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Abstract

We present a system for the generation of natural language instructions, as are found in
instruction manuals for household appliances, that is able to automatically generate safety
warnings to the user at appropriate points. Situations in which accidents and injuries to
the user can occur are considered at every step in the planning of the normal operation of
the device, and these “injury sub-plans” are then used to instruct the user to avoid these
situations.

1 Introduction

We present a system for the generation of natural language instructions, as are found in instruction
manuals for household appliances, that is able to automatically generate safety warnings to the user at
appropriate points. Situations in which accidents and injuries to the user can occur are considered at
every step in the planning of the normal operation of the device, and these “injury sub-plans” are then
used to instruct the user to avoid these situations. Thus, unlike other instruction generation systems,
our system tells the user what not to do as well as what to do. We will show how knowledge about
a device that is assumed to already exist as part of the engineering effort, together with adequate,
domain-independent knowledge about the environment, can be used for this. We also put forth the
notion that actions are performed on the materials that the device operates upon, that the states of these
materials may change as a result of these actions, and that the goal of the system should be defined in
terms of the final states of the materials.

We take the stand that a complete natural language instruction generation system for a device
should have, at the top level, knowledge of the device (as suggested by Delin et al. (1993)). This is one
facet of instruction generation that many NLG systems have largely ignored by instead incorporating
the knowledge of the task at their top level, i.e., the basic content of the instructions is assumed to
already exist and does not need to be planned for. In our approach, all the knowledge necessary for
the planning stage of a system is contained (possibly in a more abstract form) in the knowledge of the
artifact together with the world knowledge. The kinds of knowledge that should be sufficient for this
planning are device knowledge (topological, kinematic, electrical, thermodynamic, and electronic)
and world knowledge.

The IDAS project of Reiter et al. (1992; 1995) served as a key motivation for this work. One
of the primary goals of the IDAS project was to automatically generate technical documentation
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from a domain knowledge base containing design information (such as that produced by an advanced
computer-aided design tool) using NLG techniques. IDAS turned out to be successful in demonstrating
the usefulness, from a cost and benefits perspective, of applying NLG technology to partially automate
the generation of documentation. If work in qualitative process theory, using functional specifications
such as those in e.g., (Iwasaki et al., 1993), can yield the device and world knowledge that are required
for text planning, then the need for cost effectiveness would be met.

2 A situation calculus approach to the generation of instructions

2.1 Overview

In this section we shall present some of the planning knowledge for a toaster domain, in the form of
axioms in the situation calculus2 (see (Reiter, 1991)). This planning knowledge formally characterizes
the behaviour of the artifact, and it is used to produce a basic plan of actions that both the device and
user take to accomplish a given goal. The axioms together with the goal are the input to our system.
We will explain how the instructions are generated from the basic plan. This plan is then used to derive
further plans for states to be avoided, and warning instructions about these situations.

We shall use the term device–environment system to refer to the device, the user, and any objects
or materials used by the device.

We can conceptually divide the actions that are performed in the device–environment system into
user actions and non-user actions, the latter of which are actions that are carried out either by the
device on its components and the materials it uses, or by some other agent. Because the majority of
non-user actions are actions performed by the device, we shall only consider device actions henceforth.
Natural language instructions are directed to the user of a device, and usually they mainly describe the
actions that are executed by the user.

A device action may be carried out by a component of the device on another component; for
example, the heating element of a toaster may carry out a heating action (i.e., a continuous, physical
process) on the bread slot, which in turn may heat the inserted bread slice.

Instead of using a qualitative or quantitative simulation system, such as the Device Modelling
Environment (Iwasaki and Low, 1991), we have used device actions to discretely model the continuous
processes, for simplicity.

Table 1 shows the components of our toaster and the materials used for its operation. Table 2
shows the user actions, device actions, and fluents.

2In the situation calculus, the initial state is denoted by the constant S0, and the result of performing an action a in
situation s is represented by the term do(a, s). Certain properties of the world may change depending upon the situation.
These are called fluents, and they are denoted by predicate symbols which take a situation term as the last argument. Positive
(negative) effect axioms describe the conditions under which performing a in situation s causes a fluent to become true
(false) in do(a, s). Action precondition axioms describe the conditions under which a can be performed in s. We use
these axiomatic forms in order to avoid the frame problem. Following Pinto (1994), we shall abbreviate terms of the form
do(an, (do(. . . , do(a1, s) . . .)) as do([a1, . . . , an], s).



Components
ON lever
bread slot

Materials
bread slice

Table 1: Components and materials of the toaster system

User actions
insert
remove
press
touch
get burned

Device actions
raise temp
pop up

Fluents
pressed
contains
removed
temperature
touching
burned
toasted
exposed

Table 2: User actions, device actions, and fluents used in the toaster example

2.2 Some axioms for the toaster system

The followingare some of the more important axioms for our toaster example (see Ansari (1995) for the
complete set). Some of them are essentially domain-independent, whereas the others relate specifically
to the appliance. Where free variables appear in formulas, they are assumed to be universally quantified
from the outside.

2.2.1 Action precondition axioms

Poss(insert(x, y), s) � three d location(y)^ fits(x, y) ^ exposed(y, s) (1)

Poss(touch(x), s) � physical object(x)^ exposed(x, s) (2)

Poss(get burned, s) � 9x, t.(touching(x, s)^ temperature(x, t, s)^ t � 70) (3)

Poss(raise temp(x), s) � (x = bread slot _ contains(bread slot, x, s))^

9t.(temperature(x, t, s)^ t < 200)^ pressed(on lever, s) (4)

Poss(pop up, s) � 9t.(temperature(bread slot, t, s)^ t � 200) (5)

These axioms state that:

� an action by the agent of inserting x into y is possible in state s if y is a three d location, i.e., a
spatial volume, x fits into y, and y is exposed;



� an agent can touch an object if it is exposed;

� the agent can get burned by touching something with a temperature of at least 70�C; and

� the device can cause the bread slot to pop up its contents if the temperature of the bread slot
reaches 200�C.

2.2.2 Positive effect axioms

Poss(a, s)^ a = insert(x, y)! contains(y, x, do(a, s)) (6)

Poss(a, s)^ a = get burned! burned(do(a, s)) (7)

Poss(a, s)^ a = pop up ^ contains(bread slot, x, s)! exposed(x, do(a, s)) (8)

These axioms state that:

� inserting x into y in state s results in y containing x in state do(a, s);

� if it is possible for the agent to get burned (by the get burned action), then the agent might be
burned in the new state; and

� if the device causes x to pop up in state s, then x becomes exposed in the next state.

2.2.3 Negative effect axioms

Poss(a, s)^ a = press(on lever) ^ contains(bread slot, x)!

:exposed(x, do(a, s)) (9)

This axiom states that an action of the user pressing the ON lever causes anything in the bread slot
to become unexposed; this happens because the object in the bread slot gets “pushed down”.

3 Generating instructions with warnings

3.1 Deriving instruction plans from the axioms

We wish to derive a sequence of actions (by the user and the device) that, when performed, cause a
slice of bread to become toasted. Ideally, this sequence would begin with the act of the user inserting
a slice of bread into the toaster and end with the act of the user removing the toasted bread from the
toaster. The goal will be described in terms of the final state of the material (bread, in this case). Thus,
the plan will describe a sequence of actions which cause the transformation of the material from its
initial to its desired state.



temperature(bread slot, 20, S0)
temperature(bread slice, 20, S0)
exposed(bread slot, 20, S0)
exposed(bread slice, 20, S0)

Figure 1: Fluents that hold in the initial state, S0

We could, as a reasonable approximation, model the state changes of the bread in terms of the
temperature of the bread. Using temperature(x, t, s) as a fluent describing that object x has a temperature
of t�C in state s, we could define toast as a slice of bread that has reached a temperature of 200�C:

toasted(bread slice, do(a, s)) 

temperature(bread slice, t, s)^ t � 200 _ toasted(bread slice, s) (10)

Note that using this definition, toasted(bread slice) holds for all states after do(a,s).
Figure 1 shows the fluents that hold in the initial state.
We can define the goal G to be the following:

G = toasted(bread slice) ^ removed(bread slice, bread slot) (11)

A plan derived by our system to cause G to become true is this:

do([insert(bread slice, bread slot), press(on lever), raise temp(bread slice),

raise temp(bread slice), raise temp(bread slice), raise temp(bread slice),

pop up, remove(bread slice, bread slot)], S0) (12)

The raise temp action is carried out four times, since each time it raises the temperature of something
by 50�C.

Note that we do not model the perception actions of the user watching for the bread slice to pop
up. In our simple domain, we have avoided the need for these by assuming that the user knows when
a salient observable change occurs in the system. In this case, the salient change is the popping up of
the bread slice.

3.2 Deriving plans for warning instructions

Now that we have seen how plans for basic instructions can be obtained, we can describe how warning
instructions can be derived.

In order to generate warning instructions, the system must be able to derive plans, using the
available actions and fluents, in which the user can become harmed. There are many ways in which
this can happen: by burning, electric shock, laceration, crushing, etc. We shall concentrate on
examining the conditions under which burns to the user can occur.

We can derive a plan in which the user gets burned by setting the goal G to be this:

G = burned (13)



Our system derives this plan to achieve G:

do([insert(bread slice, bread slot), press(on lever), raise temp(bread slot),

raise temp(bread slice), raise temp(bread slot),

touch(bread slot), get burned], S0) (14)

The penultimate action in this plan is the one which causes the agent to become burned, as can
be seen from axiom (7); the previous actions, such as the heating, make this possible. Hence, the
appropriate warning instruction should be something like this:

Do not touch the bread slot during the heating period. (15)

The system then needs to determine where this caution should be placed in the instructionsequence.
A solution would be to add the fluent burned to the goal, so that:

G = toasted(bread slice) ^ removed(bread slice, bread slot)^ burned (16)

Planning continues as normal, with the plan including the get burned action (which we shall call an
“injury action”). At the point in the sentence plan where the get burned action is encountered, a
negative imperative caution, such as sentence (15), will be generated. The goal of the agent being
burned should not be thought of as having been achieved: the get burned action merely denotes a
point where the potential for injury exists.

We can imagine processes in which there are many possible situations where the user can get hurt.
Since the potential for being burned may exist in more than one situation, once the get burned action
is planned for, the goal burned should not be discarded. Thus, after the basic plan is obtained, the plan
is examined for places in which the touch and get burned actions (together) could be inserted, i.e.,
places where the get burned action can be planned for using only user actions. This simply requires
checking all the places in the plan where these actions’ preconditions are satisfied.

However, because of our discrete representation of continuous processes, injury actions could be
inserted at many points in the representation. To avoid this, and have only one injury action (for each
injury type) for the representation of one process, we can group the discrete actions for that process
together into a collection. Thus, by having chosen to represent continuous processes discretely in order
to simply the planning logic, there is a tradeoff in that we must interpret the continuous processes later
by finding their collections. These collections are useful not only when planning for injuries, but, as
we shall see later, by ascribing a linguistic label to them (such as “the heating period”), they are also
useful later when the text for the instructions is realized. In our system, the stage that groups actions
into collections is called the interpretation stage.

3.3 Generating the instructions

We use the Penman system3 (Penman, 1989) to generate the instructions.

3In Penman, the sentence:

Insert the bread slice in the bread slot.

may be generated by using the following SPL (Sentence Plan Language) specification:



Action Role Filler
insert(x, y) ACTOR user

ACTEE x
DESTINATION y

remove(x, y) ACTOR user
ACTEE x
SOURCE y

press(x) ACTOR user
ACTEE x

touch(x) ACTOR user
ACTEE x

get burned ACTOR user
raise temp(x) ACTOR device

ACTEE x
pop up ACTOR device

Table 3: Roles of actions

Table 3 lists the actions possible in our system, together with the roles and arguments associated
with their arguments. For example, the action insert(bread slice, bread slot) describes an insert action
with the agent as the ACTOR, the bread slice as the ACTEE, and the bread slot as the DESTINATION.

The information gathered by the interpretation stage gives us the EXHAUSTIVE-DURATION role4

of the actions which take place during that period.
Table 4 shows the basic attributes and fillers of actions that are typically assumed by instructional

texts. Notice that polarity is positive by default. For the touch action, however, the polarity role will
be assigned a filler of “negative” when it is part of a sequence ending in an injury to the user; this is
because the touch action should not be performed by the agent under the circumstances.

As we have noted previously, instruction sequences describe mainly actions that are carried out by
the user of the device. So, we may assume that our system should generate instructions corresponding
to these user actions. However, there are situations in which it is appropriate to mention device actions.
Consider, for example, the following sentences:

((S1 / INSERT

:actor (HEARER / PERSON)

:actee (SLICE / BREAD-SLICE

:determiner THE)

:destination (SLOT / BREAD-SLOT

:determiner THE)

:tense PRESENT

:speechact IMPERATIVE))

This specification describes one particular inserting action called S1 that has the hearer (of the command) as its ACTOR
role filler, SLICE as its ACTEE role filler, and SLOT as its DESTINATION role filler, and that this information should be
presented as a command in the present tense.

4In Penman terminology, this means the time period during which an action, event, or process occurs.



Attribute Filler
TENSE present
SPEECHACT imperative
POLARITY positive

Table 4: Default attributes of actions in non-warning instructions

1. The bread slice will pop up.

2. Remove it from the bread slot.

The popping up action is mentioned in this case because it is salient, and indicates the completion of
the toasting process.

Note also that not every user action will be mentioned in the instructions. Consider the following
subsequence of instructions (for a breadmaker):

1. The “complete” light will flash when bread is done.

2. Remove baking pan from unit.

In between these two actions, the user of the device must open the lid. This is considered too “obvious”
to mention, possibly because something similar was mentioned elsewhere in the instructions. For
simplicity, our system mentions every user action.

3.4 A sample generated instruction sequence

After the role fillers of the actions have been determined using the types of the actions and their
arguments, the consequent SPL specification results in Penman generating the following natural
language instruction sequence:

Insert the bread slice into the toaster's bread slot.

Press the ON lever.

Do not touch the toaster's bread slot during the heating period.

The bread slice will pop up.

Take the bread slice out of the toaster's bread slot.

This is actual output from our system, which invokes a Prolog program to construct the SPL for
the instructions, then invokes Penman to generate the instructions from this SPL. (For details of the
program, see Ansari (1995).)

4 Future work and conclusions

In this paper, we have suggested that situations in which injuries to the user can occur need to be
planned for at every step in the planning of the normal operation of the device, and that these “injury



sub-plans” are used to instruct the user to avoid these situations. Systems such as Kosseim and
Lapalme’s (1994) and Wahlster et al.’s (1993) also include a task planning stage, but the types of
knowledge used for this planning are too superficial to be useful in generating warning instructions.
We also put forth the notion that actions are performed on the materials that the device operates upon,
that the states of these materials may change as a result of these actions, and that the goal of the system
should be defined in terms of the final states of the materials.

The most difficult problems are those of domain modelling: how topological, kinematic, electrical,
thermodynamic, and electronic models of any device can be obtained through the engineering effort
(including how component states should be identified), how these models can be used to automate
the construction of the axioms, and how the actions and fluents to be modelled can be determined.
Ansari (1995) discusses these problems in more depth, and justify the possibility of the axioms being
derived from the device models. An integrated approach to device design and instruction generation,
including possible integration with Vander Linden’s IMAGENE system (Vander Linden, 1993) is also
outlined.

The Device Modelling Environment (Iwasaki and Low, 1991) together with the Causal Functional
Representation Language (Iwasaki et al., 1993), which already solve some of the domain modelling
problems, may eventually be useful as an alternative to a situationcalculus or simple planning approach
for simulating injuries to the user of a device.

Sometimes we would like the system to infer the fillers of additional roles for a particular action.
For example, we might want the system to generate an explanation instruction, in other words, an
instruction containing both a matrix and a purpose clause (Di Eugenio, 1992). In our representation,
determining the range of the rhetorical relation RST-PURPOSE(i.e., the purpose clause) simply amounts
to following the chain of actions in the plan, beginning with the touch action, to the next injury action.
Determining the conditions under which a purpose clause should be generated is beyond the scope of
this work, however (but see Vander Linden (1993)). Our system generates only matrix clauses and
omits purpose clauses.

The situation calculus formalism that we have used does not have any explicit representation of
time. If we are to fully capture the temporal relationships between actions and address the time-related
features of instructional text identified by Vander Linden, we will need to use a formalism that allows
the representation of time explicitly, such as that of Pinto (1994).

We had a brief look at some situations in which certain actions should or should not be mentioned.
We propose that a study essentially similar to that of Vander Linden’s (1993) should be undertaken
to determine how the features of the environment and communicative context affect the inclusion of
actions in instructional text. The mapping of the features of the instructional register to the rhetorical
and grammatical structure of the instructions are also left for future work.
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Kosseim, Leila and Guy Lapalme. 1994. Content and rhetorical status selection in instructional texts.
In Proceedings of the Seventh International Workshop on Natural Language Generation, pages
53–60.

Moore, Johanna D. and Cécile L. Paris. 1989. Planning text for advisory dialogues. In Proceedings
of the 27th Annual Meeting of the Association for Computational Linguistics, pages 203–211.

Penman Natural Language Group. 1989. The Penman Documentation. University of Southern
California, Information Sciences Institute,

Pinto, Javier A. 1994. Temporal Reasoning in the Situation Calculus. Ph.D. thesis, University of
Toronto. Also available as Technical Report KRR-TR-94-1.

Reiter, Ehud, Chris Mellish, and John Levine. 1992. Automatic generation of on-line documentation
in the IDAS project. In Third Conference on Applied Natural Language Processing, Trento, pages
64–71.

Reiter, Ehud, Chris Mellish, and John Levine. 1995. Automatic generation of technical documentation.
Applied Artificial Intelligence, 9: 259–287.

Reiter, Raymond. 1991. The frame problem in the situation calculus: A simple solution (sometimes)
and a completeness result for goal regression. In Vladimir Lifschitz, editor, Artificial Intelligence
and Mathematical Theory of Computation: Papers in Honor of John McCarthy. Academic Press,
San Diego, CA, pages 359–380.

Vander Linden, Keith. 1993. Speaking of Actions: Choosing Rhetorical Status and Grammatical
Form in Instructional Text Generation. Ph.D. thesis, University of Colorado. Also available as
Technical Report CU-CS-654-93.
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