

 324 Int. J. Agent-Oriented Software Engineering, Vol. 2, No. 3, 2008

 Copyright © 2008 Inderscience Enterprises Ltd.

Towards a service requirements modelling ontology
based on agent knowledge and intentions

Lin Liu*, Qiang Liu and Chi-Hung Chi
School of Software
Tsinghua University
Beijing, 100084, China
E-mail: linliu@tsinghua.edu.cn
E-mail: liuqiang@tsinghua.edu.cn
E-mail: chichihung@tsinghua.edu.cn
*Corresponding author

Zhi Jin
Academy of Mathematics and System Sciences
Chinese Academy of Sciences
Beijing, 100080, China
E-mail: zhijin@amss.ac.cn

Eric Yu
Faculty of Information Studies
University of Toronto
Toronto, M5S 3G6, Canada
E-mail: yu@fis.utoronto.ca

Abstract: In this paper, we propose a formalism for service requirements
and capability modelling. It adopts concepts from the agent-oriented
requirements modelling framework i*, which can be used as a means of
studying the requirements and architecture for distributed agent systems.
We argue that a social modelling framework such as i*, extended with the
necessary service-related concepts and formal reasoning mechanisms, offers
a better understanding of the social/organisational relationship in an open
services world. By explicitly representing the underlying assumptions and
the essential factors of services, a semiformal requirements model in i*
can automatically evolve and be refined into a service requirements and
capability reasoning framework. Eventually, it will assist intelligent agents
with certain knowledge and intentions to make intelligent, rational decisions
during service discovery, publication, selection and binding within an open
services community.

Keywords: services; requirements; modelling; ontology; knowledge; trust;
Quality of Service; QoS.

Reference to this paper should be made as follows: Liu, L., Liu, Q., Chi, C-H.,
Jin, Z. and Yu, E. (2008) ‘Towards a service requirements modelling ontology
based on agent knowledge and intentions’, Int. J. Agent-Oriented Software
Engineering, Vol. 2, No. 3, pp.324–349.

 Towards a service requirements modelling ontology 325

Biographical notes: Dr. Lin Liu is currently an Associate Professor affiliated
with the School of Software, Tsinghua University, Beijing, China. Her current
research interests include requirements engineering, services engineering and
security modelling.

Qiang Liu is an Associate Professor at the School of Software, Tsinghua
University, China. Her current research interests are software engineering,
project management and collaborative working.

Dr. Chi-Hung Chi is currently a Professor at the School of Software, Tsinghua
University, China. His research interests are internet services engineering,
content engineering and network systems and architecture.

Dr. Zhi Jin is a Professor of Computer Science at the Academy of Mathematics
and Systems Science, the Chinese Academy of Sciences, China. Her current
research focuses on requirements engineering and knowledge engineering.

Dr. Eric Yu is an Associate Professor with the Faculty of Information
Studies, the University of Toronto, Canada. His research focuses on
requirements engineering, information systems engineering and business and
organisation modelling.

1 Introduction

During recent years, the Service-Oriented Architecture (SOA) (Erl, 2005) has been
recognised as the best way to build complex systems within a short time. It can adapt
to changes rapidly and provide effective inter- and intra- organisation application
integration. A general operational model includes three different kinds of actors: the
service requestors searching for needed services, the service providers who publish and
provide services, and the service registry that supports the match-making process
between requestors and providers. This framework assumes that the service providers
know what services should be offered to the requestors, while the service requestors
would expect that the requested service is available from some of the providers. When
there is no acceptable match between the service request and the published service
description, there is no other action can be taken.

Recent development of service-oriented computing integrates more perspectives
including generic service descriptions of semantics, allowing some service registry to
take semantic measures to find nearby services that might be acceptable to the requestors.
The potential to achieve dynamic, scalable and cost-effective infrastructure for electronic
transactions in business and public services has driven many recent research efforts
towards enriching web services with semantics. Ontology plays a key role in providing
machine readable vocabularies used by applications to understand the shared meanings.
So far, many service ontology description languages have been proposed, e.g., SWSL
(Battle et al., 2005), OWL-S, and earlier, DAML-S, and LARKS (Lu and Yu, 2007;
Martin et al., 2006; Mandell and McIlraith, 2003; McGuinness and da Silva, 2004;
Mylopoulos, 1998; Sycara et al., 2002; Wang et al., 2006). These are active research
projects to address the problem of services interoperability and match-making, but we
feel that they are not yet adequate to solve the current problem of modelling services

 326 L. Liu, Q. Liu, C-H. Chi, Z. Jin and E. Yu

requirements. The main issue is that in each of the ontology language, services are
modelled and analysed at a certain level of abstraction, without a holistic treatment that
could connect high-level abstract goals of services to concrete service operations. For
instance, LARKS mainly handles service requests at the level of database queries, and
OWL-S mainly deals with service requests at the level of operations with input, output,
and pre- and post- conditions, while SWSL mainly focuses on the formalisation of
services as objects with logic approaches.

In this paper, we are not proposing yet another ontology description language, but a
modelling ontology for matching up service requests from the service requestor with the
service capability description from the service provider within an open network of
services. The proposed approach uses concepts and strategies from an agent oriented
requirements modelling framework, i*, which can potentially support a more flexible
‘goal-driven’ match-making process. Here ‘goal-driven’ match-making means that we
view service requestors and providers as agents with intent who will look for alternative
ways to find a suitable match if there is no immediate match. It is a generic modelling
framework that allows representation of service requirements and capability at different
levels of abstraction, which can be used to describe the rules and assumptions that drive
the automatic service discovery and selection processes as well as the binding for the
service level agreement. We consider this a critical step for the success of SOA.

It is developed based on the previous work in requirements engineering using a social
ontology to model and analyse service relationships among strategic actors (Liu et al.,
2006). That is, we consider that web services are software agents who have their own
requirements to fulfil, and who have certain core competence, as well as common and
special abilities or knowledge about how to fulfil another agent’s requirements or to
extend another agent’s capability. As the agents form social networks to serve their own
and others’ interests, the issues of delegation, trust, security, and privacy have to be taken
into consideration as well.

In this paper, we aim towards building an automated services representation
framework based on i* concepts. Its unique feature is that it allows the existing modelling
constructs of i* language to be mapped into elements of a service requirements and
capability reasoning framework. More importantly, the relevant SOA activities
from service publishing, requesting, discovery, and selection to binding will be captured
by the framework to allow automatic service discovery and composition. This
service requirements and capability modelling ontology contributes not only to the
theoretical study of SOA but also forms the basis for a possible service application
deployment structure.

2 Service requirements modelling ontology: a formal service requirements
ontology based on i *

In order to let heterogeneous service agents communicate with each other, we need
a common service requirement and capability description language before service
publication, request and match-making activities take place. The main desired
characteristics of the language include: expressiveness, inference capability, ability to be
easily understood and used and suitability for web-based open services environments.

 Towards a service requirements modelling ontology 327

2.1 i* Framework

The i* framework is an agent-oriented requirements engineering approach (Yu, 2001;
1997). Agents attribute intentional properties such as goals, beliefs, abilities, and
commitments to each other. Agents consider alternative configurations of dependency
networks to assess their strategic positioning in a social context. The framework is used
in contexts in which there are multiple autonomous units with strategic interests.

We adopted the basic modelling concepts and their definitions in i*: actor, goal, task,
resource and softgoal. An actor in i* () is an active entity that carries out actions to
achieve its goals by exercising its capability and knowledge. A goal in i* () is a
condition or state of affairs in the world that an actor would like to achieve, maintain, or
avoid. Usually, a goal is only a rough sketch of the end result, leaving space for
negotiation, elicitation and refinement. A task in i* () is used to represent the specific
procedures to be performed by actors, and the task specifies particular ways of doing
something. A resource in i* () is a physical or informational entity, which may serve
particular purposes. Properties of an entity include whether it is available or not. A
softgoal in i* () is used to define a quality or non-functional requirements where
subjective judgements of the modeller are needed.

We have also applied the following relationships and their definitions in i*:
means-ends, decomposition, and contribution. A means-ends relationship is used to
connect a goal with a task, and indicates that the goal can be achieved after the task is
performed. In i*, connected to a goal by a means-ends link (), each task is one
possible way of achieving the goal. A decomposition relationship () is used to
connect a task with its sub-components. The subcomponents could be a goal, a task, a
resource, or a softgoal. A contribution (→) in i* describes the elaboration of a quality
softgoal into more concrete softgoals, or the operationalisation of a softgoal into tasks
having an impact on it. The impact can be positive or negative, partial or sufficient. The
following aliases are used to represent possible types of contributions: Make = (full,
positive) ; Help =(partial, positive) ; Some+ = (positive, unknown degree) ; Undecided =
(unknown, unknown degree) ; Some- = (negative, unknown degree) ; Hurt = (partial, negative) ;
Break = (full, negative) . The partial order of the above types is: Make ≥ Help ≥ Some
+ ≥ Undecided ≥ Some – ≥ Hurt ≥ Break. Other qualitative or quantitative measurements can
be used as a scale of contributions (Chung et al., 2000).

In i*, a dependency link () is used to describe a strategic dependency
relationship. The relationship is strategic since the actors may decide to support the
dependency or break the dependency according to their own interests. In i*, a belief ()
construct is used to represent an actor’s knowledge or perception of other actors, domain
characteristics, design assumptions and relevant environmental conditions.

The i* framework supports two kinds of modelling: Strategic Dependency (SD)
modelling and Strategic Rationale (SR) modelling. The strategic dependency model
assumes that actors form dependency networks to achieve their goals, perform their tasks,
free desired resources, and thus the desired softgoals can be reached with the help of
others. The strategic rationale model explores the internal reasoning structure of an actor
to reveal how high-level goals and tasks can be decomposed, so that alternative solutions
are identified and evaluated. Figure 1 shows an SD model on SOA, and Figure 2 shows
an SR model of a service provider.

 328 L. Liu, Q. Liu, C-H. Chi, Z. Jin and E. Yu

Figure 1 A strategic dependency model in i* on SOA (see online version for colours)

Figure 2 A strategic rationale model of a service provider in i* (see online version for colours)

2.2 Ontology concepts in service requirements modelling ontology

Based on the concepts introduced above from the i* framework, we may build models to
analyse the strategic relationships between actors in the services world. Each actor has
knowledge of the other actors’ capabilities and requirements, and also knows how goals
could be addressed by other tasks, how tasks could be decomposed, how resources can be
obtained, and how quality attributes are assured. An actor can also delegate a service to

 Towards a service requirements modelling ontology 329

another actor, and inform other actors of its requirements, capability and knowledge. To
move towards automated support for services manipulation, we built a formalism based
on these concepts with necessary extensions to establish a services analysis mechanism.

Figure 3 Service Requirements Modelling Ontology (SRMO) (see online version for colours)

Definition 1 A = {a1, …, an} is a set of Actors. If a ∈ A, we write: Actor (a).

Definition 2 S = G ∪ T ∪ E is a set of Services. Textually, if s ∈ S, we can also
represent it as: Service (s). There is no service concept in i*. We also enforce that each
instance of service should belong to one of the four subtypes of services. Services
expressed as abstract objectives are modelled as goals; Services defined as concrete
procedure and implementation can be modelled as tasks; Services related to content
provisioning are modelled as resources; services related to non-functional, quality
attributes are modelled as softgoals. Here we import these relevant concepts and redefine
their meaning in the service setting.

• G = {g1, …, gn} is a set of Service goals. If g ∈ G, we write Goal (g).

• T = {t1, …, tn} is a set of Service tasks. If t ∈ T, we write Task (t). Tasks are
decomposable based on process-related operators, including the parallel operator,
sequence operator, and selection operator, to name a few.

• E = {e1, …, en} is a set of service entities (resources in i*). If r ∈ R, we write entity
(r). Properties of an entity include whether it is available or not, the value of its
quality attributes, and its non-intentional properties such as amount, producer,
copyright owner, colour, length, etc.

 330 L. Liu, Q. Liu, C-H. Chi, Z. Jin and E. Yu

Definition 3 Q = {q1, …, qn} is a set of quality attributes. If q ∈ Q, we can also write
Quality (q). A quality attribute could be any attribute that is of interest to an actor
requesting or providing a service, such as, the cost of a service, performance,
security/privacy assurance, ease of use, etc. In other words, anything within the scope of
QoS can be described.

2.3 Ontology relations in service requirements modelling ontology

Definition 4 QoS ⊆ Q × S is a set of quality of service relations. We use QoS (q, s) to
denote the quality attribute q of service s, q ∈ Q, s ∈ S.

Definition 5 R ⊆ A × {S ∪ QoS} is a set of require relations. We use requires a s
to denote that there exists an actor a that requires certain service or quality s, i.e.,
r(a, s) ∈ R. To represent this relation, we extend the i* graphical notation as follows:
position the service icon (of the goal, task, resource, or softgoal) within the actor’s dotted

boundary, and labelling it with a question mark ().

Definition 6 C ⊆ A × {S ∪ QoS} is a set of capability relations. We use can a s to
denote that there exists an actor a that can provide a certain service or quality s, i.e.,
c(a, s) ∈ C. To represent this relation, we extend the i* graphical notation as follows:
position the service icon (of the goal, task, or resource) within the actor’s dotted
boundary, and labelling it with a small ‘c’ on the top right corner. There is also QC ⊆ A
× Q × S × Int, representing the set of quality-related services that can be provided by a. It
is often represented with a quality function f: A × Q × S → Int.

Definition 7 ME ⊆ T × G is a set of means-ends relationships. If me(t, g) ∈ ME, we
write means-ends (t, g). DC ⊆ {S ∪ QoS} × S is a set of decomposition relationships. If
dc(s, t) ∈ DC, we write part-of (s, t). Contribution relationship: CN ⊆ {QoS ∪ S}
× QoS × CT is a set of Contribution relationships. CT = {positive, negative, unknown} ×
{full, partial, unknown degree} is a set of contribution types. Textually, we can represent it
as: contributes-to (s, ct, qos).

Definition 8 K ⊆ A × {A ∪ S ∪ R ∪ C ∪ ME ∪ DC ∪ CN} is a set of Knowledge. We
use Know a x to denote that there exists an actor a who has knowledge about a certain fact
x, i.e., k(a, x) ∈ K.

To represent this relation, we extend the i* graphical notation as follows. We model
such relationships in two subcategories: practical knowledge about means-ends,
decompositions, and contributions relationships between services; knowledge about
other actors’ requirements, capability, and basic attributes of a service. Graphically, an
actor’s practical knowledge of a service relationship is shown as a link defined in
Section 2.1. Knowledge about other actor’s requirements and capability is represented as
beliefs. Logic operators such as: ¬, ∧, ∨ are applicable to construct more complex
knowledge assertions.

Definition 9 O = {o1, …, on} is a set of Operations applicable to a service situation
SC = <A, R, C, K>. There are the following basic types of operation constructs:
new, remove, delegate, tell and commit.

 Towards a service requirements modelling ontology 331

• newActor(x)

• removeActor(x)

• newRequests(x)

• removeRequests(x)

• newCapability(x)

• removeCapability(x)

• newKnowledge(x)

• removeKnowledge(x)

• delegate (x, y, z), represents that there is an inter-actor delegation,
where x, z ∈ A, y ∈ S

• tell (x, y, z), represents an inter-actor communication sharing knowledge,
where x, z ∈ A, y ∈ K

• commit x y, represents a service agreement, where x ∈ A, y ∈ S.

Similar to the dependency concept in i*, for each delegation operation, we call the
delegating actor the delegator, and the actor to whom the task is delegated is designated
as the delegatee. By delegating a service to another actor, an actor (the delegator) can
achieve goals that it could not have achieved without the delegation, or it could not have
achieved as easily or as well. At the same time, the delegator becomes vulnerable. If the
delegatee fails to deliver the service, the delegator will be adversely affected in its ability
to achieve its goals. We extend the i* graphical model with a notation (→ →) to
represent a communication action: tell. Graphically in SRMO, a service commitment is
represented by labelling the service icon with a check mark ().

Definition 10 AR = K × O × CT is a set of arguments. Textually, we can represent it as:
argues-for (k, o, ct), where k ∈ K, o ∈ O, ct ∈ CT. Graphically, we use dashed arrows
links to express the argumentation relationship between an operation and the knowledge
supporting it.

2.4 Service action rules based on service requirements modelling ontology

A world of services is an open environment, in which each of the above element sets can
be updated dynamically. In other words, actors will join and leave the environment; new
requests will be issued and removed by actors; capabilities will be obtained and will
expire, and knowledge about service relationships will be obtained and discarded by
actors. In such a highly dynamic and distributed environment, automated service
discovery, service agreement formation, and service selection need to be manipulated by
certain machine operable rules and policies. Below, the rules applicable to a service
situation: sci = <A, R, C, K> are defined.

 332 L. Liu, Q. Liu, C-H. Chi, Z. Jin and E. Yu

Rule 2.1 Service commitment

If an actor a is capable of providing a service s, and it also needs the service, it should
commit to the service.

Actor (a) ∧ Task(s) ∧ Can a s ∧ Requires a s ⇒ commit a s ∧ removeRequest
(Requires a s).

Rule 2.2 Service composition/transformation

If an actor a is capable of providing a service s1, and it also has knowledge of how to
compose or transform it into another more complicated or simpler service s0, then it will
be able to provide the transformed service s0.

(1) Actor (a) ∧ Service (s0) ∧ Know a (means-ends (s1, s0)) ∧ Can a s1⇒
newCapability(Can a s0)

(2) Actor (a) ∧ Service (s0) ∧ Service (s1) ∧ Know a (part-of (s0, s1)) ∧ Can a s1 ⇒
newCapability(Can a s0).

Rule 2.3 Request decomposition/transformation

If an actor a requires a services s0, and it also has knowledge of how to decompose or
transform it into another more concrete services s1, then it can send a request for those
transformed services or component services instead.

(1) Actor (a) ∧ Service (s0) ∧ Service (s1) ∧ Know a (part-of (s1, s0)) ∧ Requires a s0 ⇒
newRequest(Requires a s1).

(2) Actor (a) ∧ Service (s0) ∧ Service (s1) ∧ Know a (means-ends (s1, s0)) ∧ Requires a s0
⇒ newRequest(Requires a s1).

Rule 2.4 Service publication constraints

An actor a may inform other actors about its request, and its capability of providing a
service. The rules given below show a possible strategy an actor may take during the
decision-making related to service publication. It is a rather simplified example to show
how the proposed procedure works.

(1) Publish request to known provider

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ Requires a s ∧ Know a (Can b s) ⇒ tell
(a, Requires a s, b) ∧ newKnowledge(Know b Requires a s).

An actor a may publish a request to a known provider with the intention of building
a service agreement. A direct effect of this publication action is that the publisher
knows that the receiver of the message will discover about his requirement for this
service. This rule only considers the knowledge update from the publisher’s side; the
knowledge update on the receiver’s side is addressed by Rule 2.5.

(2) Publish request to an expert on service transformation/composition/decomposition

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ Requires a s ∧ Know a (Know b (s)) ⇒ tell
(a, Requires a s, b) ∧ newKnowledge(Know b Requires a s).

 Towards a service requirements modelling ontology 333

An actor a may publish a request to a known expert who has knowledge of a
service’s composition, decomposition, or transformation, with the intention of
learning the relevant steps for fulfilling a service. A direct effect of this publication
action is that the publisher knows that the receiver of the message will become aware
of his need for this service.

(3) Publish request to service registry (or other information intermediary)

Actor (a) ∧ Actor (b) ∧ Actor (x) ∧ Service (s) ∧ Requires a s ∧ Know a (Know b
((Requires x s)∨ (Can x s) ∨ (Know x s))) ⇒ tell (a, Requires a s, b)
∧ newKnowledge(Know b Requires a s).

An actor a may publish a request to a known information centre, which might be a
web services registry, or simply another actor, who has knowledge about the
capabilities, requests, or knowledge of other unknown actors, with the intention of
discovering relevant information to fulfil a service. A direct effect of this publication
action is that the publisher knows that the receiver of the message will find about his
need for this service.

(4) Request broadcasting

Actor (a) ∧ Service (s) ∧ Requires a s ⇒ For all a' ∈ Actor, tell (a, Requires a s,
a') ∧ newKnowledge(Know a' Requires a s).

An actor a may broadcast a request with the intention of obtaining relevant
information about fulfilling a service. A direct effect of this publication action is that
the publisher knows that the receiver of the message will find out about his need for
this service.

(5) Publish service to known requestor

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ Can a s ∧ Know a (Requires b s) ⇒ tell
(a, Can a s, b) ∧ newKnowledge(Know b Can a s).

An actor a may publish a service to a known requestor, with the intention of building
a service agreement. A direct effect of this publication action is that the publisher
knows that the receiver of the message will find out about his capability to perform
this service.

(6) Publish service to known expert on service composition/transformation

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ Can a s ∧ Know a (Know b s) ⇒ tell
(a, Can a s, b) ∧ newKnowledge(Know b Can a s).

An actor a may publish a service to a known expert, who has knowledge of the
service composition, decomposition, or transformation, with the intention of
discovering the relevant steps of building a new service based on existing ones. A
direct effect of this publication action is that the publisher knows that the receiver of
the message will discover his capability to perform this service.

 334 L. Liu, Q. Liu, C-H. Chi, Z. Jin and E. Yu

(7) Publish service to information intermediary

Actor (a) ∧ Actor (b) ∧ Actor (x) ∧ Service (s) ∧ Can a s ∧ Know a (Know b
((Requires x s) ∨ (Can x s) ∨ (Know x s))) ⇒ tell (a, Can a s, b)
∧ newKnowledge(Know b Can a s).

An actor a may publish a service to a known information centre, which might be a
web services registry or simply another actor who has knowledge of the capabilities,
requests, or knowledge of other unknown actors, with the intention of revealing
relevant information of promote a service. A direct effect of this publication action is
that the publisher knows that the receiver of the message will discover his capability
to perform this service.

(8) Service advertising

Actor (a) ∧ Service (s) ∧ Can a s ⇒ For all a' ∈ Actor, tell (a, Can a s, a')
∧ newKnowledge(Know a' Cana s).

An actor a may broadcast an advertisement of a service with the intention of
obtaining relevant information about promoting a service. A direct effect of this
publication action is that the publisher knows that the receiver of the message will
find out about his capability of providing this service.

Rule 2.5 Knowledge update rule

∃ x ∈ R ∪ C ∪ K, Actor (a) ∧ Actor (b) ∧ tell (a, x, b) ⇒
newKnowledge(Know b x).

An actor will update his knowledge upon receiving a message about a requirement, a
capability, or a piece of information. A direct effect of this action is that the receiver of
the message will discover the relevant information.

Rule 2.6 Knowledge contradiction resolution rule

An actor may receive contradicting knowledge from different sources. For more effective
decision-making based on these knowledge, we need to resolve the contradictions listed
below first.

(1) No contradiction

Actor (a) ∧ Actor (b) ∧ Know b (Know a x) ∧ no Know b not x ⇒
newKnowledge(Know b x).

If an actor has indirect knowledge about x, and it does not have contradicting
knowledge about x, then this knowledge can become direct knowledge.

(2) Ignore the contradiction

Actor (a) ∧ Actor (b) ∧ Know b (Know a x) ∧ Know b not x ⇒
removeKnowledge(Knowb x) ∧ removeKnowledge(Know b not x).

If an actor has indirect knowledge about x, but it does have contradicting knowledge
about x, then both the indirect knowledge and the conflicting knowledge will be
removed from the knowledge base.

 Towards a service requirements modelling ontology 335

(3) Refer to public opinion about the contradiction

Actor (a) ∧ Actor (b) ∧ Know b (Know a x) ∧ Know b not x ⇒ tell (b, not x, all).

If an actor has indirect knowledge about x, and it has contradicting knowledge about
x, then it will broadcast its knowledge about x, which will cause a conflict in other
actor’s knowledge base in order to obtain a consensus.

(4) Check with the sender to confirm the contradicting knowledge

Actor (a) ∧ Actor (b) ∧ Know b (Know a x) ∧ Know b not x ⇒ tell (b, not x, a).

If an actor has indirect knowledge about x, and it has contradicting knowledge about
x, then it will send its knowledge about x back to the knowledge source, which will
cause a conflict in the other actor’s knowledge base in order to start a debate.

(5) Accept the sender’s knowledge although contradicting

Actor (a) ∧ Actor (b) ∧ Know b (Know a x) ∧ Know b not x ⇒
newKnowledge(Know b x).

If an actor has indirect knowledge about x, and it has contradicting knowledge about
x, but if it considers the new indirect information to have higher certainty, then it will
accept the indirect information anyway.

The five rules in Rule 2.6 are alternatives for an actor to resolve knowledge
conflict. They are applied according to the preferences and contexts of the decision the
actor encounters.

Rule 2.7 Service agreement/delegation rule

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ Requires a s ∧ Know a (Can b s) ∧ tell (b, s, a)
∧ satisficing(a, f (b, q, s)) ⇒ delegate (a, s, b).

A service agreement is established when an actor a has a requirement, and it knows
that another actor b could provide the service, and also receives a message from b
about b’s capability regarding the service. A direct effect of a service agreement is a
delegation action.

Rule 2.8 Service motivation propagation based on mutual benefit

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ delegate (a, s, b) ∧ ∃cn ∈ CN, ∃s' ∈ S,
Requires b s' ∧ know b cn(s, s', positive) ⇒ newRequest (Requires b s).

A delegation will be applied to the delegatee only if it believes that the delegation is
beneficial. That is, the delegation will occur when committing to the service can help him
satisfy his own requirements. In a real world scenario, this required service could be a
general one, such as payments, social benefits, etc.

Rule 2.9 Capability propagation through delegation

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ delegate (a, s, b) ∧ Commit b s ⇒
newCapability(Can a s).

 336 L. Liu, Q. Liu, C-H. Chi, Z. Jin and E. Yu

A delegation will be applied to the delegator, only if the delegatee agrees to perform the
service provisioning procedure. That is, if a delegatee does not deliver the expected
services, the fulfilment of the delegator’s service request is problematic.

The reasoning procedure to be applied to a service situation SC = <A, R, C, K> is to
find an action sequence such that for each Requiresa s, eventually there is a Commita' s.

The rules listed above illustrate how the proposed ontology can be used to represent
the basic policies of an SOA setting. By exploring the possible usage of quality attributes,
we can describe other service composition/decomposition rules, obtain a richer set of
policies for establishing precedence, clarify ambiguity and resolve conflict. For instance,
by explicitly representing quality requirements, we can logically determine how quality
requirements can be used in service selection. By looking into scenarios in which an actor
reveals false capabilities, knowledge, and beliefs, we will be able to model trust issues in
the service world. In this paper, knowledge is managed and applied in a lighter-weight
way comparing to the higher-order logic-based approach of agent knowledge and intent
as in Hintikka et al. (1962), Levesque and Lakemeyer (2001) and Lausen et al. (2005).

3 Modelling social rationale and networking in the services world

In an open service environment, a major issue to be addressed is how the actors can form
social network to obtain required services and to make use of their own capability. This
paper selects four typical stages of services networking to show how the proposed
ontology and operation rules can be applied when a service network has one single actor,
or a pair of actors, or actors with brokers or actors forming communities. The benefit of
modelling different kinds of service worlds is that each of the stages covers one particular
aspect of the service capability modelling framework. The service world in reality is
usually a combination of all the scenarios. It often evolves from one world to another
under different service relationships.

3.1 A world of one party: the service transformation model

To start, we may think of a strategic capability model with only one actor. An example
setting could be the experience of a money transferring service. The service actor has
requirements to be fulfilled on its own, e.g., ‘transfer money from Buyer’s bank to
Seller’s bank’. In the meantime, the actor possesses some abilities, such as Withdrawal,
Deposit and Change Balance, etc. If this service is situated in the conventional closed
enterprise mode, the organisation has no one else to rely on to fulfil its required services.
Thus, it has to satisfy the requirements by itself. In such a single actor’s world, the issue
of service involves self-consciousness of the actor’s own capability and knowledge. If the
organisation’s capability and knowledge are sufficient, its goals will be satisfied. One
way to put this situation down in i* graphical representation is shown in Figure 1, and the
corresponding formal description and reasoning is as follows.

Under this situation, an actor Bank requests the Money Transfer service, and
it can provide the Withdraw, Deposit, and Change Balance service at the same time. It
knows that through the three component services, the Money Transfer service can
be performed.

 Towards a service requirements modelling ontology 337

SC10: = (newActor (Bank), newServiceRequirements(Requires Bank Money Transfer),
NewServiceCapability(Can Bank Withdraw, Can Bank Deposit, Can Bank Change
Balance), NewKnowledge(Knows Bank Part-of({Withdraw, Deposit, Change
Balance}, Money Transfer)). (see online version for colours)

Routine 1

Step 1 Apply Rule 2.3(1) to SC10: request decomposed.

SC11: = (…, Requires Bank Withdraw, Requires Bank Deposit, Requires Bank Change
Balance,…). (see online version for colours)

 338 L. Liu, Q. Liu, C-H. Chi, Z. Jin and E. Yu

Step 2 Apply Rule 2.1 to SC11: component services committed.

SC12: = (… CommitBank Withdraw, Commit Bank Deposit, Commit Bank Change Balance,
removeRequest(Requires Bank Withdraw, Requires Bank Deposit, Requires Bank
Change Balance) …). (see online version for colours)

Step 3 Apply Rule 2.2(2) to SC12: capability propagated.

SC13: = (… Can Bank Money Transfer…). (see online version for colours)

 Towards a service requirements modelling ontology 339

Step 4 Apply Rule 2.1 to SC13: requested composite service committed.

SC14: = (… Commit Bank MoneyTransfer, removeRequest(Requires Bank
MoneyTransfer)…). (see online version for colours)

No new applicable rule to SC14. End of Routine 1.

The model above can be analysed by finding routines through which an actor can
accomplish the required services by task decomposition of the required services. As we
can see, Routine 1 is one possible answer returned by the service reasoning procedure. A
routine consists of services that the actor is capable of, and the practical knowledge is
represented as links. They can be organised into a rough action plan, and are related to
the correspondence service requirements.

3.2 A world of partners: a service outsourcing model

Now consider the case in which a money transfer service cannot be provided by a single
actor. In a world of partners, we assume that there is no trusted third party and advance
knowledge is not available on either side. The purpose of this model is to find another
actor through whom the required services of an actor can be accomplished through
delegation. The basic assumption is that a capable and trusted actor can be depended on
for the fulfilment of a service request from another actor. The model shows the reasoning
procedures of the two actors regarding a service situation SC20.

In the physical world, knowledge about the participants of a service relationship can
be obtained easily; for instance, a local bank sees a foreign bank becoming popular
worldwide, so it believes that the foreign bank has the capability of making a profit
together with him. Such scenario works fine in a closed world where people can easily
meet in person. However, when we come to an open world where direct observation and
past experience are not available, how do we build a relationship among the service

 340 L. Liu, Q. Liu, C-H. Chi, Z. Jin and E. Yu

participants? What new problems do we need to deal with? Assume a bank (Bank X) is
facing a service query ‘Find a bank that is both reliable and low cost in international
money transfers’. Assume that money transfers at Bank X are free, but the bank is not
reliable with respect to international transfers. On the other hand, Bank Y does not do
international transfers, but has sufficient security and insurance to ensure reliable
financial operation. The situation can be modelled as follows:

SC20: = (newActor (BankX, BankY), newRequest(Requires BankX QoS(Intl. Money
Transfer, Reliability), Requires BankY Intl. Money Transfer), newCapability(Can
BankX Intl. Money Transfer, Can BankY Security Measure), NewKnowledge(Know

BankY Contributes-to(SecurityMeasure, Make, Reliability))). (see online version
for colours)

Routine 2

Step 1 Apply Rule 2.4(4), Rule 2.4(8) to SC20: acknowledge service requirements
and capability.

SC21: = (…, tell (Bank X, Requires BankX Reliability, Bank Y), tell (Bank Y, Requires BankY
Intl. Money Transfer, Bank X), tell (Bank X, Can Bankx Intl. Bank Transfer, Bank
Y), tell (Bank Y, Can BankY Security Measure, Bank X) …). (see online version
for colours)

 Towards a service requirements modelling ontology 341

Step 2 Apply Rule 2.5 and Rule 2.6(1) to SC21: knowledge update.

SC22: = (…, Know BankX Requires BankY Intl. Money Transfer, Know BankY Requires BankX
Reliability, Know BankX Can BankY Security Measure, Know BankY Can Bankx Intl.
Bank Transfer,…). (see online version for colours)

Step 3 Apply Rule 2.7 to SC22: delegate services.

SC23: = (…, delegate(BankX, Security Measure, BankY), delegate (BankY, Intl. Money
Transfer, BankX), …). (see online version for colours)

 342 L. Liu, Q. Liu, C-H. Chi, Z. Jin and E. Yu

Step 4 Apply Rule 2.8 to SC23: request transfer.

SC24: = (…, Requires BankY Security Measure), Requires BankX Intl. Money Transfer, …).
(see online version for colours)

Step 5 Apply Rule 2.1(1) to SC24: delegated service committed.

SC25: = (… Commit BankX Intl. Money Transfer, Commit BankY Security Measure…). (see
online version for colours)

 Towards a service requirements modelling ontology 343

Step 6 Apply Rule 2.9 to SC25: service capability propagated through delegation.

SC26: = (… Can BankX Security Measure, Can BankY Intl Money Transfer,…). (see online
version for colours)

Step 7 Apply Rule 2.1(1) to SC26: requested services committed.

SC27: = (…Commit BankX Reliability, Commit BankY Intl. Money Transfer,…).

No new applicable rule to SC27. End of Routine 2.

After such capability outsourcing procedures, both Bank X and Bank Y have obtained the
capability of providing reliable International Money Transfer service. The cost of Bank X
could be lower than that of Bank Y, so it may have an advantage during service selection.

3.3 A world with possible deception: a service model of trust

The publication rules set given in Rule 2.4 is based on an assumption that the actors in
the system are telling the truth, but this may not be the case in the real world. Assume
that there is an actor who lies about his capability in order to obtain another actor’s
service. We may extend the framework with action rules as follows.

Rule 3.1 Publish false capability

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ no Can a s ∧ Know a Requires b s ⇒ tell
(a, Can a s, b).

The service situation can evolve into the one represented by the following
graphical model: (see online version for colours)

 344 L. Liu, Q. Liu, C-H. Chi, Z. Jin and E. Yu

Rule 3.2 Establish black list

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ delegate (a, s, b) ∧ no Commit b s ⇒
newKnowledge (Know a not Can b s).

From this model we can see that the proposed formalism can be used to describe
different domain assumptions, operational rules in a service environment. By analysing
the differences between systems showing desired properties, and those allowing
undesirable behaviours, a designer will be able to build mechanisms reflecting the right
control schema.

3.4 A world with a circle of trust: service selection based-on
community feedback

As mentioned in the previous sections, in an open environment, direct knowledge about
other actors is very hard to obtain. And sometimes, deciding the trustworthiness of
another actor cannot be described by a simple true or false assertion, but vectors
representing varying levels of confidence. In this case, it is best to adopt a trust scoring
schema to quantify the confidence level of beliefs circulated within the service network.

1 At the beginning, the trust level of all actors is 0.

2 Whenever an actor successfully delivers a service, its trust level to the service user
will be increased by 1.

3 When an actor fails to deliver a delegated service, its trust level will be decreased by
5 or to –1, whichever is higher.

4 Whenever an actor recommends a provider who delivers a service successfully, its
trust level to the service requestor will be increased by 1.

5 Whenever an actor recommends a provider who fails to deliver a service, its trust
level to the service requestor will be decreased by 1.

 Towards a service requirements modelling ontology 345

6 The trust level of a recommendation is based on the recommender’s confidence
of the content, and the recommender’s level of confidence in the receiver of
the recommendation.

Naturally, we may consider defining a function of each of the knowledge in K of a
service situation SC, whose domain is A ∪ B, with the range being an integer.

Rule 3.3 Trust function management

1 Set initial Trust value (Rule 1 above):

no know a f (a, Trust, b) ⇒ newKnowledge(know a f (a, Trust, b) = 0)

2 Compute Trust value of a received recommendation (Rule 6 above):

∃x ∈ K, a, b ∈ A, tell (a, x, b) ⇒ f(b, Trust, x) = f (b, Trust, a) × f (a, Trust, x).

∃x ∈ K, a, b ∈ A, tell (a, x, b) ∧ Know b x ⇒ f '(b, Trust, x) = f (b, Trust, x)
× f (b, Trust, a) × f (a, Trust, x).

3 Compute Trust after a service (Rules 2, 3, 4, and 5 above):

∃a, b ∈ A, s ∈ S, delegate (a, s, b) ∧ Commit b s ⇒ f '(a, Trust, Can b s) = f (a,
Trust, Can b s) + 1.

∃x ∈ K, a, b ∈ A, s ∈ S, tell (a, x, b) ∧ no Commit b s ⇒ f '(a, Trust, Can b s) = f (a,
Trust, Can b s) – 5, if f (a, Trust, Can b s) ≥ 4; f '(a, Trust, Can b s) = –1, otherwise.

∃x, a, b ∈ A, s ∈ S, delegate (a, s, b) ∧ Commit b s ∧ tell (x, Know x Can b s, a) ⇒
f '(a, Trust, x) = f (a, Trust, x) + 1.

∃x, a, b ∈ A, s ∈ S, delegate (a, s, b) ∧ no Commit b s ∧ tell (x, Know x Can b s, a)
⇒ f '(a, Trust, x) = f (a, Trust, x) – 1.

4 Select a service according to trust level:

∃x, a, b ∈ A, s ∈ S, Requires a s ∧ Know a Can b s ∧ Know a Can x s ∧ tell (b, s, a)
∧ f(a, Trust, Can b s) ≥ f (a, Trust, Can x s) ≥ 0 ⇒ delegate (a, s, b).

The rules defined above are to illustrate that the proposed formalism can be easily used
and extended to represent a quantitative trust management mechanism. Other qualitative
or quantitative mechanisms for service representation, evaluation, or management, can be
modelled and analysed by similar means.

4 Related work

The approach proposed in this paper mainly synergises ideas from three major areas:
knowledge representation and reasoning in autonomous agent systems, requirements
modelling and analysis, and semantic web services. In conventional knowledge
engineering and AI, various subjective logic approaches and social ontologies to
represent belief, knowledge, desire, and intention of autonomous agents have been
proposed (Castelfranchi et al., 2003; Hintikka et al., 1962; Rao and Georgeff, 1991;
Wooldridge and Jennings, 1995; Yu, 1997; Yu and Liu, 2001). Our work aims to

 346 L. Liu, Q. Liu, C-H. Chi, Z. Jin and E. Yu

adopt theoretical results from these areas and build a practical framework for the
service-oriented computing paradigm. Thus, we mainly focus on the specific needs,
assumptions, rules and reasoning mechanism for the service requirements and capability
setting. Existing requirements modelling frameworks (Kethers et al., 2005; Mylopoulos,
1998; Penserini et al., 2006) emphasise capturing and eliciting the requirements in the
problem domain. They usually include top-down refinement processes. However, the
open, dynamic, continuous system environment needs to have a model that seamlessly
integrates high-level abstract requirements models with concrete executable service
manipulating mechanisms. By representing service request and service capabilities in a
compatible ontology, we aim to provide a holistic solution to the problem.

The Web Service Modelling Ontology (WSMO) (Lausen et al., 2005) provides a
conceptual framework focusing on the functional and behavioural aspects of a web
service. Compared to the WSMO framework, the concepts and reasoning mechanism
proposed in this paper emphasise a strategic actor’s knowledge of and intention regarding
the capability of other actors, rather than a straightforward description about web services
behaviours and constraints. This is based on the assumption that actors involved in a
service are strategic. That is, an actor has his own intended requirements of service
quality to fulfil, which may only partially be made known to other actors. The ontology
proposed in this paper is a natural complementary to DAML-OIL (Heflin and Hendler,
2000), since it describes web services in a higher level of abstraction. Instead of focusing
on the static structure of a service implementation, it describes service from a service
requestor’s perspective, i.e., from the intended usage angle.

Discovering and assembling individual web services into more complex new and
user-centric web processes is an important challenge. In Arpinar et al. (2004), web
services composition techniques using their ontological descriptions and relationships to
other services are proposed. An automatic composition technique is used to check
semantic similarities between interfaces of individual services while taking the service
qualities into consideration. The ontology proposed in this paper can be used to help the
composition of individual services, and also the decomposition of service requirements.
By adopting this kind of two-way thinking, alternative ways to satisfy the user’s service
requirements can be taken into consideration.

Inference rules of semantic web services ontology are key to dynamically
discovering, selecting, and binding the services that best meet user needs. In order to
address the lack of an effective means to formally specifying individual services and their
interactions, comprehensive formal languages for services have been proposed in several
references, such as Maximilien and Singh (2004) and Battle et al. (2005), which include
SWSL-FOL, a full first-order logic and SWSL-Rules, a rule-based language designed to
provide support for a variety of tasks that range from service profile specification to
service discovery, contracting, policy specification and so on. These, in essence, have the
same goal as our approach; building a comprehensive logic system from very
fundamental concepts, such as symbols, strings, and number values, to provide a solid
foundation for the knowledge and quality evaluation rules in the proposed SRMO
framework. Compared to the SWSL effort, the work in this paper specifies services at a
higher level of abstraction.

Penserini et al. (2006) proposes using the Tropos requirements methodology (Castro
et al., 2002) to support service design, identification, composition, and binding. The
concept of service capability is defined as means-ends links and contribution links in
the i* framework. Tropos design steps such as goal-decomposition and dependency

 Towards a service requirements modelling ontology 347

handshakes, are now considered as the service-agents’ decision-making actions.
Specifically, top-down goal analysis is used for service identification; bottom-up goal
analysis is used for service composition. The idea of using Tropos in service
requirements engineering is promising, and has the same concept base as this paper. The
major difference is that capabilities are defined as links in their work, while capabilities
in this paper correspond to the concept of tasks in i*, while links are considered as
knowledge. Also we hope to provide a capability reasoning framework that can handle
requirements analysis and design work at run-time. The incorporation of capability
and knowledge has better potential in addressing uncertainty and partial knowledge, and
conflict of interest of actors.

5 Conclusion

In this paper, we propose a formal service requirements ontology framework that is based
on the actors’ knowledge and intention. Unlike most other work on service ontology,
our proposal focuses on explicitly representing knowledge and allowing subjective
decision-making about service publication, discovery, negotiation, and selection rather
than the traditional concept decomposition. Both the formal service requirements
ontology and its automatic reasoning rules are given. Example models and reasoning
traces are also given to illustrate the usage of the proposed approach.

The results from our study are important because they contribute not only to the
theoretical study of SOA but also form the basis for its future deployment. In the
future, the proposed modelling ontology will be implemented and extended to support
different kinds of automatic reasoning for qualitative or quantitative QoS-based service
selection including reliability, availability, and request-to-response time, and user
experience and preferences.

Acknowledgement

The authors wish to thank the anonymous reviewers and the associate editor for their
constructive comments and suggestions. This work was supported financially by the
National Natural Science Foundation of China (Grant No. 60503030), the National
Basic Research and Development 973 Program (Grant No. 2002CB312004), the National
863 High-tech Project of China (Grant No. 2006AA01Z155, 2007AA01Z122), the
National Natural Science Fund for Distinguished Young Scholars of China under Grant
No. 60625204 and the Basic Research Foundation of Tsinghua National Laboratory for
Information Science and Technology (TNList).

 348 L. Liu, Q. Liu, C-H. Chi, Z. Jin and E. Yu

References

Arpinar, I.B., Zhang, R., Aleman, B. and Maduko, A. (2004) ‘Ontology-driven web
services composition’, Proceedings of the IEEE E-commerce Technology, San Diego,
California, 6–9 July.

Battle, S., Bernstein, A., Boley, H., Frosof, B., Gruninger, M., Hull, R., Kifer, M., et al. (2005)
Semantic Web Services Language, W3C, September.

Castelfranchi, C., Falcone, R. and Pezzulo, G. (2003) ‘Cooperating through a belief-based trust
computation’, WETICE, pp.263–268.

Castro, J., Kolp, M. and Mylopoulos, J. (2002) ‘Towards requirements driven information systems
engineering: the tropos project’, Information Systems, Vol. 27, No. 6, pp.365–389.

Chung, L., Nixon, B.A., Yu, E. and Mylopoulos, J. (2000) Non-Functional Requirements in
Software Engineering, Kluwer Academic Publishers.

Erl, T. (2005) Service-Oriented Architecture: Concepts, Technology, and Design, Prentice
Hall, August.

Heflin, J. and Hendler, J. (2000) ‘Dynamic ontologies on the web’, In Proceedings of the
Seventeenth National Conference on Artificial Intelligence (AAAI-2000)’, Menlo Park, CA:
AAAI/MIT Press, pp.443–449.

Hintikka, J., et al. (1962) Knowledge and Belief: An Introduction to the Logic of the Two Notations,
Cornell University Press.

Kethers, S., Gans, G., Schmitz, D. and Sier, D. (2005) ‘Modeling trust relationships in a healthcare
network: experiences with the TCD framework’, Proceedings of the 13th European
Conference on Information Systems, Germany: Regensburg, May.

Lausen, H., Polleres, A. and Roman, D. (2005) Web Service Modeling Ontology (WSMO), W3C
Submission, June.

Levesque, H.J. and Lakemeyer, G. (2001) The Logic of Knowledge Bases, MIT Press.

Liu, L., Liu, Q., Chi, C., Jin, Z. and Yu, E. (2006) ‘Towards a service requirements ontology on
knowledge and intention’, QSIC, pp.452–462.

Lu, J. and Yu, Y. (2007) ‘Web service search: who, when, what, and how’, Proceedings
of Workshop on Human-Friendly Service Description, Discovery and Matchmaking
(Hf-SDDM@WISE 2007), Nancy, France, 03 December, pp.284–295.

Mandell, D. and McIlraith, S. (2003) ‘A bottom-up approach to automating web service discovery,
customization, and semantic translation’, Proceedings of the 12th International Worldwide
Web Conference, Workshop on E-services and the Semantic Web (ESSW’03), Budapest.

Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K., McGuinness, D.,
Sirin, E. and Srinivasan, N. (2006) ‘Bringing semantics to web services with OWL-S’, Special
Issue on Web Services: Theory and Practise, Worldwide Web Journal.

Maximilien, E.M. and Singh, M.P. (2004) ‘A framework and ontology for dynamic web services
selection’, IEEE Internet Computing, September–October, pp.84–93.

McGuinness, D.L. and da Silva, P.P. (2004) ‘Explaining answers from the semantic web:
the inference web approach’, Journal of Web Semantics, October, Vol. 1, No. 4, pp.397–413.

Mylopoulos, J. (1998) ‘Information modeling in the time of the revolution’, Information Systems,
June, Vol. 23, Nos. 3–4, pp.127–156.

Penserini, L., Perini, A., Susi, A. and Mylopoulos, J. (2006) ‘From stakeholder intentions to
software agent implementations’, Proceedings of the 18th Conference on Advanced
Information Systems Engineering (CAiSE’06), LNCS, Springer-Verlag, No. 4001.

Rao, A.S. and Georgeff, M.P. (1991) ‘Modeling rational agents within a BDI architecture’,
in R. Fikes and E. Sandewall (Eds.) Proceedings of the Second Conference on Knowledge
Representation and Reasoning, Morgan Kaufman, pp.473–484.

 Towards a service requirements modelling ontology 349

Sycara, K.P., Widoff, S., Klusch, M. and Lu, J. (2002) ‘Larks: dynamic matchmaking among
heterogeneous software agents in cyberspace’, Autonomous Agents and Multi-Agent Systems,
Vol. 5, No. 2, pp.173–203.

Wang, P., Jin, Z. and Liu, L. (2006) ‘An approach for specifying capability of web services based
on environment ontology’, ICWS, pp.365–372.

Wooldridge, M. and Jennings, N.R. (1995) ‘Agent theories, architectures, and languages: a survey’,
in M. Wooldridge and N.R. Jennings (Eds.) Intelligent Agents, Lecture Notes in Artificial
Intelligence, Berlin: Springer Verlag, Vol. 890, pp.1–39.

Yu, E. (1997) ‘Towards modeling and reasoning support for early-phase requirements engineering’,
Proceedings of the 3rd IEEE International Symposium on Requirements Engineering (RE’97),
Washington, DC, 6–8 January, pp.226–235.

Yu, E. (2001) ‘Agent orientation as a modeling paradigm’, Wirtschaftsinformatik, April, Vol. 43,
No. 2, pp.123–132.

Yu, E. and Liu, L. (2001) ‘Modeling trust for system design using the i* strategic actors
framework’, in R. Falcone, M. Singh and Y.H. Tan (Eds.) Trust in Cyber-Societies,
LNAI-2246, Springer, pp.175–194.

