solutions. The use of design patterns enables reuse of solutions. In SkwyRL, we adopt social patterns (Do, 2005) that are design patterns focusing on social and intentional aspects that recur in multiagent or cooperative systems. Similarly to organizational styles, social patterns are generic structures that define how (a small number of) agents interact in order to fulfill their obligations.

SKwyRL classifies social patterns in two categories. The Pair patterns describe direct interactions between negotiating agents. The Mediation patterns feature intermediate agents that help other agents reach agreement about an exchange of services. These patterns are then applied to design the E-Media application in detail.

<H2>12.4.1 Pair Patterns</H2>
The Booking pattern involves a client and a number of service providers. The client issues a request to book some resource from a service provider. The provider can accept the request, deny it, or propose to place the client on a waiting list until the requested resource becomes available when some other client cancels a reservation.

The Subscription pattern involves a yellow-pages agent and a number of service providers. The providers advertise their services by subscribing to the yellow pages. A provider that no longer wishes to be advertised can request to be unsubscribed.

The Call-for-Proposals pattern involves a client and a number of service providers. The client issues a call for proposals for a service to all service providers and then accepts proposals that offer the service for a specified cost. The client selects one service provider to supply the service.

The Bidding pattern involves a client and a number of service providers. The client organizes and leads the bidding process, and receives proposals. At each iteration, the client publishes the current bid; it can accept an offer, raise the bid, or cancel the process.

<H2>12.4.2 Mediation Patterns</H2>
In the Monitor pattern, subscribers register to receive, from a monitor agent, notifications of changes of state in some subjects of their interest. The monitor accepts subscriptions, requests information about the subjects of interest, and alerts subscribers accordingly.

In the Broker pattern, the broker agent is an arbiter and intermediary that requests services from providers to satisfy the requests of clients.

In the Matchmaker pattern, a matchmaker agent locates a provider for a given service requested by a client, and then lets the client interact directly with the provider (unlike brokers, who handle all interactions between clients and providers).

In the Mediator pattern, a mediator agent coordinates the cooperation of performer agents to satisfy the request of a client agent. Whereas a matchmaker simply matches providers with clients, a mediator encapsulates interactions and maintains models of the capabilities of initiators and performers over time.

The Wrapper pattern incorporates a legacy system into a multi-agent system. A wrapper agent interfaces with system agents by means of the legacy system
 (source), and acts as a translator. This ensures that communication protocols are respected and the legacy system remains decoupled from the rest of the agent system.

More details about the evaluation and comparison of the styles with respect to architectural criteria can be found in Do (2005).

<H2>12.4.3 A Social Pattern in Detail</H2>
Figure 12.8 details the broker social pattern in i*.

[Figure 12.8 here]

It is considered as a combination of (1) a Subscription pattern (shown enclosed within dashed boundary (a)), which allows service providers to subscribe their services to the Broker agent and in which the Broker agent plays the role of yellow pages agent; (2) one of the other pair patterns— Booking, Call-for-Proposals, or Bidding—whereby the Broker agent requests and receives services from service providers (in figure 12.8, it is a Call-for-Proposals pattern, shown enclosed within dotted boundary (b)); and (3) interaction between broker and the client: the Broker agent depends on the Client for sending a service request and the Client depends on the Broker agent to forward the service.

Figure 12.9 depicts the Broker pattern components. For brevity, each construct described earlier is illustrated through only one component.

[Figure 12.9 here]

Broker is one of the three agents composing the Broker pattern. It has plans such as QuerySPAvailability, SendServiceRequestDecision, and so on. When there is no ambiguity, by convention the plan name is the same as the name of the service that it operationalizes. The private belief SPProvidedService is used to store the service type that each service provider can provide. This belief is declared to be private because the broker is the only agent that can manipulate it. The ServiceType belief stores the information about types of services provided by service providers, and is declared to be global because it must be known both by the service provider and by the broker agent.

The constructor method allows the programmer to give a name to a broker agent when it is created. This method may call other methods, such as loadBR(), to initialize agent beliefs.

SendServiceRequestDecision is one of the Broker pattern plans the broker uses to answer the client: the BRRefusalSent event is sent when the answer is negative, and BRAcceptanceSent is sent when the broker has found some service provider(s) that may provide the service requested by the client. In the latter case, the plan also posts the BRAcceptancePosted event to invoke the process of recording the client's service request and the process of “call for proposals” between the broker and the service providers. The SendServiceRequestDecision plan is executed when the AvailabilityQueried event (containing the information about the availability of the service provider to realize the client's request) occurs.

SPProvidedService is one of the broker's beliefs used to store the services provided by the service providers. The service provider code SPCode
 and the
ServiceTypeCode form the belief key. The corresponding quantity attribute is declared a value field.

Figure 12.10 shows a sequence diagram for the Broker pattern. The client (Customer1) sends a service request (ServiceRequestSent) containing the characteristics of the service it wishes to obtain from the broker. The broker may alternatively answer with a denial (BRRefusalSent) or an acceptance (BRAcceptanceSent).

[Figure 12.10 here]

BRAcceptanceSent is an event that is sent to inform the client that its request is accepted.

In the case of an acceptance, the broker sends a call for proposals to the registered service providers (CallForProposalSent). The call for proposal (CFP) pattern is then applied to model the interaction between the broker and the service providers. The service provider either fails to provide or provides the requested service. The broker then informs the client about this result by sending an InformFailureServiceRequestSent or a ServiceForwarded, respectively.

The communication dimension of the subscription pattern (SB) is given at the top right, and the communication dimension of the call-for- proposals pattern (CFP) is given at the bottom right, of figure 12.10. The communication specific for the broker pattern is given in the left part of the figure.

We omit the dynamic dimension of the Subscription and the CFP patterns, and present in figure 12.11 only the activity diagram specific to the Broker pattern. It models the flow of control from the emission of a service request sent by the client to the reception by the same client of the realized service result sent by the broker. Three lanes, one for each agent of the Broker pattern, compose the diagram. In this pattern, the FindBroker service is operationalized either by the FindBR plan or by the FindBRWithMM plan (the client finds a broker based on its own knowledge or via a matchmaker).

[Figure 12.11 here]

<H2>12.4.4 Applying Social Patterns</H2>
Figure 12.12 shows a possible use of the patterns for the Store Front component of the e-business system of figure 12.6. In particular, it shows how to realize the dependencies Manage Catalogue Browsing, Update & Back Up Information, and Product Information from the point of view of the Store Front. The Store Front and the dependencies are decomposed into a combination of social patterns (Kolp, Giorgini, & Mylopoulos, 2002) involving agents, pattern agents, subgoals, and subtasks.

[Figure 12.12 here]

The booking pattern is applied between the Shopping Cart and the Information Broker to reserve available items. The broker pattern is applied to the Information Broker, which satisfies the Shopping Cart's requests for information by accessing the Product Database. The Source Matchmaker applies the matchmaker pattern to locate the appropriate source for the Information Broker, and the monitor pattern is used to check any possible change in the Product Database. Finally, the mediator pattern is applied to dispatch the interactions between the Information Broker, the Source Matchmaker, and the Wrapper, and the wrapper pattern makes the interaction between the Information Broker and the Product Database.

<H1>12.5 Implementation</H1>
We briefly describe in this section the E-Media system itself by focusing on the role of the agents and how they interact. The implementation has been derived from the architectural design explained previously. It has been realized on the JACK agent-oriented development environment (Agent Oriented Software, 2007).

When a user gets connected to E-Media, the Front Store is instantiated and displays the interface depicted in figure 12.13. It allows the newcomer user to register on the Web site (1). The information provided by the user is handled by the Back Store, which checks the validity (2). Once this has been done, the user can make purchases on E-Media by adding product to the shopping cart (4). The shopping cart is managed by the Billing Processor. At any moment during the session the user can use the navigation bar (3) to switch from one section to another. Promotions (5) and the top five best sales (6) are part of the strategic behavior. The promotion policies are initiated by the Decision Maker from the strategic information provided by the Back Store. The Coordinator chooses the best promotions and adapts the promotion interface. The coordinator acts in the same way with the best sales; the Back Store computes the five best sellers; and the coordinator is in charge of updating the Front Store interface.

[Figure 12.13 here]

Figure 12.14 describes the Front Store interface when the DVD button of the navigation bar is activated. To start a search, the user must fill one or several fields from the search engine (1). The Front Store sends the query parameters to the Back Store, which provides the results to the Front Store (2). At any moment during the session, if the user clicks on a product, a request is sent to the Back Store to provide more information on the product (3).

[Figure 12.14 here]

The E-Media administrator also the possibility of consulting information computed by the various agents. For instance, figure 12.15 gives indications on the Billing Processor. The administrator can display either the current stock for each product or the orders that have been sent for a certain period.

[Figure 12.15 here]
Particularly for the Broker pattern implementation, figure 12.16 shows the remote administration tool for the information broker described in figure 12.5. The customer sends a service request to the broker asking to buy or sell DVDs. He chooses which DVDs to sell or buy, selects the corresponding DVD titles, the quantity, and the deadline (the time period within
which the broker has to realize the requested service). When receiving the customer's request, the broker interacts with the media shops. The interactions between the broker and the shops are shown in the bottom right corner of the figure.

[Figure 12.16 here]

<H1>12.6 Related Work</H1>
Literature on MASs offers many contributions on using social concepts to design an MAS. Fox (1981) introduced the idea that using such social concepts as metaphors can be useful to describe the organization of distributed systems. Our motivation is different: we focus on how to use organizational and social concepts to effectively design multiagent architectures and how to apply them in a software engineering perspective, whereas Fox studies organizations as emergences of social behavior.

Computational methods have been used to better understand the fundamental principles of structuring MAS (Lesser, 1999) based on an organizational perspective. Although they can be extremely useful for detailed design (modeling sophisticated capabilities, alternative methods, activity-related effects, and complex interactions), they are not suitable for architectural design, in which more abstract concepts, such as actor, goal, and strategic dependencies, are needed.

Other research on multiagent systems offers contributions on using social concepts such as agent (or agency), group, role, goals, tasks, and relationships (or dependencies) to model and design system architectures. Aalaadin (Ferber & Gutknecht, 1998) uses such concepts to model the organizational structure of multiagent systems. Different types of organizational behavioral requirement patterns have been defined and formalized. Similarly, in the Gaia methodology (Wooldridge, Jennings, & Kinny, 2000), role and interaction models are used for analyzing the understanding of the system and its structure. The main difference with our approach is that in both Gaia and Aalaadin, the organization description does not include the goals associated with the agents.

On a design patterns perspective, the proposals of agent patterns (see, e.g., Do, Kolp, & Faulkner, 2005)
 are not intended to be used at a design level, but during implementation, when low-level issues such as agent communication or information gathering are addressed.

<H1>12.7 Conclusion</H1>
Agent-oriented modeling and design is an engineering discipline still under development. But the interest of this recent software paradigm comes from the fact that it can better meet the increasing complexity and flexibility required to develop software built in open and distributed environments while deeply embedded in social and human activities. Nevertheless, the emergence of a new approach requires time to be absorbed by the software community and market. Indeed, it needs standardization, productivity gains, and proven efficiency on huge and complex user-interactive software development projects, well-designed development frameworks, and so on to review its standards.

Architectural design for MAS has not yet received the attention that object-oriented architectures have had since the end of the 1990s.
Collections of well-understood architectural styles and patterns exist, but for object-oriented rather than agent-oriented systems.

Considering the social intrinsic nature of MAS, this chapter has proposed a social-driven framework to design architectures for such systems. The framework considers MAS architectures at two social levels: organizational architectural styles constitute a macro level; at a micro level it focuses on the notion of social design patterns.

In particular we have detailed and adapted the structure-in-5, a well-understood organizational style used by organization theorists and the Broker social design pattern viewed as a combination of several other social patterns.

The chapter has proposed a validation of the framework: it has been applied to develop E-Media, an e-business platform implemented on the JACK agent development environment.
<NOTES>

<REF>
References

Agent Oriented Software Pty. Ltd. (2006). JACK Intelligent Agents. Retrieved November 8, 2007, from Agent Oriented Software Group Web site: http://www.agent-software.com/shared/resources/.
Bass, L., Clements, P., & Kazman, R. (1998).
 Software Architecture in Practice. Boston, MA: Addison-Wesley.

Castro, J., Kolp, M., & Mylopoulos, J. (2002). Towards requirements-driven information systems engineering: The Tropos project. Information Systems, 27(6), 365–389.

Chung, L., Nixon, B.A., Yu, E., & Mylopoulos, J. (2000).
 Non-functional Requirements in Software Engineering. Norwell, MA:
 Kluwer Academic.

Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q., & Vanderdonckt, J. (2004). SketchiXML: Towards a multi-agent design tool for sketching user interfaces based on USIXML. In P. Slavík and P.A. Palanque (eds.), Proceedings of the 3rd International Workshop on Task Models and Diagrams for User Interface Design [TAMODIA’04] (pp. 75–82). New York: ACM Press.

Do, T.T. (2005). A framework for multi-agent systems detailed design. Ph.D. thesis, School of Management, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

Do, T.T., Faulkner, S., & Kolp, M.
 (2003).
 Organizational multi-agent architectures for information systems. In Proceedings of the 6th International Conference on Enterprise Information Systems [ICEIS’03] (pp. 89–96). Setúbal, Portugal: INSTICC Press.

Do, T.T., Kolp, M., & Faulkner, S.
 (2005).
 Introspecting agent-oriented design patterns. In S.K. Chung (ed.), Advances in Software Engineering and Knowledge Engineering (vol. 3, pp. 151–177). Singapore: World Scientific.

Dussauge, P., & Garrette, B. (1999). Cooperative Strategy: Competing Successfully Through Strategic Alliances. Hoboken, NJ: John Wiley.

Faulkner, S., Kolp, M., Coyette, A., & Do, T.T. (2004). Agent-oriented design of e-commerce system architecture. In Proceedings of the 6th International Conference on Enterprise Information Systems [ICEIS’04] (pp. 372–379). Setúbal, Portugal: INSTICC Press.

Ferber, J., & Gutknecht, O. (1998). A meta-model for the analysis and design of organizations in multi-agent systems. In Proceedings of the 3rd International Conference on Multi-Agent Systems [ICMAS’98] (pp. 128–135). Los Alamitos, CA: IEEE Computer Society Press.

Fox, M. (1981). An organizational view of distributed systems. IEEE Transactions on Systems, Man and Cybernetics, 11(1), 70–80.

Gamma E., Helm R., Johnson R., & Vlissides J.M. (1995).
 Design Patterns: Elements of Reusable Object-Oriented Software. Boston, MA:
 Addison-Wesley.

Kolp, M., Giorgini, P., & Mylopoulos, J. (2001). A goal-based organizational perspective on multi-agent architectures. In J.- J. Meyer and M. Tambe (eds.), 8th International Workshop on Agent Theories, Architectures and Languages [ATAL’01] (pp. 128–140). Lecture Notes in Computer Science 2333. Berlin: Springer.

Kolp, M., Giorgini, P., & Mylopoulos, J. (2002). Information systems development through social structures. In Proceedings of the 14th International Conference on Software Engineering and Knowledge Engineering [SEKE'02] (pp. 183–190). New York: ACM Press.

Kolp, M., & Wautelet, Y. (2007). DesCARTES architect: Design CASE tool for agent-oriented repositories, techniques, environments and systems. Retrieved November 8, 2007, from School of Management (LSM), Université Catholique de Louvain (UCL),Descartes Architect Web site: http://www.isys.ucl.ac.be/descartes.
Kruchten, P. (2003). The Rational Unified Process: An introduction. 3rd ed. Boston, MA: Addison-Wesley.

Lesser, V.R. (1999). Cooperative multiagent systems: A personal view of the state of the art. IEEE Transactions on Knowledge and Data Engineering, 11(1), 133–142.

Mintzberg, H. (1992). Structure in Fives: Designing Effective Organizations. Upper Saddle River, NJ: Prentice Hall.

Morabito, J., Sack, I., & Bhate, A. (1999). Organization Modeling: Innovative Architectures for the 21st Century. Upper Saddle River, NJ: Prentice Hall.

Object Management Group. (2005). The software process engineering metamodel specification, version 1.1. Retrieved November 8, 2007, from OMG Web site: http://www.omg.org/technology/documents/formal/spem.htm.
Scott, W.R. (1998). Organizations: Rational, Natural, and Open Systems. Upper Saddle River, NJ: Prentice Hall.

Segil, L.D. (1996). Intelligent Business Alliances: How to Profit Using Today's Most Important Strategic Tool. New York: Crown Business.

Shaw, M., & Garlan, D. (1996). Software Architecture: Perspectives on an Emerging Discipline. Upper Saddle River, NJ: Prentice Hall.

Wautelet Y., Kolp M., & Achbany, A. (2006). I-Tropos, an Iterative SPEM-centric Software Project Management Process. Working Paper IAG Series 13/06. School of Management, Université Catholique de Louvain, Belgium.

Wooldridge, M., Jennings, N.R., & Kinny, D. (2000). The Gaia methodology for agent-oriented analysis and design. Journal of Autonomous Agents and Multi Agent Systems, 3(3), 285–312.

Yoshino, M.Y., & Srinivasa Rangan, U. (1995). Strategic Alliances: An Entrepreneurial Approach to Globalization. Boston: Harvard Business School Press.

<figure captions>
Figure 12.1 SPEM notation.

Figure 12.2 Architectural design workflow.

Figure 12.3 Detailed design workflow.

Figure 12.4 Implementation workflow.

Figure 12.5 The structure-in-5 style.

Figure 12.6 The E-Media architecture following the structure-in-5 style.

Figure 12.7 Selecting an architecture.

Figure 12.8 The Broker social pattern in i*.
Figure 12.9 Structural diagram: Some Broker pattern components.
Figure 12.10 Sequence diagram for the Broker pattern.

Figure 12.11 Activity diagram for the Broker pattern.

Figure 12.12 Decomposing the Store Front with social patterns.
Figure 12.13 E-Media main interface.

Figure 12.14 E-Media main interface, DVD section.

Figure 12.15 Statistics on stock and sent orders.

Figure 12.16 The information broker of E-Media.

�Author: Would “implementation of one” be correct?

�Author: Is “coking plant” correct?

�Author: Should the year be 1999?

�Author: Should the year be 2006? See the References.

�Author: IS the change to “since the mid-1990s” ok? If not, please use the original wording with the base year.

�Author: Should the year be 1997?

�Author: Is “model patterns” correct?

�Author: Is the deletion ok? See the first line of this page.

�Author: Is the addition of “with” correct?

�Author: Is “sales predictions” correct?

�Author: Should the year be 2002?

�Author: Should the year be 1999?

�Author: Is “rejected from what you meant? Or did you mean “injected into”?

�Author: There are no double exclamation points in the figure. May we delete the reference to them?

�Author: Is “interfaces…system” correct as edited?

�Author: Should SPCode be on the figure?

�No query

�Author: Should the year be 2006? See the References.

�Author: Is “time period within which” ok?

�Author: Should the authors be Do, Kolp, Faulkner, and A. Pirotte?

Also, should the year be 2004?

�Author: Is “since…1990s” ok?

�Author: Should the year be 1997?

�Author: Should the city be Reading, MA?

�Author: Should the year be 1999?

�Author: Should the city be Boston?

�No query

�Author: Should the year be 2002?

�Author: Should it be 5th Conference?

�Author: If it should be 5th Conference, then it would be ICEIS’02. Also see prceding query re year.

�Author: Should there be a fourth author, A. Pirotte?

�Author: Should the year be 2004?

�Author: Please compare the information in this entry with Do, Failkner, et al. The Proceedings seem to have the same title, but the years are different. Also, the city is the same. Please clarify this confusing situation.

�Author: Is R, instead of J, Johnson’s correct initial?

�Author: Should the city be Reading, MA?

�Author: Should the city be Reading, MA?

�Author: Is the change to Boston correct?

�. SKwyRL: Social architecturesarChitectures for agentAgent Software Systems engineering. EngineeRing (http://www.isys.ucl.ac.be/skwyrl.)

� . The phase and the discipline notions are often presented as synonyms in SE literature. In (Castro et al. (, Kolp & Mylopoulos, 2002), Tropos is described as composed of four phases: early requirements, late requirements, architectural design, and detailed design. However, the Object Management Group (2005) defines disciplines as “a particular specialization of Package that partitions the Activities within a process according to a common ‘“theme,’whereas”.”, while the phase is defined as ‘“a specialization of WorkDefinition such that its precondition defines the phase entry criteria and its goal (often called a “"milestone”)") defines the phase exit criteria.’” Tropos’s” Tropos’ phases are considered in the process described in this chapter as disciplines because they partition activitiesActivities under a common theme, whereas while phases are considered as groups of iterations thatwhich are workflows with a minor milestone. The same distinction is made in processes such as the Unified Process.

