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Gaussian Process (GP) regression models typically assume that residuals are Gaussian

and have the same variance for all observations. However, applications with input-

dependent noise (heteroscedastic residuals) frequently arise in practice, as do applications

in which the residuals do not have a Gaussian distribution. In this thesis, we propose

a GP regression model with a latent variable that serves as an additional unobserved

covariate for the regression. This model (which we call GPLC) allows for heteroscedas-

ticity since it allows the function to have a changing partial derivative with respect to this

unobserved covariate. With a suitable covariance function, our GPLC model can handle

(a) Gaussian residuals with input-dependent variance, or (b) non-Gaussian residuals with

input-dependent variance, or (c) Gaussian residuals with constant variance. We compare

our model, using synthetic datasets, with a model proposed by Goldberg, Williams and

Bishop (1998), which we refer to as GPLV, which only deals with case (a), as well as a

standard GP model which can handle only case (c). Markov Chain Monte Carlo methods

are developed for the GPLC and GPLV models. Experiments show that when the data is

heteroscedastic, both GPLC and GPLV give better results (smaller mean squared error

and smaller negative log-probability density) than standard GP regression. In addition,

if we do not assume Gaussian residuals, our GPLC model (as in case (b) above) is still

generally nearly as good as GPLV when the residuals are in fact Gaussian. When the

residuals are non-Gaussian, our GPLC model is better than GPLV.
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Evaluating the posterior probability density function is the most costly operation

when Markov Chain Monte Carlo (MCMC) is applied to many Bayesian inference prob-

lems. For GP models, computing the posterior density involves computing the covariance

matrix, and then inverting the covariance matrix. The computation time for comput-

ing the covariance matrix is proportional to pn2, and for the inversion is proportional

to n3, where p is the number of covariates and n is the number of training cases. We

introduce MCMC methods based on the “temporary mapping and caching” framework

(Neal, 2006), using a fast approximation, π∗, as the distribution needed to construct the

temporary space. We propose two implementations under this scheme: “mapping to a

discretizing chain”, and “mapping with tempered transitions”, both of which are exactly

correct MCMC methods for sampling π, even though their transitions are constructed

using an approximation. These methods are equivalent when their tuning parameters

are set at the simplest values, but differ in general. We compare how well these meth-

ods work when using several approximations, finding on synthetic datasets that a π∗

based on the “Subset of Data” (SOD) method is almost always more efficient than stan-

dard MCMC using only π. On some datasets, a more sophisticated π∗ based on the

“Nyström-Cholesky” method works better than SOD.
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Chapter 1

Introduction

1.1 Motivation

Gaussian Process (GP) regression models have become popular in recent years in the

machine learning community, mainly because these models are very flexible — one can

choose from many covariance functions to achieve different degrees of smoothness or

different degrees of additive structure, and for any given covariance function with un-

known parameters, the values of the parameters can be automatically determined by

the model. Standard GP regression models typically assume that the residuals are i.i.d.,

with Gaussian distributions that do not depend on the input covariates. However in

many applications, the variances of the residuals actually depend on the inputs, and

the distributions of the residuals are not necessarily Gaussian. For example, Silverman’s

motorcycle accident data (Silverman, 1985) shown in Figure 1.1 exhibits heteroscedastic

residuals. Schmidt, et al. (1981) has the detailed description of the original experiment, a

simulated motorcyle crash. The standard GP model assumes constant residual variance,

and clearly overestimates the variance of acceleration when time is small (less than 10ms)

and underestimates the variance when time is around 30 - 40 ms. We discuss the details

of this example dataset in Section 2.4.2.

1
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Figure 1.1: Silverman’s motorcycle data. These 94 observations were obtained from
http://www.stat.cmu.edu/~larry/all-of-statistics/=data/motor.dat

Note that the two mean curves are almost identical, and so are somtimes not separately
visible. The mean curves are produced by making predictions on 300 time points evenly
spaced between 0 and 60 ms. The standard deviations are the predictive standard devi-
ations corresponding to the 300 test cases.
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We present a GP regression model which can deal with input-dependent residuals.

This model includes a latent variable as an unobserved input covariate with a fixed

distribution. When the partial derivative of the response with respect to this unobserved

covariate changes across observations, the variance of the residuals will change. We call

this model the “Gaussian Process with a Latent Covariate” (GPLC) regression model.

In the motorcycle example, our GPLC model (blue) is able to give different estimates

of variance according to the observed data, in contrast to the standard GP model (red),

whose predictive variances do not vary greatly among different times. The Bayesian

treatment of GP regression typically requires using Markov Chain Monte Carlo methods

to obtain posterior samples of the hyperparameters, as the posterior distributions are

usually not analytically tractable. Alternatively, one can simply find a point estimate

of the hyperparameters (e.g. a maximum a posteriori (MAP) estimate), or, to take a

non-Bayesian approach, find an estimate of the parameters (e.g. a maximum likelihood

estimate (MLE)) using the likelihood function without specifying a prior. Finding MAP

and MLE may take less computation, but the estimate can be a local maximum and

therefore not very accurate. Also, a point estimate doesn’t capture uncertainty. We only

consider the “full” Bayesian approach in this work, i.e. the method which involves using

MCMC to obtain posterior samples of the hyperparameters.

Despite their long history, simplicity and flexibility, GP models haven’t been widely

used until recent years. One reason for this is the intensive computation required, mainly

due to the n3 operation of inverting the covariance matrix.

Several fast but approximate methods for Gaussian Process models have been devel-

oped. We show in this work how such approximations to the posterior distribution for

parameters of the covariance function in a Gaussian process model can be used to speed

up sampling, using either of two schemes, based on “mapping to a discretizing chain”

or “mapping with tempered transitions”, following the general scheme of constructing

efficient MCMC methods using temporary mapping and caching techniques due to Neal
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(2006). Both schemes produce an exactly correct MCMC method, despite using an ap-

proximation to the posterior density for some operations.

1.2 The standard GP regression model

Standard GP regression models are widely used for non-linear regression problems in

various fields, including machine learning, finance, engineering, and statistics. We give a

brief introduction below. Detailed discussion can be found in Rasmussen and Williams

(2006), Neal (1998), and Bishop (2007).

In a non-linear regression problem, the aim is to find the relationship between a

vector of covariates x of length p and a scalar response y, using n observed pairs

(x1, y1), ..., (xn, yn), and then make predictions for yn+1, yn+2, ... corresponding to xn+1, xn+2....

We can express this relationship in terms of a regression function, f , and random resid-

uals, εi:

yi = f(xi) + εi (1.1)

In the standard Gaussian process regression model, the random residuals, εi, are

assumed to have i.i.d. Gaussian distributions with mean 0 and a constant variance σ2.

Bayesian GP models assume that the noise-free regression function f comes from

a Gaussian Process which has prior mean function zero and some specified covariance

function. Note that a zero mean prior is not a requirement — we could specify a non-zero

prior mean function m(x) if we have a priori knowledge of the mean structure. Using a

zero mean prior just reflects our prior knowledge that the function is equally likely to be

positive or negative. It doesn’t mean we believe the actual function will have an average

over its domain of zero.

The covariance function could be fixed a priori, but more commonly is specified in

terms of unknown hyperparameters, θ, which are then estimated from the data. Given

the values of the hyperparameters, the vector of responses, y, follows a multivariate
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Gaussian distribution with zero mean and a covariance matrix given by

Cov(yi, yj) = K(xi, xj) + δijσ
2 (1.2)

where K(xi, xj) is the covariance function of f , so that Cov(f(xi), f(xj)) = K(xi, xj),

and δij = 0 when i 6= j, with δii = 1. Any function K that always leads to a positive

semi-definite covariance matrix can be used as a covariance function. One example is the

squared exponential covariance function with isotropic length-scale:

K(xi, xj) = c2 + η2 exp

(
−‖xi − xj‖

2

ρ2

)
(1.3)

Here, c is a fairly large constant (not excessively large, to avoid numerical singularity).

η, ρ, and σ (from (1.2)) are hyperparameters — η controls the magnitude of variation

of f , ρ is a length scale parameter for the covariates, and σ is the residual standard

deviation. We can instead assign a different length scale to each covariate, which leads

to the squared exponential covariance function with automatic relevance determination

(ARD):

K(xi, xj) = c2 + η2 exp

(
−

p∑
k=1

(xik − xjk)2

ρ2
k

)
(1.4)

We will use the squared exponential form of covariance function from (1.3) or (1.4) in

most of this work.

When the values of the hyperparameters are known, the predictive distribution of y∗

for a test case x∗ based on observed values x = (x1, ..., xn) and y = (y1, ..., yn) is Gaussian

with the following mean and variance (Rasmussen and Williams, 2006):

E(y∗|x, y, x∗) = kTC−1y (1.5)

Var(y∗|x, y, x∗) = v − kTC−1k (1.6)
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In the equations above, k is the vector of covariances between y∗ and each of y1, . . . , yn,

C is the n × n covariance matrix of the observed y, and v is the prior variance of y∗,

which is Cov(y∗, y∗) = K(x∗, x∗) + σ2 from (1.2).

When the values of the hyperparameters (denoted as θ) are unknown and there-

fore have to be estimated from the data, we put priors on them (typically independent

Gaussian priors on the logarithm of each hyperparameter), and obtain the posterior dis-

tribution p(θ|x, y) ∝ N (y|0, C(θ))p(θ). The predictive mean of y∗ can then be computed

by integrating over the posterior distribution of the hyperparameters:

E(y∗|x, y, x∗) =

∫
Θ

k(θ)TC(θ)−1y · p(θ|x, y)dθ (1.7)

Letting E = E(y∗|x, y, x∗), the predictive variance is given by

Var(y∗|x, y, x∗) = Eθ[Var(y∗|x, y, x∗, θ)] + Varθ[E(y∗|x, y, x∗, θ)] (1.8)

=

∫
Θ

[
v(θ)− k(θ)TC(θ)−1k(θ)

]
p(θ|x, y)dθ

+

∫
Θ

[
k(θ)TC(θ)−1y − E

]2
p(θ|x, y)dθ (1.9)

Finding C−1 directly takes time proportional to n3, but we do not have to find the

inverse of C explicitly. Instead we find the Cholesky decomposition of C, denoted as R =

chol(C), for which RTR = C and R is an “upper” triangular matrix (also called a “right”

triangular matrix). This also takes time proportional to n3, but with a much smaller

constant factor. We then solve RTu = y for u using a series of forward subsititutions

(taking time proportional to n2). From R and u, we can compute the likelihood for θ,

which is needed to compute the posterior density, by making use of the expressions

yTC−1y = yT (RTR)−1y = yTR−1
(
RT
)−1

y = uTu (1.10)
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and

det(C) = det(R)2 =
n∏
i=1

r2
ii (1.11)

where rii is the ith diagonal element on R. Similarly, equations (1.5) and (1.6) can be

reformulated to use R rather than C−1.

1.3 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo methods are a class of algorithms for sampling from proba-

bility distributions (usually ones that are difficult to sample from using other methods)

based on constructing Markov Chains that are defined such that their equilibrium distri-

bution is the desired probability distribution. MCMC methods are extensively used in

fields that require scientific computation, such as Bayesian inference.

Neal (1993), Casella and Robert (2005), Liu, J. (2009), as well as many other text-

books provide detailed discussions on this topic. We only give a very brief introduction

below.

Suppose we wish to draw samples from a target distribution π(x). We can construct

a Markov Chain with transition probabilities T (x′|x), such that

• This transition leaves π invariant. In other words,

∫
π(x)T (x′|x)dx = π(x′) (1.12)

• This transition is irreducible, meaning that it is possible to get to any state from

any state.

• This transition is aperiodic, meaning that the chain does not explore the state space

in a cyclic way.

If all the above conditions are met, then after the chain is run for a sufficiently long time,
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the distribution of the states x will be close to the target distribution π(x), also called

the “equilibirum” distribution.

We can easily construct such a chain using the Metropolis algorithm (Metropolis et

al., 1953). Let x(k) be the state of the kth time step of a Markov chain, then

• Starting from x(k), propose to move to x∗ according to some proposal density q(x∗|x)

which satisfies

q(x∗|x) = q(x|x∗)

i.e. q(x∗|x) must be symmetric.

• Accept x∗ with probability

A(x∗|x(k)) = min

(
1,

π(x∗)

π(x(k))

)
(1.13)

by drawing a sample U from Unif(0,1) and setting

x(k+1) =


x∗ if U ≤ A(x∗|x(k))

x(k) if U > A(x∗|x(k))

It’s easy to show that a Markov chain constructed by the Metropolis algorithm satisfies

the “detailed balance” condition, which is that for all x and x′,

π(x)T (x′|x) = π(x′)T (x|x′) (1.14)

Starting from x, if we accept a proposal x′ = x∗, then
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π(x)T (x′|x) = π(x)q(x∗|x)A(x∗|x)

= π(x)q(x∗|x) min

(
1,
π(x∗)

π(x)

)
= q(x∗|x) min (π(x), π(x∗))

= π(x∗)q(x|x∗) min

(
1,
π(x)

π(x∗)

)
= π(x∗)q(x|x∗)A(x|x∗)

= π(x′)T (x|x′)

It’s trivial to show that (1.14) holds when x′ = x, i.e. when the proposal is rejected.

A Markov chain that satisfies the detailed balance condition is called a reversible

Markov chain. Reversibility implies invariance:

∫
π(x)T (x′|x)dx =

∫
π(x′)T (x|x′)dx

= π(x′)

∫
T (x|x′)dx

= π(x′)

Whether a Metropolis Markov chain is irreducible and aperiodic depends on π and q.

If we wish to use a non-symmetric proposal density q(x′|x), then we should accept

the proposal x∗ with the following probability:

A(x∗|x) = min

(
1,
π(x∗)q(x|x∗)
π(x)q(x∗|x)

)
(1.15)

This generalization of the Metropolis algorithm is called the Metropolis-Hastings algo-

rithm (Hastings, 1970).

One way to sample from a univariate distribution with density function π(x) is to

uniformly draw points (x1, y1), ..., (xn, yn) from a rectangle that covers the support of x
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and the range of π(x), then discard the points where yi > π(xi). The remaining x values

will then form a random sample of π(x). However, there are two major drawbacks of this

method: first, the density function π(x) may not be easily bounded (especially if it is

not normalized) and therefore the rectangle cannot be easily defined; second, when the

support of x is (−∞,∞), this method is not applicable.

Slice sampling (Neal, 1997) is a way to construct a Markov chain that will “sample

from under the density curve”. Given a univariate distribution with density π(x) ∝ ρ(x),

with ρ(x) being the unnormalized density, the algorithm operates this way:

• Given a current point, x(k) = x0, we draw a height, y0, uniformly from (0,ρ(x0)).

• From (x0, y0), we attempt to “step out” of the density curve with interval

(x0 − wu, x0 + w(1− u))

where u is drawn uniformly from (0,1), and w is a pre-set length.

• If both ends of this interval have stepped out of the density curve (i.e., both ρ(x0−

wu) and ρ(x0 + w(1 − u)) are less than y0), then we stop. Otherwise, we step

outwards from the ends by a distance w at each step until both ends are outside.

Call this interval (L,R).

• Draw x∗ uniformly from (L,R). If x∗ is under the density curve, i.e. ρ(x∗) ≥ y0

then x∗ is our new point. Otherwise, we narrow the interval by setting either L or

R to x∗, keeping x0 inside the interval, and then repeat this step.

The detailed balance condition holds for this algorithm. For multivariate distribu-

tions, we can simply update one variate at a time. Figure 1.2 illustrates this procedure.

Both the Metropolis sampler and the slice sampler have “tuning” parameters. For

Metropolis, the parameters for the proposal distribution can be adjusted (for instance,

the standard deviations for a Gaussian proposal). For slice sampling, the step-out length,
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Figure 1.2: Univariate step-out slice sampling. Starting at x0, a first interval (xL =
x0 − wu, xR = x0 + w(1 − u)) is formed. xR steps out of the curve, but xL remains
“in” the curve. The interval then gets extended to the left by a length of w. Now
x2 = x0 − wu − w steps “out” of the curve. x1 is uniformly drawn from this interval.
Since it is under the density curve, it becomes the next state.
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w, as well as the maximum number of step-outs can be tuned. The values of these tuning

parameters can affect the performance of the Markov chain. However, there is usually

no good way to find the optimal values of these tuning parameters other than trial and

error.

The Metropolis sampler is generally hard to tune. If we update one parameter at

a time based on a univariate proposal distribution, to construct an efficient MCMC

method, we have to assign an appropriate value for the proposal standard deviation for

each hyperparameter or latent variable so that the acceptance rate on each variable is

neither too big nor too small (generally, between 20% and 80% is acceptable, though

the optimal value is typically unknown). There is generally no good way to find out

what tuning parameter value is the best for each variable other than trial and error. For

high-dimensional problems, tuning the chain is very difficult.

Slice sampling is relatively easier to tune. It does also have tuning parameters, but

the performance of the chain is not very sensitive to the tuning parameters. Figure 2.7

of Thompson (2011) demonstrates that step-out sizes from 1 to 1000 all lead to similar

computation time, while a change in proposal standard deviation from 1 to 1000 for a

Metropolis sampler can result in a MCMC which is 10 to 100 times slower.

1.4 Measuring and Comparing the efficiency of sam-

plers

The efficiency of a MCMC sampler is usually measured by the autocorrelation time τ of

its chain (see Neal, 1993):

τ = 1 + 2
∞∑
i=1

ρi (1.16)

where ρi is the lag-i autocorrelation for some function of interest. Roughly speaking, the

autocorrelation time can be viewed as the number of steps of a Markov chain we need to
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simulate in order to obtain an independent sample. In practice, with an MCMC sample

of size M , we can only find estimates, ρ̂i, of autocorrelations up to lag i = M − 1. To

avoid excessive variance from summing many noisy estimates, we typically estimate τ by

τ̂ = 1 + 2
k∑
i=1

ρ̂i (1.17)

where k is a point where for all i > k, ρ̂i is not significantly different from 0.

To compare the efficiency of two different samplers (that are used to sample from the

same target distribution), we have to adjust for the possibility that an iteration (Markov

chain step) of sampler A takes a different amount of time than that of sampler B. Time per

iteration can be judged by counting the number of evaluations of the probability density

of the target distribution, as it is often the dominating factor of MCMC computation.

However, sometimes auxiliary operations can take a significant portion of time. For

example, our MCMC with temporary mapping methods use another distribution, π∗,

to help create the temporary discretizing chain. Even though the computation of π∗(x)

is typically much faster than that of π(x), it cannot be ignored. In this paper, we

will compare methods with respect to autocorrelation time of the log likelihood. For a

fair comparison, we multiply the estimate of each method’s autocorrelation time by the

average CPU time it needs to obtain a new sample point.

1.5 Outline of the Remainder of the Thesis

We propose a Gaussian Process regression model which can deal with heteroscedastic

residuals in Chapter 2. We also discuss in detail a related model by Goldberg et al. (1998),

and show how full Bayesian inference can be implemented for this model. In Chapter 3,

we discuss a general Markov Chain Monte Carlo framework using temporary mapping

and caching, and present two implementations of GP regression under this framework.

We give the conclusion in the last chapter, and discuss possibilities for future work.



Chapter 2

Heteroscedastic GP Regression

Models

Standard non-linear regression models (including the standard GP regression models we

discussed in Chapter 1) typically assume that the variance of the residuals is constant

across all observations. Many of these models also assume that the distribution of the

residuals is Gaussian. However, these assumptions are not always realistic in practice

(Silverman’s motorcycle data in Chapter 1 is a good example of this). In this chapter, we

present a GP regression model which not only addresses the non-constant variance issue,

but also doesn’t make assumptions on the distribution of the residuals. We compare our

model with that of Goldberg et al. (1998), which addresses only non-constant variance,

and extend their earlier work to a full Bayesian version.1

1Part of this chapter originally appeared in Wang and Neal (2012).

14
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2.1 A GP regression model with a latent covariate

In this work, we consider adding a latent variable, w, into the model as an unobserved

input. The regression equation then becomes

yi = g(xi, wi) + ζi. (2.1)

where ζi ∼ N(0, σ2)

In this setting, the latent value wi has some known random distribution, the same

for all i. If we view g(xi, wi) as a function of xi only, its value is random, due to the

randomness of wi. So g is not the regression function giving the expected value of y for

a given value of x — that is given by the average value of g over all w, which we write

as f(x):

f(x) = E(y|x) =

∫
g(x,w)p(w)dw (2.2)

where p(w) is the probability density of w. Note that (2.2) implies that the term ζi,

which we assume has i.i.d. Gaussian distribution with constant variance, is not the real

residual of the regression, since

ζi = yi − g(xi, wi) 6= yi − f(xi) = εi

where εi is the true residual.

We could have omitted ζi, letting wi express all randomness in yi. We put ζi in the

regression for two reasons. First, the covariance function for g can sometimes produce

nearly singular covariance matrices, which are computationally non-invertible because of

round-off error. Adding a small diagonal term can avoid this computational issue without

significantly changing the properties of the covariance matrix. Secondly, the function g

will produce a probability density function for ε that has singularities at points where

the derivative of g with respect to w is zero, which is probably not desired in most
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applications. Adding a jitter term ζi smooths away such singularities.

We will model g(x,w) using a GP with a squared exponential covariance function

using ARD, for which the covariance between training cases i and j, with latent values

wi and wj, is

Cov(yi, yj) = K((xi, wi), (xj, wj)) + σ2δij (2.3)

= c2 + η2 exp

(
−

p∑
k=1

(xik − xjk)2

ρ2
k

− (wi − wj)2

ρ2
p+1

)
+ σ2δij

We choose independent standard normals as the distributions for w1, ..., wn. The mean

for the wi is chosen to be zero, but since the squared exponentianl covariance function

depends on w only through |wi−wj|, any mean would work just as well. The variance of

the wi is fixed at 1 because the effect of a change of scale of wi can be achieved instead

by a change in the length scale parameter ρp+1.

We write p(w) for the density for the vector of latent variables w, and p(θ) for the

prior density of all the hyperparameters (denoted as a vector θ). The posterior joint

density for the latent variables and the hyperparameters is

p(w, θ|x, y) ∝ N (y|0, C(θ, w))p(w)p(θ) (2.4)

where N (a|µ,Σ) denotes the probability density of a multivariate Gaussian distribution

with mean µ and covariance matrix Σ, evaluated at a. C(θ, w) is the covariance matrix

of y, which depends on θ and w (as well as the covariates).

The prediction formulas for GPLC models are similar to (1.7) and (1.8), except that

in addition to averaging over the hyperparameters, we also have to average over the

posterior distribution of the latent variables in the observed cases, w = (w1, ..., wn), and

the latent variable in the new case, w∗:
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E(y∗|x, y, x∗) =

∫
W∗

∫
W

∫
Θ

k(θ, w, w∗)
TC(θ, w)−1y p(θ, w|x, y)p(w∗)dθdwdw∗ (2.5)

Var(y∗|x, y, x∗) = Eθ,w[Var(y∗|x, y, x∗, θ, w)] + Varθ,w[E(y∗|x, y, x∗, θ, w)] (2.6)

=

∫
W∗

∫
W

∫
Θ

[
v(θ, w∗)− k(θ, w, w∗)

TC(θ, w)−1k(θ, w, w∗)
]
p(w, θ|x, y)p(w∗)dθdwdw∗

+

∫
W∗

∫
W

∫
Θ

[
k(θ, w, w∗)

TC(θ, w)−1y − E
]2
p(w, θ|x, y)p(w∗)dθdwdw∗

where E = E(y∗|x, y, x∗)

Note that the vector of covariances of the response in a test case with the responses

in training cases, written as k(θ, w, w∗) in (2.5) and (2.6), depends on, w∗, the latent

value for the test case. Since we do not observe w∗, we randomly draw values from the

prior distribution of w∗, compute the corresponding expectation or variance and take the

average. Similarly, the prior variance for the response in a test case, written v(θ, w∗)

above, depends in general on w∗ (though not for the squared exponential covariance

function that we use in this work).

To see that this model allows residual variances to depend on x, and that the residuals

can have non-Gaussian distributions, we compute the Taylor-expansion of g(x,w) at

w = 0:

g(x,w) = g(x, 0) + g′2(x, 0)w +
w2

2
g′′2(x, 0) + ... (2.7)

where g′2 and g′′2 denotes the first and second order partial derivatives of g with respect

to its second argument (w). If we can ignore the second and higher order terms, i.e. the

linear approximation is good enough, then the response given x is Gaussian, and

Var[g(x,w)] ≈ 0 + [g′2(x, 0)]2Var(w) = [g′2(x, 0)]2 (2.8)
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Figure 2.1: How GPLC can produce a non-Gaussian distribution of residuals: Since We
do not observe w, the association between x and y is represented by the thick curve
E[(x+w)2|x] = x2 + 1. One can clearly see that y is non-symmetrical with respect to its
mean (therefore non-Guassian). Actually y has a Non-central Chi-squared distribution
(Sankaran, 1959)

.

which depends on x when g′2(x, 0) depends on x (which typically is the case when g is

drawn from a GP prior). Thus in this case, the model produces Gaussian residuals with

input-dependent variances.

If the high-order terms in (2.7) cannot be ignored, then the model will have non-

Gaussian, input-dependent residuals. For example, consider g(x,w) = (x + w)2, where

the second order term in w clearly cannot be ignored. Conditional on x, g(x,w) follows a

non-central Chi-Squared distribution. Figure 2.1 illustrates that at x = 3, an unobserved

normally distributed input w (with zero mean and standard deviation 1) translates into

a non-Gaussian output y.

Figure 2.2 illustrates how an unobserved covariate can produce heteroscedasticity.

The data in the left plot are generated from a GP, with xi drawn uniformly from [0,5]

and wi drawn from N(0, 1). The hyperparameters of the squared exponential covariance

function were set to η = 3, ρx = 0.8, and ρw = 3. Supposing we only observe (x, y), the
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Figure 2.2: Heteroscedasticity produced by an unobserved covariate. The left plot shows
a sample of x and y from the GP prior, with w not shown. The right plot shows 19 thin
curves of g(xi, wi) (for the same g as on the left) where, for the jth curve, the wi are
fixed to the 5jth percentile of the standard normal.

data is clearly heteroscedastic, since the spread of y against x changes when x changes.

For instance, the spread of y looks much bigger when x is around 1.8 than it is when x is

near 3.5. We also notice that the distribution of the residuals can’t be Gaussian, as, for

instance, we see strong skewness near x = 5. These plots show that if an important input

quantity is not observed, the function values based only on the observed inputs will in

general be heteroscedastic, and non-Gaussian (even if the noise term ζi is Gaussian). Note

that although an unobserved input quantity will create heteroscedasticity, our model can

work well even if no such quantity really exists. The model can be seen as just using the

latent variable as a mathematical trick, to produce changing residual variances. Whether

or not there really exists an unobserved input quantity doesn’t matter (though in practice,

unobserved quantities often do exist).

We’ve been focussing on regression problems with only one output (a scalar response),

though the GPLC model can be easily extended to problems with multiple outputs (vector
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response) by introducing multiple latent variables, e.g. one for each output:

yij = gj(xi, w1, ..., wq) + ζij, j = 1, ..., q (2.9)

2.2 A GP regression model with a latent variance

Goldberg, Williams, and Bishop (1998) proposed a GP treatment of regression with

input-dependent residuals. In their scheme, a “main” GP models the mean of the re-

sponse just like a standard GP regression model, except the residuals are not assumed to

have constant variance — a secondary GP is used to model the logarithm of the standard

deviation of the residuals, which depends on the input. The regression equation looks

the same as in (1.1):

yi = f(xi) + εi (2.10)

but the residuals ε1, ...εn do not have the same variance — instead, the logarithm of the

standard deviation zi = logSD[εi] depends on xi through:

zi = r(xi) + Ji (2.11)

f(x) and r(x) are both given (independent) GP priors, with zero mean and covariance

functions Cy and Cz, which have different hyperparameters (e.g. (ηy, ρy) and (ηz, ρz)). Ji

is a Gaussian “jitter” term (see Neal, 1997) which has i.i.d. Gaussian distribution with

zero mean and standard deviation σJ (a preset constant, usually a very small number,

e.g. 10−3). Writing x = (x1, ..., xn), y = (y1, ..., yn), θy = (ηy, ρy), θz = (ηz, ρz), and z =

(z1, ..., zn), the posterior density function of the latent values and the hyperparameters is

p(θy, θz, z|x, y) ∝ p(y|x, z, θy)p(z|x, θz)p(θy, θz) (2.12)

∝ N (y|0, Cy(θy, z))N (z|0, Cz(θz))p(θy, θz)
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where Cy is the covariance matrix for y (for the “main” GP), Cz is the covariance matrix

for z (for the “secondary” GP) and p(θy, θz) represents the prior density for the hyper-

parameters (typically independent Gaussian priors for their logarithms). The predictive

mean can be computed in a similar fashion as the prediction of GPLC, but instead of

averaging over w, we average over z. To compute the covariance vector k, we need values

of zn+1, which we can sample from p(zn+1|z1, ..., zn).

Alternatively, instead of using a GP to model the logarithm of the residuals standard

deviations, we can set the standard deviations to the absolute values of a function mod-

elled by a GP. That is, we let SD(εi) = |zi|, with zi = r(xi)+Ji. So the regression model

can be written as

yi = f(xi) + r(xi)ui (2.13)

where ui
iid∼ N(0, 1), which is symmetrical around zero, so r(xi)ui has the same distribu-

tion as |r(xi)|ui.

This is similar to modelling the log of the standard deviation with a GP, but it

does allow the standard deviation, |zi|, to be zero, whereas exp(zi) is always positive,

and it is less likely to produce extremely large values for the standard deviation of a

residual. A more general approach is taken by Wilson and Ghahramani (2010), who use

a parametrized function to map values modelled by a GP to residual variances, estimating

the parameters from the data.

In the original paper by Goldberg et al., a toy example was given where the hyperpa-

rameters are all fixed, with only the latent values sampled using MCMC. In this work,

we will take a full Bayesian approach, where both the hyperparameters and the z values

are sampled from (2.12). In addition, we will discuss fast computation methods for this

model in Section 2.4.
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2.3 Relationships between GPLC and other models

We will show in this section that GPLC can be equivalent to the a standard GP regression

model or to a GPLV model, when the covariance function is suitably specified.

Suppose the function g(x,w) in (2.1) has the form

g(xi, wi) = h(xi) + σwi (2.14)

where wi ∼ N(0, 1) and here we assume ζi = 0. If we only observe xi but not wi, then

(2.14) is a regression model with i.i.d. Gaussian residuals with mean 0 and variance σ2,

which is equivalent to the standard GP regression model (1.1), if we give a GP prior

to h. If we specify a covariance function that produces such a g(x,w), then our GPLC

model will be equivalent to the standard GP model. Below, we compute the covariance

between training cases i and j (with latent values wi and wj) to find out the form of the

appropriate covariance function.

Let’s put a GP prior with zero mean and covariance function K1(xi, xj) on h(x), and

an independent Gaussian prior with zero mean and variance λ2 on σ. Since the values

of g(x,w) are a linear combination of independent Gaussians, they will have a Gaussian

process distribution, conditional on the hyperparameters defining K1. Now given x and

w, the covariance between cases i and j is

Cov[g(xi, wi), g(xj, wj)] = E[(h(xi) + σwi)(h(xj) + σwj)]

= E[h(xi)h(xj)] + wiwjE(σ2)

= K1(xi, xj) + λ2wiwj (2.15)

Therefore, if we put a GP prior on g(x,w) with zero mean and covariance function

K[(xi, wi), (xj, wj)] = K1(xi, xj) + λ2wiwj (2.16)
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the results given by GPLC will be equivalent to standard GP regression with covariance

function K1 plus residuals of unknown standard deviation having a Gaussian prior. In

practice, if we are willing to make the assumption that the residuals have equal variances

(or know this as a fact), this modified GPLC model is not useful, since the complexity

of handling latent variables computationally is unnecessary. However, consider a more

general covariance function

K[(xi, wi), (xj, wj)] = K1[(xi, wi), (xj, wj)] +K2[(xi, wi), (xj, wj)] (2.17)

whereK1[(xi, wi), (xj, wj)] = exp
(
−
∑p

k=1(xik − xjk)2/ρ2
k − (wi − wj)2/ρ2

p+1

)
is a squared

exponential covariance function with ARD, and K2[(xi, wi), (xj, wj)] =
∑p

k=1 γ
2
kxikxjk +

γ2
p+1wiwj is a linear covariance function with ARD. Then the covariance function (2.16)

can be obtained as a limiting case of (2.17), when ρp+1 goes to infinity in K1 and γ1, ..., γp

all go to zero. Therefore, we could use this more general model, and let the data choose

whether to (nearly) fit the simpler standard GP model.

Similarly, if we believe that the function g(x,w) is of the form

g(x,w) = h1(x) + wh2(x) (2.18)

then with h1 and h2 independently having Gaussian Process priors with zero mean and

covariance functions K1 and K2, conditional on x and w, the covariance between case i

and case j is

Cov[g(xi, wi), g(xj, wj)] = E[(h1(xi) + wih2(xi))(h1(xj) + wjh2(xj))]

= E[h1(xi)h1(xj)] + wiwjE[(h2(xi)h2(xj)]

= K1(xi, xj) + wiwjK2(xi, xj) (2.19)
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Therefore, we can use a GPLC model with a covariance function of the form

K[(xi, wi), (xj, wj)] = K1(xi, xj) + wiwjK2(xi, xj) (2.20)

to model the function in (2.18).

Now consider the GPLV model (2.13): if we put independent GP priors on f(xi) and

r(xi), each with zero mean, and covariance functions K1 and K2, respectively, then model

(2.13) is equivalent to the modified GPLC model above with covariance function (2.20).

The hyperparameters of K1 of both models should have the same posterior distribution,

as would the hyperparameters of K2. Notice that the two models have different latent

variables: the absolute value of the latent variable in GPLC, |wi|, is the absolute value

of the ith (normalized) residual; the latent variable in GPLV is zi = r(xi), which is plus

or minus the standard deviation of the ith residual.

2.4 Computation

Bayesian inference for GP models is based on the posterior distribution of the hyperpa-

rameters and the latent variables. Unfortunately this distribution is seldom analytically

tractable. We usually use Markov Chain Monte Carlo to sample the hyperparameters

and the latent values from their posterior distribution.

Metropolis sampling and slice sampling are among the most commonly used MCMC

algorithms. Since slice samplers are generally easier to tune than Metropolis samplers,

in this work, we use univariate step-out slice sampling for regular GP regression models

and GPLC models (for both the hyperparameters and the latent variables). For GPLV,

since the latent values are highly correlated, regular Metropolis and slice samplers do not

work well. We will give a modified Metropolis sampler that works better than both of

these simpler samplers.
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2.4.1 Major computations for GP models

Evaluating the log of the posterior probability density of a GP model is typically domi-

nated by computing the covariance matrix, C, and finding the Cholesky decomposition

of C, with complexities pn2 and n3, respectively.

For both standard GP models and GPLV models, updates of most of the hyperparam-

eters require that the covariance matrix C be recomputed, and hence also the Cholesky

decomposition (denoted as chol(C)). For GPLC, when the ith latent variable is updated,

the ith row and ith column need to be updated. For this we also need to find the Cholesky

decomposition of the new covariance matrix.

Things are slightly more complicated for GPLV, since the model consists of two GPs,

with two covariance matrices. When one of the hyperparameters for the main GP (de-

noted as θy) is changed, the covariance matrix for the main GP, Cy, is changed, and thus

chol(Cy) has to be recomputed. However, Cz, the covariance matrix for the secondary

GP, remain unchanged. When one of θz, the hyperparameters of the secondary GP, is

changed, Cy (and chol(Cy)) remain unchanged, but Cz and chol(Cz) must be recomputed.

When one of the latent values, say the ith, is changed, Cz remains unchanged as it only

depends on x and θz, but the ith entry on the diagonal of Cy is changed. This minor

change to Cy requires only a rank-1 update of chol(Cy) (Sherman and Morrison, 1950),

with complexity n2. We list the major operations for the GP models discussed in this

chapter in Table 2.1.

2.4.2 Silverman’s motorcycle-impact dataset

In this section, we report how we fit the standard GP, the GPLC and the GPLV model

for Silverman’s motorcycle-impact data to produce Figure 1.1.

There are 94 observations in the dataset, which we to train a standard GP regression

model and a GPLC model. For the standard GP model, we use a GP prior with zero

mean and a squared exponential covariance function, setting the prior as follows:
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one hyperparameter latent variable(s)

STD
Operation C, chol(C) -

Complexity pn2, n3 -
# of such operations p + 2 -

GPLC
Operation C, chol(C) 1/n of C, all of chol(C)

Complexity pn2, n3 pn, n3

# of such operations p + 3 n

GPLV with Operation Cy, chol(Cy) or Cz, chol(Cz) rank-1 update Cy
Standard Complexity pn2, n3 n2

Metropolis/Slice # of such operations 2p + 2 n

GPLV with Operation Cy, chol(Cy) or Cz, chol(Cz) Cy, chol(Cy)
Modified Complexity pn2, n3 n3

Metropolis # of such operations 2p + 2 1

Table 2.1: Major operations needed when hyperparameters and latent variables change
in GP models. We also include a modified Metropolis method described in Section
2.4.3. Note for each method, the first row “operation” gives the operation needed to up-
date one hyperparameter/latent variable (for GPLV with Modified Metropolis, all latent
variables). The third row “# of such operations” gives the number of the correspond-
ing operations needed to have all the hyperparameters and latent variables updated for
models with ARD covariance functions.

log η ∼ N(4, 22)

log ρ ∼ N(0, 22)

log σ ∼ N(0, 22)

For GPLC, we use a GP prior of the form (2.3), with the prior for the hyperparameters

and latent variables being

log η ∼ N(4, 22)

log ρx ∼ N(0, 22)

log ρw ∼ N(−1, 22)

log σ ∼ N(−1, 22)

wi ∼ N(0, 1) for i = 1, 2, ..., 94
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For both standard GP and the GPLC models, we set the constant c = 50.

For GPLV, we use a GP prior with squared exponential covariance function, and set

the priors for the hyperparameters as follows.

log ηy ∼ N(4, 22)

log ρy ∼ N(0, 22)

log ηz ∼ N(0, 22)

log ρz ∼ N(0, 22)

We use the slice sampler to obtain the posterior samples for both standard GP and the

GPLC models, updating one parameter/latent variable at a time. We use the modified

Metropolis sampler described in Section 2.4.3 for the GPLV model. We run the MCMC

for 10000 iterations for each of the standard GP, the GPLC and the GPLV models. For all

models, we trim the first 2000 obtained samples as burn-in. Using the posterior samples

obtained, we then make predictions on time = 0 to 60 ms in 0.2 ms increments to produce

the predictive mean and predictive variance. For each test case x∗ of GPLC, we randomly

generate 10 latent values of w∗ from its prior, for each MCMC iteration, to make the

prediction using (2.5) and (2.6). For each test case x∗ of GPLV, we randomly generate

10 latent values of z∗ from the conditional distribution of z∗ given values of z1, ..., z94, for

each MCMC iteration, to make the prediction. For the modified Metropolis sampler, we

set a = 0.05, resulting in a 17% acceptance rate on the latent values of zi.

Figures 2.3 and 2.4 show that the chains for GPLC and GPLV appear to have con-

verged.
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Figure 2.3: Trace plots for GPLC on the Silverman’s motorcycle data. The plots (from
the top to the bottom) are trace plots for log η, log ρx, log ρw,

∑
iw

2
i and log σ, respec-

tively. All the trace plots are plotted with the first 2000 iterations trimmed off.
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Figure 2.4: Trace plots for GPLC on the Silverman’s motorcycle data. The plots (from
the top to the bottom) are trace plots for log ηy, log ρy, log ηz, log ρz and

∑
i z

2
i , respec-

tively. All the trace plots are plotted with the first 2000 iterations trimmed off.
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2.4.3 A modified Metropolis sampler for GPLV

Neal (1998) describes a method for updating latent variables in a GP model that uses a

proposal distribution that takes into account the correlation information. This method

proposes to change the current latent values, z, to a z′ obtained by

z′ = (1− a2)1/2z + aRTu (2.21)

where a is a small constant (a tuning parameter, typically slightly greater than zero),

R is the upper triangular Cholesky decomposition for Cz, the covariance matrix for the

N(0, Cz(θz)) prior for z, and u is a random vector of i.i.d. standard normal values. The

transition from z to z′ is reversible with respect to the N(0, Cz(θz)) prior for z, and

leaves the prior for z invariant. Because of this, the Metropolis-Hastings acceptance

probability for these proposals depends only on the ratio of likelihoods for z′ and z, given

by N(y|0, Cy(θy, z)). We will use this method to develop a sampling strategy for GPLV.

Recall the unnormalized posterior distribution for the hyperparameters and latent values

is given by

p(θy, θz, z|x, y) ∝ N (y|0, Cy(θy, z))N (z|0, Cz(θz))p(θy, θz)

To obtain new values θ′y, θ
′
z and z′ based on current values θy, θz and z, we can do the

following:

1. For each of the hyperparameters in θy (i.e. those associated with the “main” GP),

do an update of this hyperparameter (for instance a Metropolis or slice sampling

update). Notice that for each of these updates we need to recompute chol(Cy), but

not chol(Cz), since Cz does not depend on θy.

2. For each of the hyperparameters in θz (i.e. those for the “secondary” GP):

(a) Do an update of this hyperparameter (e.g. with Metropolis or slice sampling).

We need to recompute chol(Cz) for this, but not chol(Cy), since Cy does not
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depend on θz.

(b) Update all of z with the proposal described in (2.21). We need to recompute

chol(Cy) to do this, but not chol(Cz), since Cz depends only on θz but not z.

We repeat this step for m times (a tuning parameter) before moving to the

next hyperparameter in θz.

In this scheme, the hyperparameters θy and θz are not highly correlated and hence

are relatively easy to sample using the Metropolis algorithm. The latent variables z are

highly correlated. The z-values are difficult to sample (since they are correlated and

therefore the chain would have relatively large autocorrelation time), but each update to

the z-values are relatively cheap, so we try to update them as much as possible. Notice

that Cz depends only on x and θz, so a change of z will not result in a change of Cz.

Hence once we update a component of θz (and obtain a new Cz), it makes sense to do

m > 1 updates on z before updating another component of θz, or of θy.

2.5 Experiments

We will compare our GPLC model with Goldberg et al.’s GPLV model, and with a

standard GP regression model having Gaussian residuals of constant variance.

2.5.1 Experimental setup

We use six types of synthetic datasets, with one or three covariates, and Gaussian or

non-Gaussian residuals, as summarized below:
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Dataset p True function Residual SD Residual distribution

U0 1 f(x) 0.2 Gaussian

U1 1 f(x) r(x) Gaussian

U2 1 f(x) r(x) non-Gaussian

M0 3 g(x) 0.3 Gaussian

M1 3 g(x) s(x) Gaussian

M2 3 g(x) s(x) non-Gaussian

Datasets U0, U1 and U2 (shown in Figure 2.5) all have one covariate, which is uni-

formly drawn from [0,1], and the true function is

f(xi) = [1 + sin(4xi)]
1.1

The response yi = f(xi) + εi for U0 is contaminated with Gaussian residuals, εi, with

constant standard deviation 0.2.
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Figure 2.5: Datasets U0, U1 and U2. In each plot, we show the true function as the solid
curve, as well as 500 observations with random noise. One can see that the residuals for
U0 have a constant variance, whereas for U1 and U2 the variance of the residuals change
according to the input. Also, the residuals for U1 have a symmetric distribution, and the
residuals for U2 have a skewed distribution.
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Figure 2.6: Density curve of extreme value residual with mean 0 and variance 1.

For U1, the Gaussian residuals εi have input-dependent standard deviation

SD(εi) = r(xi) = 0.2 + 0.3 exp[−30(xi − 0.5)2]

For U2, the response has a non-Gaussian residual, ωi, with a location-scale extreme

value distribution, EV (µi, σi) (see Leadbetter et al., 2011), with probability density

π(ω) = (1/σ)e(ω−µ)/σ exp
(
−e(ω−µ)/σ

)
.

The mean and variance of ω are

E(ω) = µ+ σγ,

Var(ω) =
π2

6
σ2.

where γ = 0.5772 . . . is Euler’s constant. We set µi = −
√

6γr(xi)/π and σ2
i = 6/π2r(xi)

2

so that the mean of the ωi is zero and its standard deviation is r(xi) (same as those of

ε in U1). The density curve of a EV residual with mean 0 and variance 1 is shown in

Figure 2.6.
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Figure 2.7: 1-D plots for datasets M1 and M2 when x2 = x3 = 0: similar to Figure 2.5,
solid curves are the true functions when x2 = x3 = 0, and dots are the noisy observations.

Datasets M0, M1 and M2 all have three independent, standard normal covariates,

denoted as x = (x1, x2, x3). The true function is

g(x) = [1 + sin(x1/1.5 + 2)]0.9 − [1 + sin(x2/2 + x3/3− 2)]1.5

As we did for U0, U1 and U2, we add Gaussian residuals with constant standard

deviation (0.3) to M0, input-dependent Gaussian residuals to M1 and input-dependent

extreme value residuals to M2. For both M1 and M2, the standard deviations of these

residuals depend on the input covariates as follows:

s(x) = 0.1 + 0.4 exp[−0.2(x1 − 1)2 − 0.3(x2 − 2)2] + 0.3 exp[−0.3(x3 + 2)2]

The reason why we use these particular data sets is that we would like to have some

multi-dimensional datasets that are neither too simple nor too hard to work with. We

illustrate datasets M1 and M2 in Figures 2.7 and 2.8.
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Figure 2.8: 2-D plots for datasets M1 and M2 when x1 = 0: With x1 = 0, the left
plot shows the 2-D surface of the true function; the right plot shows how the standard
deviation of the residuals change as x2 and x3 change.



Chapter 2. Heteroscedastic GP Regression Models 36

2.5.2 Predictive performance of the methods

For each dataset (U1, U2, M1, and M2), we randomly generated 10 different training sets

(using the same program but different random seeds), each with n = 100 observations,

and a test dataset with N = 5000 observations. We obtained MCMC samples using

the methods described in the previous section, dropping the initial 1/4 of the samples

as burn-in, and used them to make predictions for the test cases. For each dataset, we

run 10000 iterations of slice sampler for the standard GP model, 5000 iterations of slice

sampler for the GPLC model and 3000 iterations of the modified Metropolis sampler for

the GPLV model. Trace plots suggest that these number of iterations are enough for the

chains to converge.

In order to evaluate how well each model does in terms of the mean of its predic-

tive distribution, we computed the mean squared error (MSE) with respect to the true

function values f(xi) as follows

MSE(ŷ) =
1

N

N∑
i=1

(
1

M

M∑
j=1

1

L

L∑
k=1

ŷijk − f(xi)

)2

(2.22)

where ŷijk is the predicted value for test case i based on the jth sample of hyperparame-

ters and latent variables corresponding to the training cases and the kth latent variable

corresponding to test case i (for GPLC, it’s randomly sampled from its prior, for GPLV,

it’s sampled from p(z∗|z1, ..., zn)). M is the number of MCMC iterations after discarding

the burn-in iterations, and L is the number of latent variables we randomly sample from

its prior to make prediction for each test case for each MCMC iteration. We also com-

puted the average negative log-probability density (NLPD) of the responses in the test

cases, as follows

NLPD = − 1

N

N∑
i=1

log

(
1

M

M∑
j=1

1

L

L∑
k=1

ψ(y(i)|µ̂ijk, σ̂2
ijk)

)
(2.23)
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where ψ(·|µ, σ2) denotes the probability density for N(µ, σ2), µ̂ijk, σ̂
2
ijk are the predictive

mean and variance for test case y(i) using the hyperparameters and latent variables from

the jth MCMC iteration and the kth randomly sampled latent variable for test case i.

For standard GP, there is no latent variables, so the formulas for MSE and NLPD

reduce to

MSE(ŷ) =
1

N

N∑
i=1

(
1

M

M∑
j=1

ŷij − f(xi)

)2

NLPD = − 1

N

N∑
i=1

log

(
1

M

M∑
j=1

ψ(y(i)|µ̂ij, σ̂2
ij)

)

where ŷij is the predicted value for test case i based on the jth sample of hyperparam-

eters, and µ̂ij and σ̂2
ij are the predictive mean and variance for test case y(i) using the

hyperparameters from the jth MCMC iteration.

We give pairwise comparison of the MSE and the NLPD in Figures 2.9 through 2.14.

For homoscedastic datasets U0, all three models give very similar results. For M0, the

standard GP model gives slightly better results than the other two models (it gives the

smallest MSE 7 out of 10 times, and the smallest NLPD 8 out of 10 times, though the

differences are small). For heteroscedastic datasets (U1, U2, M1 and M2), the plots show

that both GPLC and GPLV give smaller NLPD values than the standard GP model for

almost all datasets with only one exception for U1 and GPLC. At least for the multivariate

datasets, GPLC and GPLV also usually give smaller MSEs than the standard GP model.

This shows that both GPLC and GPLV can be effective for heteroscedastic regression

problems.

Comparing GPLC and GPLV on heteroscedastic datasets, we notice that for datasets

with Gaussian residuals (datasets U1 and M1), GPLC gives very similar MSE and NLPD

values as GPLV (GPLC is slightly worse then GPLV only for NLPD values for U1, where

7 out 10 times it gives bigger NLPD values than GPLV). For non-Gaussian residuals,
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GPLC is the clear winner, giving MSEs and NLPDs that are smaller than for GPLV

most of the time. The numerical MSE and NLPD values are listed in the Appendix.

We ran these experiments on a workstation with an Intel Xeon (R) E31270 CPU @

3.40GHz. It takes around 10 minutes to run 10000 iterations of slice sampler for standard

GP, about 3 to 3.5 hours to run 5000 iterations of slice sampler for GPLC, and about 15

minutes to run 3000 iterations of a modified Metropolis sampler for GPLV.

2.5.3 Comparison of MCMC methods for GPLV models

To test whether or not the modified Metropolis sampler described in Section 2.4.3 is

effective, we compare it to two standard samplers, which update the latent values one by

one using either the Metropolis algorithm or the univariate step-out slice sampler. The

Metropolis algorithm (with Gaussian proposal, updating one parameter at a time) is used

to update the hyperparameters in all of the three samplers. The significant computations

are listed in Table 2.1.

We adjust the tuning parameters so that the above samplers are reasonably efficient.

For the slice sampler, we use a slice width of 1, and allow infinite number of stepping-out.

For the univariate Metropolis sampler, we adjust the standard deviations of the Gaussian

proposals so that the acceptance rate of each parameter variable is around 50%. For the

modified Metropolis sampler, we set a = 0.3 and m = 40. These tuning parameter values

are found by trial and error.

The efficiency of an MCMC method is usually measured by the autocorrelation time,

τ (see Section 1.4). Using the first simulated dataset for U1 as an example, we record the

autocorrelation time of both the hyperparameters and the latent variables. The model

has four hyperparameters (ηy, ρy and ηz, ρz), so it is not too difficult to look at all of

them. But there are n = 100 latent variables, each with its own autocorrelation time.

Instead of comparing all of them one by one, we will compare the autocorrelation time of

the sum of the latent variables as well as the sum of the squares of the latent variables.
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Figure 2.9: Dataset U0: Pairwise comparison of methods using NLPD(Left) and
MSE(right)
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Figure 2.10: Dataset U1: Pairwise comparison of methods using NLPD(Left) and
MSE(right)
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Figure 2.11: Dataset U2: Pairwise comparison of methods using NLPD(Left) and
MSE(right)
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Figure 2.12: Dataset M0: Pairwise comparison of methods using NLPD(Left) and
MSE(right)
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Figure 2.13: Dataset M1: Pairwise comparison of methods using NLPD(Left) and
MSE(right)
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Figure 2.14: Dataset M2: Pairwise comparison of methods using NLPD(Left) and
MSE(right)
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Another measure of sampler efficiency is the time it takes for a sampler to reach

equilibrium, i.e. the stationary distribution of the Markov chain. It is common practice

to look at trace plots of log-probability density values to decide whether or not a chain has

reached equilibrium (this is usually how the number of “burn-in” iterations is decided).

A sampler that takes less time to get a new uncorrelated sample can usually achieve

equilibrium faster, and vice versa, though this is not always the case.

Note that both autocorrelation time and time to reach equilibrium take the number

of iterations of the a Markov chain as their unit of measurement. However, the CPU

time required for an iteration differs between samplers. For a fair comparison, we adjust

τ by multiplying it with the average CPU time (in seconds) per iteration. The result,

which we denote as τ̃ , measures the CPU time a sampler needs to obtain an uncorrelated

sample. Similarly, to fairly compare time to reach equilibrium using trace plots, we will

adjust the number of iterations in the plots so that each entire trace takes the same

amount of time.

We set the initial values of the hyperparameters to be their prior means, and randomly

sample n values from their priors to initialize the latent variables (once these numbers

are set, they are fixed for all the test-runs). We then run the three samplers five times,

all from this fixed set of initial values but with different random seeds. The average

adjusted autocorrelation times are listed in Table 2.2. The modified Metropolis sampler

significantly outperforms the others at sampling the latent variables: it is about 50

to 100 times faster than the regular Metropolis sampler and slice sampler. For the

hyperparameters, the modified Metropolis sampler performs roughly the same as the

standard Metropolis for ηy and ηz, and more than 2 times better than the standard

Metropolis for ρy and ρz. Both of them seems to work better than slice sampler, but the

difference is much smaller than the difference in sampling latent variables.

Figure 2.15 shows selected autocorrelation plots from one of the five runs (adjusted

for computation time). Figure 2.16 gives the trace plots of the three methods for one
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τ̃
t

ηy ρy ηz ρz
∑

i zi
∑

i z
2
i

Modified Metropolis 3.06 4.92 3.09 10.63 0.32 0.46 0.103
Metropolis 2.81 11.21 2.73 27.26 13.78 13.92 0.073

Slice 13.37 16.71 11.85 23.65 37.81 53.81 0.389

Table 2.2: Autocorrelation times multiplied by computation time per iteration of MCMC
methods for GPLV. The last column t is the computation time (in seconds) per iteration.

of the five runs (other runs are similar). It is clear that the modified Metropolis takes

the least time to reach equilibrium. Starting from the prior mean (which seem to be a

reasonable initial point), with log-probability density (LPD) value of approximately −13,

the modified Metropolis method immediately pushes the LPD to 70 at the second step,

and then soon declines slightly to what appears to be the equilibrium distribution. The

other two methods both take much more time to reach this equilibrium distribution.

We conclude that the modified Metropolis is the best of these MCMC method — the

fastest to reach equilibrium, the best at sampling latent values thereafter, and at least

as good at sampling hyperparameters.

2.6 Related work

While standard Gaussian Process regression models assume constant variance of resid-

uals, there is also a growing number of works that address the non-constant variance

problem.

Goldberg et al. (1998) first tackled this problem with their GPLV approach, which

we discussed extensively in this chapter. Several methods proposed later are based on

the GPLV approach.

Kersting et al. (2007) develop an EM-like algorithm that gives the approximate “most

likely” estimates of residuals as well as the hyperparameters. The biggest advantage of

this approach is its fast computation, as it avoids the time-consuming MCMC process.

However, since this approach has the same foundation as Goldberg et al.’s model, it also
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Figure 2.15: Selected autocorrelation plots of MCMC methods for GPLV (with horizontal
scales that adjust for computation time).
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Figure 2.16: Trace plots of log posterior density for MCMC methods for GPLV. The top
plot shows the trace of log-probability density values of the the first 1500 iterations of the
modified Metropolis sampler. The middle plot shows the initial iterations of the regular
Metropolis sampler, with the number adjusted to take the same time as the 1500 standard
Metropolis sampler iterations. The bottom plot is the trace of the initial iterations of
the slice sampler, also with the number adjusted to take the same computation time as
the others.
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shares the same limitations. For instance, this approach also assumes Gaussian residuals,

which means when the residuals are not Gaussian, we expect it will not outperform our

GPLC model in terms of MSE and NLPD. The authors also point out that the algorithm

does not guarantee convergence, and may instead oscillate amongst local maxima. This

problem is later addressed in a related work by Quadrianto et al. (2009), where a Maxi-

mum a posteriori (MAP) type of estimator is used in place of the most likely estimator.

However, this approach still assumes Gaussian residuals, and tends to overfit for a large

number of latent variables and large values of the latent variables, as Lazaro-Gredilla

and Titsias (2011) point out.

Also based on Goldberg et al.’s model, Lazaro-Gredilla and Titsias (2011) take a

variational inference approach, producing approximate estimates (MAP) of the residuals.

This method doesn’t have the overfitting issue the Quadrianto et al.’s approach has. It

also seems to produce better results (in terms of MSE and NLPD) than the previous two

methods on the same benchmark datasets.

Another variational method, proposed by Adams and Stegle (2008), models the data

as the point-wise product of two latent GPs so that the non-stationary variations of ampli-

tude can be inferred. They propose an approximate inference scheme using Expectation

Propagation to reduce computation.

Gaussian Process Regression Network (GPRN), proposed by Wilson, et al. (2012),

combines the ideas of Bayesian neural networks and Gaussian processes. The scalar

response version of the model can be expressed as:

yi = w(xi)
T [f(xi) + σfεi)] + σyzi (2.24)

where εi ∼ N(0, Iq×q) and zi ∼ N(0, 1) are indepdent random noises, w(xi) is a vector of

independent GPs, with wj(xi) having zero mean and covariance function kw, and f(xi)

is a vector of independent GPs, with component j having zero mean and covariance
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function kfj .

If we explicitly separate the dynamic signal and noise correlations, equation (2.24)

can be rewritten as

yi = w(xi)
T f(xi) + σfw(xi)

Tεi + σyzi (2.25)

We can see that the model effectively uses w(xi)
T f(xi) to model the mean function,

and σfw(xi)
Tεi + σyzi to model the residuals. Since the variance of the “noise” for case

i is σ2
f

∑q
j=1wj(xi)

2 + σ2
y, it is input-dependent. The covariance functions of each of

kfi can be entirely different, so the overall covariance function (of the mean function

we are trying to learn) may be switching between region with very different covariance

structures.

Note that GPRN still assumes Gaussian residuals, as the “noise” part of the decom-

position is a linear combination of independent Gaussian random variables. Moreover,

this model is practical when q is small. When q = 1, the model reduces to

yi = w(xi)f(xi) + σfw(xi)εi + σyzi (2.26)

where w, f and ε are all scalars. If we put a GP prior on w(x), the model will behave

similarly to a GPLV model described in (2.13), with the main function being f̃(x) =

w(x)f(x), and the secondary function being r̃(x) =
√
σ2
fw(x)2 + σ2

y .

Some financial time series don’t require a “main” GP, since the mean response can

be taken to be always zero. In this context, Wilson and Ghahramani (2010) use the

“elliptical slice sampling” method of Murray et al. (2010) to sample latent values that

determine the variances of observations. Elliptical slice sampling is related to the modified

Metropolis method used in this thesis. It would be interesting to see how they compare

in a general regression context.

Mooij et al. (2010) presented a model which is very similar to our GPLC model,

where they use a “probability latent variable model” to infer causal association. To
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represent that “X causes Y ”, Mooij et al. assume that the relationship between X and

Y is not deterministic, but disturbed by a latent variable E. They further assume that

E is independent of X, and has a standard normal distribution — an unobserved noise,

which summarizes all other causes of Y . Values for the latent variables are obtained

using a MAP estimator. Although this model and the GPLC model are essentially the

same, they differ substantially in motivation and in the method of implementation. The

Mooij et al. paper is motivated by casual inference, while our model is proposed for

general non-linear regression problems. Mooij et al.’s approach makes inferences based

on a point estimate of the latent variables, while our GPLC is based on the posterior

samples obtained using MCMC methods.



Chapter 3

MCMC with Temporary Mapping

and Caching

3.1 Introduction

Evaluating the posterior probability density function is the most costly operation when

Markov Chain Monte Carlo (MCMC) is applied to many Bayesian inference problems.

One example is the Gaussian Process regression model (see Section 1.2 for a brief in-

troduction), for which the time required to evaluate the posterior probability density

increases with the cube of the sample size. However, several fast but approximate meth-

ods for Gaussian Process models have been developed. We show in this chapter how

such an approximation to the posterior distribution for parameters of the covariance

function in a Gaussian process model can be used to speed up sampling, using either of

two schemes, based on “mapping to a discretizing chain” or “mapping with tempered

transitions”. Both schemes produce an exactly correct MCMC method, despite using an

approximation to the posterior density for some operations. 1

In the next section, we describe a general scheme for contructing efficient MCMC

1Part of this chapter originally appeared in Wang and Neal (2012).

49
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methods using temporary mapping and caching techniques, first introduced by Neal

(2006), which is the basis for both of the schemes for using approximations that are

introduced in this paper.

One possibility for a space to temporarily map to is the space of Markov chain real-

izations that leave a distribution π∗ invariant. Our hope is that if we use such a space

with a π∗ that is a good approximation to π, but faster to compute, then MCMC with

temporary mapping and caching will be faster than MCMC methods using only π.

We then consider how the tempered transiton method due to Neal (1996b) can also

be viewed as mapping temporary to another space. Using this view, we give a different

proof that detailed balance holds for tempered transitions. We then discuss how the

sequence of transitions T̂1, T̂2, ..., Ť2, Ť1 (which collectively form the tempered transition)

should be chosen when they are defined using fast approximations, rather than (as in the

original context for tempered transtions) by modifying the original distribution, π, in a

way that does not reduce computation time.

We apply these two proposed schemes to Gaussian process regression models that

have a covariance function with unknown hyperparameters, whose posterior distribution

must be sampled using MCMC. We discuss several fast GP approximation methods that

can be used to contruct an approximate π∗. We conclude by presenting experiments on

synthetic datasets using the new methods that show that these methods are indeed faster

than standard methods using only π.

3.2 MCMC with Temporary Mapping and Caching

To start, we present two general ideas for improving MCMC — temporarily mapping

to a different state space, and caching the results of posterior density computations for

possible later use.
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3.2.1 Creating Markov transitions using temporary mappings

As is introduced in Section 1.3, we can obtain samples of a target distribution π from

space X using a Markov chain with transition probabilities T (x′|x), such that

∫
π(x)T (x′|x)dx = π(x′) (3.1)

i.e., T (x′|x) leaves the target distribution π invariant. There are many ways to form such

a transition, e.g. the Metropolis algorithm (Metropolis et al., 1953) and slice sampling

(Neal, 1993).

The temporary mapping technique (Neal, 2006) defines such a transition via three

other stochastic mappings, T̂ , T̄ and Ť , as follows:

x
T̂−→ y

T̄−→ y′
Ť−→ x′ (3.2)

where x, x′ ∈ X and y, y′ ∈ Y . Starting from x, we obtain a value y in the temporary

space Y by T̂ (y|x). The target distribution for y has probability mass/density function

ρ(y). We require that ∫
π(x)T̂ (y|x)dx = ρ(y) (3.3)

We then obtain another sample y′ using T̄ (y′|y), which leaves ρ invariant:

∫
ρ(y)T̄ (y′|y)dy = ρ(y′) (3.4)

Finally, we map back to x′ ∈ X using Ť (x′|y), which we require to satisfy

∫
ρ(y′)Ť (x′|y′)dy′ = π(x′) (3.5)

It’s easy to see that the combined transition T (x′|x) =
∫ ∫

T̂ (y|x)T̄ (y′|y)Ť (x′|y′)dydy′
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leaves π invariant:

∫
π(x)T (x′|x)dx =

∫ ∫ ∫
π(x)T̂ (y|x)T̄ (y′|y)Ť (x′|y′)dydy′dx (3.6)

=

∫ ∫
ρ(y)T̄ (y′|y)Ť (x′|y′)dydy′ (3.7)

=

∫
ρ(y′)Ť (x′|y′)dy′ (3.8)

= π(x′) (3.9)

Quite a few existing methods can be viewed as mapping to temporary spaces. For

instance, the technique of temporarily introducing auxiliary variables can be considered

as mapping from x to y = (x, z), where z is a set of auxiliary variables.

3.2.2 Caching values for future re-use

Many MCMC transitions require evalulating the probability density of π, up to a possibly

unknown normalizing constant. For example, each iteration of the Metropolis algorithm

needs the probability density values of both the current state x and the candidate state

x∗. Since these evaluations typically dominate the MCMC computation time, it may be

desirable to save (‘cache’) computed values of π(x) so they can be re-used when the same

state x appears in the chain again.

Caching is always useful for the Metropolis algorithm, since if we reject a proposal

x∗, we will need π(x) for the next transition, and if we instead accept x∗ then it becomes

the current state and we will need π(x∗) for the next transition.

When the proposal distribution is discrete (as it will always be when the state space is

discrete), the probability of proposing an x∗ that was previously proposed can be positive,

so saving the computed value of π(x∗) may be beneficial even if x∗ is rejected. When the

state space is continuous, however, the proposal distributions commonly used are also

continuous, and we will have zero probability of proposing the same x∗ again. But in

this case, as we will see next, caching can still be beneficial if we first map to another
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space with a “discretizing chain”.

3.3 Mapping to a discretizing chain

To take full advantage of both mapping and caching, we propose a temporary mapping

scheme where the temporary space is continuous, but is effectively discrete with regard

to transitions T̄ .

Let R(x′|x) be the transition probabilities for a Markov chain which leaves π∗ invari-

ant. Let R̃(x|x′) = R(x′|x)π∗(x)/π∗(x′) be the reverse transition probabilities, which are

easily shown to be well-defined and to also leave π∗ invariant.

We map from X to Y , a space of realizations of this Markov chain of length K, where

one time step of this chain is “marked”. To map x ∈ X to y ∈ Y , we use a T̂ that

operates as follows:

• Choose k uniformly from 0, ..., K − 1.

• Simulate K − 1− k forward transition steps using R starting at xk = x, producing

states xk+1, ..., xK−1.

• Simulate k reverse transitions using R̃, starting at xk = x, producing states xk−1, ..., x0.

• Set the “marked” time step to k.

The transition T̄ moves the mark along the chain from k to another time step k′ ∈

{0, . . . , K−1}, while keeping the current chain realization, (x0, . . . , xK−1), fixed. The

transition Ť just takes the marked state, so x′ = xk′ . The actual implementation will not

necessarily simulate all K − 1 steps of the discretizing chain — a new step is simulated

only when it is needed. We can then let K go to infinity, so that T̄ can move the mark

any finite number of steps forward or backward.

Figure 3.1 illustrates this scheme. Note that an element y ∈ Y is a chain realization

with a mark placed on the time step k. We write y = (k;x0, ..., xK−1). When we
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x′
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Figure 3.1: Mapping to a discretizing chain and back.

say we “move the mark from k to k′”, we actually use a transition T̄ to move from

y = (k;x0, ..., xK−1) to y′ = (k′;x0, ..., xK−1), where y and y′ share the same chain

realization and differ only on the marked position. We are free to choose the way T̄

moves the mark in any way that leaves ρ invariant — for instance, we can pick an integer

s and propose to move the mark from k to k+s or k−s with equal probabilities. We can

make r such moves within each T̄ update. The discretizing chain makes the state space

effectively discrete, even though the space Y is continuous, and consequently, when we

move the mark around the chain realization, there is a positive probability of hitting a

location that has been visited before.

The transition T̄ has to leave ρ(y) invariant. We compute the ratio of ρ(y′) and ρ(y)

to see how we can construct a such a T̄ . ρ has been implicitly defined in (3.3) as the

distribution resulting from applying T̂ to x drawn from π. The probability to sample y

is given by the simulation process described above (i.e. start from x, simulate K − 1− k
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forward steps using R and k backward steps using R̃), namely, if y = (k;x0, ..., xK−1),

ρ(y) = π(xk)
1

K
R(xk+1|xk) · · ·R(xK−1|xK−2)× R̃(xk−1|xk) · · · R̃(x0|x1)

=
π(xk)

π∗(xk)

1

K
π∗(xk)R(xk+1|xk) · · ·R(xK−1|xK−2)× R̃(xk−1|xk) · · · R̃(x0|x1)︸ ︷︷ ︸

:=A

(3.10)

An expression for ρ(y′) can be similarly obtained for y′ = (k′;x0, ..., xK−1):

ρ(y′) =
π(xk′)

π∗(xk′)

1

K
π∗(xk′)R(xk′+1|xk′) · · ·R(xK−1|xK−2)× R̃(xk′−1|xk′) · · · R̃(x0|x1)︸ ︷︷ ︸

:=A′

(3.11)

We take out a factor of the ratio of densities π/π∗ from both (3.10) and (3.11), and write

the remaining term as A or A′, as indicated in the respective equation. Since R and R̃

are reverse transitions with respect to π∗, if k′ > k, then

π∗(xk)R(xk+1|xk) · · ·R(xk′ |xk′−1)

= R̃(xk|xk+1)π∗(xk+1)R(xk+2|xk+1) · · ·R(xk′|xk′−1)

...

= R̃(xk|xk+1)...R̃(xk′−1|xk′)π∗(xk′) (3.12)

It therefore follows that A = A′. A similar argument shows that A = A′ when k′ ≤ k.

Thus the ratio of ρ(y′) and ρ(y) is

ρ(y′)

ρ(y)
=
π(xk′)/π

∗(xk′)

π(xk)/π∗(xk)
(3.13)

Equation (3.13) implies that to leave ρ invariant we can use a Metropolis type transition,
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T̄ , that proposes to move the mark from k to k′ and accepts the move with probability

min

(
1,
π(xk′)/π

∗(xk′)

π(xk)/π∗(xk)

)

Note that if π = π∗, then the transition T̄ will accept a move of the mark to any other

time step on the discretizing chain, since the discretizing chain actually leaves the target

distribution π∗ invariant and therefore every time step of this chain is a valid sample of

π. If π∗ 6= π, but is very similar to π, we can hope the acceptance rate will be high. In

addition, if the evaluation of π∗(x) takes much less time than that of π(x), mapping to

the discretizing chain and then proposing large moves of the mark can save computation

time, since it effectively replaces evaluations of π with evaluations of π∗, except for the

acceptance decisions.. On the other hand, if π∗ is completely arbitrary, the acceptance

rate will be low, and if the evalution of π∗ is not much faster than π(x), we will not

save computation time. These π∗’s are not useful. We need π∗ to be a fast but good

approximation to π. We will discuss this in the context of GP models in a later section.

Every time we map into a temporary space, we can make multiple T̄ updates (move

the “mark” several times). This way we can take advantage of the “caching” idea, since

sometimes the mark will be moved to a state where π has already been computed, and

therefore no new computation is needed. The number of updates is a tuning parameter,

which we denote as “r”. Another tuning parameter, which we denote as “s”, is the

number of steps of transition R to “jump” when we try to move the mark. Note that

although we only “bring back” (using Ť ) the last updated sample as x′, all of the marked

states are valid samples of π(x), and can be used for computing expectations with respect

to π if desired.
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3.4 Tempered transitions

The “tempered transitions” method of Neal (1996b) can also be viewed as mapping to a

temporary space. This method aims to sample from π using a sequence of distributions

π0, π1, . . . , πn, with π = π0.

For i = 1, . . . , n, let T̂i (called the “up” transition) and Ťi (the “down” transition)

be mutually reversible transitions with respect to the density πi — i.e. for any pair of

states x and x′,

πi(x)T̂i(x
′|x) = Ťi(x|x′)πi(x′) (3.14)

This condition implies that both T̂i and Ťi have πi as their invariant distribution. If

T̂i = Ťi then (3.14) reduces to the detailed balance condition. If T̂i = S1S2...Sk with all

of Si being reversible transitions, then Ťi = SkSk−1...S1 would satisfy condition (3.14).

We map from x ∈ X to y ∈ Y , a space of realizations of tempered transitions, using

a T̂ that operates as follows:

Generate x̂1 from x using T̂1;

Generate x̂2 from x̂1 using T̂2;

...

Generate x̄n from x̂n−1 using T̂n.

Generate x̌n−1 from x̄n using Ťn;

Generate x̌n−2 from x̌n−1 using Ťn−1;

...

Generate x∗ from x̌1 using Ť1.

Note that T̂ is distinct from T̂1, T̂2, ..., T̂n, and Ť is also distinct from Ť1, Ť2, ...Ťn.

We denote an element y ∈ Y as y = (x, x̂1, ..., x̄n, ..., x̌1, x
∗).

T̄ attempts to flip the order of y, accepting the flip with probability

min

(
1,
π1(x̂0)

π0(x̂0)
· · · πn(x̂n−1)

πn−1(x̂n−1)
· πn−1(x̌n−1)

πn(x̌n−1)
· · · π0(x̌0)

π1(x̌0)

)
(3.15)



Chapter 3. MCMC with Temporary Mapping and Caching 58

where x̂0 and x̌0 are synonyms for x and x∗, respectively, to keep notations consistent.

In other words, with this probability, we set y′ to y∗ = (x∗, x̌1, ..., x̄n, ..., x̂1, x) (the order

is reversed); otherwise we sset y′ = y (the order is preserved).

Finally, Ť maps back to x′ ∈ X by taking the first coordinate of y′ (either the original

x or x∗, depending on whether or not the flip was accepted).

Using the temporary mapping perspective, we can show that tempered transitions

are valid updates, leaving π invariant, by defining ρ to be the result of applying T̂ to a

point drawn from π, and then showing that T̄ leaves ρ invariant, and that Ť produces a

point distributed as π from a point distributed as ρ.

The T̂ mapping from x = x̂0 to y = (x̂0, x̂1, ..., x̄n, ..., x̌1, x̌0) involves a sequence of

transitions:

x̂0
T̂1−→ x̂1

T̂2−→ x̂2 −→ · · · −→ x̂n−1
T̂n−→ x̄n

Ťn−→ x̌n−1
Ťn−1−→ x̌n−2 −→ · · · −→ x̌1

Ť1−→ x̌0

The probability density, ρ, for y can be computed from this as

ρ(y) = π0(x̂0)T̂1(x̂1|x̂0) · · · T̂n(x̄n|x̂n−1)Ťn(x̌n−1|x̄n) · · · Ť1(x̌0|x̌1) (3.16)

Similarly,

ρ(y∗) = π0(x̌0)T̂1(x̌1|x̌0) · · · T̂n(x̄n|x̌n−1)Ťn(x̂n−1|x̄n) · · · Ť1(x̂0|x̂1) (3.17)

Also note that the transitions T̂i and Ťi satisfy the mutual reversibility condition

(3.14), which can be rewritten as

T̂i(x
′|x)

Ťi(x|x′)
=
πi(x

′)

πi(x)
(3.18)
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Now we compute the ratio of probability densities of y∗ and y:

ρ(y∗)

ρ(y)
=
π0(x̌0)T̂1(x̌1|x̌0) · · · T̂n(x̄n|x̌n−1)Ťn(x̂n−1|x̄n) · · · Ť1(x̂0|x̂1)

π0(x̂0)T̂1(x̂1|x̂0) · · · T̂n(x̄n|x̂n−1)Ťn(x̌n−1|x̄n) · · · Ť1(x̌0|x̌1)

= π0(x̌0) · T̂1(x̌1|x̌0)

Ť1(x̌0|x̌1)
· · · T̂n(x̄n|x̌n−1)Ťn(x̂n−1|x̄n)

Ťn(x̌n−1|x̄n)T̂n(x̄n|x̂n−1)
· · · Ť1(x̂0|x̂1)

T̂1(x̂1|x̂0)
· 1

π0(x̂0)
(3.19)

= π0(x̌0) · π1(x̌1)

π1(x̌0)
· · · πn(x̄n)

πn(x̌n−1)
· πn(x̂n−1)

πn(x̄n)
· · · π1(x̂0)

π1(x̂1)
· 1

π0(x̂0)
(3.20)

=
π1(x̂0)

π0(x̂0)
· · · πn(x̂n−1)

πn−1(x̂n−1)
· πn−1(x̌n−1)

πn(x̌n−1)
· · · π0(x̌0)

π1(x̌0)
(3.21)

(3.20) follows from (3.18). (3.19) and (3.21) are obtained simply by reordering terms.

From (3.21), we see that the probability of accepting the flip from y to y∗ given by

(3.15) is equal to min(1, ρ(y∗)/ρ(y)), and thus T̄ satisfies detailed balance with respect

to ρ. It is also clear from (3.16) that the marginal distribution under ρ of the first

component of y is π0 = π, and thus Ť maps from ρ to π.

The original motivation of the tempered transition method described by Neal (2006) is

to move between isolated modes of multimodal distributions. The distributions π1, ..., πn

are typically of the same class as π, but broader, making it easier to move between

modes of π (typically, as i gets larger, the distribution πi gets broader, thus making it

more likely that modes have substantial overlap). Evaluating the densities for π1, ..., πn

typically takes similar computation time as evaluating the density for π. Our mapping-

caching scheme, on the other hand, is designed to reduce computation. Ideally, in our

scheme the bigger i is, the faster is the evaluation of πi(x). One possibility for this is

that each πi is an approximation of π, and as i increases the computation of πi becomes

cheaper (but worse).

The two methods we propose in this work are equivalent if the following are all true:

• For mapping to a discretizing chain:

1. The transition R which leaves π∗ invariant is reversible.
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2. s = 2k, i.e. T̄ always attempts to move the mark over an even number of R

updates.

3. r = 1, i.e. T̄ attempts to move the mark only once within each mapping.

• For mapping by tempered transitions:

1. n = 1, i.e., there is only one additional distribution.

2. T̂1 = Ť1 = Rk, i.e. these transitions consist of k updates using R.

When all above are true except that n > 1, so more than one additional distribution is

used in the tempered transitions, we might expect tempered transitions to perform better,

as they propose a new point through the guidance of these additional distributions, and

computations for these additional distributions should be negligible, if they are faster and

faster approximations. On the other hand, we might think that r > 1 will improve the

performance when mapping to a discretizing chain, since then caching could be exploited.

So each method may have its own advantages.

3.5 Application to Gaussian process models

We now show how these MCMC methods can be applied to Bayesian inference for Gaus-

sian process models.

3.5.1 Approximating π for GP models

As discussed in Section 3.3, using a poor π∗ for the discretizing chains on Y , or poor

πi for tempered transitions, can lead to a poor MCMC method which is not useful.

We would like to choose approximations to π that are good, but that can nevertheless

be computated much faster than π. For GP regression models, π will be the posterior

distribution of the hyperparameters, θ.
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Quite a few efficient approximation methods for GP models have been discussed

from a different perspective. For example, Quiñonero-Candela (2007) categorizes these

approximations in terms of “effective prior”. Any approximation method that can be

used to create an approximation of the posterior density for the hyperparameters can be

used here. Most methods that aim to approximate the training (i.e. finding approximated

estimates for the parameters) should be useful. On the other hand, the approximation

method for prediction (i.e. finding approximated response value y∗ corresponding to

some new input covariate x∗) are most likely not useful for the methods discussed in this

chapter. Whether or not a particular method can work well depends on both efficiency

and accuracy. A very fast method that’s less accurate may very well be better than a

slow but accurate method.

Below, we discuss two classes of approximation methods.

Subset of data (SOD)

The most obvious approximation is to simply take a subset of size m from the n observed

pairs (xi, yi) and use the posterior distribution given only these observations as π∗:

π∗(θ) = N (y(m)|0, Ĉ(m)(θ)) p(θ) (3.22)

where p(θ) is the prior for θ, the vector of hyperparameters, and N (a|µ,Σ) denotes the

probability density of a multivariate normal distribution N(µ,Σ) evaluated at a. Ĉ(m)(θ)

is computed based on hyperparameters θ and the m observations in the subset.

Even though the SOD method seems quite naive, it does speed up computation of

the Cholesky decomposition of C from time proportional to n3 to time proportional to

m3. If a small subset (say 10% of the full dataset) is used to form π∗, we can afford to do

a lot of Markov chain updates for π∗, since the time it takes to make these updates will

be quite small compared to a computation of π. So a π∗ formed by this method might
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still be useful.

To form a π∗ using SOD, we need the following major computations, if there are p

covariates:

Operation Complexity

Compute Ĉ(m) pm2

Find chol(Ĉ(m)) m3

Using low-rank plus diagonal matrices

A covariance matrix in a GP model typically has the form C = K + σ2I, where K is

the noise-free covariance matrix, and σ2 is the residual variance. More generally, if the

residual variance differs for different observations, the covariance matrix will be K plus

a diagonal matrix giving these residual variances. If we approximate K by a matrix K̂

with rank m < n, and let Ĉ = K̂ + σ2I, then after writing K̂ = BSBT , where B is

n by m, we can quickly find Ĉ−1 by taking advantage of the matrix inversion lemma

(Woodbury, 1950), which states that

(BSBT +D)−1 = D−1 −D−1B(S−1 +BTD−1B)−1BTD−1 (3.23)

This can be simplified as follows when D = dI, where d is a scalar, B has orthonormal

columns (so that BTB = I), and S is a diagonal matrix with diagonal elements given by
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the vector s, denoted by diag(s):

(B diag(s)BT + dI)−1 = d−1I − d−1IB(diag(1/s) +BTd−1IB)−1BTd−1I (3.24)

= d−1I − d−2B(diag(d/s)/d+BTB/d)−1BT (3.25)

= d−1I − d−1B(diag(d/s) + I)−1BT (3.26)

= d−1I − d−1B(diag((s+ d)/s)))−1B (3.27)

= d−1I −B diag(s/(d(s+ d)))BT (3.28)

Expressions above such as 1/s denote element-by-element arithmetic on the vector operands.

We can use the matrix determinant lemma (Press, et al., 1992) to compute the de-

terminant of Ĉ.

det(BSBT +D) = det(S−1 +BTD−1B) det(D) det(S) (3.29)

When D = dI with d being a scalar, det(D) = dn is trivial, and det(S−1 +BTD−1B) can

be found from the Cholesky decomposition of S−1 +BTD−1B.

Once we obtain Ĉ−1 and det(Ĉ), we can easily establish our π∗:

π∗(θ) = N (y|0, Ĉ)p(θ) (3.30)

The Eigen-exact approximation

Since the noise-free covariance matrix, K, is non-negative definite, we can write it as

K = EΛET =
∑n

i λieie
T
i , where E has columns e1, e2, ..., en, the eigenvectors of K, and

the diagonal matrix Λ has the eigenvalues of K, λ1 ≥ λ2 ≥ ... ≥ λn on its diagonal.

This is known as the eigendecomposition. A natural choice of low-rank plus diagonal

approximation would be Ĉ = K̂ + σ2I where K̂ = BSBT where B is an n ×m matrix

with columns e1, ..., em, and S is a diagonal matrix with diagonal entries λ1, ..., λm. We
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expect this to be a good approximation if λm+1 is close to zero.

With this approximation, Ĉ−1 can be computed rapidly from B and S using (3.28).

However, the time needed to find the first m eigenvalues and eigenvectors (and hence

B and S) is proportional to mn2, with a much larger constant factor than for the n3

computation of all eigenvalues and eigenvectors. In practice, depending on the values of

m and n and the software implementation, a π∗ formed by this method could even be

slower than the original π. Since our experiments confirm this, we mention it here only

because it is a natural reference point.

The Nytröm-Cholesky approximation

In the Nyström method (Nyström, 1930; Reinhardt, 1985), we take a random m by m

submatrix of the noise-free covariance matrix, K, which is equivalent to looking at the

noise-free covariance for a subset of the data of size m, and then find its eigenvalues

and eigenvectors. This takes time proportional to m3. We will denote the submatrix

chosen by K(m,m), and its eigenvalues and eigenvectors by λ
(m)
1 , ..., λ

(m)
m and e

(m)
1 , ..., e

(m)
m .

We can then approximate the first m eigenvalues and eigenvectors of the full noise-free

covariance matrix by

λ̂i = (n/m)λ
(m)
i (3.31)

êi =

√
m/n

λ
(m)
i

K(n,m)e
(m)
i (3.32)

where K(n,m) is the n by m submatrix of K with only the columns corresponding to the

m cases in the random subset.

The covariance matrix C can then be approximated in the same fashion as Eigen-

exact, with the exact eigenvalues and eigenvectors replaced by the approximated eigenval-

ues λ̂1, ..., λ̂m and eigenvectors ê1, ...êm. However, a more efficient computational method

for this approximation, requiring no eigenvalue/eigenvector computations, is available as
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follows:

K̂ = K(n,m)[K(m,m)]−1K(m,n) (3.33)

where K(m,n) = [K(n,m)]T . We can find the Cholesky decomposition of K(m,m) as RTR, in

time proportional to m3, with a much smaller constant factor than finding the eigenvalues

and eigenvectors. Equation (3.33) can then be put in the form of BSBT by letting

B = K(n,m)R−1 and S = I. In practice, the noise free submatrix K(m,m) often has some

very small positive eigenvalues, which can appear to be negative due to round-off error,

making the Cholesky decomposition fail, a problem that can be avoided by adding a

small jitter to the diagonal (Neal, 1993).

An alternative way of justifying the approximation in (3.33) is by considering the

covariance matrix for the predictive distribution of all n noise-free observations from

the random subset of m noise-free observations, which (from a generalization of (1.6)) is

K−K(n,m)[K(m,m)]−1K(m,n). When this is close to zero (so these m noise-free observations

are enough to almost determine the function), K̂ will be almost the same as K.

More sophisticated schemes for Nyström-Cholesky have been proposed. For instance,

Drineas and Mahoney (2005) randomly select the m columns to construct Ĉ according

to some “judiciously-chosen” and data-dependent probability distribution rather than

uniformly choose the m columns.

To form a π∗ using Nyström-Cholesky, we need the following major computations:

Operation Complexity

Compute K(n,m) pmn

Find chol(K(m,m)) m3

3.6 Experiments

Here we report tests of the performance of the methods described in this chapter using

synthetic datasets.
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3.6.1 Experimental setup

The datasets we used in these experiments were randomly generated, with all covariates

drawn independently from uniform distributions on the interval [0, 1], and responses then

generated according to a Gaussian process with specified hyperparameters.

We generated ten types of datasets in this way, with different combinations of the

following:

• Number of observations: n = 300 or n = 900.

• Number of covariates: p=1 or p = 5.

• Type of covariance function: squared exponential covariance function with a sin-

gle length scale (isotropic), or with multiple length scales (Automatic Relevance

Determination, ARD). Note that these are identical when p = 1.

• Size of length scales: “short” indicates that a dataset has small length scales,“long”

that it has large length scales.

The specific hyperparameter values that were used for each combination of covariance

function and length scale are shown in Table 3.1. For each dataset, we use the follow

priors for the hyperparameters:

log η ∼ N(0, 22)

log ρi ∼ N(0, 22)

log σ ∼ N(0, 22)

The efficiency of an MCMC method is usually measured by the autocorrelation time,

τ , which is typically estimated by τ̂ , the sample autocorrelation time (see section 1.4).

Below, we will compare methods with respect to autocorrelation time of the log likelihood.

For a fair comparison, we multiply the estimate of each method’s autocorrelation times

by the average CPU time it needs to obtain a new sample point.
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3.6.2 Experiments with mapping to a discretizing chain

For each dataset, we tried the method of mapping to a discretizing chain using both a π∗

formed with SOD and a π∗ formed with Nyström-Cholesky. For comparison, we also ran

a standard MCMC model. All the Markov chains were started from the hyperparameter

values that were used to generate them, so these tests assess only autocorrelation time

once the high-probability region of the posterior has been reached, not time needed for

convergence when starting at a low-probability initial state. The adjustable parameters

of each method were chosen to give good performance. All chains were run for 2000

iterations, and autocorrelation times were then computed based on the last two-thirds of

the chain.

The standard MCMC method we used is a slice sampler (Neal, 2003), specifically

a univariate slice sampler with stepping-out and shrinkage, updating parameters in se-

quence. For the discretizing Markov chain, the transition R(x′|x) uses the same slice

sampler. Although slice sampling has tuning parameters (the stepsize, w, and the upper

limit on number of steps, M), satisfactory results can be obtained without extensive

tuning (that is, the autocorrelation time of a moderately-well-tuned chain will not be

much bigger than for an optimally-tuned chain). Because finding an optimal set of tun-

ing parameters is generally hard (requiring much time for trial runs), we will accept the

results using moderately-well-tuned chains.

There are many other MCMC method to choose from as the baseline method. Some

more sophisticated method might perform better than the slice sampler we use here on

Length scale size Length scale type η ρ
short isotropic 5 ρ = 0.1
short ARD 5 ρi = 0.1i
long isotropic 5 ρ = 2
long ARD 5 ρi = 2i

Table 3.1: Hyperparameter values used to generate the synthetic datasets. We set c = 10
and σ = 0.2 for all the datasets.
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some particular datasets. In such cases, we can also use that MCMC method to construct

the chain for π∗, and we would expect similar gain by mapping to such a discretizing

chain. Given that there are a variety of good MCMC methods in the literature, it

would not be possible to compare to all of them. But comparing to the slice sampler

seems sufficient to show how we can construct efficient MCMC methods with temporary

mapping and caching.

We found that r = s = 1 gives the best performance for the method of mapping to a

discretizing chain when the slice sampler is used for R(x′|x), at least if only fairly small

values of r and s are considered. Recall that r is the number of T̄ updates to do in

each temporary mapping, and s is the number of steps of R(x′|x) to propose to move the

mark for each T̄ update. Note that a single slice sampling update will usually evaluate

π or π∗ more than once, since an evaluation is needed for each outward step and for

each time a point is sampled from the interval found by stepping out. Therefore if we

didn’t use a mapping method we would have to compute π(x) several times for each slice

sampling update. When a mapping method is used, π(x) only needs to be evaluated once

each update, for the new state (its value at the previous state having been saved), while

meanwhile, π∗(x) will be evaluated several times.

We tuned the remaining parameter m, the subset size for SOD, or the number of

random columns for Nyström-Cholesky, by trial and error. Generally speaking, m should

be between 10% and 50% of n, depending on the problem. For Nyström-Cholesky, quite

good results are obtained if such a value for m makes π∗ be very close to π(x).

The results are in Table 3.2, which shows CPU time per iteration multiplied by the

autocorrelation time for the standard MCMC method, and for other methods the ratio

of this with the standard method. Table 3.3 shows actual autocorrelation time and CPU

time per iteration for each experimental run.

From these results, we see that Subset of Data is overall the most reliable method

for forming a π∗. We can almost always find a SOD type of π∗ that leads to more
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#
Length scale

p n
m Autocorrelation time × CPU time per iteration

size type SOD NYS TMP TSTD TSOD/TSTD TNYS/TSTD TTMP/TSTD

1 small isotropic 1 300 40 30 40, 20 0.76 0.45 0.51 1.05
2 small isotropic 5 300 150 - 100, 50 1.62 0.81 - 0.14
3 small ARD 5 300 100 - 90, 45 3.39 0.83 - 0.36
4 long isotropic 5 300 150 120 130, 65 2.05 0.81 0.97 0.69
5 long ARD 5 300 90 80 100, 50 5.23 0.66 0.85 0.51
6 small isotropic 1 900 60 90 60, 30 9.06 0.27 0.23 0.28
7 small isotropic 5 900 300 - - 18.17 0.51 - -
8 small ARD 5 900 100 - - 25.47 0.43 - -
9 long isotropic 5 900 100 110 - 16.86 0.34 0.40 -
10 long ARD 5 900 300 90 - 47.46 0.67 0.34 -

Table 3.2: Results of experiments on the ten datasets.

#
CPU time (s) per iteration Autocorrelation time
STD SOD NYS TMP STD SOD NYS TMP

1 0.26 0.078 0.11 0.15 2.90 4.32 3.53 5.40
2 0.28 0.14 - 0.13 5.77 9.32 - 1.67
3 0.56 0.23 - 0.14 6.09 11.98 - 8.63
4 0.13 0.072 0.15 0.09 15.62 23.04 12.88 16.56
5 0.49 0.19 0.41 0.13 11.16 18.07 10.89 20.37
6 3.10 0.53 0.83 0.61 2.92 4.63 2.48 4.21
7 3.76 0.82 - - 4.83 11.24 - -
8 7.21 1.48 - - 3.53 7.38 - -
9 1.81 0.69 0.91 - 9.33 8.27 7.40 -
10 5.66 1.95 1.75 - 8.39 16.18 9.14 -

Table 3.3: CPU time per iteration and autocorrelation time for each run in Table 3.2.
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efficient MCMC than the standard method. Depending on the problem, mapping to a

discretizing chain using such a π∗ can be two to four times faster than standard MCMC,

for the Gaussian Process regression problems we tested. The computational savings go up

when the size of the dataset increases. This is likely because when n is small, evaluation

of π is fast, so overhead operations (especially those not related to n) are not trivial in

comparison. The computational saving of π∗ compared to π will be then less than the

m3 to n3 ratio we expect from SOD for large n. Also when n is small, time to compute C

(proportional to pn2) may be significant, which also reduces the computational savings

from a π∗ based on SOD.

For some datasets, we can find a Nyström-Cholesky π∗ with a small m that can

approximate π well, in which case this method works very nicely. However, for datasets

with small length scales with p = 5, in order to find a working π∗ we have to set m to

be around 95% of n or greater, making π∗ as slow as, or even slower than π. This is due

to the fact that when the length scale parameters for the GP are small, the covariance

declines rapidly as the input variable changes, so x and x′ that are even moderately

far apart have low covariance. As a result, we were not able to find efficient mapping

method using Nyström-Cholesky with performance even close to standard MCMC (so no

result is shown in the table). On the other hand, when the length scale is large, a good

approximation can be had with a small m (as small as 10% of n). For n = 900 and p = 5

with ARD covariance, Nyström-Cholesky substantially outperforms SOD.

3.6.3 Experiments with tempered transitions

We have seen in the previous section that the method of mapping to a discretizing chain

has a lot of tuning parameters, and finding the optimal combination of these tuning

parameters is not easy. The method of tempered transitions actually has more tuning

parameters. To start with, we have to decide the number of “layers” (we call each of T̂i

or Ťi a “layer”). For each layer, (e.g. x̂i
T̂i+1−→ x̂i+1), we have to decide how many MCMC
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updates to simulate. This reduces the attraction of tempered transitions, but in some

situations it does improve sampling efficiency.

In the experiments for the method of mapping to a discretizing chain, the results

given by both SOD and Nyström-Cholesky for datasets with n = 300 and p = 5 are less

satisfatory compared to others. We tried tempered transitions with these datasets. For

simplicity, we used just two layers, each of which uses SOD to form the transition. We

also use the slice sampler for these experiments. The number of observations in each

subset (denoted as mi for transition T̂i and Ťi) is listed in Table 3.2 under the column

“TMP” and the time ratio results are under the column “TTMP/TSTD”. We can see

that for all these datasets, tempered transitions outperform the method of mapping to

a discretizing chain, sometimes substantially. We also tried the transition method on

datasets with small, isotropic length scales (#1 and #6). The results from dataset #6

show great improvement of the mapping to tempered transitions method over others.

For dataset #1, however, we were not able to find a combination of tuning parameters

which lead to improved performance. This is likely because when n is relatively small

and p = 1, the overhead operations of tempered transitions, compared to other methods,

are too heavy to be ignored.

The advantage of tempered transitons is further illustrated in Figure 3.2, which shows

the sample autocorrelation plots of the log likelihood for both methods, on dataset #2.

We also attempted to apply the tempered transitions method to datasets with n =

900. However, due to the fact that there are too many tuning paramters for these

methods, and when n is large the number of choices increase enormously, we unfortunately

were unable to obtain MCMC methods based on the tempered transition method that

outperforms the other methods. Since we can relatively easily obtain better performance

using the method of mapping to discretizing chains with SoD or Nyström approximation

for n = 900, we recommend using these methods when n is large.
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Figure 3.2: Comparison of autocorrelation times of the log likelihood for MCMC runs
using mapping to a discretizing chain and using tempered transitions. Dataset #2 is
used (with five covariates, small length scales, an isotropic covariance function, and 300
observations). Note that CPU time per iteration is almost the same for the two methods,
so no adjustment is needed.



Chapter 4

Discussion and future work

This thesis makes two major contributions. In Chapter 2, we propose a new heteroscedas-

tic Gaussian Process regression method (GPLC). By adding a latent variable as an unob-

served input, GPLC has the ability to handle regression problems with residuals having

non-constant variance. GPLC is also a more general model in that it doesn’t require

the assumption that the residuals are normally distributed. We also extend Goldberg et

al. (1998)’s GPLV model to a full Bayesian version, and develop a new MCMC method

for it. We demonstrate in Section 2.4 that, under certain conditions, the standard GP

regression model and the GPLV model can be viewed as special cases of the GPLC

model. Extensive experiments show that GPLC model is generally as good as the GPLV

model in terms of mean squared error and negative log probability density when the

residuals are normally distributed. When the residuals are non-normal, GPLC is better

then GPLV. Both methods give better results than a standard homoscedastic Gaussian

Process regression model.

Heteroscedasticity can be viewed as a form of non-stationarity — think of y(x) as

a random process — if the residual variance changes when x changes, then clearly y(x)

is non-stationary. In many scientific fields such as atmospheric science, the assumption

of stationarity (which many models rely on) is often violated. Popular spatical statisti-

73
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cal models that handle non-stationarity include “spatial deformation”, due to Sampson

and Guttorp (1992) and Schmidt and O’Hagan (2003), and “dimension expansion” by

Bornn, et al. (2012). These methods, however, only focus on the non-stationarity in the

propterties of the regression function which gives the expected value of the response, but

not the non-stationarity in the residuals (heteroscedasticity). It would be interesting to

combine these non-stationary methods with GPLC to get a model that can handle both

kinds of non-stationarity.

In Chapter 3, we introduce two classes of MCMC methods using the “mapping and

caching” framework: the method of mapping to a discretizing chain, and the tempered

transition method. Our experiments indicate that for the method of mapping to a dis-

cretizing chain, when an appropriate π∗ is chosen (e.g. SOD approximation of π with an

appropriate m), an efficient MCMC method can be constructed by making “local” jumps

(e.g. setting r = s = 1). A good MCMC method can also be constructed using tempered

transitions, with a small number of πi, where each T̂i and Ťi makes only a small update.

These results are understandable. Though π∗ and πi, are broader than π, making

small adjustments a small number of times will have a good chance to still stay in a high

probability area of π. However, even though the acceptance rate is high, this strategy of

making small adjustments cannot bring us very far from the previous state. On the other

hand, if we make large jumps, for instance, by using large values for r and s in the method

of mapping to a discretizing chain, the acceptance rate will be low, but when a proposal

is accepted, it will be much further away from the previous state, which is favourable

for a MCMC method. We haven’t had much success using this strategy so far, perhaps

due to the difficulty of parameter tuning, but we believe this direction is worth pursuing.

The tempered transition method may be more suitable for this direction, because moving

from one state to another state further away is somewhat similar to moving among modes

— the sequence of T̂i and Ťi should be able to “guide” the transition back to a region

with high probability under π.
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Dataset U0:

NLPD MSE
Training Set REG GPLC GPLV REG GPLC GPLV

1 0.2945 0.2953 0.2977 0.0105 0.0104 0.0105
2 0.2599 0.2621 0.2613 0.0052 0.0054 0.0054
3 0.3311 0.3290 0.3239 0.0156 0.0164 0.0156
4 0.2800 0.2796 0.2820 0.0093 0.0092 0.0094
5 0.2708 0.2707 0.2703 0.0067 0.0068 0.0067
6 0.2880 0.2877 0.2854 0.0099 0.0097 0.0095
7 0.3052 0.3051 0.3016 0.0028 0.0031 0.0029
8 0.3039 0.2965 0.2997 0.0109 0.0104 0.0107
9 0.2555 0.2573 0.2596 0.0043 0.0044 0.0042
10 0.2533 0.2596 0.2603 0.0032 0.0032 0.0037

Dataset U1:

1 0.3364 0.2459 0.2480 0.0119 0.0088 0.0059
2 0.3259 0.2489 0.2076 0.0077 0.0039 0.0058
3 0.3142 0.2774 0.2661 0.0060 0.0144 0.0139
4 0.3198 0.2273 0.2237 0.0077 0.0065 0.0058
5 0.3231 0.2296 0.2185 0.0076 0.0071 0.0073
6 0.3596 0.2397 0.2321 0.0137 0.0105 0.0110
7 0.3404 0.2696 0.2374 0.0040 0.0030 0.0030
8 0.3683 0.3143 0.3305 0.0081 0.0079 0.0080
9 0.3177 0.2023 0.2172 0.0061 0.0057 0.0055
10 0.2961 0.3050 0.2107 0.0017 0.0018 0.0020

Dataset U2:

1 0.2878 0.1976 0.2408 0.0070 0.0035 0.0034
2 0.2616 0.1099 0.1349 0.0026 0.0009 0.0007
3 0.2527 0.1123 0.1488 0.0013 0.0025 0.0035
4 0.2697 0.1148 0.1998 0.0042 0.0036 0.0037
5 0.2695 0.1275 0.1985 0.0030 0.0036 0.0030
6 0.2599 0.1396 0.1769 0.0025 0.0052 0.0032
7 0.2544 0.1130 0.1948 0.0010 0.0015 0.0017
8 0.2708 0.0811 0.1283 0.0046 0.0019 0.0017
9 0.2863 0.0833 0.1353 0.0049 0.0020 0.0027
10 0.2727 0.1245 0.1670 0.0033 0.0023 0.0021
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Dataset M0:

NLPD MSE
Training Set REG GPLC GPLV REG GPLC GPLV

1 0.3097 0.3167 0.3098 0.0147 0.0164 0.0147
2 0.2558 0.2593 0.2565 0.0096 0.0100 0.0093
3 0.2725 0.2816 0.2786 0.0127 0.0135 0.0131
4 0.3077 0.3166 0.3149 0.0142 0.0157 0.0156
5 0.3478 0.3539 0.3439 0.0347 0.0374 0.0335
6 0.3075 0.3107 0.3108 0.0226 0.0228 0.0229
7 0.2897 0.2945 0.2924 0.0137 0.0140 0.0128
8 0.2758 0.2762 0.2823 .0125 0.0127 0.0133
9 0.2874 0.2871 0.2901 0.0154 0.0166 0.0165
10 0.2700 0.2858 0.2817 0.0109 0.0131 0.0113

Dataset M1:

1 0.4726 0.3202 0.3407 0.0186 0.0120 0.0201
2 0.3852 0.3046 0.2860 0.0121 0.0113 0.0098
3 0.4560 0.3390 0.3410 0.0305 0.0247 0.0277
4 0.4300 0.3860 0.3751 0.0204 0.0188 0.0201
5 0.4817 0.4321 0.3906 0.0426 0.0399 0.0351
6 0.4668 0.3603 0.3024 0.0364 0.0247 0.0163
7 0.4282 0.3656 0.3799 0.0195 0.0172 0.0171
8 0.4184 0.3198 0.4022 0.0197 0.0148 0.0217
9 0.4161 0.3281 0.3817 0.0202 0.0204 0.0297
10 0.4253 0.3269 0.3201 0.0216 0.0190 0.0197

Dataset M2:

1 0.3736 0.2413 0.298 0.0099 0.0092 0.0093
2 0.3934 0.2458 0.2965 0.0136 0.0099 0.0122
3 0.4015 0.2695 0.2832 0.0167 0.0105 0.0128
4 0.4819 0.3636 0.4202 0.0391 0.0174 0.0489
5 0.4311 0.3257 0.3548 0.0269 0.0234 0.0230
6 0.4348 0.2678 0.3140 0.0216 0.0165 0.0176
7 0.3892 0.2479 0.2770 0.0102 0.0065 0.0083
8 0.3709 0.3147 0.2580 0.0058 0.0052 0.0067
9 0.4043 0.2441 0.2899 0.0156 0.0124 0.0146
10 0.4718 0.3355 0.3923 0.0403 0.0223 0.0281


