
A 3D-JAVA TOOL TO VISUALIZE LOOP-CARRIED
DEPENDENCES

YIJUN YU

Parallel Information Systems, University of Ghent,
St-Pietersnieuwstraat 41, 9000 Ghent, Belgium

E-mail: Yijun.Yu@elis.rug.ac.be

The interactive tool presented allows programmers to visualize and manipulate the
three-dimensional iteration space dependence graph (ISDG). Constructed from the
runtime analysis, it reveals the potential parallelism and permits the programmer
to find suitable loop transformations which maximize the speedup.
The tool manipulates it with a number of graphical operations such as rotations,
zooms, cutting planes and projections. Once the runtime trace of the program is
generated, the new iteration space of a unimodular or non-singular transforma-
tion can be constructed without having to rewrite and execute the transformed
program. In addition the temporal behavior of the program is revealed by a step-
by-step traversal animating the iterations presently executed as well as the past
and the future iterations in either data-flow, loop-wise or plane-wise order. From
the ISDG, a dependence distance matrix is derived for both uniform dependence
and non-uniform dependence problems.
It has been used to speedup a real-life computational fluid dynamics(CFD) pro-
gram which is hard to parallelize with traditional compiler.
Keywords iteration space, program visualizing, loop transformation

1 Introduction

In the last decade, many loop transformation techniques have been developed,
such as the unimodular ? and non-unimodular transformations ? for perfectly
nested loops; and transformations for non-perfectly nested loops ?. These
techniques are based on the data dependence analysis to find the parallel
loops and optimize their execution. However, the array subscript expressions,
the loop bounds, and the conditional branches are often too complicated for
a compiler to detect precisely all the loop dependences ?. Therefore the run-
time dependence analysis technique has emerged ?. Unlike the compile-time
dependence analysis, the runtime dependence analysis gathers more accurate
information. Although the run-time analysis has to sacrifice the independence
from the program input, the accurate runtime information aid to study the
difficult loops which are hard for the compiler.

In this paper an interactive tool is presented for three-dimensional(3-D)
iteration space dependence graph(ISDG). Presently, the tool has the following
functions to construct, visualize and manipulate the ISDG: constructing an

ws-p8-50x6-00: submitted to World Scientific on August 17, 2001 1

ISDG from run-time analysis of the program; visualizing the dependences of
a multi-level nested loop; manipulating the ISDG by a number of graphical
operations; detecting parallelism or loop transformation by data-flow, loop-
wise or plane-wise traversal of the graph; extracting distance matrix from
the loop dependences; constructing a new iteration space without rewriting
and execution of the transformed program; testifying and evaluating the loop
transformations for maximum speedup.

Section 2 discusses the basics of iteration space and iteration space depen-
dence graph. Section 3 discusses the technique to derive an ISDG from the
run-time analysis of the program. Section 4 explores the visualizing and ma-
nipulating functions; As a result, section 5 shows the application to the most
time-consuming loop nest of a computational fluid dynamics (CFD) program
which is hard to parallelize by a traditional compiler.

2 The iteration space dependence graph

The iteration space dependence graph is a directed acyclic graph < N , E >
with nodes N representing iterations and edges E representing the depen-
dences among them.

For a m-level normalized nested loop with ij as index variable, Lj , Uj as
lower and upper bounds of loop j and all loop steps are 1, the node set is:

N = {i = (i1, . . . , im)|∀1 ≤ j ≤ m : Lj ≤ ij ≤ Uj} (1)

In sequential loops, the iteration i executes before j if i is lexicographically
less than j, denoted as i ≺ j, i.e., i1 < j1 ∨ ∃k ≥ 1 : ik < jk ∧ it = jt for 1 ≤
t < k. The lexicographical order of two dependent iterations i ≺ j also defines
a lexicographically positive distance vector d = j − i.

If both iterations i1 ≺ i2 read or write to the same array element
A(f(i1)) = A(g(i2)) and at least one of the iteration write, no intermedi-
ate iteration j | i1 ≺ j ≺ i2 overwrite the same array element by any reference
A(h(j)), there is a direct loop carried dependence between the iterations i1
and i2, denoted as i1 δ i2. Therefore, the edge set of is defined as:

E = {(i1, i2)|i1, i2 ∈ N ∧ i1 δ i2} (2)

3 Constructing an ISDG from run-time analysis

To construct an ISDG from the program, the tool extends the run-time
method described in ? with treatment of non-perfectly nested loops.

ws-p8-50x6-00: submitted to World Scientific on August 17, 2001 2

First, a statement is inserted for each array reference A(f(i)) in the loop to
output in the execution order the sequential counter for iteration i, the array
name A, the subscript expression f(i) and the type of reference (Read/Write).

Then, for all references outside the innermost loop body of an m-level
non-perfectly nested loop: A(f(i1, . . . , ik)) where k < m, it records the next
iteration count so that these references are treated in the same manner with
the references within the innermost loop body. The converted perfectly nested
loop, whose ISDG is constructed in this way, subjects to the unimodular
transformation and code generation as described in ?. For example, the ISDG
of the non-perfectly nested loop in Figure 1(a) has nodes (i1, i2, i1 + 1) which
summarize all the references in both instances of the statements S1(i1, i2) and
S2(i1, i2, i1 + 1).

The graph is constructed from the records: (1) the tool keeps a record in
a stack, for each array element, the last iteration that writes the element; (2)
it marks the loop-carried dependence edges from the records to construct the
graph: (2.1) Before pushing each new write reference in an iteration j to the
stack, it pops up each the references to the same array element in iteration i
and marking an output- or an anti- dependences edge i δ j if the reference in
iteration i is a write or read reference. Then the iteration j is remembered as
the new last write iteration; (2.2) Before pushing each new read reference in
an iteration j to the stack, if iteration i is the last iteration that writes to the
same array element, it marks a flow-dependence edge from i to j.

For the programmer, the pragma C$doisv before the innermost loop of
the selected iteration space is the only required modification to the program.

4 Exploring the ISDG

There are two ways to expose loop parallelism. One way is looking into
the graph to see if there are any parallel partitions of the iteration set N .
Rotating the graph to a certain angle may expose the partitions of independent
iterations to eyes for simple programs like matrix multiplication.

Another way to detect loop parallelism is traversing the iteration space
in the data-flow, loop-wise or plane-wise order. The execution of the loop is
animated through step-by-step highlighting the traversal iterations presently
executed as well as the past and the future iterations.

4.1 Traversing ISDG in data-flow order.

The data-flow orders of iterations are calculated as the following. Since the
ISDG is a directed acyclic graph, that is, each iteration i can not start execu-

ws-p8-50x6-00: submitted to World Scientific on August 17, 2001 3

do i1=1,n
do i2=1,n
if(i1.ne.i2) then

S1 f=a(i2,i1)/a(i1,i1)
C$doisv

do i3=i1+1,n+1
S2 a(i2,i3)=a(i2,i3)-f*a(i1,i3)

enddo
endif

enddo
enddo

(a) Gauss-Jordan elimination

i1
i2

i3

(1,4,2)

(2,4,3)(1,4,3)

(1,4,4) (2,4,4)

(1,4,5) (2,4,5)

(3,4,4)

(3,4,5)
(4,3,5)

(1,3,2)

(2,3,3)(1,3,3)

(1,3,4) (2,3,4)

(1,3,5) (2,3,5)

(3,2,4)

(4,2,5)

(1,2,2)

(1,2,3)

(1,2,4)

(1,2,5) (3,2,5)

(2,1,3)

(3,1,4)

(4,1,5)

(2,1,4)

(2,1,5) (3,1,5)

(b) Its ISDG(n=4)

Figure 1. (a) the loop to be visualized; (b) The graph showing all types of depen-
dence, the data-flow execution at the third sequential step highlights a plane i1 = 3.

tion until all its precedent iterations prec(i) = {j | (j, i) ∈ E} in the dependence
edges E have been executed. Therefore, the optimal schedule time T (i) for
each iteration i is recursively defined as the topology order of the graph:

T (i) =
{

1 + max{T (j) | j ∈ prec(i)}, for prec(i) 	= {}
1, for prec(i) = {} (3)

In principle, if the loop is executed by a data-flow machine, the data-flow
parallelism is defined as the total number of iterations divided by the num-
ber of data-flow steps. Therefore, the number of data-flow steps tells the
programmer how much potential parallelism lies in the loop.

For example, the Gauss-Jordan elimination has a 3-level loop as shown
in Figure 1(a). There is a conditional statement in the non-perfectly nested
loop. A non-perfect-to-perfect conversion is automatically applied to visualize
an equivalent perfectly nested loop, as shown in Figure 1(b).

After detecting the data-flow parallelism, the tool will find a proper paral-
lel execution by traversing the parallel loop iterations or traversing the parallel
planes. The traversal of parallel iterations detects if there are any dependences
carried by a certain loop; the traversal of parallel planes finds a unimodular

ws-p8-50x6-00: submitted to World Scientific on August 17, 2001 4

transformation which makes the loop parallel while keeping the lexicographi-
cal ordering of dependent iterations.

4.2 Traversing parallel loop iterations

If all the dependences are not carried by a loop as testified, the loop can run
in parallel, otherwise the iterations of the loop must traverse sequentially.

The tool not only testifies the loop parallelization specified by the pro-
grammer, but also judges the parallelizability of each loop automatically. Each
loop can be run as a parallel DOALL loop or a sequential DO loop. Therefore
for the 3-level nested loops, there are 8 possible DOALL/DO combinations.
It testifies all the combinations in the outer-first parallelizing order to detect
as much coarse grain parallelism as possible.

The amount of loop parallelism revealed by the loop parallelization is
reported once it’s testified. If it is equal to the data-flow parallelism of the
data-flow execution, the detected loop parallelization has realized the data-
flow parallelism under given loop boundaries.

For example, the ISDG of Gauss-Jordan elimination loop in Figure 1(b)
shows that the two innermost loops can be parallelized, which has also revealed
as much parallelism as the data-flow execution.

4.3 Defining and traversing planes

A plane in a 3D iteration space is defined by the equation:

ai1 + bi2 + ci3 = d (4)

where a, b, c, d are any integers. The iteration space is divided into three sub-
spaces by the plane: {(i1, i2, i3) | ai1 + bi2 + ci3 < d}, {(i1, i2, i3) | ai1 + bi2 +
ci3 = d} and {(i1, i2, i3) | ai1 + bi2 + ci3 > d}.

Given a, b, c, there are a number of parallel planes with d ranging from
min(ai1 + bi2 + ci3) to max(ai1 + bi2 + ci3). Traversing these planes, one
may find parallel partitions without inter-plane dependences or sequential
wavefronts without intra-plane dependences. In other words, the partitions
corresponds to the parallel outermost loop, the wavefronts corresponds to
the sequential outermost loop with the two inner loops parallel. If neither
partitions nor wavefronts exist, the loop can not parallelize without an index
reordering transformation.

The tool distinguishes the three cases by filtering dependence according
to the specified plane: hiding dependence edges between different planes may
reveal partitions if the edge set of the graph becomes empty; hiding depen-

ws-p8-50x6-00: submitted to World Scientific on August 17, 2001 5

dence edges within all the parallel planes may reveal wavefronts if the edges
set of the graph becomes empty.

Traversing the planes gives one more insights into inter-partition or intra-
wavefront parallelism. For Gauss-Jordan elimination in Figure 1(a), the planes
1 ≤ i1 ≤ 4 are wavefronts, meaning that the outermost loop is sequential, the
two inner loops are parallel.

4.4 Extracting distance matrix and evaluating loop transformations

The tool is able to extract a distance matrix from the smallest basis cone of all
the distance vectors in the iteration space. It is not only useful for judging the
parallelizability of the outermost or the innermost loops, but also for finding
a proper unimodular transformation.

A unimodular or non-singular loop transformations correspond to coor-
dinate transformations of the iteration space. As long as the transforming
matrix T is specified from either the plane-wise traversal or the distance ma-
trix, the new iteration coordinates are recalculated as N ′ = {j|j = iT}.

However the edges set E ′ of the transformed iteration space is not easy to
obtain without executing the transformed program. This difficulty is solved
by reusing the trace records generated from the program and construct the
graph according to the new coordinate system. If the new dependence graph
is inconsistent to the dependence constraints, the illegal transformation is re-
jected and the dependence graph is restored. Rapid prototyping of the loop
transformation is useful to testify and evaluate the parallelism in the trans-
formed program without rewriting and execution of the transformed program.

5 Application

The tool has been used to detect parallelism in a CFD program that is hard
to parallelize by a traditional compiler. This program has a 3-level loop nest
whose computation consumes most execution time. The loop body contains
176.5 array references in average for each iteration that has to be analyzed
at run-time. To avoid the graph being over-crowded, the run-time generated
ISDG was zoomed to show the first N = 4 part of the whole iteration space
so that there are N3 = 64 visible iterations, see Figure 2(a).

To detect the parallelism, the iteration space was traversed in data-flow
order and there are 19 sequential steps for the 64 iterations. Testing the data-
flow execution for dimensions N = 5, 6, . . . , the sequential steps were found
to be 25, 31, . . . , as shown in Figure 2(c), or 6N − 5 in general. Therefore,
there is N3/(6N − 5) ≈ N2/6 data-flow parallelism, as shown in Figure 2(d).

ws-p8-50x6-00: submitted to World Scientific on August 17, 2001 6

Looking for intra-plane wavefront parallelism, it found that the iterations
in planes 6 ≤ 3i1 + 2i2 + i3 ≤ 6N are parallel intra-plane, since there is no
more dependence edge after hiding inter-plane dependence edges. According
to these planes, and the extracted distance matrix whose rows are the bases of
all the distance vectors of the dependences:

(
1 −1 0
0 1 −1
0 0 1

)
, it found a unimodular

transformation
(

3 0 1
2 1 0
1 0 0

)
.

Finally, it constructed the ISDG after such a unimodular transformation
without rewriting and execution of the transformed program. The reshaped
iteration space after this unimodular transformation is shown in Figure 2(b).
The figure shows that the reordered iterations are parallelizable for the inner
two transformed loops because no intra-plane dependence exists for each plane
i′1. There are also 6N −5 planes as testified by the tool, thus all the data-flow
parallelism has been revealed by this transformation.

6 Conclusion

An interactive tool for exploring 3-D iteration space dependence graph of
nested loops is presented. Using runtime analysis method, it helps program-
mers to accurately study the loop dependence and to detect parallelism of
the loop. It has been applied to the difficult but significant loop nest of a
CFD program, as result, a unimodular transformation is found to generate
the parallelism that the compiler could not find. This web accessible tool ?

has been added into the parallel programming environment of FPT ?.

References

1. Utpal Banerjee. Loop Parallelization. Kluwer Academic Publishers, 1994.
2. J. Ramanujam. Non-unimodular transformations of nested loops. In Proceed-

ings, Supercomputing ’92, pages 214–223, Nov 1992.
3. Jingling Xue. Unimodular transformations of non-perfectly nested loops. Par-

allel Computing, 22(12):1621–1645, February 1997.
4. William Pugh and David Wonnacott. Constraint-based array dependence anal-

ysis. ACM Trans. on Prog. Lang. and Sys., 20(3):635–678, May 1998.
5. L. Rauchwerger and D. A. Padua. The LRPD test: Speculative run-time par-

allelization of loops with privatization and reduction parallelization. IEEE
Trans. on Parallel and Distributed Systems, 10(2):160–180, February 1999.

6. Yijun Yu. The iteration space visualizer. Technical report, ELIS, University
of Ghent, Belgium, http://sunmp.elis.rug.ac.be/ppt/isv/, 1999.

7. E. D’Hollander, F. Zhang, and Q. Wang. The fortran parallel transformer and
its programming environment. J. Information Sciences, 106:293–317, 1998.

ws-p8-50x6-00: submitted to World Scientific on August 17, 2001 7

i1
i2

i3 (1,4,1)

(1,4,2)

(2,4,1)

(1,4,3)

(3,4,1)

(3,4,2)(2,4,2)

(2,4,3)

(1,4,4) (2,4,4)

(4,4,1)

(4,4,2)

(4,4,3)

(4,4,4)

(3,4,3)

(3,4,4)

(1,3,1) (2,3,1)

(1,3,2)

(1,3,3)

(4,3,1)(3,3,1)

(3,3,2)(2,3,2)

(2,3,3)

(1,3,4) (2,3,4)

(4,3,2)

(4,3,3)

(4,3,4)

(3,3,3)

(3,3,4)

(1,2,1) (2,2,1)

(1,2,2)

(1,2,3)

(4,2,1)(3,2,1)

(3,2,2)

(3,2,3)

(2,2,2)

(2,2,3)

(1,2,4) (2,2,4)

(4,2,2)

(4,2,3)

(4,2,4)(3,2,4)

(1,1,1) (2,1,1)

(1,1,2)

(1,1,3)

(2,1,2)

(1,1,4)

(4,1,1)(3,1,1)

(3,1,2)

(3,1,3)(2,1,3)

(2,1,4)

(4,1,2)

(4,1,3)

(4,1,4)(3,1,4)

(a) the major loop

i1

i2

i3
i2,i3 parallel

(6,1,1)

(15,1,4) (18,1,4)

(24,4,4)(21,4,4)

(12,4,1) (15,4,1)

i1 sequential
6 10 16 242220188 1412

(9,1,1)

(b) the unimodular transformed loop

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7

E
xe

c.
 ti

m
e(

st
ep

s)

loop size

result with the loop
old result without the loop

(c) sequential steps

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7

sp
ee

du
p

loop size

the result with the tool
old result without the tool

(d) speedup

Figure 2. The CFD application:ISDG (a) shows the iteration space of CFD major
loop with dimension N = 4, the current wavefront plane is 3i1 + 2i2 + i3 = 9, (b)
shows the iteration space of the transformed loop, where the iterations in 19 planes
form parallel loops in the new iteration space. The new plane i′1 = 9 is highlighted
with 3 parallel iteration nodes. Comparison between 2-D and 3-D transformation
(c) The number of sequential steps is the minimum execution time of the paral-
lel program. (d) The speedups are the sequential execution time divided by the
minimum parallel execution time.

ws-p8-50x6-00: submitted to World Scientific on August 17, 2001 8

