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University of Toronto

2007

We introduce a new method for modeling hierarchical classes, when we have prior knowl-

edge of how these classes can be arranged in a hierarchy. The application of this approach

is discussed for linear models, as well as nonlinear models based on Dirichlet process mix-

tures. Our method uses a Bayesian form of the multinomial logit (MNL) model, with a

prior that introduces correlations between the parameters for classes that are nearby in

the hierarchy. Using simulated data, we compare the performance of the new method

with the results from the ordinary MNL model, and a hierarchical model based on a set of

nested MNL models. We find that when classes have a hierarchical structure, models that

acknowledge such existing structure in data can perform better than a model that ignores

such information (i.e., MNL). We also show that our model is more robust against miss-

specification of class structure compared to the alternative hierarchical model. Moreover,

we test the new method on page layout analysis and document classification problems,

and find that it performs better than the other methods. Our original motivation for con-

ducting this research was classification of gene functions. Here, we investigate whether

functional annotation of genes can be improved using the hierarchical structure of func-

tional classes. We also introduce a new nonlinear model for classification, in which we

model the joint distribution of response variable, y, and covariates, x, non-parametrically

using Dirichlet process mixtures. In this approach, we keep the relationship between y

and x linear within each component of the mixture. The overall relationship becomes
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nonlinear if the mixture contains more than one component. We extend this method to

classification problems where a class hierarchy is available. We use our model to predict

protein folding classes, which can be arranged in a hierarchy. We find that our model

provides substantial improvement over previous methods, which were based on Neural

Networks (NN) and Support Vector Machines (SVM). Together, the results presented in

this thesis show that higher predictive accuracy can be obtained using Bayesian models

that incorporate suitable prior information.
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Chapter 1. Overall introduction 2

1.1 Introduction

In this research, we consider classification problems where classes have a hierarchical

structure. We discuss both linear and nonlinear (based on Dirichlet process mixtures)

hierarchical classification models. The hierarchy reflects our prior opinion with respect to

the similarity of classes. Hierarchical classification problems of this sort are abundant in

statistics and machine learning fields. One such problem, which is our original motivation

for studying hierarchical classification schemes, is prediction of the biological functions

of genes. These functions are usually presented in a hierarchical form starting with

very general classes (eg, cell processes) and becoming more specific in lower levels of the

hierarchy (eg, cell division or chromosome replication).

There are many examples of hierarchical classes in the literature. Fox (1997) discusses

one simple hierarchical classification problem regarding Canadian women’s labour-force

participation. In this problem, the objective is to classify Canadian women to “working”

and “non-working” (outside the home) groups. Working women are further classified to

“full-time” and “part-time”. Husband’s income, presence of children in the household,

and region of living were used as covariates. Another example, which has become in-

creasingly important due to the exponential growth of information on the internet, is

classification of documents (e.g., web pages). A standard benchmark dataset for this

problem is one that contains 20000 documents from 20 different on-line newsgroups. The

objective is to identify the newsgroup from which an article was taken, using the words

appearing in that article. The newsgroups can be grouped into general classes such as

“computer”, “science”, and “talk”. A general class such as science can be divided to more

specific classes such as “electronics” and “space”. The dataset can be obtained from the

UCI KDD repository at http://kdd.ics.uci.edu. We discuss some more examples in

our papers (Chapters 2, 3, and 4), and evaluate our proposed method based on page

region labelling and patent document classification problems.

If we ignore the hierarchical structure of classes, we could use a simple multinomial



Chapter 1. Overall introduction 3

logit (MNL) model for classification. This model has the following form:

P (y = j|x, α, β) =
exp(αj + xβj)∑c

j′=1 exp(αj′ + xβj′)
(1.1)

where c is the number of classes. For each class, j, there is a vector of p unknown

parameters βj. The entire set of regression coefficients β = (β1, ..., βc) can be presented

as a p × c matrix. The MNL model treats classes as unrelated entities. This is not,

of course, an optimal approach if we know a priori that classes can be arranged on a

hierarchy.

The importance of using the information regarding the class hierarchy has been em-

phasized by many authors (e.g., Sattath and Tversky (1977); Fox (1997); Koller and

Sahami (1997)). Several methods have been proposed for incorporating this information

in classification models. A common approach is using a series of nested models (i.e.,

nested MNL models), which classify cases sequentially along the hierarchy. That is, for

each intermediate node m in the hierarchy, a separate model is used to classify cases that

belong to m into the child nodes of m (i.e., nodes that are immediately connected to m).

We refer to this method as treeMNL.

To understand why treeMNL may perform better when classes have a hierarchical

structure, consider a three-way classification problem in which classes 1 and 2 are com-

pletely indistinguishable on the basis of available information, but they both can be easily

separated from class 3. This is, of course, an extreme example. Assuming that the hierar-

chical structure is known to us a priori, we can use two nested models such that the first

model separates class 3 from classes 1 and 2, and the second model separates only class

1 from class 2. Obviously, only the first model affects the overall performance (assuming

the second model has a performance no worse than a random model). The first model is

appropriately more parsimonious compared to a non-hierarchical model, which tries to

classify objects to all three classes simultaneously (i.e., MNL). The treeMNL model can,

therefore, provide better performance than the MNL model.

The extreme example discussed above rarely exists in real life. In most problems,
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similar classes can be distinguished to some degree. It is even possible that apparently

similar classes are not in fact hard to distinguish. That is, the hierarchy is misspecified.

As we will see later, this can be a major problem for the treeMNL model. Fox (1997)

suggested using this approach only when there is substantial evidence to believe the

hierarchy exists.

In this research, we propose an alternative approach for incorporating the hierar-

chical structure in classification models. Using simulation studies, we show that unlike

treeMNL, our approach is very robust against misspecification of the hierarchy. In our

approach, the hierarchy is provided in the form of a prior. We use an MNL model with

a prior that introduces correlations between the parameters for classes that are nearby

in the hierarchy. For this purpose, we first use a different set of parameters for each

branch of the hierarchy. In the final multinomial logit, we sum these parameters over

all the branches starting from the root and leading to a specific class. Therefore, the

more branches two categories share (i.e., the closer they are on the hierarchy), the larger

number of their common parameters will be. This can in turn translate to a higher

correlation between the parameters of multinomial logit model. The correlation will be

negligible (i.e., classes are independent) if the common parameters are all practically zero.

When the hierarchy actually provides additional information regarding the structure of

classes, our approach performs better than the non-hierarchical model (i.e., MNL), and

the nested hierarchical model (i.e., treeMNL). When the assumed hierarchical structure

does not exist, our model has a very small penalty since it can reduce to a non-hierarchical

model in such situations. Throughout this thesis, we refer to this model as corMNL.

While MNL and corMNL use different priors, they both use the same model in which

the relationship between response variable and covariates is assumed to be linear. If the

linearity assumption does not hold, these models may have poor performance compare

to alternative nonlinear models. We introduce a new model that is sufficiently flexible

to capture nonlinear relationships. In this approach, we model the joint distribution
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of response variable, y, and covariates, x, non-parametrically using Dirichlet process

mixtures. We keep the relationship between y and x linear within each component of

the mixture. The relationship becomes nonlinear over all components. We first use this

method for modeling non-hierarchical classes. For this purpose, we use an MNL model in

each component to capture the dependency of y on x. For classification problems where

classes have a hierarchical structure, we replace the MNL model with corMNL.

1.2 Outline of thesis

This thesis is presented as a “journal format” dissertation. It is divided into 5 chapters:

an overall introduction, three papers, and an overall discussion. Each paper is written to

stand on its own, and therefore, includes a separate introduction, a methodology section,

a results section, and a discussion section. The papers included in this thesis are: “Im-

proving classification when a class hierarchy is available using a hierarchy-based prior”,

which was published by Bayesian Analysis in 2007, “Gene function classification using

Bayesian models with hierarchy-based priors”, which was published by BMC Bioinfor-

matics in 2006, and “Nonlinear classification models using Dirichlet process mixtures”,

which will be published as a technical report in the department of Statistics.

In the next chapter, we present our first paper, which discusses the problem of hier-

archical classification in general. We used simulated data to compare our model to MNL

and treeMNL. The results from these simulation studies show that when classes have

a hierarchical structure, models that acknowledge such existing structure in data (i.e.,

treeMNL and corMNL) can perform better than a model that ignores such information

(i.e., MNL). We also show that our model is more robust against misspecification of

class structure compared to the nested model. In this paper, we also looked at two real

examples of hierarchical classification. The first example involves classifying regions of a

page in an article, and the second example involves classifying patent documents. The
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results based on these two problems confirmed that our model performs better than the

other two alternative models.

In Chapter 3, our second paper, we discuss the application of our method to gene

function classification. An experimental approach to identifying gene function is based

on eliminating or inhibiting expression of a gene and observing any alteration in the

phenotype. However, since analysis of all genes for all possible functions is not possible

at this current time, statistical models have been employed for this purpose. In this

paper, we use our approach to predict the functional class of Open Reading Frames

(ORFs) from the E. coli genome. An ORF is a part of a genome sequence that could

potentially encode proteins. The covariates are based on several characteristics of protein

sequences including phylogenic descriptors (SIM), sequence based attributes (SEQ), and

predicted secondary structure (STR). Similar to the results in the previous paper, we

find that our model has the best performance in terms of prediction accuracy. Moreover,

all our models (hierarchical or non-hierarchical) provide substantially better predictions

than a previous analysis based on the C5 decision tree algorithm.

In our second paper, we also address the problem of combining different sources of

information in gene function classification. Our approach is based on using separate

scale parameters for different sources of data in order to adjust their relative weights

automatically. This approach provides a higher accuracy rate when compared to models

that use each data source (i.e., SIM, SEQ and STR) alone. In previous work by King et al.

(2001), combining these three different datasets showed no additional benefit compared

to using phylogenic descriptors alone.

In the first two papers, we focus only on linear models. We expected that the same

approach could be also used for nonlinear models. In Chapter 4, we present our third

paper, which introduces a novel nonlinear model for classification based on Dirichlet

process mixtures. Simulation studies are used to evaluate the performance of this method.

We also apply our model to a real classification problem, where the objective is to identify
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protein folds. Protein fold recognition plays an important role in predicting the function

of new sequences. Folding classes of protein have a hierarchical structure. We show

how our method can be extended to classification problems where a class hierarchy is

available.

Finally, Chapter 5 is devoted to a discussion and future directions. In this chapter,

we provide an overall review of the three papers presented in the previous chapters, and

discuss the connection between these papers. We also provide several suggestions on how

to improve the proposed methods in future research. Other possible applications of these

methods are also discussed.

Several appendices are also included in the dissertation. Appendix A presents a brief

discussion about the difference between the MNL model and the treeMNL model. Using

a simple example, we show how the decision boundaries are different between these two

models. In Appendix B, we provide an overview of different MCMC algorithms used in

this dissertation. We discuss three main sampling methods, namely, the Gibbs sampler,

the Metropolis method, and slice sampling. Appendix C presents the comparison between

our predicted functions and the results from direct biological experiments for a subset

of E. coli ORFs. Appendix D includes reprints of the published papers (Chapter 2 and

Chapter 3).



Chapter 2

Classification models with a

hierarchy-based prior

This chapter appears in Bayesian Analysis, 2007, 2, Number 1, pp. 221-238.
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Abstract

We introduce a new method for building classification models when we have prior knowl-

edge of how the classes can be arranged in a hierarchy, based on how easily they can be

distinguished. The new method uses a Bayesian form of the multinomial logit (MNL,

a.k.a. “softmax”) model, with a prior that introduces correlations between the parame-

ters for classes that are nearby in the tree. We compare the performance on simulated

data of the new method, the ordinary MNL model, and a model that uses the hierarchy

in a different way. We also test the new method on page layout analysis and document

classification problems, and find that it performs better than the other methods.

2.1 Introduction

In this paper, we consider classification problems where classes have a hierarchical struc-

ture. The hierarchy reflects our prior opinion regarding similarity of classes. Two classes

are considered similar if it is difficult to distinguish them from each other on the basis of

the features available. The similarity of classes increases as we descend the hierarchy.

Our original motivation for studying hierarchical classification schemes was prediction

of the biological functions of genes. Functions are usually presented in a hierarchical form

starting with very general classes (eg, cell processes) and becoming more specific in lower

levels of the hierarchy (eg, cell division). Figure 2.1 shows a small part of the scheme

proposed by Riley (1993) to catalogue the proteins of Escherichia coli. We discuss this

application of our methods elsewhere (Shahbaba and Neal, 2006). Here, we discuss this

problem more generally, and illustrate its use for two other examples of hierarchical

classification. We look at the problem of classifying regions of a page in an article, using

classes such as “Section Heading”, “Text”, or “Figure Caption”, which can be arranged in

a hierarchy based on distinguishability. We also look at the problem of classifying patent

documents relating to textiles, where again the classes can be arranged in a hierarchy in
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Figure 2.1: A part of a gene annotation hierarchy proposed by Riley (1993) for the E.

coli genome.

which, for example, a high-level category of “Weaving” contains sub-classes for “Looms”

and for “Weavers’ Tools”.

In a Bayesian model, we can incorporate prior knowledge of the class hierarchy using

a suitable prior distribution over parameters of the model. In this paper, we introduce a

new method of this sort for the multinomial logit (MNL) model, in which the regression

coefficients for classes that are nearby in the hierarchy are correlated in the prior.

This paper is organized as follows. In Section 2.2, simple classification models and

their extensions for analysing hierarchical classes are discussed. In Section 2.3, using

simulated data, we compare the performance of our model, the ordinary MNL model,

and an alternative model that uses the hierarchy in a different way. In Section 2.4 we

compare the same models on the page region labelling and patent document classification

problems. The last section summarizes our findings and presents some ideas for future

research.
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2.2 Hierarchical Classification

Consider a classification problem in which we have observed data for n cases, (x(1), y(1)),

...,(x(n), y(n)), where x(i) = (x
(i)
1 , ..., x

(i)
p ) is the vector of p covariates (features) for case

i, and y(i) is the associated class. Our goal is to classify future cases for which the

class membership is unknown but the covariates are available. For binary classification

problems, a simple logistic model can be used:

P (y = 1|x, α, β) =
exp(α + xβ)

1 + exp(α + xβ)
(2.1)

Here, α is the intercept, β is a p × 1 vector of unknown parameters and xβ is its inner

product with the covariate vector.

When there are three or more classes, we can use a generalization known as the

multinomial logit (MNL) model (called “softmax” in the machine learning literature):

P (y = j|x, α, β) =
exp(αj + xβj)∑c

j′=1 exp(αj′ + xβj′)
(2.2)

where c is the number of classes. For each class, j, there is a vector of p unknown

parameters βj. The entire set of regression coefficients β = (β1, ..., βc) can be presented

as a p×c matrix. This representation is redundant, since one of the βj’s can be set to zero

without changing the set of relationships expressible with the model, but removing this

redundancy would make it difficult to specify a prior that treats all classes symmetrically.

For this model we can use the following priors:

αj|η ∼ N(0, η2)

βjl|τ ∼ N(0, τ 2)

η−2 ∼ Gamma(v, V )

τ−2 ∼ Gamma(w,W )

where j = 1, ..., c and l = 1, ..., p.
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The MNL model treats classes as unrelated entities without any hierarchical structure.

This is not always a realistic assumption. In many classification problems, like those

discussed above, one can arrange classes in a hierarchical form analogous to the hierarchy

of species arranged in genera, families, etc. If the classes have in fact the assumed

structure, one would expect to obtain a higher performance by using this additional

information. A special case is when the classes are ordered (e.g., education level). For

these problems a more parsimonious model (e.g., cumulative logit model) with improved

power can be used (Agresti, 2002).

The importance of using the hierarchy in classification models has been emphasized

by many authors (e.g., Sattath and Tversky, 1977; Fox, 1997; Koller and Sahami, 1997).

One approach for modelling hierarchical classes is to decompose the classification model

into nested models (e.g., logistic or MNL). Nested MNL models are extensively discussed

in econometrics (e.g., Sattath and Tversky, 1977; McFadden, 1980) in the context of

estimating the probability of a person choosing a specific alternative (i.e., class) from a

discrete set of options (e.g., different modes of transportation). These models, known

as discrete choice models, aim at forecasting and explaining human decisions through

optimizing an assumed utility (preference) function, which is different from our aim of

maximizing classification accuracy.

Goodman (2001) showed that using hierarchical classes can significantly reduce the

training time of maximum entropy-based language models and results in slightly lower

perplexities. He illustrated his approach using a word labelling problem, and recom-

mended that instead of predicting words directly, we first predict the category to which

the word belongs, and then predict the word itself. Such a two-level hierarchical model

was also used by Weigend et al. (1999) for document classification. They evaluated their

model on the Reuters-22173 corpus and showed significant improvement, especially for

rare classes.

For hierarchical classification problems with simple binary partitions, Fox (1997) sug-
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gested using successive logistic models for each binary class. In Figure 2.2 below, for

example, these partitions are {12, 34}, {1, 2}, and {3, 4}. The resulting nested binary

models are statistically independent, conditioned on the upper levels. The likelihood can

therefore be written as the product of the likelihoods for each of the binary models. For

example, in Figure 2.2 we have

P (y = 1|x) = P (y ∈ {1, 2}|x)× P (y ∈ {1}|y ∈ {1, 2}, x) (2.3)

Restriction to binary models is unnecessary. At each level, classes can be divided into

more than two subsets and MNL can be used instead of logistic regression. We refer to

methods based on decomposing the tree structure into nested MNL models as treeMNL.

Consider a parent node, m, with cm child nodes, representing sets of classes defined by

Sk, for k = 1, ..., cm. The portion of the nested MNL model for this node has the form:

P (y ∈ Sk|x, αm, βm) =
exp(αmk + xβmk)∑cm

k′=1 exp(αmk′ + xβmk′)

αmk|ηm ∼ N(0, η2
m)

βmkl|τm ∼ N(0, τ 2
m)

η−2
m ∼ Gamma(vm, Vm)

τ−2
m ∼ Gamma(wm, Wm)

where l = 1, ..., p. We calculate the probability of each end node, j, by multiplying the

probabilities of all intermediate nodes leading to j.

In contrast to this treeMNL model, Mitchell (1998) showed that the hierarchical naive

Bayes classifier is equivalent to the standard non-hierarchical classifier when the prob-

ability terms are estimated by maximum likelihood. To improve the hierarchical naive

Bayes model, McCallum et al. (1998) suggested to smooth parameter estimates of each

end node by shrinking its maximum likelihood estimate towards the estimates of all its

ancestors in the hierarchy. More recently, new hierarchical classification models based on

large margin principals, specifically support vector machine (SVM), have been proposed
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(Dumais and Chen, 2000; Dekel et al., 2004; Cai and Hoffmann, 2004; Tsochantaridis

et al., 2004; Cesa-Bianchi et al., 2006). Dekel et al. (2004) introduced a large margin

hierarchical classification model that uses the sum of parameters along the tree for classi-

fying cases to the end nodes. These parameters are estimated based on a set of classifiers

that assign cases to the intermediate nodes. Cai and Hoffmann (2004) suggested a similar

approach based on the generalization of multiclass SVM. We also use sums of parameters

along paths in the tree, but in a rather different way from this past work.

Our new framework for modeling hierarchical classes is illustrated in Figure 2.2, which

shows a hierarchical classification problem with four classes. For each branch in the

hierarchy, we define a different set of parameters. In Figure 2.2, these parameters are

denoted as φ11 and φ12 for branches in the first level and φ21, φ22, φ23 and φ24 for

branches in the second level. We assign objects to one of the end nodes using an MNL

model (Equation 3.1) whose regression coefficients for class j are represented by the sum

of parameters on all the branches leading to that class. In Figure 2.2, these coefficients

are β1 = φ11 + φ21, β2 = φ11 + φ22, β3 = φ12 + φ23 and β4 = φ12 + φ24 for classes

1, 2, 3 and 4 respectively. Sharing the common terms, φ11 and φ12, introduces prior

correlation between the parameters of nearby classes in the hierarchy.

In our model, henceforth called corMNL, φ’s are vectors with the same size as β’s.

We assume that, conditional on higher level hyperparameters, all the components of the

φ’s are independent, and have normal prior distributions with zero mean. The variances

of these components are regarded as hyperparameters, which control the magnitudes

of coefficients. We use one hyperparameter for each non-terminal node. When a part

of the hierarchy is irrelevant, we hope the posterior distribution of its corresponding

hyperparameter will be concentrated near zero, so that the parameters it controls will

also be close to zero.
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In detail, the prior we use is as follows:

αj|η ∼ N(0, η2)

φmkl|τm ∼ N(0, τ 2
m)

η−2 ∼ Gamma(v, V )

τ−2
m ∼ Gamma(wm, Wm)

Here, j = 1, . . . , c indexes classes, and φmkl refers to the parameter related to covariate

xl and branch k of node m. The φ parameters of all the branches that share the same

node are controlled by one hyperparameter, τm, which controls the degree to which that

portion of the hierarchy is active. In Figure 2.2, for example, when the hyperparameters

in the first level are small (compared to the hyperparameters in the second level), the

model reduces to simple MNL. In contrast, when these hyperparameters are relatively

large, the model reinforces our assumption of hierarchical classes.

By introducing prior correlations between parameters for nearby classes, we can bet-

ter handle situations in which these classes are hard to distinguish. If the hierarchy

actually does provide information about how distinguishable classes are, we expect that

performance will be improved. This would be especially true when the training set is

small and the prior has relatively more influence on the results. Using an inappropriate

hierarchy will likely lead to worse performance than a standard MNL model, but since

the hyperparameters can adapt to reduce the prior correlations to near zero, the penalty

may not be large.

2.3 Results for Synthetic Datasets

So far, we have discussed three alternative models: MNL, treeMNL, and corMNL. We

first compare these models using a synthetic four-way classification problem with two

covariates. Data are generated from each of these models in turn, and then fit with each
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model in order to test the robustness of the models when applied to data generated from

other models.

All regression parameters are given normal priors with mean zero. For the MNL

model, the standard deviation for all the intercepts, η, and the standard deviation for

the rest of coefficients, τ , have the following priors:

η−2 ∼ Gamma(1, 10) (0.16, 0.38, 1.98)

τ−2 ∼ Gamma(1, 1) (0.52, 1.20, 6.27)

We use the parameterization of the Gamma distribution in which Gamma(a, b) has den-

sity f(x|a, b) = [baΓ(a)]−1xa−1e−x/b, for which the mean is ab and the standard deviation

is a1/2b. The 2.5, 50 and 97.5 percentiles of τ and η are shown in parenthesis.

For the treeMNL and corMNL models, we assume that classes are arranged in a

hierarchical form as shown in Figure 2.2. This hierarchy implies that while it might

be easy to distinguish between groups {1, 2} and {3, 4}, further separation of classes

might not be as easy. As mentioned above, the treeMNL model for this hierarchy is

comprised of three nested logistic models. These models are: P (y ∈ {1, 2}|α1, β1, x),

P (y = 1|α2, β2, x, y ∈ {1, 2}) and P (y = 3|α3, β3, x, y ∈ {3, 4}). The priors for the

treeMNL and corMNL models are discussed in section 2. The variances of the regression

parameters, β, in treeMNL and of the φ’s in corMNL are regarded as hyperparameters.

For these two models, one hyperparameter controls all the parameter emerging from the

same node. These hyperparameters are given the following prior distributions:

η−2 ∼ Gamma(1, 10) (0.16, 0.38, 1.98)

τ−2
1 ∼ Gamma(1, 5) (0.23, 0.54, 2.82)

τ−2
2 ∼ Gamma(1, 20) (0.05, 0.12, 0.63)

τ−2
3 ∼ Gamma(1, 20) (0.05, 0.12, 0.63)

Here, τ1, τ2 and τ3 correspond to nodes 1, 2, and 3 respectively (Figure 2.2). These

parameters have a narrower prior compared to τ in the MNL model. This is to account
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φ11 φ12

φ21 φ22 φ23 φ24

Class 1 Class 2 Class 3 Class 4

β1 = φ11 + φ21 β2 = φ11 + φ22 β3 = φ12 + φ23 β4 = φ12 + φ24

����
1

���� ����
2 3

Figure 2.2: The simple model used for the simulation study. The coefficient parameters

for each classes are presented as a sum of parameters at different level of hierarchy.

for the fact that the role of β in the MNL model is played by more than one parameter

in treeMNL and corMNL. Moreover, the regression parameters in the second level of

hierarchy have a relatively smaller standard deviation τ . As a result, these parameters

tend to be smaller, making separation of class 1 from 2 and class 3 from 4 more difficult.

We do three tests, in which we assume that each of the MNL, treeMNL and corMNL

is the correct model. This allows us to see how robust each model is when data actually

come from a somewhat different model. For each test, we sample a set of parameters

from the prior distribution of the corresponding model. Pairs of data items (x(i), y(i)) are

generated by first drawing 10000 independent samples x
(i)
1 , x

(i)
2 from the uniform(−5, 5)

distribution and then assigning each data item to one of the four possible classes. The

assignment is either based on a multinomial model (for data generated from MNL and

corMNL) or based on successive logistic models (for data generated from treeMNL).

All three models were trained on the first 100 data items and tested on the remaining

9900 items. The regression coefficients were sampled from their posterior distribution us-

ing MCMC methods with single-variable slice sampling (Neal, 2003), using the “stepping

out” procedure to find an interval around the current point, and then the “shrinkage”
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Data

N=100 MNL treeMNL corMNL

log-prob acc log-prob acc log-prob acc

MNL -0.7958 67.1 -0.8918 58.4 -0.9168 59.4

Method treeMNL -0.8489 65.0 -0.8770 58.7 -0.9113 59.4

corMNL -0.7996 67.1 -0.8797 58.6 -0.9075 59.5

Table 2.1: Comparison of models on simulated data created based on Figure 2.2. Average

log-probability (log-prob) and accuracy rate (acc) are estimated on the test sets.

procedure to sample from this interval. Since the hyperparameters were given conjugate

priors, direct Gibbs sampling could be used for them. For all tests we ran 1000 MCMC

iterations to sample from the posterior distributions. We discarded the initial 250 sam-

ples and used the rest for prediction. Performance on the test set is measured in terms

of average log-probability (based on the estimated probability of the correct class) and

accuracy rate (defined as the percentage of the times the correct class is predicted). We

make predictions based on the posterior predictive probabilities.

The above procedure was repeated 100 times. Each time, new regression parameters

were sampled from priors and new pairs of data items were created based on the assumed

models. The average results (over 100 repetitions) are presented in Table 2.1. In this

table, each column corresponds to the model used for generating the data and each row

corresponds to the model used for building the classifier. As we can see, the diagonal

elements have the best performance in each column. That is, the model whose functional

form matches the data generation mechanism performs significantly better than the other

two models (all p-values based on average log-probability are less than 0.01 using a paired

t-test with n = 100). Moreover, the results show that when the samples are generated

according to the MNL model (i.e., classes are unrelated), corMNL has a significantly

(p-value < 0.001) better performance compared to treeMNL. When treeMNL is used

to generate data, corMNL performs only slightly worse than treeMNL. The conclusions

remain the same when we use different priors and ranges of covariates.



Chapter 2. Classification models with a hierarchy-based prior 19

1 2 3 4 5

6

7 8

Figure 2.3: A hypothetical hierarchy with a more complex structure.

Data

N=100 MNL treeMNL corMNL

log-prob acc log-prob acc log-prob acc

MNL -0.2539 89.9 -0.3473 87.7 -0.3106 88.7

Method treeMNL -0.6837 76.9 -0.2898 90.3 -0.3614 87.9

corMNL -0.2910 89.7 -0.2854 90.1 -0.2841 90.3

Table 2.2: Comparison of models on simulated data created based on Figure 2.3. Average

log-probability (log-prob) and accuracy rate (acc) are estimated on the test sets.

While statistically significant, the results presented in Table 2.1 might not be signifi-

cant for some practical purposes. This is mostly due to the simplicity of the hierarchical

structure. We repeated the above tests with a more complex hierarchy, shown in Figure

2.3. For this problem we used four covariates randomly generated from the uniform(0,

1) distribution. In all three models, we used the same prior as before for the intercepts.

For the MNL model we set τ−2 ∼ Gamma(1, 1). The hyperparameters of treeMNL and

corMNL were given Gamma(1, 5), Gamma(1, 20) and Gamma(1, 100) priors for the first,

second and third level of the hierarchy respectively.

Table 2.2 shows the average results over 100 datasets for each test. As we can see,

the differences between models are more accentuated. When data are generated by other

models, corMNL again performs well, being outperformed only by the true model. When

data come from treeMNL, the results from corMNL are very close to those of the true
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model (i.e., treeMNL), and are actually better for log-probability, though this must of

course be due to chance, and is not statistically significant. In contrast, treeMNL’s perfor-

mance on data generated by corMNL is substantially worse than corMNL’s performance,

and is also worse than that of the non-hierarchical MNL model.

2.4 Results for Real Datasets

In this section, we test our approach on two real classification tasks. The first task is

labelling the regions of a page using a predefined set of labels. The dataset used for

this problem was collected by Laven et al. (2005) and is derived from the page images

of 58 articles (460 pages) appearing in the proceedings of the Neural Information Pro-

cessing Systems (NIPS) conference in 2001 and 2002. The second task is classification of

documents into different groups based on their contents. For this task we use patent doc-

uments released by World Intellectual Property Organization (WIPO). The MATLAB

files for MNL, treeMNL and corMNL, along with the NIPS dataset, are available online

at http://www.utstat.utoronto.ca/babak.

2.4.1 Performance Measures

To compare the performance of different models, we use average log-probability and

accuracy rate as described above. We also employ several other measurements including

macroaverage F1 (van Rijsbergen, 1972), parent accuracy, precision, and taxonomy-based

loss (Cai and Hoffmann, 2004). F1 is a common measurement in document labelling and

is defined as:

F1 =
1

J

J∑
j=1

2Aj

2Aj + Bj + Cj

where Aj is the number of cases which are correctly assigned to class j, Bj is the number

cases incorrectly assigned to class j, and Cj is the number of cases which belong to the
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class j but are assigned to other classes. The taxonomy-based loss is equal to half the

distance between the predicted and the actual class in the tree. Parent accuracy is accu-

racy after grouping the end nodes with the same parent. While accuracy measurements

are based on the top-ranked (based on the posterior predictive probabilities) category

only, precision measures the quality of ranking and is defined as follows:

precision =
1

n

n∑
i=1

( 1

|y : P (y|x(i)) ≥ P (y(i)|x(i))|

)

Here, y ranges over all classes and y(i) is the correct class of case i. The denominator is,

therefore, the number of classes with equal or higher rank compared to the correct class.

Except for average log-probability and precision, all these measurements require that

each test case be assigned to one specific class. For this purpose, we assigned each test

case to the end node with the highest posterior predictive probability, as would be optimal

for a simple 0/1 loss function. It is, of course, possible to tailor predictions to different

performance measures. For example, to improve the parent accuracy, we can still use the

0/1 loss function but make prediction based on the posterior predictive probability of

parent nodes. For the taxonomy-based loss, we can predict the class that minimizes the

expected distance when a case is misclassified. We tried these tailored predictions, but

since the improvements were negligible, we report only the results based on classifying

to the end node with highest predictive probability.

To provide a baseline for interpreting the results, for each task we present the per-

formance of a model that ignores the covariates and whose likelihood is solely based on

the observed frequency of classes. For this model, we use a vague Dirichlet prior with

parameter 1 for all classes. This is a conjugate prior for multinomial parameters. The

posterior distribution is also a Dirichlet distribution with parameter nj + 1 for class j.

Here, nj is the frequency of class j in the training set.
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Figure 2.4: Hierarchical structure of document labels.

2.4.2 NIPS Dataset

As mentioned above, the NIPS dataset contains page images of 58 articles. Each page

was segmented to several regions, and each region was manually classified to one of 19

possible classes. Figure 2.4 presents these classes in a hierarchical form. The hierarchy

is based on our beliefs regarding how difficult it is to separate classes from each other

using the available covariates.

The covariates are 59 features such as the location of the region on the page and the

density of the ink inside the region. We normalized all features so they have zero mean

and standard deviation 1. Laven et al. (2005) considered the items from the same article

as independent even though they clearly are not. Although this may cause overfitting

problems, we follow the same assumption in order to produce comparable results.

Laven et al. (2005) divided the dataset into a training set (3445 regions), and a test

set (1473 regions). We also trained our three models (MNL, corMNL and treeMNL) on

the same training set and evaluated performance on the test set.
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The coefficient parameters in the MNL models were given normal priors with mean

zero. The variances of these parameters were regarded as hyperparameters. For this

problem, since the number of covariates, p = 59, is relatively large, we use the Automatic

Relevance Determination (ARD) method suggested by Neal (1996). ARD employs a

hierarchical prior to determine how relevant each covariate is in classification of objects.

In this method, one hyperparameter, σl, is used to control the variance of all coefficients,

βjl (j = 1, ..., c), for covariate xl. If a covariate is irrelevant, its hyperparameter will

tend to be small, forcing the coefficients for that covariate be near zero. We also use one

hyperparameter, τ , to control the overall magnitude of the β’s in the MNL model, so

that the the standard deviation of βjl is equal to τσl. Therefore, while σl controls the

relevance of covariate xl compared to other covariates, τ , controls the overall usefulness

of all covariates in separating classes. In detail, the prior for the MNL model was as

follows:

αj|η ∼ N(0, η2) j = 1, ..., 19

βjl|τ, σl ∼ N(0, τ 2σ2
l ) l = 1, ..., 59

η−2 ∼ Gamma(0.5, 1) (0.63, 2.09, 46.31)

τ−2 ∼ Gamma(0.5, 20) (0.14, 0.47, 10.07)

σ−2
l ∼ Gamma(1, 10) (0.16, 0.38, 1.98)

Similar priors are used for the parameters of treeMNL and corMNL. For these two

models, we again used one hyperparameter, σ−2
l ∼ Gamma(1, 10) to control all parame-

ters related to covariate xl. We also used one scale parameter τ−2
m ∼ Gamma(0.5, 100),

with 2.5, 50 and 97.5 percentiles of 0.06, 0.21 and 5.57, for all parameters (β’s in treeMNL,

φ’s in corMNL) sharing the same node m. The prior for the intercepts was the same as

in the MNL model.

We used Hamiltonian dynamics (Neal, 1993) for sampling from the posterior distri-

bution of coefficients. To reduce the random walk aspect of sampling procedure, we use
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Figure 2.5: Trace plots of the ARD hyperparameters, σl, for two covariates of the corMNL

model applied to the NIPS dataset.
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Figure 2.6: Trace plots of two overall scale hyperparameters, τm, for two nodes of the

corMNL model for two nodes applied to the NIPS dataset.
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log-prob acc (%) pacc (%) precision (%) F1 (%) ∆-loss

Baseline -2.38 29.4 44.1 47.2 2.4 1.44

LR (ML) − 88.1 − − − −

MNL -0.429 88.8 93.0 93.1 74.6 0.22

treeMNL -0.466 87.2 91.7 92.3 68.9 0.23

corMNL -0.405 89.5 93.6 93.5 76.0 0.20

Table 2.3: Performance of models based on NIPS dataset. Here, “acc”, “pacc” and “∆-

loss” refer to accuracy, parent accuracy and taxonomy-based loss respectively. Larger

values are better except for ∆-loss.

a reasonably large number of leapfrog steps (L = 500). The stepsizes, ε’s, are set to

0.02 in order to maintain an acceptance rate of about 90%. In the MNL and corMNL

models, new values are proposed for all regression parameters simultaneously. Nested

MNL models in treeMNL are updated separately since they are regarded as independent

models. The coefficient parameters within each nested model, however, are updated at

the same time. Gibbs sampling was used for sampling from the posterior distribution of

hyperparameters. Convergence of the Markov chain simulations was assessed by plotting

the values of hyperparameters and the average log-likelihood (on training cases). We

ran each chain for 2500 iterations, of which the first 500 were discarded. Simulating the

Markov chain for 10 iterations took about 5 minutes for MNL, 4 minutes for treeMNL

and 9 minutes for corMNL, using a MATLAB implementation on an UltraSPARC III

machine.

Table 2.3 compares the results from different models. In this table, we present the

logistic regression (LR) model (based on maximum likelihood) developed by Laven et al.

(2005) as the benchmark. As we can see, the corMNL model outperforms all other

models. In contrast, treeMNL performs worse than the non-hierarchical MNL model.

To illustrate the effect of hyperparameter σ in identifying relevant features, in Fig-

ure 2.5 we show the trace plots of σl for two covariates in the corMNL model. These

hyperprameters correspond to two features of a region: “height” and “height divided by
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width”. The latter is clearly a more relevant feature for this task. To show the effects of

the τm hyperparemeters, in Figure 2.6 we present the trace plots of τ3 and τ9 (i.e., scale

parameter of node 3 and node 9 in Figure 2.4). As we can see, the scale parameter in

node 3 is large compared to the scale parameter in node 9.

2.4.3 WIPO-alpha Dataset

We also evaluated our models on the WIPO-alpha dataset of patent documents (available

at http://www.wipo.int/ibis/datasets). These documents are classified according to

a standard taxonomy known as the International Patent Classification (available at http:

//www.wipo.int/classifications/en/). The classes in this taxonomy are arranged in

a four-level tree structure. At the highest level, documents are divided to 8 sections. For

our experiment, we use the documents in section “D” (textile; paper), which has 1710

documents and a total of 160 classes. A pre-processed dataset based on these documents

was provided by Cai and Hoffmann (2004). This dataset was generated by indexing

the title and claim contents. Document parsing, tokenization, and term normalization

were performed using the MindServer retrieval engine. The result is a set of word (i.e.,

token) counts for each document. Overall, there are 18077 unique words, whose counts

are used as covariates. We use a square-root transformation for these covariates in order

to emphasize more the occurrence of a word rather than its frequency.

The number of covariates is quite large compared to the number of documents. Cai

and Hoffmann (2004) devised a variable selection strategy which provides an optimal

solution according to their SVM model. Here, we apply Principal Component Analysis

(PCA). We first centred the covariates but did not scale them to have variance one.

We then projected the covariates on the 300 principal component directions with the

highest variance, and used these 300 principal component scores as covariates for our

models, rather than the original covariates. For all models, we use the same priors as

discussed in section 4.2, with the exception of ARD hyperparameters, σl. For these
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hyperparameters, we used σ−2
l ∼ Gamma(2, 1), where l = 1, ..., 300 (2.5, 50 and 97.5

percentiles of σl are 0.45, 0.78 and 1.98). Compared to the priors used in section 4.2,

these priors are more concentrated close to 1. We used these priors to minimize the

effect of the ARD hyperparameters since the task of variable selection and relevance

determination are mainly performed through PCA. As before, Hamiltonian dynamics

(L = 100 and ε = 0.005) and Gibbs sampling were used for sampling from the posterior

distribution of coefficients and hyperparameters respectively. We ran each chain for 3000

iterations and discarded the first 500 iterations. For 10 iterations, the Markov chain

simulations took about 6 minutes for MNL, 2 minutes for treeMNL and 10 minutes for

corMNL.

Table 2.4 compares the performance of different models. Following Cai and Hoffmann

(2004), the results are presented based on a three-fold cross-validation where singular

classes (i.e., nj = 1) appear only in the training set. As we can see, the corMNL model

outperforms both MNL and treeMNL. Although the results reported for the corMNL

model are better than the hiearchical SVM (hSVM) developed by Cai and Hoffmann

(2004), the difference could be due to several factors, such as randomness of cross-

validation, transformation of variables, or the efficiency of variable selection strategy,

as well as the different approach to using the hierarchy. For this problem, treeMNL did

by most measures improve on the non-hierarchical MNL model, though it was not as

good as corMNL.

2.5 Conclusions and Future Directions

In this paper, we have introduced a new approach for modelling hierarchical classes. Our

experiments show that when the hierarchy actually does provide information regarding

the similarity of classes, our approach outperforms both the simple MNL model and

models based on decomposing the hierarchy into nested MNL models.
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log-prob acc (%) pacc (%) precision (%) F1 (%) ∆-loss

Baseline -4.492 3.6 13.8 12.1 0.04 2.47

SVM − 41.8 65.4 52.3 − 1.20

hSVM − 42.8 69.1 54.4 − 1.08

MNL -2.622 42.0 66.9 55.1 18.4 1.10

treeMNL -2.408 42.3 68.7 56.0 17.7 1.05

corMNL -2.397 43.4 69.8 56.9 18.7 1.02

Table 2.4: Performance of models based on WIPO-alpha dataset, section “D”. Here,

“acc”, “pacc” and “∆-loss” refer to accuracy, parent accuracy and taxonomy-based loss

respectively. The SVM and hierarchical SVM (hSVM) are developed by Cai and Hoff-

mann (2004). Larger values are better except for ∆-loss.

Our method can be applied to many classification problems where there is prior

knowledge regarding the structure of classes. One such problem, which was our original

motivation, is annotation of gene function. Using a prior based on the class hierarchy,

we have been able to predict gene function with a higher accuracy (Shahbaba and Neal,

2006). For this problem, we used a more elaborate prior for hyperparameters. We also

introduced a new method for combining different data sources, which is a common issue

in gene function classification.

More experiments are needed to compare corMNL with other approaches to utilizing

the hierarchy, such as hSVM (Cai and Hoffmann, 2004). One difference in our approach

is that it is based on a probability model for hierarchical prior information, not on

any particular hierarchy-based loss function. If a good probability model is used, the

probability distributions obtained should provide the information needed to obtain good

performance with any loss function.

So far, we have focused only on simple tree-like structures. There are other hierarchi-

cal structures that are more complex than a tree. For example, one of the most commonly

used gene annotation schemes, known as Gene Ontology (GO), is implemented as a di-

rected acyclic graph (DAG). In this structure a node can have more than one parent.
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Our method, as it is, cannot be applied to these problems, but it should be possible to

extend the idea of summing coefficients along a path to the class in order to allow for

multiple paths.

In our approach, we considered only one structure for each hierarchical classification

problem. However, we might sometimes be able to think of more than one possible

class hierarchy. It is possible to generalize our method to multiple hierarchies. As for the

generalization to DAG’s, it should be possible to sum coefficients along the multiple paths

within different hierarchies. We can further use a set of hyperparameters to discover

the relevance of each hierarchy. If we have prior knowledge that leads us to prefer

some structures over others, we can incorporate that knowledge into the priors for these

hyperparameters.

Finally, although the results presented in this paper are for linear models, we expect

that a similar approach can be used in non-linear models such as neural networks.
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Abstract

We investigate whether annotation of gene function can be improved using a classifi-

cation scheme that is aware that functional classes are organized in a hierarchy. The

classifiers look at phylogenic descriptors, sequence based attributes, and predicted sec-

ondary structure. We discuss three Bayesian models and compare their performance in

terms of predictive accuracy. These models are the ordinary multinomial logit (MNL)

model, a hierarchical model based on a set of nested MNL models, and an MNL model

with a prior that introduces correlations between the parameters for classes that are

nearby in the hierarchy. We also provide a new scheme for combining different sources

of information. We use these models to predict the functional class of Open Reading

Frames (ORFs) from the E. coli genome. The results from all three models show sub-

stantial improvement over previous methods, which were based on the C5 decision tree

algorithm. The MNL model using a prior based on the hierarchy outperforms both the

non-hierarchical MNL model and the nested MNL model. In contrast to previous at-

tempts at combining the three sources of information in this dataset, our new approach

to combining data sources produces a higher accuracy rate than applying our models to

each data source alone. Together, these results show that gene function can be predicted

with higher accuracy than previously achieved, using Bayesian models that incorporate

suitable prior information.

3.1 Background

Annotating genes with respect to the function of their proteins is essential for understand-

ing the wealth of genomic information now available. A direct approach to identifying

gene function is to eliminate or inhibit expression of a gene and observe any alteration

in the phenotype. However, analysis of all genes for all possible functions is not feasi-

ble at present. Statistical methods have therefore been employed for this purpose. One
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statistical approach attempts to predict the functional class of a gene based on similar

sequences for which the function is known. The similarity measures used for this task are

produced by computer algorithms that compare the sequence of interest against all other

sequences with known function. Two commonly used algorithms are BLAST (Altschul

et al., 1997) and FASTA (Pearson and Lipman, 1988).

A problem with using such similarity measures is that a gene’s function cannot be

predicted when no homologous gene of known function exists. To improve the quality

and coverage of prediction, other sources of information can be used. For example, King

et al. (2001) used a variety of protein sequence descriptors, such as residue frequency and

the predicted secondary structure (the structure of hydrogen bonding between different

residues within a single polypeptide chain). DeRisi et al. (1997), Eisen et al. (1998) and

Brown et al. (2000) used gene expression data, on the assumption that similarly expressed

genes are likely to have similar function. Marcotte et al. (1999) recommended an alter-

native sequence-based approach that regards two genes as similar if they are together

in another genome. Deng et al. (2003) predict the function of genes from their network

of physical interactions. To address some of the problems associated with similarity-

based methods, such as their non-robustness to variable mutation rates Eisen (1998);

Rost (2002), annotation of protein sequences using phylogenetic information has been

suggested by some authors (e.g., Eisen et al., 1998; Sjölander, 2004; Engelhardt et al.,

2005). In this approach, the evolutionary history of a specific protein, captured by a

phylogenetic tree, is used for annotating that protein Eisen et al. (1998).

The above-mentioned sources of data can be used separately, or as proposed by sev-

eral authors (e.g., King et al., 2001; Pavlidis and Weston, 2001; Deng et al., 2004), they

can be combined within a predictive model. A variety of statistical and machine learning

techniques for making such predictions have been used in functional genomics. These in-

clude neighbourhood-count methods (Schoikowski et al., 2000), support vector machines

(Brown et al., 2000), and Markov random fields (Deng et al., 2003). A common feature of
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these models is that they treat classes as unrelated entities without any specific structure.

The assumption of unrelated classes is not always realistic. As argued by Rison et al.

(2000), in order to understand the overall mechanism of the whole genome, the func-

tional classes of genes need to be organized according to the biological processes they

perform. For this purpose, many functional classification schemes have been proposed

for gene products. The first such scheme was recommended by Riley (1993) to catalogue

the proteins of Escherichia coli. Since then, there have been many attempts to provide

a standardized functional annotation scheme with terms that are not limited to certain

types of proteins or to specific species. These schemes usually have a hierarchical struc-

ture, which starts with very general classes and becomes more specific in lower levels of

the hierarchy. In some classification hierarchies, such as the Enzyme Commission (EC)

scheme (IUBMB, 1992), levels have semantic values (Rison et al., 2000). For example,

the first level of the EC scheme represents the major activities of enzyme like “transfer-

aces” or “hydrolases”. In some other schemes, like the ones considered here, the levels

do not have any uniform meaning. Instead, each division is specific to the parent nodes.

For instance, if the parent includes “metabolism” functions, the child nodes could be the

metabolism of “large” or “small” molecules. Rison et al. (2000) surveyed a number of

these structures and compared them with respect to their resolution (total number of

function nodes), depth (potential of the scheme for division into subsets) and breadth

(number of nodes at the top level).

All these hierarchies provide additional information that can be incorporated into the

classification model. The importance of using the hierarchy in classification models has

been emphasized by many authors (e.g., Sattath and Tversky, 1977; Fox, 1997; Koller

and Sahami, 1997). One approach for modelling hierarchical classes is to decompose the

classification model into nested models, one for each node of the hierarchy. Goodman

(2001) showed that using nested models can significantly reduce the training time of

maximum entropy-based language models and results in slightly lower perplexities. He
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illustrated his approach using a word labelling problem, and recommended that instead

of predicting words directly, we first predict the class to which the word belongs, and

then predict the word itself. Weigend et al. (1999) also used a two-level hierarchical

model for document classification. They evaluated their model on the Reuters-22173

corpus and showed significant improvement, especially for rare classes. For text classifi-

cation, McCallum et al. (1998) proposed a hierarchical naive Bayes model that smoothes

parameter estimates of a child node by shrinking toward its parents in order to obtain

more robust parameter estimates. More recently, new hierarchical classification mod-

els based on large margin principles, specifically support vector machines (SVM), have

been proposed (Dumais and Chen, 2000; Dekel et al., 2004; Cai and Hoffmann, 2004;

Tsochantaridis et al., 2004; Cesa-Bianchi et al., 2006). Dekel et al. (2004) introduced a

large margin hierarchical classification model that uses the sum of parameters along the

tree for classifying cases to the end nodes. These parameters are estimated based on a

set of classifiers that assign cases to the intermediate nodes. Cai and Hoffmann (2004)

suggested a similar approach based on the generalization of multiclass SVM.

Many approaches to using the hierarchy of gene functions have been proposed. Eisner

et al. (2005) build multiple binary classifiers with training sets modified according to

Gene Ontology (GO). For each classifier associated with a node, they regard a gene

as a positive example if it belongs to that node, and as a negative example if it does

not belong to the node, or to the node’s ancestors and descendants. Barutcuoglu et al.

(2006) also use a set of independent classifiers, whose predictions are combined using

a Bayes network defined based on the GO hierarchy. In the methods recommended by

both Eisner et al. (2005) and Barutcuoglu et al. (2006), the individual classifiers are

built independently. Although the classifiers are modified to become consistent, it is

more natural to model classes simultaneously. Many authors have shown that learning

a set of related tasks at the same time will improve the performance of models (e.g.,

Caruana, 1997; Zhang et al., 2005). King et al. (2001) attempted to use the additional
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information from the hierarchical structure of gene functional classes by simply using

different decision tree models for each level of the hierarchy. Clare and King (2003)

investigated a modified decision tree model, in which assignment of a functional class to

a node in the decision tree implies membership of all its parent classes. They evaluated

this method based on Saccharomyces cerevisiae data and found that the modified version

is sometimes better than the non-hierarchical model and sometimes worse. Blockeel et al.

(2002) suggested an alternative modification of decision trees for hierarchical classification

models. Their model uses a distance-based measure, where distances are derived from the

hierarchy. Struyf et al. (2005) followed the same idea but advocated a different distance

measure, which is easier to interpret and is guaranteed to be positive. They evaluated

their approach based on different datasets available for Saccharomyces cerevisiae, and

showed that their model has better precision than the hierarchical C4.5 model proposed

by Clare and King (2003).

In a previous paper (Shahbaba and Neal, 2007), we introduced an alternative Bayesian

framework for modelling hierarchical classes. This method, henceforth called corMNL,

uses a Bayesian form of the multinomial logit model (MNL), with a prior that introduces

correlations between the parameters for classes that are nearby in the tree. We also

discussed an alternative hierarchical model that uses the hierarchy to define a set of

nested multinomial logit models, which we refer to as treeMNL. In this paper, we apply

these methods (described further below in the methods section) to the gene function

classification problem.

3.2 Results and Discussion

We used our Bayesian MNL, treeMNL and corMNL models to predict the functional class

of Open Reading Frames (ORFs) from the E. coli genome. E. coli is a good organism

for testing our method since many of its gene functions have been identified through
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direct experiments. We used the pre-processed data provided by King et al. (2001).

This dataset contains 4289 ORFs identified by Blattner et al. (1997). Only 2122 of these

ORFs, for which the function was known in 2001, are used in our analysis. The functional

hierarchy for these proteins is provided by Riley and Labedan (1996). This hierarchy has

three levels, with the most general classes at level 1 and the most specific classes at

level 3. For example, lipoate-protein ligase A (lplA) belongs to class ‘Macromolecule

metabolism’ at level 1, to class ‘Macromolecule synthesis, modification’ at level 2, and

to class ‘Lipoprotein’ at level 3. After excluding categories 0 and 7 at level 1, the data

we used had 6 level 1 categories, 20 level 2 categories, and 146 level 3 categories.

Since 2001 many additional gene functions have been determined by direct experiment

(see King et al., 2004). However, we use the same dataset as King et al. (2001), with the

same split of data into the training set (1410 ORFs) and test set (712 ORFs), in order

to produce comparable results. King et al. (2001) further divided the training set into

two subsets and used one subset as validation data to select a subset of rules from those

produced by the C5 algorithm based on the other part of the training set. Our Bayesian

methods do not require a validation set, so we did not subdivided the training set.

The covariates are based on three different sources of information: phylogenic de-

scriptors, sequence based attributes, and predicted secondary structure. Following King

et al. (2001), we refer to these three sources of data as SIM, SEQ and STR respec-

tively. Attributes in SEQ are largely based on composition of residues (i.e., the number

of residues of type R) and of pairs of residues (i.e., the number of residue pairs of types

R and S ) in a sequence. There are 933 such attributes (see Table 1 in King et al.

(2001)). Information in SIM (see Table 2 in King et al. (2001)) and STR (see Table

3 in King et al. (2001)) is derived based on a PSI-BLAST (position-specific iterative

BLAST) search with parameters e = 10, h = 0.0005, j = 20 from NRProt 05/10/99

database. King et al. (2001) used the Inductive Logic Programming (ILP) algorithm

known as Warmr (Dehaspe et al., 1998) to produce binary attributes based on the iden-
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Accuracy (%) SEQ STR SIM

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Baseline 42.56 21.21 8.15 42.56 21.21 8.15 42.56 21.21 8.15

MNL 60.25 33.99 20.93 50.98 25.14 15.87 69.10 45.79 30.76

treeMNL 59.27 34.13 18.26 52.67 27.39 16.29 67.70 45.93 30.34

corMNL 61.10 35.96 21.21 52.81 27.95 16.71 70.51 47.19 30.90

Table 3.1: Comparison of models based on their predictive accuracy (%) using each data

source separately.

tified frequent patterns (1 if the pattern is present and 0 otherwise) in SIM and STR

data. The rules created by Warmr and their corresponding attributes can be found at

http://www.aber.ac.uk/∼dcswww/Research/bio/ProteinFunction. There are 13799

such attributes generated for SIM and 18342 attributes for STR. As described below

in the methods section, we reduced the dimensionality for each dataset using Principal

Component Analysis (PCA). We used 100 components for SEQ, 100 components for

STR, and 150 components for SIM.

Table 3.1 compares the three models with respect to their accuracy of prediction at

each level of the hierarchy. In this table, level 1 corresponds to the top level of the

hierarchy, while level 3 refers to the most detailed classes (i.e., the end nodes). For level

3, we use a simple 0/1 loss function and minimize the expected loss by assigning each test

case to the end node with the highest posterior predictive probability. We could use the

same predictions for measuring the accuracy at levels 1 and 2, but to improve accuracy,

we instead make predictions based on the total posterior predictive probability of nodes

at level 1 and level 2.

To provide a baseline for interpreting the results, for each task we present the per-

formance of a model that ignores the covariates and simply assigns genes to the most

common category at the given level in the training set.

As we can see in Table 3.1, corMNL outperforms all other models. For the SEQ

dataset, MNL performs better than treeMNL. Compared to MNL, the corMNL model
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achieves a slightly better accuracy at level 3 and more marked improvements at level 1

and level 2. For the STR dataset, both hierarchical models (i.e., treeMNL and corMNL)

outperform the non-hierarchical MNL. For this dataset, corMNL has a slightly better

performance than treeMNL. For the SIM dataset, the advantage of using the corMNL

model is more apparent in the first and second levels.

For analysing these datasets, King et al. (2001) used a decision tree model based on

the C5 algorithm. They selected sets of rules that had an accuracy of at least 50% with

the coverage of at least two correct examples in the validation set. In Table 3.2, we

compare the accuracy of our models to those of King et al. (2001). In order to make

the results comparable, we used the same coverage values as they used. Coverage is

defined as the percentage of test cases for which we make a confident prediction. In

a decision tree model, these test cases can be chosen by selecting rules that lead to a

specific class with high confidence. For our models, we base confidence on posterior

predictive probability, which is defined as the expected probability of each class with

regard to the posterior distribution of model parameters. We assign each test case to a

class with the maximum posterior predictive probability. The higher this probability, the

more confident we are in classifying the case. We rank the test cases based on how high

the highest probability is, and for a coverage of g, we classify only the top g percent of

genes. In Table 3.2, the coverage values are given in parenthesis. All three of our models

discussed here substantially outperform the decision tree model. Overall, corMNL has

better performance than MNL and treeMNL.

In an attempt to improve predictive accuracy, King et al. (2001) combined the three

datasets (SEQ, STR and SIM). Although one would expect to obtain better predictions

by combining several sources of information, their results showed no additional benefit

compared to using the SIM dataset alone. We also tried combining datasets in order

to obtain better results. Initially, we used the principal components which we found

individually for each dataset, and kept the number of covariates contributed from each
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Accuracy (%) SEQ STR SIM

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

(20) (18) (4) (10) (1) (5) (29) (26) (16)

C5 64 63 41 59 44 17 75 74 69

MNL 81 79 88 83 100 67 96 90 84

treeMNL 81 76 70 70 86 69 95 87 84

corMNL 84 82 89 83 100 73 97 90 82

Table 3.2: Comparison of models based on their predictive accuracy (%) for specific

coverage (%) provided in parenthesis. The C5 results and the coverage values are from

King et al. (2001).

data source the same as before. Principal components from each dataset were scaled so

that the standard deviation of the first principal component was 1. We did this to make

the scale of variables from different data sources comparable while preserving the relative

importance of principal components within a dataset.

Using the combined dataset, all our models provided better predictions, although

the improvement was only marginal for some predictions. We speculated that some of

the covariates may become redundant after combining the data (i.e., are providing the

same information). One may often obtain better results by removing redundancy and

reducing the number of covariates. To examine this idea, we kept the number of principal

components from SIM as before (i.e., 150) but only used the first 25 principal components

from SEQ and STR. The total number of covariates was therefore 200. Reducing the

number of covariates from SEQ and STR may also prevent them from overwhelming the

covariates from SIM, which is the most useful single source. This strategy led to even

higher accuracy rates compared to when we used the SIM dataset alone. The results are

shown in Table 3.3 (middle section). It is worth noting that when SEQ and STR are used

alone, using 25 principal components (rather than 100 before) results in lower accuracy

(results not shown).

To improve the models even further, we tried an alternative strategy in which different



Chapter 3. Gene function classification 40

Accuracy (%) SIM only Combined dataset Combined dataset

single scale parameter separate scale parameters

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

MNL 69.10 45.79 30.76 69.66 48.88 32.02 70.65 49.16 33.71

treeMNL 67.70 45.93 30.34 68.26 46.63 30.34 68.82 46.63 31.74

corMNL 70.51 47.19 30.90 71.49 49.30 32.87 72.75 49.16 34.41

Table 3.3: Accuracy (%) of models on the combined dataset with and without separate

scale parameters. Results using SIM alone are provided for comparison.

Accuracy (%) Coverage (%)

5 10 20 50 90 100

Level 1 100 98 96 92 76 73

Level 2 100 98 96 71 53 49

Level 3 100 97 80 52 36 34

Table 3.4: Predictive accuracy (%) for different coverage values (%) of the corMNL model

using all three sources with separate scale parameters.

sources of data are combined such that their relative weights are automatically adjusted.

As we can see in Table 3.3 (right section), this strategy, which is described in more detail

in the methodology section, resulted in further improvements in the performance of the

models. We also examined this approach with larger numbers of covariates. We found

that when we increased the number of principal components for SEQ and STR back to

the original 100, the accuracy of predictions mostly remained the same, though a few

dropped slightly.

In practice, we might be most interested in genes whose function can be predicted

with high confidence. There is a trade-off between predictive accuracy and the percentage

of the genes we select for prediction (i.e., coverage). Table 3.4 shows this trade-off for

results on the test set from the corMNL model applied to the combined dataset. In this

table, the accuracy rates for different coverage values are provided. As we can see, our

model can almost perfectly classify 10% of the genes in the test set.
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Finally, we trained the corMNL model on all ORFs with known function to annotate

the function of unknown ORFs. Many of these ORFs, whose function was previously

unknown, have been recently annotated using direct biological experiments. However,

since the functional ontology of E. coli genome (provided by the Riley group) has changed

over time, it is not possible to compare our results directly. King et al. (2004) also

faced this problem. They evaluated their predictions manually for a subset of ORFs.

We present our predictions for the same set of ORFs (see Appendix C). We use the

MultiFun Classification System (http://genprotec.mbl.edu/) to obtain the function(s)

associated with each ORF through direct experiments.

For many of these ORFs, our prediction is closely related to the confirmed func-

tion. For example, we classified yojH (b2210) hierarchically as “Metabolism of small

molecules” at the first level, “Degradation of small molecules” at the second level, and

“Carbon compounds” at the third level. Through a direct experiment, the function of this

gene was classified as “Metabolism”, “Energy metabolism (carbon)”, and “Tricarboxylic

acid cycle”, at levels 1, 2, and 3 respectively. In some cases, such as ybhO (b0789),

there is an exact match between our prediction (Macromolecule metabolism : Macro-

molecule synthesis : Phospholipids) and the function provided by MultiFun (Metabolism

: Macromolecule (cellular constituent) biosynthesis : Phospholipid). For some other

cases, although our prediction does not exactly match the functions provided by Multi-

Fun Classification System, the results are comparable up to the first or second level of the

hierarchy. For example, we predicted that ydeD (b1533) is “Transport/binding proteins”

and belongs to “ABC superfamily”. Direct experiment also show that in fact this gene

does belongs to the “Transport” group, however, it is more specifically in the “Major

Facilitator Superfamily” (MFS) class instead of ABC. The comparison of our predictions

with MultiFun Classification System is not always as straightforward as the examples

provided above. For instance, we predicted bfd (b3337) to be in the “Metabolism of

small molecules : Energy metabolism, carbon : Anaerobic respiration” categories. The



Chapter 3. Gene function classification 42

hierarchical function provided by MultiFun is “Cell processes : Adaptation to stress : Fe

aquisition”. At the first glance, these two seem to be unrelated. However, it is known

that oxygen induces stress and results in enormous changes in E. coli (Spiro and Guest,

1991; Guest et al., 1996). E. coli adapts to this environmental change by switching

from aerobic respiration (which is its preferred metabolic mode) to anaerobic respiration.

More detailed examination of these predictions will be needed to definitively evaluate

performance.

Our predictions for ORFs of unknown function (in 2001) are available online at http:

//www.utstat.utoronto.ca/∼babak. In this website, we also provide the combined

dataset for E. coli, and the MATLAB programs for MNL, treeMNL and corMNL along

with their respective outputs for the test set.

3.3 Conclusions

In this paper, we investigated the use of hierarchical classification schemes to perform

functional annotation of genes. If the hierarchy provides any information regarding the

structure of gene function, we would expect this additional information to lead to better

prediction of classes. To examine this idea, we compared three Bayesian models: a

non-hierarchical MNL model, a hierarchical model based on nested MNL, referred to as

treeMNL, and our new corMNL model, which is a form of the multinomial logit model

with a prior that introduces correlations between the parameters of nearby classes. We

found corMNL provided better predictions in most cases. Moreover, we introduced a new

approach for combining different sources of data. In this method, we use separate scale

parameters for each data source in order to allow their corresponding coefficients have

appropriately different variances. This approach provided better predictions compared

to other methods.

While our emphasis in this paper was on the importance of using hierarchical schemes
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in gene classification, we also showed that even the non-hierarchical Bayesian MNL model

outperforms previous methods that used the C5 algorithm. Overall, our results are

encouraging for the prospect of accurate gene function annotation, and also illustrate

the utility of a Bayesian approach with problem-specific priors. For our experiments, we

used the pre-processed datasets provided by King et al. (2001), who used the Warmr

(Dehaspe et al., 1998) algorithm to generate binary attributes. It is conceivable that the

accuracy of predictions can be further improved by using other data processing methods.

Similarly, it is possible that a method other than our use of PCA might be better for

reducing dimensionally before doing classification.

In the E. coli dataset we used here, each ORF was assigned to only one function. In

the more recent classification system provided by Riley’s group (http://genprotec.mbl.

edu/), ORFs may belong to more than one class. For such problems, one can modify the

likelihood part of the models described here so that if a training case belongs to several

classes, its contribution to the likelihood is calculated based on the sum of probabilities

of those classes.

The functional hierarchies considered here are simple tree-like structures. There are

other hierarchical structures that are more complex than a tree. For example, one of

the most commonly used gene annotation schemes, known as Gene Ontology (GO), is

implemented as a directed acyclic graph (DAG). In this structure a node can have more

than one parent. Our method, as it is, cannot be applied to these problems, but it should

be possible to extend the idea of summing coefficients along the path to the class in order

to allow for multiple paths.

Our approach can also be generalized to problems where the relationship among

classes can be described by more than one hierarchical structure. For these problems,

different hyperparameters can be used for each hierarchy and predictions can be made

by summing the parameters in branches from all these hierarchies.
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3.4 Methods

In this section, we first explain our models using a simple hierarchy for illustration.

Consider Figure 3.1, which shows a hierarchical classification problem with four classes.

By ignoring the hierarchy, a simple multinomial logit (MNL) can be used for classifying

cases to one of the four classes. If the class for a case is denoted by y, and the covariates

for this case are x, then the MNL model is

P (y = j|x, α, β) =
exp(αj + xβj)∑4

j′=1 exp(αj′ + xβj′)

For each class j (for j = 1, ..., 4), there is an intercept αj and a vector of p unknown

parameters βj, where p is the number of covariates in x. The inner product of these

parameters with the covariate vector is shown as xβj.

Alternatively, we can use the hierarchy to decompose the classification model into

nested models (e.g., MNL). For example, in Figure 3.1, class 1 can be modeled as the

product of two independent MNL models:

P (y = 1|x) = P (y ∈ {1, 2}|x)× P (y ∈ {1}|y ∈ {1, 2}, x)

We refer to models in which the tree structure is used to define a set of nested MNL

models as treeMNL.

For modelling hierarchical classes, we propose a Bayesian MNL with a prior that

introduces correlations between the parameters of nearby classes. Our model, called

corMNL, includes a vector of parameters, φ, for each branch in the hierarchy (Figure

3.1). We assign objects to one of the end nodes using an MNL model whose regression

coefficients for class j are represented by the sum of the parameters for all the branches

leading to that class. Sharing of common parameters (from common branches) introduces

prior correlations between the parameters of nearby classes in the hierarchy. This way,

we can better handle situations in which these classes are hard to distinguish. In Figure

3.1, parameter vectors denoted as φ11 and φ12 are associated with branches in the first
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φ11 φ12

φ21 φ22 φ23 φ24

Class 1 Class 2 Class 3 Class 4

β1 = φ11 + φ21 β2 = φ11 + φ22 β3 = φ12 + φ23 β4 = φ12 + φ24
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Figure 3.1: A simple representation of the corMNL model.

level, and φ21, φ22, φ31 and φ32 with branches in the second level. We assign objects to

one of the end nodes using an MNL model with regression coefficients β1 = φ11 + φ21,

β2 = φ11 + φ22, β3 = φ12 + φ31 and β4 = φ12 + φ32 for classes 1, 2, 3 and 4 respec-

tively. Note that the intercept parameters, αj, are not treated hierarchically.

We first used these models (i.e., MNL, treeMNL and corMNL) to predict gene function

using each data source (SIM, STR and SEQ) separately. Since the numbers of covariates

in these datasets are large, we applied Principal Component Analysis (PCA). Prior to

applying PCA, the variables were centred to have mean zero, but they were not rescaled

to have variance one. We selected the first p components with the highest eigenvalues.

The cutt-off, p, was set based on the plot of eigenvalues against PCs (i.e., the scree plot).

Since there was not a clear cut-off point at which the magnitude of eigenvalues drops

sharply, the plots could only help us to narrow down the appropriate values for p. We

decided to choose a value at the upper end of the range suggested by the scree plot. We

selected 100 components from SEQ, 100 components from STR, and 150 components

from SIM.

Principal components are derived solely based on the input space and do not necessar-

ily provide the best set of variables for predicting the response variable. In order to find
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the relevant variables (among the principal components) for the classification task, we

use the Automatic Relevance Determination (ARD) method suggested by Neal (1996).

ARD employs a hierarchical prior to determine how relevant each covariate is to classifi-

cation. In the MNL model, for example, one hyperparameter, σl, is used to control the

variance of all coefficients, βjl (j = 1, ..., c), for covariate xl. If a covariate is irrelevant,

its hyperparameter will tend to be small, forcing the coefficients for that covariate to be

near zero. We also use a set of hyperparameters, τj, to control the magnitude of the

β’s for each class. We use a third hypeparameter, ξ, to control the overall magnitude of

all β’s. This way, σl controls the relevance of covariate xl compared to other covariates,

τj controls the usefulness of covariates in identifying class j, and ξ controls the overall

usefulness of all covariates in separating all classes. The standard deviation of βjl is

therefore equal to ξτjσl.

For the MNL model we used the following priors:

αj|η ∼ N(0, η2)

βjl|ξ, σl, τj ∼ N(0, ξ2τ 2
j σ2

l )

log(η) ∼ N(0, 1)

log(ξ) ∼ N(−3, 22)

log(τj) ∼ N(−1, 0.52)

log(σl) ∼ N(0, 0.32)

Since the task of variable selection is mainly performed through PCA, the ARD hyper-

parameters, σ’s, are given priors with fairly small standard deviation. The priors for τ ’s

are set such that both small values (i.e., close to zero) and large values (i.e., close to 1)

are possible. The overall scale of these hyperparameters is controlled by ξ, which has a

broader prior. Note that since these hyperparameters are used only in the combination

ξτjσl, only the sum of the means for log(ξ), log(τj), and log(σl) really matters.

Similar priors are used for the parameters of treeMNL and corMNL. For these two
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models, we again used one hyperparamter, σl, to control all parameters (β’s in treeMNL,

φ’s in corMNL) related to covariate xl. We also used one scale parameter τk for all

parameters related to branch k of the hierarchy. The overall scale of all parameters is

controlled by one hyperparameter ξ. When we combine different sources of information,

we sometimes used separate scale parameters, ξ, for each data source. This allows the

coefficients from different sourcecs of data to have appropriately different variances in

the model. This is additional to what ARD hyperparameters provide.

The setting of priors described in this paper is different from what we used in a previ-

ous paper (Shahbaba and Neal, 2007), where we used one hyperparameter to control all

the coefficients (regardless of their corresponding class) in the MNL model, and we used

one hyperparameter to control the parameters of all the branches that share the same

node in treeMNL and corMNL. The scheme used in this paper provides an additional

flexibility to control β’s. In this paper, the hyperparameters are given log-normal dis-

tributions instead of the gamma distributions used in Shahbaba and Neal (2007). Using

gamma priors has the advantage of conjugacy and, therefore, easier MCMC sampling.

However, we prefer log-normal distributions since they are more convenient for formaliz-

ing our prior beliefs.

3.4.1 Implementation

These models are implemented using Markov chain Monte Carlo (Neal, 1993). We use

Hamiltonian dynamics (Neal, 1993) for sampling from the posterior distribution of coef-

ficients (with hyperparameters temporarily fixed). The number of leapfrog steps was set

to 50. The stepsizes were set dynamically at each iteration, based on the current values

of the hyperparameters (Neal, 1996). In the MNL and corMNL models, new values are

proposed for all regression parameters simultaneously. Nested MNL models in treeMNL

are updated separately since they are regarded as independent models. The coefficient

parameters within each nested model, however, are updated at the same time.
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We use single-variable slice sampling (Neal, 2003) to sample from the posterior dis-

tribution of hyperparameters. At each iteration, we use the “stepping out” procedure to

find the interval around the current point and the “shrinkage” procedure for sampling

from the interval. The initial values of the ARD hyperprameters, σ’s, were set to the

inverse of the standard deviation of their corresponding covariates. The initial values of

τ ’s and ξ were set to 1.

Convergence of the Markov chain simulations was assessed from trace plots of hyper-

parameters. We ran each chain for 5000 iterations, of which the first 1000 were discarded.

Simulating the Markov chain for 10 iterations took about 2 minutes for MNL, 1 minute

for treeMNL, and 3 minutes for corMNL, using a MATLAB implementation on an Ul-

traSPARC III machine.
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This chapter will be published as a technical report in the department of Statistics,
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Abstract

We introduce a new nonlinear model for classification, in which we model the joint dis-

tribution of response variable, y, and covariates, x, non-parametrically using Dirichlet

process mixtures. We keep the relationship between y and x linear within each component

of the mixture. The overall relationship becomes nonlinear if the mixture contains more

than one component. We use simulated data to compare the performance of this new

approach to a simple multinomial logit (MNL) model, an MNL model with quadratic

terms, and a decision tree model. We also evaluate our approach on a protein fold

classification problem, and find that our model provides substantial improvement over

previous methods, which were based on Neural Networks (NN) and Support Vector Ma-

chines (SVM). Folding classes of protein have a hierarchical structure. We extend our

method to classification problems where a class hierarchy is available. We find that using

the prior information regarding the hierarchical structure of protein folds can result in

higher predictive accuracy.

4.1 Introduction

In regression and classification models, estimation of parameters and interpretation of

results are easier if we assume a simple distributional form (e.g., normality) and regard

the relationship between response variable and covariates as linear. However, the perfor-

mance of the model obtained depends on the appropriateness of these assumptions. Poor

performance may result from assuming wrong distributions, or regarding relationships as

linear when they are not. In this paper, we introduce a new model based on a Dirich-

let process mixture of simple distributions, which is more flexible to capture nonlinear

relationships.

A Dirichlet process, D(G0, γ), with baseline distribution G0 and scale parameter γ, is

a distribution over distributions. Ferguson (1973) introduced the Dirichlet process as a
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class of prior distributions for which the support is large, and the posterior distribution

is manageable anlytically. Using the Polya urn scheme, Blackwell and MacQueen (1973)

showed that the distributions sampled from a Dirichlet process are discrete almost surely.

The idea of using a Dirichlet process as the prior for the mixing proportions of a simple

distribution (e.g., Gaussian) was first introduced by Antoniak (1974).

We will describe the Dirichlet process mixture model as a limit of finite mixture model

(see Neal (2000) for further description). Suppose y1, ..., yn are drawn independently from

some unknown distribution. We can model the distribution of y as a mixture of simple

distributions such that:

P (y) =
C∑

c=1

pcf(y|φc)

Here, pc are the mixing proportions, and f is a simple class of distributions, such as

normal with φ = (µ, σ). We first assume that the number of mixing components, C, is

finite. In this case, a common prior for pc is a symmetric Dirichlet distribution:

P (p1, ..., pC) =
Γ(γ)

Γ(γ/C)C

C∏
c=1

p(γ/C)−1
c

where pc ≥ 0 and
∑

pc = 1. Parameters φc are assumed to be independent under the

prior with distribution G0. We can use mixture identifiers, ci, and represent the above

mixture model as follows (Neal, 2000):

yi|ci, φ ∼ F (φci
)

ci|p1, ..., pC ∼ Discrete(p1, ..., pC)

p1, ..., pC ∼ Dirichlet(γ/C, ...., γ/C)

φc ∼ G0

(4.1)

By integrating over the Dirichlet prior, we can eliminate mixing proportions, pc, and

obtain the following conditional distribution for ci:

P (ci = c|c1, ..., ci−1) =
nic + γ/C

i− 1 + γ
(4.2)
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Here, nic represents the number of data points previously (i.e., before the ith) assigned to

component c. The probability of assigning each component to the first data point is 1/C.

As we proceed, this probability becomes higher for components with larger numbers of

samples (i.e., larger nic).

When C goes to infinity, the conditional probabilities (4.2) reach the following limits:

P (ci = c|c1, ..., ci−1) → nic

i− 1 + γ

P (ci 6= cj∀j < i|c1, ..., ci−1) → γ

i− 1 + γ (4.3)

As a result, the conditional probability for θi, where θi = φci
, becomes

θi|θ1, ..., θi−1 ∼ 1

i− 1 + γ

∑
j<i

δ(θj) +
γ

i− 1 + γ
G0 (4.4)

where δ(θ) is a point mass distribution at θ. This is equivalent to the conditional prob-

abilities implied by the Dirichlet process mixture model, which has the following form:

yi|θi ∼ F (θi)

θi|G ∼ G (4.5)

G ∼ D(G0, γ)

That is, the limit of the finite mixture model (4.1) is equivalent to the Dirichlet process

mixture model (4.5) as the number of components goes to infinity. G is the distribution

over θ’s, and has a Dirichlet process prior, D. The parameters of the Dirichlet process

prior are G0, a distribution from which θ’s are sampled, and γ, a positive scale parameter

that controls the number of components in the mixture, such that a larger γ results in

a larger number of components. Phrased this way, each data point, i, has its own

parameters, θi, drawn from a distribution that is drawn from a Dirichlet process prior.

But since distributions drawn from a Dirichlet process are discrete (almost surely), the

θi for different data points may be the same.

Bush and MacEachern (1996), Escobar and West (1995), MacEachern and Müller

(1998), and Neal (2000) have used this method for density estimation. Müller et al.
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(1996) used Dirichlet process mixtures for curve fitting. They model the joint distribu-

tion of data pairs (xi, yi) as a Dirichlet process mixture of multivariate normals. The

conditional distribution, P (y|x), and the expected value, E(y|x), are estimated based on

this distribution for a grid of x’s (with interpolation) to obtain a nonparametric curve.

The application of this approach (as presented by Müller et al., 1996) is restricted to con-

tinuous variables. Moreover, this model is feasible only for problems with a small number

of covariates, p. For data with moderate to large dimensionality, estimation of the joint

distribution is very difficult both statistically and computationally. This is mostly due to

the difficulties that arise when simulating from the posterior distribution of large full co-

variance matrices. In this approach, if a mixture model has C components, the set of full

covariance matrices have Cp(p+1)/2 parameters. For large p, the computational burden

of estimating these parameters might be overwhelming. Estimating full covariance matri-

ces can also cause statistical difficulties since we need to assure that covariance matrices

are positive semidefinite. Conjugate priors based the inverse Wishart distribution satisfy

this requirement, but they lack flexibility (Daniels and Kass, 1999). Flat priors may not

be suitable either, since they can lead to improper posterior distributions, and they can

be unintentionally informative (Daniels and Kass, 1999). A common approach to address

these issues is to use decomposition methods in specifying priors for full covariance ma-

trices (see for example, Daniels and Kass, 1999; Cai and Dunson, 2006). Although this

approach has demonstrated some computational advantages over direct estimation of full

covariance matrices, it is not yet feasible for high-dimensional variables. For example,

Cai and Dunson (2006) recommend their approach only for problems with less than 20

covariates.

We introduce a new nonlinear Bayesian model, which also non-parametrically esti-

mates the joint distribution of the response variable, y, and covariates, x, using Dirichlet

process mixtures. Within each component, we assume the covariates are independent,

and model the dependence between y and x using a linear model. Therefore, unlike the
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method of Müller et al. (1996), our approach can be used for modeling data with a large

number of covariates, since the covariance matrix for one mixture component is highly

restricted. Moreover, this method can be used for categorical as well as continuous re-

sponse variables by using a generalized linear model instead of the linear model of each

component.

Our focus in this paper is on classification models with a multi-category response.

We also show how our method can be extended to classification problems where classes

have a hierarchical structure, and to problems with multiple sources of information. The

next section describes our methodology. In Section 4.3, we illustrate our approach and

evaluate its performance based on simulated data. In Section 4.4, we present the results

of applying our model to an actual classification problem, which attempts to identify the

folding class of a protein sequence based on the composition of its amino acids. Folding

classes of protein have a hierarchical structure. In Section 4.5, we extend our approach to

classification problems of this sort where a class hierarchy is available, and evaluate the

performance of this new model on the protein fold recognition dataset. Section 4.6 shows

how this approach can be used for multiple sources of information. Finally, Section 4.7

is devoted to discussion, future directions and limitations of the proposed method.

4.2 Methodology

Consider a classification problem with continuous covariates, x = (x1, ..., xp), and a

categorical response variable, y, with J classes. To model the relationship between y and

x, we model the joint distribution of y and x non-parametrically using Dirichlet process

mixtures. Within each component of the mixture, the relationship between y and x is

assumed to be linear. The overall relationship becomes nonlinear if the mixture contains

more than one component. This way, while we relax the assumption of linearity, the
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flexibility of the relationship is controlled. Our model has the following form:

yi, xi1, ..., xip|θi ∼ F (θi)

θi|G ∼ G

G ∼ D(G0, γ)

where i = 1, ..., n indexes the observations, and l = 1, ..., p indexes the covariates. In

our model, θ = (µ, σ, α,β), and the component distributions, F (θ), are defined based on

P (y, x) = P (x)P (y|x) as follows:

xil ∼ N(µl, σ
2
l )

P (yi = j|xi, α, β) =
exp(αj + xiβj)∑J

j′=1 exp(αj′ + xiβj′)

Here, the parameters µ = (µ1, ..., µp) and σ = (σ1, ..., σp) are the means and standard

deviations of covariates in each component. The component index, c, is omitted for sim-

plicity. Within a component, α = (α1, ..., αJ), and β = (β1, ..., βJ) are the parameters

of the multinomial logit (MNL) model, and J is the number of classes. The entire set

of regression coefficients, β, can be presented as a p × J matrix. This representation is

redundant, since one of the βj’s (where j = 1, ..., J) can be set to zero without changing

the set of relationships expressible with the model, but removing this redundancy would

make it difficult to specify a prior that treats all classes symmetrically. In this parame-

terization, what matters is the difference between the parameters of different classes.

Although the covariates in each component are assumed to be independent with

normal priors, this independence of covariates exists only locally (within a component).

Their global (over all components) dependency is modeled by assigning data to different

components (i.e., clustering). The relationship between y and x within a component is

captured using an MNL model. Therefore, the relationship is linear locally, but nonlinear

globally.

We could assume that y and x are independent within components, and capture the

dependence between the response and the covariates by clustering too. However, this
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may lead to poor performance (e.g., when predicting the response for new observations)

if the dependence of y on x is difficult to capture using clustering alone. Alternatively,

we could also assume that the covariates are dependent within a component. For contin-

uous response variables, this becomes equivalent to the model proposed by Müller et al.

(1996). However, as we discussed above, this approach may be practically infeasible for

problems with a moderate to large number of covariates. We believe that our method is

an appropriate compromise between these two alternatives.

We define G0 as follows:

µl|µ0, σ0 ∼ N(µ0, σ
2
0)

log(σ2
l )|Mσ, Vσ ∼ N(Mσ, V

2
σ )

αj|τ ∼ N(0, τ 2)

βjl|ν ∼ N(0, ν2)

The parameters of G0 may in turn depend on higher level hyperparameters. For example,

we can regard the variances of coefficients as hyperparameters with the following priors:

log(τ 2)|Mτ , Vτ ∼ N(Mτ , V
2
τ )

log(ν2)|Mν , Vν ∼ N(Mν , V
2
ν )

We use MCMC algorithms for posterior sampling. Samples simulated from the pos-

terior distribution are used to estimate posterior predictive probabilities. We predict the

response values for new cases based on these probabilites. For a new case with covariates

x′, the posterior predictive probability of response variable, y′, is estimated as follows:

P (y′ = j|x′) =
P (y′ = j, x′)

P (x′)

where

P (y′ = j, x′) =
1

S

S∑
s=1

P (y′ = j, x′|G0, θ
(s))

P (x′) =
1

S

S∑
s=1

P (x′|G0, θ
(s))
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Here, S is the number of post-convergence samples from MCMC, and θ(s) represents the

set of parameters obtained at iteration s.

Neal (2000) presented several possible algorithms for sampling from the posterior

distribution of Dirichlet process mixtures. In this research, we use Gibbs sampling

with auxiliary parameters (Neal’s algorithm 8). This approach is similar to the algo-

rithm proposed by MacEachern and Müller (1998), with a difference that the auxiliary

parameters exist only temporarily. To improve the MCMC sampling, after each up-

date using auxiliary variables, we update the component parameters using their cor-

responding data points. For a complete description of this method, see the paper

by Neal (2000). All our models are coded in MATLAB and are available online at

http://www.utstat.utoronto.ca/∼babak.

In Figure 4.1, we show a state from an MCMC simulation for our model in which there

are two covariates and the response variable is binary. In this iteration, our model has

identified two components (circles and squares). Within a component, two classes (stars

and crosses) are separated using an MNL model. Note, the decision boundaries shown

are component specific. The overall decision boundary, which is a smooth function, is not

shown in this figure. In our approach, division of the data into components and fitting

of MNL models are performed simultaneously.

4.3 Results for synthetic data

In this section, we illustrate our approach, henceforth called dpMNL, using synthetic

data. We compare our model to a simple MNL model, an MNL model with quadratic

terms (i.e., xlxk, where l = 1, ..., p and k = 1, ..., p), referred to as qMNL, and a decision

tree model (Breiman et al., 1993) that uses 10-fold cross-validation for pruning. For the

simple MNL model, we use both Bayesian and maximum likelihood estimation. The

models are compared with respect to their accuracy rate and the F1 measure. Accuracy
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Figure 4.1: An illustration of our model for a binary (black and white) classification

problem with two covariates. Here, the mixture has two components, which are shown

with circles and squares. In each component, an MNL model separates the two classes

into “black” or “white” with a linear decision boundary.

rate is defined as the percentage of the times the correct class is predicted. F1 is a

common measurement in machine learning and is defined as:

F1 =
1

J

J∑
j=1

2Aj

2Aj + Bj + Cj

where Aj is the number of cases which are correctly assigned to class j, Bj is the number

cases incorrectly assigned to class j, and Cj is the number of cases which belong to the

class j but are assigned to other classes.

We do two tests. In the first test, we generate data according to the dpMNL model.

Our objective is to evaluate the performance of our model when the distribution of

data is comprised of multiple components. In the second test, we generate data using
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a smooth nonlinear function. Our goal is to evaluate the robustness of our model when

data actually come from a different model.

For the first test, we compare the models using a synthetic four-way classification

problem with 5 covariates. Data are generated according to our model with G0 being the

following prior:

µl ∼ N(0, 1)

log(σ2
l ) ∼ N(0, 22)

log(τ 2) ∼ N(0, 0.12)

log(ν2) ∼ N(0, 22)

Note that αj|τ ∼ N(0, τ 2), and βjl|ν ∼ N(0, ν2), where l = 1, ..., 5 and j = 1, ..., 4.

From the above baseline prior, we sample two components, θ1 and θ2, where θ =

(µ, σ, η, ν, α, β). For each θ, we generate 5000 data points by first drawing xil ∼ N(µl, σl)

and then sampling y using the following MNL model:

P (y = j|x, α, β) =
exp(αj + xβj)∑J

j′=1 exp(αj′ + xβj′)

The overall sample size is 10000. We randomly split the data to the training set, with

100 data points, and test set, with 9900 data points. We use the training set to fit the

models, and use the independent test set to evaluate their performance. The regression

parameters of the Bayesian MNL model with Bayesian estimation and the qMNL model

have the following priors:

αj|τ ∼ N(0, τ 2)

βjl|ν ∼ N(0, ν2)

log(η) ∼ N(0, 12)

log(ν) ∼ N(0, 22)

To fit the decision tree models (Breiman et al., 1993), we used the available functions

in MATLAB. These functions are treefit, treetest (for cross-validation) and treeprune.
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Model Accuracy (%) F1 (%)

Baseline 45.57 15.48

MNL (Maximum Likelihood) 77.30 66.65

MNL 78.39 66.52

qMNL 83.60 74.16

Tree (Cross Validation) 70.87 55.82

dpMNL 89.21 81.00

Table 4.1: Simulation 1: the average performance of models based on 50 simulated

datasets. The Baseline model assigns test cases to the class with the highest frequency

in the training set.

The above procedure was repeated 50 times. Each time, new θ1 and θ2 were sampled

from the prior, and a new dataset was created based on these θ’s. We used Hamiltonian

dynamics (Neal, 1993) for updating the regression parameters, α’s and β’s. For all

other parameters, we used single-variable slice sampling (Neal, 2003) with the “stepping

out” procedure to find an interval around the current point, and then the “shrinkage”

procedure to sample from this interval. We also used slice sampling for updating the

concentration parameter γ, where log(γ) ∼ N(−3, 22). This prior encourages smaller

values of γ, which results in smaller number of components. Note that the likelihood

for γ depends only on C, the number of unique components (Neal, 2000; Escobar and

West, 1995). For all models we ran 5000 MCMC iterations to sample from the posterior

distributions. We discarded the initial 500 samples and used the rest for prediction.

The average results (over 50 repetitions) are presented in Table 4.1. As we can see, our

dpMNL model provides better results compared to all other models. The improvements

are statistically significant (p-values < 0.001 based accuracy rates) using a paired t-test

with n = 50.

Since the data were generated according to the dpMNL model, it is not surprising that

this model had the best performance compared to other models. In fact, as we increase the

number of components, the amount of improvement using our model becomes more and
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Figure 4.2: A random sample generated according to Simulation 2 with a3 = 0. The

dotted line is the optimal boundary function.

more substantial (results not shown). To evaluate the robustness of the dpMNL model, we

performed another test. This time, we generated xi1, xi2, xi3 (where i = 1, ..., 10000) from

the Uniform(0, 5) distribution, and generated a binary response variable, yi, according

the following model:

P (y = 1|x) =
1

1 + exp[a1 sin(x1.04
1 + 1.2) + x1 cos(a2x2 + 0.7) + a3x3 − 2]

where a1, a2 and a3 are randomly sampled from N(1, 0.52). The function used to gen-

erate y is a smooth nonlinear function of covariates. The covariates are not clustered,

so the generated data do not conform with the assumptions of our model. Moreover,

this function includes a completely arbitrary set of constants to ensure the results are

generalizable. Figure 4.2 shows a random sample from this model for a3 = 0. In this

figure, the dotted line is the optimal decision boundary.
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Model Accuracy (%) F1 (%)

Baseline 61.96 37.99

MNL (Maximum Likelihood) 73.58 68.33

MNL 73.58 67.92

qMNL 75.60 70.12

Tree (Cross Validation) 73.47 66.94

dpMNL 77.80 73.13

Table 4.2: Simulation 2: the average performance of models based on 50 simulated

datasets. The Baseline model assigns test cases to the class with the highest frequency

in the training set.

We generated 50 datasets (n = 10000) using the above model. Each time, we sampled

new covariates, x, new constant values, a1, a2, a3, and new response variable, y. As before,

models were trained on 100 data points, and tested on the remaining samples. The

average results over 50 datasets are presented in Table 4.2. As before, the dpMNL model

provides significantly (all p-values are smaller than 0.001) better performance compared

to all other models. This time, however, the performance of the qMNL model is closer

to the results from the dpMNL model.

4.4 Results for protein fold classification

In this section, we consider the problem of predicting a protein’s 3D structure (i.e.,

folding class) based on its sequence. For this problem, it is common to presume that

the number of possible folds is fixed, and use a classification model to assign a protein

to one of the folding classes. There are more than 600 folding patterns identified in

the SCOP (Structural Classification of Proteins) database (Lo Conte et al., 2000). In

this database, proteins are considered to have the same folding class if they have the

same major secondary structure in the same arrangement with the same topological

connections.
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We apply our model to a protein fold recognition dataset provided by Ding and

Dubchak (2001). The proteins in this dataset are obtained from the PDB select database

(Hobohm et al., 1992; Hobohm and Sander, 1994) such that two proteins have no more

than 35% of the sequence identity for aligned subsequences larger than 80 residues.

Originally, the resulting dataset included 128 unique folds. However, Ding and Dubchak

(2001) selected only 27 most populated folds (311 proteins) for their analysis. They

evaluated their models based on an independent sample (i.e., test set) obtained from

PDB-40D Lo Conte et al. (2000). PDB-40D contains the SCOP sequences with less than

40% identity with each other. Ding and Dubchak (2001) selected 383 representatives of

the same 27 folds in the training set with no more than 35% identity to the training

sequences. The training and test datasets are available online at http://crd.lbl.gov/

∼cding/protein/. These datasets include the length of protein sequences, and 20 other

covariates based on the percentage composition of different amino acids. For a detail

description of data, see Dubchak et al. (1995).

Ding and Dubchak (2001) trained several Support Vector Machines (SVM) with non-

linear kernel functions, and Neural Networks (NN) with different architecture on this

dataset. They also tried different classification schemes, namely, one versus others (OvO),

unique one versus others (uOvO), and all versus all (AvA). The details for these methods

can be found in their paper. The performance of these models on the test set is presented

in Table 4.3.

We first centered the covariates so they have mean 0. We trained our MNL and

dpMNL on the training set, and evaluated their performance on the test set. For these

models, we used similar priors as the ones used in the previous section. However, the

hyperparameters for the variances of regression parameters are more elaborate. We used
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the following priors for the MNL model:

αj|η ∼ N(0, η2)

log(η2) ∼ N(0, 22)

βjl|ξ, σl ∼ N(0, ξ2σ2
l )

log(ξ2) ∼ N(0, 1)

log(σ2
l ) ∼ N(−3, 42)

Here, one hyperparameter, σl, is used to control the variance of all coefficients, βjl (where

j = 1, ..., J), for covariate xl. If a covariate is irrelevant, its hyperparameter will tend to

be small, forcing the coefficients for that covariate to be near zero. This method is called

Automatic Relevance Determination (ARD), and was suggested by Neal (1996). We also

used another hyperparameter, ξ, to control the overall magnitude of all β’s. This way,

σl controls the relevance of covariate xl compared to other covariates, and ξ controls the

overall usefulness of all covariates in separating all classes. The standard deviation of βjl

is therefore equal to ξσl.

We used the same scheme for the MNL models in dpMNL. Note that, in this model

one σl controls all βjlc, where j = 1, ..., J indexes classes, and c = 1, ..., C indexes the

unique components in the mixture. Therefore, the standard deviation of βjlc is ξσlνc.

Here, νc is specific to each component c, and controls the overall effect of coefficients in

that component. That is, while σ and ξ are global hyperparameters common between all

components, νc is a local hyperparameter within a component. Similarly, the standard

deviation of intercepts, αjc in component c is ητc. We used N(0, 1) as the prior for νc

and τc.

We also needed to specify priors for µl and σl, the mean and standard deviation of
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covariate xl, where l = 1, ..., p. For these parameters, we used the following priors:

µlc|µ0,l, σ0,l ∼ N(µ0,l, σ
2
0,l)

µ0,l ∼ N(0, 52)

log(σ2
0,l) ∼ N(0, 22)

log(σ2
lc)|Mσ,l, Vσ,l ∼ N(Mσ,l, V

2
σ,l)

Mσ,l ∼ N(0, 12)

log(V 2
σ,l) ∼ N(0, 22)

As we can see, the priors depend on higher level hyperparameters. This provides a

more flexible scheme. If, for example, the components are not different with respect to

covariate xl, the corresponding variance, σ2
0,l, becomes small, forcing µlc close to their

overall mean, µ0,l.

For each of our Bayesian models discussed in this section (and also in the following

sections), we performed four simultaneous MCMC simulations each of size 10000. The

chains have different starting values. We discarded the first 1000 samples from each

chain and used the remaining samples for predictions. For this problem, running multiple

chains results in faster and more efficient sampling. Simulating the Markov chain for 10

iterations took about half a minute for MNL, and about 3 minutes for dpMNL, using a

MATLAB implementation on an UltraSPARC III machine.

The results for MNL and dpMNL models are presented in Table 4.3. As a benchmark,

we also present the results for the SVM and NN models developed by Ding and Dubchak

(2001) on the exact same dataset. As we can see, our linear MNL model provides better

accuracy rate compared to the SVM and NN models developed by Ding and Dubchak

(2001). Our dpMNL model provides an additional improvement over the MNL model.

This shows that there is in fact a nonlinear relationship between folding classes and

the composition of amino acids, and our nonlinear model could successfully identify this

relationship.
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Model Accuracy (%) F1 (%)

NN-OvO 20.5 -

SVM-OvO 43.5 -

SVM-uOvO 49.4 -

SVM-AvA 44.9 -

MNL 50.0 41.2

dpMNL 58.6 53.0

Table 4.3: Performance of models based on protein fold classification data. NN and SVM

use maximum likelihood estimation, and are developed by Ding and Dubchak (2001).

It is worth noting the performance of the NN models is influenced by many design

choices, and by model assumptions. We found that Bayesian neural networks model

(Neal, 1996) had better performance than the NN model of Ding and Dubchak (2001).

Our NN model performs very similarly to the performance of the dpMNL model.

4.5 Extension to hierarchical classes

In the previous section, we modeled the folding classes as a set of unrelated entities.

However, these classes are not completely unrelated, and can be grouped into four major

structural classes known as α, β, α/β, and α + β. Ding and Dubchak (2001) show

the corresponding hierarchical scheme (Table 1 in their paper). We have previously

introduced a new approach for modeling hierarchical classes (Shahbaba and Neal, 2006,

2007). In this approach, we use a Bayesian form of the multinomial logit model, with a

prior that introduces correlations between the parameters for classes that are nearby in

the hierarchy.

Figure 4.3 illustrates this approach using a simple hierarchical structure. For each

branch in the hierarchy, we define a different set of parameters, φ. Our model classifies

objects to one of the end nodes using an MNL model whose regression coefficients for

class j are represented by the sum of the parameters for all the branches leading to
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φ11 φ12

φ21 φ22 φ23 φ24

Class 1 Class 2 Class 3 Class 4

β1 = φ11 + φ21 β2 = φ11 + φ22 β3 = φ12 + φ23 β4 = φ12 + φ24
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Figure 4.3: A simple representation of our hierarchical classification model.

that class. Sharing of common parameters (from common branches) introduces prior

correlations between the parameters of nearby classes in the hierarchy. We refer to this

model as corMNL.

In this section, we extend our nonlinear model to classification problems where classes

have a hierarchical structure. For this purpose, we use a corMNL model, instead of MNL,

to capture the relationship between the covariates, x, and the response variable, y, within

each component. The results is a nonlinear model which takes the hierarchical structure

of classes into account. We refer to this models as dpCorMNL.

Table 4.4 presents the results for the two linear models (with and without hierarchy-

base priors), and two nonlinear models (with and without hierarchy-based priors). In

this table, “parent accuracy” refers to the accuracy of models based on the four ma-

jor structural classes, namely α, β, α/β. When comparing the hierarchical models to

their non-hierarchical counterparts, the advantage of using the hierarchy is apparent

only for some measures (i.e., parent accuracy rate for corMNL, and the F1 measure

for dpCorMNL). As we can see, however, the dpCorMNL model provides a substantial

improvement over corMNL.
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Model Accuracy (%) Parent accuracy (%) F1 (%)

MNL 50.0 76.5 41.2

corMNL 49.5 77.9 41.4

dpMNL 58.6 79.9 53.0

dpCorMNL 59.1 79.4 55.2

Table 4.4: Comparison of hierarchical models (linear and nonlinear) with non-hierarchical

models (linear and nonlinear) based on protein fold classification data.

4.6 Extension to multiple datasets

In order to improve the prediction of folding classes for proteins, Ding and Dubchak

(2001) combined the feature set based on amino acid compositions with 5 other fea-

ture sets, which were independently extracted based on various physico-chemical and

structural properties of amino acids in the sequence. The additional features predicted

secondary structure, hydrophobicity, normalized varn der Waals volume, polarity, and

polarizability. Each data source has 21 covariates. For a detailed description of these

features, see Dubchak et al. (1995). Ding and Dubchak (2001) added the above 5 datasets

sequentially to the amino acid composition dataset. For prediction, they used a majority

voting system, in which the votes obtained from models based on different features sets

are combined, and the class with the most votes is regarded as predicted fold. Their

results show that adding additional feature sets can improve the performance in some

cases and can result in lower performance in some other cases. One main issue with this

method is that it gives equal weights to votes based on different data sources. The under-

lying assumption, therefore, is that the quality of predictions is the same for all sources

of information. This is, of course, not a realistic assumption for many real problems. In

our previous paper (Shahbaba and Neal, 2006), we provided a new scheme for combining

different sources of information. In this approach, we use separate scale parameters, ξ,

for each data source in order to adjust their relative weights automatically. This allows

the coefficients from different sourcecs of data to have appropriately different variances
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Model Accuracy (%) Parent accuracy (%) F1 (%)

NN-OvO 41.4 - -

SVM-OvO 43.2 - -

SVM-uOvO 49.4 - -

SVM-AvA 56.5 - -

MNL 56.5 80.4 51.4

corMNL 59.6 83.3 54.6

dpMNL 60.4 82.0 55.9

dpCorMNL 61.4 83.8 57.8

Table 4.5: Comparison of hierarchical models (linear and nonlinear) with non-hierarchical

models (linear and nonlinear) based on protein fold classification data. The covariates are

obtained from four different feature sets: composition of amino acids, predicted secondary

structure, hydrophobicity, and normalized varn der Waals volume.

in the model.

For models developed by Ding and Dubchak (2001), the highest accuracy rate, 56.5,

was achieved only when they combined the covariates based on the composition of

amino acids, secondary structure, hydrophobicity, and polarity. We also used these four

datasets, and applied our models to the combined data. We used a different scale param-

eters, ξ, for each dataset. The results from our models are presented in Table 4.5. For

comparison, we also present the results obtained by Ding and Dubchak (2001) based on

the same datasets. As we can see, this time, using the hierarchy results in more substan-

tial improvements. Moreover, nonlinear models provided better performance compared

to their corresponding linear models.

4.7 Conclusions and future directions

We introduced a new nonlinear classification model, which uses Dirichlet process mix-

tures to model the joint distribution of the response variable, y, and the covariates, x,

non-parametrically. We compared our model to several linear and nonlinear alterna-
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tive methods using both simulated and real data. We found that when the relationship

between y and x is nonlinear, our approach provides substantial improvement over al-

ternative methods. One advantage of this approach is that if the relationship is in fact

linear, the model can easily reduce to a linear model by using only one component in the

mixture. This way, it avoids overfitting, which is a common challenge in many nonlinear

models.

We believe our model can provide more interpretable results. In many real problems,

the identified components may correspond to a meaningful segmentation of data. Since

the relationship between y and x remains linear in each segment, the results of our model

can be expressed as a set of linear patterns for different segments of data.

As mentioned above, for sampling from the posterior distribution, we used multiple

chains which appeared to be sampling different regions of the posterior space. Ideally, we

prefer to have one chain that can efficiently sample from the whole posterior distribution.

In future, we intend to improve our MCMC sampling. For this purpose, we can use more

efficient methods, such as the “split-merge” approach introduced by Jain and Neal (2007)

and the short-cut Metropolis method introduced by Neal (2005).

In this paper, we considered only continuous covariates. Our approach can be easily

extended to situations where the covariate are categorical. For these problems, we need to

replace the normal distribution in the baseline, G0, with a more appropriate distribution.

For example, when the covariate x is binary, we can assume x ∼ Bernoulli(µ), and specify

an appropriate prior distribution (e.g., Beta distribution) for µ. Alternatively, we can

use a continuous latent variable, z, such that µ = exp(z)/{1+exp(z)}. This way, we can

still model the distribution of z as a mixture of normals. For covariates with multinomial

distribution, we can either extend the Bernoulli distribution by using (µ1, ..., µK), where

K is the number of categories in x, or use K continuous latent variables, z1, ..., zK , and

set θj = exp(zj)/
∑K

j′ exp(z′j).

Our model can also be extended to problems where the response variable is not multi-
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nomial. For example, we can use this approach for regression problems with continuous

response, y. The distribution of y can be assumed normal within a component. We

model the mean of this normal distribution as a linear function of covariates for cases

that belong to that component. Other types of response variables (i.e., with Poisson

distribution) can be handled in a similar way.

Finally, our approach provides a convenient framework for semi-supervised learning,

in which both labeled and unlabeled data are used in the learning process. In our

approach, unlabeled data can contribute to modeling the distribution of covariates, x,

while only labeled data are used to identify the dependence between y and x. This is

a quite useful approach for problems where the response variable is known for a limited

number of cases, but a large amount of unlabeled data can be generated. One such

problem is classification of web documents. In future, we will examine the application of

our approach for these problems.



Chapter 5

Overall discussion
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In this thesis, we showed how classification models can be improved using Bayesian

methods that incorporate suitable prior information. Mainly, we discussed classification

models where classes have a hierarchical structure. This hierarchy reflects our prior

opinion regarding the similarity of classes. Using several simulation studies and real

datasets, we showed that if such information is used properly, it can result in a higher

prediction accuracy.

One specific problem, namely, gene function classification, was of main interest. We

used our approach to predict the cellular function of genes in the E. coli genome. Our

model provided a substantially higher predictive accuracy compared to previous methods

based on C5 decision trees models. We also presented a new approach for combining

different sources of information for gene function classification.

Having useful prior information can help to improve the results. However, it is also

important to use appropriate models. Some of the common assumptions in statistics,

such as normality of distributions and linearity of dependencies, may result in a poor

performance (i.e., when predicting the response value for new cases). In this thesis, we

proposed a more flexible model based on Dirichlet process mixtures. Using simulation

studies we showed that our model can provide better results compared to some alternative

linear models and several nonlinear ones. We also discussed the application of our model

for protein fold identification, which is an important step in predicting cellular function

of genes, and found that our model provided better predictive accuracy compared to

previous models based on Neural Networks and Support Vector Machines.

Our methods can be applied to a variety of problems, of which only few were discussed

here. Another possible application is cancer prediction using microarray gene expression

data. Our dpMNL model could be used to improve predictive accuracies. Cancer types

can sometimes be arranged on a hierarchy starting with general types and dividing each

type to its sub-groups. Our corMNL and dpCorMNL models could therefore be used for

these problems. Moreover, the information from microarray analysis can be combined
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with other sources of information. For such situations, our approach for combining

multiple data sources could be used.

The methods discussed in this thesis can be extended in several ways. For example, we

only discussed simple tree-like hierarchies. Our approach for summing parameters along

the hierarchy, presented in Chapter 2, can be easily extended to more complex structures

such as Directed Acyclic Graphs (DAGs). The idea of summing coefficients along a path

to the class can be generalized in order to allow for multiple paths. Similarly, we can also

generalize our method to multiple hierarchies. That is, we can sum coefficients along the

paths (single or multiple) within different hierarchies.

The hierarchical classification model introduced in this thesis was mainly intended to

improve prediction in classification models. We believe our corMNL model could also be

used for inference regarding our choice of hierarchy. The posterior distribution obtained

from the corMNL model might provide insight on whether the assumed hierarchy was

appropriate. For example, consider the simple hierarchy presented in Figure 2.2. If

the posterior distribution of φ11 is tightly concentrated around zero (i.e., the associate

variance hyperparameter is small), the posterior correlation between the parameters of

Class 1 and Class 2 will be small, which in turn means that the similarity of these two

classes assumed in prior might not exist in reality.

We extended our nonlinear model (based on Dirichlet process mixtures) to classi-

fication problems where a class hierarchy exists. Alternatively, we could modify other

nonlinear models (e.g., Neural Networks, Support Vector Machines, and Gaussian process

models) to relax the linearity assumption in our corMNL model. For example, consider

a Gaussian process model for non-hierarchical classes. As suggested by Neal (1998), such

model can be defined using J “latent values”, zi1, ..., ziJ , each associated with one class.

Class probabilities for this model can be defined as follows:

P (yi = j) = exp(zij)
/ J∑

j′=1

exp(zij′)

To extend this model to hierarchical classes, we can use a different latent value for each
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branch of the hierarchy, and represent the final latent value for each class by the sum of

the latent values for all the branches leading to that class.

The nonlinear method presented here provides a convenient framework for semi-

supervised learning, in which both labeled and unlabeled data are used in the learning

process. In our approach, unlabeled data can contribute to modeling the distribution of

covariates, x, while only labeled data are used to identify the dependence between y and

x. This is a quite useful approach for problems where the response variable is known for

a limited number of cases, but a large amount of unlabeled data can be generated. For

example, while me might identify a large number of genes from an organism’s genome,

the biological function might be known only for a small subset of those genes. Supervised

learning methods use only those genes for which the function is known. Semi-supervised

methods, on the other hand, use all genes. This way, the unlabeled part of the data

might provide additional information, which could be useful for the classification task.

Although, we focused on classification problems with hierarchical classes, some of the

proposed methods can be used beyond hierarchical classification models. For example,

our approach for combining multiple datasets can be used for regression models, where

the response variable is continuous. Moreover, the nonlinear model introduced in Chapter

4 can be easily extended to all generalized linear models. To do this, we need to replace

MNL with a more appropriate model for the response variable. For example, if the

response variable measures counts, we can use a Poisson model to capture the dependency

between the response and the covariates within each component.
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In Chapters 2 and 3, we discussed an alternative hierarchical classification model, referred

to as treeMNL, in which the tree structure is decomposed into nested MNL models. The

resulting nested models are statistically independent, conditioned on the upper levels.

The likelihood can therefore be written as the product of the likelihoods for all models.

Here, we discuss this model in more detail, and show how it differs from the ordinary

MNL model.

Consider a three-way classification problem in which classes 1 and 2 are hard to

distinguish on the basis of available information, but they both can be easily separated

from class 3. We can model these classes using two nested MNL models. The first model

combines class 1 and 2, and classifies cases to class {1, 2} or class 3. Since this is a

binary split, we can use logistic regression, which is a special form MNL. The second

model attempts to separate class 1 from class 2, knowing that cases belong to either 1

or 2. These two models are therefore as follows:

P (y = 3|x, α1, β1) =
exp(α1 + xβ1)

1 + exp(α1 + xβ1)

P (y = 2|y ∈ {1, 2}, x, α2, β2) =
exp(α2 + xβ2)

1 + exp(α2 + xβ2)

From the first model, we have

P (y ∈ {1, 2}|x, α1, β1) =
1

1 + exp(α1 + xβ1)
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Therefore, the final probabilities for class 1 and class 2 are as follows:

P (y = 1|x, α1, β1, α2, β2) =
1

1 + exp(α1 + xβ1)
× 1

1 + exp(α2 + xβ2)

P (y = 2|x, α1, β1, α2, β2) =
1

1 + exp(α1 + xβ1)
× exp(α2 + xβ2)

1 + exp(α2 + xβ2)

In the ordinary MNL model, the boundary lines between classes are linear. Figure

A.1 shows these boundaries for a simulated sample. In the treeMNL model above, the

boundary line between class 1 and class 2 is also linear, and is defined by α2 + xβ2 = 0.

However, the boundary lines that separate class 3 from class 1 and class 2 will not be

linear in general. These lines are defined according to the following equations:

d13 : α1 + xβ1 + log{1 + exp(α2 + xβ2)} = 0

d23 : (α1 − α2) + x(β1 − β2) + log{1 + exp(α2 + xβ2)} = 0

where d13 represents the boundary line between class 1 and class 3, and d23 represents

the boundary line between class 2 and class 3. Figure A.2 shows these boundaries for

the the same simulated data as in Figure A.1.

Note that the difference between the corMNL model introduced in this thesis and the

ordinary MNL is only in their priors. That is, the corMNL model has the same form

as the the MNL model. Therefore, similar to the ordinary MNL model, the decision

boundaries for the corMNL model are linear.
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Figure A.1: The boundary lines obtained by the MNL model for a simulated three-way

classification problem. As we can see, class 1 and class 2 are relatively more difficult to

distinguish.
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Figure A.2: The boundary lines obtained by the treeMNL model for a simulated three-

way classification problem. The boundaries are not linear between classes 1 and 3, and

between classes 2 and 3.
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Throughout this thesis, we used a variety of computational techniques in order to obtain

posterior distributions. For simple distributions, where a conjugate prior is available,

posterior distributions have a closed form, and can be used directly for inference. How-

ever, for more complex problems, such as those discussed in this paper, it may not be

possible to obtain a closed form for posterior distribuitons. A general approach for such

problems is to use a Markov chain to obtain samples which come (approximately) from

the posterior distribution, π, and use the Monte Carlo method for estimation. The

Markov chain must have π as its invariant distribution, and must converge (asymptoti-

cally) to π. To ensure convergence, the chain needs to be ergodic and converge quickly.

This requires the use of appropriate transition probabilities (or densities), T (θ′|θ) (i.e.,

from θ to θ′), for the Markov chain. Here, we describe several Markov chain Monte Carlo

(MCMC) algorithms that are used in this thesis, and explain our strategies for choosing

appropriate transition probabilities.

B.1 The Gibbs sampler

Although it might not be possible to use a conjugate prior for a multidimensional pos-

terior distribution, it is sometimes possible to assume a conjugate prior for a subset

of parameters conditional on the remaining parameters. The Gibbs sampler (Geman

and Geman, 1984) is a very useful technique for such problems. We first need to
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divide the parameter vector, θ, into smaller components, θ = (θ1, ..., θd). At each

iteration, s, the Gibbs sampler cycles through these components, and samples from

π(θj|y, θs
1, ..., θ

s
j−1, θ

s−1
j+1, ..., θ

s−1
d ), the conditional distribution of θj given the current value

of θk for k 6= j (where j = 1, ..., d). Here, y is the observed data.

We use normal priors for the regression parameters in all models discussed in this

thesis. The variances of these normals are regarded as hyperparameters. In Chap-

ter 2, we assumed inverse-Gamma distributions as the prior for these hyperparameters.

Inverse-Gamma in this case is a conjugate prior (conditional on other parameters), so the

conditional posterior distribution has itself an inverse-Gamma distribution. For example,

if βi ∼ N(0, σ2), where i = 1, ..., n, and σ−2 ∼ Gamma(a, b), we have

σ−2|a, b, β1, ..., βn ∼ Gamma(an, bn)

an = a +
n

2

bn =
1

1/b +
∑n

i=1 β2
i /2

Note that throughout this thesis we use the parameterization of the Gamma distribution

in which Gamma(a, b) has density f(x|a, b) = [baΓ(a)]−1xa−1e−x/b, for which the mean is

ab and the standard deviation is a1/2b

B.2 The Metropolis algorithm

The Metropolis algorithm (Metropolis et al., 1953) provides a general method for Markov

chain sampling. In this approach, given the current state of the chain, θ, a new candidate,

θ∗, is proposed according to some probabilities S(θ∗|θ) such that the symmetry condition

S(θ|θ∗) = S(θ∗|θ) is satisfied. We accept this new candidate as the next state (i.e.,

θ′ = θ∗) with probability

min
[
1, π(θ∗)/π(θ)

]
If we do not accept θ∗, we set θ′ = θ.
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A useful generalization of this approach, known as the Metropolis-Hastings (MH)

algorithm (Hastings, 1970), relaxes the symmetry requirement for the transitions. The

acceptance probability is instead as follows:

min
[
1,

π(θ∗)/S(θ∗|θ)
π(θ)/S(θ|θ∗)

]
A common transition probability is N(θ, δ2). δ is selected such that a good conver-

gence rate is achieved. Large values for δ may result in low probabilities of acceptance,

whereas small values can slow down the convergence rate. Neal (1993) has a thorough

discussion on how to improve the convergence rate of Metropolis methods. In this thesis,

we use one specific variation of the MH algorithm based on the Hamiltonian dynam-

ics, which avoids the random walk behavior with simple N(θ, δ2) proposals. To use this

method, we need to evaluate the gradient of the target posterior distribution with respect

to parameters of interest. The new proposal is obtained by taking a series of steps in

directions indicated by the gradient. This way, the Markov chain finds states with higher

probability more rapidly.

In physics, the Hamiltonian, H, represents the overall energy of a physical system

as the sum of potential and kinetic energy. Similarly, we define the Hamiltonian for a

parameter θ as follows:

H(θ, p) = E(θ) + K(p)

where E(θ) is the negative log-probability (or differs from it up to a constant), and K(p) is

the kinetic energy, which is a function of a momentum variable p. The momentum variable

is independent of θ with standard normal distribution, and is included to augment the

state space θ. Note that θ and p can be vectors in general.

The algorithm involves two main steps. First, an initial momentum is drawn ran-

domly from the standard normal distribution. Second, the state of the Markov chain,

θ, is changed according to this momentum (i.e., ∆θ = εp, where ε is a small “stepsize”

parameter), and the gradient of E(x) determines how the momentum p will change (i.e.,
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∆p = ε−∂E(θ)
∂θ

). The algorithm alternates between these two steps for a predefined num-

ber of iterations until it reaches a new state , (θ∗, p∗). This state is accepted or rejected

according to the Metropolis acceptance probability. We discard the momentum variables

at the end of each iteration, and keep only the new states for θ. For a more detail

description of this approach see Neal (1993) or MacKay (2003).

We used Hamiltonian dynamics for sampling from the posterior distribution of re-

gression coefficients in all Bayesian models discussed in this thesis. The gradient of the

posterior distribution with respect to regression parameters can be easily obtained. We

used a sufficiently large numbers of steps to propose new states that are far from the

current state. However, it is essential to use an appropriate step size so that such pro-

posed states are accepted with high probability, but also do not take too much time to

compute. Although the step size can be the same for all parameters. high efficiency

can be obtained if the step size is considered a function of the current variance for each

coefficient (Neal, 1993). For example, if βj ∼ N(0, σ2
j ), and

[
σ

(s)
j

]2
is the current value

of the variance for the jth coefficient at iteration s, we set:

εj =
ε0√

1/
[
σ

(s)
j

]2
+ n/4

Here, ε0 is a small positive number which remains constant for all coefficients. To find an

appropriate value for this parameter, we perform several preliminary runs with different

values for ε0, and choose the value that provides around 90% acceptance rate.

B.3 Slice sampling

Slice sampling, introduced by Neal (2003), is another approach to improve the efficiency

of the Metropolis algorithms. This method is based on the idea in order to sample from

a distribution, we can sample uniformly from the region under the corresponding density

function, f(θ). For this purpose, Neal (2003) suggested to alternate between two steps.

Given the current state of the Markov chain, θ, we uniformly sample a new point, z, from
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the interval
(
0, f(θ)

)
. Next, given the current value of z, we uniformly sample from the

region S = {θ : z < f(θ)}, which is referred to as the “slice” defined by z. Since sampling

an independent point uniformly from S might be difficult, we can substitute this step by

any update that leaves the uniform distribution over S invariant. Neal (2003) proposed

several methods to perform this task. Here, we use the “stepping-out” procedure for

finding an interval around the current point, and use the “shrinkage” procedure for

sampling from the interval obtained. For a detail description of these methods see Neal

(2003).

In this thesis, we used the slice sampling method for the simulation studies in Chapter

2, since the number of parameters was small. We also used slice sampling to obtain

samples from the posterior distribution of hyperparameters, when non-conjugate priors

(e.g., log-Normal distribution for variances of regression parameters) were used. To use

slice sampling efficiently, we need to choose an appropriate step size, w, in the stepping-

out procedure, and the maximum number of steps, m. The size of a slice is limited to

mw. However, unlike the Metroloplis method, the choice of step size is not very critical

to the rate of progress, since in slice sampling the step size is self-tuning MacKay (2003).

We chose w and m such that the amount of time the algorithm spends on stepping out

and shrinkage to the right interval size is small.



Appendix C

In this appendix, we compare the gene annotation results based on our corMNL model

and the results from direct biological experiments for a subset of ORFs. This subset was

selected by King et al. (2001). For each ORF, we provide its Blattner number, predicted

hierarchical class (based on the older hierarchy of E. coli), and the corresponding class

labels in the first line. The subsequent lines show the recent annotation of each ORF

based on direct experiment. Here, SE = “Some Evidence” and NE = “No Evidence”.
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Evidence bNumber Class Class description

SE b0805 4.1.3 Structural elements > Cell envelop > Outer membrane constituents

Cell structure > Membrane

Location of gene products > Outer membrane

SE b1519 3.2.8 Metabolism of small molecules > Biosynthesis of cofactors > Menaquinone, ubiquinone

Metabolism > Central intermediary metabolism > Unassigned reversible reactions

SE b1533 1.5.2 Cell processes > Transport/binding proteins > ABC superfamily (membrane)

Transport > Electrochemical potential driven transporters > Porters > MFS

Cell structure > Membrane

SE b1981 1.5.21 Cell processes > Transport/bindingproteins > MFS

Transport > Electrochemical potential driven transporters > Porters > MFS

SE b2210 3.4.3 Metabolism of small molecules > Degradation of small molecules > Carbon compounds

Metabolism > Energy metabolism (carbon) > Tricarboxylic acid cycle

SE b3839 1.5.2 Cell processes > Transport/binding proteins > ABC superfamily (membrane)

Transport > Cell Substrate transported > Protein

Cell structure > Membrane

SE b1822 2.2.1 Macromolecule metabolism > Macromolecule synthesis, modification > Amino acyl tRNA syn

Information transfer > RNA related > Modification

SE b3223 3.4.3 Metabolism of small molecules > Degradation of small molecules > Carbon compounds

Metabolism > Central intermediary metabolism > Amino sugar conversions

SE b3337 3.5.2 Metabolism of small molecules > Energy metabolism, carbon > Anaerobic respiration

Cell processes > Adaptation to stress > Fe aquisition

SE b3569 3.4.3 Metabolism of small molecules > Degradation of small molecules > Carbon compounds

Metabolism > Carbon compound utilization > Carbohydrate degradation

SE b3955 4.1.3 Structural elements > Cell envelop > Outer membrane constituents

Cell structure > Membrane

SE b3222 3.4.3 Metabolism of small molecules > Degradation of small molecules > Carbon compounds

Metabolism > Central intermediary metabolism > Amino sugar conversions

SE b0570 6.1.1 Global functions > Global regulatory functions

Regulation > Type of regulation > Transcriptional level

SE b0619 6.1.1 Global functions > Global regulatory functions

Regulation > Type of regulation > Transcriptional level

SE b2219 6.1.1 Global functions > Global regulatory functions

Regulation > Type of regulation > Transcriptional level

SE b0505 3.3.15 Metabolism of small molecules > Central metabolism > Conversions of intermed. met-m

Metabolism > Central intermediary metabolism > Allantoin assimilation

SE b0508 3.4.3 Metabolism of small molecules > Degradation of small molecules > Carbon compounds

Metabolism > Central intermediary metabolism

SE b0662 3.5.2 Metabolism of small molecules > Energy metabolism, carbon > Anaerobic respiration

Metabolism > Energy metabolism (carbon) > Aerobic respiration

SE b0789 2.2.7 Macromolecule metabolism > Macromolecule synthesis > Phospholipids

Metabolism > Macromolecule (cellular constituent) biosynthesis > Phospholipid

SE b2924 4.1.2 Structural elements > Cell envelop > Murein sacculus, peptidoglycan

Cell structure > Membrane

SE b2052 3.3.18 Metabolism of small molecules > Central metabolism > Sugar-nucleotide biosynthesis

Metabolism > Macromolecule biosynthesis > Colanic acid (M antigen)

SE b2889 2.2.3 Macromolecule metabolism > Macromolecule synthesis > DNA - replication, repair

Metabolism > Building block biosynthesis > Cofactor, small molecule carrier biosynthesis

Table C.1: Comparison of direct functional annotation of several ORFs (whose function

was unknown in 2001) with predicted functions using our corMNL model. In this table,

we only present genes for which there is a close match between our predictions and the

results from direct biological experiments.
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Evidence bNumber Class Class description

NE b2392 3.5.2 Metabolism of small molecules > Energy metabolism, carbon > Anaerobic respiration

Transport > Substrate transported > Mn+/H

NE b0103 1.5.1 Cell processes > Transport/binding proteins > ABC superfamily (atp-bind)

Metabolism > Building block biosynthesis > Small molecule carrier > Coenzyme A

NE b2530 3.3.15 Metabolism of small molecules > Central metabolism > Conversions of intermed. met-m

Information transfer > Protein related > Posttranslational modification

NE b0162 3.5.2 Metabolism of small molecules > Energy metabolism, carbon > Anaerobic respiration

Regulation > Genetic unit regulated > Regulon

NE b0613 3.4.3 Metabolism of small molecules > Degradation of small molecules > Carbon compounds

Information transfer –> Protein related

NE b2972 3.4.3 Metabolism of small molecules > Degradation of small molecules > Carbon compounds

Information transfer > Protein related > Export, signal peptide cleavage

NE b0053 2.1.1 Macromolecule metabolism > Macromolecule degradation > Degradation of DNA

Information transfer > Protein related > Chaperone, folding

NE b0441 1.7.1 Cell processes > Cell division

Information transfer > Protein related > Chaperone, folding

NE b1199 1.5.23 Cell processes > Transport/binding proteins > Mechanism not stated

Metabolism > Central intermediary metabolism > Unassigned reversible reactions

NE b3836 4.2.2 Structural elements > Ribosome constituents > Ribosomal proteins - synthesis, modification

Cell structure > Membrane

Location of gene products > Inner membrane

NE b3838 5.1.2 Extrachromosomal > Laterally acquirred elements > Phage-related functions and prophages

Cell structure > Membrane

Location of gene products > Inner membrane

Table C.2: Comparison of direct functional annotation of several ORFs (whose function

was unknown in 2001) with predicted functions using our corMNL model. In this table,

we only present genes for which there is not a close match between our predictions and

the results from direct biological experiments.



Appendix D

Chapter 2 of this dissertation is published in Bayesian Analysis (http://ba.stat.cmu.

edu), and Chapter 3 is published in BMC Bioinformatics (http://www.biomedcentral.

com/bmcbioinformatics). According to the copyright and license rules of both these

journals, the authors are the copyright holders, and have the right to use, reproduce

or disseminate their article. In this appendix, we provide the published version of our

papers.
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