Chapter 6

Discussion and Conclusions

The center-surround feature contrast detection algorithm presented in this thesis was designed to be both a model of biological contrast detection and an efficient method for contrast detection in a computational vision system.  The method is based on a Difference of Gaussians model.  Although multiple steps are required in the implementation, the application of the algorithm can be viewed as the application of a DoG operator that responds most strongly when the central feature is surrounded by contrasting features.

In comparison to biological contrast detection, the method performs well on some classes of images, but not so on other classes.  The method performs well on images that have very distinct edges, such as the images from Nothdurft (1992) used in chapter 4 and the images in Figure 34(a) and Figure 34(b).  Except for the image in Figure 34(b), these images are arrays of distinct line elements with very sharp edges.  The image in Figure 34(b) has sinusoidal gratings, which also have a very clear orientation.  In all of these images, orientation is obviously a very strong feature, that is, there is not much to these images other than the intensity and orientation of lines and gratings.  Therefore, it appears that the feature contrast detector works well on sharp images with a strong orientation component.

The method, however, does not perform well when locating border in the image composed of the natural textures in Figure 34(c), the image composed of the rotated T’s, L’s and X’s in Figure 38, or the image formed from Gaussian noise and oriented Gabor filters in Figure 41.  In the natural textures image and the Gabor filter image, the edges are not sharp and, although the regions in both have an orientation component, there is a significant amount of “noise” in both images.  By noise I mean edges within a texture region that do not align with the dominant orientation of the region.  The blurred edges decrease the effectiveness of the edge operator, and the noise reduces the value obtained by convolution with the DoG operator for the dominant orientation and increases the value for other orientations, interfering with final contrast measurement.  In the letters image, the lines that make up the letters are not oriented in any pattern and so there is orientation contrast throughout the image, not just at the border between the two areas.

In addition to indicating which classes of images the method performs best on, the results also indicate that the method performs better in a search for a single element than it does in a texture segregation task.  There is one characteristic of the method that can be understood to decrease its effectiveness for texture segregation compared to its effectiveness for search.  This characteristic is that the shape of the DoG operator used in this implementation is able to reach its maximum in a center-surround configuration and never in a straight-line configuration.  In the visual search images such as those in Chapter 4, the salient element is always surrounded by contrasting elements.  Given a DoG of the appropriate scale, the positive center will cover the salient element and the negative surround will cover a ring of elements around the salient element.  This leads to a higher contrast measurement than any other configuration.  This can be compared to the image in Figure 26.  In this case, elements along the edge of the texture only contrast with elements in the other texture.  For the majority of the border, this means the maximum contrast measurement will be obtained when the DoG is centered just to one side of the border, and so less than half of the DoG’s negative surround area will be located on contrasting elements.  The remainder of the negative surround will be located on similar elements, decreasing the overall response.  So although in biological vision, a texture edge can pop-out with similar strength as a single salient element, this is not the case for the center-surround feature contrast detector.

Among the trials where the method was able to detect contrast in the image, the method showed that it is not restricted by a limitation found in human visual performance.  This limitation is seen when searching for a target among a display with multiple salient elements.  Psychophysical results show that human response time increases as the number of salient non-target increases (Nothdurft 1992).  This is not the case with the feature contrast detector.  Once the algorithm is tuned to search for a specific orientation, contrast from other orientations is not calculated.  Therefore it has no effect on the resulting contrast map.  Since human performance is affected by other orientations even when the subject knows the target orientation apriori, it must not be possible to tune the visual system to attend only to elements of a certain orientation in the same way as it is possible to tune the feature contrast detector.

The results of the center-surround feature contrst detector agree in general with the psychophysical data for line images.  A direct comparison, as in Schofield & Foster (1995), is not possible due to the lack of a decision module.  The Schofield & Foster results indicate that a single type of complex cell is not adequate to model human perception of contrast in line images.  The model they settled on included the behaviour of two types of complex cells.  One responds strongly to an oriented line segment and decreases when the segment is surrounded by lines of a similar orientation, and the second responds strongly to an oriented line segment and decreases when the segment is surrounded by line segments of random orientations.  The cell behaviour used in the center-surround feature contrast detector responds strongly to an oriented line surrounded by line of orthogonal orientation.  Response decreases when the line has no neighbours, and decreases further when the line is surrounded by lines of a similar orientation.  This type of cell may more closely replicate human perception than either of the cell types used in the Schofield & Foster trials, or it may require a second, complimentary, cell type as well.  All three cell types are found in biological visual systems  (Knierim & van Essen 1992).

The center-surround feature contrast detector, as described in this thesis, could be improved upon by work in the following areas.

1. Inclusion of additional feature dimensions. 
Image features such as colour and scale can also lead to the perception of contrast and pop out.  The decision was made to implement an orientation and intensity contrast detector because the literature in these areas is sufficient to make the necessary comparisons to test the validity of the method.  However, without including the other dimensions along which contrast occurs, the implementation is far from complete.


2. Implementation of the pyramid in a more biologically plausible manner.
There is nothing in biological vision systems that would imply so tidy a construct as a quad-tree.  This is a computationally convenient method to implement a pyramid.  A more biologically plausible method would be to create the pyramid through a Gaussian weighting of groups of cells.  Not only does this result in a more biologically plausible weighting, in that near cells contribute more than distant cells, but it also allows overlap in the ranges used to form the elements of the subsequent layers.  It is known that a single spot on the retina is often included in the receptive fields of many neurons in each of the various layers of the visual cortex.

3. Tuning the model based on human studies.
A comparison of human results and computational results on the same set of images would be a more precise test of the model.  The human results could be used to test various aspects of the method and to tune certain parameters.  Within dimensions, it may be the case that certain values have a greater influence than others.  For example, studies have shown that the human visual system is more sensitive to horizontal and vertical edges than diagonal edges (Treisman 1985, Treisman & Gormican 1988).  In this implementation, all orientations are given the same weight; the tests could help determine if horizontal and vertical edges should be given a different weight than diagonal edges.

The use of relative contrast within an image was appropriate for the tasks described in this thesis.  However there may be a case for the use of an absolute contrast measure when comparing contrast across images.  The human tests would help determine if this is necessary, and if so, what values should be assigned and in what situations do they occur.

In Chapter 4 the computational tests were found to agree with the psychophysical tests in that the results from both indicate decreases in contrast when background orientation shift increased and increases in contrast when target orientation difference increased.  More detailed studies would be required to determine the shape of the functions and to tune the feature contrast detector to show the same type of function as the human results.

Lastly the human test results could be used to determine the appropriate ratios for relative contrast across dimension.  For example, to determine if the maximum possible orientation contrast is more salient than the maximum possible intensity contrast, and if so, to determine what levels of orientation and intensity contrast should be considered equivalent (Nothdurft 2000a).


4. Including multiple scales in the calculations.
As currently implemented, the contrast detector performs calculations at only one scale.  As demonstrated by the results of applying the contrast detector to the third experiment of Bergen and Landy (1991) shown on page 75, the scale of the operator can have a dramatic effect on the outcome of the image.  The method could be improved by calculating contrast at multiple scales by using different sizes of operators, and then evaluating the contrast at each scale.  The scale resulting in the largest contrast measure would then be accepted as the appropriate scale for the image.  Calculating contrast at every scale, however, is not biologically plausible because of the processing required.  Therefore, further pre-processing is necessary to limit the scales at which contrast is evaluated.  A first step in this direction would be to perform processing at all levels of the multiple-resolution representation.

In conclusion, the center-surround feature contrast detector was found to be an adequate method for computational contrast detection.  It is able to locate areas of high contrast in the dimensions implemented, provided that the images are fairly noise free, and to output a map of the detected contrast in a format usable by computational attention systems.  As a model of human visual contrast detection, the method appears to be a bit simplistic.  The results show that the human visual system is integrating much more information than is being considered by this model.  However the model does show some behaviour similar to the human results and so could be the basis for future models of biological contrast detection

