
Semantic Knowledge in Word Completion

Jianhua Li
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada M5S 3G4

janeli@cs.toronto.edu

Graeme Hirst
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada M5S 3G4

gh@cs.toronto.edu

ABSTRACT
We propose an integrated approach to interactive word-completion
for users with linguistic disabilities in which semantic knowledge
combines withn-gram probabilities to predict semantically more-
appropriate words thann-gram methods alone. First, semantic rel-
atives are found for English words, specifically for nouns, and they
form the semantic knowledge base. The selection process for these
semantically related words is first to rank the pointwise mutual in-
formation of co-occurring words in a large corpus and then to iden-
tify the semantic relatedness of these words by a Lesk-like filter.
Then, the semantic knowledge is used to measure the semantic as-
sociation of completion candidates with the context. Those that are
semantically appropriate to the context are promoted to the top po-
sitions in prediction lists due to their high association with context.
Experimental results show a performance improvement when using
the integrated model for the completion of nouns.

Categories and Subject Descriptors
H.5.2 [User interfaces]: Natural language

General Terms
Algorithms, human factors, languages, theory

Keywords
Word completion, linguistic semantics, pointwise mutual informa-
tion.

1. INTRODUCTION
Word completion, sometimes also known asword prediction, is

the task of guessing, as accurately as possible, the word that a
user is in the process of typing. After the user has typed one or
more characters (aprefix string), a short list of likely words be-
ginning with those characters is displayed—aprediction list; if
the intended word is shown, the user may select it with a single
keystroke or mouse-click, thereby saving a few keystrokes (see Fig-
ure 1). Otherwise, the user continues to type characters until the
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desired word is predicted or the word has been completely typed.
This method has been widely applied to assist physically disabled
users for whom every keystroke is an effort, and also as an aid to
those with learning or other cognitive disabilities for whom such
cues may be helpful. Many commercial word completion software
packages, such as CoWriter [2] and WordQ [26], are available. Re-
cently, word-prediction techniques have been extended to resolve
ambiguous text input on mobile phone numeric keypads, as in the
T9 system [23], and other small keyboards [13].

The challenge in word completion is making the quality of the
prediction list as high as possible and excluding implausible or un-
grammatical words (such asuncoveranduncle in Figure 1). The
software must therefore discriminate among the large number of
candidates for most prefix strings in order to choose a short list of
likely words for display. The extreme situation is when the user
enters the first character; thousands of words starting with that
character are all candidates at that point. Currently, most word-
completion systems employ statistical models such as wordn-gram
models to predict intended words [4–6, 8]. But while these mod-
els capture the co-occurrences of neighbouring words, they are
weak in capturing long-distance co-occurrence relations between
words. Various systems have attempted to use syntactic informa-
tion to improve the predictions [4, 11, 17, 18]. For example, Fazly
and Hirst [4] added part-of-speechn-gram information to the tradi-
tional wordn-gram model. Their experiments showed that this im-
proved prediction accuracy and saved users’ keystrokes, but only by
a small amount. (See [4] for a brief review of earlier uses of parts
of speech and syntactic structure.) Taking into account the limi-
tations of statistical strategies in ungrammatical situations, Wood
and Lewis [25] employed a parsing algorithm, Windmill, for word
prediction. They assumed that if statistical strategies can discrimi-
nate a list of grammatically correct words derived from a syntactic
parser at the current point of a sentence, then the prediction out-
puts will meet the user’s needs. They used an augmented Phrase-
Structure Rule (PSR) grammar. At each point of constructing a
sentence, all potential syntactic constituents are considered and ex-
panded by grammar rules. The words fitting the current syntactic
categories are sent to the statistical prediction model, which pro-
duces a list of prediction outputs. During the prediction, the sen-
tence is parsed and expanded from left to right.

On the other hand, human language processing also involves se-
mantics. When reading through a text, intuitively people may pre-
dict upcoming words by the concepts that have already occurred
in the article, no matter how far back the concepts are located
[3,9,10,14]. For example, one might predictpatientif hospitalhas
occurred before. The challenge for integrating semantic informa-
tion into word completion is semantic ambiguity. During the pre-
diction process, a large number of candidates may associate with



Figure 1: An example of a prediction list in the use of the word
completion software WordQ [26].

the previous context in a certain way by a certain sense. Therefore,
only models that have a strong disambiguation ability can take ad-
vantage of semantics for the completion task; otherwise, semantic
information will just be noise that is unhelpful or even deleterious
to the process.

Our goal is to take advantage of semantic information in the word
completion model. An intuitive way is to measure the semantic
association of a prediction candidate with the preceding context
and choose the candidates with the strongest association for the
prediction list. The method presented in this paper is based on this
intuition.

2. CONTRASTING WORK
Our word completion task contrasts with the task of “word pre-

diction” in automatic speech recognition (ASR). In ASR, an acous-
tic model produces a sequence of words or subwords according to
spectral features of sound signals. However, deficits of the model
and noisy signals tend to let the model make errors. In order to im-
prove the recognition performance, language models are employed
to collaborate with the acoustic model to determine the word se-
quence for output [12]. There are no human interactions during
the whole recognition process. In contrast, in our word completion
task the user is, in effect, an oracle who has the authority to de-
cide whether or not a prediction process terminates. If the intended
word is in the current prediction list, the user terminates the cur-
rent prediction by selecting that word from the list and starts the
prediction of the next word.

Also different from the word completion we are doing, the so-
called “word prediction” task described by Even-Zohar and Roth
[3] is to determine a missing word in the context of the text both
beforeand after the observed position; thus it is not a model of
interactive word completion. Moreover, a confusion set containing
only two candidates — rather than hundreds or thousands like ours
— is used to choose the most likely candidate.

3. INTEGRATING SEMANTICS INTO AN
N-GRAM-BASED PREDICTION MODEL

While n-gram models can work well with function words, as
shown by Fazly and Hirst [4], they are weak in predicting con-
tent words that are in function-word–content-word combinations,
whereas semantic information can be stronger. Therefore we pro-
pose an integrated prediction model in which semantic information
is integrated with ann-gram model. The two models work as two
experts. The final prediction is given by the combination of the
two models. Specifically, the predictions of then-gram model are
filtered and re-arranged by the semantic model. For those that can
be determined by then-gram model as function words, their se-
mantic association with the context is simply regarded as zero and
the semantic model is not imposed on them. This separation step
helps avoid semantic disturbance on those function words that are
favored by then-gram model.

Figure 2 sketches this framework, which subsequent sections
will present in more detail. There are two knowledge bases: then-
gram knowledge base and the semantic knowledge base. Fazly and
Hirst [4] built up then-gram knowledge base and implemented the
n-gram model. This paper builds up the semantic knowledge base
and implements the semantic model. Semanticallyrelated words
and their pointwise mutual information (PMI) are extracted from
a large corpus, the British National Corpus World Edition (BNC).
Our method of measuring the semantic association of a prediction
candidate with the context is based on these related words.

We also propose an algorithm that automatically determines the
salient termsof a text during the prediction process and uses these
terms to measure semantic association for a candidate whenever
the candidates find no related words in the context. In addition,
the prediction of out-of-vocabulary items — largely named entities
— is a problem forn-gram models. We employ a “named-entity
recorder” to help the prediction of named entities.

4. AN INTEGRATED PREDICTION MODEL
As stated above, our model combines the semantic model with

then-gram model. The final prediction outputs are determined by
the following formula:

ŵ = argmaxw(logPngram(w)+ log(1+λ×SA(w,CN))), (1)

whereŵ is one of the most likely prediction outputs according to
the formula (we actually take not a single argmax but theT highest-
scoring arguments for a prediction list of sizeT); the current con-
text CN is a word sequence such as. . . ,wi−3,wi−2,wi−1 that the
user has already entered in a sentence;Pngram(w) is w’s prediction
likelihood in then-gram model;SA(w,CN) is the semantic associ-
ation ofw with the contextCN; andλ is a parameter used to adjust
the weight of semantic association, which has to be determined by
experiments on training data. The results to be presented in the
later sections were obtained withλ = 105. If w has no semantic
relation with current contextCN, thenSA is 0, and the integrated
prediction model is determined by then-gram model alone; other-
wise, then-gram information will be used together with semantic
association to determine a list of prediction outputs for the intended
word. In the algorithm, the prediction candidates for the semantic
model come from the output of then-gram model.

Figure 3 presents the prediction algorithm of the integrated
model. The variableT in Step 4 is commonly set to 5 or 10. The
algorithm covers a single prediction cycle. If the user does not find
that the intended word is in the prediction list and instead types a
new character, a new cycle begins with the set of candidates re-
duced accordingly.
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Figure 2: Overview of the integrated word prediction system.

1. The user has entered a prefix string at the current position,
say‘sc’ for the wordschool.

2. Then-gram model creates a list of prediction candidates for
the prefix string.

3. For each candidatew from step 2, compute logPngram(w)+
log(1+λ×SA(w,CN)).

4. Sort the results by score and output the topT candidates to
the user.

5. The user decides whether or not the intended word is in the
prediction list.

Figure 3: Prediction algorithm in the integrated model.

5. SEMANTIC ASSOCIATION WITH A
CONTEXT

Recently, researchers have employed measures of word related-
ness in applications such as word sense disambiguation [1, 20].
However, most current measures that are based on semantic re-
sources such as WordNet are weak in relating words with different
parts of speech, such as the relatedness between nouns and verbs,
adjectives and nouns, or adverbs and verbs; but these are also cru-
cial for obtaining semantic relatedness with a context. Methods
based on co-occurrence (of whichn-grams are a special case) work
across parts of speech, but semantic relatedness is merely induced
from the co-occurrence. In this paper, we combine the two ideas:
Co-occurrences are filtered by a WordNet-based Lesk-like method,
described below, allowing us to consider relatedness both within
and across parts of speech.1 Thus for nouns, we consider not only
other nouns but also verbs and adjectives as potential relatives. For
verbs, nouns and adverbs may be related.2 Semantic relatedness is
not symmetrical; wordw2 may be a relative ofw1 withoutw1 being
a relative ofw2.

1We do not take the additional step of considering distributional
similarity as a proxy for semantic similarity (cf Weeds [24]); see
Mohammad and Hirst [19] for a review.
2Relatedness to verbs and other parts of speech is not yet imple-
mented at the time of writing; in the evaluation below, the improve-
ments were gained solely with noun relatedness.

5.1 Determining Semantically Related Words
For each word in the vocabulary, we need to determine from a

corpus its set of relatives and the degree of relatedness of each rela-
tive. This relatedness is used asSAin Equation 1. The information
is kept in the semantic knowledge base (see Figure 2).

The process of extracting this information from a corpus is illus-
trated in Figure 4. The corpus used is the British National Corpus,
which has part-of-speech tags. We now step through the process.

For each wordw whose relatives are to be obtained, theco-
occurring words extractorfinds those words that co-occur withw
in a window defined as follows: For co-occurring nouns and verbs,
the entire sentence is taken into account, because a sentence is a
topic unit and we intuitively expect its nouns and verbs to be con-
ceptually related. On the other hand, the text window for adjectives
is more strictly defined: only five words before the target word,
including function words and content words. The intuition here is
that only the most proximate adjectives relate to the concept proper-
ties of the target word. For example, in the sentenceThe prospectus
gives a report on the students’ viewpoint and can be obtained from
individual offices at some colleges ofhigher education, the adjec-
tives individual andhigher restrict only the concepts of their most
adjacent nouns rather than the other nouns —higher educationbut
not (on the basis of this text)higher prospectusor higher offices.

Similar to Rosenfeld’s work [22], where semantically related
words are selected by the average mutual information, thePMI
sort processorcomputes the pointwise mutual information (PMI)
between the words of the pairs of co-occurrences.

PMI(w1,w2) = log2
P(w1,w2)

P(w1) ·P(w2)
, (2)

whereP(w1,w2) is the co-occurrence frequency of the word pair
(w1,w2) in the corpus, as defined above, andP(wi) is the occur-
rence frequency of wordwi in the corpus. Heeding the warning of
Manning and Sch¨utze [16] that mutual information has its limits
on low-frequency events, we exclude rare words, removing those
whose frequency in the BNC is less than a threshold of 50. The co-
occurring words are sorted according to their PMI. Those with the
highest PMI are automatically regarded as strongly related to the
target word. We refer to them asseed words, and the exact number
chosen is a parameter to the procedure; it is discussed further in
the following section. For example, the seed words forschoolin-
cludemathematics, parent,andteacher. Words in the remainder of
the list are at this stage merelycandidate relatives, which are sent
to the relatedness filterfor further relatedness identification. For
school, these includechild, program, andscience.

In WordNet, the lexicon that we use, each sense of each word (or,
more precisely, each set of synonyms) is provided with aglossthat
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Figure 4: Finding groups of related words.

grammar:studies of the formation of basic linguistic units

parent: a father or mother; one who begets or one who gives birth
to or nurtures and raises achild; a relative who plays the role of
guardian.

mathematics:math, maths, a science (or group of related sciences)
dealing with the logic of quantity and shape and arrangement).

teacher:instructor, (a person whose occupation is teaching). a per-
sonified abstraction that teaches; “books were his teachers”; “expe-
rience is a demanding teacher”).

Table 1: WordNet glosses for seed words ofschool.

interprets its meaning and gives some typical examples. Table 1
shows the glosses of some of the seed words ofschool. The words
in a gloss tend to be strongly related to the glossed word, such as the
word instructor in the gloss ofteacher. These glosses are a good
resource to confirm the relatedness of co-occurring words with ob-
served words. Therefore, our relatedness filter uses the WordNet
glosses of the seed words to decide whether a candidate is to be
considered related. Specifically, a candidate is retained if it occurs
in the gloss of any seed word. (If a seed word is in more than one
synonym set and hence has more than one gloss, all sets are used.)
For example, the candidate wordchild is deemed to be related to
schoolbecause it occurs in the gloss of the seed wordparent(see
Table 1). (We refer to this method as “Lesk-like” because it resem-
bles Lesk’s [15] algorithm for word-sense disambiguation, which
is based on word overlaps in dictionary definitions.) Table 2 shows
some of the final relatives ofschool. Together with each word we
store its relatedness to the target word,Relatedness(wi ,wj):

Relatedness(wi ,wj) =
C(wi ,wj )

C(wi) ·C(wj )
, (3)

whereC(wi ,wj) is the count of the number of co-occurrences of
the word pair (wi ,wj ) in the corpus, andC(wi) is the number of oc-
currences of wordwi in the corpus. So far, the semantic model has
been implemented for the prediction of nouns with related nouns
and adjectives, and this is what we evaluate below in the evaluation
section. We have relationship data for 3031 distinct nouns that oc-
cur at least 800 times in 83 million words of the BNC. These nouns
include most English common nouns.

5.2 Semantic Association with Context
Given this knowledge base of semantic relatedness, we can com-

pute the semantic association of a prediction candidate with its con-
text just by summing the relatedness of each word pair formed by

Nouns: grammar, governor, curriculum, parent, mathematics,
teacher, pupil, liaison, infant, neighbourhood, education, child, . . .

Adjectives: secondary, primary, neighbouring, catholic, junior, vo-
cational, compulsory, . . .

Table 2: Some nouns and adjectives related toschool.

Cand- Initial Related SA New
idate rank words ×105 rank
market 1 potato, basis 0.6506 1
media 2 form 0.0365 4
marking 3 — 0 5
...

...
...

...
...

meals 176 potato, form 7.2488 16

Table 3: The prediction process after the characterm is entered
in the context of the content wordsoats, salads, baked, potatoes,
form, basis, daily.

the candidate with its context words. If

CN = {wi |wi is a content word in the sentence}
is a context andw is a prediction candidate, then the association of
w with contextCN is computed as follows:

SA(w,CN) = ∑
wi∈CN

Relatedness(w,wi). (4)

If a context word, saybuilding, is not related to a prediction candi-
date, sayschool, then the value ofRelatednessis 0. Consequently,
if none of the context words relates to a candidate, the candidate
will be regarded as having no semantic relation with its context.

6. AN EXAMPLE
Suppose that the user has typedOats, salads and baked pota-

toes form the basis of three daily m. Then-gram model outputs a
number of candidates such asmarket, media, marking, more, me,
my, may, many, must, might, most, man, . . . , meals, . . .. Then, the
semantic part of the integrated model will measure the semantic
association with context for each candidate by Equation 4. Finally,
the two parts of information are integrated by Equation 1.

Table 3 illustrates the prediction process after the user types‘m’ .
As an example, it lists the situation of then-gram model and seman-
tic association for only the first three candidates and the intended
wordmeals. The column labelledinitial rank shows the candidates’
ranks in a candidate list in terms of theirn-gram probability. The



Cand- Initial Related SA New
idate rank words ×105 rank
men 1 form, basis 0.0025 1
members 2 form 0.0076 4
means 3 form 0.0136 5
...

...
...

...
...

meals 39 potato, form 7.2488 2

Table 4: The prediction process after the character sequence
me is entered in the context of the content wordsoats, salads,
baked, potatoes, form, basis, daily.

column labelledrelated wordsshows those context words that are
candidates’ relatives. These context words connect the observed
candidate to the context in semantics. The next column shows the
value ofSA in the context, and the last column shows the candi-
dates’ new ranks after the combination. In the example, the words
market, media, marking, . . .are at the top of the candidate list
from then-gram model, whereas the intended wordmealsis the
176th. Yetmealsis much more semantically related with the con-
text than other candidates, and the values for semantic association
in the table reflect this intuition, i.e.,SA(meals,CN) is much higher
than that of any other word due to the high relatedness of the word
pair 〈meals, potato〉. Unfortunately,saladis not a noun relative of
mealsand so does not contribute to theSAof meals. Meals rises
from rank 176 to 16, but this is not enough to get it into the list
shown to the user; other words are still more favoured because of
high n-gram probabilities.

The user therefore needs another keystroke‘e’ to complete the
intended wordmeals. Table 4 demonstrates the next prediction cy-
cle. In this process, after the combination,mealsoutperforms al-
most all other candidates and moves from 39th position to 2nd po-
sition, high enough to be included in the list presented to the user.
So the model finishes the prediction ofmealswith 2 keystrokes
(plus one to indicate acceptance). Since 4 keystrokes are needed
for this example with then-gram model alone, we say that the in-
tegrated model has saved 2 more keystrokes formealsthan then-
gram model.

7. AUTOMATICALLY LEARNING
SALIENT TERMS

Clearly, the semantic part of the integrated model relies highly on
the occurrences of related words in the context, e.g., the occurrence
of potatofor mealsin the sentence of Table 4. If words related to
a prediction candidate do not occur in a context, then the semantic
part of the model can do nothing to help the prediction. This might
be because the candidate is truly unrelated to the context and the
candidate is indeed a poor one, or because our extraction of related
words as described above was too strict and therefore ignores a
large number of words with slightly weaker semantic association.
For example, if the number of seed words is set to 5 forschool, then
some clearly associated words, such aseducation, are not extracted.
Moreover, the relationships are extracted from the BNC corpus,
which cannot cover all language phenomena. Hence a genuinely
related prediction candidate might be found to have no relation to
the context.

To help counter this, when no semantic associations are found
in the present context, we look forsalient terms— crucial con-
tent words — that have been identified up to the current point in
the text, and use them as an alternative context to search for se-
mantic associations. For example, the salient terms of an article

Named entities recorded:Compeyson, Caesar.

Before NE algorithm After NE algorithm
China Compeyson
Cabinet Caesar
Chiswick China
Church Cabinet

...
...

Table 5: Example of prediction list before and after named en-
tity prediction algorithm for the input ‘C’ . The nameChiswick
happens to appear in the system’sn-gram model; the names
Caesarand Compeysondo not, but were seen earlier in the text.

introducing a patient’s medical treatments could bepatient, treat-
ment, therapy, . . .; given the inputDr. Maurice Slevin, a consultant
and the prefix string‘p’ , there is little semantic information to pre-
dict the next word. Nevertheless, if, the previously entered material
includes crucial concept terms such aspatient, treatment, therapy,
. . ., then the candidatephysicianis more likely to be connected to
the material.

In order to make the learning idea practical, two aspects of the
words are observed: the word occurrences in the input text and the
word frequency in the BNC. Common words such aslife would not
be taken as salient terms in that they usually carry less semantic
information than those relatively uncommon words, e.g.,therapy.
A word is deemed to be salient if its frequency in the BNC is less
than 15,000 (in 100 million), and it has occurred 6 times or more
in the input. These thresholds were determined by experiments on
training data. When the number of input occurrences was smaller,
say 2 or 3, many terms identified were actually not crucial, and in
fact prediction quality was reduced, not improved.

Obviously, this method works better in later parts of a long text,
as more salient terms have been learned at that stage; but the user
could optionally allow earlier documents on the same topic to be
used as well.

8. OUT-OF-VOCABULARY NAMED
ENTITIES

Clearly, out-of-vocabulary items (OOVs) are a problem for word
completion. In practice, most OOVs will be named entities, and, as
with salient terms, are likely to be repeated within the text, so we
record all OOVs beginning with a capital letter that the user types,
in order to use them in later predictions.3 During the prediction
process, if a word is completed (whether or not it was successfully
predicted) and it starts with a capital letter and is not preceded by
sentence-end punctuation, then the word is regarded as a named en-
tity and recorded. Then, in predicting, if the first input character is
upper-case, recorded named entities starting with the same charac-
ter are put at the top of the prediction list, ahead of those from the
integrated model. An example is shown in Table 5.

3The other likely source of OOVs is spelling errors by the user,
which we don’t want to propagate by suggesting them back to the
user; the capital-letter heuristic is a simple way to help prevent this.
The present work is part of a larger project that aims to develop
spelling and grammar aids for users with cognitive disabilities.



Model

Noun
keystrokes
(TKS0)

Spoiled
non-noun
keystrokes
(TKS1)

Keystrokes
needed
for nouns
(CKS)

Keystrokes
needed for
spoiled
(SKS)

Keystroke
saving (%)
(KS)

n-gram 22,854 1,454 9,654 393 59
Combin. 22,854 1,454 7,888 654 65

Table 6: Keystroke saving (KS) of the integrated model compared with Fazly and Hirst’s syntax-and-n-gram model on a text with
3700 nouns.

9. SETTING SOME OF THE
PARAMETERS

As stated earlier, the contextual association of prediction can-
didates depends highly on the occurrences of their related words.
Salient terms are one way to mitigate this dependence. Two other
ways are to increase the number of related words and to extend the
observed context.

9.1 The Number of Seed Words
When extracting related words in the earlier section, a crucial

factor in the number that are found is the number of seed words
permitted. The more seed words there are, the more gloss informa-
tion will be obtained, and the more words can pass the relatedness
filter. That is to say, a larger number of seed words will result in
a richer and larger semantic space. On the other hand, a larger
space may also create more noise when contributing semantics to
the word prediction task — that is, more spurious relationships will
be found. To determine an appropriate balance, experiments were
carried out and the results will be discussed in the following sec-
tion.

9.2 The Size of a Prediction Context
Because the semantic model can only use the context before the

current word, the length of the context window becomes crucial.
A context with more words correspondingly has more chances for
prediction candidates to find related words in the context. But
again the effects of the semantic model can also be attenuated by
a lengthy context in that it will probably lead to more spurious re-
lationships. To observe the effects of context variations, the inte-
grated prediction model was tested by varying the context length
from one sentence to four sentences. The following section will
present the results.

10. EVALUATION OF THE MODEL

10.1 Keystroke Saving
The traditional evaluation metric of the word prediction task is

keystroke saving(KS). Keystroke saving reflects what percentage of
keystrokes can be saved by the system compared to normal typing
of the text.

Since our goal is to explore the contribution of semantic informa-
tion to content word completion, the integrated model is evaluated
in terms of keystroke saving for content words as follows:

KS= 1− CKS+SKS
TKS0 +TKS1

, (5)

Here, CKS is the number of keystrokes needed to type content
words with the system andSKSis the number of keystrokes for
those non-content words that actually needmore keystrokes for
completion compared with then-gram model alone, which we call
spoiled words. For example, if the wordshouldcould be predicted

in some context with one keystroke in then-gram model but re-
quires two keystrokes in the integrated prediction model because
semantics initially displaces it with incorrect predictions, then the
extra keystroke is a penalty on the model’s performance in the for-
mula. In the denominator,TKS0 andTKS1 are the number of total
keystrokes that would be required to type the content words and
the spoiled non-content words without prediction. The presence of
SKSandTKS1 reflect how much negative influence the semantic
model may bring to the other words.

The training data and the test data are randomly selected from
the BNC corpus. These two sets of data are disjoint. The test data
contains 3,700 nouns with 22,854 characters in total.

10.2 General Results
The model is evaluated with a simulated user based on that of

Fazly and Hirst [4]. Words in a prediction list will be compared
with the words in the original text (i.e., intended words). Whenever
an original word occurs in the prediction list, the current prediction
will be regarded as correct and the number of keystrokes typed so
far is recorded for model-performance analysis.

As Garay-Vitoria and Abascal pointed out [7], it is hard to find
comparable work, i.e., adding semantic information to improve
word completion models, so our baseline for performance is Fazly
and Hirst’s model [4] in which syntactic information (i.e., part of
speech) is combined with wordn-grams. Table 6 presents a general
comparison of the results of the two models. The syntax-and-n-
gram model achieves a 59% keystroke saving, i.e., only 41% of the
possible keystrokes are needed for a user to input nouns. The inte-
grated system obtains a 65% keystroke saving, which is a 14.63%
improvement.

This performance improvement suggests that the integrated
model does help the traditionaln-gram model in the completion
task; in other words, semantics really contributes to the completion
task.

10.3 Varying the Number of Seed Words
We investigated the impact of varying the number of seed words

from its initial setting of 50, and hence the number of related words
found and the size of the semantic space. The experimental results
are listed in Table 7. They demonstrate that varying the number up
or down does not enhance or degrade the model performance as we
had expected. The change in the number of keystrokes required for
content words (CKS) is almost exactly balanced by the change in
those needed for spoiled words (SKS), andKSvaries only slightly
in the third significant figure.

10.4 Varying the Length of a Context Window
We varied the context length for computingSA from one sen-

tence to four sentences. Table 8 presents the results. An increase
from one to two sentences results in an additional saving of nearly
1%; but the extra improvement with three sentences is slight, and
performance starts to drop off again with four sentences. These re-
sults indicate that an appropriate length of a context can help the



Number
of seed
words

Noun
keystrokes
(TKS0)

Spoiled
non-noun
keystrokes
(TKS1)

Keystrokes
needed
for nouns
(CKS)

Keystrokes
needed for
spoiled
(SKS)

Keystroke
saving (%)
(KS)

10 22,854 709 7,989 319 64.74
30 22,854 1,179 7,905 517 64.96
50 22,854 1,454 7,888 654 64.86
80 22,854 1,684 7,871 746 64.88

Table 7: Keystroke saving (KS) of the integrated model, varying the number of seed words and hence the number of related words
found.

Size of context Keystroke saving (%)
One sentence 64.86
Two sentences 65.64
Three sentences 65.80
Four sentences 65.74

Table 8: Keystroke saving in the integrated model with various
context lengths.

model exclude unrelated prediction candidates and save users’ ef-
forts.

10.5 Observing the OOV Prediction Strategy
To evaluate the degree to which the OOV prediction strategy as-

sisted the integrated model, we observed the performance both with
and without the strategy. Without the strategy, the improvement
was only 6.10%, compared to 14.63% with the strategy, as noted
earlier. This indicates that the idea of caching recent OOV items is
effective and greatly improves the model performance, contribut-
ing more than half of the improvement attributable to the complete
model.

In fact, this result is not unexpected, for the following reasons.
First, it is common that only a limited number of names of people,
organizations, or places are involved in an article, and these OOV
items are likely to be repeated. Therefore, caching and suggest-
ing these items is very likely to save keystrokes for their following
occurrences. Second, OOV items are very often longer than other
words. Thus there is a greater potential for keystroke saving if they
are predicted early. For example, if the nameBallantynehas oc-
curred and been cached in the named-entity recorder, then only one
keystroke (plus another for acceptance of the prediction) is needed
for its subsequent occurrences, i.e., 8 keystrokes are gained by the
OOV strategy. On the other hand, the traditionaln-gram model is
weak in such OOV item predictions and it would probably require
all 10 keystrokes to type the name.

11. CONCLUSION
We have proposed a word-completion model based on bothn-

grams and semantic relatedness. A novel Lesk-like relatedness fil-
ter is employed in creating the semantic knowledge base that is used
to measure the semantic association with a context for prediction
candidates. This filter to some extent guarantees that only strongly
semantically related candidates can obtain association score and
therefore be promoted to the top of prediction lists. The measures
of relatedness are rather simple — essentially just mutual informa-
tion — and our prototype has implemented the method only for
nouns. Nonetheless, we were able to improve keystroke saving by
14.63%. The space of possible methods for using semantic infor-
mation in word completion is large, and our many decisions in the

design of our model were almost arbitrary; thus it is likely that fur-
ther exploration of the space will result in models that have even
greater keystroke saving.

So far, our work has focused on the theoretical investigation of
semantic knowledge in word completion. Study of its feasibility
in practice remains necessary, for keystroke saving is only a crude
measure of the quality of a word-completion system [21]. It is pos-
sible that users will actually be slowed down by “higher quality”
prediction lists, as it might be harder to reject incorrect predictions
when they are semantically related; we are presently designing an
experiment to test this hypothesis. And for cognitively disabled
users, inappropriate predictions may be confusing and hence worse
than none at all, so the emphasis of the system must be on rejecting
all but the very best predictions. For such users, word completion
should be merely part of a larger writing-assistance system, and this
is the broader aim of the present project.
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