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Abstract

A surprising property of word vectors is that
vector algebra can often be used to solve word
analogies. However, it is unclear why — and
when — linear operators correspond to non-
linear embedding models such as skip-gram
with negative sampling (SGNS). We provide a
rigorous explanation of this phenomenon with-
out making the strong assumptions that past
theories have made about the vector space and
word distribution. Our theory has several im-
plications. Past work has conjectured that lin-
ear structures exist in vector spaces because re-
lations can be represented as ratios; we prove
that this holds for SGNS. We provide novel
justification for the addition of SGNS word
vectors by showing that it automatically down-
weights the more frequent word, as weighting
schemes do ad hoc. Lastly, we offer an in-
formation theoretic interpretation of Euclidean
distance in vector spaces, justifying its use in
capturing word dissimilarity.

1 Introduction

Distributed representations of words are a corner-
stone of current methods in natural language pro-
cessing. Word embeddings, also known as word
vectors, can be generated by a variety of models,
all of which share Firth’s philosophy (1957) that
the meaning of a word is defined by “the company
it keeps”. The simplest such models obtain word
vectors by constructing a low-rank approximation
of a matrix containing a co-occurrence statistic
(Landauer and Dumais, 1997; Rohde et al., 2006).
In contrast, neural network models (Bengio et al.,
2003; Mikolov et al., 2013b) learn word embed-
dings by trying to predict words using the contexts
they appear in, or vice-versa.

A surprising property of word vectors derived
via neural networks is that word analogies can of-
ten be solved with vector algebra. For example,

‘king is to ? as man is to woman’ can be solved
by finding the closest vector to ki;zg -+ worhan —
man, which should be guéen. Tt is unclear why
linear operators can effectively compose embed-
dings generated by non-linear models like skip-
gram with negative sampling (SGNS). There have
been two attempts to rigorously explain this phe-
nomenon, but both have made strong assumptions
about either the embedding space or the word dis-
tribution. The paraphrase model (Gittens et al.,
2017) hinges on words having a uniform distri-
bution rather than the typical Zipf’s distribution,
which the authors themselves acknowledge is un-
realistic. The latent variable model (Arora et al.,
2016) makes many a priori assumptions about the
word vectors, such as the assumption that word
vectors are generated by randomly scaling vectors
uniformly randomly sampled from the unit sphere.
In this paper, we explain why — and under what
conditions — word analogies in GloVe and SGNS
embedding spaces can be solved with vector alge-
bra, without making the strong assumptions past
work has. We begin by formalizing word analo-
gies as functions that transform one word vector
into another. When this transformation is sim-
ply the addition of a displacement vector — as
is the case when using vector algebra — we call
the analogy a linear analogy. Using the expres-
sion PMI(x,y) +log p(x,y), which we call the co-
occurrence shifted pointwise mutual information
(csPMI) of a word pair (x,y), we prove that in both
SGNS and GloVe spaces without reconstruction
error, a linear analogy holds over a set of ordered
word pairs iff csPMI(x,y) is the same for every
word pair and csPMI(x;,x;) = c¢sPMI(y;,y,) for
any two word pairs. By then framing vector ad-
dition as a kind of word analogy, we offer several
new insights into the compositionality of words:

1. Past work has often cited the Pennington et



al. (2014) conjecture as an inuitive explana-
tion of why vector algebra works for anal-
ogy solving. The conjecture is that an anal-
ogy of the form a is to b as x is to y holds
T p(wla)/p(wlb) ~ p(wlx)/p(wly) for ev-
ery other word w in the vocabulary. While
this is sensible, it is not based on any theoret-
ical derivation or empirical support. We pro-
vide a rigorous proof that this is indeed true.

2. Consider two words x,y and their sum 7 =
X+ in an SGNS embedding space with no
reconstruction error. If z were in the vo-
cabulary, the similarity between z and x (as
measured by the csPMI) would be the log
probability of y shifted by a model-specific
constant. This implies that the addition of
two words automatically down-weights the
more frequent word. Since many weight-
ing schemes are based on the idea that more
frequent words should be down-weighted ad
hoc (Arora et al., 2017), the fact that this is
done automatically provides novel justifica-
tion for using addition to compose words.

3. Consider any two words x,y in an SGNS em-
bedding space with no reconstruction error.
The squared Euclidean distance between X
and ¥y has a perfect negative correlation with
csPMI(x,y). In other words, the more similar
two words are (as measured by csPMI) the
smaller the distance between their vectors in
the embedding space. Although this is intu-
itive, it is also the first rigorous explanation
of why the Euclidean distance in embedding
space is a good proxy for word dissimilarity.

Although our main theorem only concerns embed-
ding spaces with no reconstruction error, we also
explain why, in practice, linear word analogies
hold in embedding spaces with some noise. We
conduct experiments that support the few assump-
tions we make and show that the transformations
represented by various word analogies correspond
to different csPMI values. Without making the
strong assumptions of past theories, we thus of-
fer a rigorous explanation of why, and when, word
analogies can be solved with vector algebra.

2 Related Work

PMI Pointwise mutual information (PMI) is
a common measure of word similarity. For

two words x,y, it captures how much more
frequently they co-occur than by chance:

PMI(x,y) = log[p(x,y)/(p(x)p(y))] (Church and
Hanks, 1990).

Word Embeddings Word embeddings are dis-
tributed representations of words in a low-
dimensional continuous space. Also called word
vectors, they capture semantic and grammatical
properties of words, even allowing relationships to
be expressed algebraically (Mikolov et al., 2013Db).
Word vectors are generally obtained in two ways:
(a) from neural networks that learn representations
by predicting co-occurrence patterns in the train-
ing corpus (Bengio et al., 2003; Mikolov et al.,
2013b; Collobert and Weston, 2008); (b) from
low-rank approximations of word-context matri-
ces containing a co-occurrence statistic (Landauer
and Dumais, 1997; Levy and Goldberg, 2014).

SGNS The objective of skip-gram with nega-
tive sampling (SGNS) is to maximize the proba-
bility of observed word-context pairs and to mini-
mize the probability of k randomly sampled nega-
tive examples. For an observed word-context pair
(w,c), the objective would be logo(w-¢) + k-
Ey.p, [log(—w- )], where ¢’ is the negative con-
text, randomly sampled from a scaled distribution
P,. Words that appear in similar contexts will
therefore have similar embeddings. Though no
co-occurrence statistics are explicitly calculated,
Levy and Goldberg (2014) proved that SGNS is
in fact implicitly factorizing a word-context PMI
matrix shifted by —logk.

Latent Variable Model The latent variable
model (Arora et al., 2016) was the first attempt
to rigorously explain why word analogies can be
solved algebraically. It is a generative model that
assumes that word vectors are generated by the
random walk of a “discourse” vector on the unit
sphere. Gitten et al.’s (2017) criticism of this proof
is that it assumes that word vectors are known
a priori and are generated by randomly scaling
vectors uniformly sampled from the unit sphere
(or having properties consistent with this sampling
procedure). The proof also relies on a conjecture
by Pennington et al. (2014) that linear relations
can be expressed as a ratio of probabilities.

Paraphrase Model The paraphrase model (Git-
tens et al., 2017) was the only other attempt to rig-
orously explain why word analogies can be solved



algebraically. It proposes that any set of context
words C = {cy,...,cnn} is semantically equivalent
to a single word ¢ if p(w|cy,...,cm) = p(w|c). One
problem with this is that the number of possible
context sets far exceeds the vocabulary size, pre-
cluding a one-to-one mapping; the authors cir-
cumvent this problem by replacing exact equal-
ity with the minimization of KL divergence. As-
suming that the words have a uniform distribu-
tion, the paraphrase of C can then be written as
an unweighted sum of its word vectors. However,
this uniformity assumption is unrealistic — word
frequencies obey a Zipf’s distribution, which is
Pareto (Piantadosi, 2014).

3 The Structure of Word Analogies

3.1 Formalizing Analogies

A word analogy is a statement of the form “a is to
b as x is to y”, which we will write as (a,b)::(x,y).
It asserts that a and x can be transformed in the
same way to get b and y respectively, and that b
and y can be inversely transformed to get a and x.
A word analogy can hold over an arbitrary num-
ber of ordered pairs: e.g., “Berlin is to Germany
as Paris is to France as Ottawa is to Canada ...”.
The elements in each pair are not necessarily in
the same space — for example, the transformation
for (king,roi)::(queen,reine) is English-to-French
translation. For (king,queen)::(man,woman), the
canonical analogy in the literature, the transforma-
tion corresponds to changing the gender. There-
fore, to formalize the definition of an analogy, we
will refer to it as a transformation.

Definition 1 An analogy f is an invertible trans-
Sformation that holds over a set of ordered pairs S
WY (x,y) €S, f(x) =y AfH(y) =x.

The word embedding literature (Mikolov et al.,
2013b; Pennington et al., 2014) has focused on
a very specific type of transformation, the ad-
dition of a displacement vector. For example,
for (king,queen)::(man,woman), the transforma-
tion would be king + (woian — nitin) = quéen,
where the displacement vector is expressed as the
difference (woinan — nian). To make a distinction
with our general class of analogies in Definition 1,
we will refer to these as linear analogies.

Definition 2 A linear analogy f is an invertible
transformation of the form X — X+7. f holds over
a set of ordered pairs S iff V (x,y) € S,X+7=}.

Co-occurrence Shifted PMI Theorem Ler W
be an SGNS or GloVe word embedding space with
no reconstruction error and S be a set of or-
dered word pairs such that ¥V (x,y) € S,X,y € W.
A linear analogy f holds over S iff 3 v € R,
Y(x,y) € S,PMI(x,y) +log p(x,y) = y and for any
(x1,¥1), (x2,y2) € S, PMI(x1,x2) +1og p(x1,x2) =
PMI(y1,y2) +1og p(y1,y2).

Throughout the rest of this paper, we will re-
fer to PMI(x,y) + log p(x,y) as the co-occurrence
shifted PMI (csPMI) of x and y. In sections 3.2 to
3.4, we prove the csPMI Theorem. In section 3.5,
we explain why, in practice, perfect reconstruc-
tion is not needed to solve word analogies using
vector algebra. In section 4, we explore what the
c¢sPMI Theorem implies about vector addition and
Euclidean distance in SGNS embedding spaces.

3.2 Analogies as Parallelograms

Lemma 1 Where (-,-) denotes the inner prod-
uct, a linear analogy f holds over a set of ordered
word pairs S iff 3y € R,V (x,y) € S,2(X,¥) —
IER-IF2= ¥ and 2(50,5) — |52 |5l2=
2(71,2) — 93— 1923 for any (x1,y1), (x2,¥2) €
S.

When S is empty, Lemma 1 is vacuously true.
For the remaining cases, let y' = 2(¥,y1) —
%1 3— (513 When S = {(x1,y1)}, Lemma 1
holds. When |S|> 2, consider the |S|—1 subsets
of the form {(x1,y1),(x2,y2)} C S. f holds over
every subset {(x1,y1), (x2,y2)} iff it holds over S.
We start by noting that by Definition 2, f holds

over {(x1,y1), (x2,y2)} iff:
YN+7F=YiANH+7F=) (1)

By rearranging (1), we know that X, — y, = X; — ¥
andXo — X1 = )72 —yl . Put another way, x1,y1,Xx2,y2
form a quadrilateral in vector space whose oppo-
site sides are parallel and equal in length. By def-
inition, this quadrilateral is then a parallelogram.
In fact, this is often how word analogies are visu-
alized in the literature (see Figure 1).

To prove the first part of Lemma 1, we let /' =
—||7#/13. A quadrilateral is a parallelogram iff each
pair of opposite sides is equal in length. For every
possible subset, 7 = (y; —x1) = (y» — x2). This
implies that V(x,y) € S,

Y =-IF-FE=2E5 - IRE-IFE @

However, this condition is only necessary and not
sufficient for the parallelogram to hold. The other
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Figure 1: The parallelogram structure of the linear
analogy (king,queen)::(man,woman). A linear analogy
transforms the first element in an ordered word pair by
adding a displacement vector to it. Arrows indicate the
directions of the semantic relations.

pair of opposite sides, which do not correspond
to 7, are equal in length iff —||x] — 3= — |1 —
%3 = 2(0,%) - [4l3-2l3=2(1,5) -
71 113=72]|3, as stated in Lemma 1. Note that the
sides that do not equal 7 do not necessarily have a
fixed length across different subsets of S.

3.3 Analogies in the Context Space

Definition 3 Let W be an SGNS or GloVe word
embedding space and C its corresponding context
space. Let k denote the number of negative sam-
ples, X,y the frequency, and by, by, the learned bi-
ases for GloVe. If there is no reconstruction error,
for any words x,y with X,y € W and x,,y. € C:

¥.) = PMI(x,) — logk
. 3)

SGNS: (X,
X,Ve) =logXyy — by — b,

GloVe: (X,

SGNS and GloVe generate two vectors for each
word in the vocabulary: a context vector, for when
it is a context word, and a word vector, for when it
is a target word. Context vectors are generally dis-
carded after training. The SGNS identity in (3) is
from Levy and Goldberg (2014), who showed that
SGNS is implicitly factorizing the k-shifted word-
context PMI matrix. The GloVe identity is sim-
ply the local objective for a word pair (Pennington
et al., 2014). Since the matrix being factorized in
both models is symmetric, (¥, y.) = (X.,¥).
Lemma 2 A linear analogy f : X — X+7 holds
over a set of ordered pairs S in an SGNS or GloVe
word embedding space W with no reconstruction
erroriff 3L € R, g : X, — X, + A¥ holds over S in
the corresponding context space C.

In other words, an analogy f that holds over S'in
the word space has a corresponding analogy g that
holds over § in the context space. The displace-
ment vector of g is simply the displacement vector

of f scaled by some A € R. To prove this, we be-
gin with (1) and any word w in the vocabulary:

¥ =y =X =i
= (We, (B —y2) — (¥1 —¥1)) =0
= (W, (B2 —¥2c) — (Fie — Vi) =0
= X2 = V2 =Xl — Ve

C))

Note that we can rewrite the second equation as
the third because the matrices being factorized in
(3) are symmetric and there is no reconstruction
error. We can simplify from the second-last step
because not all word vectors lie in the same pla_pe
in W, implying that (f2c _}72c) B (flc _)710) =0.

Thus a linear analogy with displacement vec-
tor (y3 —x1) holds over S in the word embed-
ding space iff an analogy with displacement vector
(¥1. — *1.) holds over S in the context space. This
is supported by empirical findings that word and
context spaces perform equally well on word anal-
ogy tasks (Pennington et al., 2014). Since there
is an analogous parallelogram structure formed by
X1,Y1,X2,y2 in the context space, there is some
linear map from w — w, for each word w € S.
The real matrix A describing this linear map is
symmetric: (¥,y,) =¥/ Ay = (AT%)Ty = (%, ) for
any (x,y) € S. This implies that C = AW, since
(W, x.) = (W,,X) for any word w.

Since A is a real symmetric matrix, by the fi-
nite-dimensional spectral theorem, there is an or-
thonormal basis of W consisting of eigenvectors
of A. If A had distinct eigenvalues, opposite sides
of the parallelogram formed by x1,y1,x2,y> in the
word space could be stretched by different factors.
This would imply that the quadrilateral formed by
X1,Y1,X2,y2 in the context space is not a parallel-
ogram, which is a contradiction. Therefore A can
only have non-distinct eigenvalues. Because A’s
eigenvectors are a basis for W and all have the
same eigenvalue A, all word vectors lie in the same
eigenspace (i.e., C = AW). Experiments done by
Minmo and Thompson (2017) provide empirical
support of this result.

3.4 Proof of the csPMI Theorem

From Lemma 1, we know that if a linear analogy
f holds over a set of ordered pairs S, then 3 7' €
R,V (x.y) € 8,2 (%.5) — [ |3~ 51[3= 7. Because
there is no reconstruction error, by Lemma 2, we
can rewrite the inner product of two word vectors
in terms of the inner product of a word and con-
text vector. Then we can simplify using the SGNS



identity in (3):

Y =2(&5) — 1%]5- 11513
=1/A((*,ye — Xe) + (¥, % = Ve))
Ay" =(PMI(x,y) —logk) — (—log p(x) — logk)
+ (PMI(x,y) —logk) — (—log p(y) —logk)
=PMI(x,y) +log p(x,y)
(5)

We get the same result by expanding the GloVe
identity in (3), regardless of what the learned bi-
ases by,b, are. The second identity in Lemma
1 can be expanded in the same way, implying
that a linear analogy f holds over a set of or-
dered pairs S iff (5) holds for every pair (x,y) €
S and PMI(x1,x2) + log p(x1,x2) = PMI(y1,y2) +
log p(y1,y2) for any two pairs (x1,y1), (x2,y2) € S.

3.5 Robustness to Noise

The csPMI Theorem does not explain why, in
practice, linear word analogies hold in embedding
spaces that have some reconstruction error. There
are two reasons for this: the looser definition of
vector equality in practice and the lower variance
in reconstruction error associated with more fre-
quent word pairs. For one, in practice, a word
analogy task a:?::x:y is solved by finding the most
similar vector to d + (¥ — X), where dissimilarity
is defined in terms of Euclidean or cosine dis-
tance. The correct solution to a word analogy can
be found even when that solution is not exact.

The second reason is that the variance of the
noise & for a word pair (x,y) (ie., (X,y.) —
(PMI(x,y) —logk)) is a strictly decreasing func-
tion of the frequency X, ,: more frequent word
pairs are associated with less reconstruction error
in both SGNS and GloVe. This is because the cost
of deviating from the optimal value is higher for
more frequent word pairs; this is implicit in the
SGNS objective (Levy and Goldberg, 2014) and
explicit in the GloVe objective (Pennington et al.,
2014). We also show empirically that this is true in
Section 5. Assuming &, ~ N (0,h(Xy,)), where
0 is the Dirac delta distribution:

lim h(X.,) =0= lim N(0,h(X,,)) =8

Xyy—roo Xey—roo

= lim &,=0
Xy y—roo

(6)

As the frequency of a word pair increases, the
probability that the noise is negligible increases;

when the frequency is infinitely large, the noise is
sampled from the Dirac delta distribution and is
therefore 0. Even without the assumption of zero
reconstruction error, an analogy that satisfies the
identity in the csPMI Theorem will hold over a
set of ordered pairs in practice as long as the fre-
quency of each pair is sufficiently large.

A possible benefit of 4 mapping lower frequen-
cies to larger variances is that it reduces the prob-
ability that a linear analogy f will hold over rare
word pairs. One way of interpreting this is that
h essentially filters out the word pairs for which
there is insufficient evidence, even if the identities
in the csPMI Theorem are satisfied. This would
explain why reducing the dimensionality of word
vectors — up to a point — actually improves per-
formance on word analogy tasks (Yin and Shen,
2018). Representations with the optimal dimen-
sionality have enough noise to preclude spurious
analogies that satisfy the csPMI Theorem, but not
so much noise that non-spurious analogies (e.g.,
(king,queen)::(man,woman)) are also precluded.

4 Vector Addition as a Word Analogy

4.1 Formalizing Addition

Corollary 1 Let 7 =X+ be the sum of words
x,y in an SGNS word embedding space W with
no reconstruction error. If 7z were a word in the
vocabulary, where 6 is a model-specific constant,
PMI(x,z) +log p(x,z) =log p(y) + 0.

To frame the addition of two words x,y as an
analogy, we need to define a set of ordered pairs
S such that a linear analogy holds over S iff X +
¥ = Z. To this end, consider the set {(x,z),(0,y)},
where z is a placeholder for the composition of x
and y and the null word @ maps to 0 for a given
embedding space. From Definition 2:

(F+7=2)A0+7=3)
— =50 @)
= Z

Even though 0 is not in the vocabulary, we can
map it to O because its presence does not affect
any other word vector. To understand why, con-
sider the k-shifted word-context PMI matrix M
that does not have @, and the matrix M’ that does,
of which M is a submatrix. Where W and C are
the word and context matrices, WCT = M +<—

[W 0][C 0]" = M’. Even if the null word does not
exist for a given corpus, the embeddings we would



get by training on a corpus that did have the null
word would otherwise be identical.

An inner product with the zero vector is always
0, so we can infer from the SGNS identity in (3)
that PMI(0, -) —logk = 0 for every word in the vo-
cabulary. From the csPMI Theorem, we know that
if a linear analogy holds over {(x,z),(0,y)}, then:

PMI(x,z) +log p(x,2)
=2 PMI(0,y) +log p(y) +log p(0)

=logp(y) +6
where 8 = logk* + log p(0)

®)

Thus the csPMI of the sum and one word is equal
to the log probability of the other word shifted by
a model-specific constant. In embedding spaces
with some reconstruction error, there are also two
noise terms &, .,&p, to consider. However, if
we assume, as in 3.5, that the noise has a zero-
centered Gaussian distribution, then E[PMI(x,z) 4+
log p(x,z)] = E[log p(y) + &]. Even without the as-
sumption of zero reconstruction error, on average,
the csPMI of the sum and one word is equal to the
log probability of the other word shifted by a con-
stant. We cannot repeat this derivation with GloVe
because it is unclear what the optimal values of the
biases would be, even with perfect reconstruction.

4.2 Automatically Weighting Words

Corollary 2  In an SGNS word embedding space,
on average, the sum of two words has more in com-
mon with the rarer word, where commonality is
measured by the csPMI.

For two words x,y, assume without loss of gen-
erality that p(x) > p(y). By (8):

p(x) > p(y) <= logp(x)+ 6 >logp(y)+6
<= csPMI(z,y) > csPMI(z,x)
)

Therefore addition automatically down-weights
the more frequent word. For example, if the vec-
tors for x = ‘the’ and y = ‘apple’ were added to
create a vector for z = ‘the apple’, we would ex-
pect csPMI( ‘the apple’, ‘apple’) > csPMI( ‘the ap-
ple’, ‘the’); being a stopword, ‘the’ would on av-
erage be heavily down-weighted. Even with re-
construction error, if we assume that the noise
follows a zero-centered Gaussian distribution, (9)
holds true on average. While the rarer word is
not always the more informative one, weighting

schemes like inverse document frequency (IDF)
(Robertson, 2004) and unsupervised smoothed in-
verse frequency (uSIF) (Ethayarajh, 2018) are all
based on the principle that more frequent words
should be down-weighted because they are typi-
cally less informative. The fact that addition au-
tomatically down-weights the more frequent word
thus provides novel justification for using addition
to compose words.

4.3 Interpreting Euclidean Distance

Corollary 3 In an SGNS word embedding space
with no reconstruction error, 3A € RY and a
model-specific constant 8' such that for any two
words x,y, A||% —||*= —csPMI(x,y) + &'

We derive this corollary by framing the differ-
ence between two words x,y as a word analogy.
Where z is a placeholder for X — ¥ and 0 is the
null word defined in section 4.1, a linear analogy
holds over the set {(x,y),(z,0)} iff ¥ —y =Z. Us-
ing the SGNS identity in (3), Lemma 2, and the
result from (8):

1% 51> = (&=, 1/A (% = 5)
=1/A )
A% =] = —logp(z) —logk
= — [PMI(x,y) +log p(x,y)] + &’
where &' = logk +log p(0)
(10)

Thus in an SGNS embedding space with no re-
construction error, the squared Euclidean distance
between two word vectors is simply a linear func-
tion of the negative csPMI. Since csPMI(x,y) €
(—e0,0] and ||¥ — ¥||* is non-negative, A must be
positive. This identity is intuitive: the more sim-
ilar two words are (as measured by csPMI), the
smaller the distance between their vectors. In sec-
tion 5, we provide empirical evidence of this.

4.4 Are Relations Ratios?

Pennington et al. (2014) conjectured that linear re-
lationships in the embedding space — which we
call displacements — correspond to ratios of the
form p(wlx)/p(w|y), where (x,y) is a pair of
words such that y — X is the displacement and w
is any other word in the vocabulary. This claim
has since been repeated in other work (Arora et al.,
2016). For example, according to this conjecture,
the analogy (king,queen)::(man,woman) holds iff



for every word w in the vocabulary

p(wlking) p(w|man)

p(wlqueen)

However, as noted earlier, this idea was neither de-
rived from empirical results nor rigorous theory,
and there has been no work to suggest that it would
hold for models other than GloVe, which was de-
signed around it. We now prove this conjecture for
SGNS using the csPMI Theorem.

(11)

= p(wlwoman)

Pennington et al. Conjecture Let S be a set of
ordered pairs (x,y) with vectors in an SGNS word
embedding space with zero reconstruction error. A
linear analogy holds over S iff V (x1,y1), (x2,y2) €
S,p(wlx1)/p(wly1) = p(wlx2)/p(wly2) for every
word w in the vocabulary.

As with the corollaries, we prove this by re-
framing it as an analogy. A linear analogy holds
over S iff for any word w in the vocabulary, a lin-
ear analogy holds over S,, = {(w, 7y ,) | (x,y) €S},
where r, , is the relation defined by the word pair
(x,y). In S, x is transformed into y in each word
pair; in S,,, w is transformed into the null word 0
and then into the relation r , which can be com-
posed into a single linear transformation. From
Lemma 1, we know that a linear analogy holds
over S,, iff for any (x1,y1), (x2,y2) € S:

— = — — 112 = = 112
2(w,x1 —y1) — W]y = % —»2lls =

— — — 2 = hnd 2

2(w,x2 —y2) — W2 — [l©2 = 2[5

(12)

St

Using Lemma 2 and the SGNS identity (3), we can
write this in terms of the conditional probability:
<wa~fl> - <VT/,)71> = <‘/_‘;7~f2> - <W,)7é>
<= PMI(w,x1) — PMI(w,y;) =

PMI(w,x;) — PMI(w, y,) (13)
p(wix) _ p(wlxz)
pwlyr) — p(wly2)

We do not need to consider the other iden-
tity in Lemma 1, since 2 (w,w) — ||w|j3—||w|j3=
0. Thus an analogy holds over §,, for any w
iff p(wx1)/p(wly1) = p(wlxz) /p(wly2) for any
(x1,¥1), (x2,y2) € S. Since a linear analogy holds
over S,, iff it holds over S, the Pennington et al.
Conjecture is true.

5 Experiments

Measuring Noise We uniformly sample word
pairs in Wikipedia and estimate the noise (i.e.,

(¥,y.) — [PMI(x,y) — logk]) using SGNS vectors
trained on the same corpus. As seen in Figure
2, the noise has an approximately zero-centered
Gaussian distribution and the variance of the noise
is lower at higher frequencies, supporting our as-
sumptions in section 3.4. As previously men-
tioned, this is one reason why linear word analo-
gies are robust to noise — the amount of noise is
simply negligible at high frequencies.
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Figure 2: The noise distribution for an SGNS embed-
ding model (i.e., (X, y.) — [PMI(x,y) — logk]) at various
frequencies. The noise is normally distributed and the
variance decreases as the frequency increases.
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Figure 3: The negative csPMI for two words against the
squared Euclidean distance between their SGNS word
vectors. There is a positive correlation (Pearson’s r =
0.437); the more similar two words are, the smaller the
Euclidean distance between their vectors.

Estimating csPMI According to the csPMI
Theorem, if an analogy holds over a set of word
pairs, then each pair (x,y) has the same csPMI
value. In Table 1, we provide the mean csPMI val-
ues for various analogies in Mikolov et al. (2013a)
over the set of word pairs for which they should



Analogy Mean csPMI ~ Mean PMI  Median Word Pair Frequency =~ csPMI Variance  Accuracy
capital-world —9.294 6.103 980.0 0.704 0.965
capital-common-countries —9.818 4.339 3436.5 0.587 0.998
city-in-state —10.127 4.003 4483.0 1.726 0.802
gram6-nationality-adjective —10.691 3.733 3147.0 1.285 0.977
family —11.163 4.111 1855.0 1.702 0.847
gram§-plural —11.787 4.208 342.5 0.768 0.946
gram5-present-participle —14.530 2.416 334.0 1.723 0.769
gram9-plural-verbs —14.688 2.409 180.0 1.463 0.786
gram7-past-tense —14.840 1.006 444.0 1.011 0.747
gram3-comparative —15.111 1.894 194.5 1.077 0.923
gram2-opposite —15.630 2.897 49.0 1.733 0.723
gram4-superlative —15.632 2.015 100.5 1.641 0.793
currency —15.900 3.025 19.0 2.002 0.275
gram]-adjective-to-adverb —17.497 1.113 46.0 1.411 0.763

Table 1: The mean csPMI values for analogies in Mikolov et al. (2013a) over the list of word pairs for which
they should hold (e.g., (Paris, France), (Berlin, Germany) for capital-world). As implied by the csPMI Theorem,
similar analogies have a similar mean csPMI and algebraic solutions are less accurate at higher csPMI variances.

hold (e.g., (Paris, France), (Berlin, Germany) and
others for capital-world). We also provide the ac-
curacy of the vector algebraic solutions for each
analogy, found by minimizing cosine distance on
a restricted set of vocabulary, namely all the words
in the analogy task.

As expected, when solutions to word analogies
are more accurate, the analogies have lower csPMI
variances. This is because an analogy is more
likely to hold over a set of word pairs when the
displacement vectors are the same, and thus when
the csPMI values are the same. Similar analo-
gies (e.g., capital-world and capital-common-
countries) also have similar mean csPMI values
— our theory implies this, since similar analogies
have similar displacement vectors. As the csPMI
increases, the type of analogy gradually changes
from geography (capital-world, city-in-state) to
verb tense (gram5-present-participle, gram7-past-
tense) to adjectives (gram4-comparative, gram4-
superlative). We do not witness the same grada-
tion with the mean PMI, implying that the trans-
formation represented by an analogy corresponds
to csPMI but not PML

Euclidean Distance Because the sum of two
word vectors is not in the vocabulary, we can-
not calculate co-occurrence statistics involving the
sum, precluding us from testing Corollaries 1 and
2. We test Corollary 3 by uniformly sampling
word pairs and plotting, in Figure 3, the negative
csPMI against the squared Euclidean distance be-
tween the SGNS word vectors. As we would ex-
pect, there is a moderately strong and positive cor-
relation (Pearson’s r = 0.437): the more similar
two words are (as measured by csPMI) the smaller

the Euclidean distance between their vectors.

Unsolvability The csPMI Theorem reveals two
reasons why a linear analogy may be unsolvable
in a given space: polysemy and corpus bias. Con-
sider senses {xi,...,xy} of a polysemous word
x. Assuming perfect reconstruction, a linear anal-
ogy f whose displacement has csPMI y does not
hold over (x,y) if ¥ # PMI(x,y) + log p(x,y) =
log [p(x1y) + ...+ p(xm|y)] p(ylx). ~ While only
one sense may be relevant, the Theorem applies
over all the senses. Even if (a,b)::(x,y) makes
intuitive sense, there is also no guarantee that
csPMI(a,b) ~ csPMI(x,y) for a given corpus. The
less frequent a word pair is, the more pronounced
the issue: even small changes in frequency can
have a large impact on the csPMI. This is why the
accuracy for the currency analogy is so low (see
Table 1) — currencies and their country co-occur in
Wikipedia with a median frequency of only 19.

6 Conclusion

In this paper, we rigorously explained why word
analogies can be solved using vector algebra.
Specifically, we proved that an analogy holds in an
SGNS or GloVe embedding space with no recon-
struction error iff the co-occurrence shifted PMI is
the same for every word pair and across any two
word pairs. This had three implications. First, we
provided a rigorous proof of the Pennington et al.
(2014) conjecture, the intuitive explanation of this
phenomenon. Second, we provided novel justifi-
cation for the addition of word vectors by show-
ing that it automatically down-weights the more
frequent word, as weighting schemes do ad hoc.
Third, we provided the first rigorous explanation



of why the Euclidean distance between word vec-
tors is a good proxy for word dissimilarity. Most
importantly, our theory does not make the unre-
alistic assumptions of past theories, making it a
much more tenable explanation.
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