
Proceedings, RE ’95,
The Second IEEE InternationalSymposium on Requirements Engineering,

27–29 March 1995, York, England.

Using Non-Functional Requirements to Systematically Support Change�

Lawrence Chung Brian A. Nixon & Eric Yu
Computer Science Program Department of Computer Science

The University of Texas at Dallas University of Toronto
P. O. Box 830688, Richardson, TX 75083 Toronto, Ontario M5S 1A4

Abstract

Non-Functional requirements (or quality requirements,
NFRs) such as confidentiality, performance and timeli-
ness are often crucial to a software system. Our NFR-
Framework treats NFRs as goals to be achieved during the
process of system development. Throughout the process,
goals are decomposed, design tradeoffs are analysed, de-
sign decisions are rationalised, and goal achievement is
evaluated. This paper shows how an historical record of
the treatment of NFRs during the development process can
also serve to systematically support evolution of the soft-
ware system. We treat changes in terms of (i) adding or
modifying NFRs, or changing their importance, and (ii)
changes in design decisions or design rationale. This in-
cremental approach is illustrated by a study of changes in
banking policies at Barclays Bank.

1 Introduction

Non-Functional requirements (or quality requirements,
NFRs) such as confidentiality, performance and timeliness
are often crucial to a software system,such as a banking sys-
tem. Furthermore, the continued success of a software sys-
tem often requires meeting changing organisational needs
in a competitive marketplace [23]. In fact, changing and
conflicting requirements were one of the three main prob-
lems for software development, as identified in empirical
studies [15]. But how can change be dealt with, given the
need for quality (as embodied in NFRs)?

To systematically deal with change while aiming
for high software quality, this paper adopts the NFR-
Framework [9, 27], by treating quality requirements as
goals to be achieved during the process of system develop-
ment and change; throughout the process, goals are decom-
posed, design tradeoffs are analysed, design decisions are

�The first author was at the Department of Computer Science, Uni-
versity of Toronto when a draft of this paper was prepared. A longer
version is available from the authors. Authors’ e-mail addresses:
chung@utdallas.edu, {nixon,eric}@ai.toronto.edu.

rationalised, and goals are evaluated. This process not only
serves as a means for developing and improving quality
software but also results in an history record. This paper
shows how an historical record of the systematic treatment
of quality requirements during the development process can
also serve to support evolution of the software system.

Changes to existing software requires dealing with the
impact of organisational changes, changes in specific re-
quirements (e.g., increasing security for a particular opera-
tion) and workload (e.g., the number of bank clients). This
involves identifying important changes, determining their
potential impact on quality issues, and incorporating the
impact through the process of improvement. The effect of
changes can include a change in the target system selected,
and a change in the degree of meeting requirements.

In terms of the historical record, dealing with changes
in quality requirements of an existing software system
amounts to (i) adding or modifying a quality requirement,
or changing its importance, and (ii) extending the history
of development and change while reflecting changes in the
organisation, including its workload, and relating induced
changes to appropriate components of the history record.
This incremental approach needs a basis to record history,
justify changes to the history record of the old software
components, and rationalise the change process in relation
to the old system and a trace of its sources.

Scenario. This process-oriented incremental approach
is illustrated by a study of dealing with quality in a chang-
ing bank-loan system. We consider the impact of changes
in requirements, primarily those driven by changes in or-
ganisational policy. The scenario is based on two editions
of The Barclays Code of Business Banking[2, 3] which
is in real-world use, setting out the general principles and
terms of Barclays Bank’s dealings with its business cus-
tomers. From the Code we see that the bank has a number
of quality concerns, including security, accuracy and time-
liness. Furthermore, we assume that performance is also
an important quality concern. The first edition [2] identi-
fies a number of changes which were to be implemented
in 1992, many of which relate to offering clients several
options for more informative reporting on statements. This

trend towards greater informativeness continued in the sec-
ond edition [3], which is quite similar to [2]. We consider
how our approach might be used to help Barclays deal
with quality requirements, which have an impact on goal
achievement and system design.

Since the NFR-Framework supports the requirements
engineering process with components (goals, decisions, ra-
tionale, etc.) already included in the historical record, our
use of the framework for dealing with change is facilitated.
We treat both the sources and effects of change in the his-
torical record in terms of changes in the components.

This paper extends the usage of the NFR-Framework
[27, 9] by using its facilities to deal with change.This is il-
lustrated by an initial study of dealing with change in a bank
loan system. This draws on our studies of attaining qual-
ity for banking systems [31, 9, 10, 11]. The combination
of performance and requirements for accuracy, timeliness
and informativeness, is also treated in more detail than in
[11]. We also offer guidelines for consistently managing
historical records in the presence of changes in the world.

In Section 2 the NFR-Framework is illustrated in de-
scribing how we use the bank’s initial requirements to gen-
erate an initial design, which is changed in Section 3 to deal
with changes in requirements, based on trends in the Bar-
clays Codes. Section 4 describes guidelines for achieving
desirable properties that an historical goal record should
possess. Section 5 discusses related work, and Section 6
summarises the paper.

2 Generating the Initial Design

2.1 Initial Top-Level Requirements

We first consider a development process which reflects
the situationprior to the 1992 changes in the Barclays Code.
A number of quality requirements are dealt with.

In reviewing Barclays’ policies, we identified important
NFR goals,some of which are captured and shown in the
goal graphof Figure 1 (adapted from [11]). The nodes
represent goals, which stand for requirements. Each goal
has a sort, e.g., Security, which indicates the kind of re-
quirement associated with the goal, and a parameter,e.g,.
[loan-info], to indicate the subject of the goal. This goal
means that loan information should be processed securely.
Similarly, the other top goals mean that loan information
should be informative, processed by the system with good
time performance, i.e., rapidly, and be maintained securely.

Decompositionsare one type of methodfor refining a
goal. For example, the parent goal Time[loan-info] can
be decomposed into offspringgoals Time[change Base
Rate] and Time[produce Statements], which are con-
nected by an AND link. The interpretation is that if the

[loan-info]
Security

denied

neutral or
 satisficed
partially
satisficed

Node Values:

unspecified
partially denied

very satisficed

[loan-info]
Informativeness

Accuracy

unknown
 or neutral

Values:
Link (Correlation)

positive

very positive

?

++
+

Legend
NFR goal

argument

AND node

satisficing goal

correlation link

statements] BaseRate]

Accurate

TimelyAccuracy
[loan-info]

Accurate
Properties
[loan-info]

Confirmation
[loan-info]

[loan-info]

Attributes

Time[produce Time[change

[loan-info]
Time

+

negative

very negative

satisficing link

--
-

+

Figure 1: Initial top-level goal graph for loan system.

base rate can be changed quickly, and statements can be
produced quickly, thenwe have some confidence that fast
processing of loan information can be “satisficed.”1 Be-
sides AND links, other link types(beyond [29]) are avail-
able, which indicate different relationships between parent
goals and their offspring.

The use of the Framework requires the capture of expert
knowledge about domains and NFRs. For example, we
turn to security experts [19] to see that meeting an accuracy
goal will contribute positively to meeting a security goal;
this is shown as a positive correlation link (dotted line in
figure). Furthermore, the experts state that confidentiality,
availability and accuracy all contribute to security, and this
is an example of a generic decomposition method.Sim-
ilarly, accuracy can be decomposed [9] into goals for ac-
curate attributes, accurate properties, and timely accuracy
(Section 3).

In moving towards alternatives for target systems, sat-
isficing goals(dark circles in figures) are intended to sat-
isfice parent NFR goals. Barclays policies state that loan
information be confirmed in writing for informativeness.
Selecting the satisficing goal of confirmationcontributes
not only to meeting (shown with “

p
” in figure) informa-

tiveness but also accuracy, which in turn helps security. In
order to support the development process, we have cata-
logued [7, 10, 9, 30, 31, 32] in a knowledge base such ex-
pert knowledge about sorts, decompositions, correlations

1Since goals representing NFRs are rarely “satisfied” in a clear-cut
sense, but decisions do contribute to, or hinder, a particular goal, we use
goal satisficing[35] when software is expected to satisfy NFRs within
acceptable limits.

and satisficing goals, for the NFRs of accuracy, security
and performance.

2.2 The Initial Design

stmts.]
[produce
Timelinessstmts.]

[produce
BaseRate]
[change

Time

overhead"]

Store
CentrallyOnce
[BaseRate]

StoreCentrallyThen

[BaseRate]
EachClient
StoreFor

-
each of many clients"]

["some

ForEachClient
[BaseRate]

Claim

1 central value"]

Time

["fast: change just
critical]

[change
Timeliness

BaseRate]

done immediately"]
Claim ["must be

Time[change BaseRate;

+

++ Claim

Time
[loan-info]

Timeliness
[loan-info]

change value for
["very slow:Claim

?

Figure 2: Goal graph for partial initial design.

To generate an initial design (Figure 2), we continue
dealing with the initial quality requirements, focussing on
time performance (from Figure 1) and timeliness. The bank
can change interest rates (This is not a change in NFRs) dur-
ing the loan period, and wants to keep clients informed in
a timely manner. Interest rates on loans have two compo-
nents: a base rate(prime rate), which is set nationally by
the bank for all customers, and an interest marginwhich
is set individually for each customer based on the risk in-
volved. The bank gives advance written notice of changes
in the interest margins. Changes in the base rate take effect
immediately for all clients, and are advertised in the na-
tional press, without advance notice. We consider a change
in base rate prior to 1992. (This discussion also applies
after 1992, but it will interact with changes in requirements
(Section 3).)

The need to identify and focus on critical goals has been
pointed out for quality goals [24] including performance
goals [36]. Thus we identify the time performance goal for
changing the base rate as critical; we support this by at-
taching an argument (Claim), here based on organisational
policy, that base rate changes must be done immediately.
Now timeliness,the provision of information in a timely
way, will be helped by the system quickly changing the
base rate, since such a system can help notify customers of
the change in a timely manner. This positive correlation
link is detected and shown in the figure with a “+” sign.

In moving towards a target system, one alternative is
to store the new rate for each client. This is ruled out by

arguing, based on workloadstatistics [4, 5] that it is very
slow (shown as “-” in Figure 2), since each of the many
client records must be updated.2

Another alternative is to store the base rate in one central
value in the system. As only one value must be changed,
this would provide a very fast method (shown as “++”) of
bringing the new base rate into effect, hence is chosen for
the target system. A third alternative is an hybrid of the
other two methods, first changing the centrally stored rate,
then updating the rates stored in all client records. Due to
overhead, it offers intermediate (“?”) time performance and
is not selected now, but will be reconsidered in Section 3.

Now we have labelled some leaf nodes as satisficed
(“
p

”) or denied (“�”). To determine the impact on higher-
level goal nodes, the labelling algorithm is used. Working
bottom-up, it takes into account the labels of offspring, and
the link type (e.g., “+”, “-”). For example, storing the base
rate once, when combined with its very positive (“++”)
parent-offspring link, leads to good satisfaction of the crit-
ical time goal. This in turn has some positive contribution
to the timeliness goal for changing the base rate, and to
the overall goals for time performance and timeliness (top
of Figure 2). A satisficed offspring, when combined with
a negativelink, leads to a denied parent; for example, if
we had chosen StoreForEachClient, the critical time goal
would have been denied.

3 Changing the Design to Deal with Changed
Requirements

3.1 Changing the Design

Time[include[change
BaseRate]statements]

Time
[produce Time[include

MarginRates]

AND node with a new offspring

Legend for Changes

new NFR goal new link

Time[loan-info] Informativeness[loan-info]

BaseRates]

enhanced statements]

+
Time[produce

Time

Figure 3: Goal graph with new requirement.

Offering loan clients more options for reporting on their
statements entails a change in requirements. We consider

2While we do not have the number of clients available to us, in 1993,
the average balance of loans and advances to customers of United King-
dom offices was 60 230 million Pounds Sterling, and the worldwide staff
numbered 97 800.

Claim
["must be

done immediately"]

Accuracy
Timely

Claim
["slow:extra rate

retrievals for eachof many clients"]

critical]
Time[change BaseRate;

Time[change BaseRate]
Time[produce enhanced stmts.]

Claim
["fast (but some overhead) since
retrieving each client record anyhow,
and each has interest rate info;
correct right after rate change"]

StoreCentrally
ThenForEachClient

[BaseRate]

+
+

+
+[loan-info]

Time

+
+[loan-info]

Informativeness
[loan-info]

TimelyAccuracy

-

Timeliness[loan-info]

Time[include Margin Rates]

Time[include
BaseRates]

incorrect right affter rate change"]
and each has interest rate info;
each client record anyhow,++ -

StoreForEachClient
[BaseRate]

["fast since retrieving
Claim

Time
[produce stmts.]

+
Once

[BaseRate]

StoreCentrally

[produce
stmts.]

TimelyAccuracy
[Change

enhanced stmts.]
[produce

TimelyAccuracy
BaseRate]

Figure 4: New design with a new requirement.

adding a new requirement, for good time performance for
producing enhanced statements. We assume that enhanced
statements include a list of the base rates and interest mar-
gins applicable for the statement period.

How do we add the requirement? Figure 3 shows the
new time requirement which is in turn decomposed into
time goals for including both base rates and margin rates
in statements. The figure’s legend shows how new goals
and links are presented. In Figure 4, the new requirements
result in interactionwith existing requirements, leading to
new tradeoffs and a new target system, with new arguments
leading to the revised system. In particular, there is in-
teraction between changing the base rate (Figure 3) and
producing statements. This leads to a tradeoff between
timely accuracy and time performance.

Figure 4 also shows a goal for Timely Accuracy (the
timely recording of information in the system) of loan in-
formation. This would be decomposed, prior to 1992, into
goals for accuracy for changing the base rate, and for pro-
ducing (basic) statements. After 1992, another offspring,
for the accuracy of producing enhanced statements, would
be added. A similar decomposition was shown previously
in Figure 3, for a time performance goal.

Now consider the performance impact of including the
base rates upon the alternatives for a target system, and the
associated arguments (This is an example of “downward
correlation” [9]). Storing the base rate for each client will
result in very fast time performance (shown as “++”), since
preparation of each statement must involve retrieval of each
client record (containing the base rates) anyhow. Due to
overhead, reasonable time performance, but a little slower
(“+”), would result from the hybrid method of storing the
rate centrally, than for each client. Storing rates centrally
would result in poor performance (shown as “-”) due to the
extra rate retrievals required for eachclient; we can argue,

based on the organisation’s workload, that this choice is
very poor due to the large number of bank clients.

The choice of target system design is not yet complete,
however, due to the impact of the target alternatives upon
the Timely Accuracy goal for producing enhanced state-
ments (an example of “upward correlation” [9]). Here
an accuracy issue stems from including the base rate in
statements. Suppose the base rate is changed just before
statements are prepared. Now if only one base-rate value is
changed in the entire system, this can be quickly changed,
preserving accuracy. However, if the rate is changed for
each client, this might take a long period of time to com-
plete, and some statements could incorrectly show only
the old base rate. The hybrid method can maintain accu-
racy, as it checks whether the base rate has recentlybeen
changed before retrieving a value: if there has been a re-
cent change, it uses the (correct) central value; otherwise it
uses the (correct) value in the client record. Thus the argu-
ments show that in producing enhanced statements, there
are tradeoffs between time performance and timely accu-
racy. As accuracy is a very important corporate goal, it is
given priority, and storing the base rate for each client is
ruled out, as it sometimes gives incorrect results. On the
other hand, performance is also important, so storing the
rate centrally alone (the prior choice) is ruled out, as it is
generally slow, even though accurate. Thus in the presence
of the accuracy-performance tradeoff, the hybrid method
(ruled out with the previous requirements, due to overhead)
is now chosen as it offers timely accuracy and also reason-
able time performance for both changing the base rate and
including the rate in statements. Thus an organisational
change has resulted in a change in the target system.

Given the choice of target system, the framework’s la-
belling procedure shows the impact on quality require-
ments. Here, for example, the choice of the hybrid method

has a positive impact upon timely accuracy of producing
enhanced statements, and upon time goals for both chang-
ing the base rates and including them in statements. This
last improvement has a positive impact on meeting the time
performance goal for producing enhanced statements.

3.2 Overall Impact of Change

statements]

[produce
Time

enhanced
Timely

Accuracy
[loan-info] [loan-info]

Properties
Accurate

[loan-info]
Attributes
Accurate

[change
BaseRate]statements]

[produce
Time

Time
[loan-info]

Time

Security
[loan-info]

+

[loan-info]
Informativeness

[loan-info]
Accuracy

+Confirmation
[loan-info]

Figure 5: Impact of new requirement on top-level goals.

What has been the overall impact of the change in re-
quirements on (other) top-level requirements?

1. The goal graph (Figure 5) now includes the history
of dealing with the change.Goals and offspring goals
have been added to reflect changed requirements, together
with the interactions among the initial and additional goals.
Tradeoffs were considered and arguments were revised.

2. This has lead to a change in the target system.This
was driven by changes in requirements, and was ratio-
nalised by changes in arguments.

3. This has also changed the extent to which
we have satisficed the overall top-level require-
ments. Here, the effect was to satisfice the new
goals (e.g., TimelyAccuracy[produce enhanced state-
ments]), which contributed positivelytowards the top-level
goals (e.g., TimelyAccuracy[loan-info]). As part of the
tradeoff, however, time performance for changing the base
rate went from being very satisficed to being satisficed.
Comparison of Figure 5 with Figures 1 and 2 shows the
overall impact: an increase in informativeness and timely
accuracy, hence timeliness, with some time performance
costdue to the extended processing needed for producing
the enhanced statements.

To simplify the presentation, some nodes (both those
before and after the changes) were not decomposed to sat-
isficing goals, or were not labelled. So here, without satis-
ficing the offspring (here, of AND nodes) we cannot label
their top-level parents (e.g., Time[loan-info]) as satisficed.
What we can say about such unlabelled goals is that if the
initial goals were satisficed and remained satisficed, they
would contribute to satisficing the parents. Likewise, sat-
isficing new offspring will help to satisfice the parents.

4 Guidelines for Changes

Dealing with changes involves identifying changes and
associating them with appropriate components of the his-
tory record, i.e., goal graph. This process is often in-
terleaved, and proceeds incrementally. Tools should pro-
vide semi-automated support of a developer dealing with
change. We have developed tools for using the basic NFR-
Framework,which primarily help the developer state and
refine goals. But now, dealing with change may require
operations, such as removal of a goal, which temporarily
make the goal graph inconsistent. In order to help restore
the goal graph to a consistent state, we offer some initial
guidelines, in terms of some syntactic and semantic struc-
tural consistency criteria.

4.1 Desirable Properties of Goal Graphs

The process of building and revising a goal graph is
facilitated by a number of notions.

The use of the notion of structurally traceable goal
graphprovides some “syntactic” principles for maintaining
the structure of a goal graph:
� Each argument should be attached to a goal or a link.
� Each link should have its direction (positive, negative

or neutral) and strength (strong, weak, to-be-specified)
of contribution specified.

These guidelines help the labelling procedure to determine
the whether goals are satisficed.

There are other notions in a longer version of this paper
(available from the authors). These notions help trace de-
cisions to identifiable sources of knowledge, help trace the
relationships among design decisions, their corresponding
goals, and the people who stated the goals, and help ensure
that changes are rationalised, evaluated, and compared to
the previous system.

4.2 Guidelines for Categories of Changes

Incorporating revisions into a goal graph is facilitated
by division of NFR-related changes into three categories
(corresponding to the three types of goals in the legend
of Figure 1) and uses a set of guidelines for propagating
the changes. The guidelines are based on these categories,
the kinds of operations on quality requirements, and the
structure of the goal graph.

Guidelines for Changes in NFR Goals. A change
in a NFR goal usually proceeds in a downward direction,
linking and expanding the goal to other NFR, satisficing
and argument goals:
� addition of a quality requirement:A new goal should

generally be linked with existing goals (NFR, satisficing
and argumentation goals). If afterwards there remain
any isolated NFR goals without offspring, we see if

offspring can be created and related to other existing
goals. This involves an iterative stage of decomposing
the added goals, considering design trade-offs and se-
lecting satisficing goals, and providing arguments for
or against design decisions.

� deletion of a quality requirement:This can involve
recursively deleting all (incoming and outgoing) links
associated with the requirement, or re-associating the
links with another goal. A parent-less satisficing goal
should be deleted or linked to an NFR goal. A parent-
less argument usually needs to be deleted.

� changing the importance (criticality) of a quality re-
quirement:This can be done by changing the criticality
attribute of a relevant goal. This affects the way con-
flicts are resolved and the number and type of methods
to be selected as well as their associated arguments.

Guidelines for Changes in Satisficing Goals. A
change in a satisficing goal proceeds both upwards to par-
ents, propagating it to satisficing and NFR goals, and down-
wards to offspring, propagating it to other satisficing goals
and to argument goals. Although omitted due to space lim-
its, there are guidelines for the cases of addition, deletion
and change in criticality.Interestingly, addition may lead
to new correlation links.

Guidelines for Changes in Arguments. Again there
are guidelines for of addition, deletionand change in crit-
icality. The guidelines each have two cases, depending on
whether the changed argument supportsor deniesanother
goal. In addition, changes in criticality are sub-divided into
strengthening and weaking of criticality.

5 Related Work

Related work includes work in decision support sys-
tems (e.g., [25, 33]) which influenced the argumentation
aspects of the NFR-Framework. The current work adopts
the NFR-Framework, hence using the ideas of design ra-
tionale. However, the current work is distinct as it deals
with changes, and utilises semantic structures, such as link
types, correlations and method instances, in guidelines for
incorporatingchanges. The current work also demonstrates
how such structures help annotation of changes.

A large empirical study of requirements traceability is
reported in [17] which involves developing and following
the life of a requirement from its origin through all phases
of development. This approach is similar to ours concern-
ing defects. However, we have looked at traceability with
more emphasis on incorporating changes in NFRs, sys-
tematically detecting defects and supporting the process of
corresponding changes in designs and implementations.

The improvement paradigm of Goal-Question-Metric in
the TAME project [6] is similar to our approach in the sense

that it uses the notion of goals and provides a way of argu-
mentation via questions. TAME can be viewed as some-
what complementary as its goals are general requirements
and it uses a collection of metrics for improvement, while
we use NFRs as goals to systematically support improve-
ment by way of decomposition, correlation and achieve-
ment, which are all integrated into a development history
record serving as the basis for change. Metrics [13] can also
play an important role in maintenance, to which our work
is related concerning software evolution and traceability.

Work on requirements analysis for safety-critical sys-
tems [14] shares a similar spirit with ours in that both are
concerned with NFRs and their analysis. Coombes and
McDermid’s work has taken a causal reasoning approach,
hence is complementary to our amalgamation of qualitative
reasoning from truth maintenance systems [1] and dialecti-
cal reasoning from work on design rationale [25]. The two
are also complementary as [14] focusses on safety and its
analysis, while our approach is directed to systematically
supporting changes using NFRs.

This work grows out of the earlier DAIDA environ-
ment [21] which provides support for all phases of infor-
mation system engineering. Our work extends the envi-
ronment with principles and guidelines for using NFRs to
guide evolution process, and our tool’s use of DAIDA’s
knowledge base management facilities [22]. Our frame-
work follows a decision-oriented (as opposed to activity-
or product-oriented) approach to managing software evo-
lution [20, 34], but provides additional representation and
support, and is driven by NFRs.

6 Conclusions

Observations. In dealing with change in this study, we
observe that our operations on the goal graphs has mainly
involved: adding a new goal (e.g., due to changes in or-
ganisational policies); revising an existing interaction (e.g.,
correlations); considering new interactions; (re-) consider-
ing alternative target systems; and providing arguments for
the chosen system, e.g., based on the organisation’s work-
load, such as the number of clients. In our experience this
process was quite rapid: there was little additional material
to add to the graph; and of the new material, some of the
bookkeeping (e.g., some correlations) can be handled auto-
matically. This kind of saving helps the developer to focus
on the domain and the quality requirements. We feel that a
main reason for this saving is that the NFR-Framework cap-
tures underlying structure and real-world knowledge (Cf.
[18]), which is needed, used, and re-used.

Tool Support. To help a developer use the basic NFR-
Framework, a tool, the NFR-Assistant, has been imple-
mented to deal with accuracy and security [9, 10], and

work is in progress on performance [32]. The tool helps
the developer catalogue, browse and use knowledge about
the domain, particular NFRs and their associated methods
and correlations. To also free the developer from handling
routine bookkeeping and simple reasoning, the tool, given a
method to apply, generates offspring, helps detect correla-
tions, and propagates changes in label values throughout the
goal graph. However, this is very much a semi-automatic
approach. It is up to developersusing the tool to direct the
overall development process, select focus, choose or sup-
plement pre-defined methods, provide rationale, and use
their own expertise about the domain and the NFRs. In this
sense, we do not yet offer active guidance or a model for
process enactment.

In future, the tool should also distinguish new goals and
links from old ones, in extracting the differences between
the old and new goal graphs. The tool should also be
extended to support our guidelines, first by detecting viola-
tions of the properties of Section 4.1, and then by informing
the developer of goals, links and labels which should be ad-
justed according to the guidelines of Section 4.2.

Future Work. Interestingly, this study has presented
some support for extensions to the NFR-Framework,partic-
ularly in representing changes in strengths of goal achieve-
ment. Adding additional “shadings” to the existingvalues
(e.g., satisficed, denied, neutral, etc.) would help us repre-
sent, for example, situationswhere a requirement is initially
satisficed, and subsequently also satisficed, but to a greater
degree. This could be viewed as adding some features of
quantitative frameworks, while, at a high level of abstrac-
tion, retaining the features of a qualitative framework. The
framework could also provide a convenient notation for re-
flecting changes made over time; a corresponding graphical
notation would be helpful to the tools for display purposes.

Given the vast amount of informal, loosely-connected
descriptions, we feel from this study the need for more
structure to argumentation, perhaps by way of a model of
organisation with a rich ontology, e.g., [37, 38].

Further studies of real systems could be made, to il-
lustrate more of the cases of the guidelines presented in
Section 4. The guidelines are organised by the structure
of a goal graph. When the guidelines are suitably for-
malised, we could envisage demonstrations of correctness
(by structural inductionon the goal graph) and a formal ver-
ification that the labelling algorithm generates a unique and
consistent assignment of labels. Studies would also help
determine how easily the framework and its notation can be
learned and applied by practitioners, as raised by experts in
other domains (medical and governmental computing) who
have reviewed our previous studies [12].

Conclusion. In dealing with change, our overall long-
term goals are to increase quality, decrease development

time and cost, and to improve conciseness of representa-
tion and schemes for assisting reasoning. We have taken
an existing framework [9, 27] for dealing with quality re-
quirements, and have provided a set of guidelines stating
the mechanics of incrementally dealing with changes in the
context of the framework. Our study of change in a banking
environment shows that the framework’s history structure
provides a concise historical record of dealing with change.

Our approach leads to the following benefits:
1. Incorporating change is conceptually simple,since

the same structure is used for developing both the initial
goal graph and its subsequent revisions;

2. Identification and treatment of incremental change
is faster and cheaper,since the initial goal graph can be
consulted to detect patterns and reduce searches of doc-
umentation whose references to quality have already been
captured as goals, methods, and interactions among old and
new goals.

3. Changes in NFRs are representable,since a
knowledge-based approach enables capturing concepts
central to dealing with NFRs, both initial and subsequent
ones.

The NFR-Framework is good for dealing with change,
because it inherently deals with alternatives in a goal-
oriented way. When there is change, some other alternative
becomes appropriate because of the new circumstances.
Managing change in terms of the means-ends (alternatives-
goals) linkages is an important dimension because the un-
derlying interactions are captured. The idea of applying
means-ends reasoning to deal with change is also the ba-
sis for a framework for process reengineering [38, 39, 40].
Most work on change and evolution deals with the historical
or temporal dimension, e.g., versioning and configuration
management. It would be interesting to see how the means-
ends reasoning dimension interacts with other dimensions
in dealing with change.

Acknowledgments. Our thanks to Anthony Finkelstein,
Stephen Fickas and Martin Feather for providing a copy of the
Barclays Code of Business Banking for use as an example at the
Workshop on Research Issues in the Intersection between Soft-
ware Engineering and Artificial Intelligence, Sorrento, Italy, May
1994. Our sincere gratitude for all his help to Tim Baxter of Bar-
clays Bank in London who provided us with the current edition of
the Code. We are very grateful to Professor John Mylopoulos for
his ongoing help in this work, and the referees for their excellent
comments.

References
[1] Artificial Intelligence Journal,Special Issue on Qualitative

Reasoning, vol. 24, nos. 1–3, Dec., 1984.
[2] Barclays Bank PLC, The Barclays Code of Business Bank-

ing. London, England, effective 31st Jan. 1992.
[3] Barclays Bank PLC, The Barclays Code of Business Bank-

ing. London, England, May 1993.

[4] Barclays Bank PLC, Annual Review & Summary Financial
Statement,London, England, 1993.

[5] Barclays Bank PLC, Report and Accounts,London, 1993.
[6] V. R. Basili and H. D. Rombach, “The TAME Project:

Towards Improvement-Oriented Software Environments,”
IEEE TSE,vol. 14, June 1988.

[7] L. Chung, “Representation and Utilization of Non-
Functional Requirements for Information System Design.”
In Advanced Information Systems Eng.,Proc., 3rd Int. Conf.
CAiSE ’91, Trondheim, Norway. Springer-Verlag, 1991.

[8] K. L. Chung, P. Katalagarianos, M. Marakakis, M. Mertikas,
J. Mylopoulos, Y. Vassiliou, “From Information System Re-
quirements to Designs: A Mapping Framework.” Informa-
tion Systems,Vol. 16, 1991.

[9] K. L. Chung, Representing and Using Non-Functional Re-
quirements: A Process-Oriented Approach.Ph.D. Thesis,
Dept. of Computer Science, Univ. of Toronto, June 1993.
Also Technical Report DKBS–TR–93–1.

[10] L. Chung, “Dealing With Security Requirements During the
Development of Information Systems.” In Advanced Infor-
mation Systems Eng.,Proc., 5th Int. Conf. CAiSE ’93, Paris,
France. Berlin: Springer-Verlag, 1993, pp. 234–251.

[11] L. Chung, B. A. Nixon and E. Yu, “Using Quality Require-
ments to Drive Software Development.” Workshop on Re-
search Issues in the Intersection Between Software Eng. and
Artificial Intelligence,Sorrento, Italy, May 1994. Also in
slightly revised form in: “Using Quality Requirements to
Systematically Develop Quality Software.” Proc. 4th Int.
Conf. on Software Quality,McLean, VA, U.S.A., Oct 1994.

[12] L. Chung, B. A. Nixon, “Dealing with Non-Functional
Requirements: Three Experimental Studies of a Process-
Oriented Approach.” To appear in Proc., 17th ICSE,Seattle,
WA, U.S.A., Apr. 1995.

[13] D. Coleman, D. Ash, B. Lowther and P. Oman, “Using
Metrics to Evaluate Software System Maintainability.” IEEE
Computer,vol. 27, no. 8, Aug. 1994.

[14] A. C. Coombes and J. A. McDermid, “Using Qualitative
Physics in Requirements Specification of Safety Critical
Systems — A Potential AI User’s Perspective.” Workshopon
Research Issues in the Intersection Between Software Eng.
and Artificial Intelligence,Sorrento, Italy, May 1994.

[15] B. Curtis, H. Krasner and N. Iscoe, “A Field Study of the
Software Design Process for Large Systems.” Comm. of the
ACM,vol. 31, no. 11, Nov. 1988.

[16] A. C. W. Finkelstein and S. J. M. Green, Goal-oriented
RequirementsEngineering.Tech. Rept TR–93–42, Imperial
College (London Univ.), forthcoming.

[17] O. C. Z. Gotel and A. C. W. Finkelstein, An Analysis of
the Requirements Traceability Problem. Proc. Int. Conf. on
Requirements Eng.Colorado Springs, 1994.

[18] S. Greenspan, J. Mylopoulos and A. Borgida, “On Formal
Requirements Modeling Languages: RML Revisited.” Proc.
16th ICSE,Sorrento, Italy, May 1994.

[19] European Communities, Information Technology Security
Evaluation Criteria, Provisional Harmonised Criteria,Ver-
sion 1.2, June 1991, Luxembourg.

[20] M. Jarke and T. Rose, “Managing Knowledge about Infor-
mation System Evolution.” Proc. SIGMOD ’88,Chicago.

[21] M. Jarke, J. Mylopoulos, J. W. Schmidt, Y. Vassiliou,
“DAIDA: An Environment for Evolving Information Sys-
tems,” ACM TOIS, vol. 10, no. 1, Jan. 1992, pp. 1–50.

[22] M. Jarke (Ed.), ConceptBase V3.1 User Manual.Univ. of
Passau, 1992.

[23] M. Jarke, K. Pohl, “Requirements Engineering in the Year
2001: On (Virtually) Managing a Changing Reality,” Work-
shop on System Requirements: Analysis, Management, and
Exploitation, Schloß Dagstuhl, Germany, 1994.

[24] J. M. Juran, F. M. Gryna Jr., and R. S. Bingham Jr. (Eds.),
Quality Control Handbook,3rd Ed., New York: McGraw-
Hill, 1979.

[25] J. Lee, Extending the Potts and Bruns Model for Recording
Design Rationale. Proc. 13th Int. Conf. on Software Eng.,
Austin, May 1991, pp. 114–125.

[26] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis,
Telos: Representing Knowledge about Information Sys-
tems, ACM TOIS, vol. 8, Oct. 1990, pp. 325–362.

[27] J. Mylopoulos, L. Chung, B. Nixon, “Representing and Us-
ing Non-Functional Requirements: A Process-Oriented Ap-
proach.” IEEE TSE,Vol. 18, June 1992.

[28] J. Mylopoulos, L. Chung, E. Yu and B. Nixon, Requirements
Engineering 1993: Selected Papers.Tech. Rept. DKBS–
TR–93–2, Dept. Computer Science, Univ. of Toronto, 1993.

[29] N. Nilsson, Problem-Solving Methods in Artificial Intelli-
gence.New York, McGraw-Hill, 1971.

[30] B. Nixon, “Implementation of Information System Design
Specifications: A Performance Perspective.” In Database
Programming Languages: Bulk Types & Persistent Data -
3rd Int. Workshop.Morgan Kaufmann, 1992.

[31] B. A. Nixon, “Dealing with Performance Requirements Dur-
ing the Development of Information Systems.” Proc. IEEE
Int. Symp. on RequirementsEng.,San Diego, CA, Jan. 1993.

[32] B. A. Nixon, “Representing and Using Performance Re-
quirements During the Development of Information Sys-
tems.” In Advances in Database Technology - EDBT ’94,
Proc. 4th Int. Conf. Extending Database Technology, Cam-
bridge, U.K. Springer-Verlag, 1994.

[33] C. Potts and G. Bruns, Recording the Reasons for Design
Decisions, Proc. 10th ICSE,1988.

[34] C. Rolland “Modeling the evolution of artifacts.” Proc. Int.
Conf. on RequirementsEngineering,Colorado Springs, Col-
orado, U.S.A., Apr. 1994.

[35] H. A. Simon, The Sciences of the Artificial,2nd Edition.
Cambridge, MA: The MIT Press, 1981.

[36] C. U. Smith, PerformanceEngineeringof Software Systems.
Reading, MA: Addison-Wesley, 1990.

[37] E. Yu, Modelling Organizations for Information Systems
Requirements Engineering. Proc. IEEE Int. Symp. Require-
ments Eng.,San Diego, CA, Jan. 1993.

[38] E. Yu and J. Mylopoulos,“Understanding ‘Why’ in Software
Process Modelling, Analysis, and Design.” Proc. 16th ICSE,
Sorrento, Italy, May 1994.

[39] E. Yu and J. Mylopoulos, “From E-R to ‘A-R’ - Mod-
elling Strategic Actor Relationships for Business Process
Reengineering.” Proc. 13th Int. Conf. Entity-Relationship
Approach,Manchester, U.K., 1994.

[40] E. Yu, Modelling Strategic Relationships for Process
Reengineering.Ph.D. Thesis, Dept. of Computer Science,
Univ. of Toronto, 1994.

