
Autom Softw Eng (2007) 14: 341–364
DOI 10.1007/s10515-007-0013-5

Computer-aided Support for Secure Tropos

Fabio Massacci · John Mylopoulos ·
Nicola Zannone

Received: 7 August 2006 / Accepted: 27 June 2007 / Published online: 1 August 2007
© Springer Science+Business Media, LLC 2007

Abstract In earlier work, we have introduced Secure Tropos, a requirements engi-
neering methodology that extends the Tropos methodology and is intended for the de-
sign and analysis of security requirements. This paper briefly recaps the concepts pro-
posed for capturing security aspects, and presents an implemented graphical CASE
tool that supports the Secure Tropos methodology. Specifically, the tool supports the
creation of Secure Tropos models, their translation to formal specifications, as well
as the analysis of these specifications to ensure that they comply with specific se-
curity properties. Apart from presenting the tool, the paper also presents a two-tier
evaluation consisting of two case studies and an experimental evaluation of the tool’s
scalability.

Keywords Security requirements engineering · CASE tools · Automated reasoning

1 Introduction

Requirement Engineering is the phase of the software development process that aims
at understanding the organizational context of a system, the goals of organizational
and system actors, and social relationships among them (Nuseibeh and Easterbrook
2000). This phase is particularly critical, because misunderstandings may lead to ex-
pensive errors during later phases.

F. Massacci · J. Mylopoulos · N. Zannone (�)
Department of Information and Communication Technology, University of Trento, Trento, Italy
e-mail: zannone@dit.unitn.it

F. Massacci
e-mail: massacci@dit.unitn.it

J. Mylopoulos
e-mail: jm@dit.unitn.it

342 Autom Softw Eng (2007) 14: 341–364

Graphical modeling has been recognized as an important aspect in Software Engi-
neering in general, and Requirements Engineering in particular, because it facilitates
and promotes understanding between designers and stakeholders. Graphical models
are thus being widely used to design systems and capture their functional properties,
as well as those of the environment within which the system-to-be will operate.

Unfortunately, graphical notations are often informal, and generally lack the ex-
pressiveness of logic-based requirements modeling languages. This issue has spurred
the development of many formal frameworks that combine elements of graphi-
cal notations and logic. In addition, there have been many proposals for verify-
ing requirements, ranging from automated reasoning (Fickas and Nagarajan 1988;
Maiden and Sutcliffe 1992) to requirements animation (Gravell and Henderson
1996). Together with analysis techniques, CASE tools have been developed in or-
der to support such techniques and drive requirements elicitation and analysis.

Recent years have seen an increasing awareness that security plays a key role
within organizations and their IT systems. Consequently, many research efforts
are focusing on the introduction of security concerns into the system development
process (Basin et al. 2006; Jürjens 2004), also, modeling and analysis of security re-
quirements along-side functional requirements (Haley et al. 2005; Liu et al. 2003;
McDermott and Fox 1999; Sindre and Opdahl 2005; van Lamsweerde 2004).

These proposals tackle the problem of designing secure systems from different
perspectives. Some proposals model attackers along with their capabilities (Liu et
al. 2003; van Lamsweerde 2004), whereas others define the undesirable behaviors
that a system should prevent (McDermott and Fox 1999; Sindre and Opdahl 2005).
There are also proposals that focus on security related features such as confidentiality
and access control (Basin et al. 2006; De Landtsheer and van Lamsweerde 2005;
Jürjens 2004; Onabajo and Jahnke 2006). However, most of such proposals focus on
system security aspects, rather than social and organizational ones.

In the context of socio-technical systems—reflected in our past work—security
requirements are mostly social requirements rather than technical solutions (Giorgini
et al. 2006). To understand the problem of security engineering we need to model
and analyze organizational settings, in terms of relationships between relevant actors,
including the system-to-be. Modeling only digital protection mechanisms is not suf-
ficient. Indeed, several studies have revealed how security is often compromised by
exploiting weaknesses at the interface between procedures and policies adopted by an
organization and the system that support them (Anderson 1994; House of Lords 1999;
Promontory Financial Group 2003).

The Tropos methodology (Bresciani et al. 2004) is an agent-oriented software en-
gineering methodology intended to support the modeling and analysis of both the
system-to-be and its organizational environment through different phases of the sys-
tem development process. One of its main features is the prominent role given to
early requirements analysis phase that concerns the understanding of the domain by
studying the organizational context within which the system-to-be will eventually
operate. The main advantage in having such a phase is that one can capture not only
the “what” or the “how”, but also the “why” system functionalities are required. This
methodology has already been used to model security requirements by offering fa-
cilities for analyzing threats, vulnerabilities, and countermeasures (Liu et al. 2003).

Autom Softw Eng (2007) 14: 341–364 343

This approach supports the representation of design decisions relevant to security by
modeling internal and external attackers along with their goals and design solutions
that prevent their fulfillment. However, Tropos lacks fundamental concepts necessary
to deal with certain aspects of security (Giorgini et al. 2006).

In (Giorgini et al. 2005b), the authors propose Secure Tropos, an agent-oriented
security requirements engineering methodology, that extends Tropos with concepts
specific to security and supports formal analysis. The methodology aims at assist-
ing system designers in the acquisition of requirements and the verification of their
compliance with security properties. Though it is possible within this framework to
model and analyze the behavior and objectives of attackers similarly to the work in
(Liu et al. 2003), the main focus of formal analysis in this paper is the exploitation of
security-specific concepts to verify the correctness and consistency of procedures and
policies in their use of assets. In particular, it provides support for verifying that actor
objectives will be fulfilled and that their entitlements will not be misused. Moreover,
the framework provides facilities for verifying the compliance of organizational poli-
cies with the need-to-know principle that is a fundamental requirement established
by privacy legislation in many countries (e.g., Data Protection Directive, 95/46/EC).
Together with a modeling language and a methodological framework, the authors
propose a formal framework based on Answer Set Programming (ASP) (Leone et al.
2006) to assist designers during security requirements verification.

Though several existing Requirements Engineering methodologies are often cou-
pled with CASE tools, such coupling is far less frequent for Security Requirements
Engineering. The application of the Secure Tropos methodology to some real case
studies (Asnar et al. 2006; Massacci and Zannone 2006; Massacci et al. 2005) has
shown the need for such tools. This application has also revealed the need for such
tools to not only support requirements engineers through requirements elicitation, but
also to offer formal methods for requirements analysis.

This paper presents ST-Tool, a CASE tool developed to support the Secure Tropos
methodology. The main objectives behind the design of the tool are:

− Graphical environment: a framework to assist requirements engineers in the cre-
ation of graphical models of early security requirements using Secure Tropos con-
cepts.

− Formalization: support for translating graphical models into formal specifications.
− Analysis facilities: a front-end to state-of-the-art, off-the-shelf ASP solvers that

support the analysis of these specifications to ensure that desirable security prop-
erties are satisfied.

In the next section (Sect. 2) we provide an overview of Secure Tropos along with
the concepts it is founded on. We then present the tool supporting this methodology
(Sect. 3) and describe how the tool assists designers during requirements modeling
and analysis (Sect. 4). In order to evaluate the tool, we next present the application
of the methodology and tool to industrial case studies, as well as experimental results
on its scalability (Sect. 5). Finally, we discuss related work (Sect. 6) and conclude the
paper with discussion on future directions for this research (Sect. 7).

For pragmatic reasons, the scope of the evaluation of the tool does not include
usability, nor we have tried to evaluate the effectiveness of the tool in supporting

344 Autom Softw Eng (2007) 14: 341–364

requirements engineers in the design of secure systems. Moreover, although the paper
clearly identifies what security properties can be formally verified by the ST-Tool, it
does not include a general discussion of security properties that are not handled by
our tool.

2 Secure Tropos

Tropos (Bresciani et al. 2004) is an agent-oriented software engineering methodology
tailored to model both the system-to-be and its organizational environment. Secure
Tropos (Giorgini et al. 2005b) extends Tropos in order to model and analyze secu-
rity requirements alongside functional requirements. The methodology provides a
requirements analysis process that drives system designers from the acquisition of
requirements up to their verification.

Secure Tropos adopts from Tropos and i* (Yu 1995) the concepts of actor, goal,
task, resource, and introduces the concepts of objective, entitlement, capability, del-
egation and trust. An actor is an intentional entity that performs actions to achieve
goals. A goal represents a strategic interest of an actor. A task represents a course
of actions for satisfying a goal. A resource represents a physical or an informational
entity. For the sake of brevity, we use the term “service” to refer to a goal, task, or
resource when it is not necessary to distinguish them. Objectives, entitlements and ca-
pabilities of actors are modeled through relationships between an actor and a service,
namely request, own, and provide. Request identifies goals intended to be achieved,
tasks intended to be executed or resources required by actors; own represents the au-
thority of controlling the achievement of a goal, execution of a task, or delivery of a
resource; and provide represents the capability of achieving a goal, executing a task,
or furnishing a resource.

Moreover, Secure Tropos uses the notion of delegation of permission and dele-
gation of execution. Delegation of permission indicates that one actor authorizes an-
other actor to achieve a goal, execute a task, or furnish a resource. As consequence,
the delegate is entitled to achieve the goal, execute the task, or furnish the resource.
Moreover, the delegate may also re-delegate the granted permission (or part of it) to
other actors. Delegation of execution (or execution dependency) indicates that one
actor appoints another actor to achieve a goal, execute a task, or furnish a resource.
As consequence, the delegate is responsible to achieve the goal, execute the task,
or furnish the resource. Moreover, the delegate may also re-delegate the assigned
responsibility (or part of it) to other actors. System designers might need to model
situations where an actor must delegate the execution of his objectives or the permis-
sion on his entitlements to actors he does not trust. Thus, it is necessary to separate
the concept of trust from the concept of delegation. In particular, the concepts of trust
of permission is used to model the expectation of an actor about the fair behavior of
another actor and trust of execution to model the expectation of an actor about the
achievement of a goal, execution of a task, or delivery of a resource by another actor.

The above constructs allow designers to capture the requirements model of or-
ganizations together with their IT systems. In the graphical representation of this
model, objectives, entitlements, and capabilities are represented using request (R),

Autom Softw Eng (2007) 14: 341–364 345

ownership (O), and provide (P) relations, respectively. Permission delegations are
represented with edges labeled Dp and execution dependency with edges labeled De.
Finally, trust of permission and trust of execution are represented with edges labeled
Tp and Te respectively.

The Secure Tropos methodology proposes the following modeling activities for
representing the requirements model:

Actor modeling consists of identifying and analyzing domain stakeholders and sys-
tem actors along with their objectives, entitlements and capabilities.

Trust modeling consists of modeling the expectation of actors about the perfor-
mance and fair behavior of other actors on a certain goal, task, or resource.
Such expectations are modeled using trust of execution and trust of permission
links.

Execution Dependency modeling consists of identifying transfers of responsibili-
ties from an actor to another. Such transfers are modeled using delegation of
execution links.

Permission Delegation modeling consists of identifying transfers of authority from
an actor to another. Such transfers are modeled using delegation of permission
links.

Their outcome is a number of graphical models that together constitute a require-
ments model. In particular, each diagram type corresponds to a different view of the
requirements model, respectively an actor, trust, execution dependency, and permis-
sion delegation view.

Example 1 An adviser wants to have his PhD students attend conferences in order
to present their research work, and delegates the execution of this goal to them. PhD
students need authorization for the mission and request it from the Doctoral School
Secretary. The Doctoral School Secretary is appointed by the University to comply
with University procedures and regulations. These duties include checking that every
student is in compliance with University and Doctoral School regulations and proce-
dures. Thereby, the Doctoral School Secretary requires students to ensure compliance
with mission procedures. The requirements model is presented in Fig. 1.

Goal/Task modeling refines and enriches a requirements model with further details.
This modeling activity is conducted from the perspective of single actors using
AND/OR refinement, means-end analysis, and contribution analysis (Bresciani
et al. 2004).

A graphical representation of goal/task modeling is given through goal diagrams.

Example 2 Figure 2 refines the model presented in Fig. 1 by focusing on the mis-
sion procedure for PhD students according to ICT International Doctoral School’s
regulation at the University of Trento (UNITN) – see “Regulations & Procedures”
at http://ict.unitn.it/ict/services/faq.xml. In particular, to achieve the goal comply with
mission procedure, the student has to get informal approval for the mission for which
he depends on his adviser, fill request mission, and (possibly) get advance payment

346 Autom Softw Eng (2007) 14: 341–364

Fig. 1 Requirements model

and get payment of expenses for which he depends on the Administration Depart-
ment. In order to achieve goal fill request mission, the student has to provide mis-
sion information, choose means of transportation, and provide funds information. The
achievement of this goal requires the fulfillment of goals decide funding and require
authorization for the use of funding. Depending on the chosen funding account, the
student shall ask for authorization either from the Doctoral School Dean or his ad-
viser. To achieve their duties, the Doctoral School Secretary and Administration De-
partment need some documents from the student, such as mission request form, ad-
vance reimbursement form, and payment of expenses form with original receipts.

Once designers have elaborated a first version of a requirements model, the
methodology supports them in verifying its compliance with specific security proper-
ties. In particular, the framework allows one to verify the availability, authorization,
and privacy of the designed system using the properties presented in Table 1. These
properties partially cover the security and privacy requirements identified in a num-
ber of authoritative classifications from widely accepted ISO standards, such as ISO
17799 and ISO 15408, a recent survey by Avizienis et al. (2004), the classical pa-
per by Saltzer and Schroeder (1975), and a seminal paper on Hippocratic databases
(Agrawal et al. 2002). However, a detailed discussion about the positioning of the
properties we can verify with respect to these classifications go beyond the scope of
this paper.

Security properties may be classified as safety properties and liveness proper-
ties. Intuitively, safety properties are properties stating “nothing bad will happen”
and liveness properties are properties stating “something good will happen” (Alpern

Autom Softw Eng (2007) 14: 341–364 347

Fig. 2 The mission procedure at UNITN

and Schneider 1986). Most security properties rely on the fact that attackers can-
not compromise the system. Therefore, they can be characterize as safety proper-
ties. For instance, authentication, access control, confidentiality, integrity and non-
repudiation are safety properties (Germeau and Leduc 1997). Each of these security
services require that a particular situation will not occur. The only security liveness
property is availability and, in particular, non-denial of service (Bauer et al. 2002;
Germeau and Leduc 1997). Nonetheless, this classification is not rigid. Indeed, it is
known that any property, including security properties, can be expressed as the con-
junction of a safety and a liveness property (Bauer et al. 2002; Schneider 1987). The
properties in Table 1 can roughly be classified as follows: Pro1, Pro4, Pro5, Pro6 and
Pro10 are safety properties and Pro2, Pro3, Pro7, Pro8, and Pro9 are combinations of
safety and liveness properties. For instance, Pro5 is a safety property because there is
a bad thing that may occur (e.g., an untrusted actor can have permission to achieve a
goal).

The development of systems with high security needs requires methodologies that
support the definition and verification of defense-in-depth strategies, which are prac-
tical strategies for achieving information assurance (National Security Agency 2002,
Chap. 4). Design for defense-in-depth can be supported by this or other methodolo-
gies by having the analyst explicitly add or remove trust assumptions (trust relations
in our case) and verify that he still gets a successful verification of the security prop-
erties. In our case this simply means that the designer needs to remove a trust relation
or a combination of these relations and check that all properties (e.g., confidence
in satisfaction) still hold, then restore those relations, remove others and check the

348 Autom Softw Eng (2007) 14: 341–364

Table 1 Desirable properties

Availability

Pro1 Actors delegate the execution of their (direct or indirect) objectives only to actors that they trust.

Pro2 Requesters can satisfy their objectives; that is, they have assigned their objectives to actors that
have the capabilities to achieve them.

Pro3 Requesters are confident their objectives will be satisfied; that is, they have assigned their
objectives to actors that have the capabilities to achieve them and are trusted.

Authorization

Pro4 Actors delegate permissions on their (direct or indirect) entitlements only to actors they trust.

Pro5 Owners are confident that their entitlements are not misused; that is, permission on their
entitlements is assigned only to actors they trust.

Pro6 Actors, who delegate permissions to achieve a goal, execute a task, or furnish a resource, have
the right to do so.

Availability & Authorization

Pro7 Requesters can achieve their objectives; that is, they have assigned their objectives to actors that
have both the permissions and capabilities to achieve them.

Pro8 Requesters are confident to achieve their objectives; that is, they have assigned their objectives
to actors that have both the permissions and capabilities to achieve them and are trusted.

Pro9 Providers have the permissions necessary to accomplish assigned duties.

Privacy

Pro10 Permission has been granted to actors who actually need it to perform their duties. This is an
important property to fulfill EU legislative privacy requirements on need-to-know.

properties again. Since the decision on whether any actor is trustworthy is up to the
designer, such a procedure will likely remain manual though it is possible to add rules
that define single points of failure in a trust chain.

3 ST-tool

The Secure Tropos methodology is supported by the ST-Tool (http://sesa.dit.unitn.it/
sttool/). The tool consists of three parts: the modeling kernel, the visual model inter-
face, and the reasoning interface. In Fig. 3, the modules of ST-Tool are shown, along
with their interrelations.

3.1 Visual modeling

To manage visual editing features and data management consistency at the same time,
we have adopted an architecture that includes a graphical layer and a data layer. At the
graphical layer, models are presented as graphs where actors and services are nodes,
and relations are arcs. Each visual object refers to a data object. The collection of data

Autom Softw Eng (2007) 14: 341–364 349

Fig. 3 Architecture overview

objects is managed by the data layer. Distinguishing the data layer from the graphical
layer allows designers, for example, to draw Tropos models and then build on top of
them Secure Tropos models by reusing common concepts. Moreover, it permits the
association of more than one graphical object to the same data object. This feature is
essential for dealing with situations where a service is re-delegated by some actor. It
should be noted that the Tropos graphical notation is similar, but not identical, to a
subset of the Secure Tropos notation.

Implementation-wise, the ST-Tool provides a graphical user interface (GUI),
through which all its graphical components are managed. The screen is divided into
four main areas: the menu of entities and relations at the top, the graphical editor in
the middle, the menu for choosing different representations of requirements models
at the bottom, and the property viewer and editor at the left (Fig. 4). The GUI’s key
component is the Editor module. This module allows designers to visually insert, edit
or remove graphical objects in the graphical layer by selecting the desired entity or
relation from the top menu, and specifying entity and relation attributes in the data
layer on the left menu. In particular, for every Tropos element, it is possible to specify
temporal properties according to the syntax of Formal Tropos (Fuxman et al. 2004)
by selecting the corresponding panel on the left menu.

A second component of the tool is the Graphical-layer Manager (GM) module
that manages graphical objects. For instance, it supports goal modeling by associat-
ing a goal diagram with each actor. Correlated with this feature, GM supports two
types of collapsing nodes, namely collapsing services and actors. When a service is
collapsed, its sub-services, decomposition arcs and relations having subservices as
dependum are hidden. When an actor is collapsed, the entire rationale of that actor is
hidden. GM also allows designers to activate one or more views of the requirements
model (i.e., dependency diagram for Tropos (Bresciani et al. 2004), and trust, exe-
cution dependency, and permission delegation views for Secure Tropos) at the same
time. Essentially, when a view is activated/deactivated, all elements related to that
particular view are shown/hidden. For instance, deactivating trust view will hide all
trust relation links in the requirements model.

The Data-layer Manager (DM) module is responsible for building and maintain-
ing data corresponding to graphical objects. For example, DM manages misalignment

350 Autom Softw Eng (2007) 14: 341–364

Fig. 4 ST-tool graphical user interface

between social relations and their graphical representation. Essentially, this module
rebuilds Tropos and Secure Tropos relations by linking the appropriate graphical ob-
jects (e.g., two trust links, two actor nodes representing the trustor and the trustee, and
a service node representing the trustum) to the same data object (the trust relation).

Finally, the tool uses the Integrity Checker module to detect errors during the mod-
eling phase. In particular, this module is responsible to identify designers’ misappli-
cations such as “isolated nodes” (i.e. services not involved in any relation), “orphan
relations” (i.e. relations where an arc is missing), and bad-typed relations, by parsing
the requirements model stored in the DM module.

3.2 Automated reasoning support

In order to perform formal analysis, the ST-Tool supports the automatic transforma-
tion of graphical models into formal specifications. Currently, two logics are sup-
ported: temporal logic for behavioral specification (Fuxman et al. 2004) and Answer
Set Programming (ASP) for security verification (Giorgini et al. 2005b). These trans-
formations are automatically performed, respectively, by two modules: the Formal
Tropos Translator module and the ASP Translator module. These modules are re-
sponsible for the translation of graphical models into the corresponding formal speci-
fications. The resulting specifications can be displayed by selecting the corresponding
panel in the bottom menu (Fig. 5).

Supporting languages based on first order logic and languages based on tempo-
ral logic allows system designers to perform different types of analysis, so they can

Autom Softw Eng (2007) 14: 341–364 351

Fig. 5 ST-tool: the ASP specification

evaluate the system-to-be along with the environment where it will act from different
perspectives. As already mentioned, in this paper we focus on the formal analysis
performed using the ASP paradigm. Basically, this analysis is addressed to verify the
compliance of system requirements with the properties given in Table 1.

Apart from choosing different formal languages, there are also different types of
analysis one may want to perform. For example, one may focus on verifying the
correctness of the current setting of an organization. For the analysis of an enterprise-
wide privacy policy, we cannot simply reason at the level of generic concepts (e.g.,
“the user”, “the General Director”, “the member of the CERT team”), but we must
instantiate these concepts to specific individuals playing those roles (Massacci et al.
2005). Towards this end, ST-Tool supports the instantiation of the requirements model
at the organizational level with an arbitrary number of instances by associating a
number of individuals with a role.

The Automated Reasoning Front-end (ARF) module provides designers with func-
tionality tailored to complete and check requirements models expressed in form of
ASP specifications using different external ASP solvers. This permits designers to
select the properties to be verified and the information to be visualized in the output
(Fig. 6). This information allows designers to understand the “where” and “why” of
system vulnerabilities. Designers may also need to specify and derive additional in-
formation about the domain under analysis. To this end, the ARF module provides
support to add rules, properties, or facts that will be analyzed together with the intu-
itive description of the system, axioms, and selected properties. The tool supports the
use of different ASP solvers, namely ASSAT (Lin and Zhao 2002), Cmodels (Lierler

352 Autom Softw Eng (2007) 14: 341–364

Fig. 6 Automated reasoning front-end

2005), Smodels (Niemelä et al. 2000), and DLV (Leone et al. 2006). Cmodels and
ASSAT use SAT solvers as inference engines, while Smodels uses a general-purpose
answer set solver. All these solvers work with grounded logic programs generated by
Lparse (Niemelä and Simons 1996). Lparse grounds a logic programs by transform-
ing it into an equivalent ground logic program (i.e., a logic program whose rules do
not containing variables) where equivalence is defined as having the same set of stable
models. Finally, DLV is a deductive database system. The ARF module is responsible
for passing the ASP specification corresponding to the graphical requirements model
to the chosen ASP solver for verifying consistency. Once the solver completes its
task, it returns the minimal Herbrand model (i.e., a set of ground literals) satisfying
the program itself (Gelfond and Lifschitz 1991). This model is parsed and presented
in a user-readable format by the ARF module.

In order to optimize the analysis, we have implemented the formal framework un-
derlying Secure Tropos as a locally stratified logic program (Gelfond and Lifschitz
1988). Such programs consist of rules that do not have arbitrary recursion through
negation. Specifically, predicates of locally stratified programs can be partitioned into
disjoint sets called strata such that there is no negative dependency between predi-
cates in the same stratum. A predicate p depends on predicate q if q occurs in the
body of the rule in which p occurs as head. A locally stratified program has to satisfy
two conditions:

1. if predicate p is at stratum i and depends positively on predicate q , then q must
be in a stratum j such that j ≤ i, and

Autom Softw Eng (2007) 14: 341–364 353

2. if predicate p is at stratum i and depends negatively on predicate q , then q must
be in a stratum j such that j < i.

Intuitively, intensional predicates are completely computed without relying via nega-
tion on other predicates that are not in a lower stratum. This restriction implies that
recursive iterations can be resolved in a finite number of steps. Locally stratified logic
programs have a unique stable model and a well-founded semantics (Gelfond and Lif-
schitz 1988). Moreover, van Gelder (1989) has proved that the unique stable model
can be computed in quadratic time complexity. While the use of locally stratified
logic programs may seem like a limitation in expressiveness, they were sufficient for
expressing the semantics of Secure Tropos concepts.

4 Requirements analysis support

This section presents how the ST-Tool assists system designers in the use of the Se-
cure Tropos methodology. The main activities supported by the tool are: (1) require-
ments elicitation and modeling; (2) model transformation; (3) formal requirements
analysis.

4.1 Requirements elicitation and modeling

Requirements elicitation and modeling activities aim to capture requirements and
represent them in terms of Secure Tropos diagrams.

During requirements elicitation, domain stakeholders and system actors are identi-
fied along their properties; their inter-dependencies are also captured and represented
in terms of social relations. Requirements specifications are usually provided by
stakeholders in natural language. We have defined a requirements collection schema
designed to capture requirements in a semi-structured way (Asnar et al. 2006). This
form-based document is intended to bridge the gap between requirements specified
in natural language and the formal requirements specification. It provides a number
of tables that drive requirements engineers during requirements elicitation.

Once the requirements collection schema has been completed, requirements mod-
eling proceeds using the graphical Editor. Indeed, there is a one-to-one relation be-
tween Secure Tropos concepts and the tables in the template.

4.2 Model transformation

The semantics of all Secure Tropos concepts are defined using the Answer Set Pro-
gramming (ASP) paradigm (Gelfond and Lifschitz 1991). Roughly speaking, the ASP
paradigm is a variant of Datalog with negation as failure. This paradigm supports
specifications expressed in terms of facts and Horn clauses, which are evaluated using
the stable model semantics. A fact consists of a relation symbol, called predicate, to-
gether with an appropriate number of well-formed arguments. In ASP, as in Datalog,
predicates are distinguished into two types: extensional and intensional. A predicate
is extensional if it does not appear on the left-hand side of any clause. Extensional

354 Autom Softw Eng (2007) 14: 341–364

Fig. 7 Extensional description of the system in ASP

predicates represent primitive concepts in Secure Tropos. All other predicates are
called intentional, and they are used for requirements verification.

The ST-Tool supports the translation of Secure Tropos diagrams to ASP clauses
through the ASP module.

Example 3 Figure 7 shows the list of facts (limited to permission) corresponding to
the intuitive description of the system given in Example 2. We use literal owns(a, s) to
represent that actor a is the legitimate owner of service s, and delegate_perm(a, b, s)

for modeling the transfer of authority on service s from actor a to actor b.

4.3 Formal requirements analysis

To verify the correctness of requirements, the framework supports formal analysis of
rules and constraints (i.e., rules where the head is empty). Rules (or axioms) are used
to complete specifications in order to derive the information needed for requirements
verification. For instance, designers need to identify who is entitled to achieve goals,
perform tasks and access resources. To this intent, Secure Tropos uses the following
axioms (Giorgini et al. 2005b):

(Ax1) has_perm(A,S) ← owns(A,S)
(Ax2) has_perm(B,S) ← delegate_ perm(A,B,S) ∧ has_perm(A,S)

Ax1 states that actors are entitled to access their own services, and Ax2 that actors
authorized by someone who is entitled to access the service, are in turn entitled to
access that service. It should be noted that in this paper, we have reported a simplified
version of axioms where delegation is assumed to be transitive. We refer to (Giorgini
et al. 2006) for a discussion on how delegation depth and conditions can be used to
control (re-)delegation.

Example 4 Applying such axioms to our example, one can infer that the student
is entitled to access all her own forms, the Doctorate School Secretary is entitled to
access student mission request form, and the Administrative Department is entitled to
access student advance reimbursement and payment of expenses forms and original

Autom Softw Eng (2007) 14: 341–364 355

receipts. The reasoning system also infers that only the project coordinator can use
project funding.

The complete specification can be used by designers to verify if the model com-
plies with desirable security properties. To this intent, the framework supports re-
quirements engineers through the use of constraints (Gelfond and Lifschitz 1991).
Constraints encode the properties presented in Table 1 into a form that is supported
by external ASP solvers. In particular, constraints specify conditions which must not
be true in the model. In other words, constraints are formulations of possible inconsis-
tencies. If all constraints are not simultaneously satisfied, weaknesses or vulnerabili-
ties may occur in the actual implementation of the system or in the policies adopted
by the organization (Massacci and Zannone 2006). In such situations, it is up to the
designer to decide whether or not such failures compromise the system and adopt the
adequate countermeasures. This decision depends on several factors such as risk, cost
of the solution, compliance with legislation, etc.

Example 5 To verify the compliance of the requirements model with Pro4 and Pro6
in Table 1, Secure Tropos uses the following constraints:

(Pro4) ← delegate_perm(A,B,S) ∧ not trustChain_perm(A,B,S)
(Pro6) ← delegate_perm(A,B,S) ∧ not has_perm(A,S)

The analysis reveals the presence of weaknesses in the mission procedure. Pro6
is not satisfied since the adviser has authorized the use of the funding without the
consent of the project coordinator. Consequently, the student cannot receive the re-
imbursement. This is also detected by the reasoning engine in the form of violations
of availability requirements. In particular, the student cannot achieve his goal since
he has delegated part of it to an actor that does not have the permission to achieve
assigned obligations (Pro7).

Other inconsistencies come up since the trust model is not considered in the regu-
lation. Actually, trust relations are implicitly defined in the employment contract that
actors draw up with the University. The lack of an explicit trust model makes Pro4
not satisfied.

Inconsistencies of properties might be due to either unspecified requirements or
conflicting requirements. Thus, detecting and solving inconsistencies helps require-
ments engineers to detect implicit and unspecified requirements, understand system
vulnerabilities, and identify and evaluate solutions for mitigate vulnerabilities. We
note that if such inconsistencies are not resolved, weaknesses or vulnerabilities might
occur in the deployed system. For instance, appointing an untrusted actor to achieve
critical tasks increases the risk of their failures. Thus, requirements analysis drives
the designer in revising and refining the requirements model.

Example 6 The analysis shows how inconsistencies due to the failure of Pro6 can be
solved by modifying the mission procedure. In particular, the student shall not depend
on the adviser for the use of funding, but he shall ask for authorization directly from
the project coordinator.

356 Autom Softw Eng (2007) 14: 341–364

5 Tool evaluation

The Secure Tropos methodology and ST-tool have been used to model and analyze
several industrial case studies (Asnar et al. 2006; Massacci et al. 2005; Massacci and
Zannone 2006). In this section we report two of these experiences: compliance by the
University of Trento with Italian legislation on Privacy and Data Protection (Massacci
et al. 2005) and analysis of a fraud to the detriment of Allied Irish Bank (Massacci
and Zannone 2006). An important objective for both case studies was to evaluate
the expressiveness of the modeling language and validate the formal framework and
analysis. The section also includes an experimental evaluation of the scalability of
the proposed automated reasoning techniques.

5.1 Compliance by the University of Trento with Italian legislation on privacy and
data protection

In (Massacci et al. 2005) we have used the tool to model and analyze a comprehen-
sive case study on the compliance of the University of Trento with Italian privacy and
data protection legislation. The Italian Data Protection Act requires public adminis-
trations, which include universities, to set up adequate security and privacy policies.
The Act also includes a technical annex that is similar to the ISO-17999 standard.
This annex defines the minimal precautionary security measures that should be im-
plemented by administrations, such as authentication and authorization facilities, an-
tivirus protection, as well as data backup and restore mechanisms.

The University has enforced the Data Protection Act through an Internal Privacy
Regulation that delegates responsibilities of the data controller (the Chancellor) con-
cerning the processing of personal data to Faculty Deans, Heads of Departments, and
Central Directorate Managers. These actors are responsible for fulfilling all oblig-
ations relating to personal data processed within the University, with support from
the ICT Directorate with regard to the adoption of minimal precautionary security
measures for electronic data processing.

Requirements elicitation for the case study was based on the analysis of 300-
page documentation, which required three months of work and several interactions
with the Information Security Office Manager of the University. The entire require-
ments model specifies 11 actors, 5 of them were expanded with a total of 90 model
elements—77 goals and 13 resources. These 79 elements were linked through a total
of 114 links including 25 execution dependencies, 13 permission delegations, and 72
decomposition links. Figures 8(a) and 8(b) present the execution dependency diagram
and permission delegation diagram of a fragment of the case study.

Requirements analysis of these models identified revealed a number of pitfalls. For
instance, the analysis of procedures and policies adopted by the University pointed
out that they do not provide information that is essential for their verification. The
most notable omission was the absence of relationships between the Chancellor and
the General Director, who is actually responsible for managing the University admin-
istration.

Another omission in official documentation was the lack of a definition of the
data collection process adopted by the University. This process, and in particular

Autom Softw Eng (2007) 14: 341–364 357

Fig. 8 Requirements model

the need for data subject consent, is considered fundamental in privacy legislation.
Moreover, documentation did not identify who is really allowed to perform a spe-
cific data processing task. Consequently, it was not possible to analyze availability
requirements. This omission also affected the analysis of the need-to-know princi-
ple. Indeed, without a precise knowledge about who has the capability to execute a
certain data processing task, it was not possible to identify who had actually taken
responsibility for its execution. It is worth noting that this problem is not confined to
the University of Trento. Rather, it is a generic problem mainly due to the security
assessment procedure defined in the annex of the Data Protection Act.

Another issue that was brought up by the analysis was the treatment of manual
non-ICT procedures. In fact, such procedures are often incompletely specified. This
does not mean that employees do not follow procedures, but rather that such pro-
cedures are somehow “embedded” in the knowledge of the organization. Without a
precise description of such procedures, the definition of the corresponding authenti-
cation procedures and access control policies becomes problematic.

5.2 John Rusnak and the Allied Irish Bank

In (Massacci and Zannone 2006) we demonstrated that the proposed methodology
is able to identify the vulnerabilities exploited by a currency trader to defraud the
Allied Irish Bank. In the early 90s, the trader John Rusnak gained nearly $500.000 in
bonuses for alleged bank profits by exploiting his trader position at Allied Irish Bank
(Promontory Financial Group 2003). The analysis we conducted for this case study
showed that John Rusnak did not actually hack the IT system, but rather exploited
substantial loopholes in the organizational and IT structures that compromised the
authenticity and integrity of data upon which a number of decision were taken by
Allied Irish Bank’s management.

358 Autom Softw Eng (2007) 14: 341–364

Fig. 9 Bank’s organization with Rusnak

This case study was based on the analysis of some official documentation such
as the “Ludwig” report (Promontory Financial Group 2003) that was ordered by the
Bank to understand Rusnak’s fraud and the indictment against Rusnak presented at
the Grand Jury for the District of Maryland (US Department of Justice 2002). The
entire requirements model includes 15 actors, 6 of them were expanded with a total
of 67 model elements—56 goals and 11 resources. These 67 elements were linked
through a total of 75 links including 18 execution dependencies, 20 permission del-
egations, and 22 decomposition links. Figure 9 presents a fragment of the Bank’s
organizational structure, focusing on the position of Rusnak within the organization.

The fraud designed by Rusnak was based on a number of weaknesses and vulner-
abilities affecting the Bank’s organizational structure and its IT systems. The lack of
integrity protection of foreign exchange rates was one of these vulnerabilities. The
Bank developed an architecture where rates were downloaded on Rusnak’s machine
instead of buying a dedicated Reuters connection for each of its offices. This design
solution allowed Rusnak to manipulate exchange rates. This vulnerability was de-
tected by the tool by comparing the Bank’s policies with the concrete instantiation
of the organization. Actually, bank policy did not permit currency traders to provide
foreign exchange rates. Even if this conflict is “visible”, it may be ignored by design-
ers due to its nature (since it involves different levels of analysis), and the size of the
overall model.

Autom Softw Eng (2007) 14: 341–364 359

Another vulnerability exploited by Rusnak was the possibility to confirm bogus
options. The Bank’s policy stated that every trade made by currency traders must
be confirmed by the Back Office. However, Rusnak persuaded Back Office employ-
ees to let him confirm his own transactions. Such a vulnerability has been auto-
matically detected by the tool by comparing the Bank’s organization and policies
with their concrete instantiation. Actually, the Back Office was not supposed to per-
mit currency traders to confirm their own transactions. Nonetheless the Back Office
employees trusted Rusnak and did not verify the validity of his reported transac-
tions.

Finally, the lack of interaction between the Middle Office and the Back Office
introduced further vulnerabilities exploited by Rusnak. The Middle Office computed
the value at risk—a category of risk metrics that describe how the market value of
an asset is likely to decrease over a certain time period (Jorion 2000)—on tentative
trades instead of considering trades confirmed by the Back Office. Thus, Rusnak
was able to tamper value at risk by introducing bogus options in the list of tentative
transactions. In fact, our analysis did not reveal this vulnerability. The main reason
for this was incompleteness of the documentation we worked with. We believe that
this vulnerability can be captured by analyzing, for instance, the code of practice for
financial markets (Association Cambiste Internationale 2005), which defines the best
practices that should be adopted by every bank, and compares these with the actual
policies adopted by the Bank.

In summary, the tool allowed one to find automatically some of the errors that
were the results of months of investigation by a large team of experts looking at tex-
tual documentation manually. For instance, the Promontory Financial Group “have
emphasized from the outset that we believed that 30 days was inadequate to ren-
der a comprehensive report” (Promontory Financial Group 2003). Even though this
analysis was conducted after the attack, it could also have been conducted before.
By contrast, the analysis performed by the Promontory Financial Group as well as
other kinds of analysis, such as violation and vulnerability analysis (Johnson 2006),
can be used to understand the root causes of security incidents, but can only be ap-
plied after the attack has occurred. Finally, this case study has confirmed that security
issues cannot be addressed only with pure IT solutions. IT systems might be well de-
signed and employ suitable protection mechanisms but be insufficient to fully address
security issues. Rather, designers need to look at them from a wider organizational
perspective. Only by analyzing the system and the organizational setting wherein it
will operate, we can identify some types of weaknesses and vulnerabilities of the
system itself.

5.3 Experimental results

Tools may have to provide interactive verification services involving potentially large
numbers of clauses. Indeed, the current usage model is that the requirements engineer
draws some models, checks for correctness and consistency, revises the model and
checks again. Moreover, to perform a more detailed analysis we have also recognized
the importance of comparing organizational structure with the concrete (operational)
instance of an organization. For instance, this is crucial for capturing security require-
ments in a domain where a trusted role can be played by an untrusted agent and vice

360 Autom Softw Eng (2007) 14: 341–364

Table 2 Experimental result

Solver Cmodels-1 Cmodels-2 Smodels ASSAT DLV

N In R Wall CPU R Wall CPU R Wall CPU R Wall CPU R Wall CPU

0 0 0m13s <0m1s 0 0m13s <0m1s 0 0m14s <0m1s 0 0m14s <0m1s 0 <0m1s <0m1s

24 0 0m59s <0m1s 0 0m58s <0m1s 0 1m5s <0m1s 0 1m4s <0m1s 0 <0m1s <0m1s

45 0 2m33s 0m2s 0 2m33s 0m1s 0 2m50s 0m2s 0 2m50s 0m1s 0 <0m1s <0m1s

62 1 0m41s 0m1s 1 0m41s 0m1s 1 0m46s 0m2s 1 0m46s 0m1s 0 <0m1s <0m1s

113 1 0m47s 0m1s 1 0m47s 0m1s 1 0m54s 0m2s 1 0m54s 0m1s 0 0m2s <0m1s

166 — — — — 0 0m5s <0m1s

250 — — — — 0 0m10s <0m1s

350 — — — — 0 0m25s <0m1s

versa (Giorgini et al. 2005a). In these settings, where the size of the model depends
on the actual size of an organization (in terms of actors), scalability problems may
arise.

We have performed several experiments to test the scalability of our approach us-
ing different ASP solvers, even when organizational models are instantiated with a
growing number of agents playing various roles. In this paper we report the results
of the analysis of the case study presented in (Massacci et al. 2005). The experiments
were executed on a 2.0 GHz Core Duo processor, 1 GB Ram, running Linux.

Table 2 reports the time used to complete the analysis (Wall) and the CPU time re-
quired over models of increasing size. With “0” we mark experiments that completed
successfully, while “1” marks those that failed to complete. The results suggest that
DLV is far more efficient than other solvers. This is even more evident considering
that Wall and CPU times reported in Table 2 do not take into account the time spent
by Lparse that is used by Cmodels, Smodels and ASSAT for grounding. The expla-
nation of these results is simple. Engines native to ASP (e.g., the DLV system) are
much more efficient than ones that are extended to support ASP, when the number of
the instances in the model increases. Moreover, Cmodels, Smodels and ASSAT are
not able to find a solution after a certain number of instances due to limits of Lparse.

The results of these experiments suggest that formal analysis based on a DLV
solver can handle full-size industrial case studies. After all, enterprises with 250 em-
ployees are considered medium-size by the European Union (European Commission
Recommendation 2003/361/EC, May 6, 2003).

6 Related work

Several CASE tools have been proposed in the last years to assist developers during
requirements elicitation and analysis, but few of them have been extended to cope
with security requirements analysis.

The OpenOME tool (Ernst et al. 2006) has been developed to support the i* (Yu
1995) and Non-Functional Requirements (Chung et al. 2000) modeling frameworks,
providing requirements engineers with a graphical interface to draw diagrams. These

Autom Softw Eng (2007) 14: 341–364 361

modeling frameworks treat security requirements as non-functional requirements and
model them using softgoals (Liu et al. 2003). OpenOME supports goal analysis (in
form of label propagation) to check if the designed system guarantees an appropri-
ate level of security. Liu et al. (2003) extends this approach by offering facilities for
threats, vulnerabilities and countermeasures analysis. To support such analysis, this
work extends the i* framework with an analysis technique based on Alloy (Jackson
2002). However, such a technique is not integrated into OpenOME. TAOM4E (Perini
and Susi 2004) is another tool developed to support the Tropos methodology. Differ-
ently from ST-Tool and OpenOME, TAOM4E focuses on the software development
process, but it does not offer any facilities for formal requirements analysis.

The GRAIL tool (Darimont et al. 1997) has been developed to support the KAOS
methodology (Dardenne et al. 1993). KAOS is a Goal-Oriented Requirements En-
gineering methodology supporting the whole requirements elaboration process. To
cope with security issues, this methodology uses the notion of obstacle to capture ex-
ceptional behaviors (van Lamsweerde and Letier 2000) and anti-goal to model inten-
tional obstacles set up by attackers to break security goals (van Lamsweerde 2004).
First-order temporal logic is used to model and reason about actor’s goals and de-
rive requirements from them. GRAIL provides developers with a graphical interface
that supports requirements elicitation and documentation. Moreover, it provides syn-
tax and static semantic checkers at declaration and assertion levels for requirements
analysis. However, the support provided by GRAIL is limited to semi-formal specifi-
cations. The FAUST toolbox (Rifaut et al. 2003) is designed to integrate formal and
semi-formal specifications. It provides tools for the formal analysis of requirements
consistency.

The SCR* toolset (Heitmeyer et al. 1998) is a set of tools for developing require-
ments specifications expressed in the SCR (Software Cost Reduction) tabular nota-
tion. The SCR method is a formal method for specifying the requirements of real-time
embedded systems. In SCR, the required system behavior is described by mathemat-
ical relations. To specify such relations, the method uses the concepts of condition,
event, and table. A condition is a predicate defined on one or more variables in the
specification. An event represents a change of variable value. Tables specify the value
of a variable as a mathematical function defined on conditions and events. To provide
a precise and detailed semantics, the SCR method provides a requirements model that
represents the system-to-be as a finite state automaton. The toolset includes an editor
for defining specifications, a consistency checker for testing the consistency of spec-
ification with the formal requirements model, and a simulator for executing the spec-
ifications, and a verifier for checking their compliance with application properties.

Compendium (Selvin and Buckingham Shum 2005) is a hypermedia concept map-
ping tool based on the Issue Based Information System approach and tailored to
model problems. It provides extension mechanisms for increasing the expressiveness
of the modeling framework. Such mechanisms have been used to support augmenta-
tion driven problem analysis (Haley et al. 2005). The objective of the extended tool is
to assist developers during the requirements elicitation process (Buckingham Shum
et al. 2006). However, Compendium and its extension do not provide facilities for
formal requirements analysis.

AUTOFOCUS (Schätz et al. 2002) is a model-based tool designed for the devel-
opment of distributed and embedded systems. This tool supports system developers

362 Autom Softw Eng (2007) 14: 341–364

during design phase, offering them a graphical interface for specifying the system-
to-be from different views. It also provides formal methods tailored for systems engi-
neering. In particular, it uses consistency criteria on system descriptions and provides
formal reasoning techniques for detecting system weaknesses.

The CORAS project has developed a tool-supported methodology for UML-based
security risk analysis (den Braber et al. 2003). The tool aids system designers to
perform risk analysis and generate documentation reporting results of such analysis.
However, the tool itself does not provide novel analysis facilities, but integrates exist-
ing techniques such as misuse cases (Sindre and Opdahl 2005) and fault tree analysis
(Stamatelatos et al. 2002). Essentially, it provides a methodological approach for in-
tegrating different risk analysis approaches for a comprehensive view of the risk man-
agement process. The tool allows for storage of the result of the risk analysis process
in repositories. These repositories provide reusable experience for future projects.

7 Conclusions

We have presented ST-Tool, a CASE tool designed to support the Secure Tropos
methodology for modeling and reasoning about security requirements. The tool has
been evaluated by modeling and analyzing real-world, comprehensive case studies
with satisfactory results. For instance, the tool was able to identify some of the
vulnerabilities that have been exploited by a currency trader to cheat Allied Irish
Bank (Massacci and Zannone 2006) and verify the compliance with the University
of Trento to Italian legislation on Privacy and Data Protection, leading to the defini-
tion and analysis of a ISO-17799-like security management scheme (Massacci et al.
2005).

An important issue left for future research concerns the visualization of the results
computed by external ASP solvers. An idea we propose to explore is to construct
graphical models that represent the output of solvers so that requirements engineers
and stakeholders can directly interact with the formal framework. In particular, our
objective is to visually represent violations of security properties. Another open prob-
lem for this research is to integrate the security analysis techniques presented in this
work with other, complementary ones in order to fully support the analysis and design
of secure software systems.

Acknowledgements This work has been partially funded by EU Commission, through the SENSORIA
and SERENITY projects, by the FIRB program of MIUR under the TOCAI project, and by the Provincial
Authority of Trentino, through the MOSTRO project.

References

Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases. In: Proc. of VLDB’02, pp. 143–154.
Kaufmann, Los Altos (2002)

Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Technical Report TR86-727, Cornell Uni-
versity, Computer Science Department (1986)

Anderson, R.: Why cryptosystems fail. Commun. ACM 37(11), 32–40 (1994)

Autom Softw Eng (2007) 14: 341–364 363

Asnar, Y., Bonato, R., Bryl, V., Compagna, L., Dolinar, K., Giorgini, P., Holtmanns, S., Klobucar, T.,
Lanzi, P., Latanicki, J., Massacci, F., Meduri, V., Porekar, J., Riccucci, C., Saidane, A., Seguran, M.,
Yautsiukhin, A., Zannone, N.: Security and privacy requirements at organizational level. Research
report A1.D2.1, SERENITY consortium (2006)

Association Cambiste Internationale: The model code: the international code of conduct and practice for
the financial markets (2005). http://www.aciforex.com/market/July05_ModelCode.pdf

Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.E.: Basic concepts and taxonomy of dependable and
secure computing. IEEE Trans. Dependable Secur. Comput. 1(1), 11–33 (2004)

Basin, D., Doser, J., Lodderstedt, T.: Model driven security: from UML models to access control infrastruc-
tures. ACM Trans. Softw. Eng. Methodol. 15(1), 39–91 (2006)

Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Proc. of FCS’02 (2002)
Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: an agent-oriented software

development methodology. J. Auton. Agents Multi-Agent Syst. 8(3), 203–236 (2004)
Buckingham Shum, S.J., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B., Nuseibeh, B.: Hypermedia

support for argumentation-based rationale: 15 years on from gIBIS and QOC. In: Rationale Manage-
ment in Software Engineering, pp. 105–126. Springer, Berlin (2006)

Chung, L.K., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software Engineering.
Kluwer, Dordrecht (2000)

Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci. Comput. Prog.
20, 3–50 (1993)

Darimont, R., Delor, E., Massonet, P., van Lamsweerde, A.: GRAIL/KAOS: an environment for goal-
driven requirements engineering. In: Proc. of ICSE’97, pp. 612–613. ACM Press, New York (1997)

De Landtsheer, R., van Lamsweerde, A.: Reasoning about confidentiality at requirements engineering time.
In: Proc. of ESEC/FSE’05, pp. 41–49. ACM Press, New York (2005)

den Braber, F., Dimitrakos, T., Gran, B.A., Lund, M.S., Stølen, K., Aagedal, J.Ø.: The CORAS methodol-
ogy: model-based risk assessment using UML and UP. In: UML and the Unified Process, pp. 332–
357. Idea Group Publishing, New York (2003)

Ernst, N.A., Yu, Y., Mylopoulos, J.: Visualizing non-functional requirements. In: Proc. of REV’06, p. 2.
IEEE Press, New York (2006)

Fickas, S., Nagarajan, P.: Critiquing software specifications. IEEE Softw. 5(6), 37–47 (1988)
Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying and analyzing early

requirements in tropos. Requir. Eng. J. 9(2), 132–150 (2004)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. of ICLP’88,

pp. 1070–1080. MIT Press, Cambridge (1988)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener.

Comput. 9(3/4), 365–386 (1991)
Germeau, F., Leduc, G.: Model-based design and verification of security protocols using LOTOS. In: Proc.

of the DIMACS Workshop on Design and Formal Verification of Security Protocols (1997)
Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modelling social and individual trust in require-

ments engineering methodologies. In: Proc. of iTrust’05. Lecture Notes in Computer Science, vol.
3477, pp. 161–176. Springer, Berlin (2005a)

Giorgini, P., Massacci, F., Zannone, N.: Security and trust requirements engineering. In: FOSAD
2004/2005. Lecture Notes in Computer Science, vol. 3655, pp. 237–272. Springer, Berlin (2005b)

Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements engineering for trust management:
model, methodology, and reasoning. Int. J. Inform. Sec. 5(4), 257–274 (2006)

Gravell, A.M., Henderson, P.: Executing formal specifications need not be harmful. IEE/BCS Softw. Eng.
J. 11(2), 104–110 (1996)

Haley, C.B., Moffett, J., Laney, R., Nuseibeh, B.: Arguing security: validating security requirements using
structured argumentation. In: Proc. of SREIS’05 (2005)

Heitmeyer, C.L., Kirby, J., Labaw, B.G., Bharadwaj, R.: SCR*: A toolset for specifying and analyzing
software requirements. In: Proc. of CAV’98, pp. 526–531. Springer, Berlin (1998)

House of Lords, P.: Prince Jefri Bolkiah vs KPMG. 1 All ER 517 (1999). Available on www.parliament.
the-stationeryoffice.co.uk

Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. 11(2),
256–290 (2002)

Johnson, C.W.: V2: using violation and vulnerability analysis to understand the root causes of complex
security incidents. Submitted to ACM Trans. Inf. Syst. Secur. (2006)

Jorion, P.: Value-at-Risk: The New Benchmark for Managing Financial Risk. McGraw–Hill, New York
(2000)

364 Autom Softw Eng (2007) 14: 341–364

Jürjens, J.: Secure Systems Development with UML. Springer, Berlin (2004)
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowl-

edge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)
Lierler, Y.: Disjunctive answer set programming via satisfiability. In: Proc. of the 3rd Int. Workshop on

Answer Set Prog.: Adv. in Theory and Implementation, CEUR Workshop Proceedings. CEUR-WS.
org, vol. 142 (2005)

Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. In: Proc. of the 18th
Nat. Conf. on Artif. Intell, pp. 112–117. AAAI Press, Menlo Park (2002)

Liu, L., Yu, E.S.K., Mylopoulos, J.: Security and privacy requirements analysis within a social setting. In:
Proc. of RE’03, pp. 151–161. IEEE Press, New York (2003)

Maiden, N., Sutcliffe, A.: Exploiting reusable specifications through analogy. CACM 35(4), 55–64 (1992)
Massacci, F., Prest, M., Zannone, N.: Using a security requirements engineering methodology in practice:

the compliance with the Italian data protection legislation. Comput. Stand. Interfaces 27(5), 445–455
(2005)

Massacci, F., Zannone, N.: Detecting conflicts between functional and security requirements with secure
tropos: John Rusnak and the Allied Irish Bank. Technical Report DIT-06-002, University of Trento
(2006)

McDermott, J., Fox, C.: Using abuse case models for security requirements analysis. In: Proc. of AC-
SAC’99, pp. 55–66. IEEE Press, New York (1999)

National Security Agency: Information Assurance Technical Framework (IATF). Release 3.1 (2002)
Niemelä, I., Simons, P.: Efficient implementation of the well-founded and stable model semantics. In: Proc.

of JICSLP’96, pp. 289–303. MIT Press, Cambridge (1996)
Niemelä, I., Simons, P., Syrjänen, T.: Smodels: a system for answer set programming. In: Proc. of the 8th

Int. Workshop on Non-Monotonic Reas. (2000)
Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proc. of ICSE’00, pp. 35–46.

ACM Press, New York (2000)
Onabajo, A., Jahnke, J.H.: Modeling and reasoning for confidentiality requirements in software develop-

ment. In: Proc. of ECBS’06, pp. 460–467. IEEE Press, New York (2006)
Perini, A., Susi, A.: Developing tools for agent-oriented visual modeling. In: Proc. of MATES’04. Lecture

Notes in Computer Science, vol. 3187, pp. 169–182. Springer, Berlin (2004)
Promontory Financial Group, Wachtell, Lipton, Rosen, Katz: Report to the Board and Directors of Allied

Irish Bank P.L.C., Allfirst Financial Inc., and Allfirst Bank Concerning Currency Trading Losses
(2003)

Rifaut, A., Massonet, P., Molderez, J.-F., Ponsard, C., Stadnik, P., van Lamsweerde, A., Hung, T.V.:
FAUST: formal analysis using specification tools. In: Proc. of RE’03, p. 350. IEEE Press, New York
(2003)

Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems. Proc. IEEE 63(9),
1278–1308 (1975)

Schätz, B., Pretschner, A., Huber, F., Philipps, J.: Model-based development of embedded systems. In:
Proc. of OOIS’02. Lecture Notes in Computer Science, vol. 2426, pp. 298–312. Springer, Berlin
(2002)

Schneider, F.B.: Decomposing properties into safety and liveness. Technical Report TR87-874, Cornell
University, Computer Science Department (1987)

Selvin, A.M., Buckingham Shum, S.J.: Hypermedia as a productivity tool for doctoral research. New Rev.
Hypermedia Multimedia 11(1), 91–101 (2005)

Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requir. Eng. J. 10(1), 34–44
(2005)

Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.: Fault Tree Handbook with
Aerospace Applications. NASA, Washington (2002)

US Department of Justice: United States of America v. John M. Rusnak. SMS/SD/USAO #2002R02005.
(2002). http://www.usdoj.gov/dag/cftf/chargingdocs/allfirst.pdf

van Gelder, A.: The alternating fixpoint of logic programs with negation. In: Proc. of PODS’89, pp. 1–10.
ACM Press, New York (1989)

van Lamsweerde, A.: Elaborating security requirements by construction of intentional anti-models. In:
Proc. of ICSE’04, pp. 148–157. IEEE Press, New York (2004)

van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements engineering. IEEE
Trans. Softw. Eng. 26(10), 978–1005 (2000)

Yu, E.: Modelling strategic relationships for process reengineering. PhD thesis, University of Toronto
(1995)

	Computer-aided Support for Secure Tropos
	Abstract
	Introduction
	Secure Tropos
	ST-tool
	Visual modeling
	Automated reasoning support

	Requirements analysis support
	Requirements elicitation and modeling
	Model transformation
	Formal requirements analysis

	Tool evaluation
	Compliance by the University of Trento with Italian legislation on privacy and data protection
	John Rusnak and the Allied Irish Bank
	Experimental results

	Related work
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

