
Visualizing the Iteration Space in PEFPT �

Qi Wang� Yu Yijun and Erik D�Hollander

University of Ghent
Dept� of Electrical Engineering

St��Pietersnieuwstraat ��
B����� Ghent

wang�elis�rug�ac�be
Tel� 	
��������

��
Fax� 	
��������
����

Abstract� Su�cient and precise semantic information is essential to in�
teractive parallel programming� In this paper� we present a feasible imple�
mentation of the iteration space dependence graph and discuss relevant
technical problems� Moreover� we give a further prospect of interactive
loop optimization guided by the graph�

� Introduction

In the past decade� high performance computing has become a critical technique
for scientists and engineers� Parallel processing is considered as the essential way
to speedup massive computational application� and large�scale parallel architec�
tures composed of microprocessors become a fashion� To exploit parallelism and
memory hierarchy e�ectively for these machines� the compiler must be able to
get data dependence precisely and distribute the computations among the pro�
cessors accordingly� Unfortunately� the results of recent research have been both
encouraging and disappointing����	� One of principal drawback is the inaccu�
racy of current dependence analysis techniques
 symbolic expression� procedure
calls� induction and reduction variables� and complex control �ow� all of them in�
troduce conservative assumption� so as to invalidate the feasibility of parallelism�

A tradeo� is to provide an interactive programming or optimizing environ�
ment� sharing part of the responsibility with the user under the guidance of the
system� which the user can a�ord to� This compromise is accepted widely by the
user and the researcher� There have been much signi�cant experiments in this
area� such as Parafrase���	 and Parascope��	�

��� Motivation

We devote ourselves to design a new programming environment � PEFPT��	 �

�the Parallel Programming Environment for FPT� the Fortran Parallel Trans�
former�� based on the research of FPT��	� proposing to develop and integrate

� This work was supported in part by European Community under grant ITDC�������
and by the Ministry of Education� project CHIN����

� A joint project between the universities of Ghent�B� and Fudan�PRC�

series of meaningful tools and methods� and testing them through practice�

It is well known that most of the parallelism in a program dwells in loops�
and current parallel architectures also pay great emphasis on developing coarse�
grained parallelism�

Therefore� it is vital to exhibit loop�carried dependence information� Paras�
cope provides a table to show the dependencies between statements in di�erent
loops� This allows the user to inspect and potentially remove false dependencies�
However� a table is not very elegant to analyze the parallelism on iteration level�
In PEFPT� we employ an iteration space dependence graph as a supplement
illustration for the user�

��� Data dependence

The analysis of precedence constraints on the execution of the statements is a
fundamental step in parallelizing the program�

There are four types of data dependence ����	 between two statements� S�
and S�

True ��ow� dependence occurs when S� writes a memory location that S� later
reads� and there is no S� write this location between S� and S��

Anti dependence occurs when S� reads a memory location that S� later writes�
and there is no S� write this location between S� and S��

Output dependence occurs when S� writes a memory location that S� later
writes again� and there is no S� write this location between S� and S��

Input dependence occurs when S� reads a memory location that S� later reads�
and there is no S� write this location between S� and S��

��� Iteration space and Iteration space dependence graph

Suppose I � Rn� i�� � � � � in are the iteration indices� �L�� U��� � � � � �Ln� Un� are
the respective loop bounds����	 and both Ll and Ul are linear functions of iter�
ation indices i�� � � � � il��� so that the iteration space is

I � f�i�� � � � � in�jL� � i� � U�� � � � � Ln�i�� � � � � in��� � in � Un�i�� � � � � in���g

Moreover� the iteration space dependence graph of the loops is an itera�
tion space picture with dependence arrows� which draw from the point corre�
sponding to iteration I � �i�� � � � � in� to the point corresponding to iteration
J � �j�� � � � � jn� whenever there exist statements S��I� and S��J� in the loop
body such that S� dependent on S�� where I �� J �

� Analysis of the iteration space dependence graph

A straight solution to get the dependence relationship between iterations is to
record all variable reference information occurred during the execution of the
loops� then to analyze them using the de�nition of dependence� For each read
operation� the iteration space is searched from this point until a write opera�
tion to the same memory location is found� If read and write are not in the
same iteration� a dependence results� It is a �ow dependence if the write comes
lexicographically before the read� otherwise it is an anti�dependence�

Output dependence occurs when a write operation is followed lexicographi�
cally by another write operation�

��� Static analysis of the iteration space

At �rst� we implement such an idea in PEFPT using a strategy of static simu�
lated execution on the syntax tree� The user selects particular loops and gives
necessary data �especially the values of symbolic variables�� Throught calculat�
ing all loop indices and array subscripts for each iteration on the lexicographic
order� we get a real iteration space with all reference information of variables�
Then the technique described above is used to get all dependence arrows between
iterations� In order to handle complex control �ow� especially GOTO statements�
a powerful algorithm ��	 exists within FPT� which converts GOTO statements
into structured code�

Sometimes nested loops have large iteration distances� and a loop body may
be very complex� In that case� the symbolic execution is time consuming and
becomes impossible when there are call statements in the loop body�

��� Runtime simulation

In order to solve these limits and deal with more general cases� we propose to in�
sert a marker for each variable reference in the source program� This marker will
store the read�write behavior during the execution� After running the program�
the required data are available�

The question is how to implement the marker to process the raw data quickly
at runtime� and to minimize the information records needed by the post�processor�

For each analysis variable� two integer shadow variables are declared with the
same dimension as the original
 RS �read shadow� and WS �write shadow�� each
element of them records the iteration ID which occurs last read�write operation
on this element� See the tracer algorithm in �gure ��

��� Generation of the test program

In order to generate the dependence test program automatically� we need do
more work and more information� We divide all process into �ve steps

Initialization� For each variable A� declare two shadow variables� RsA and WsA� and
set RsA�i�� � � � � im��WsA�i�� � � � � im� � �

Input� For each reference site in the loop� give an instance of array A�s subscripts
S�� � � � � Sm� enclosed in n�nested loops with indices I�� � � � � In

IF it is a read operation do�
SET This iteration � IS Encode�I�� � � � � In�
IF WsA�S� � � � � � Sm� � � THEN

no dependence
ELSE

IF WsA�S�� � � � � Sm� �� This iteration THEN
There exists a �ow dependence arrow from iteration
IS Decode�WsA�S� � � � � � Sm�� to �I�� � � � � In�

ENDIF
ENDIF
IF RsA�S�� � � � � Sm� �� THEN

no dependence
ELSE

There exists an input dependence arrow from iteration
IS Decode�RsA�S� � � � � � Sm�� to �I�� � � � � In�

ENDIF
SET RsA�S�� � � � � Sm� � This iteration

ENDIF
IF it is a write operation do�

SET This iteration � IS Encode�I�� � � � � In�
IF RsA�S�� � � � � Sm� � � THEN

no dependence
ELSE

There exists an anti dependence arrow from iteration
IS Decode�RsA�S� � � � � � Sm�� to �I�� � � � � In�

ENDIF
IF WsA�S� � � � � � Sm�� � THEN

no dependence
ELSE

There exists an output dependence arrow from iteration
IS Decode�RsA�S� � � � � � Sm�� to �I�� � � � � In�

ENDIF
SET RsA�S�� � � � � Sm� � �

SET WsA�S�� � � � � Sm� � This iteration
ENDIF

� IS Encode and IS Decode are functions that convert Nm �� N� real iteration
address �� an unique integer iteration ID�

� Just see scalar variable as one element array�

Fig� �� Iteration dependence tracer algorithm

�� Prepare required syntax information
Record all variable nodes of syntax tree� which appear in the selected loops
and belong to both read reference set and write reference set�

�� Generate runtime test program which is appended necessary function calls
Generate a call statement with necessary information for each variable node
on data�ow order� If there exists call statement in the loop body� we have to
duplicate this subroutine� treat it as a new one� then pass actual arguments
with their shadow variables together� In subroutine body� we do the same
thing and insert marker functions for all variable reference sites� Of course�
there are also need a few initialization and clean�up functions�

�� Compiler and run the program
Use normal Fortran compiler and predesigned library� we get an executable
program� Run it and record intermediate data in a temporary �le� the data
like �iteration�� iteration�� dependence kind� memory location��

�� Post process the �rst�hand data
By now� we get accurate �ow and output dependencies� For anti dependence�
it is not as precise as the former� The cure algorithm see Figure ��

� Visualize iteration space dependence graph
Due to the complexity both on iteration space dependence graph itself and
presentation� we only show it in two dimensions within a prede�ned region�

Now� we illustrate it using a sample�see �g� ���

For all records do�
If it is an input dependence from iteration I� to I�� just insert it into a list�
If it is a �ow dependence or output dependence� delete all elements in the
list which relate to this memory location�

If it is an anti dependence from iteration I� to I�� then retrieve all records
in the list which relate to the same memory location from J� to J� � and
convert it to an anti dependence arrow from I� to J��

Fig� �� Post process of intermediate data

� Experiments

In a sense� as compared with dependence graph� the iteration space dependence
graph �see �g�� � � is more comprehensible to the user� which summarizes the
data�ow restricted relationship between iterations and gives a vivid picture of
the loop�carried data dependencies of a given nested loops� It should be more
easily accepted by the user�

PROGRAM gauss
REAL a(100,100)
INTEGER UPBOUND(10),LOWBOUND(10),UP,INNER
COMMON /REGION/UPBOUND,LOWBOUND,UP,INNER
INTEGER r_f,w_f
INTEGER r_a(100,100),w_a(100,100)
n=10
 ...
call ISINIT(1,10,1,10)
DO i = 1,n
 DO j = 1,n
 call RECISG(2,i,j)
 IF (j.ne.i) THEN
 f=a(j,i)/a(i,i)
 call TESTFRE(1,i,j,r_a(j,i),w_a(j,i),1000,0,j+(i-1)*100)
 call TESTFRE(1,i,j,r_a(i,i),w_a(i,i),1000,0,i+(i-1)*100)
 call TESTFWR(1,i,j,r_f,w_f,1000,1,1)
 DO k = i+1,n+1
 a(j,k)=a(j,k)-f*a(i,k)
 call TESTFRE(1,i,j,r_a(j,k),w_a(j,k),1000,0,j+(k-1)*100)
 call TESTFRE(1,i,j,r_f,w_f,1000,1,1)
 call TESTFRE(1,i,j,r_a(i,k),w_a(i,k),1000,0,i+(k-1)*100)
 call TESTFWR(1,i,j,r_a(j,k),w_a(j,k),1000,0,j+(k-1)*100)
 ENDDO
 ENDIF
 ENDDO
ENDDO
call ISCLEAR()
END

Declare environment variables
and shadow variables.

Initialization . The parameters mean
the display region of iteration space.

Record iteration instances

TESTFRE / TESFWR = test for read/write
--
6th parameter used for IS_Decode and IS_Encode.
7th parameter represents the variable address of the
id_table.
8th parpameter is the subscript expression

Cleanup function

Fig� �� The source code of �Gauss� test program

Fig� �� The iteration space dependence graph of �Gauss� on variable f� consider loop
I and J with bounds ��� ���� ��� ���

In order to help the user to understand the semantics and guide the user to
parallelize the loops� we not only distinguish between di�erent dependencies by
respective colors� but also design a dependence �lter to get a partial picture of
various types of dependencies on speci�c variables�

Generally� the user cannot violate and eliminate existent �ow dependencies�
unless he adopts a new algorithm to rewrite the loops� However� the other depen�
dencies can be eliminated using appropriate techniques� such as scalar expansion
and variable privatization� In a way� it will simplify the graph and give more pos�
sibilities to parallelize the loops�

Fig� �� The iteration space dependence graph of �Gauss� on variable �a�� consider
loop I and J with ��� ���� ��� ���

Although there have already deposited many known techniques on loop trans�
formations for decades� which can result in better speedup through rearranging
or partitioning iteration space� most of them are only suitable for certain loop
models� Unfortunately� the compiler does not realize it easily by itself�

Moreover� in order to verify the correctness for certain case� most of them
need strict dependence information� For example� the premise of well�known
unimodular transformation is to get constant dependence distance vectors� It is
another barrier that there is no known optimal order in which these transfor�
mations should be applied� The iteration space dependence graph gives the user
more opportunities to play a part in optimization� Through the graph� the user
will easily �nd out some solution�

For example� see �g��� the arrows represent the overwrites of scalar variable
f� it exposes the lexicography of the loops� The �g� tells the user that each
iteration on vertical direction does not exist restraint� all arrows cross left line
to right line� Therefore� the inner loop can be parallelized�

For more complicated cases� the user needs more sophisticated interactive
method to describe and perform desired rearrangement and partition� Unimod�
ular transformations are a potential area of interest here� E�g� the user composes
suitable unimodular matrix under the guidance of the graph� then the system
automatically calculates new loop indices and bounds�

� Conclusion

Iteration space dependence graph is an attractive compiler information� It promises
the user new opportunities to exploit more parallelism�which are normally aban�
doned by the compiler for inaccuracy and complexity of analysis� In a way� the
method we implemented is e�ective and e�cient� especially using runtime simu�
lation� which e�ectively avoids the drawback of dependence analysis we mention
before�

References

�� Michael Wolfe� �Optimizing Supercompilers for Supercomputers�� Ph�D� thesis�
University of Illinois� �����

�� Utpal Banerjee� �Dependence Analysis for Supercomputing�� Kluwer Academic
Publishers� �����

� K�McKinliey� �Evaluation Automatic Parallelization for E�cient Execution on

Shared Memory Multiprocessors�� ICS���� pp�����
� �����
�� W�Blume and R�Eigenmann� �Performance Analysis of Parallelizing Compilers

on the Perfect Benchmarks Programs�� IEEE Transaction on Parallel Distributed
Systems�
���� pp� ��
����� Nov� �����

�� K� Cooper et al�� �The ParaScope Parallel Programming Environment�� Proceed�
ings of the IEEE� ������ Feb� ���
�

�� C�D�Polychronopoulos et al� �Parafrase��� An Environment for Parallelizing� Par�

titioning� Synchronizing� and Scheduling Programs on Multiprocessors�� Inter� Con�
ference on Parallel processing pp� II�
��II�� �����

� F�B�Zhang�The FPT Parallel Programming Environment�� Ph�D� thesis� Univer�
sity of Gent� �����

�� Q�Wang� Y�J�Yu and E�H�D�Hollander� �Interactive Programming using PEFPT��
Syllabus of the Parallel Computing Seminar� T�U�Delft� pp� �����
� �����

This article was processed using the LTEX macro package with LLNCS style

