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Abstract

This thesis is an inquiry into the nature of the high-level, rhetorical structure of unrestricted
natural language texts, computational means to enable its derivation, and two applications
(in automatic summarization and natural language generation) that follow from the ability
to build such structures automatically.

The thesis proposes a first-order formalization of the high-level, rhetorical structure of
text. The formalization assumes that text can be sequenced into elementary units; that
discourse relations hold between textual units of various sizes; that some textual units are
more important to the writer’s purpose than others; and that trees are a good approximation
of the abstract structure of text. The formalization also introduces a linguistically motivated
compositionality criterion, which is shown to hold for the text structures that are valid.

The thesis proposes, analyzes theoretically, and compares empirically four algorithms for
determining the valid text structures of a sequence of units among which some rhetorical
relations hold. Two algorithms apply model-theoretic techniques; the other two apply
proof-theoretic techniques.

The formalization and the algorithms mentioned so far correspond to the theoretical
facet of the thesis. An exploratory corpus analysis of cue phrases provides the means for
applying the formalization to unrestricted natural language texts. A set of empirically
motivated algorithms were designed in order to determine the elementary textual units of
a text, to hypothesize rhetorical relations that hold among these units, and eventually, to
derive the discourse structure of that text. The process that finds the discourse structure
of unrestricted natural language texts is called rhetorical parsing.

The thesis explores two possible applications of the text theory that it proposes. The
first application concerns a discourse-based summarization system, which is shown to sig-
nificantly outperform both a baseline algorithm and a commercial system. An empirical
psycholinguistic experiment not only provides an objective evaluation of the summarization
system, but also confirms the adequacy of using the text theory proposed here in order to
determine the most important units in a text. The second application concerns a set of text
planning algorithms that can be used by natural language generation systems in order to
construct text plans in the cases in which the high-level communicative goal is to map an

entire knowledge pool into text.
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Chapter 1

Introduction

1.1

Motivation

Research in linguistics and computational linguistics has long pointed out that text is not

just a simple sequence of clauses and sentences, but rather, a highly elaborate structure.

Still, a formal theory of text, one that can be easily implemented in computational systems,

is yet to be developed. In fact, the lack of such a theory is reflected by current natural

language systems: most of them process text on a sentence-by-sentence basis. For example,

if they were given the sequences of words shown in (1.1) and (1.2) below, which differ only

in the order of the sentences, they would, most likely, derive in both cases syntactic trees

and construct semantic representations for each of the individual sentences without noticing

any anomalies. Yet, only the sequence shown in (1.1) is coherent, i.e., is understandable

text. The sequence shown in (1.2) does not make too much sense; consider just its first

sentence: it is clear that we cannot start a text with an explicitly marked example.

(1.1)

With its distant orbit — 50 percent farther from the sun than Earth — and slim
atmospheric blanket, Mars experiences frigid weather conditions. Surface tem-
peratures typically average about —60 degrees Celsius (—76 degrees Fahrenheit)
at the equator and can dip to —123 degrees C near the poles. Only the midday
sun at tropical latitudes is warm enough to thaw ice on occasion, but any liquid
water formed in this way would evaporate almost instantly because of the low
atmospheric pressure.

Although the atmosphere holds a small amount of water, and water-ice
clouds sometimes develop, most Martian weather involves blowing dust or carbon
dioxide. Each winter, for example, a blizzard of frozen carbon dioxide rages over
one pole, and a few meters of this dry-ice snow accumulate as previously frozen

carbon dioxide evaporates from the opposite polar cap. Yet even on the summer



pole, where the sun remains in the sky all day long, temperatures never warm

enough to melt frozen water.

(1.2)  Each winter, for example, a blizzard of frozen carbon dioxide rages over one pole,
and a few meters of this dry-ice snow accumulate as previously frozen carbon diox-
ide evaporates from the opposite polar cap. With its distant orbit — 50 percent
farther from the sun than Earth — and slim atmospheric blanket, Mars expe-
riences frigid weather conditions. Only the midday sun at tropical latitudes is
warm enough to thaw ice on occasion, but any liquid water formed in this way
would evaporate almost instantly because of the low atmospheric pressure.

Yet even on the summer pole, where the sun remains in the sky all day
long, temperatures never warm enough to melt frozen water. Although the atmo-
sphere holds a small amount of water, and water-ice clouds sometimes develop,
most Martian weather involves blowing dust or carbon dioxide. Surface temper-
atures typically average about —60 degrees Celsius (—76 degrees Fahrenheit) at
the equator and can dip to —123 degrees C near the poles.

The fact that sequence (1.1) is coherent text, while sequence (1.2) is merely a collection of
sentences, although each is exemplary when taken in isolation, suggests that extra-sentential
factors play a major role in text understanding. If we are to build proficient natural language
systems, it seems, therefore, obvious that we also need to enable these systems to derive
inferences that pertain not only to the intra-sentential level, but to the extra-sentential level
as well.

The inferences that I have in mind here are primarily of a rhetorical and intentional
nature. Such inferences would enable a system to understand how the information given
in different sentences and clauses is related, where the textual segments are, what the
arguments that support a certain claim are, what the important clauses and sentences in
a text are, etc. With respect to text (1.1), such inferences will explain that “50 percent
farther from the sun than Earth” is just some parenthetical information that is not central
to the understanding of the whole text; that “Surface temperatures typically average about
—60 degrees Celsius (—76 degrees Fahrenheit) at the equator and can dip to —123 degrees
C near the poles” is just an elaboration of the fact that “Mars experiences frigid weather
conditions”; and that it is “the low atmospheric pressure” that causes the liquid water to
evaporate.

One possible way to represent these inferences explicitly is by means of a tree structure
such as that shown in figure 1.1, where each leaf of the tree is associated with a contiguous
textual span; the parenthetical units are enclosed within curly brackets; the internal nodes

are labelled with the names of the rhetorical relations that hold between the textual spans
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that are subsumed by their child nodes; and solid boxes and lines denote textual spans
that are important to the writer’s purpose. For example, the textual unit “most Martian
weather involves blowing dust or carbon dioxide” is surrounded by a solid box and the unit
“Although the atmosphere holds a small amount of water, and water-ice clouds sometimes
develop,” is surrounded by a dotted box, because the former represents something that is
more essential to the writer’s purpose than the latter.

During the continuous refinement of the text and discourse theories that have been
proposed so far, it has become clear that an adequate formal and computational account of

text structures would have to provide answers to questions such as these:

e What is the abstract structure of text? Does it resemble the tree-structure shown in

figure 1.17 If so, what are the constraints that characterize this structure?
e What are the elementary units of texts?

e What are the relations that could hold between two textual units and what is the
nature of these relations? Are these relations grounded in the events and the world
that the text describes? Or are they grounded in general principles of rhetoric, argu-

mentation, and linguistics? Or both?

e Is there any correlation between these relations and the concrete lexicogrammatical

realization of texts?
e How can text structures be determined automatically?

e Is there any correlation between the structure of text and what readers perceive as

being important?

This thesis is an attempt to answer some of these questions. More precisely, it is an
inquiry into the formal properties of the high-level structure of unrestricted natural language
text, the computational means that would enable its derivation, and two applications in
automatic summarization and natural language generation that follow from the ability to

automatically derive such structures.

1.2 Overview of the thesis
Previous discourse and text theories can be partitioned into two classes.

e In the first class, we find the theories developed in the traditional, truth-based seman-
tic perspective on language [Kamp, 1981, Lascarides and Asher, 1991, Lascarides et
al., 1992, Lascarides and Oberlander, 1992, Lascarides and Asher, 1993, Asher, 1993,
Kamp and Reyle, 1993, Asher and Lascarides, 1994, Kameyama, 1994, Gardent, 1994,



Polanyi and van den Berg, 1996, van den Berg, 1996, Gardent, 1997, Schilder, 1997,
Cristea and Webber, 1997]. These theories have a grammar as their backbone and rely
on sophisticated logics of belief and default logics in order to intertwine and character-
ize the sentence- and discourse-based linguistic phenomena. Although these theories
can be used to explain why “he” is a co-referent of “John” and “it” a co-referent of
“donkey” in example (1.3) below, and to infer that “Max fell” because “John pushed
him” in example (1.4), they are not tractable and cannot handle naturally occurring

texts, such as that shown in (1.1).

(1.3) John has a donkey. He beats it.

(1.4) Max fell. John pushed him.

e In the second class, we find the theories that aim at characterizing the constraints
that pertain to the structure of unrestricted texts and the computational mechanisms
that would enable the derivation of these structures [van Dijk, 1972, Zock, 1985,
Grosz and Sidner, 1986, Mann and Thompson, 1988, Polanyi, 1988, Hobbs, 1990,
Polanyi, 1996]. Because these theories are either informal or incompletely specified,

so far, they have been only manually applied to text analysis.

In this thesis, I explore the ground found at the intersection of these two lines of research.
More specifically, I provide a theory and a fully specified formalization of text structures
that is general enough to enable its applicability to unrestricted natural language texts, and

yet simple enough to yield tractable, text-structure derivation algorithms.

The mathematics of text structures

In formalizing the structure of unrestricted texts (in chapter 2), I first distill the features
that are common to previous approaches and show that most discourse theories acknowledge
that text can be sequenced into elementary units; that discourse relations of various natures
hold between textual units of various sizes; that some textual units are more essential to
the writer’s purpose than others; and that trees are a good approximation of the abstract
structure of text. However, as I will show, none of the present theories propose a clearly
defined compositionality criterion, one that would spell out the conditions that have to be
satisfied when two textual units are put together in a tree structure in order to create a larger
unit, and would explain how the rhetorical relations that hold between large textual units
relate to rhetorical relations that hold between elementary units. The lack of such a criterion
not only prevents us from correctly classifying a given text structure as being valid or invalid,

but also from deriving all the valid structures of a text. In sections 2.3.2 and 2.4, I use the



theories proposed by Mann and Thompson [1988], Grosz and Sidner [1986], Hobbs [1990],
and Polanyi [1988, 1996] in order to show that such a compositionality criterion is inherent
primarily to the structure of discourse, rather than to the taxonomies of rhetorical relations
that have been proposed by various researchers.

In section 2.5, [ show that the difference between linguistic and nonlinguistic constructs
that are more important to the writer’s purpose (usually called nuclei) and constructs that
are less important (usually called satellites) can constitute the foundation of a composi-
tionality criterion of valid text structures. This criterion (proposition 2.1) specifies that if
a relation holds between two nodes of the tree structure of a text, that relation also holds
between some linguistic and nonlinguistic constructs that pertain to the most important
constituents of those nodes. In spite of its large range applicability, the formalization of
this criterion proves to be beyond the current state of the art in computational linguis-
tics and artificial intelligence. Hence, 1 propose instead a stronger criterion, one that is
easily formalized. The strong compositionality criterion (proposition 2.2) stipulates that
if a relation holds between two textual spans of the tree structure of a text, that relation
also holds between the most important units of the constituent spans. Hence, the strong
compositionality criterion leaves implicit the nonlinguistic constructs that characterize the
weak criterion and focuses only on textual units as the linguistic entities of interest.

In section 2.6, I formalize the strong compositionality criterion and the features listed at
the beginning of this section in the language of first-order logic. The resulting formalization
is general with respect to the taxonomy of rhetorical relations that it can rely upon; as
an example, I show how one can obtain, as a by-product, a formalization of Rhetorical
Structure Theory (RST) [Mann and Thompson, 1988].

Using the formalization of RST that I propose in section 2.6 and Moser and Moore’s [1996]
discussion of the relationship between RST and Grosz and Sidner’s intention-based discourse
theory [1986], I propose a formal account of both theories (see section 2.7). The melding of
structure- and intention-based constraints enables the derivation of intentional inferences
on the basis of the structure of text and provides a means for using intentional judgments

for reducing the ambiguity of text structures.

The automatic derivation of text structures: an algorithmic perspective

The formalization proposed in chapter 2 focuses only on the mathematical properties of
text structures, but says nothing about any algorithms that can be used to derive them.
In chapter 3, I explore the problem of text structure derivation (see definition 2.2) from an
algorithmic perspective. More precisely, | investigate how, given a sequence of elementary
units and a set of rhetorical relations that hold among these units, one can derive all the
valid text structures of the sequence.

I study theoretically and compare empirically four paradigms that solve the problem



of text structure derivation. I show how the problem of text structure derivation can be

encoded as
e a classical constraint-satisfaction problem (section 3.2);
e a propositional satisfiability problem (section 3.3);
e a theorem-proving problem (section 3.4);
e a parsing problem using a grammar in Chomsky normal form (section 3.5).

The four paradigms yield sound and complete algorithms for deriving the structure of text.

In contrast with previous approaches to discourse analysis, the algorithms that I propose
in chapter 3 no longer assimilate the task of discourse processing with an incremental process
in which discourse units are sequentially examined and added to a continuously updated
discourse tree. Rather, the algorithms assume that the elementary textual units and the
relations between them can be determined beforehand. As a consequence, the algorithms
that I propose no longer need the notion of “right frontier”, which is pervasive in incremental
approaches to discourse analysis, and no longer have to deal with nonmonotonicity, which
occurs when some decisions made during the incremental processing of discourse need to

be “undone” at a later stage.

A corpus analysis of cue phrases

The algorithms presented in chapter 3 provide a computational solution to the problem
of text structure derivation. However, this problem takes as its input the sequence of
elementary units that make up a text and the rhetorical relations that hold among them.
If any of the algorithms discussed in chapter 3 is to be applicable on real texts, we need to
also automate the process of determining the elementary units of a text and the rhetorical
relations that hold among them.

In chapter 4, I discuss a set of linguistic devices that can be exploited to provide solutions
to both problems. For the rest of the thesis, I choose to explore how well we can solve
the problem of text structure derivation by relying mostly on the discourse function of
cue phrases, i.e., words such as however, although, and but, and by applying only shallow
techniques that do not require syntactic and semantic analysis of the text.

The main assumption behind the use of cue phrases is that they are an accurate-enough
indicator of the boundaries between elementary textual units and of the rhetorical relations
that hold between them. In section 4.3, I discuss in detail how the ambiguity of cue phrases
is managed by the formalization presented in chapter 2.

Although cue phrases have been studied extensively in the linguistic and computational
linguistic literature, previous empirical studies did not provide enough data concerning

the way cue phrases can be used in order to determine the elementary textual units that



are found in their vicinity and to hypothesize rhetorical relations between these units. In
order to overcome this lack of data, I designed an exploratory, empirical study of my own
(section 4.4). 1 used previously published lists of cue phrases [Halliday and Hasan, 1976,
Grosz and Sidner, 1986, Martin, 1992, Hirschberg and Litman, 1993, Knott, 1995, Fraser,
1996] and created a set of 460. For each cue phrase in the list, I extracted from the Brown
Corpus a number of text fragments that contained that cue phrase. Overall, I selected more
than 7600 text fragments. | manually analyzed 2100 of these texts and, on the basis of the
data in the corpus and the intuitions that I developed during the analysis, I associated with

each cue phrase information that enables
e its automatic recognition in text;

e the determination of the boundaries of the elementary textual units found in its vicin-
ity;
e the hypothesizing of rhetorical relations that hold among textual units found in its

vicinity.

Chapter 4 discusses in detail the materials and methods of the corpus analysis and provides
some general results. In chapters 5 and 7, I subsequently establish the connection between
the corpus analysis and the algorithms that derive text structures for unrestricted texts
in the context of discourse analysis, and build valid text plans in the context of natural

language generation.

The rhetorical parsing of unrestricted natural language texts

The text theory developed in chapter 2, the algorithms developed in chapter 3, and the
corpus analysis presented in chapter 4 provide the foundations for a rhetorical parsing
algorithm, which is presented in chapter 5. The rhetorical parsing algorithm takes as input
natural language text and returns the discourse structure of that text.

In chapter 5, I first discuss the advantages and disadvantages that would result from
adopting the position that there exists some correlation between the structure of text and the
sentence, paragraph, and section boundaries that are used by writers. The rhetorical parsing
algorithm assumes that such a correlation exists, i.e., it assumes that clauses, sentences,
paragraphs, and sections provide an underspecified representation of the structure of text.
Exploiting this structure improves the computational properties of the rhetorical parsing
algorithm.

The rhetorical parsing algorithm first determines the set of all cue phrases that occur
in the text that is given as input. In the second step, the rhetorical parser uses information
derived from the corpus analysis in order to determine the elementary units of the text and

the cue phrases that have a discourse function. Section 5.3 discusses in detail an algorithm



that identifies discourse markers and clause-like unit boundaries using only surface-based
methods and evaluates the algorithm against three texts. The texts total more than 7000
words and belong to three different genres.

Once the elementary units have been identified, the rhetorical parser uses again infor-
mation derived from the corpus in order to make disjunctive hypotheses with respect to the
rhetorical relations that hold between different units. Section 5.4 presents two algorithms
that are used to hypothesize discourse relations: one of them is based on coherence, while
the other is based on cohesion. The coherence-based algorithm is rooted in the corpus
analysis of cue phrases. The cohesion-based hypothesizes rhetorical relations by measuring
the degree of overlap between the words that are used by two textual units.

The algorithms developed in chapter 3 assumed that the rhetorical relations that hold
between elementary units were precisely known. However, as we have seen, the rhetorical
parser makes merely disjunctive hypotheses. In order to deal with this issue, I consider, in
section 5.5, a disjunctive formulation of the problem of text structure derivation. That is,
I consider the problem of text structure derivation to be the following: given a sequence
of textual units and a set of disjunctive rhetorical relations that hold among these units,
find all valid text structures of the sequence. In section 5.5, I discuss how the most efficient
algorithms that were developed in chapter 3 can be modified such that they can handle
disjunctive hypotheses as well. More precisely, 1 develop a proof-theoretic approach for
the disjunctive case and I show how disjunctive hypotheses can be compiled into a parsing
problem with a grammar in Chomsky normal form.

In section 5.5, I discuss how these approaches can be implemented and integrated with
the rhetorical parser. I end the chapter with a discussion of ambiguity in discourse process-
ing and a proposal on how one can deal with it.

All the algorithms that pertain to the rhetorical parser have been fully implemented.
When the rhetorical parser takes text (1.1) as input, it produces a text structure similar to

that shown in figure 1.1.

The summarization of natural language texts

Researchers in computational linguistics [Mann and Thompson, 1988, Matthiessen and
Thompson, 1988, Sparck Jones, 1993b] have long hypothesized that discourse structures
can be used in natural language summarization. That is, they have suggested that there is
a correlation between the textual units that are assigned a nuclear status in a text structure
and what readers perceive as being important in the corresponding text. However, to date,
no empirical experiment has tested the validity of this hypothesis.

In chapter 6, I describe such an experiment, which shows that, indeed, text structures
can be used effectively in order to select the most important units in a text. In addition,

the experiment provides a clear insight into the nature of the discourse-based summariza-



tion problem, because it uncovers both its strengths and limitations, independent of any
particular implementation.

This result leads me to propose a discourse-based summarization algorithm: the algo-
rithm takes as input a natural language text and a number p between 1 and 100, which
corresponds to the percentage of important units that the algorithm is to select from the
given text. The discourse-based summarizer uses the rhetorical parsing algorithm in order
to derive the structure of the text given as input and then, on the basis of this structure,
associates an importance score to each unit in the text (see section 6.2). The p% units with
highest score provide a summary of the text. An evaluation of the discourse-based summa-
rization program has shown that it significantly outperforms both a baseline algorithm and

Microsoft’s Office97 summarizer.

From local to global coherence: A bottom-up approach to text planning

In chapter 7, I explore an application of the formalization of text structures in the area of
text planning. Traditionally, flexible approaches to text planning assimilated the problem of
text-plan derivation with a top-down, hierarchical expansion process. In section 7.1, I show
that in spite of their adequacy in goal-driven settings, top-down planning techniques are
not appropriate when the high-level communicative goal boils down to “tell everything that
is in this knowledge base” or “tell everything that is in this chosen subset”. The solution
that I propose to this problem is bottom-up.

The intuition behind the bottom-up, text-planning algorithms, which I present in sec-
tion 7.4, is that global coherence can be achieved by satisfying as many as possible of the
local coherence constraints on ordering and adjacency. The corpus analysis discussed in
chapter 4 provides evidence that different rhetorical relations are characterized by different
preferences with respect to the order in which they realize their satellites and nuclei and
with respect to their tendency of clustering their satellites and nuclei into larger textual
spans. Besides providing a solution to the text planning problem in the cases in which
the high-level communicative goal is “tell everything that is in this knowledge base”, the
bottom-up approach also enables a simple solution to the problem of generating text plans
that satisfy multiple communicative goals.

The bottom-up text planning algorithms were incorporated into HealthDoc [DiMarco
et al., 1997, Hirst et al., 1997], a natural language system that generates texts that are

tailored to particular audiences.

Conclusions

In the last chapter, I critically review the main contributions of the thesis and point to

future research directions.
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The constraint-satisfaction agorithm

- for deriving text structures
: (Section 3.2, Figure 3.1)
The propositional logic, satisfiability
| dgorithm for deriving text structures
(Section 3.3, Figure 3.6)

- - The algorithm that maps "almost-valid"
The formalization of text structures text structuresinto valid ones
(Section 2.6) (Section 3.2, Figure 3.5)

N for deriving text structures

(Section 3.4, Figure 3.10)

The proof-theoretic-based algorithm

) The compiling algorithm that converts
"a] aproblem of text structure derivation
into a Chomsky normal-form grammar
(Section 3.5, Figure 3.11)

Figure 1.2: The algorithms that find a solution to the problem of text structure derivation
that is given in definition 2.2.

1.3 Maps of the thesis

General remarks on the layout of the thesis

In the previous section, I presented a chapter by chapter overview of the main topics that
I address in this thesis. As we saw, the thesis dwells on topics that range from formal,
knowledge representation issues in text theory to issues in algorithms, linguistics, psy-
cholinguistics, and language engineering. Because of its diversity, I found it inappropriate
to cluster the discussion of the literature in a single chapter. Instead, I preferred to discuss
the relevant research in connection with each particular topic. I hope that this will enable
the reader who is interested in only a particular aspect of the thesis to find her way around

easier. For the same reason, I have included a short summary at the end of each chapter.

A map of the algorithms in the thesis

Throughout the thesis, I present a number of algorithms: between some of them exist some
obvious connections. Figures 1.2 and 1.3 make explicit the connections between the most
important ones. The first class of algorithms, that presented in figure 1.2, concerns the
theoretical facet of the problem of text structure derivation. The dotted arrows denote that
the algorithms referred to by nodes surrounded by rounded boxes rely upon the formaliza-
tion of text structures presented in section 2.6. The solid arrows denote “uses” relations:
the destination of an arrow corresponds to an algorithm that uses the algorithm from which

the arrow originates.

11



The second class of algorithms concerns natural language applications. As figure 1.3
shows, the rhetorical parser relies upon six algorithms and constitutes the basis of the
discourse summarizer. Some of the algorithms that are used by the rhetorical parser and
the text planning algorithms rely heavily on the exploratory analysis of cue phrases that is

discussed in chapter 4.

A rhetorical map of the thesis

In order to facilitate better navigation through the thesis, I also provide a rhetorical map
of it (see figure 1.4) in the style of the text structure diagram shown in figure 1.1. A reader
without background in discourse theories will probably have a much better understanding
of the meaning of the rhetorical map shown in figure 1.4 after reading chapter 2.

In figure 1.4, the leaves of the tree-like map correspond to the chapters of the thesis.
Internal nodes correspond to the relations between the spans of the thesis that are subsumed
by the immediate children. Solid lines and boxes correspond to the most important parts,
the nuclei of the representation. Dotted lines and boxes correspond to the satellites. Hence,
in chapter 1 I “motivate” the work presented in chapters 2 to 7. The formalization of text
structures discussed in chapter 2 is provided an “algorithmic solution” in chapter 3. The
corpus analysis in chapter 4 “enables” the development of the rhetorical parser in chapter 5.
An immediate “application” of the rhetorical parser is the discourse-based summarization
program that is presented in chapter 6. In fact, both the rhetorical parser and the text
planning algorithms presented in chapter 7 can be “jointly” seen as “applications” of the
formalization of text structures presented in chapter 2. Chapter 8 “summarizes” the results

presented in the whole thesis.
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The algorithm for determining the potential
discourse markers of atext
(Section 5.2.2)

The clause and discourse marker
P identification algorithm
(Section 5.3, Figure 5.2)

The discourse-marker-based
R hypothesizing algorithm
(Section 5.4, Figure 5.4)

The rhetorical parsing algorithm
(Section 5.1, Figure 5.1)
Corpus

analysis The word co-occurrence-based
T hypothesizing algorithm
L (Section 5.4, Figure 5.6)
The discourse-based
summarization algorithm
Do The chart-parsing algorithm that implements (Section 6.1, Figure 6.2)
the disjunctive proof-theoretic account
of building text structures
D (Section 5.5, Figure 5.8)

The digjunctive compiling algorithm that converts the
disunctive case of the problem of text structure derivation
into a Chomsky normal-form grammar
(Section 5.5, Figure 5.9)

S The CKY -like algorithm for text planning
D (Section 7.4, Figure 7.7)

The greedy CKY -like algorithm for text planning
= (Section 7.4.3)

: The constraint satisfaction-based algorithm
SRR - for text planning
(Section 7.4, Figure 7.8)

Figure 1.3: Algorithms that concern applications of the formalization of text structures in
rhetorical parsing, summarization, and text planning.
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Chapter 2

The mathematics of text structures

2.1 Preamble

As 1 have mentioned in the introduction, one of the goals of this thesis is to provide a theory
of text structures that is general enough to enable its applicability to unrestricted natural
language texts, and simple enough to yield tractable, text-derivation algorithms. In this
chapter, I first discuss the essential features of discourse structures that have been proposed
by previous researchers. I show that none of the current discourse theories provides a
compositionality criterion that would explain how rhetorical relations that hold between
large spans relate to rhetorical relations that hold between small spans. 1 provide such
a criterion and a first-order formalization of the constraints that characterize the valid
structures of text. I end the chapter by showing how the formalization can be extended to

handle both structural and intentional constraints.

2.2 A formalization of text structures from first principles

2.2.1 The essential features of text structures

If we examine carefully the claims that current theories make with respect to the structure
of text and discourse, we will find significant commonalities. Essentially, all these theories
acknowledge that the elementary textual units are non-overlapping spans of text; that there
exist rhetorical, coherence, and cohesive relations between textual units of various sizes; that
some textual units play a more important role in text that others; and that the abstract

structure of most texts is a tree-like structure. I now discuss each of these features in turn.

The elementary units of complex text structures are non-overlapping spans of
text. Although some researchers take the elementary units to be clauses [Grimes, 1975,

Givén, 1983, Longacre, 1983], while others take them to be prosodic units [Hirschberg and
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Litman, 1987], turns of talk [Sacks et al., 1974], sentences [Polanyi, 1988], discourse seg-
ments [Grosz and Sidner, 1986], or the “contextually indexed representation of information
conveyed by a semiotic gesture, asserting a single state of affairs or partial state of affairs
in a discourse world” [Polanyi, 1996, p. 5, all agree that the elementary textual units are
non-overlapping spans of text.

For example, if we take clause-like spans to be the elementary units of text, the text
fragment in (2.1) can be broken into 6 units, as shown below. The elementary units are

delimited by square brackets.!

(2.1)  [With its distant orbit!] [— 50 percent farther from the sun than Earth —?]
[and slim atmospheric blanket,®] [Mars experiences frigid weather conditions.?]
[Surface temperatures typically average about —60 degrees Celsius (—76 degrees

Fahrenheit) at the equator®] [and can dip to —123 degrees C near the poles.]

Rhetorical, coherence, and cohesive relations hold between textual units of
various sizes. The nature, number, and taxonomy of the relations that hold between
textual units continue to be controversial issues. At one end of a spectrum of influential
proposals, we have the ground-breaking research that catalogued for the first time the
“deep” relations that underlie the surface syntactic relations between clauses in complex
sentences [Ballard et al., 1971, Grimes, 1975] (see also [Hovy and Maier, 1997] for an
overview). Although unprincipled, these approaches provided the first “complete” taxonomy
of the relations [Grimes, 1975]. At the other end of the spectrum, we have the approaches
that take the position that taxonomies of relations should be created on the basis of some
unambiguous principles. Such principles are derived from the lexicogrammatical resources
that explicitly signal cohesive relations [Halliday and Hasan, 1976, Martin, 1992]; from the
types of inferences that the reader needs to draw in order to make sense of a text [Hobbs,
1990]; from the intentions that the writer had when she wrote the text [Grosz and Sidner,
1986]; from the effects that the writer intends to achieve [Mann and Thompson, 1988]; from
the general cognitive resources that readers use when they process text [Sanders et al., 1992,
Sanders et al., 1993]; from the linguistic evidence (such as cue phrases) of some linguistic
psychological constructs that are used during text processing [Knott, 1995]; and from a
relational criterion that posits that relations should be included in a taxonomy only if
they add some extra meaning to the meaning derivable from the textual units that they
connect [Nicholas, 1994]. In spite of the heterogeneity of these approaches, one aspect is
common to all of them: the presupposition that rhetorical, coherence, and cohesive relations
need to be considered if one is to account for the meaning of text.

For example, we can say that a rhetorical relation of ELABORATION holds between units

'See pages 125 and 133 for a discussion of the difference between clauses and clause-like units.
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1 and 2 in text (2.1), because unit 2 provides some extra information with respect to unit 1.
And we can say that a rhetorical relation of BACKGROUND or JUSTIFICATION holds between
the span that ranges over units 1 to 3, [1,3], and unit 4, because the information given in

span [1,3] merely sets the stage for presenting the information in 4.

Some textual units play a more important role in the text than others. The dif-
ference in importance between the roles played by the textual units that pertain to a given
relation has been acknowledged from the beginning: in fact, the most important classifica-
tion criterion in Grimes’s [1975] taxonomy of relations is the distiction between paratactic
relations, which are relations between units of equal importance, and hypotactic relations,
which are relations between a unit that plays a central role and one that is subsidiary to the
role played by the other unit. The distinction between paratactic and hypotactic relations
is also explicitly acknowledged by Halliday and Hasan [1976] and Martin [1992]. The same
distinction permeates the dominance relations that hold between the intentions associated
with discourse segments in Grosz and Sidner’s theory [1986] and is central to Mann and
Thompson’s theory [1988], in which the units between which a rhetorical relation holds
are explicitly labelled as nuclei (N) and satellites (S). The coordination and subordination
structures in Polanyi’s theory [1988, 1996] and the distinction between core and contribu-
tor in Moser and Moore’s approach [1996, 1997] reflect the same difference in the relative
importance of the units that are members of these structures.

For example, units 5 and 6 in text (2.1) convey information pertaining to the average
surface temperatures on Mars at the equator and at the poles respectively. In other words,
each unit “talks about” a particular instance of the same thing — the average surface
temperature. Therefore, we can say that a paratactic relation of JOINT holds between units
5 and 6. In contrast, if we reconsider span [1,3] and unit 4, we easily notice that unit 4
expresses what is most essential for the writer’s purpose: the role that units 1-3 play is
subsidiary to the role played by unit 4. Hence, we can say that a hypotactic relation of
JUSTIFICATION or BACKGROUND holds between span [1,3] and unit 4.

The abstract structure of most texts is a tree-like structure. Most discourse and
text theories mention explicitly or implicitly that trees are good mathematical abstractions
of discourse and text structures [van Dijk, 1972, Longacre, 1983, Grosz and Sidner, 1986,
Mann and Thompson, 1988, Polanyi, 1988, Asher, 1993, Lascarides and Asher, 1993,
Polanyi, 1996, Moser and Moore, 1996, Walker, 1997]. For example, a possible tree-like
representation of the discourse structure that pertains to units 1-6 in text (2.1) is shown
in figure 2.1: the leaves of the tree correspond to elementary units and the internal nodes
correspond to textual spans that are obtained through the juxtaposition of the immediate

subspans.
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Mars experiences frigid weather conditions. Surface temperatures typically average about -60
degrees Celsius (-76 degrees Fahrenheit) at the equator and can dip to -123 degrees C near the poles.

With its distant orbit - 50 percent farther from the sun than Earth - and slim atmospheric blanket,

ELABORATION
With its distant orbit - 50 percent farther from the sun than

Earth - and slim atmospheric blanket, Celsius (-76 degrees Fahrenheit) at the equator and
Mars experiences frigid weather conditions. can dip to -123 degrees C near the poles.

/BAC/KGROUND JOINT

Surface temperatures average about -60 degrees

With its distant orbit - 50 percent farther Mars experiences Surface temperatures typically and can dip to -123
from the sun than Earth-  and slim frigid weather average about -60 degrees degrees C near
atmospheric blancket conditions. Celsius (-76 degrees Fahrenheit) the poles.
JOINT at the equator
With its distant orbit and slim
- 50 percent farther from the atmospheric
sun than Earth - blancket
ELABORATION
With its distant - 50 percent farther
orbit from the sun than
Earth -

Figure 2.1: An example of a tree-like discourse structure that corresponds to text (2.1).

Unlike the other three features of discourse structures that we have discussed so far,
the assumption that trees are adequate abstractions of discourse structures is the only as-
sumption that has received some criticism: it seems that certain classes of texts, such as
argumentative texts [Toulmin et al., 1979, Birnbaum et al., 1980, Birnbaum, 1982] and
certain dialogues [Carberry et al., 1993] are better represented using graphs. Although I
subscribe to the position that some texts are better represented using graph-based struc-
tures, the empirical experiments that I will describe in chapter 4 show that trees are an
adequate representation in the majority of the cases. (In fact, Cohen [1983, 1987] shows
that even arguments can be modelled as trees.) Since tree-based structures are also easier to
formalize and derive automatically, it is such structures that I will concentrate my attention

on for the rest of the thesis.

2.2.2 The problem of formalizing text structures

The four features that I discuss in section 2.2.1 constitute the foundations of my formaliza-
tion. In other words, I take as axiomatic that any text can be partitioned into a sequence
of non-overlapping, elementary textual units and that a text structure, i.e., a tree, can be

associated with the text such that:

e There exists a bijection between the leaves of the tree and the elementary textual

units;

e The tree obeys some well-formedness constraints that could be derived from the se-
mantics and pragmatics of the elementary units and the relations that hold among

these units. Had such constraints not been obeyed, any tree would be appropriate to
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account for the rhetorical relations that hold between textual units of different sizes,

which is obviously unreasonable.

e The relations that are used to connect textual units of various sizes fall into two

categories: paratactic and hypotactic.

The formalization of text structures can then be equated with the problem of finding a
declarative specification of the constraints that characterize well-formed text trees.

Before getting into the details of the formalization, I would like to draw the attention
of the reader to the fact that the formalization is independent of the taxonomy of relations
that it relies upon. The only assumption behind the formalization is that such a taxonomy
exists and that some relations in this taxonomy are paratactic, while others are hypotactic.

Presenting the formalization only in abstract terms will make the reading difficult. To
avoid this, I will mainly use in my examples the taxonomy of relations that was developed
by Mann and Thompson [1988]. In what follows, I will primarily refer to the relations that
hold between textual units as rhetorical relations. However, the reader should understand
that 1 take rhetorical relation to be just a general term that subsumes all the other kinds
of relations that a text theory might need, such as coherence, argumentative, and cohesion
relations. For the uninitiated reader, I first provide a short introduction to Mann and

Thompson’s theory and taxonomy of relations.

2.3 Rhetorical Structure Theory

2.3.1 Background information

Driven mostly by research in natural language generation, Rhetorical Structure Theory
(RST) [Mann and Thompson, 1988] has become one of the most popular discourse theories
of the last decade [Hovy, 1988b, Scott and de Souza, 1990, Moore and Swartout, 1991,
Cawsey, 1991, McCoy and Cheng, 1991, Horacek, 1992, Hovy, 1993, Moore and Paris, 1993,
Vander Linden and Martin, 1995]. In fact, even the critics of the theory are not interested in
rejecting it so much as in fixing unsettled issues such as the ontology of the relations [Hovy,
1990b, Résner and Stede, 1992, Maier, 1993, Hovy and Maier, 1997], the problematic map-
ping between rhetorical relations and speech acts [Hovy, 1990b] and between intentional and
informational levels [Moore and Pollack, 1992, Moore and Paris, 1993], and the inability of
the theory to account for interruptions [Cawsey, 1991].

Central to Rhetorical Structure Theory is the notion of rhetorical relation, which is a
relation that holds between two non-overlapping text spans called nucleus (N) and satellite
(5). There are a few exceptions to this rule: some relations, such as CONTRAST, are multi-
nuclear. The distinction between nuclei and satellites comes from the empirical observation

that the nucleus expresses what is more essential to the writer’s purpose than the satellite;
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Relation name: EVIDENCE

Constraints on N : The reader R might not believe the information that is
conveyed by the nucleus N to a degree satisfactory to the
writer W.

Constraints on S': The reader believes the information that is conveyed by

the satellite S or will find it credible.
Constraints on
N 4+ S combination: R’s comprehending S increases R’s belief of N.

The effect: R’s belief of N is increased.
Locus of the effect:  N.
Erample: [The truth is that the pressure to smoke in junior high is greater

than it will be any other time of one’s life:®!] [we know that 3,000
teens start smoking each day.”!]

Figure 2.2: The definition of the EVIDENCE relation in Rhetorical Structure Theory [Mann
and Thompson, 1988, p. 251].

and that the nucleus of a rhetorical relation is comprehensible independent of the satellite,

but not vice-versa.

Text coherence in RST is assumed to arise due to a set of constraints and an overall
effect that are associated with each relation. The constraints operate on the nucleus, on
the satellite, and on the combination of nucleus and satellite. For example, an EVIDENCE
relation (see figure 2.2) holds between the nucleus B; and the satellite ¢, because the
nucleus By presents some information that the writer believes to be insufficiently supported
to be accepted by the reader; the satellite ¢; presents some information that is thought to
be believed by the reader or that is credible to her; and the comprehension of the satellite
increases the reader’s belief in the nucleus. The effect of the relation is that the reader’s

belief in the information presented in the nucleus is increased.

Rhetorical relations can be assembled into rhetorical structure trees (RS-trees) on the
basis of five structural constituency schemata, which are reproduced in figure 2.3 from
Mann and Thompson [1988]. The large majority of rhetorical relations are assembled
according to the pattern given in figure 2.3.a. Schema 2.3.d covers the cases in which
a nucleus is connected with multiple satellites by possibly different rhetorical relations.

Schemata 2.3.b, 2.3.c, and 2.3.e cover the multinuclear (paratactic) relations.

According to Mann and Thompson [1988], a canonical analysis of a text is a set of
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CIRCUMSTANCE CO S JOINT

MOTIVATION ENABLEMENT SEQU ENCE

S N S (N) (N) (N)

d) 9
Figure 2.3: Examples of the five types of schema that are used in RST [Mann and Thompson,
1988, p. 247]. The arrows link the satellite to the nucleus of a rhetorical relation. Arrows
are labeled with the name of the rhetorical relation that holds between the units over
which the relation spans. The horizontal lines represent text spans and the vertical and
diagonal lines represent identifications of the nuclear spans. In the SEQUENCE and JOINT
relations, the vertical and diagonal lines identify nuclei by convention only, since there are
no corresponding satellites.

schema applications for which the following constraints hold:

Completeness: One schema application (the root) spans the entire text.

Connectedness: Except for the root, each text span in the analysis is either
a minimal unit or a constituent of another schema application of the

(2.2) analysis.

Uniqueness: Each schema application involves a different set of text spans.

Adjacency: The text spans of each schema application constitute one

contiguous text span.

Obviously, the formulation of the constraints that Mann and Thompson put on the discourse
structure (2.2) is just a sophisticated way of saying that rhetorical structures are trees in
which sibling nodes represent contiguous text. The distinction between the nucleus and
the satellite of a rhetorical relation is their acknowledgement that some textual units play
a more important role in text than others, i.e., some relations are hypotactic, while others
are paratactic. Because each textual span can be connected to another span by only one
rhetorical relation, each unit plays either a nucleus or a satellite role. Since Mann and
Thompson also take the elementary units to be non-overlapping pieces of text, RST is fully

compatible with the essential features of text structures that I discussed in section 2.2.1.

2.3.2 Compositionality in RST

Despite its popularity, RST still lacks two things:
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e a formal specification that would allow one to distinguish between well- and ill-formed

rhetorical structure trees;

e algorithms that would enable one to determine all the possible rhetorical analyses of

a given discourse.

In this section, I show that these problems are primarily due to a lack of “compositionality”
in RST, which would explain the relationship between rhetorical relations that hold between
large textual spans and rhetorical relations that hold between elementary units and would
enable an unambiguous determination of span boundaries. In order to ground the discussion,

consider the following text (in which each textual unit is labelled for reference):

(2.3)  [No matter how much one wants to stay a non-smoker,*] [the truth is that the
pressure to smoke in junior high is greater than it will be any other time of one’s
life.B1] [We know that 3,000 teens start smoking each day,“'] [although it is a fact
that 90% of them once thought that smoking was something that they’d never
do.P1]

Assume, for the moment, that we do not analyze this text as a whole, but rather, that we
determine what rhetorical relations could hold between every pair of elementary textual

units. When we apply Mann and Thompson’s definitions [1988], we obtain the set given

below.
rhet_rel(JUSTIFICATION, A1, By)
rhet_rel(JUSTIFICATION, D1, B )
(2.4) RR =4 rhet_rel(EVIDENCE, Cq,By)
rhet_rel(CONCESSION, Dy, Cq)
rhet_rel(RESTATEMENT, Dy, A1)

These relations hold because the understanding of both A; and D; will increase the reader’s
readiness to accept the writer’s right to present By; the understanding of ¢y will increase
the reader’s belief of By; the recognition of Dy as something compatible with the situa-
tion presented in ¢y will increase the reader’s negative regard for the situation presented
in ¢q; and the situation presented in D; is a restatement of the situation presented in
Ay. Throughout this thesis, I use the convention that rhetorical relations are represented
as sorted, first-order predicates having the form rhet_rel(name, satellite, nucleus) where
name, satellite, and nucleus represent the name, satellite, and nucleus of a rhetorical re-
lation, respectively. Multinuclear relations are represented as predicates having the form
rhet_rel(name, nucleusy, nucleuss).

Assume now that one is given the task of building an RS-tree for text (2.3) and that one
produces the candidates in figure 2.4. Any student in RST would notice from the beginning
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EVIDENCE JUSTIFICATION
[ALBY] L/\ [C1D1] [Al,Bl]L/_\ [CLD1]

JUSTIFICATION CONCESSION JUSTIFICATION CONCESSION
Al B1 c1 D1 Al B1 c1 D1
a) b)
RESTATEMENT
JUSTIFICATION
[ALCl] [A1.CY) 101
EVIDENCE o1 JUSTIFICATION
[ALB1] [BL,C1]
JUSTIFICATION o1 AL EVIDENCE CONCESSION
AL B1 B1 c1 D1
0) d)

Figure 2.4: A set of possible rhetorical analyses of text (2.3).

that the tree in figure 2.4.d is illegal with respect to the requirements specified by Mann
and Thompson [1988] because C; belongs to more than one text span, namely [A1, ;] and
[C1,Dy]. However, even a specialist in RST will have trouble determining whether the trees
in figure 2.4.a—c represent all the possible ways in which a rhetorical structure could be
assigned to text (2.3), and moreover, in determining if these trees are correct with respect
to the requirements of RST. To my knowledge, neither the description provided by Mann
and Thompson nor any other formalization that has been proposed for RST is capable of

providing sufficient help in resolving these problems.

I believe that the explanation for the current lack of algorithms capable of automati-
cally building the RS-trees that pertain to a given discourse can be found not only in the
ambiguous definition of the rhetorical relations but also in the incomplete description of
RS-trees that is provided in the original theory. A careful analysis of the constraints pro-
vided by Mann and Thompson [1988, p. 248] shows that their specification for RS-trees
is not complete with respect to some compositionality requirements that would be neces-
sary in order to formulate precisely the conditions that have to be satisfied if two adjacent
spans are to be put together. Assume, for example, that an analyst is given text (2.3)
and the set of rhetorical relations that pertain to the minimal units (2.4), and that that
analyst takes the reasonable decision to build the spans [A1,By] and [Cy, D], as shown in
figure 2.5. To complete the construction of the RS-tree, the analyst will have to decide

what the best relation is that could span over [Ay,B;] and [cy,Dy]. If she considers the
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JUSTIFICATION?

EVIDENCE?
RESTATEMENT?
s - T~ N
[ALB1] ¢ N [C1,D1)
JUSTIFICATION CONCESSION
Al B1 c1 D1

Figure 2.5: An example of the ambiguity that pertains to the construction of RS-trees.

elementary relations (2.4) that hold across the two spans, she has three choices, which cor-
respond to the relations rhet_rel(JUSTIFICATION, Dy, B1), rhet_rel(EVIDENCE, C1,By), and
rhet_rel(RESTATEMENT, Dy, Ay). Which is the correct one to choose?

More generally, suppose that the analyst has already built two partial RS-trees on the
top of two adjacent spans that consist of ten and twenty minimal units, respectively. Is it
correct to join the two partial RS-trees in order to create a bigger tree just because there is
a rhetorical relation that holds between two arbitrary minimal units that happen to belong
to those spans? One possible answer is to say that rhetorical relations are defined over spans
that are larger than one unit too; therefore, in our case, it is correct to put the two partial
RS-trees together if there is a rhetorical relation that holds between the two spans that we
have considered. But if this is the case, how did we determine the precise boundaries of
the spans over which that relation holds? And how do the rhetorical relations that hold
between minimal units relate to the relations that hold between larger text spans? Mann

and Thompson [1987, 1988] provide no precise answer for these questions.

2.4 Compositionality in other discourse theories

The lack of a compositionality criterion of the kind mentioned in the previous section is not
specific only to RST, but rather to the majority of discourse theories. In what follows, I

discuss a few.

2.4.1 Compositionality in Grosz and Sidner’s theory

Grosz and Sidner’s Theory (GST) [1986] proposes a discourse structure that is also compat-
ible with the essential features discussed in section 2.2.1. In GST, the elementary textual
units are called discourse segments (DS) and the discourse structure is explicitly stated to
be a tree. Fach discourse segment is characterized by a primary intention, which is called
the discourse segment purpose (DS P). GST identifies only two kinds of intention-based re-

lations that hold between two discourse segments: dominance, and satisfaction precedence.
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When the text of a discourse segment DS satisfies the discourse segment purpose DSP;
and provides part of the satisfaction of a discourse segment DS, that includes DSy, it is
said that there exists a dominance relation between DSy and DSy, i.e., DSy dominates
DS;. If the satisfaction of DS P, is conditioned by the satisfaction of DS Py, it is said that
DS Py satisfaction-precedes DS Ps.

Reconsider now text (2.3) from the perspective of GST. In order to build the discourse
structure for this text, we need to have a clear criterion for determining the discourse
segment boundaries and we also need a clear procedure for determining the primary in-
tentions that pertain to each of these segments. GST provides no unambiguous solutions
for any of these problems [Grosz and Hirschberg, 1992, Passonneau and Litman, 1993,
Hirschberg and Nakatani, 1996, Passonneau and Litman, 1997a), but for the sake of the
argument, let us assume that it does. An informal analysis of text (2.3) could produce at

least three discourse segments:

1. The first segment, DSy, contains units A; —B; and its primary intention is (Intend
writer (Believe reader By)), i.e., the writer intends to make the reader believe that

the pressure to smoke in junior high is greater than it will be any other time of one’s

life.

2. The second segment, DS;, contains unit ¢y and its primary intention is (Intend
writer (Believe reader 1)), i.e., the writer intends to make the reader believe that

3000 teens start smoking each day.

3. The third segment, DSs, contains unit D; and its primary intention is (Intend
writer (Believe reader Dy)), i.e., the writer intends to make the reader believe that

90% of the teens once thought that smoking was something that they’d never do.

In order to build the discourse structure of this text, we would need now to consider larger
segments. A reasonable candidate is the segment that dominates segments DSy and DS5
— let us call this segment DS33. The problem that we have when we create this segment
is isomorphic with the problem that we had when we tried to put text spans together in
RST because it is not clear what the primary intention of segment S35 should be. One
choice is to take this intention to be that associated with segment D).S3. Another choice is to
take it to be that associated with segment DSs. And an equally valid choice is to take the
intention to be that the writer intends to make the reader aware of the contrast between the
teens’ behavior (3000 of them start smoking each day) and the beliefs that they held when
they were younger (90% of them once thought that smoking was something that they’d
never do). As in the case of RST, where we did not know how the rhetorical relations that
pertain to large text spans are related to those between the subordinated spans, in GST we
do not know how the primary intentions of large discourse segments are related to those of

the subordinated segments.
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2.4.2 Compositionality in Hobbs’s theory

Hobbs’s theory [1990, 1995] is part of a larger theory that attempts to make explicit the
relation between the interpretation of text, events in the real world, and the knowledge
and beliefs of the speaker and hearer. The main difference between Hobbs’s theory and
the discourse theories proposed by others is in the nature of the taxonomy of coherence
relations. According to Hobbs, a discourse is coherent when it talks about coherent events
in the world; when it reflects some rational structure of goals; when it relates discourse
segments to the reader’s prior knowledge; or when it helps the reader derive inferential
relations between discourse segments, thus enabling her to create a high-level structure of
text.

Hobbs’s theory is consistent with the essential features of discourse that I discussed in
section 2.2: elementary units are contiguous spans of text, coherence relations are hypotactic
and paratactic, and discourse structures are trees.? However, as in Mann and Thompson’s
and Grosz and Sidner’s theories, Hobbs does not provide a compositionality criterion for
the discourse structures of texts. The algorithm that he proposes for analyzing discourse is
a top-down one. In the first step, a human analyst is supposed to identify intuitively one or
two major breaks in the text and then apply the same process recursively, on the resulting
subtexts, until a tree-like structure is obtained. It is only then that the analyst proceeds
in a bottom-up fashion with labelling the nonterminal nodes with coherence relations and
with making explicit the knowledge and beliefs that support the assignment of coherence
relations to nodes. Obviously, the intuitive nature of Hobbs’s algorithm does not answer
the compositionality-related questions that we raised in connection with RST and GST.

In spite of this, Hobbs is closer than Grosz and Sidner and Mann and Thompson to
providing a compositionality criterion for discourse structures, as he explicitly acknowledges

the need for it:

If the definitions of the coherence relations are to be applied to segments of
discourse larger than a single clause, we need to be able to say what is asserted
by those segments. We can do so if, in the composition process, when two
segments Sy and S; are joined by a coherence relation into a larger segment .5,
we have a way of assigning an assertion to .S in terms of the assertions of 5
and S7. The assertion of S will constitute a kind of summary of the segment
S. [Hobbs, 1990, p. 104]

Although Hobbs discusses how the assertion of S might be constructed depending on the

nature of the relation that holds between segments Sy and 57, he does not discuss the

2 An in-order traversal of the leaves of the discourse trees built by Hobbs yields, in some cases, a sequence
of units that differs from that of the original text (see for example the tree in figure 6.1 in [Hobbs, 1990,
p. 117]). In contrast, an in-order traversal of the leaves of the discourse trees built in RST and GST always
yields a sequence of units that reflects the original text.
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relationship between coherence relations that hold between elementary textual units and

coherence relations that hold between larger textual spans.

2.4.3 Compositionality in Polanyi’s theory

Polanyi’s theory [1988, 1996] (PT) is also compatible with the essential features of discourse
that were discussed in section 2.2: Polanyi explicitly mentions that discourse structures are
trees; that the elementary units are sentences (or discourse constituent units); and therefore,
that the elementary units are non-overlapping pieces of text. Although Polanyi rejects the
approaches to discourse that rely on coherence relations, the valid structures of her discourse
parse trees can be interpreted as a direct expression of such relations: the coordination,
subordination, and binary structures are nothing but the structural consequence of the
relations that hold between the constituent units.

One of the main interests of Polanyi is to explain how the incremental processing of dis-
course constituent units yields a discourse parse tree. To do this, Polanyi assumes that each
discourse constituent unit “comes with” a context frame that encodes all the information
that might be needed during the parsing process. The information in these frames is used
to determine unambiguously the node on the right frontier of the partial discourse tree to
which the discourse unit will be attached, and also, the type of attachment. In addition,
Polanyi assumes that the attachment process modifies the frame of the immediate mother
node so that the mother node will reflect the extra information that has been added to the
overall structure. The existence of such an oracle, which determines unambiguously the
attachment nodes and the information that is inherited by the immediate mother nodes

whenever such an attachment occurs, obviates a compositionality principle.

2.5 The formulation of a compositionality criterion of valid

text structures

2.5.1 A weak compositionality criterion

Despite the lack of a formal specification of the conditions that must hold in order to join
two adjacent textual units, I believe that some of the theories that I have discussed so far
contain such a condition implicitly. As I have mentioned before, during the development
of RST, Mann and Thompson [1988] and Matthiessen and Thompson [1988] noticed that
what is expressed by the nucleus of a rhetorical relation is more essential to the writer’s
purpose than the satellite; and that the satellite of a rhetorical relation is incomprehensible
independent of the nucleus, but not vice-versa. Consequently, deleting the nuclei of the
rhetorical relations that hold among all textual units in a text yields an incomprehensible

text, while deleting the satellites of the rhetorical relations that hold among all textual units
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in a text yields a text that is still comprehensible. In fact, as Matthiessen and Thompson
put it, “the nucleus-satellite relations are pervasive in texts independently of the grammar
of clause combining” [1988, p. 290]. The discourse analyses that were built by Grosz and
Sidner [1986] exhibit a similar property: the intentions of some discourse segments are more
important than the intentions of other discourse segments.

A careful analysis of the discourse structures that Mann, Thompson, Grosz, Sidner,
Hobbs, and many others built and my own discourse analyses of more than 2100 texts (see

chapter 4) has led me to formulate the following compositionality criterion:

Proposition 2.1. A weak compositionality criterion of valid text structures: If a
relation R holds between two nodes of the tree structure of a text, that relation also holds
between two or more linguistic or nonlinguistic constructs that pertain to the most important

constituents of those nodes.

The phrasing “linguistic or nonlinguistic constructs” in proposition 2.1 is meant to be
general enough to cover all the possible elements that could be used in the definition of
the taxonomy of relations that one adopts. For example, intentions are the nonlinguistic
constructs that underlie GST (all relations in GST are defined in terms of the intentions
that are associated with the discourse segments). Knowledge about the world provides
grounding for the nonlinguistic constructs that are used by Hobbs. In RST the relations
make reference both to linguistic constructs that pertain to the semantics of the spans and
to nonlinguistic constructs, such as beliefs, attitudes, and goals.

To understand better the claim that proposition 2.1 makes, let us restrict again our
attention to the taxonomy of relations that was proposed by Mann and Thompson and
reconsider the trees in figure 2.4. If we examine tree 2.4.a, we can notice that this tree is
consistent with the compositionality criterion: the EVIDENCE relation that holds between
text spans [y, Dy] and [Ay, By] holds between their most salient parts as well, i.e., between
the nuclei ¢y and By. In this case, the linguistic constructs that the compositionality
criterion refers to are clauses ¢; and By. Both of these clauses are the most important
constituents (nuclei) of the spans that they belong to and an EVIDENCE relation holds
between them. Similarly, if we examine text (2.1), we can notice, for example, that the
JOINT relation that holds between span [1,2] and unit 3, also holds between unit 1, which
is the most important unit in span [1,2], and unit 3.

In the general case, the constructs that the compositionality criterion refers to need not

be clauses. Consider the following example:

(2.5)  [He wanted to play squash with Janet,*?] [but he also wanted to have dinner with

Suzanne.”?] [This indecisiveness drove him crazy.“?]

The RS-tree in figure 2.6 shows the RST analysis of text (2.5), in which units A, and By
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NONVOLITIONAL

A2 B2

Figure 2.6: A rhetorical analysis of text (2.5).

are connected through a CONTRAST relation. The text span that results, [Ag, Bo], is further
connected with textual unit ¢, through a NONVOLITIONAL CAUSE relation. Note, however,
that in this case, the NONVOLITIONAL CAUSE relation holds neither between Ay and Co,
nor between By and Cs. Rather, the relation shows that the CONTRAST between A5 and
Bo, i.e., the incompatibility between the two plans, caused the situation presented in Cs.
In this case, the constructs that the compositionality criterion refers to are the textual
unit ¢, and the CONTRAST relation that holds between units A9 and By. The phrase “This
indecisiveness” in textual unit ¢, makes reference precisely to the CONTRAST relation. Note
also that the CONTRAST relation is a multinuclear (or paratactic) relation that assigns the
rhetorical status of NUCLEUS to both units A, and By. Since both A9 and By are the most
important units of span [Ag, Bg], it follows that the rhetorical relation between them is also
an important construct of the span, which is consistent with the compositionality criterion
given in proposition 2.1.

The linguistic constructs that proposition 2.1 mentions could take a wide range of forms.

Consider the following example, which was first used by Webber [1988a, p. 115]:

(2.6) [There are two houses you might be interested in:*?]

[House A is in Palo Alto.”?] [It’s got 3 bedrooms and 2 baths,*] [and was
built in 1950.72] [It’s on a quarter acre, with a lovely garden,®] [and the owner is
asking $425K.72] [But that’s all I know about it.9?]

[House B is in Portola Valley."?] [It’s got 3 bedrooms, 4 baths and a kidney-
shaped pool,®] [and was also built in 1950.%] [It’s on 4 acres of steep wooded
slope, with a view of the mountains.*?] [The owner is asking $600K."2] [I heard
all this from a friend,#] [who saw the house yesterday.N?]

[Is that enough information for you to decide which to look at?"?]

One of Webber’s main claims is that some discourse segments are characterized by “entities”
that are distinct from the entities that are expressed explicitly therein. The fact that
naturally occurring texts contain references to such entities proves the validity of Webber’s

proposal. For example, the first boldfaced “that” in text (2.6) refers not to house A, an
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JUSTIFICATION

[A3,N3] Description houses A and B
JUSTIFICATION P3
Description houses A and B [B3N3]
A3 Description house A
p JOINT Description house B
[B3,G3] [H3,N3]
Description house A CONCESSION Description house B EVIDENCE
[B3,F3] [H3,L3]
G3
ELABORATION
JOINT JOINT
AN
B3 C3 D3 E3 F3 H3 13 J3 K3 L3 M3 N3

Figure 2.7: A rhetorical analysis of text (2.6).

entity explicitly mentioned in the discourse, but to the description of that house. Similarly,
the boldfaced “this” refers to the description of house B. And the last boldfaced “that” refers

to the description of the two houses taken together.

Figure 2.7 shows the RST analysis of text (2.6). To demonstrate that this RST analysis
and the kind of discourse deixis proposed by Webber [1988a, 1991] are consistent with the
compositionality criterion given in proposition 2.1, I will use an informal, “bottom-up”
analysis: each of the textual spans [Bs, F3] and [H3,L3] contains a set of elementary units
that are connected by a JOINT relation. The linguistic constructs that these sets of units
induce are the descriptions of the two houses; these constructs are shown in boldface fonts
in figure 2.7. Text span C3 specifies only that the content presented in units Bz—F3 is
all that the writer knows. At the time unit G3 is produced, the construct Description
house A is already available for reference, so this explains why the first boldfaced “that”
in text (2.6) makes sense. Because Description house A is an important construct of
span [Bs, F3], and because [Bs, F3] is the nucleus of the span [Bs, G3], it is natural to consider
that Description house A is an important construct for span [Bs, Gs] as well. Reasoning
similarly, we can explain why the boldfaced “this” makes sense and why Description
house B is an important construct for span [Hs3, N3]. Because spans [Bs, G3] and [H3, N3] are
connected through a JOINT relation, i.e., a multinuclear relation, the important constructs
of each of them could be promoted to the higher level span, [Bs,N3]. This explains why
Description houses A and B is an important construct of span [Bs, N3]. Following the
same procedure, Description houses A and B becomes an important construct for span

[A3, N3], which explains why the second boldfaced “that” in text 2.6 makes sense.

Again, as in the previous cases, the interpretation given above is consistent with the
compositionality criterion. For example, the CONCESSION relation between span [Bs, F3]
and unit Gs also holds between the the construct Description house A and unit G3. The

JOINT relation between spans [Bs, G3] and [Hs, N3] also holds between the descriptions of the
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two houses.

Formalization of the compositionality criterion given in proposition 2.1 would require the
existence of well-developed formalisms that accommodate beliefs, intentions, and goals, and
a full account of the relation between these constructs and their linguistic representation.
Unfortunately, such an account is beyond the current state of the art of computational
linguistics and artificial intelligence. Since my purpose is to provide a theory of the structure
of unrestricted texts, I cannot take compositionality criterion 2.1 as foundational because

is too underspecified.

2.5.2 A strong compositionality criterion

Although compositionality criterion 2.1 is too weak to be useful, 1 believe that we can
still contribute to the general understanding of text by constructing a theory that takes
as foundational a weaker criterion. The intuition behind the weaker criterion is that, after
all, all the linguistic and nonlinguistic constructs that are used as arguments of rhetorical
relations can be derived from the textual units and the relations that pertain to those
units. Since we do not know how to properly represent and reason about the linguistic and
nonlinguistic constructs that we brought up in the previous section and since we do not know
how to derive the nonlinguistic ones from the linguistic ones, we will simply ignore them
for the moment. Textual units, i.e., clauses, sentences, and paragraphs, are constructs that
we are familiar with and that we do know how to handle. Therefore, I will use only these
constructs in the formalization. These assumptions strengthen the weak compositionality

criterion, as shown in proposition 2.2, below.

Proposition 2.2. A strong compositionality criterion of valid text structures: [f
a rhetorical relation R holds between two textual spans of the tree structure of a text, that

relation also holds between the most important units of the constituent spans.

If we reconsider text (2.3) and the tree in figure 2.4.a from the perspective of the strong
compositionality criterion, we get the same interpretation as in the case of the weak com-
positionality criterion: the EVIDENCE relation that holds between text spans [Ccy,Dq] and
[A1,B1] also holds between their most important subspans, i.e., between the spans ¢; and
Bi.

In the case of text (2.5), whose RS-tree is given in figure 2.6, the strong compositionality
criterion is tautological because it specifies that the NONVOLITIONAL CAUSE relation that
holds between spans [A;, By] and ¢ also holds between A3,By and ¢, — the most important
subspans of span [A3, Bo] are both A5 and By. Note that although, in this case, the strong
compositionality criterion does not spell out precisely the elements between which the NON-
VOLITIONAL CAUSE relation holds, a potential reader of text structure 2.6 could identify

that by herself because both units A, and By are considered important for span [Ag, Bo] and
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therefore, that span represents the relation between the CONTRAST relation and textual
unit o implicitly.

In the case of text (2.6), whose RS-tree is shown in figure 2.7, the strong composition-
ality criterion specifies, for example, that the rhetorical relation between spans [Bs, G3] and
[H3, N3] also holds between their most important subspans, i.e., between spans [Bs, F3] and
[H3,L3]. As in the previous cases, this constraint is stronger than that postulated by the
weak compositionality criterion, i.e., it enables automatic inferences to be drawn, although
it does not mention explicitly the constructs between which the relation holds. However,
the information that pertains to the weak compositionality criterion is still implicit in the
representation because the constructs Description house A and Description house B

are implicitly encoded in the spans [Bs, F3] and [Hs, L3], respectively.

2.6 The formalization of text structures

2.6.1 A concrete formulation of the text structure formalization problem

The formalization of text structures that I propose assumes a set Rels of well-defined rhetor-
ical relations that is partitioned into two subsets: the set of paratactic and the set of hy-
potactic relations (Rels = Relspratactic U Relspypotactic). Throughout the thesis I will also
use the terms “multinuclear” to refer to paratactic relations and “mononuclear” to refer to
hypotactic relations.

I take the essential features of text structures given in section 2.2.1 and the strong com-
positionality criterion given in proposition 2.2 to be the foundations of my formal treatment
of text structures. More specifically, I will formalize the idea that two adjacent spans can
be joined in a larger span by a given rhetorical relation if and only if that relation holds also
between the most salient units of those spans. Obviously, the formalization will also specify
the rules according to which the most salient units of a text are determined. Formally, the

problem that I want to solve is that given in definition 2.1, below.

Definition 2.1. The problem of text structure derivation: Given a sequence of tex-
tual units U = wuy, ug,...,u, and a set RR of rhetorical relations that hold among these

units, find all valid text structures (trees) of the linear sequence uy, uz, ..., Uy.

The problem of text structure derivation given above is consistent with a position that
assumes that rhetorical relations that hold between large textual spans should be derived
only from rhetorical relations that hold between elementary units. Nevertheless, psycholin-
guistic experiments suggest that humans are able to determine rhetorical relations that
hold between large textual spans as well. 1 call such relations extended rhetorical rela-
tions. Although humans are not consistent at determining the boundaries of large textual

spans [Grosz and Hirschberg, 1992, Passonneau and Litman, 1993, Hirschberg and Nakatani,
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1996, Passonneau and Litman, 1997a, Moser and Moore, 1997], I believe that a theory of
text structures should accommodate judgements that pertain to large textual spans as well.

Definition 2.2, which is given below, accounts for this case.

Definition 2.2. An extended formulation of the problem of text structure deriva-
tion: Given a sequence of textual units U = uy, ug, ..., u, and a set RR of simple and ex-
tended rhetorical relations that hold among these units and among contiguous textual spans

that are defined over U, find all valid text structures of the linear sequence U.

In this section, I provide a formalization for the extended formulation of the problem
of text structure derivation. The formalization of the formulation given in definition 2.1
can be obtained from the formalization given here by taking the set of extended rhetorical

relations that hold among non-elementary spans of a text to be empty.

Notation. The formalization that I propose here uses the following predicates, with the

following intended semantics:

e Predicate position(u, ) is true for a textual unit w in sequence U if and only if u is
3

the 7-th element in the sequence.
e Predicate rhet_rel(name, u;, u;) is true for textual units w; and u; with respect to
rhetorical relation name if and only if the definition D of rhetorical relation name is
consistent with the relation between textual units u;, in most cases a satellite, and u;, a
nucleus. The definition D could be part of any consistent theory of rhetorical relations.
For example, from the perspective of RST, text (2.3) is completely described at the
minimal unit level by the following set of predicates, in which the set of predicates

rhet_rel is the same as that given in (2.4):

rhet_rel(JUSTIFICATION, A1, By)
rhet_rel(JUSTIFICATION, D1, By)

rhet_rel(EVIDENCE, C1, By )

rhet_rel(RESTATEMENT, D1, A1)

(
(
(
(2.7) rhet_rel(CONCESSION, Dy, Cy )
(
position(Ay, 1), position(By, 2)
(

position(cy, 3), position(Dy, 4)

nstead of using the predicate position, we could have assumed that the textual units of a text are always
labelled with numbers that reflect their index in the text they occur. However, since the formalization of
text structures will be also used in natural language generation in order to produce sequences of units that
are most likely to be coherent, such an approach would be misleading. To avoid confusion, I prefer to use
an explicit predicate.
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EVIDENCE
Al-D1
JUSTIFICATION CONCESSION
Al-B1 C1-D1

Figure 2.8: A binary representation isomorphic to the RS-tree shown in figure 2.4a.

e Predicate rhet_rel_ext(name, ss, s., ns, n.) is true for textual spans [ss, s.] and [ng, n.]
with respect to rhetorical relation name if and only if the definition D of rhetorical
relation name is consistent with the relation between the textual spans that ranges
over units s;—s., in most cases a satellite, and units ns—n., a nucleus. Hence the five
arguments of the predicate rhet_rel_ext denote the name of the rhetorical relation; the
name of the elementary unit that is on the leftmost position in the satellite span, s,;
the name of the elementary unit that is on the rightmost position in the satellite span,
Se; the name of the elementary unit that is on the leftmost position in the nucleus
span, ng; and the name of the elementary unit that is on the rightmost position in the
nucleus span, n.. For example, from the perspective of RST, we can say that extended
rhetorical relation rhet_rel_ext(JUSTIFICATION, A1, A1, B1,D1) holds between unit Ay

and span [By, Dq].

In this thesis, I will also use the notation rhet_rel(name,|ss, s],[ns, ne]) as an ab-
breviation of rhet_rel_ext(name, ss, ., ns,ne) in the case s, # s. and ns; # n., and
rhet_rel(name, ss, [ns,ne]) as an abbreviation of rhet_rel_ext(name, s,, ss,ng, n.) in
the case the satellite is elementary (ss; = s.). When the nucleus is elementary, I will use
the notation rhet_rel(name, [ss, sc|, ns) as an abbreviation of rhet_rel_ext(name, ss, ss,
ns,Ms). For example, rhet_rel(JUSTIFICATION, Ay, [B1,D1]) is nothing but a more
intuitive representation of the predicate rhet_rel_ext(JUSTIFICATION, A1, A1, B1,D1)
while rhet_rel(JUSTIFICATION, [C1, D1], [A1,B1]) is a more intuitive representation of

the predicate rhet_rel_ext(JUSTIFICATION, C1, D1, A1, B1).

Features of the formalization. To simplify my formalization, I follow the traditional

approach and assume without restricting the generality of the problem that text trees are

binary trees. A binary representation for a text tree maps each textual unit into a leaf

and each rhetorical relation into an internal node whose children are the units between
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Figure 2.9: Binary trees isomorphic to the non-binary trees shown in figure 2.3(d,e)

which that rhetorical relation holds. The mapping preserves the labelling associated with
the nuclear status of each node. For example, a binary representation of the RS-tree in
figure 2.4.a is given in figure 2.8.

In fact, we can interpret non-binary trees, such as those shown in figure 2.3.(d,e), as
being collapsed versions of binary trees. For example, the tree in figure 2.3.d can be derived
either from the tree in figure 2.9.a or that in 2.9.b; and the tree in figure 2.3.e can be
derived from the tree in figure 2.9.c. This view is also sympathetic with functional theories
of language [Halliday, 1994] that stipulate that “rhetorical units defined by an enhancing
nucleus-satellite relation have only one satellite. This satellite may be realized by a list
(joint) of rhetorical units, but is still a single satellite” [Matthiessen and Thompson, 1988,
p. 303].

The formalization that I propose here is built on the following features:
e A text tree is a binary tree whose leaves denote elementary textual units.

e Each node has associated a status (nucleus or satellite), a type (the rhetorical relation
that holds between the text spans that that node spans over), and a salience or
promotion set (the set of units that constitute the most “important” part of the text
that is spanned by that node). By convention, for each leaf node, the type is LEAF

and the promotion set is the textual unit that it corresponds to.

A representation for the tree in figure 2.4.a, which reflects these characteristics, is given
in figure 2.10. The status, type, and salience unit that are associated with each leaf follows
directly from the convention that I have given above. The status and the type of each
internal node is a one-to-one mapping of the status and rhetorical relation that are associated
with each non-minimal text span from the original representation. The status of the root as
{NUCLEUS, SATELLITE} reflects the fact that text span [A;, Dy] could play either a NUCLEUS
or a SATELLITE role in any larger span that contains it.

The most significant differences between the tree in figure 2.10 and the tree in figure 2.4.a

pertain to the promotion sets that are associated with every internal node. These promotion
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Status = {NUCLEUS, SATELLITE}
Type = {EVIDENCE}
Promotion = {B1}

Status = {SATELLITE}
Type = {CONCESSION}
<_ Promotion = {C1}

Status = {NUCLEUS}
Type = {JUSTIFICATION}
Promotion = {B1}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {A1}

Status = {NUCLEUS} Status = {NUCLEUS}
Type = {LEAF} Type = {LEAF}
Promotion = {B1} Promotion = {C1}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {D1}

Figure 2.10: An isomorphic representation of tree in figure 2.4.a according to the status,
type, and promotion features that characterize every node. The numbers associated with
each node denote the limits of the text span that that node characterizes.

sets play a major role in determining the validity of a text tree. The tree in figure 2.10
is valid, because the EVIDENCE relation that holds between spans [y, D] and [Aq, By] also
holds between their most salient units, i.e., ¢; and Bj.

The status, type, and promotion set that are associated with each node in a text tree
provide sufficient information for a full description of an instance of a text structure. Given
the linear nature of text and the fact that we cannot predict in advance where the boundaries
between various text spans will be drawn, we should provide a methodology that permits
one to enumerate all possible ways in which a tree could be built on the top of a linear
sequence of textual units. The solution that I propose relies on the same intuition that
constitutes the foundation of chart parsing: just as a chart parser is capable of considering
all possible ways in which different words in a text could be clustered into higher-order
grammatical units, so my formalization would be capable of considering all the possible
ways in which different text spans could be joined into larger spans.?

Let span; ;, or simply [¢, j], denote a text span that includes all the textual units between
position ¢ and j. Then, if we consider a sequence of textual units uy, us, ..., u,, there are n
ways in which spans of length one could be built, span; 1, spang s, ..., span, ,; n — 1 ways
in which spans of length two could be built, span; 2, spang s, ..., span,_1,; n —2 ways in
which spans of length three could be built, span;s,spang,...,span,_2,; ...; and one
way in which a span of length n could be built, span; ,. Since it is impossible to determine
a priori the text spans that will be used to make up a text tree, I will associate with each
text span that could possibly become part of a text tree a status, a type, and a promotion
relation and let the constraints that pertain to the essential features of text structures and
the strong compositionality criterion generate the correct text trees. In fact, my intent is to

determine from the set of n4(n—1)+(n—2)+...41 = n(n+1)/2 potential text spans that

*] am grateful to Jeff Siskind for bringing to my attention the similarity between charts and text spans.
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pertain to a sequence of n textual units, the subset that adheres to the constraints that I
have mentioned above. For example, for text 2.3, there are 44+3+2+4+1 = 10 potential spans,
i.e., spany i, spany g, Spans s, SPang 4, SPAny 2, SPAn 3, SPAN3 4, SPAny 3, Spans 4, and span; 4,
but only seven of them play an active role in the representation given in figure 2.10, i.e.,
spany 1, Spangy g, SPans s, SPany 4, SPAny 2, Spans 4, and spany 4.

In formalizing the constraints that pertain to a text tree, I assume that each possible
text span, span;p,” which will or will not eventually become a node in the final discourse

tree, is characterized by the following relations:

e S(l, h,status) denotes the status of spanyp, i.e., the text span that contains units [ to
h; status can take one of the values NUCLEUS, SATELLITE, or NONE according to the
role played by that span in the final text tree. For example, for the RS-tree depicted in
figure 2.10, the following relations hold: S(1,2,NUCLEUS),S(3,4, SATELLITE),
S(1,3,NONE).

e T'(l,h,relation name) denotes the name of the rhetorical relation that holds between
the text spans that are immediate subordinates of span;, in the text tree.% If the
text span is not used in the construction of the final text tree, the type assigned by
convention is NONE. For example, for the RS-tree in figure 2.10, the following relations

hold: T'(1,1,LEAF),T(1,2,JUSTIFICATION), T'(3,4, CONCEsSION), T'(1, 3, NONE).

o P(l,h,unit_name) denotes the set of units that are salient for span;; and that can
be used to connect this text span with adjacent text spans in the final RS-tree.
If span; ), is not used in the final text tree, by convention, the set of salient units
is NONE. For example, for the RS-tree in figure 2.10, the following relations hold:
P(1,1,4ay), P(1,2,B1), P(1,3,NONE), P(3,4, c1).

2.6.2 A complete formalization of text trees

Using the conventions that I have discussed in the previous subsection, I present now a
complete first-order formalization of text trees. In this formalization, I assume a universe
that consists of the set of natural numbers from 1 to N, where N represents the number
of textual units in the text that is considered; the set of names that were defined by a
discourse theory for each rhetorical relation; the set of unit names that are associated with
each textual unit; and four extra constants: NUCLEUS, SATELLITE, NONE, and LEAF. The
only function symbols that operate over this domain are the traditional 4+ and — functions
that are associated with the set of natural numbers. The formalization uses the traditional

predicate symbols that pertain to the set of natural numbers (<, <,>,>,=,%#) and five

5In what follows, I and h always denote the left and right boundaries of a text span.
6The names of the rhetorical relations are dependent on the set of relations that one uses.
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other predicate symbols: S, T, and P to account for the status, type, and salient units that
are associated with every text span; rhet_rel to account for the rhetorical relations that
hold between different textual units; and position to account for the index of the textual
units in the text that one considers. 1 use the terms text tree or discourse tree whenever
I refer to a general abstract structure, which is built using some taxonomy of relations
Rels = Relspypotactic U Relsparatactic- 1 use the term RS-tree whenever 1 refer to a text

structure that uses the taxonomy of relations defined by Mann and Thompson [1988].

Throughout this thesis, I apply the convention that all unbound variables are universally
quantified and that variables are represented in lower case letters while constants in small
capitals. I also make use of two extra relations (relevant_rel and relevant_unit), which 1
define here as follows: for every text span span;p, relevant_rel(l, h,name) (2.8) describes
the set of simple and extended rhetorical relations that are relevant to that text span, i.e.,

the set of rhetorical relations that span over units from the interval [, A].

(2.8) relevant_rel(l, h, name) =
(s, n, sp, np)[position(s, sp) A position(n, np) A
({ <sp<h)A(<np<h)Arhet_rel(name,s,n)|Vv
(Fss, Sey Ny ey U1, B,y Lo, Ry )[position(ss, l1) A position(se, hi) A
position(ns, lz) A position(ne, ho) A (I <1y < hy < h)A

(1 <ly < hg < h) Arhet_rel_ext(name, ss, S, Ns, Ne) ]

For every text span spany, relevant_unit(l, h,u) (2.9) describes the set of textual units
that are relevant for that text span, i.e., the units whose positions in the initial sequence

are numbers in the interval [I, h].
(2.9) relevant_unit(l, h,u) = (3z)[position(u,z) A (I <z < h)]

For example, for text (2.3), which is described formally in (2.7), the following is the set of
all relevant_rel and relevant_unit relations that hold with respect to text segment [1, 3]

and with respect to the relation definitions proposed by RST:

{relevant_rel(1, 3, JUSTIFICATION), relevant_rel(1,3, EVIDENCE),

relevant_unit(1,3, A1), relevant_unit(1, 3, By ), relevant _unit(1,3,¢y)}

The constraints that pertain to the structure of a text tree can be partitioned into
constraints related to the objects over which each predicate ranges and constraints related

to the structure of the tree. I describe each set of constraints in turn.
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Constraints that concern the objects over which the predicates that describe

every span [/, h] of a text tree range

e For every span [/, h], the set of objects over which predicate S ranges is the set
NUCLEUS, SATELLITE, NONE. Since every textual unit has to be part of the final RS-tree,
the elementary text spans, i.e., those spans for which [ = &, constitute an exception to this

rule, i.e., they could play only a NUCLEUS or SATELLITE role.

(2.10) (1<ASN)A(LLI<R)]—
(S(l, h,NUCLEUS) V S(I, h, SATELLITE))] A
(S(l, h,NucLEUS) V S({, h, SATELLITE) V S({, h, NONE))]}

e The status of any text span is unique.

(2.11) (1<h<N)AALI<L<hA)]—
[(S(I, h, statusy) A S(l, h, statusy)) — status; = statuss]

e For every span [/, h], the set of objects over which predicate T ranges is the set
of rhetorical relations that are relevant to that span. By convention, the rhetorical

relation associated with a leaf is LEAF.

(2.12) (1<ASN)A(LLI<R)]—
{ll=h—=T(l, hLEAF)] A

[[#h— (T

(T

({, h,NONE) V
(

[, h, name) — relevant_rel(l, h,name)))]}
e At most one rhetorical relation can connect two adjacent text spans.
(2.13) [(I<h<N)A(1ILI<h)]—
[(T(l, h,namey) NT(l, h, namesz)) — name; = names]
e For every span [/, h], the set of objects over which predicate P ranges is the
set of units that make up that span.

(2.14) [(I<h<N)A(LZI<h)]—
[P(l, h,NONE) V (P(l, h, u) — relevant_unit(l, h,u))]
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Constraints that concern the structure of the text trees

The following constraints are derived from the essential features of text structures that
were discussed in section 2.2.1 and from the strong compositionality criterion given in

proposition 2.2.

e Text spans do not overlap.

(11<12)/\(h1 <h2)/\(12§h1)]—>

[=S(l1, h1,NONE) — S(l3, hy, NONE)]

e A text span with status NONE does not participate in the tree at all.

(2.16) (1<ASN)A(LLI<h)]—
[(S(l, h,NONE) A P(l, h,NONE) AT(l, h, NONE)) V
(=S(l, h,NONE) A =P(l, h,NONE) A =T({, h, NONE))]

e There exists a text span, the root, that spans over the entire text.

(2.17) =5(1,N,NONE) A =P(1,N,NONE) A =T'(1, N, NONE)

e The status, type, and promotion set that are associated with a text span

reflect the strong compositionality criterion.

(2.18) [(1<h<N)A(L<I<h)A=S(, h,NONE)] —
(FIname, split_point, s, n)[(l < split_point < h)
A (Nucleus_first(name, split_point, s,n) V
Satellite_first(name, split_point, s, n))] V
(Iname, split_point, s, sc, ns, ne)[(I < split_point < h)
A (Nucleus_first_ext(name, split_point, s, s¢, ng, ne) V

Satellite_first_ext(name, split_point, ss, ¢, N5, ne))]
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(2.19) Nucleus_first(name,split_point, s, n) =
rhet_rel(name, s,n) AT (I, h, name) A position(s, sp) A position(n,np) A
I < mp < split_point A split_point < sp < h A
P(l, split_point, n) A P(split_point + 1, h, s) A
{(name € Relspqratactic) —
S(l, split_point, NUCLEUS) A S(split_point+ 1, h, NUCLEUS) A
(Vp)[P(l, h,p) = (P(l, split_point, p) vV P(split_point+ 1, h, p))]} A
{(name € Relspypotactic) —
S(l, split_point, NUCLEUS) A S(split_point+ 1, h, SATELLITE) A
(Vp)(P(l, h, p) = P(l, split_point, p)) }

(2.20) Satellite_first(name,split_point, s, n) =
rhet_rel(name, s,n) AT (I, h, name) A position(s, sp) A position(n,np) A
[ < sp < split_point A split_point < np < h A
P(l, split_point, s) A P(split_point+ 1, h,n) A
{(name € Rels,qratactic) —
S(l, split_point, NUCLEUS) A S(split_point+ 1, h, NUCLEUS) A
(Vp)[P(l, h,p) = (P(l, split_point, p) vV P(split_point+ 1, h, p))]} A
{(name € Relspypotactic) —
S(l, split_point, SATELLITE) A S(split_point 4+ 1, h, NUCLEUS) A
(Vp)(P(l, h, p) = P(split_point 4 1, h, p))}

(2.21) Nucleus_first_ext(name, split_point, ss, Se, ns, Ne) =
{[rhet_rel_ext(name, ss, s., ns,n:) AT (1, h,name) A
position(ss, split_point + 1) A\ position(se, h) A
position(ns, ) A position(n., split_point) A
{(name € Rels,aratactic) —
S(l, split_point, NUCLEUS) A S (split_point+ 1, h, NUCLEUS) A
(Vp)[P(l, h,p) = (P(l, split_point, p) vV P(split_point + 1, h, p))]} A
{(name € Relspypotactic) —
S(l, split_point, NUCLEUS) A S(split_point+ 1, h, SATELLITE) A
(Vp)(P(l, h, p) = P(l, split_point, p)) }
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(2.22) Satellite_first_ext(name, split_point, ss, e, Mg, Ne) =
{[rhet_rel_ext(name, ss, s., ns,n:) AT (1, h,name) A
position(ns, split_point + 1) A position(n., h) A
position(ss, ) A position(s., split_point) A
{(name € Rels,aratactic) —
S(l, split_point, NUCLEUS) A S (split_point+ 1, h, NUCLEUS) A
(Vp)[P(l, h,p) = (P(l, split_point, p) vV P(split_point + 1, h, p))]} A
{(name € Relspypotactic) —
S(l, split_point, SATELLITE) A S (split_point + 1, h, NUCLEUS) A
(Vp)(P(l, h, p) = P(split_point+ 1, h,p))}

Formula (2.18) specifies that whenever a text span [/, k] denotes an internal node (I < h)
in the final text tree, i.e., its status is not NONE, the span [/, h] is built on the top of two
text spans that meet at index split_point and there either exists an elementary relation that
holds between two units that are salient in the adjacent spans (Nucleus_firstV Satellite_first)
or an extended rhetorical relation that holds between the two spans (Nucleus_first_ext V

Satellite_first_ext).

Formula (2.19) specifies that there is a rhetorical relation with name name, from a
unit s (in most cases a satellite) that belongs to span [split_point + 1, k] to a unit n, the
nucleus, that belongs to span [, split_point]; that unit n is salient with respect to text span
[[, split_point] and unit s is salient with respect to text span [split_point + 1, h]; and that
the type of span [[, k] is given by the name of the rhetorical relation. If the relation is
paratactic (multinuclear), the status of the immediate sub-spans is NUCLEUS and the set of
salient units for text span [[, h] consists of all the units that make up the set of salient units
that are associated with the two sub-spans. If the relation is hypotactic, the status of text
span [l, split_point] is NUCLEUS, the status of text span [split_point+ 1, h] is SATELLITE and
the set of salient units for text span [/, h] are given by the salient units that are associated
with the subordinate nucleus span. The € symbol in formulas (2.19) and (2.22) is just an
abbreviation of a disjunction over all the relation names that belong to the paratactic and
hypotactic partitions respectively. Formula Satellite_first(name,split_point, s, n) (2.20) is a
mirror image of (2.19) and it describes the case when the satellite that pertains to rhetorical
relation rhet_rel(name, s, n) belongs to text span [I, split_point], i.e., when the satellite goes

before the nucleus.

Formula (2.21) specifies that there is an extended rhetorical relation with name name,
which holds between two textual spans that meet at split_point, and that the nucleus of the

rhetorical relation goes before the satellite. In such a case, the type of span [I, h] is given by

42



the name of the extended rhetorical relation. If the relation is paratactic (multinuclear), the
status of the immediate sub-spans is NUCLEUS and the set of salient units for text span [/, h]
consists of all the units that make up the set of salient units that are associated with the two
sub-spans. If the relation is hypotactic, the status of text span [I, split_point] is NUCLEUS, the
status of text span [split_point+ 1, h] is SATELLITE and the set of salient units for text span
[[, h] are given by the salient units that are associated with the subordinate nucleus span.
Formula (2.22) is a mirror image of (2.21) and it describes the case when the units of the
satellite span s;—s. that pertains to the extended rhetorical relation rhet_rel_ext(name, s,
Se, M5, Ne) belongs to text span [[, split_point], i.e., when the satellite goes before the nucleus.

For the rest of the thesis, the set of axioms (2.8)-(2.22) will be referred to as the

azxiomatization of valid text structures.

2.6.3 A formalization of RST

The axiomatization of valid text structures given in section 2.6.2 can be tailored to any set
of relations. If we choose to work with the set of rhetorical relations proposed by Mann
and Thompson [1988], the only thing that we need to do is specify what the hypotactic and
paratactic relations are. We can do this explicitly, by instantiating in axioms (2.19), (2.20),
(2.21), and (2.22) the sets of hypotactic and paratactic relations that are proposed in RST.
For example, axiom (2.23) is the RST instantiation of axiom (2.19).

(2.23) Nucleus_first(name, split_point, s,n) =
rhet_rel(name,s,n) AT (l, h, name) A position(s, sp) A position(n,np) A
I < mp < split_point A split_point < sp < h A
P(l, split_point, n) A P(split_point+ 1, h,s) A
{(name = CONTRAST V name = JOINT V name = SEQUENCE) —
S(l, split_point, NUCLEUS) A S(split_point+ 1, h, NUCLEUS) A
(Vp)[P(l, h,p) = (P(l, split_point, p) vV P(split_point+ 1, h,p))]} A
{(name # SEQUENCE A name # CONTRAST A name # JOINT) —
S(l, split_point, NUCLEUS) A S(split_point+ 1, h, SATELLITE) A
(Vp)(P(l, h, p) = P(l, split_point, p)) }

In a similar manner, we can instantiate axioms (2.20), (2.21), and (2.22) as well. For the rest
of the thesis, axioms (2.8)—(2.18) and the set of axioms that are derived from axioms (2.19)—
(2.22) by instantiating the taxonomy of relations proposed by RST will be referred to as
the aziomatization of RST.

If we evaluate now the RS-trees in figure 2.4 against the axiomatization of RST, we can

determine immediately that the structures of the trees in figure 2.4.a and 2.4.c satisfy all

43



JUSTIFICATION

EVIDENCE JUSTIFICATION
Al-B1 C1-D1 Al-C1
JUSTIFICATION CONCESSION EVIDENCE bt
Al-B1

EVIDENCE

Al Bl Cl D1
JUSTIFICATION CONCESSION
Al Bl c1 o1
0) b) 0
JUSTIFICATION JUSTIFICATION
Al-C1l { > i 5 B1-D1
JUSTIFICATION D1 JUSTIFICATION

Al

B1-C1 B1-C1 ! \

EVIDENCE EVIDENCE D1

Bl Cl Bl C1

d) €)

Figure 2.11: The set of all RS-trees that could be built for text (2.3).

the axioms, while the structure of the tree in figure 2.4.b does not satisfy axiom (2.18).
More precisely, the rhetorical relation of CONCESSION between Dy and C; projects ¢y as
the salient unit for text span [y, D1]. The initial set of rhetorical relations (2.7) depicts a
JUSTIFICATION relation only between units Dy and By and not between ¢; and B;. Since
the nuclearity requirements make it impossible for Dy to play both a satellite role in the
span [C1,Dq], and to be, at the same time, a salient unit for it, it follows that tree 2.4.b is

incorrect.

If we determine all the ways in which the logical theory that pertains to the formal
representation of text (2.3) (axioms (2.7)) and the axiomatization of RST can be satisfied,
we obtain five models that correspond to the trees in figure 2.11. Among the set of trees
in figure 2.11, trees 2.11.a and 2.11.b match the trees given earlier in figure 2.4.a and 2.4.c.

Trees 2.11.c—e represent trees that are not given in figure 2.4.

If the relations to the same text were to consist of the relations given below in (2.24),

then only one tree could correspond to text (2.3), the tree in figure 2.11.e.

rhet_rel(JUSTIFICATION, D1, B )
(2.24) rhet_rel(EVIDENCE, C1, B1)
rhet_rel(JUSTIFICATION, A1, [B1—D1])
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2.7 Towards formalizing the relationship between text trees

and intentions

2.7.1 Preamble

In the last decade, the members of the computational linguistics community have adopted
primarily either an RST- or a GST-based perspective on discourse. Only recently, re-
searchers have started to investigate the relationship between the two perspectives [Moser
and Moore, 1996]. In this section, I formalize the relationship between the structure of
text and intentions. As in the rest of the chapter, I will take a more general perspective
and assume only that rhetorical relations can be partitioned into paratactic and hypotactic
relations. However, for exemplification, 1 will use the set of rhetorical relations that was
defined by Mann and Thompson [1988]. To increase the understandability of the arguments
that I am going to make in this section, I will rely on a text that was first used by Holmes
and Gallagher [1917] and Cohen [1983], and then by Grosz and Sidner [1986, p. 183]. The
text is given in (2.25), below.

(2.25) [The “movies” are so attractive to the great American public,**] [especially to
young people,B4] [that it is time to take careful thought about their effect on mind
and morals.“] [Ought any parent to permit his children to attend a moving pic-
ture show often or without being quite certain of the show he permits them to
see?”] [No one can deny, of, course, that great educational and ethical gains may
be made through the movies™] [because of their astonishing vividness.F4] [But the
important fact to be determined is the total result of continuous and indiscrim-
inate attendance of shows of this kind.%4] [Can it be other than harmful?¢] [In
the first place the character of the plays is seldom of the best."] [One has only
to read the ever-present “movie” billboard to see how cheap, melodramatic and
vulgar most of the photoplays are.”] [Even the best plays, moreover, are bound
to be exciting and over-emotional.**] [Without spoken words, facial expression
and gesture must carry the meaning:*¢] [but only strong emotion, or buffoonery,
can be represented through facial expression and gesture.t] [The more reasonable
and quiet aspects of life are necessarily neglected.N4] [How can our young people
drink in through their eyes a continuous spectacle of intense and strained activity
and feeling without harmful effects?°4] [Parents and teachers will do well to guard

the young against overindulgence in the taste for the “movie”.P]

The intention-based discourse structure that Grosz and Sidner built for text (2.25) is
shown in figure 2.12: the leaves of the structure are labelled both with the literals that

are used in example (2.25) and with numbers that correspond to the boundaries of those
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1 [12,14]
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Figure 2.12: The intention-based discourse structure of text (2.25).
units in the text — as before, it is assumed that to each elementary textual unit there

corresponds a natural number that reflects the position of that unit in the sequence of units
that make up the text. For simplicity, the internal nodes are labelled using only the numbers
that correspond to the boundaries of the corresponding discourse segments. The solid lines
depict explicit dominance relations; the arrows depict the segments that induce the primary
intentions of the immediately dominant discourse segments; and the dotted line depicts an
implicit dominance relation that is not mentioned by Grosz and Sidner [1986, p. 184]. For
example, discourse segment [11, 14] dominates discourse segment [12, 14], discourse segment
[7,14] dominates discourse segments [9,10] and [11,14], etc. The primary intention of
discourse segment [11,14] is that the writer intends the reader to believe proposition 11.
The primary intention of discourse segment [7,14] is that the writer intends the reader to
believe propositions 7, 8, etc.

If we examine the structure that Grosz and Sidner propose and the relations between
the discourse segments and their primary intentions, it is easy to notice that there is a
clear correspondence between GST and RST. To highlight this correspondence, consider
also an RST-like analysis of the same text (see figure 2.13). In addition to the classical
conventions used to represent RS-trees, figure 2.13 also shows in bold the salient units
that are associated with each internal node. For a better comparison, the spans that were
considered elementary in Grosz and Sidner’s analysis (figure 2.12) use horizontal lines that
are thicker than the lines used for the other spans.

By inspecting figures 2.12 and 2.13, we can immediately notice that the structures that
the two theories assign to text (2.25) are similar. The only difference pertains to their
granularities: RST takes clause-like segments as being the elementary units of discourse,
while GST puts no constraints on the size of the elementary units — in GST, elementary
units can be clauses, sentences, groups of sentences, and even paragraphs. In addition, one

can also see that there also exists a clear correspondence between the primary intentions
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Figure 2.13: A rhetorical structure analysis of text (2.25).

associated with Grosz and Sidner’s discourse segments and the salient units associated with
the internal nodes of the RST representation. Table 2.1 makes this correspondence explicit:
with the exception of textual unit Hy, all other salient units in RST correspond to the
primary intentions associated with the discourse segments built by Grosz and Sidner. In
fact, even the primary intention associated with span [7,14], which Grosz and Sidner take to
be (Intend ICP (Believe OCP “the proposition that although there are gains, the total result
of continuous and indiscriminate attendance at movies is harmful”)), is mainly derived from
unit Hy, which is the salient unit of the same span in the RST representation.”

In a recent proposal, Moser and Moore [1996] argued that the primary intentions in
a GST representation can be associated with the nuclei of the corresponding RST repre-
sentation. Although their proposal is consistent with the cases in which each textual span
is characterized by an explicit nucleus that encodes the primary intention of that span,
we believe that an adequate account of the correspondence between GST and RST can
be given only if we consider the weak compositionality criterion 2.1. As we discussed in
section 2.5, in some cases, the salient constructs of a textual span can be both of linguistic
or nonlinguistic nature. For example, in the case of text (2.5), which we reproduce for

convenience in (2.26) below, we can associate the primary intention of discourse segment

"I use the notation (Intend ICP (Believe OCP f;(H4))) in order to distinguish between the cases in which
the primary intention was given explicitly by a textual unit, and the special case that pertains to segment
[7,14], in which the primary intention is derived through some inferential mechanisms from unit Hy.
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Span or Intention in GST Salient units in RST

Discourse Segment

[1,16] (Intend ICP (Believe OCP py)) Py

[1,3] (Intend ICP (Believe OCP cy)) o

[4,15] (Intend ICP (Believe OCP 04)) 04

[5,6] (Intend ICP (Believe OCP Ey4)) B4

[7,14] (Intend ICP (Believe OCP fr(H4))) Hy

[9,10] (Intend ICP (Believe OCP 14)) Iy

[12,14] (Intend ICP (Believe OCP My, Ny4)) My, Ny

Table 2.1: The correspondence between the primary intentions of discourse segments in
GST and the salient units of the text spans in RST. ICP and OCP denote the Initiat-
ing Conversational Participant (the writer) and the Other Conversational Participant (the
reader) respectively; the terms z associated with the tuples (Believe OCP z) denote the
corresponding propositions from text (2.25).

[Ag, Bo] neither to unit Ay nor to unit By. Rather, the primary intention pertains to the
rhetorical relation between the two units. In Grosz and Sidner’s terms, we can say that the
primary intention of segment [Ag, B3] is (Intend ICP (Believe OCP “he wanted to do two
things that were incompatible”)). In other words, the intention associated with segment
[Ag, Bo] is a function both of its salient units, A5 and By, and of the rhetorical relation that

holds between these units.

(2.26) [He wanted to play squash with Janet,*2] [but he also wanted to have dinner with

Suzanne.®?] [This indecisiveness drove him crazy.“?]

Similarly, in Webber’s text (2.6), the primary intention of segment [Bs, F3], for example,
— (Intend ICP (Inform OCP “description house A”)) — arises from the juxtaposition of
all the individual units in the segment. That is, the primary intention is a function both
of the salient units of discourse segment [Bsz, F3] and of the rhetorical relation of JOINT that
holds among them. I now formalize this relationship between the primary intentions and

the structure of text.

2.7.2 The melding of text structures and intentions

In formalizing the constraints that pertain both to RST-like structures and GST-like in-
tentions, I use the same conventions that I used in section 2.6. Again, because | want to
provide a formalization that is independent of the set of rhetorical relations that one uses,
I will assume only that the set of rhetorical relations can be partitioned into two classes:
paratactic and hypotactic. In addition to the relations discussed in section 2.6, I will also

use the following predicates and functions:
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e Predicate I(l, h,intention) is true when intention denotes the primary intention of
discourse span [[, h]. The term intention is represented using an oracle function fr,
which is discussed below. However, in order to simplify the exposition, let us assume
for the moment that strings are first-order objects. When we do so, the following
are some of the predicates that are true with respect to the discourse analysis given
by Grosz and Sidner for text (2.25): I(1, 16, “parents and teachers should guard the
young against overindulgence in the movies”) and (11,14, “stories in movies are

exciting and over-emotional”).

e Predicate dom(ly, h1, (3, h2) is true whenever a discourse span [l1, h;] dominates a dis-
course span [lz, hz]. Some of the predicates that hold for text (2.25) are: dom(1, 16,1, 3)
and dom(11, 14,12, 14). A dominance relation is well-formed if span [lz, hs] is a proper
subspan of span [l1, hq], i.e., [y <lp < hg < hy A(l1 #12V hy # ha).

e Predicate satprec(ly, hy,lz, hy) is true whenever an intentional satisfaction-precedence
relation holds between two segments [ly, hy] and [l3, he]. A satisfaction-precedence

relation is well-formed if the spans do not overlap.

e Oracle function f;(r,zy,...,x,) takes as arguments a rhetorical relation r and a set
of textual units, and returns the primary intention that pertains to that relation
and those units. For example, in the case of segment [A3,Bg] in text (2.26), the
oracle function f;(CONTRAST, A3, Bg) is assumed to return a first-order object whose
meaning can be glossed as “inform the reader that the character of the story wanted to
do two things that were incompatible”. And the oracle function f;(BACKGROUND, Cy4)
associated with segment [1, 3] in text (2.25) is assumed to return a first-order object
whose meaning can be glossed as “inform the reader that it is time to consider the
effects of movies on mind and morals”; in this case, the oracle function makes no use

of the associated rhetorical relation.

The dominance and satisfaction-precedence relations that are used by Grosz and Sidner
are relations that characterize a different level of abstraction than that characterized by
rhetorical relations. On one hand, the dominance and satisfaction-precedence relations
specify how the intentions of some discourse segments are related to the intentions of other
segments. In this respect, their nature is semantic and pragmatic. On the other hand,
they impose constraints on the overall discourse structure. In this respect, their nature
is structural. Given the fact that the intention-based relations proposed by Grosz and
Sidner are hence somewhat different from those proposed by Mann and Thompson and
other discourse theorists, I will assign them a different status in the formalization.

In the formalization that I propose, each node of a discourse structure is characterized

by four features: the status of the node, the rhetorical relation that holds between the nodes
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that are immediate children, the set of salient units, and the primary intention. For the
sake of completeness, I specify here all the axioms that pertain to the axiomatization of
valid text structures and GST. The axioms whose meaning was explained in the previous

sections are reproduced with no further explanation.

The set of relevant relations for discourse segment [/, h] is the set of rhetorical

relations that span over text spans that have their boundaries within the interval

[, h].

(2.27) relevant_rel(l, h, name) =
(s, n, sp, np)[position(s, sp) A position(n, np) A
({ <sp<h)A(l<np<h)Arhetrel(name,s,n)|V
(Fss, Sey Ny ey U1, B,y Lo, Ry )[position(ss, l1) A position(s., h1) A
position(ns, l3) A position(ne, ha) A (I <1y < hy <h) A

(1 <ly < hy < h)Arhet_rel_ext(name, s, Se, s, Ne)]

The set of relevant units for segment [/, k] is given by the units whose positions

in the initial sequence are numbers in the interval [/, h].

(2.28) relevant_unit(l, h,u) = (3z)[position(u,z) A (I <z < h)]

Constraints that concern the objects over which the predicates that describe

every segment [/, h] of a text structure range

e For every segment [/, h], the set of objects over which predicate S ranges is the

set NUCLEUS, SATELLITE, NONE.

(220)  [Q<h<nmA(<I<h) -

{ll="nh— (S(l, h,NUCLEUS) V S(I, h, SATELLITE))] A
[l #h — (S({, h,NUCLEUS) V S(l, h, SATELLITE) V S(l, h, NONE))]}

e The status of any discourse segment is unique

(2.30) (1<h<N)A(QSI<h) >
[(S(, b, statusy) A S(l, h, statusy)) — statusy = statuss]
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e For every segment [/, /], the set of objects over which predicate T ranges is

the set of rhetorical relations that are relevant to that span.

(2.31) [(I<hA<NA(ILI<h)]—
{l=h—=T(,h,L

([#£h— (T

(T

,LEAF)] A
({, h,NONE) V
(

[, h, name) — relevant_rel(l, h, name)))]}

e At most one rhetorical relation can connect two adjacent discourse spans

(2.32) [(1<h<N)A(L<I<h)]—

[(T(l, h,namey) NT(l, h, namesz)) — name; = names]

e For every segment [/, 1], the set of objects over which predicate P ranges is

the set of units that make up that segment.

(2.33) [(L<h<N)A(L<I<h)] =
[P(l, h,NONE) V (P(l, h,u) — relevant_unit(l, h,u))]

e The primary intention of a discourse segment is either NONE or is a function
of the salient units that pertain to that segment and of the rhetorical relation
that holds between the immediate subordinated segments. Since we want to stay
within the boundaries of first-order logic, we express this by means of a disjunction of at
most N subformulas, which correspond to the cases in which the span has 1,2, ..., or N
salient units. Formula (2.34) specifies that the intention intention;, associated with each

node is either NONE or is a function of the salient units of the node and of the rhetorical
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relation that characterizes that node.

(2.34) (I<Ah<N)A(ALSI<L<hA)]—

{I(l, h,intention;,) —

intention;, = NONE V

(Fr,2)[T (I, hyr) AT # NONE A
Pl h,z) N (Yy)(P(Lh,y) w2 =y) A
intentiony, = fr(r, )]V

(Fr,z1,22)[T(l, h,r) N7 # NONE A
P(l hyz) NP(L hyzo) Aoy # 29 A
(V) (P hyy) = (y = 21 Vy = 22)) A

intentiony, = fr(r,z1,22)] V

(Fr,z1, 22, ..., 20)[T(l,h,7) A r # NONE A
T F o Nx1 F 23N AT FE Ty A
To Fx3 N .. ANy FE ay N\

Tno1 F Ty A
P(l h,z1) NP(Lhyzo) Ao AP By 2,) A
(vy)(P(lvhvy)%(y:$1vy:$2\/---\/y:$n))/\

intentiony, = fr(r,zy, @, ... 20)]}

e The primary intention of any discourse segment is unique.

(2.35) [(1<h<N)A(L<I< h)]—

[({(l, h,intentiony) A I(l, h, intentiony)) — intentiony = intentions]

Constraints that concern the structure of the discourse trees
e Discourse segments do not overlap.

(ll <12)/\(h1 <h2)/\(12§h1)]—>

[=S(l1, h1,NONE) — S(l3, hy, NONE)]
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e A discourse segment with status NONE does not participate in the tree at all.

(2.37) (1<ASN)A(LLI<h)]—
[(S(l, h,NONE) A P(l,h,NONE) A T'(I, h,NONE) A I(l, h, NONE)) V
(=S(l, h,NONE) A =P(l, h, NONE) A =T'(I, h, NONE) A =1 ([, h, NONE))]

e There exists a discourse segment, the root, that spans over the entire text.

(2.38) =S5(1,N,NONE) A =P(1,N,NONE) A =T'(1,N,NONE) A =/ (1, N, NONE)

e The status, type, and promotion set that are associated with a discourse

segment reflect the strong compositionality criterion.

(2.39) [(1<h<N)A(L<I<h)A=S(, h,NONE)] —
(FIname, split_point, s, n)[(l < split_point < h)
A (Nucleus_first(name, split_point, s,n) V
Satellite_first(name, split_point, s, n))] V
(Iname, split_point, s, sc, ns, ne)[(I < split_point < h)
A (Nucleus_first_ext(name, split_point, s, s¢, ng, ne) V

Satellite_first_ext(name, split_point, ss, Se, s, Ne))]

(2.40) Nucleus_first(name, split_point, s,n) =
rhet_rel(name,s,n) AT (l, h, name) A position(s, sp) A position(n,np) A
I < mp < split_point A split_point < sp < h A
P(l, split_point, n) A P(split_point+ 1, h,s) A
{(name € Rels,aratactic) —
S(l, split_point, NUCLEUS) A S(split_point+ 1, h, NUCLEUS) A
(Vp)[P(l, h,p) = (P(l, split_point, p) vV P(split_point+ 1, h,p))]} A
{(name € Relspypotactic) —
S(l, split_point, NUCLEUS) A S(split_point+ 1, h, SATELLITE) A
(Vp)(P(l, h, p) = P(l, split_point, p)) }
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(2.41) Satellite_first(name, split_point, s, n) =
rhet_rel(name,s,n) AT (l, h, name) A position(s, sp) A position(n,np) A
[ < sp < split_point A split_point < np < h A
P(l, split_point, s) \ P(split_point+ 1,h,n) A
{(name € Relspyratactic) —
S(l, split_point, NUCLEUS) A S(split_point+ 1, h, NUCLEUS) A
(Vp)[P(l, h,p) = (P(l, split_point, p) vV P(split_point+ 1, h,p))]} A
{(name € Relspypotactic) —
S(l, split_point, SATELLITE) A S (split_point + 1, h, NUCLEUS) A
(Vp)(P(l, h, p) = P(split_point+1,h,p))}

(2.42) Nucleus_first_ext(name, split_point, ss, Se, ns, Ne) =
{[rhet_rel_ext(name, ss, s., ns,n:) AT (1, h,name) A
position(ss, split_point + 1) A\ position(se, h) A
position(ns, ) A position(n., split_point) A
{(name € Relsyqratactic) —+
S(l, split_point, NUCLEUS) A S (split_point+ 1, h, NUCLEUS) A
(Vp)[P(l, h,p) = (P(l, split_point, p) vV P(split_point + 1, h, p))]} A
{(name € Relspypotactic) —
S(l, split_point, NUCLEUS) A S(split_point+ 1, h, SATELLITE) A
(Vp)(P(l, h, p) = P(l, split_point, p)) }

(2.43) Satellite_first_ext(name, split_point, ss, e, Mg, Ne) =
{[rhet_rel_ext(name, ss, s., ns,n:) AT (1, h,name) A
position(ns, split_point + 1) A position(n., h) A
position(ss, ) A position(s., split_point) A
{(name € Relsyqratactic) —+
S(l, split_point, NUCLEUS) A S (split_point+ 1, h, NUCLEUS) A
(Vp)[P(l, h,p) = (P(l, split_point, p) vV P(split_point + 1, h, p))]} A
{(name € Relspypotactic) —
S(l, split_point, SATELLITE) A S (split_point + 1, h, NUCLEUS) A
(Vp)(P(l, h, p) = P(split_point+ 1, h,p))}
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[1,16] dominates [1,3]
[1,16] dominates [4,15]
[4,15] dominates [5,6]
[4,15] dominates [7,14]
[7,14] dominates [9,10]
[7,14] dominates [11,14]
[11,14] dominates [12,14]

Table 2.2: The dominance relations given by Grosz and Sidner with respect to text (2.25).

e The dominance relations described by Grosz and Sidner hold between a dis-
course segment and the subordinated satellite. The dominance relations that are
given by Grosz and Sidner with respect to text (2.25) are shown in table 2.2. If we in-
spect closely the GST representation in figure 2.12, the RST representation in figure 2.13,
table 2.1, and table 2.2, we notice that the dominated discourse segments in Grosz and
Sidner’s enumeration of dominance relations corresponds always to the satellite of the RST
representation. This is not surprising if we examine the definitions of dominance relation
given by Grosz and Sidner and satellite given by Mann and Thompson: a segment DSP,
dominates a segment DS P if the intention associated with DS P, provides part of the sat-
isfaction of the intention associated with DSP,. In other words, the intention of DSP;
contributes to the satisfaction of the intention associated with DSF;. But this is exactly
the role that satellites play in Mann and Thompson’s theory: they do not express what
is most essential for the writer’s purpose, but rather, provide supporting information that
contributes to the understanding of the nucleus.

The relationship between Grosz and Sidner’s dominance relations and the general dis-

tinction between nuclei and satellites is formalized by axioms (2.44) and (2.45).

(2.44) (1< <NAA<SLH<h)ALI<hy <N)A(L<I; < hy)]—
{[=9(l1, h1,NONE) A S(l3, ha, SATELLITE) Al <3 < hg < hy A
—(3s, ha)(lh < U3 <y < hy <hs<hi A
(I3 # 13V hs # ha) A S(ls, hs, SATELLITE) )] —
dom(ly, hy,l2,h2)}

(1 S 12 S hg) A dOm(ll7h17lz7h2):| —

=5(ly, by, NONE) A S(l3, hg, SATELLITE)
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Axiom (2.44) specifies that if segment [l3, ho] is the immediate satellite of segment [l1, hq],
then there exists a dominance relation between segment [l1, k1] and segment [l3, hy]. Hence,
axiom (2.44) explicates the relationship between the structure of discourse and the inten-
tional dominance. In contrast, axiom (2.45) explicates the relationship between intentional
dominance and the structure of discourse. That is, if we know that the intention associ-
ated with span [l1, h1] dominates the intention associated with span [l, ho], then both these
spans play an active role in the representation and, moreover, the segment [l3, ho] plays a

SATELLITE role.

e The satisfaction-precedence relations described by Grosz and Sidner could be
interpreted as paratactic relations that hold between arbitrarily large textual
spans. Nevertheless, as we have seen in the examples discussed in this chapter, the fact
that a paratactic relation holds between spans does not imply that there exists a satisfaction-
precedence relation at the intentional level between those spans. Therefore, for satisfaction-

precedence relations, we will have only one axiom, that shown in (2.46) below.

(1 S 12 S hg) A satprec(ll, h17 127 hg)] —

S(ly, h1,NUCLEUS) A S (3, hy, NUCLEUS)

It specifies that the spans that are arguments of a satisfaction-precedence relation have a

NUCLEUS status in the final representation.

2.7.3 Applications of the formalization of text structures and intentions

Consider again the example text (2.3) that we have used through this chapter, which we
reproduce in (2.47) for convenience. As we discussed in section 2.6.3, if we assume that an
analyst determines that the rhetorical relations given in (2.48) hold between the elementary
units of the text, there are five valid RS-trees that correspond to text (2.47). The valid

trees were shown in figure 2.11.

(2.47) [No matter how much one wants to stay a non-smoker,*'] [the truth is that the
pressure to smoke in junior high is greater than it will be any other time of one’s
life.B1] [We know that 3,000 teens start smoking each day,“'] [although it is a fact
that 90% of them once thought that smoking was something that they’d never
do.P1]
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rhet_rel(JUSTIFICATION, A1, By)

rhet_rel(JUSTIFICATION, D1, B )

rhet_rel(CONCESSION, Dy, Cq)

(
(
(2.48) rhet_rel (EVIDENCE, Cy, By)
(
(

rhet_rel(RESTATEMENT, Dy, A1)

If we consider now the axioms that describe the relationship between text structures and
intentions, we can derive, for example, that, for the tree 2.11.a, the span [A{, D] dominates
the span [Cy, Dy]; and that the primary intention of the whole text depends on unit B; and
on the rhetorical relation of JUSTIFICATION. In such a case, the axiomatization provides
the means for drawing intentional inferences on the basis of the discourse structure.
Assume now that besides providing judgements concerning the rhetorical relations that
hold between various units, an analyst provides intention-based judgements as well. If,
for example, besides the relations given in (2.48) an analyst determines that span [A;, Dq]
dominates unit Dy, the theory that corresponds to these judgements (2.49) and the axioms
given in section 2.7.2 yields only two valid text structures, those presented in figure 2.11.b
and 2.11.d. Therefore, in this case, the axiomatization provides the means of using inten-

tional judgements for reducing the ambiguity that characterizes text structures.

rhet_rel(JUSTIFICATION, A1, By)

rhet_rel(JUSTIFICATION, D1, B )

(2.49)

(

(
rhet_rel(EVIDENCE, C1, B1)
rhet_rel(CONCESSION, Dy, Cq)
(

rhet_rel(RESTATEMENT, Dy, A1)

dO?TL(Al7 D1, Dy, Dl)

2.8 Related work

The formalization that I have presented in this chapter provides a mathematical description
of the valid text structures, i.e., an expression of the properties of the class of structures
that are licensed by the essential features that were put forth in section 2.2.1 and by
the strong compositionality criterion 2.2. As such, the formalization in chapter 2 can
be interpreted as a sibling of model-theoretic frameworks that characterize the properties
of the syntactic structures of sentences [Keller, 1992, Keller, 1993, Blackburn et al., 1995,
Rogers, 1994, Rogers, 1996]). In contrast to model-theoretic approaches to syntax, the
formalization presented in this chapter is much simpler. The constraints on the features
of the trees (discourse structures) that our formalization captures are much simpler than
the constraints that are used by syntactic theories. Because of this, unlike model-theoretic

approaches to syntax, which use highly expressive languages with modal operators and
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second-order quantifiers, our formalization can be couched in the language of first-order
logic.

To my knowledge, the formalization of text structures provided in this chapter is the
first attempt to provide a model-theoretic framework for the study of discourse in general
and the study of RST, GST, and the relationship between the two. In contrast to the model-
theoretic framework that was developed here, most of the current approaches to discourse
do not address so much the problem of what discourse structures are, but of how discourse
structures can be derived from a given text in the context of discourse analysis [van Dijk,
1972, Polanyi, 1988, Scha and Polanyi, 1988, Lascarides and Asher, 1991, Lascarides et al.,
1992, Lascarides and Asher, 1993, Asher and Lascarides, 1994, Gardent, 1994, Polanyi and
van den Berg, 1996, van den Berg, 1996, Gardent, 1997, Schilder, 1997, Cristea and Webber,
1997] and from a knowledge base, in the context of natural language generation [Hovy,
1988b, Moore and Swartout, 1991, Moore and Paris, 1993, Maybury, 1993]. I discuss in

detail these lines of research in chapters 3 and 7 respectively.

2.9 Summary

In this chapter, I have provided a first-order formalization of valid text structures and a
characterization of the relationship between text structures and intentions. The formaliza-

tion relies on six essential features:
1. The elementary units of complex text structures are non-overlapping spans of text.

2. Rhetorical, coherence, and cohesive relations hold between textual units of various

sizes.
3. Some textual units play a more important role in text than others.
4. The abstract structure of most texts is a tree-like structure.

5. If a relation R holds between two textual spans of a tree structure of a text, that
relation also holds between the most important units of the constituent spans. The
most important units are determined recursively: they correspond to the most im-
portant units of the immediate subspans when the relation that holds between these
subspans is paratactic, and to the most important units of the nucleus subspan when

the relation that holds between the immediate subspans is hypotactic.

6. The primary intention of a text span depends on the most salient units of that span

and the rhetorical relation that introduced them.
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Chapter 3

The automatic derivation of text
structures: an algorithmic

perspective

3.1 Preamble

The formalization in chapter 2 focuses on the mathematical properties of valid text struc-
tures, and not on the mechanisms that can be used to derive such structures. The idea
of providing algorithms that derive the valid discourse structures of texts gives rise to two

alternatives.

e The first alternative is to take advantage of the declarative formalization and equate
the process of tree derivation with the process of finding the models of a theory that
enumerates the axioms that characterize the general constraints of a text structure
and the axioms that characterize the text under scrutiny. This alternative amounts

to applying model-theoretic techniques.

The major benefit of this alternative is that it enables a declarative, clear formulation
of the linguistic constraints that characterize the structures that are valid; such a

formulation is independent of the algorithms that derive these structures.

e The second alternative is to specify rewriting rules that can map a sequence of textual
units into valid text structures. This alternative amounts to applying theorem-proving

techniques.

The major benefit of this alternative is that it enables one to control directly the
process of text structure derivation. As we will see in section 3.5, such an approach
can lead to substantial improvements with respect to the time that is needed to derive

the valid structures of a text.
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In this chapter, I study both alternatives: 1 propose and compare empirically four
different paradigms for solving the problem of text structure derivation given in 2.2. In
two of these paradigms I use model-theoretic techniques, i.e., I show how the problem
of text structure derivation can be encoded as a classical constraint-satisfaction problem
(section 3.2) and as a propositional, satisfiability problem (section 3.3). In the other two
paradigms I apply proof-theoretic techniques, i.e., I show how the problem of text structure
derivation can be encoded as a theorem-proving problem (section 3.4) and how it can be
compiled into a parsing problem using a grammar in Chomsky normal form (section 3.5).
The last paradigm yields the fastest algorithm, which derives text structures in polynomial
time.

The empirical comparison of the four paradigms was done on a Sparc Ultra 2-2170
machine that was running in network mode. The implementations of the four paradigms
were written in Lisp, C, and C++. As a consequence, it is obvious that the results have little
meaning if they are taken in isolation. However, as will become apparent in the following
sections, the differences in performance of the four implementations are large enough to
provide clear-cut evidence with respect to the paradigm that is best suited for deriving
valid text structures.

An adequate account of the relationship between text structures and intentions would
require a sophisticated description of the oracle function f; (see section 2.7.2). Such a
description is beyond the scope of this thesis. Therefore, in what follows, I will investigate
only the structural properties of discourse. I will rely on the set of rhetorical relations
proposed by Mann and Thompson [1988] and consider text structures to be completely
described by the axiomatization of RST (see section 2.6.3).

The work presented in this chapter is of primary interest for computer scientists and
not for engineers of language. A reader whose interest is only to find out how discourse
structures can be derived automatically from unrestricted texts can skip this chapter. All
such a reader needs to bear in mind is that the problem of text structure derivation that
was given in 2.2 has an algorithmic solution. Hence, in order to derive text structures of
unrestricted texts we need only determine the elementary textual units and the rhetorical

relations that hold among them.

3.2 Deriving text structures — a constraint-satisfaction ap-
proach

The formalization in chapter 2 naturally suggests that text structures can be automatically

derived using constraint-satisfaction techniques. As we discussed in section 2.6, if we con-

sider a sequence of textual units wuy, ug, ..., uy, there are N ways in which spans of length

one could be built, span; 1, spans g, ..., spanyy; N — 1 ways in which spans of length two
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could be built, span; 2, spanys, ..., spany_in; N — 2 ways in which spans of length three
could be built, span; 3, spang 4, ..., spany_zx; ...; and one way in which a span of length
N could be built, span; . Each of these spans has the potential of playing an active role in
the final representation. An algorithm that constructs valid text structures for the sequence
U1, Uz, . . . , uy Will have to determine from the set of N4 (N—1)4+(N=2)+...+1 = N(N+1)/2
potential text spans that pertain to the sequence of N textual units, the subset that adheres
to the constraints that characterize valid structures.

As we have seen, the status, type, and promotion set associated with each span provides
a complete characterization of the text structure. Following the axiomatization of RST, we
can take a sequence of N textual units and the set of rhetorical relations that hold between
them and automatically derive a constraint-satisfaction problem with 3N(N 4 1)/2 variables
— astatus, a type, and a promotion variable for each of the N(N 4 1)/2 potential spans. The
algorithm that creates the 3N(N 4 1)/2 variables and asserts the constraints that pertain to
the variables is shown in figure 3.1. In the following two subsections, I will explain it piece

by piece.

3.2.1 The constraint variables

To begin with, the algorithm creates the status, type, and promotion constraint variables
that are associated with each of the possible N(N 4 1)/2 spans of a text structure. In fig-
ure 3.1, the constraint variables are represented using the symbols S, T, and P, respectively.
The constraint variables are indexed according to the lower and upper bounds of the spans
that they correspond to. For example, the variable S[I, h] corresponds to the status of the
textual span that ranges between positions [ and h.

Lines 1-9 of the algorithm correspond to the creation of the constraint variables and
the specification of their associated domains. For each leaf, the domain of a status variable
is the set {N, S} (NUCLEUS or SATELLITE); the domain of a type variable is { LEAF'}; and
the domain of a promotion variable is the unit itself, {u;}. For each non-elementary textual
span, [ < h, the domain of a status variable is the set {IV, S, NONE} (NUCLEUS, SATELLITE,
or NONE); the domain of a type variable is given by the names of the relations that are
relevant for that span (see axiom (2.8)); and the domain of a promotion variable is the set
of textual units that correspond to the span, {u;, ..., us}.

Traditionally, a solution of a constraint-satisfaction problem that is characterized by n
variables having domains Dy, ..., D, is a member of the Cartesian product Dy X ...x D,.
Therefore, if we adopt a constraint-satisfaction perspective, there is no need to explic-
itly encode the unicity constraints that pertain to the status (axioms (2.11)) and type
(axiom (2.13)) of each potential node. Although this is appropriate for status and type
variables, the fact that a solution of a constraint-satisfaction problem associates only one

value to each variable appears to create difficulties with respect to the promotion variables,
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Input: A sequence of textual units U = wuy, us,...,uy and a set RR of simple and extended
rhetorical relations that hold between units and spans in U.
Output: One or all valid text structures of U.

% Create N(N + 1)/2 status, type, and promotion variables whose domains range over
% the set of values described by axioms (2.10), (2.12) and (2.14) respectively.

1. for h ;=1 toN

2. forl:=1toh

3. if 1=nh)

4. domain(S[l, h]) = {N, S};domain(T[l, h]) = {LEAF}; domain(P[l, h]) = {w };
5. else {

6. domain(S[l, h]) = {N, S, NONE};

7. domain(T[l, h]) = {name(r)|r € relevant_relations(RR,l, h)};

8. domain(P[l,h]) = {w, ... ,upl;

9. }

% Text spans do not overlap (axiom (2.15)).
10. for hy ;= 1to N
11. for !l ;=1 to hy

12. for hs ;== 1to N

13. for s := 1 to h»

14. if(ll<12/\lz<h1/\h1<h2)

15. assert(S[ly, h1] = NONE V S[la, ko] = NONE))

% A span with status NONFE does not play an active role (axiom (2.16)).

16. for h := 1 to N

17. forl:=1toh

18. assert([S[l, h] # NONE ANT[l, h] £ NONE AN P(l, h) # NONE]\/

19. [S[l,h] = NONE AT[l, h] = NONE A P(l,h) = NONE]);

% There exists a root node (axiom (2.17)).

20. assert(S[1,N] = N AT[1l,N] # NONE A P[1,N] # NONE);

% Valid text structures obey the strong compositionality criterion (axioms (2.18),
% and (2.19)-(2.22)).

21. for size_of span := 1 toN — 1

22. for [ := 1 to N— size_of_span

23. h =14 size_of_span;

24. % for every span [[,R],1 <I< h <N

25. C := (S[l, h] = NONE);

26. for r € relevant_relations(RR,[, h)

27. for sp from! to h

28. if valid_satellite_first(r,l, sp, h)

29. C:=CV{S[l,spl =S AS[sp+1,h=NAT[, k] = name(r)A
30. Pl sp] = sat(r) A Plsp+ 1, h] = nucl(r)A

31 P[l,h] = Pl[sp+ 1,h]};

32. if valid_nucleus_first(r, 1, sp, h)

33. C:=CV{S[l;sp] = N AS[sp+1,h] = SAT[, h] = name(r)A
34. Pl sp] = nucl(r) A P[sp+ 1, h] = sat(r)A

35. P[l, k] = P[l, sp]};

36. if valid_multinuclear(r,l, sp, h)

37. C:=CV{S[l;sp] = NAS[sp+1,h]l= N AT[, h] = name(r)A
38. Pl sp] = nucly(v) A P[sp + 1, h] = nucly(r)A

39. (P[l,h] = P[l,sp] Vv P[l,h] = Plsp+1,h])};

40. assert(C);

% solve the constraint satisfaction problem
41. find_solutions();

Figure 3.1: A constraint-satisfaction algorithm for deriving text structures
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Status = {NUCLEUS,SATELLITE}

Status = {NUCLEUS,SATELLITE} i
Type = {ELABORATION} Type = {CONTRAST}
Promotion = {A5,B5}

Promotion = {A5,B5}
Status = {NUCLEUS} Status = {SATELLITE} Status = {NUCLEUS} Status = {NUCLEUS}
Type = {CONTRAST} Type = {LEAF} Type = {LEAF} Type = {(ELABORATION}
Promotion = {A5,B5} Promotion = {C5} Promotion = {A5} Promotion = {85}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {B5}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {A5}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {B5}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {C5}

a) b)

Figure 3.2: The valid text structures of text (3.1).

because a textual span may have more than one salient unit in the cases in which the textual
structure is built using multinuclear relations. Fortunately, as I now show, this proves not
to be problematic.

In the cases in which no multinuclear relation is used, each node in the final text struc-
ture will be characterized by one salient unit. In such a case, there exists a one-to-one
mapping between a valid text structure and a solution of the corresponding constraint-
satisfaction encoding. Assume now, however, that a text is characterized by multinuclear
relations as well. For example, the set of relations that hold between the elementary units

in text (3.1) [Mann and Thompson, 1988, p. 278] is shown in (3.2).

(3.1)  [Animals heal,**] [but trees compartmentalize.?s] [They endure a lifetime of in-
jury and infection by setting boundaries that resist the spread of the invading

microorganisms.]

(3.2) rhet_rel(CONSTRAST, As, Bs)
rhet_rel(ELABORATION, Cs, Bs)

There are two valid structures that can be built for text (3.1). In both of them (see
figure 3.2), the promotion set of the root node has cardinality two. Let us focus, for the
moment, on tree 3.2.a, which has two nodes that are characterized by promotion sets with
cardinality larger than one. In a first approximation, it may appear that it is necessary to
associate with each node of a text structure all the units that are salient. However, if we
examine the definition of the problem of text structure derivation closely (see definition 2.2),
it is easy to notice that the rhetorical relations that are given as input hold either between
elementary units or between textual spans. The strong compositionality criterion specifies
that two textual spans can be put together into a larger span when an elementary relation
holds between two units that are salient in the spans, or when an extended relation holds
between the spans. Therefore, in order to decide whether two spans can be joined by an

elementary relation, we do not need to know all the units that are salient in the spans:
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Status = {NUCLEUS}
Type = {CONTRAST}
Promotion = {A5}

Status = {NUCLEUS}
Type ={CONTRAST}
Promotion = {B5}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {A5}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {A5}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {B5}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {B5}

a) b)

Figure 3.3: Representing multinuclear relations using promotion sets of cardinality one.

Status = {NUCLEUS SATELLITE}
Type = {ELABORATION}

Promotion = {B5}

Status = {NUCLEUS}
Type = {CONTRAST}
Promotion = {B5}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {C5}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {A5}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {B5}

Figure 3.4: A textual structure of text (3.1) that uses only promotion sets of cardinality
one.

rather, it is enough to know only whether the units that are arguments of the elementary
relation are salient. Moreover, in order to decide whether two spans can be joined by an
extended relation, we do not need any information about the salient units of the spans.
Hence, if during the construction process we associate only one salient unit with each
span — the one that is going to be used further in the tree-building process — we could
still build a text structure. It is true that such a structure enforces only partially the
strong compositionality criterion; but fortunately, it allows for the recovery of the full valid
structure.

To understand better the claim above, let us reconstruct now tree 3.2.a using only
promotion sets of cardinality one. To do this, we notice that when two spans are put
together using a multinuclear relation, there exist two possible solutions; each solution
corresponds to the promotion of only one salient unit. For example, if we put together the
elementary units As and Bg using the CONTRAST relation and allowing the promotion sets
of each span to have cardinality at most one, we have two choices (see figure 3.3). The
choices correspond to promoting as salient either unit A5 or unit By for the span [as, Bs].
To complete the reconstruction of tree 3.2.a, we have to use the ELABORATION relation that
holds between satellite c5 and nucleus Bs. Tree 3.3.a cannot be extended into tree 3.2.a
because it would violate the strong compositionality criterion (unit Bs is not a salient unit
for span [As, Bs]). However, tree 3.3.b can be extended, thus obtaining a version of tree 3.2.a

that uses only promotion sets of cardinality one (see figure 3.4).
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Input: A text structure, Tree, that obeys all the axioms of a valid text structure, with
the exception of the strong compositionality criterion: the promotion set of
each
active node in this structure has cardinality one.
Output: A valid text structure.

1. function adjust(Tree)

2 if(isleaf(Tree)) returnTree;

3 Tree—left := adjust(Tree—left);

4. Tree—right := adjust(Tree—right);

5. if(type(Tree) = “paratactic”)

6 promotionSet(Tree) := promotionSet(Tree—left) U promotionSet(Tree—right);
7 else if(status(Tree—left) = NUCLEUS)

8 promotionSet(Tree) := promotionSet(Tree—left);

9

. else
10. promotionSet(Tree) := promotionSet(Tree—right);
11. returnTree;

Figure 3.5: A recursive algorithm that maps “almost-valid” text structures into valid ones.

The tree in figure 3.4 is not valid because it obeys only a watered-down version of the
strong compositionality criterion: the promotion set of span [As5, Bs] is not the set {As,Bs},
but its subset, {B5}. Fortunately, the “almost-valid” tree in figure 3.4 enables recovery of the
valid representation; if we traverse the tree bottom-up, we can update the promotion sets
that characterize the nodes whose types are multinuclear relations such that the promotion
sets become equal to the union of the promotion sets of the immediate subspans; and we
can update the promotion sets that characterize the nodes whose types are mononuclear
relations such that the promotion sets become equal to the promotion set of the nucleus
subspan. If we apply this process to tree 3.4, we obtain tree 3.2.a.

The discussion above suggests that a constraint-satisfaction approach can be used to first
build text structures of the kind shown in figure 3.4, i.e., structures that are characterized
by promotion sets of cardinality one. These structures can then be mapped into valid ones
using a simple bottom-up traversal. Figure 3.5 presents a recursive algorithm that maps a
text structure that obeys only the watered-down version of the compositionality criterion

into a valid one.

3.2.2 The constraints

Bearing in mind the fact that valid trees can be built using promotion sets of cardinality
one, we return now to the algorithm in figure 3.1. Once the variables and their domains

have been established, the algorithm asserts the structural constraints that correspond to
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axioms (2.15) (lines 10-15), (2.16) (lines 16-19), and (2.17) (line 20). Next, the algorithm
asserts the constraints that pertain to the strong compositionality criterion (axioms (2.18),
and (2.19)-(2.22)), using the assumption that the final solution will use promotion sets of
cardinality one — see lines 21-40. The algorithm iterates over each non-elementary textual
span [[, h] and builds a constraint C' that captures the watered-down version of the strong
compositionality criterion. The constraint C' rewrites axioms (2.18)—(2.22)) as a disjunction
over all possible ways that can lead to that span having a non-NONE status. The algorithm
iterates over all relations that are relevant to the span [/, k] (lines 26-40) and over all ways
in which span [/, h] can be broken into two subspans: sp (split point) denotes the location
between [ and h where the span [[, h] can be broken. For each relation r that is relevant to
a span [[, h], with respect to a splitting point sp, i.e., either r is a simple rhetorical relation
that holds between two units found in the resulting subspans or an extended rhetorical

relation that holds between the two immediate subspans, there exist four possibilities:

e The satellite of the relation r goes before the nucleus. In such a case, if r is used to
join spans [l, sp] and [sp + 1, k] (valid_satellite_first(r,l, sp,h)), then the status of
span [l, sp] is satellite, the status of span [sp+ 1, h] is nucleus, the type of the span
[[, h]is given by the name of the relation r, the promotion set of span [/, k] is given by
the satellite of the relation, the promotion set of span [sp+1, h] is given by the nucleus
of the relation, and the promotion set of the span [/, h] is given by the promotion set

of the nucleus [sp + 1, k] (see lines 28-31 in figure (3.1)).

e The nucleus of the relation r goes before the satellite. In such a case, if r is used to
join spans [l, sp] and [sp+1, h] (valid_nucleus_first(r,l, sp, h), then the status of span
[[, sp] is nucleus, the status of span [sp+ 1, h] is satellite, the type of the span [I, h] is
given by the name of the relation r, the promotion set of span [[, ] is given by the
nucleus of the relation, the promotion set of span [sp+ 1, h] is given by the satellite
of the relation, and the promotion set of the span [/, h] is given by the promotion set

of the nucleus [/, sp] (see lines 32-35 in figure (3.1)).

e The relation r is multinuclear. In such a case, if r is used to join spans [[, sp] and
[sp+1, h] (valid-multinuclear(r,l, sp, h), then the status of spans [{, sp] and [sp+1, ]
is nucleus, the type of the span [[,h] is given by the name of the relation r, the
promotion set of span [/, k] is given by the first nucleus of the relation, the promotion
set of span [sp+ 1, h] is given by the second nucleus of the relation, and the promotion
set of the span [/, h] is given either by the promotion set of the first nucleus [/, sp] or
by the promotion set of the second nucleus [sp+ 1, 2] (see lines 36-39 in figure (3.1)).

e The relation r does not hold across the splitting point sp, and, therefore, is irrelevant.
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Once all the constraints have been asserted, one can apply any constraint-satisfaction al-
gorithm in order to find one or all the solutions that pertain to the text that is considered,
and hence one or all its valid text structures (see line 41 in figure 3.1).

The constraint-satisfaction problem that is generated by algorithm 3.1 has 3N(N 4 1)/2
variables. In a text of N elementary textual units, for every span [l, h], there are (h—{—1)(N—
h+1) spans that overlap that span. Therefore, the total number of constraints shown in line
15 of algorithm 3.1is Y5y . D01 cjop (h—1—1)(N—h41) = N(N—=1)(N?*4+5N—2). The number
of constraints that have the form shown in line 19 of algorithm 3.11s > cpen 2oq<icn 1 =
N(N+1)/2. In addition to these constraints, algorithm 3.1 derives one COI;lpIeX dis}u_nctive
constraint for each non-elementary span (lines 21-40). Since there are N(N — 1)/2 non-
elementary spans, it follows that there are N(N — 1)/2 such constraints. The total number

of constraints derived by algorithm 3.1 is, therefore, 1/12(N4 + 4N3 4 5N2 4+ 2N + 12).

3.2.3 Implementation and empirical results

It is well-known that finding solutions of constraint-satisfaction problems is NP-complete
in the general case [Mackworth, 1977, Garey and Johnson, 1979]. In spite of this, CS
algorithms seem to perform well for certain classes of problems. Determining whether
the problem of text structure derivation falls into a class of problems for which CS al-
gorithms perform well enough is an empirical question. To answer it, I used Lisp and
Screamer [Siskind and McAllester, 1993a, Siskind and McAllester, 1993b], a macro package
that provides constraint-satisfaction facilities, to fully implement a system that builds text
structures by means of the algorithm shown in figure 3.1. The implementation takes as in-
put a linear sequence of textual units U = uy, ug, ..., uy and the set of simple and extended
rhetorical relations that hold among these units. The program follows the algorithm given
in figure 3.1 in order to build the corresponding constraint-satisfaction problem. It then
uses the built-in facilities of Screamer to find all the possible solutions, i.e., all the valid
text structures. A simple procedure prints the text trees that pertain to each solution.

The program was run on eight texts: the simplest has three elementary units among
which four rhetorical relations hold; the most complex has 19 elementary units among which
25 rhetorical relations hold. Appendix A contains these texts, their elementary units, and
the rhetorical relations that characterize them.

Table 3.1 shows the amounts of time on a Sparc Ultra 2-2170 that were required by
our implementation for determining all the valid text structures of these texts. The dashed
lines in table 3.1 correspond to computations that did not terminate in less than three
hours. Given the results in table 3.1, it is obvious that the performance of algorithm 3.1 is
very poor. A close analysis of the behavior of our implementation showed that, in fact, the
algorithm spent most of the time in asserting the constraints shown in line 40 in figure 3.1.

As the text spans [I, h] get bigger, more relations are relevant for them; as a consequence,
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Text | Number of | Number of | Time in

variables | constraints | seconds
Al 18 21 0.3
A2 30 51 38.0
A3 45 106 -
A4 84 337 -
Ab 84 337 -
A6 360 5441 -
A7 513 10831 -
A8 570 13301 -

Table 3.1: Performance of the constraint-based implementation

the constraints that correspond to a straightforward encoding of the strong compositionality
criterion contain more and more complex disjunctive constraints. The macro package that
we used tries to reduce the domains of the variables every time a new constraint is asserted.
As the spans grow bigger, the time that is taken by Screamer to assert these constraints
increases exponentially.

better on the problems derived by the algorithm in figure 3.1. Still, 1 believe that the

It is possible that different constraint-software packages behave

complexity of the constraints that correspond to the strong compositionality criterion could

constitute a challenge for them.

3.3 Deriving text structures — a propositional logic, satisfi-

ability approach

3.3.1 Preamble

Recent successes in using greedy methods for solving large satisfiability problems [Selman
et al., 1992, Selman et al., 1994, Kautz and Selman, 1996] prompted me to investigate
their appropriateness for finding the discourse structure of text. In this section, I propose
a propositional logic encoding of the problem of text structure derivation 2.2 and discuss a
program that automatically generates such an encoding starting from the linear sequence
of units that is subsumed by a text, and the simple and extended rhetorical relations
that hold among these units. In presenting the propositional encoding, I will make use of
text (2.3), which, for convenience, is reproduced below in (3.3). To simplify the discussion,
the elementary textual units are labelled with natural numbers, from 1 to 4. The simple
and extended rhetorical relations that I assume to hold among the textual units in (3.3)

are listed in (3.4); rhetorical relations having the same name are given different subscripts
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in order to enable a clearer presentation of the propositional encoding.

(3.3)  [No matter how much one wants to stay a non-smoker,!] [the truth is that the
pressure to smoke in junior high is greater than it will be any other time of one’s
life.2] [We know that 3,000 teens start smoking each day,’] [although it is a fact
that 90% of them once thought that smoking was something that they’d never

do.4]
rhet_rel(JUSTIFICATIONY, 1, 2)
rhet_rel(JUSTIFICATIONg, 4, 2)
rhet_rel(EVIDENCE, 3, 2)
(3.4) RR=
rhet_rel(CONCESSION, 4, 3)
rhet_rel(RESTATEMENT, 4, 1)

rhet_rel_ext(JUSTIFICATIONS, 1, 1,2,4)

Because I want to estimate the size of the propositional encoding, I assume that at
most k rhetorical relations hold between any pair of textual units. During my empirical
experiments, I noticed that the number of elementary rhetorical relations that hold over
the textual units of a text of size N was never bigger than 3N. Since there are (g) distinct
pairs of units in a text of size N, it follows that a good upper bound for the coeflicient k is
3n/(5) =3/[2(n = 1)].

In order to fully specify a propositional encoding of the formalization of text structures,
we need to specify a set of propositional variables and constraints (propositional formulas)
that is logically equivalent with the axiomatization of text structures. I discuss each of

these, in turn.

3.3.2 Variables of the propositional encoding
Status variables

As I discussed in section 3.2, there are N(N + 1)/2 potential textual spans that can play an
active role in the structure of a text made of N textual units, wuy, us, ..., uy. Each potential
textual span has a status that can be NUCLEUS, SATELLITE, or NONE. Two propositional
variables suffice to encode the three possible values; for ease of reference, we label each
pair of propositional variables that encode the status of each span [I, h] with S nuersus
and Sy p sarerire. If @ truth assignment assigns the value “true” to S;p, nucrrus, We consider
that the status of span [/, k] is NUCLEUs; if a truth assignment assigns the value “true” to
Si,hsareLume, We consider that the status of span [[, h] is SATELLITE; if a truth assignment
assigns the value “false” both to S;j nversus and Sipsareiiire, We consider that the status

of span [, h] is NONE. Since a textual span cannot play a NUCLEUS and SATELLITE role

69



in the same text structure, no model will assign the value “true” both to Si s nucreus and
Sl,h,SATELLITE-
Because the final representation is characterized by N(N41)/2 potential spans, it follows

that a text of N units will yield N(N + 1) status variables.

Promotion variables

Each potential span is characterized by a promotion set whose members correspond to the
elementary textual units that belong to that span. We associate with each potential span
[[,h], h — [+ 1 promotion variables. In order to refer to the promotion variables of a span
[[, h], we will use atomic formulas P, ;, where [ < ¢ < h.

Since every span [[, h] is characterized by h — [+ 1 promotion variables, it follows that a
text of N units will be characterized by N+, > 1 cjep(h =1+ 1) = N(N+1)(N+2)/6
promotion variables. If a truth assignment assig_ns_the value “true” to any of the promotion
variables associated with a span [l h], the corresponding unit will be considered to be a
member of the promotion set of that span. If a truth assignment assigns the value “false”
to all the promotion variables associated with span [/, k], we consider the span not to play

an active role in the final representation (the status of the span is NONE).

Type variables

Each potential span [/, h] has associated a set of type variables. By convention, the set
has cardinality one for the leaves of the text structure. That is, we associate only one
propositional variable, T;;  par, to each elementary unit in the representation. For non-
elementary spans [[,h], [ < h, we associate one propositional variable for each rhetorical
relation that is relevant for that span (axiom (2.8)) and one propositional variable to re-
flect the case in which the span has type NONE. For example, there are three relations
that are relevant to span [2,4]: rhet_rel(JUSTIFICATIONg, 4,2), rhet_rel(EVIDENCE, 3, 2),
and rhet_rel(cONCEsSION, 4, 3). To span [2,4], we will therefore associate four type vari-
ables, which we label T2,4,JUST1FICATION2,4,27 T2,4,EVIDENCE,3,27 T2,4,CONCESSION,4,37 and T2,4,NONE-
The labelling 7} j, rerarion name,sat_pos,nucl_pos Provides a unique identification for each pos-
sible rhetorical relation that may end up being used in the text structure representation.
We adopt the convention that extended rhetorical relations have associated one type vari-
able, which is labelled T} j grriarion name,sp,sp, Where sp represents the position at which
the extended spans meet. For example, to span [1,4], we will associate one extended
type variable T 4 jusrirications,1,1, Which is derived from the extended rhetorical relation
rhet_rel_ext(JUSTIFICATIONS, 1,1,2,4). If a truth assignment assigns “true” to any of the
non-NONE type variables, we consider the type of the corresponding span to be given by
the name of the rhetorical relation that corresponds to the variable. If a truth assignment

assigns value “true” to variable T} yong, the type of the corresponding span is NONE.
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In general, for a span [[, k], [ < h, the number of type variables is given by the sum
of relations that are relevant to that span (see axiom (2.8)) and one — the extra variable
accounts for the case in which the type is NONE. Essentially, a rhetorical relation is relevant
when it holds between two textual units that are found within the boundaries of segment
[[, h]. Since there are (h_é-i'l) distinct pairs of elementary textual units within each segment
[[,h] and since at most k rhetorical relations hold between any pair, it follows that we
associate at most 1+ k(h_é-i'l) variables for every span [/, h]. Overall, we associate at most
Yochen rcien(L+E("IH)) = N(N = 1)/2+ kN(N = 1)(N + 1)(N + 2) /24 type variables

with the non-elementary spans. Hence, the total number of type variables is at most

N(N+1)/24+ kNN —=1)(N+ 1)(N+2)/24.

Active-span variables

We associate with every pair of adjacent spans, [/, sp] and [sp+1, k], one active-span variable
A(l, h,sp). If a truth assignment assigns the value “true” to a variable A(l, h, sp), it means
that both spans [/, sp] and [sp+ 1, k] play an active role in the text structure and, moreover,
that they are the immediate subspans of the span [, h]. If a truth assignment assigns the
value “false” to a variable A(l, h,sp), it means that spans [/, sp] and [sp + 1, k] are not the

immediate subspans of the span [/, k] in the text structure.

Since every span [l, h] has h — [ possible locations at which it can be broken into two
adjacent subspans, [,{+1,...,h—1, it follows that the total number of active-span variables

that characterize a text with N units is N+ 3", Yo <pep (B — 1) = N(N? + 5)/6.

Discussion

It is possible to provide a propositional formulation of the problem of text structure deriva-
tion using only status, promotion, and type variables. The reason I use active-span variables
is that they enable a simpler propositional encoding in conjunctive normal form than an
encoding that uses only status, promotion, and type variables. If no active-span variables
were used, a straightforward encoding of the strong compositionality criterion would yield
an exponential number of conjunctive-normal-form formulas. By using active-span vari-
ables, the conjunctive-normal-form encoding is polynomial both in the number of variables
and number of constraints. If we sum up all the propositional variables that are necessary
to encode the text structure of a text with N units, we obtain at most O(N?) variables. In
what follows, we will see that the propositional encoding proposed here requires at most

O(N®) conjunctive-normal-form formulas.
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3.3.3 Constraints on the variables

In presenting the constraints that pertain to a propositional encoding I adopt an approach
similar to that used in section 2.6.2, i.e., I first present the constraints that pertain to the
individual spans and variables and then the constraints that pertain to the overall struc-
ture of texts. Because most existing software packages that find solutions to propositional
satisfiability problems assume that the input is given in conjunctive normal form, and be-
cause my intent is to evaluate empirically the suitability of these packages for finding valid

discourse structures, I present the constraints as conjuncts of simple and negated disjuncts.

Constraints on the status variables

e Each leaf of the final representation has either status “nucleus” or “satellite”
— the status of a leaf cannot be “none”. For each leaf, an appropriate encoding
consists of two conjunctive normal form formulas of size two, which are the expression of an

exclusive “or” between the variables S; ; vucreus and S; ; sarerrire. Because there are N leaves,

this constraint yields N formulas that employ the schema shown in (3.5), where ¢ = 1,... N,
and N formulas that employ the schema shown in (3.6), where ¢ = 1,... ,N.

3-5) Sz’,i,NUCLEUS \ Si,i,SATELLITE

(3-6) _‘Si,i,NUCLEUS \ _‘Si,i,SATELLITE

e The status of each non-elementary span [/, k], [ < h, is “nucleus”, “satellite”,
or “none”. For each non-elementary span [/, h], this gives one constraint that employs
the schema shown in (3.7). Because there are N(N — 1)/2 non-elementary spans, it follows

that there are N(N — 1)/2 such constraints.
(3'7) _‘Sl,h,NUCLEUS Vv _‘Sl,h,SATELLITE

Constraints on the promotion variables

e The promotion set associated with each leaf has cardinality one: it consists
of the leaf under consideration. This constraint is encoded by employing N times the

schema shown in (3.8), for e =1,...,N.
(3.8) P

Constraints on the active-span variables

e By convention, in any model of the text structure, the active-span variable

associated with each leaf is “true”. This constraint is encoded by employing N times
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the schema shown in (3.9), fori=1,... ,N.

Constraints on the type variables

e The type associated with each leaf is “leaf”. The encoding of this constraint yields

N formulas that employ schema (3.10), fori =1,...,N.

(3.10) T; i Lear

e The type associated with a non-elementary span [/, /] is given either by the
name of a relation that is relevant to that span (2.8) or is “none”. Since there
are N(N — 1)/2 non-elementary spans, this yields N(N — 1)/2 formulas that have the schema
given in (3.11), where M = k(h_é'i'l) is the number of rhetorical relations that are relevant

to span [I, h].
(3.11) T hvone V T hwamey iy, V- -V Th NamByy iagdar

e The type of each node is unique. This constraint can be expressed as an exclusive

“or” over the propositional variables in (3.11). When the exclusive “or” is written in

conjunctive normal form, each non-elementary span [l, h], yields M (M 4+ 1)/2 constraints
that employ the schema given in (3.12), where 1 <u < M A1 <v < MAu#v, and M
constraints that employ the schema given in (3.13), where 1 < u < M.

(3.12) _'Tl,h,NAMEu,iu,ju Vv _‘Tl,h,NAMEmivJv

(3-13) _‘Tl,h,NONE \ _'Tl,h,NAMEu,iu,ju

The total number of binary constraints that employ schema (3.12) is given in (3.14), below.

1y S Y MMt1p= Y Zk(h_é+1)(k(h_é+1)+1)/2

2<h<N 1<I<h 2<h<N 1LI<h

= EN(N — 1)(N+ 1) (N + 2) (kN? + kN + 5 — k) /120.

The total number of binary constraints that employ schema (3.13) is given in (3.15), below.

(3.15) > yu=y (")

2<h<N 1<I<h 2<h<N 1<I<h

=kN(N - 1)(N+ 1)(N+2)/24.
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e Each rhetorical relation can be used to join at most two adjacent spans. In the
encoding that I proposed, the relations that are relevant to a span [l1, hy] are also relevant
to any span [ly, ko] such that [l, hy] is a subspan of [lg,hs], 1 < I3 <y < hy < hy < N.
When we construct a text structure, we do not want to use the same relation twice. To
avoid this, for every two spans [l1, hi] and [l5, ko] that overlap, 1 < Iy <1} < hy < hy < N, if
rhet_rel(NAME, ¢, j) is relevant to both spans, we specify that 17, n, name,i; — 711, by NaMBi ;-
In conjunctive normal form, for each pairs of spans [ly, k1] and [lg, ho] such that 1 < [y <
l1 < hy < hy < N and for each relation that is common to them, we specify one constraint

that employs schema (3.16).

(3.16) =10 1y wamesing V7L by NaMEi,j

For every span [ly, hy], there exist I;(N — hy) — 1 spans [l3, he] such that 1 <3 <13 < hy <
hy < N. The average number of relations that are relevant to span [ly, hy] is k(hl_éﬁ'l).
Therefore, the average number of constraints that employ schema (3.16) is k({1(N — hy) —

1) (hl_él'i'l). For the whole encoding, the total number of constraints is

(3.17) Y ) k(hi{n=h) 1) (’“ ‘él + 1) =

2<h <N 1< <Py

EN(N — 1) (N 4 1) (N 4 2)(N? + N — 36) /720.

3.3.4 Constraints on the overall structure

e Text spans do not overlap. For each pair of spans [l1, hy] and [l5, ho] that overlap,
e, l; <ly < hy < hy, we need to specify a constraint having the form (S, 4, nveLrus V
Sty by sateriite) — (70, ke nucLeus A TS0, by sateiire).  Lhe constraint specifies that when
span [l1, hy] is active, span [l3, ko] is not. When we write the constraint in conjunctive

normal form, we obtain four binary constraints that employ schemata (3.18)—(3.21).

3.18

_‘Sll,hl,NUCLEUS \ _'SIQJLQ,NUCLEUS

3.19

_‘Sll,hl,NUCLEUS \ _'Slg,hQ,SATELLITE

3.20

_‘Sll,hl,SATELLITE \ _'SZQJLQ,NUCLEUS

3.21

(3.18)
(3.19)
(3.20)
(3.21)

_‘Sll,hl,SATELLITE \ _'SIQJLQ,SATELLITE

In a text of N units, for every span [/, h] there are (h—{—1)(N—h+1) spans that overlap span
[[, h]. Therefore, the total number of overlapping spans is D, ;2 j<jcp(h =1 — 1) (N —
h+1) = N(N - 1)(N? + 5N — 2)/12. Tt follows that the total number of binary constraints
employing each of the schemata (3.18)(3.21) is N(N — 1)(~n? + 5N — 2)/12.
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e A text span with status “none” has the type and promotion “none” as well.

For every span [/, h], this can be expressed as shown in (3.22) below.
(3-22) (_‘Sl,h,NUCLEUS A _‘Sl,h,SATELLITE) — (Tl,h,NONE A _‘Pl,h,l A _‘Pl,h,l-|—1 AN A _‘Pl,h,h)

When we write constraint (3.22) in conjunctive normal form, we obtain one ternary con-

straint that employs schema (3.23) and h—I/+1 ternary constraints that employ schema (3.24),

where i =1,...,h.
(3.23) St,hvereus V Stk saterits V 17,k nonE
(3-24) Sl,h,NUCLEUS 4 Sl,h,SATELLITE 4 _‘Pl,h,i

It follows that the total number of constraints that employ the schema (3.23) is N(N—1)/2,
and the total number of constraints that employ schema (3.24) is >, 2 <jcp(h— 1+
1) =nN(N—-1)(N+4)/6.

e A text span with non-“none” status has neither type “none” nor promotion

“none”. For every span [/, h], this can be expressed as shown in (3.25) below.

(3-25) (Sl,h,NUCLEUS \ Sl,h,SATELLITE) — (_‘Tl,h,NONE A (Pl,h,l \ Pl,h,l-|—1 V...V Pl,h,h))

When we write this constraint in conjunctive normal form, we obtain four constraints, each

employing one of the schemata (3.26)- (3.29).

3.26

_‘Sl,h,NUCLEUS \ _‘Tl,h,NONE

3.27

_‘Sl,h,SATELLITE \ _‘Tl,h,NONE

3.28 _‘Sl,h,NUCLEUS \ Pl,h,l V...V Pl,h,h

(3.26)
(3.27)
(3.28)
(3.29) =S hsarerie YV Ppg VooV Py

It follows that the total number of constraints that employ each of the schemata (3.26)-
(3.29) is N(N — 1) /2.

e The text structure has a root. In conjunctive normal form, this is expressed by four
constraints. They express that the status of the root is either NUCLEUS or SATELLITE (3.30);
that the type of the root is not NONE (3.31); that the promotion set of the root has car-

dinality at least one (3.32); and that there exist two immediate subspans of the root that
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play an active role in the representation (3.33).

3.30

SI,N,NUCLEUS Vv SI,N,SATELLITE

3.31

_‘TI,N,NONE

3-32 PI,N,I \/ PI,N,Q \/ o .. \/ PI,N,N

(3.30)
(3.31)
(3.32)
(3.33) A1V A2V VA wn-t

e The text structure obeys the strong compositionality criterion. We provide
a propositional encoding of the strong compositionality criterion by considering, for each

textual span [/, k] that can play an active role in the final text structure, three cases in turn:

Case 1. The relation that gives the type of span [/, h] is mononuclear and the satellite

comes before the nucleus.

Case 2. The relation that gives the type of span [/, k] is mononuclear and the nucleus

comes before the satellite.

Case 3. The relation that gives the type of span [/, k] is multinuclear.

Case 1. Assume first that the relation that gives the type of span [/, h] is mononuclear
and the satellite comes before the nucleus. In other words, assume that there exist two
subspans [[,b] and [b + 1, k] such that a mononuclear relation holds between a satellite ¢
that belongs to span [/, b] and a nucleus j that belongs to span [b+ 1, h]. In such a case, the
strong compositionality criterion can be expressed as a conjunction of two formulas. The
first conjunct (3.34) specifies that if a relation NAME holds between a satellite ¢ € [/, 8] and
a nucleus j € [b+ 1, k], then the whole span [/, b] has status SATELLITE, and the whole span
[0+ 1, k] has status NUCLEUS.

(3-34) (Tl,h,NAME,i,j A _‘Tl,b,NONE A _‘Tb-|—1,h,NONE) — (Sl,b,SATELLITE A Sb-|—1,h,NUCLEUS)

When we write formula (3.34) in conjunctive normal form, we obtain for each b such that [ <

b < h, two formulas: one that employs schema (3.35); and one that employs schema (3.36).

(3-35) _‘Tl,h,NAME,i,j N Tl,b,NONE N Tb-|—1,h,NONE N Sl,b,SATELLITE

(3-36) _‘Tl,h,NAME,i,j \ Tl,b,NONE \ Tb-|—1,h,NONE \ Sb-|—1,h,NUCLEUS

The second conjunct (3.37) specifies that if a relation NAME holds between a satellite 7 € [/, 0]
and a nucleus j € [b+ 1, k], then 7 is a promotion unit for span [/, b]; j is a promotion unit

for span [b+ 1, h]; the promotion set of span [, h] is equivalent to the promotion set of span

[0+ 1, h]; and, moreover, none of the units in the satellite [/, ] is a promotion unit for the

76



whole span [[, h].

(3-37) (Tl,h,NAME,i,j A Sl,b,SATELLITE A Sb-|—1,h,NUCLEUS) —

[Pl,b,i A Pyying N (V$ € [b + 1, h])(Pb+1,h,x = Pl,h,x) A (V$ € [l, b])(—'P(l, h, x))]

When we write formula (3.37) in conjunctive normal form, we obtain for each b such that
I < b < h one formula that employs schema (3.38); one formula that employs schema (3.39);
h — b formulas that employ schema (3.40) for s = b+ 1,...,h; h — b formulas that employ
schema (3.41) for # = b+ 1,...,h; and b — [ 4+ 1 formulas that employ schema (3.42) for
x=1...,0b.

(3-38) _‘Tl,h,NAME,i,j \ _‘Sl,b,SATELLITE \ _‘Sb+1,h,NUCLEUS \ Pl,b,i

(3-39) _‘Tl,h,NAME,i,j \ _‘Sl,b,SATELLITE \ _‘Sb+1,h,NUCLEUS \ Pb-|—1,h,j

(3-40) _‘Tl,h,NAME,i,j \ _‘Sl,b,SATELLITE \ _‘Sb+1,h,NUCLEUS \ _‘Pb-|—1,h,x \ Pl,h,x
(3-41) _‘Tl,h,NAME,i,j V _‘Sl,b,SATELLITE \ _‘Sb+1,h,NUCLEUS \ Pb-|—1,h,x V _‘Pl,h,x
(3-42) _‘Tl,h,NAME,i,j \ _‘Sl,b,SATELLITE \ _‘Sb+1,h,NUCLEUS \ _‘Pl,b,x \ _‘Pl,h,x

For each span [l, h] there are h — [ ways to choose the splitting point b € [[,h]. If
we assume that the relations that have the satellite before the nucleus, the relations that
have the nucleus before the satellite, and the relations that are multinuclear are equally
distributed, it follows that the total number of formulas that employ schema (3.35) is
k/3 (h_é'i'l) (h —1). For the whole structure, the number of constraints that employ each of
the schemata (3.35)-(3.39) is at most

(3.43) Yy k/3(h_é+1)(h_z):

2<h<N 1<I<h

EN(N —1)(3N — 1)(N 4 1)(N + 2)/360.

As we mentioned above, for each span [/, h] there are h — [ ways to choose the splitting
point b € [{,h]. When b = [, there are h — [ units 2 that can be salient in the nucleus
span; when b = [+ 1, there are h — [ — 1 units that can be salient in the nucleus span; and
so on, when b = h — 1, there is only one unit that can be salient in the nucleus span. It
follows that for a span [/, h], the number of constraints that employ schema (3.40) is given
by k/3% 1 cpep_yb(h =1 — b+ 1)(h — ). Hence, the number of constraints that employ

schema (3.40) for the whole text is at most

(3.44) EYSOS Y bh—i-b+1)(h-1)=

2<h<N 1<I<h 1<b<h—1

EN(N — 1) (N — 2)(N + 1)(28% + 13N + 3)/1080.

77



The number of constraints that employ schema (3.41) is the same. Reasoning similarly, we

can determine that the number of constraints that employ schema (3.42) is at most

(3.45) k3> Y Y V-1 =

2<h<N 1<i<h 1<b<h~1

EN(N —2)(4N +3)(N 4 1)(N — 1)/1080.

Constraints (3.35)—(3.42) account for the cases in which a simple rhetorical relation holds
between a satellite ¢ that belongs to a span [[, b] and a nucleus j that belongs to the adjacent
span [b+1, h]. In the case there is an extended rhetorical relation that holds between the two
spans, the constraints that pertain to the strong compositionality criterion are captured by
two formulas. The first formula, 77 5 xamebp — (S1psarerrire A Sb+1,h nucnrus ) s specifies that
if an extended relation rhet_rel_ext(NAME, [, h,b,b) holds between spans [/, b] and [b+ 1, ],
then the status of the first span is SATELLITE, and the status of the second span is NUCLEUS.
This formula yields at most > oy D 1< (b = 1) = N(N — 1)(4N 4 1)/6 applications of
schemata (3.46) and (3.47) respe_cti_vely. )

(3.46) =17, hnamebp V S1bsaTeLLITE

(3.47) =17, hamebp V Sbt1,hNUcLEUS

In addition, the strong compositionality criterion requires the applications of schemata (3.48)—
(3.50), which are a shorter expression of schemata (3.40)—(3.42). The number of constraints
that characterize the applications of schemata (3.48)—(3.50) is the same as in the case of
schemata (3.40)—(3.42).

(3.48) =T oy VPt hp V Pihe
(3.49) =T hnavebp V Pori e VP b
(3.50) =T hanebp Vo FPpe VP e

Case 2. The constraints that characterize the cases in which a simple or extended rhetor-
ical relation holds between a satellite that comes after the nucleus are analogous in form
and number with the constraints that I described above in (3.35)-(3.50). For the purpose
of completeness, I only enumerate them here. In schemata (3.51)—(3.62) I assume that unit

J belongs to span [b+ 1, h], and unit i belongs to span [/, b].

(3-51) _‘Tl,h,NAME,j,i \ Tl,b,NONE \ Tb-|—1,h,NONE \ Sl,b,NUCLEUS
(3-52) _‘Tl,h,NAME,j,i \ Tl,b,NONE \ Tb-|—1,h,NONE \ Sb-|—1,h,SATELLITE
(3-53) _‘Tl,h,NAME,j,i \ _‘Sl,b,NUCLEUS \ _‘Sb-|—1,h,SATELLITE \ Pl,b,i
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( ) _‘Tl,h,NAME,j,i \ _‘Sl,b,NUCLEUS \ _‘Sb-|—1,h,SATELLITE \ Pb-|—1,h,j

( ) _‘Tl,h,NAME,j,i \ _‘Sl,b,NUCLEUS \ _‘Sb-|—1,h,SATELLITE \ _‘Pl,b,x \ Pl,h,x

( ) _‘Tl,h,NAME,j,i \ _‘Sl,b,NUCLEUS \ _‘Sb-|—1,h,SATELLITE \ Pl,b,x \ _‘Pl,h,x

( ) _‘Tl,h,NAME,j,i \ _‘Sl,b,NUCLEUS \ _‘Sb-|—1,h,SATELLITE \ _‘Pb-|—1,h,x \ _‘Pl,h,x
(3-58) _‘Tl,h,NAME,b,b \ Sl,b,NUCLEUS

( ) _‘Tl,h,NAME,b,b \ Sb-|—1,h,SATELLITE

(3.60) =T hamebp V" FPpeV Pipe

(3.61) =T namebp V Pips VP e

(3.62)

Ty pnavepp VB he VP e

Case 3. The constraints that characterize the cases in which a simple or extended multin-
uclear rhetorical relation holds across spans [[, b] and [b+ 1, h] are similar to the constraints
that I described above in (3.35)-(3.50). For the purpose of completeness, I enumerate them
here as well. In schemata (3.63)-(3.76) I assume that unit ¢ belongs to span [/, b], and unit
J belongs to span [b+ 1, A].

_‘Tl,h,NAME,i,j \ Tl,b,NONE \ Tb-|—1,h,NONE \ Sl,b,NUCLEUS

_‘Tl,h,NAME,i,j \ Tl,b,NONE \ Tb-|—1,h,NONE \ Sb-|—1,h,NUCLEUS
_‘Tl,h,NAME,i,j \ _‘Sl,b,NUCLEUS \ _‘Sb+1,h,NUCLEUS \ Pl,b,i
_‘Tl,h,NAME,i,j \ _‘Sl,b,NUCLEUS \ _‘Sb+1,h,NUCLEUS \ Pb-|—1,h,j
_‘Tl,h,NAME,i,j \ _‘Sl,b,NUCLEUS \ _‘Sb+1,h,NUCLEUS \ _‘Pb-|—1,h,x \ Pl,h,x
_‘Tl,h,NAME,i,j \ _‘Sl,b,NUCLEUS \ _‘Sb+1,h,NUCLEUS \ Pb-|—1,h,x \ _‘Pl,h,x
_‘Tl,h,NAME,i,j \ _‘Sl,b,NUCLEUS \ _‘Sb+1,h,NUCLEUS \ Pl,b,x \ _‘Pl,h,x
_‘Tl,h,NAME,i,j \ _‘Sl,b,NUCLEUS \ _‘Sb+1,h,NUCLEUS \ _‘Pl,b,x \ Pl,h,x
_‘Tl,h,NAME,b,b \ Sl,b,NUCLEUS

_‘Tl,h,NAME,b,b \ Sb-|—1,h,NUCLEUS

Ty pnavepp V Pyt eV Pips

Ty pnavepp V Popi eV P b

Ty pnavep bV Pipe VP g,

Ty pnavepp VP eV P

The constraints described in (3.35)-(3.76) explain mostly how a text structure grows
bottom-up, i.e., they explain the way the promotion sets are computed. In order to specify
completely the strong compositionality criterion, we also need to explain how a discourse

structure grows top-down. We do this by specifying the constraints on the active-span
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Input: A sequence of textual units U = uq, ug, ..., uy and a set RR of simple and
extended rhetorical relations that hold between units and spans in U.
Output: One valid text structure of U.

1. Create propositional variables as given in section 3.3.2 and assign them unique
natural numbers.

2. Derive the set of conjunctive-normal-form constraints discussed in sections 3.3.3
and 3.3.4. Use as variables names the natural numbers that correspond to them.

3. Find a model of the logical theory derived in step 2.

4. Reconstruct the text structure that corresponds to that model.

Figure 3.6: A propositional logic, satisfiability algorithm for deriving text structures

variables.

If two adjacent spans [I, sp] and [sp+ 1, k] play an active role in the final representation
and are the immediate subspans of span [/, h], then their type is not NONE. The formalization
of this constraint, Ay s — (577, sp none V" Lsp+1 hnone VI hnone ), Yields three conjunctive

normal form schemata, which are shown below.

(377) _‘Al,h,sp 4 _‘Tl,sp,NONE
(378) _‘Al,h,sp Vo sp+1,h,NONE
(379) _‘Al,h,sp \ _'Tl,h,NONE

Assume again that a mononuclear relation holds in the final structure between two units
i, 7, such that ¢ < j. In such a case, there must exist a splitting point b € [, j — 1] such that
both spans [, b] and [b+ 1, h] play an active role in the final representation. The expression
of this fact, T} pnonsi; — (Aipi V Aipis1 V...V Ay j—1), yields one constraint for each
span [l, h], which has the schema shown in (3.80). The number of constraints having this

form is Yoy Sorren B(" 5T = AN(N = 1)(N = (N + 1)(N +2) /24,
(3.80) _‘Tl,h,NAME,i,j \ Al,h,i N Al,hJ-I-l V...V Al,h,j—l

The status, promotion, active-span, and type constraints described in this section and
the constraint schemata (3.5)-(3.80) provide a propositional, conjunctive-normal-form en-
coding of the valid text structures. If we assume that & = 3n/(5) = 3/[2(N — 1)] is an
adequate approximation of the largest number of rhetorical relations that hold among the
units of a text of N units and we sum up the number of constraints described in (3.5)—(3.80),
we obtain a figure in the O(N®) range. Hence, the size of the propositional encoding of the
problem of text structure derivation with respect to a text of N elementary units consists

of at most O(N?) variables and at most O(N?) conjunctive-normal-form constraints.
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3.3.5 Algorithm, implementation, and empirical results
Algorithm

The automatic derivation of the variables and the conjunctive-normal-form constraints of
the propositional encoding of the valid text structures that pertain to a text can follow the
same steps that we took in their presentation (see figure 3.6). Given an input similar to that
shown in (3.4), we can determine all the variables and constraints of the valid structures that
correspond to (3.4) through a trivial iterative process that considers all the possible spans
and pairs of spans that can be built on units 1,2,...,N, and all the rhetorical relations
that are relevant to these spans. Because most off-the-shelf software packages that find
models of logical theories represented in conjunctive normal form assume that the input is
given as a sequence of disjunctions in which the non-negated variables are represented using
positive integers and negated variables using negative integers, the propositional algorithm
maps the names of the variables that it uses into natural numbers (see step 1 in figure 3.6).
The algorithm then generates all the constraints discussed in sections 3.3.3 and 3.3.4 (step
2 in figure 3.6) and applies one of the existing software packages in order to determine a
model of the logical theory that describes the problem given as input (step 3 in figure 3.6).
When such a model is found, the mapping between the names of the variables to the actual

structure is trivial.

Implementation and empirical results

I have written a C4++ program that implements the propositional, satisfiability algorithm.
The program automatically generates the variables and conjunctive normal formulas that
correspond to the propositional encoding of the constraints that characterize the valid text
structures of the text subsumed by the linear sequence of units given as input. Once
the conjunctive normal formulas are generated, we can apply any technique for finding a
model that satisfies them. I used off-the-shelf software packages to investigate empirically
the computational properties of both exhaustive procedures, such as that developed by
Davis and Putnam [1960], and greedy methods, such as GSAT [Selman et al., 1992] and
WALKSAT [Selman et al., 1994].

The Davis-Putnam (DP) procedure backtracks over the space of all truth assignments,
incrementally assigning truth values to variables and simplifying formulas. Backtracking
occurs whenever no “new” variable can be assigned a truth value without producing in-
consistency. In contrast, the GSAT procedure performs a greedy local search [Selman et
al., 1992]. The procedure incrementally modifies a randomly generated truth assignment
by “flipping” the assignment of the variable that leads to the largest increase in the total
number of satisfied formulas. The “flipping” process is repeated until a truth assignment is

found or until an upper threshold, MAX-FLIPS, is reached. If no satisfying truth assignment
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Text | Number of | Number of | Derivation
variables clauses time

in seconds
Al 45 160 <1
A2 83 360 <1
A3 151 818 <1
A4 300 1856 1
A5 306 2544 1
A6 2298 47698 7
AT 3865 95984 50
A8 4558 146290 50

Table 3.2: The sizes of the propositional encodings and the amounts of time required to
derive them.

Text DP GSAT WALKSAT

Time || Success | Time Max Max || Success | Time Max Max

(sec.) (sec.) flips tries (sec.) flips tries
Al <1 yes <1 5000 1 yes <1 113 1
A2 <1 yes <1 10000 8 yes <1 320 1
A3 <1 yes 17 | 50000 18 yes <1 326 1
A4 <1 no 229 50000 | 250 yes <1 14711 1
Ab <1 no 342 | 50000 | 250 yes <1 7409 1
A6 4 no 1821 | 100000 | 250 no 396 | 50000 | 250
AT 137 no 2243 | 100000 | 250 no 1099 | 100000 | 250
A8 9021 no 2262 | 100000 | 250 no 1430 | 100000 | 250

Table 3.3: Performance of the propositional logic, satisfiability-based implementations

is found after MAX-FLIPS, the whole process is repeated. At most MAX-TRIES repetitions
are allowed. WALKSAT [Selman et al., 1994] is a variant of GSAT that introduces some
“noise” in the local search. With probability p, the WALKSAT algorithm picks a variable
occurring in some unsatisfied clause and flips its truth assignment. With probability 1 — p,
WALKSAT follows the standard greedy schema of GSAT, i.e., it makes the best possible
move.

Table 3.2 shows the sizes of propositional encodings in conjunctive normal form that
correspond to the texts in appendix A and the amounts of time that were required by our
implementation to derive them. The data in table 3.2 suggest that as texts get larger, both
the sizes of the corresponding propositional encodings and the amounts of time required to
derive them can quickly exceed reasonable limits.

Table 3.3 summarizes the performance of DP, GSAT, and WALKSAT implementa-
tions in finding satisfying truth assignments for the propositional encodings of the texts
given in appendix A. The second column in table 3.3 shows the amount of time re-

quired to find a satisfying truth assignment by an implementation of Davis—Putnam pro-
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cedure that was downloaded from http://www.cirl.uoregon.edu/crawford/ [Crawford and
Auton, 1996]). Table 3.3 also shows whether implementations of GSAT and WALKSAT
procedures [Selman et al., 1992, Selman et al., 1994], which were downloaded from
ftp://ftp.research.att.com/dist /ai/, were successful in finding a satisfying truth assignment.
Where a satisfying truth assignment was found, table 3.3 specifies, in the “Max tries” col-
umn, the “try” during which the procedures succeeded. Where a satisfying truth assignment
was not found, table 3.3 specifies the maximum number of “tries” and “flips” that were used
in attempting to find a solution. In both cases, table 3.3 shows the amount of time spent

for the whole experiment.

The results in table 3.3 are interesting from two perspectives. On one hand, from a
linguistic perspective, the propositional encoding shows a significant improvement over the
constraint-satisfaction encoding discussed in section 3.2: the Davis—Putnam implementation
derived one valid text structure for each of the eight texts that we considered. However,
since the number of conjunctive normal formulas is in the range of O(N®), it is obvious that a
direct application of the method is ill-suited for real texts, where the number of elementary

units is in the hundreds and even the thousands.

On the other hand, from a computational perspective, the encoding raises some inter-
esting questions with respect to the adequacy of stochastic methods for finding models of
propositional theories. Most of the research on greedy methods that was generated in the
last five years is concerned with propositional satisfiability problems that were randomly
generated. Empirical studies showed that, for such problems, the GSAT algorithm signif-
icantly outperforms the Davis—Putnam procedure. However, as table 3.3 shows, for the
propositional encoding of the problem of text structure derivation it seems that it is the re-
verse that holds. It is surprising that even WALKSAT, which adds some noise to the GSAT
procedure, fails to find satisfying truth assignments for problems on which DP succeeds. For
example, Selman, Levesque, and Mitchell [1992] noticed that whenever a problem was easy
to solve by the DP procedure, it was also easy to solve by GSAT. The results presented
in this section do not seem to follow the same pattern. In addition, although empirical
results showed repeatedly that the DP procedure is intractable for randomly generated
propositional encodings that have more than 500 variables, in our case, it manages to find
satisfying truth assignments in less than two and a half hours for propositional encodings
of the problem of text structure derivation that have more than 4000 variables and more
than 140000 clauses!

I believe that a much deeper investigation of the computational properties of exhaustive
and stochastic procedures with respect to the class of problems that I presented in this
section is required in order to derive valid conclusions. Such an investigation is beyond the

scope of this thesis.
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Status = {NUCLEUS}
Type = {JUSTIFICATION}
Promotion = {2}

Status = {NUCLEUS}
Type = {JUSTIFICATION}
Promotion = {2}

Status = {SATELLITE}
Type = {LEAF}

Status = {NUCLEUS}
Type = {LEAF}

Status = {NUCLEUS}

Status = {NUCLEUS}
Type = {LEAF}

Promotion = {1} Promotion = {2} Promotion = {1} ;Zg;;g:fg}
a) b)
Figure 3.7: Examples of valid and invalid text structures
3.4 Deriving text structures — a proof-theoretic approach
3.4.1 Deriving text structures — a theorem proving perspective

The algorithms discussed in sections 3.2 and 3.3 derive valid text structures using model-
theoretic techniques. In this section, I take a proof-theoretic stand and present a set of
rules of inference (rewriting rules) that can be used to derive valid text structures starting
from a given sequence of N textual units and from the set of rhetorical relations that hold
among these units. The rewriting rules hence emphasize how valid text structures can be

derived and not what valid text structures are.

In presenting the proof-theoretic account, I consider a universe U that consists of the set
of natural numbers from 1 to N, the set of constants NUCLEUS, SATELLITE, LEAF, NULL, and
the names of all rhetorical relations in a taxonomy of choice. The universe also contains
objects of the form tree(status, type, promotion, left, right), where status can be either
NUCLEUS or SATELLITE; type can be a name of a rhetorical relation; promotion can be a
set of natural numbers from 1 to N; and left and right can be NULL or recursively defined
objects of type tree. Sets of rhetorical relations such as that given in (3.4) are considered
legal objects as well. We assume that the language defined over the universe U supports

the traditional function symbols + and — and operations that are typical to sets.

The objects having the form tree(status, type, promotion, left, right) can provide a func-
tional representation of valid text structures. Assume, for example, that a rhetorical relation
rhet_rel(JUSTIFICATION, 1, 2) holds among the units of a text with two elementary units.
Then, the valid tree structure shown in figure 3.7.a can be represented using an object of
type tree as shown in (3.81). Although the objects of type tree can represent valid text
structures, their syntax does not impose sufficient constraints on the semantics of the struc-
tures that they correspond to. For example, the structure shown in figure 3.7.b can be also
represented as an object of type tree, as shown in (3.82), but obviously, it is not a valid

text structure: the JUSTIFICATION relation is hypotactic, so assigning the status NUCLEUS
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to both elementary units is incorrect.

(3.81)

(3.82)

tree(NUCLEUS, JUSTIFICATION, {2},
tree(SATELLITE, LEAF, {1}, NULL, NULL),

tree(NUCLEUS, LEAF, {2}, NULL, NULL))

tree(NUCLEUS, JUSTIFICATION, {2},
tree(NUCLEUS, LEAF, {1}, NULL, NULL),

tree(NUCLEUS, LEAF, {2}, NULL, NULL))

Definition 3.1 makes explicit the correspondence between valid text structures and objects

of type tree.

Definition 3.1. An object tree(status,type, promotion, left, right) corresponds to a valid

text structure if and only if the status, type, and promotion arguments of the tree have the

same

values as those of the root of the text structure and if the left and right arguments

correspond to the left and right subtrees of the valid text structure.

The language that we describe here in conjunction with universe U accepts only five

predicate symbols:

Predicate unit(¢) is true for each ¢ < N whenever the text under scrutiny can be
broken into N elementary textual units. For simplicitly, we assume that these units
are labelled from 1 to N. For example, for text (3.3), unit(1) to unit(4) are true, but

unit(h) is false.

Predicate hold(rr) is true for a given text if and only if the rhetorical relations enu-
merated in the set rr hold among the units in that text. For example, for text (3.3),
the predicate hold(RR) is true if RR contains the list of rhetorical relations shown
in (3.4).

Predicate S(I, h,tree(...), Ry) is true when a valid text structure that corresponds to
the argument tree(...) can be built on span [/, h] using rhetorical relations that hold
among units in the span. The argument Ry, denotes the set of rhetorical relations that
can be used to extend the valid structure of span [I, h], i.e., the rhetorical relations hold
among the units in the text that have not been used in the construction of the valid
structure that corresponds to the object tree(...). For example, given text (3.3) and
the set of elementary and extended rhetorical relations that hold among its units (3.4),
the predicate in (3.83) is true. In contrast, the predicate in (3.84) is false because the

term tree does not correspond to a valid text structure — the relation JUSTIFICATION
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is mononuclear.

(3.83) S(1,2,tree(NUCLEUS, JUSTIFICATION, {2},
tree(SATELLITE, LEAF, {1}, NULL, NULL),
tree(NUCLEUS, LEAF, {2}, NULL, NULL)),

RR\ {rhet_rel(JUSTIFICATION, 1, 2)})

(3.84) S(1,2,tree(NUCLEUS, JUSTIFICATION, {2},
tree(NUCLEUS, LEAF, {1}, NULL, NULL),
tree(NUCLEUS, LEAF, {2}, NULL, NULL)),

RR\ {rhet_rel(JUSTIFICATION, 1, 2)})

We say loosely that a predicate S(I, h,tree(...), Ris) corresponds to a valid text struc-

ture if its third argument corresponds to that structure.

e Predicate hypotactic(name) is true if name is a hypotactic relation in the taxonomy of
rhetorical relations that is used. For example, if we wuse RST,

hypotactic(JUSTIFICATION) and hypotactic(CONCESSION) are both true.

e Predicate paratactic(name) is true if name is a paratactic relation in the taxonomy of
rhetorical relations that is used. For example, if we wuse RST,

paratactic(CONTRAST) and paratactic(SEQUENCE) are both true.

We take instantiations of schemata (3.85) and (3.86) with respect to the taxonomy of
relations that is used as axioms of a logical system that characterizes how text structures

can be derived.

(3.85) hypotactic(relation_name)

(3.86) paratactic(relation_name)

Given a sequence of N textual units and a set RR of rhetorical relations that hold among

these units, we take (3.87) as axiom as well.
(3.87) hold(RR)

We also take unit(1), unit(2),...,unit(N), i.e., the applications of schema (3.88) for 1 <

¢ < N, as axioms in our system.

(3.88) unit (i)
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We describe now a set of Horn-like axioms that characterize how textual structures that
characterize textual spans can be joined to obtain textual structures for larger spans. For
the limit case, we assume that for every textual unit ¢ in the initial sequence of textual units
1,...,N there exists a textual span S that can be associated with a valid text structure
that has either status NUCLEUS or SATELLITE, type LEAF, and promotion set {i}; any of the
relations given in the initial set RR can be used to extend the span .S into a larger one. A
text of N units can therefore yield at most N axioms having the form (3.89) and N axioms
having the form (3.90).

(3.89) [unit(i) A hold(RR)] — S(¢,¢,tree(NUCLEUS, LEAF, {¢}, NULL, NULL), RR)

(3.90) [unit(i) A hold(RR)] — S(i,4,tree(SATELLITE, LEAF,{i}, NULL, NULL), RR)

The intuition behind the use of the set RR of rhetorical relations that are available to
extend a current span is the following: in the beginning, when we construct a tree structure
for a text, we can use any of the relations that hold among the units of the text. However,
since only one relation can be associated with a node and since each relation can be used
at most once, as we proceed with the construction of a tree structure, we can use fewer and
fewer relations. The last argument of the predicate S keeps track of the relations that are

still available for future use.

Besides the axioms shown above, we consider now a set of axioms that explain how
adjacent spans can be assembled into larger spans. These axioms provide a procedural
account of the strong compositionality criterion. Assume that there exist two spans: one
from unit { to unit b that is characterized by valid text structure tree;(...) and rhetor-
ical relations rrq, and the other from unit b + 1 to unit & that is characterized by valid
text structure treeq(...) and rhetorical relations rry. Assume also that rhetorical relation
rhet_rel(name, s,n) holds between a unit s that is in the promotion set of span [/, b] and a
unit n that is in the promotion set of span [b+ 1, k], that rhet_rel(name, s, n) can still be
used to extend both spans [/, b] and [b+ 1, k] (rhet_rel(name, s,n) € rryNrry), and assume
that the relation is hypotactic. In such a case, one can combine spans [/, b] and [b+ 1, h] into
a larger span [[, h] that has a valid structure whose status is either NUCLEUS (see rule (3.91))
or SATELLITE (see rule (3.92)), type name, promotion set pz, and whose children are given

by the valid structures of the immediate subspans. The set of rhetorical relations that can
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be used to further extend this structure is given by rry N rry \ {rhet_rel(name, s, n)}.

(3.91) [S(l,b,tree;(SATELLITE, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel(name,s,n) € rry N rrg As € pr An € pg A hypotactic(name)] —
S(l, h,tree(NUCLEUS, name, pg, treeq(...), trees(...)),

rry N rrg \ {rhet_rel(name, s, n)})

(3.92) [S(l,b,tree;(SATELLITE, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel(name,s,n) € rry N rrg As € pr An € pg A hypotactic(name)] —
S(l, h,tree(SATELLITE, name, py, treey(...), trees(...)),

rry N rrg \ {rhet_rel(name, s, n)})

Similarly, we define rules of inference for the cases in which an extended rhetorical relation
holds across spans [/, b] and [b+ 1, h] (3.93)-(3.94); for the cases in which the nucleus goes
before the satellite (3.95)—(3.98); and for the cases in which the relation under scrutiny is
paratactic (3.99)—(3.102).

(3.93) [S(l,b,tree;(SATELLITE, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel_ext(name,l,b,b4 1, h) € rry O rrg A hypotactic(name)] —
S(l, h,tree(NUCLEUS, name, pz, treeq(...), trees(...)),

rre O rrg \ {rhet_rel(name, l,b,b+ 1, h)})

(3.94) [S(l,b,tree;(SATELLITE, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel_ext(name,l,b,b4 1, h) € rry O rrg A hypotactic(name)] —
S(l, h,tree(SATELLITE, name, pa, treey (. ..),trees(...)),

rre O rrg \ {rhet_rel(name, l,b,b+ 1, h)})
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(3.95) [9(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(SATELLITE, types, pa, lefty, rights), rra) A
rhet_rel(name,s,n) € rry Nrrg A's € pg An € p1 A hypotactic(name)] —
S(l, h,tree(NUCLEUS, name, p1,treeq(...), trees(...)),

rry N rrg \ {rhet_rel(name, s, n)})

(3.96) [9(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(SATELLITE, types, pa, lefty, rights), rra) A
rhet_rel(name,s,n) € rry Nrrg A's € pg An € p1 A hypotactic(name)] —
S(l, h,tree(SATELLITE, name, p1,treey(...), trees(...)),

rry N rrg \ {rhet_rel(name, s, n)})

(3.97) [9(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(SATELLITE, types, pa, lefty, rights), rra) A
rhet_rel_ext(name,b+ 1, h,1,b) € rri N rry A hypotactic(name)] —
S(l, h,tree(NUCLEUS, name, p1,treeq(...), trees(...)),

rre O rrg \ {rhet_rel(name, b+ 1,h,1,b)})

(3.98) [9(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(SATELLITE, types, pa, lefty, rights), rra) A
rhet_rel_ext(name,b+ 1, h,1,b) € rri N rry A hypotactic(name)] —
S(l, h,tree(SATELLITE, name, py, treei(...),trees(...)),

rre O rrg \ {rhet_rel(name, b+ 1,h,1,b)})

(3.99) [S(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel(name,ni,ng) € rry Nrrg A ny € p1 Ang € pa A paratactic(name)] —
S(l, h,tree(NUCLEUS, name, p1 U pa, treey(...), trees(...)),

rry O rrg \ {rhet_rel(name, ny, ny)})
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Status = {NUCLEUS}
Type = {EVIDENCE}
Promotion = {2}

Status = {NUCLEUS}
Type = {JUSTIFICATION }
Promotion = {2}

Status = {SATELLITE}
@ Type = {CONCESSION}

< Promotion = {4}

Status = {SATELLITE}

e Type = {LEAF}

Promotion = {1}

Status = {NUCLEUS} Status = {SATELLITE} Status = {(NUCLEUS}
Type = {LEAF} Type = {LEAF} Type = {LEAF}
Promotion = {2} Promotion = {3} Promotion = {4}

Figure 3.8: One of the valid text structures that corresponds to text (3.3).

(3.100) [S(I,b,tree (NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel(name,ni,ng) € rry Nrrg A ny € p1 A ng € pa A paratactic(name)] —
S(l, h,tree(SATELLITE, name, py U pg, treei(...), trees(...)),

rri N rrg \ {rhet_rel(name, ny, ny)})

(3.101) [S(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel_ext(name,l,b,b+ 1, h) € rry Nrry A paratactic(name)] —
S(l, h,tree(NUCLEUS, name, py U pa, treey(...), trees(...)),

rry O rrg \ {rhet_rel(name,l,b,b+ 1, h)})

(3.102) [S(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel_ext(name,l,b,b+ 1, h) € rry Nrry A paratactic(name)] —
S(l, h,tree(SATELLITE, name, py U pa, treeg (. ..), treez(...)),
rry O rrg \ {rhet_rel(name,l,b,b+ 1, h)})

Axioms (3.85)(3.102) provide a proof-theoretic account of the problem of text structure
derivation.
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1. hold(RR) Axiom (3.87)
2. unit(1) Axiom (3.88)
3. unit(2) Axiom (3.88)
4. unit(3) Axiom (3.88)
5. unit(4) Axiom (3.88)
6. S(1,1,tree(SATELLITE, LEAF, {1}, NULL, NULL), RR) 1, 2, Axiom (3.90), M
7. 5(2,2,tree(NUCLEUS, LEAF, {2}, NULL, NULL), RR) 1, 3, Axiom (3.89), M
8. 9(1,2,tree(NUCLEUS, JUSTIFICATIONY, {2}, 6, 7, Axiom (3.91), M
tree(SATELLITE, LEAF, {1}, NULL, NULL),
tree(NUCLEUS, LEAF, {2}, NULL, NULL)),
RRy)
9. 5(3,3,tree(SATELLITE, LEAF, {3}, NULL, NULL), RR) 1, 4, Axiom (3.90) , MP
10. S(4,4,tree(NUCLEUS, LEAF, {4}, NULL, NULL), RR) 1, 5, Axiom (3.89) , MP
11. S(3,4,tree(SATELLITE, CONCESSION, {4}, 9, 10, Axiom (3.92), MP
tree(SATELLITE, LEAF, {3}, NULL, NULL),
tree(NUCLEUS, LEAF, {4}, NULL, NULL)),
RR3)
12. S(1,4,tree(NUCLEUS, JUSTIFICATIONg, {2}, 8, 11, Axiom (3.95), MP
tree(NUCLEUS, JUSTIFICATION, {2},
tree(SATELLITE, LEAF, {1}, NULL, NULL),
tree(NUCLEUS, LEAF, {2}, NULL, NULL)),
tree(SATELLITE, CONCESSION, {4},
tree(SATELLITE, LEAF, {3}, NULL, NULL),
tree(NUCLEUS, LEAF, {4}, NULL, NULL))),
RR3)

Figure 3.9: A derivation of the theorem that corresponds to the valid text structure shown
in 3.8.

3.4.2 Example of a derivation of a valid text structure

If we take any text of N units that is characterized by a set RR of rhetorical relations,
the proof-theoretic account provides all the necessary support for deriving the valid text
structures of that text. Assume, for example, that we are given text (3.3) and assume that
the rhetorical relations RR in (3.4) hold among the units in the text. In figure 3.9, we
sketch the derivation of the theorem that corresponds to the valid text structure that is
shown in figure 3.8. The sets of rhetorical relations RRy, RR2, and RE3 that will be used
in the derivation are shown in (3.103), (3.104), and (3.105), respectively.
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rhet_rel(JUSTIFICATIONg, 4, 2)

(3.103) RRy = ¢ rhet_rel
rhet_rel(RESTATEMENT, 4, 1)

(
rhet_rel(EVIDENCE, 3, 2)

(CONCESSION, 3, 4)

(

rhet_rel_ext(JUSTIFICATIONS, 1,1,2,4)

rhet_rel(JUSTIFICATIONY, 1, 2)
rhet_rel(JUSTIFICATIONg, 4, 2)
(3.104) RRy = § rhet_rel(
(

rhet_rel(RESTATEMENT, 4, 1)

EVIDENCE, 3, 2)
rhet_rel_ext(JUSTIFICATIONS, 1,1,2,4)
rhet_rel(EVIDENCE, 3, 2)

(3.105) RR3 =< rhet_rel(RESTATEMENT, 4, 1)
rhet_rel_ext(JUSTIFICATIONS, 1,1,2,4)

The derivation starts with one instantiation of axiom (3.87) and four instantiations of
axiom (3.88). Using the axioms in lines 1 and 2, axiom (3.90), and the Modus Ponens
rule, we derive the theorem in line 6. Using the axioms in lines 1 and 3, axiom (3.89), and
Modus Ponens, we derive the theorem in line 7. Both theorems correspond to valid text
structures that can be built on top of elementary units. Using the theorems in lines 6 and
7, axiom (3.91), and Modus Ponens, we derive the theorem in line 8. It corresponds to a
valid text structure that can be build across span [1,2]. Since this structure uses rhetorical
relation rhet_rel (JUSTIFICATIONY, 1,2), the set RR; of rhetorical relations that can be used
to expand further the text structure will no longer contain this relation. Similarly, we derive
the theorem in line 11, which corresponds to a valid text structure that spans across units 3
and 4. Using the theorems derived in line 8 and 11, axiom (3.95), and Modus Ponens gives
us a theorem that corresponds to a valid structure for the whole text, the structure shown

in figure 3.8.

3.4.3 The proof-theoretic account of valid text structures is sound and

complete

Given the formalization of text structures in chapter 2 and the set of axioms introduced
in this section, it is natural to ask what the relationship between the two is. Theorem 3.1

spells out the nature of this relationship.
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Theorem 3.1. Given a text T that is characterized by a set of rhetorical relations RR,
the proof-theoretic account is both sound and complete with respect to the axiomatization of
valid text structures. That is, all theorems that are derived using the proof-theoretic account
correspond to valid text structures; and any valid text structure of a text can be derived
through the successive application of the axioms of the proof-theoretic account and Modus

Ponens.

Proof. Since axioms (3.85)-(3.102) are essentially Horn clauses, for the purpose of this
proof, I will treat them in the same way Prolog does. More precisely, instead on focusing on
their fixed-point semantics, I will treat axioms (3.85)-(3.102) from a procedural perspective
and consider them to be a Prolog program that, like any other Prolog program, computes
inferences only in minimal models [Lloyd, 1987]. Hence, 1 will show that the procedural
semantics of axioms (3.85)—(3.102) is consistent with the constraints described in chapter 2.

In order to prove the theorem, we first make the observation that the objects of type
tree that are accepted by the logical language described in this section obey, by definition,
most of the constraints that pertain to a valid text structure. Each of the objects of type
tree essentially encodes a binary text structure whose nodes are characterized by a status, a
type, and a promotion set. Therefore, by definition, the objects of type tree obey the shape
of a valid text structure. In order to prove that the axioms are both sound and complete, we
only need to prove that the values that are associated with the status, type, and promotion
set of each node are consistent with the constraints that characterize the structures that

are valid.

Proof of soundness. By definition, given a text of N units among which rhetorical relations
RR hold, unit(1),...,unit(n) and hold(RR) are the only atomic axioms that correspond
to that text — the axioms pertaining to the set of hypotactic and paratactic relations are
text-independent. In order to derive theorems, we need to apply one of axioms (3.89)-
(3.102). These axioms fall into two categories. Axioms (3.89) and (3.90) can be applied
only on elementary textual units. Their application yields theorems that are characterized
by tree objects that are valid — these trees are the direct expression of the conventions that
we use. Axioms (3.91)-(3.102) are nothing but a one-to-one translation of the strong com-
positionality criterion 2.2. Therefore, the theorems that these axioms generate correspond

always to valid text structures. O

Proof of completeness. The proof follows immediately from lemma 3.1. Given any text T,
the algorithm shown in figure 3.10 derives all the valid discourse trees of any span [/, h]
in the text by means of the proof-theoretic account; so it follows that the algorithm also
derives all the valid trees of the whole text T'. Hence, there is no tree that cannot be derived

using the proof-theoretic account. O
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Input: a text T of N units and
a set RR of rhetorical relations that hold among these units.

Output: all the theorems that can can be derived by applying the proof-theoretic
account of valid text structures.

1. apply axiom schema (3.87)

2. for 1:=1to N

apply axiom schema (3.88)

apply axiom schemata (3.89)—(3.90)
. for size_of span:=1to N—1

w

h =l + size_of_span
for b:=[lto h—1

4

5

6. for [:=1 to N — size_of_span

7

8

9 for each theorem S(l,b,tree;, RRy) of span [I,b]

10. for each theorem S(b+ 1, h,treez, RR3) of span [b+ 1, h]
11. for each relation r € RR;{ N\ RRy
12. apply all possible axioms (3.91)-(3.102)

Figure 3.10: An algorithm that derives all the theorems that characterize a text T with
respect to the proof-theoretic account of valid text structures.

Lemma 3.1. Given a text T of N elementary units among which rhetorical relations RR
hold, the theorems derived by the algorithm in figure 3.10 by means of the proof-theoretic
account correspond to all valid structures that can be built for any span [, h] of T, where
1<I<h<N.

Proof. The algorithm in figure 3.10 derives first all theorems that correspond to all the valid
text structures that can be built for each of the elementary textual units (lines 2-4). Then,
it derives all the theorems that correspond to spans of size 2, 3, ..., N (lines 5-12). The
proof of the lemma reflects the main steps of the algorithm: it is inductive on the number
of units in the span [/, A].

Base case (number_of_units_in_span = 1):
All the valid trees that can be built for any leaf ¢ of the text are described by struc-
tures that correspond either to term ¢ree(SATELLITE,LEAF,{i}, NULL, NULL) or to term
tree(NUCLEUS, LEAF, {7}, NULL, NULL). Lines 2-4 of the algorithm in figure 3.10 derive all
these structures.

Induction step:
Assume that the lemma holds for all spans [z,y] whose size is less than
number_of_units_in_span = k, i.e., y — ¢ < k. We prove now that the lemma holds for
span [l, h] of size k as well. By contradiction, assume that there exists a valid structure
vs that spans across units [/, ] and assume that the algorithm in figure 3.10 cannot derive

any theorem that corresponds to vs. In looser terms, we assume that the algorithm cannot
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derive a theorem having the form S(, h,vs,rr).

According to the axiomatization given in chapter 2, if a valid text structure can be
associated with span [/, h], it must be built on the top of two substructures of two adjacent
subspans. Since the algorithm iterates over all possible combinations of subspans and
over all possible valid structures that correspond to these subspans (lines 8-12), the only
situations in which a theorem that corresponds to vs can fail to be derived is when one or
more of the antecedents that characterize one of the axioms (3.91)-(3.102) do not hold; and
when there exists no axiom to derive vs. If we consider in a proof by cases all the possible
combinations that could be associated with the status, type, promotion units, and set of
rhetorical relations of wvs, it is trivial to show that, for each combination, there exists an

axiom that in conjunction with Modus Ponens derives a theorem that corresponds to wvs.

For example, assume that vs is isomorphic to the structure that corresponds to the third
term of theorem (3.106).

(3.106) S(l, h,tree(SATELLITE, NAME, Py,
tree(SATELLITE, NAMEy, Py, lefty, righty),
tree(NUCLEUS, NAMEqg, Py, lefty, rights)),

RRy1,)

Since vs is valid, it follows that there exist spans [/, ] and [b+ 1, k] that are characterized
by valid text structures vs; and vsy; these structures correspond to terms ¢ree(SATELLITE,
NAMEq, Py, lefty, right1) and tree(NUCLEUS, NAMEy, Py, lefty, righty) respectively. Accord-
ing to the induction hypothesis, this means that the theorems given in (3.107) and (3.108)
hold for some rry,rry C RR.

(3.107) S(l,b,tree(SATELLITE, NAME1, Py, lefty, righty), rry)
(3.108) S(b+1,h,tree(NUCLEUS, NAMEg, Py, lefty, rights), rrs)

Also, since vs is a valid structure, this also means that rhetorical relation NAME is either
a simple hypotactic relation that holds between two elementary units, one unit s € [/, b]
and one unit N € [b+ 1, h], or an extended hypotactic relation that holds between the two
spans. Assume that NAME is a simple relation (if NAME is an extended relation, the proof
is similar). In order to be able to apply the axiom given in (3.91), we only need to prove

that rhet_rel(NAME,S,N) € rrqi N rra.

Now, all the sets of rhetorical relations that are associated with all theorems derived
for all spans of size smaller that & — [ are either equal to RR or are obtained from RR
through successive eliminations of relations that are used to build valid text structures.

Since rhet_rel(NAME,S,N) holds across two units that belong to spans [[,b] and [b+ 1, A]

95



respectively, it is obvious that this relation could not have been used to build either the tree

structure for vs; or that for vsy. Hence, rhet_rel(NAME,S,N) must be in the set rry N rrg.
All the antecedents that pertain to axiom (3.91) are true. Therefore, one can use

axiom (3.91) and Modus Ponens to derive theorem (3.106), which contradicts our initial

hypothesis that vs cannot be derived. The proof of the other cases is similar. O

3.4.4 Implementation and empirical results

There are many ways in which one can implement a set of rewriting rules of the kind
described in this section. For example, one can encode all the axioms as Horn clauses and
let the Prolog inference mechanism derive the valid discourse structures of a text. Or one
can write a grammar having rules such as those shown in (3.109), where each grammar rule

is associated with a set of semantic constraints in the style of Montague [1973].

(3.109) S(sem) — 1 {sem = {tree(NUCLEUS, LEAF, {1}, NULL,NULL), RR}}
S(sem) — 1 {sem = {tree(SATELLITE, LEAF, {i}, NULL,NULL), RR}}

S(sem) — S(semy) S(semz) {sem = f(semq,sems)}

The grammar-based approach assumes that the input is a sequence of textual units
1,2,...,N. Each nonterminal S in the grammar has associated a semantics that reflects the
valid structure that corresponds to that derivation and the set of rhetorical relations that
can be used for further derivations. The semantic constraints sem = f(semy, sems) that
characterize all juxtapositions of nonterminals are a one-to-one expression of the constraints
expressed in axioms (3.91)—(3.102). For example, the semantic constraint associated with
rule (3.91) is that shown in (3.110) below.

(3.110) [semy = {tree; (SATELLITE, typey, p1, lefty, righty), rri} A

semgy = {tree(NUCLEUS, types, pa, leftz, rights), rra} A

rhet_rel(name,s,n) € rry N rrg As € py An € py A hypotactic(name)]

sem = {tree(NUCLEUS, name, pg, treeq(...),treeg(...)),

rre O rrg \ {rhet_rel(name, s,n)}

Taking the grammar-based approach, I modified the bottom-up parser described by
Norvig [1992, p. 665] so that it takes as input a sequence of elementary textual units
and the set of rhetorical relations that hold among these units, and builds a semantic
representation that subsumes all the valid text structures that correspond to the text. The

parser applies a memoization procedure! in order to avoid computing the same structure

' A memoization procedure consists in creating dinamically a database of function input/output pairs;
whenever a memoized function is called, the database is checked in order to avoid computing the same
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Text | Time in | Number of
seconds valid

structures
Al 0.02 3
A2 0.03 5
A3 0.16 40
A4 0.10 8
Ab 0.14 20
A6 19.20 816
A7 45.48 2584
A.8 | 13227.00 24055

Table 3.4: The performance of the bottom-up parser and the total number of valid trees
that correspond to the texts given in appendix A.

twice, being therefore equivalent to a chart parser. Table 3.4 shows the time required by
the bottom-up parser to derive all the valid text structures that correspond to the texts
in appendix A. It is obvious that the proof-theoretic paradigm for deriving valid text
structures has much better computational properties than the model-theoretic paradigms
discussed in sections 3.2 and 3.3. However, the empirical data also suggests that in the
cases in which the number of valid trees is very large, the performance of the algorithm
degrades. Therefore, if we are to apply this algorithm on larger instances, we would need

to find ways to compute only some of the valid structures.

3.5 Deriving text structures — compiling grammars in Chom-

sky normal form

3.5.1 From text structures to Chomsky normal-form grammars

In general, finding solutions of constraint-satisfaction problems and finding models of theo-
ries of propositional formulas are NP-complete problems [Garey and Johnson, 1979, Mack-
worth, 1977]. And parsing phrase structure trees in the presence of functional constraints
can be exponential in the worst case [Maxwell and Kaplan, 1993, Barton et al., 1985].
Therefore, deriving the valid text structures of a text using the algorithms described in
sections 3.2-3.4 can be exponential in the worst case because these algorithms do not fully
exploit the characteristics of the problem that we are trying to solve. In this section, we
show that we can compile in polynomial time the problem of text structure derivation 2.2
into a grammar in Chomsky normal form and we prove that the size of the grammar is

polynomial in the length of the input. Since one can recognize whether a string of length N

function more than once.
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belongs to the language defined by a Chomsky normal-form grammar in polynomial time
too, O(~%), it follows that one can derive the valid text structures of a text in polynomial
time.

Two crucial observations allow us to compile the problem of text structure derivation

into a Chomsky normal-form grammar.

e The first observation is that a valid text structure can be recovered from an “almost-
valid” text structure, i.e., a structure that associates only one unit with each promo-
tion set. As we showed in section 3.2, one can map an “almost-valid” structure into a
valid one in polynomial time. Hence, for the purpose of this section, we assume that

the promotion sets of each span have cardinality one.

e The second observation is that the number of possible combinations of the values
associated with the status, type, and promotion set of each node of a valid text
structure is finite. Hence, given a span [/, h], there exists only a finite number of
symbols S{l, h, status, type, promotion_set) that encode the variables that characterize
completely each node of a valid text structure. Since the status of a valid span ranges
over the set {NUCLEUS, SATELLITE}, the type over a set of kp ) < |RR|? relations
that are relevant to that span, and the promotion set over the elements of the set
{3 AU+ 13,...  {h}}, it follows that there are at most 2kp;(h — [ + 1) distinct
symbols S{l, h, status, type, promotion_set) that can characterize completely a span

[[, h] that plays an active role in a text structure.

Let us assume that we are given a sequence of textual units U = 1,2,...,N and a set
RR that encodes all the relations that hold among these units. For example, text (3.3)
is characterized by sequence 1,2,3,4 and by rhetorical relations (3.4). We present now an
algorithm that starting from U and RR constructs a grammar in Chomsky normal form
that can be used to derive all and only the valid text structures of U.

The compiling algorithm in figure 3.11 derives a set of rules P that fall into two cate-

gories. The rules compiled in lines 1-3 have the form S{i,¢,...) — ¢ and S — ¢ — they are

used to recognize terminal symbols 1,2,... N. The rules compiled in lines 4-36 have the
form S(l,h,...) = S{,b,...) S+ 1,h,...) and S — S{,b,...) S(b+1,h,...), where
[ < b < h — they correspond to joining adjacent spans into larger spans. Hence, the

compiling algorithm derives a set of production rules P that corresponds to a grammar
G = (S,T,N, P) in Chomsky normal form. The starting symbol of the grammar is S, the
set of terminal symbols T" is the set {1,2,...,N}, and the set of nonterminal symbols N is

given by the union of {S} and all the symbols having the form S(z,y,...) that occur in P.

2The symbol |RR| denotes the cardinality of the initial set of relations that hold among the units of the
text.
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Input: A sequence U =1,2,... N of elementary textual units and
A set RR of rhetorical relations that hold among these units.
Output: A grammar in Chomsky normal form that can be used to derive all and only
the parse trees that correspond to the valid text structures of U.
1. fori:=1to N
2. add rules S — i, S{i,i,NUCLEUS,LEAF, {i}) — ¢, and S{i, ¢, SATELLITE, LEAF, {¢}) — ¢
3. endfor
4. for size_of span :=1 to N —1
5. forl:=1to n— size_of _span
6. h =1+ size_of_span
7. forb:=lto h—1
8. forz:=[lto b
9. fory:=b+1to h
10.  for each name; for which a rule has S{/, b, SATELLITE, namey, {x}) as its head
11. for each namesy for which a rule has S{b + 1, h, NUCLEUS, namea, {y}) as its head
12. for each hypotactic relation name such that rhet_rel(name,z,y) € RR or
rhet_rel(name,l,b,b+ 1,h) € RR
13. add rule S — S{l, b, SATELLITE, namey, {z}) <b + 1, h,NUCLEUS, names, {y})
14. add rule S{I, h, SATELLITE, name, {y}) — S{l, b, SATELLITE, namey, {x})
<b—|—1 h,NUCLEUS, names, {y})
15. add rule S{I, h,NUCLEUS, name, {y}) — S{l,b, SATELLITE namel,{x}>
S{b+ 1, h,NUCLEUS, names, {y})
16. endfor
17. endfor
18. endfor
19.  for each name; for which a rule has S{l, b, NUCLEUS, namey, {x}) as its head
20. for each names for which a rule has S{b + 1, h, SATELLITE, names, {y}) as its head
21. for each hypotactic relation name such that rhet_rel(name,y,z) € RR or
rhet_rel(name, b+ 1,h,l,b) € RR
22. add rule S — S{l,b,NUCLEUS, namey, {x}) S{b+ 1, h, SATELLITE, namez,{y})
23. add rule S{!, h, SATELLITE, name, {z}) = S{l, b, NUCLEUS, namey, {z})
S{b+ 1, h, SATELLITE, namea, {y})
24. add rule S{!, h, NUCLEUS, name, {z}) — S{l, b, NUCLEUS, namey, {z})
S{b+ 1, h, SATELLITE, namea, {y})
25. endfor
26. endfor
27. endfor
28.  for each name; for which a rule has S{/, b, NUCLEUS, namey, {x}) as its head
29. for each namesy for which a rule has S{b + 1, h, NUCLEUS, namea, {y}) as its head
30. for each paratactic relation name such that rhet_rel(name,z,y) € RR or
rhet_rel(name,l,b,b+ 1,h) € RR
31. add rule S — S{l,b,NUCLEUS, namey, {x}) S(b + 1, h,NUCLEUS, names, {y})
32. add rule S{!, h, SATELLITE, name, {z}) = S{l, b, NUCLEUS, namey, {z})
S<b+1 h,NUCLEUS, names, {y})
33. add rule S{{, h, SATELLITE, name, {y}) — S{l,b,NUCLEUS, namey, {x})
S<b+1 h,NUCLEUS, names, {y})
34. add rule S{!, h, NUCLEUS, name, {z}) — S{l, b, NUCLEUS, namey, {z})
S{b+ 1, h,NUCLEUS, names, {y})
35. add rule S{, h, NUCLEUS, name, {y}) = S{[, b, NUCLEUS, namey, {z})
S<b+1 h,NUCLEUS, names, {y})
36. end all for loops

Figure 3.11: A compiling algorithm that converts the problem of text structure deriva-
tion (2.2) into a Chomsky normal-form grammar.
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S—=1 S(1,1,NUCLEUS,LEAF, {1}) —> 1 S(1,1,SATELLITE, LEAF, {1}) — 1
S =2 S(2,2,NUCLEUS, LEAF, {2}) — 2 S(2,2,SATELLITE, LEAF, {2}) — 2
S—3 S(3,3,NUCLEUS, LEAF, {3}) — 3 S(3,3,SATELLITE, LEAF, {3}) — 3
S—4 S{4,4,NUCLEUS, LEAF, {4}> S{4,4,SATELLITE, LEAF, {4}) — 4
S , 1, SATELLITE, LEAF, {1})

,NUCLEUS, LEAF, {2})

, SATELLITE, LEAF, {1})
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,NUCLEUS, LEAF, {3})

, SATELLITE, LEAF, {4})
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, NUCLEUS, EVIDENCE, {2})
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, SATELLITE, LEAF, {4})
,NUCLEUS, LEAF, {2})

, SATELLITE, CONCESSION, {3})
,NUCLEUS, LEAF, {2})
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Figure 3.12: The Chomsky normal-form grammar that is derived by the compiling algorithm
for text (3.3) (see figure 3.13 for the rest of the grammar).
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S

S(1,4,NUCLEUS, JUSTIFICATIONs, {2})
S(1,4,SATELLITE, JUSTIFICATIONg, {2})
S

S(1,4,NUCLEUS, JUSTIFICATIONs, {2})
S(1,4,SATELLITE, JUSTIFICATIONg, {2})
S

S(1,4,NUCLEUS, EVIDENCE, {2})
S(1,4,SATELLITE, EVIDENCE, {2})

S

S(1,4,NUCLEUS, JUSTIFICATIONs, {2})
S(1,4,SATELLITE, JUSTIFICATIONg, {2})
S

S(1,4,NUCLEUS, JUSTIFICATIONs, {2})
S(1,4,SATELLITE, JUSTIFICATIONg, {2})
S

S(1,4,NUCLEUS, JUSTIFICATION{, {2})
S(1,4,SATELLITE, JUSTIFICATIONy, {2})
S

S(1,4,NUCLEUS, JUSTIFICATION{, {2})

S(1,4,SATELLITE, JUSTIFICATIONy, {2})

Figure 3.13: The Chomsky normal-form grammar that is derived by the compiling algorithm
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for text (3.3) (see figure 3.12 for the rest of the grammar).
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S
(S<1,4NUCLEUSEVIDENCE{2}>)

S<1,2,NUCLEUS,JUSTIFICATION {2} > S<3,4,SATELLITE,CONCESSION,{3}>

/\ /\

S<1,1,SATELLITE,LEAF{1}> S<22,NUCLEUSLEAF{2}> S<3,3NUCLEUSLEAF{3}> S<4,4,SATELLITE LEAF{4}>

1 2 3 4

Figure 3.14: A Chomsky normal-form derivation that is isomorphic to a valid tree structure
that corresponds to text (3.3).

For example, if we consider text (3.3) and its corresponding set of relations (3.4), the
rules in figures 3.12 and 3.13 are the complete set of rules of a grammar in Chomsky normal
form that are derived by the compiling algorithm in figure 3.11. These rules can be used
to parse the input 1,2,3,4 and obtain derivations such as that shown in figure 3.14. By
inspecting the derivation in 3.14, it is easy to notice that there exists a clear isomorphism
between the parse tree derived using the grammar rules and the corresponding valid text
structure, the structure shown in figure 3.8. In order to enable the reader visualize this
isomorphism, I have represented the root of the parse tree in figure 3.14 using both the
starting symbol S and the nonterminal S(1,4, NUCLEUS, EVIDENCE, {2}), which would be

obtained when a bottom-up parsing algorithm is applied.

3.5.2 Soundness and completeness results concerning the grammars gen-

erated by the compiling algorithm

In designing the compiling algorithm in figure 3.11, I have chosen to use nonterminal names
that reflect all the variables that are essential for the axiomatization of valid text structures:
the status, type, and promotion set of each node. Given the set of rules that the algorithm
produces, we can notice that terminal symbols can be derived using only simple rules and
that nonterminal symbols can be derived using only binary rules. Hence, any derivation
of any input string will produce a binary parse tree. The question that still needs to be
answered concerns the relationship between the parse trees that would result from the
application of the grammar rules on a given text and the valid structures of that text.

Theorem 3.2, which is given below, discusses the nature of the relationship.

Theorem 3.2. Consider a sequence of textual units 1,2,... N and a set RR that encodes
all the relations that hold among these units. The compiling algorithm in figure 3.11 gen-
erates a Chomsky normal-form grammar that can be used to derive all and only the parse

trees that are isomorphic with the valid structures of text 1,2,...,N.

The claim that the grammars generated by the compiling algorithm derive only parse trees

that are isomorphic to valid text structures concerns the soundness of the grammar rules.
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The claim that the grammars derive all parse trees that are isomorphic to valid text struc-

tures concerns the completeness of the rules.

Proof of soundness. The compiling algorithm generates all the grammar rules that corre-
spond to building spans of size 1, 2, 3, and so on, up to N. It does so by considering for each
span [l, h] all the possible ways in which the span can be broken into two adjacent subspans
and all the possible relations from the initial set RR that hold across the two subspans. For
each relation r that holds across the adjacent subspans [[,b] and [b + 1, k], it generates all
the grammar rules that enforce the strong compositionality criterion: that is, the algorithm
considers all pairs of nonterminals that characterize spans [[,b] and [b 4 1, k] and gener-
ates rules for each such pair. Consider such a rule for the case in which the relation r is

hypotactic. Take, for example, rule (3.111), which is also shown in line 14 in figure 3.11).

(3.111) S(l, h, SATELLITE, name, {y}) —=S5(l, b, SATELLITE, namey, {z})

S(b+1,h,NUCLEUS, namez, {y})

A simple inspection of this rule, and all the other rules generated by the algorithm, shows
that it enforces the compositionality criterion with respect to the statuses and promotion
sets of the subspans. Since these rules are the only rules that will be used for recognizing a
string 1,2, ..., N, it follows that the resulting derivation will obey the strong composition-
ality criterion as well. However, since the rules are applied one by one, the only problem
that might occur is that we might obtain a parse tree that uses the same rhetorical relation

twice. We show now that this is impossible.

Each grammar rule associated with a span [/, k] is built using two previously gener-
ated nonterminals that correspond to two adjacent subspans [[,b] and [b+ 1,h]. Assume
that name is a relation that holds across the two spans, and assume that name; and
names are the names of the relations that are associated with the first and second non-
terminals of the rule, as shown in (3.111). If S{/, b, SATELLITE, namey, {z}) is a valid non-
terminal, then relation name; holds between two units found within the span [[,b]. If
S(l, h, SATELLITE, name,{y}) is a valid nonterminal, then relation name holds between a
unit of span [/, b] and a unit of span [b+ 1, h]. It follows that name and name; cannot be
the same. Similarly, we can show that name and name; cannot be the same. Since these
observations hold for any span [I, h], it follows that no relation is used twice in any parse of

the whole input string 1,2,...,N. O

Proof of completeness. The proof of completeness is isomorphic to that of theorem 3.1. [
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Text | Time in

seconds
Al <0.01
A2 <0.01
A3 0.01
A4 0.01
Ab 0.01
A6 0.69
A7 2.01
A8 5.21

Table 3.5: The performance of the algorithm that compiles the fundamental problem of
text processing into a grammar in Chomsky normal form.

3.5.3 An estimation of the size of the grammar

Assume that we are given a text with N elementary units and that k relations hold on
average between any two elementary units. An upper bound of the number of rules that
are generated by the compiling algorithm corresponds to the case in which all relations are
paratactic (lines 28-35 of the algorithm). Given a span [a,b] and a unit v € {{a},{a +
1},...,{b}}, there are at most k relations that promote unit u as a salient unit and, hence,
at most & nonterminal symbols of the form S(a, b, NUCLEUS, type,{u}). It follows that lines
31-35 are executed at most |RR|k? times, where |RR| represents the cardinality of the

initial set of rhetorical relations. Hence, the algorithm in figure 3.11 generates at most

we Y Y Y Y Y wema-

1<s<N 1<I<N=5 [<b<l4s [<z<b b+1<y<Li+s

3N+ 1/120k* RRIN(N — 1)(N + 1)(N + 2)(N + 3)

grammar rules, where s stands for size_of_span. If we use the same upper bounds for k& and
|RR| as in section 3.4, we obtain that the algorithm generates at most O(N%) grammar rules
in O(N®) steps. Once the grammar is generated, one can use it to derive the text structures of
the text in O(N?), using the Cocke-Kasami-Younger algorithm [Younger, 1967]. Therefore,
it follows that given a text 7" of N elementary textual units and the set RR of rhetorical
relations that hold among these units, one can derive the valid text structures of text T in

polynomial time O(N®).

3.5.4 Implementation and empirical results

I implemented the compiling algorithm shown in figure 3.11 in Lisp. Besides deriving the
grammar rules, the implementation also stores in a chart each nonterminal symbol of the

grammar, in the style of the Cocke-Kasami-Younger algorithm [Younger, 1967]. Hence, the
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implementation produces not only a grammar in Chomsky normal form but also the chart
that the Cocke-Kasami-Younger algorithm would produce using that grammar. Hence,
one can use the compiling algorithm to simultaneously generate a grammar and produce its
corresponding chart. In other words, the implementation of the compiling algorithm follows
closely the Cocke-Kasami-Younger approach — it stores in polynomial space a possibly
exponential number of valid text structures.

Table 3.5 shows the amounts of time required by the Lisp implementation for deriving
the compact chart from which any valid text structure can be extracted. Since valid struc-
tures can be extracted from this chart in polynomial time, it is obvious that the compiling

algorithm significantly outperforms all the other approaches.

3.6 Related work

3.6.1 General discussion

All approaches to deriving discourse structures that were proposed previously were incre-
mental. That is, they assumed that elementary discourse units are processed sequentially
and that a discourse tree is created by incrementally updating a tree structure that cor-
responds to the discourse units that were processed up to the unit under scrutiny. The
unit under scrutiny provides information about the way the updating operation should be
performed. These approaches fall into two classes: they are either logic- or grammar-based.

In logic-based approaches [Zadrozny and Jensen, 1991, Lascarides and Asher, 1993,
Asher, 1993], the idea of structure is only implicit. Discourse trees can be obtained by
considering the coherence relations that hold among the discourse units, which are first-
class entities in a logic that captures both the semantics of sentences and the semantics of
discourse. Because the logic-based approaches are couched in terms of default logics and
logics of beliefs, they are intractable.

In grammar-based approaches [van Dijk, 1972, Polanyi, 1988, Scha and Polanyi, 1988,
Gardent, 1994, Hitzeman et al., 1995, Polanyi and van den Berg, 1996, van den Berg,
1996, Gardent, 1997, Schilder, 1997, Cristea and Webber, 1997], the structure of discourse
is explicitly represented; it is assimilated with the parse tree of a sequence of discourse
constituents. The first attempts to write discourse grammars [van Dijk, 1972] put very
few constraints on the applicability of the rules. However, further developments brought in
more and more constraints that were both semantic and structural in nature. The semantic
constraints stipulate the conditions that must hold in order to join an incoming discourse
unit to an existing discourse structure. For example, in order to substitute a unit on the

right frontier® of an existing discourse tree with an incoming elementary discourse tree, the

*The right frontier is the set of nodes of the tree structure that are found on a path from the root to the
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semantic information associated with the unit on the right frontier must unify with the
semantic information associated with the elementary discourse tree [Gardent, 1997]. The
structural constraints are a direct consequence of the assumption that discourse processing
is incremental. To account for the sequentiality of text, grammar-based approaches allow
only the nodes on the right frontier of a discourse tree to be updated.

Some of the grammar-based approaches to discourse are extensions of context-free and
HPSG grammars [van Dijk, 1972, Scha and Polanyi, 1988, Hitzeman et al., 1995]. However,
the most recent approaches [Gardent, 1994, van den Berg, 1996, Polanyi and van den
Berg, 1996, Gardent, 1997, Schilder, 1997, Cristea and Webber, 1997] rely on extensions
of tree-adjoining grammars (TAGs) [Joshi, 1987]. The appeal of using TAGs for discourse
processing seems to follow from the power of the adjoining operations, which allow trees
to be not only expanded, as in the case of context-free grammars, but also rewritten. In
what follows, instead of arguing in favour of a grammar formalism or a particular set of
discourse rules, I prefer to address two problems that I consider to be independent of the
type of grammar or rules that all these approaches use. The first problem pertains to the
assumption that discourse units can be adjoined only to nodes that belong to the right
frontier of the existing discourse structure: I shall show that the notion of “right frontier”
is weaker than the notion of discourse compositionality that I introduced in chapter 2.
The second problem pertains to the inherently nonmonotonic nature of incremental tree

derivation.

3.6.2 The notion of “right frontier” is weaker than compositionality cri-

terion 2.1

All grammar-based approaches to discourse assume that only the right frontier of a discourse
tree can accommodate a new unit. Consider, however, the naturally occurring text (3.112),

which is given below.*

(3.112)  [With its distant orbit'] [~ 50 percent farther from the sun than Earth —2]

[and slim atmospheric blanket,?] [Mars experiences frigid weather conditions.?]

Assume that we are using an incremental approach and wish to derive the discourse
structure of text (3.112) and assume that we have already processed the first two units of
the text (see figure 3.15.a) and are about to process the third unit (see figure 3.15.b—d). We
follow Cristea and Webber’s notation [1997] and assume that the processing of the third
unit of text (3.112) gives rise to the auxiliary tree shown in figure 3.15.c. The node labelled

right-most leaf.
*Text (3.112) is a fragment of text (2.1), which is discussed in section 2.2.1 and chapter 6 and for which
a discourse structure was built by two independent analysts.
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with an asterisk in tree 3.15.c is a “foot” node, which can be adjoined to a node that
belongs to the right frontier. According to incremental approaches to discourse derivation,
adjoining corresponds to identifying a discourse relation between the new material, in this
case unit 3, and material on the right frontier of the discourse structure built so far. If
we take this requirement literally, we can adjoin tree 3.15.c either at the node labelled 2
or at the root of the tree 3.15.b. Obviously, since the third unit in the text is related to
the first unit through a JOINT relation, we cannot adjoin tree 3.15.c at the node labelled
2. But, we cannot adjoin tree 3.15.c at the root of tree 3.15.b either, because the third
unit is in a JOINT relation with the first unit and not with the ELABORATION relation that
holds between the first two units. And we cannot adjoin tree 3.15.c at the node labelled 1
in tree 3.15.b because, although units 3 and 1 are related through a JOINT relation, unit 1
is not a node of the right frontier of tree 3.15.b. The only way we can make the notion of
right frontier work is by associating with the root of tree 3.15.b some information that will
enable tree 3.15.c to be adjoined to it. But this information is unit 1 and associating unit

1 with the root of tree 3.15.b corresponds to applying compositionality criterion 2.1.

In other words, if we obey only the right frontier principle but do not promote unit 1
to the set of salient units of the root of tree 3.15.c, we can never determine the discourse
structure of text (3.112): the parsing process would fail when unit 3 would need to be

inserted in the partial tree 3.15.c.

One can easily imagine texts in which salient units that are embedded more deeply in
the structure to the left of the right frontier are eventually elaborated or contrasted. For
example, in order to adjoin unit 4 (see figure 3.15.e-g) to the tree that corresponds to the
processing of units 1 to 3, we need the root of the tree in figure 3.15.e be characterized by
both units 1 and 3 because the BACKGROUND relation holds between both these units and
unit 4. Unless the salient information, in this case the information corresponding to units
1 and 3, is propagated upwards during the tree construction, the application of the right-
frontier principle is impossible. Because of this, I consider the notion of “right frontier” to
be weaker than compositionality criterion 2.1. In fact, the treatment of anaphora proposed
by van den Berg [1996] and the treatment of adjunction proposed by Gardent [1997] are
nothing but a semantic expression of compositionality criterion 2.1. Van den Berg associates
with the nodes of a discourse tree feature structures that store the discourse referents.
Whenever a new node is added to a partial discourse tree, the mother node inherits the
discourse referents of the children. These referents can be subsequently used for anaphora
resolution. And Gardent distinguishes between feature structures that are relevant to the
mother nodes and feature structures that are relevant to the daughter nodes [Gardent, 1997]
and provides mechanisms through which adjunction operations affect not only the feature

structures of daughter nodes but also the feature structures of mother nodes.
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Figure 3.15: The incremental derivation of the discourse structure of text (3.112).

3.6.3 The incremental derivation of discourse structures is nonmonotonic

Cristea and Webber [1997] introduced a mechanism that enables the incremental derivation
of discourse structures in the presence of expectations. For example, the occurrence of
the expression “on one hand” raises the expectation that the discourse will subsequently
express some contrasting situation. In spite of this, incremental processing along the lines
described in all current grammar-based approaches may be inefficient from a computational
perspective. Consider example (3.113), which is reproduced from [Cristea and Webber,
1997].
(3.113)  [Because John is such a generous man'][ — whenever he is asked for money,?]
[he will give whatever he has, for example®][ — he deserves the “Citizen of the

Year” award.?]

As Cristea and Webber note, the fact that unit 2 provides together with unit 3 an example
for 1, rather than satisfying the expectation raised by “Because”, becomes apparent only
when unit 3 is processed — more specifically, when the discourse marker “for example”

is considered. Obviously, in order to accommodate the finding that units 2 and 3 are an
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EVIDENCE

EXAMPLE

1 CIRCUMSTANCE

Figure 3.16: The valid text structure of text (3.113).

example for the idea presented in the first unit, we have to undo the adjoining of node 2.
Therefore, the incremental processing of discourse cannot be monotonic. In order to deal
with the nonmonotonicity of incremental discourse derivation, we either have to consider,
in the style of Tomita [1985], all possible ways in which a tree can be extended or allow
for backtracking. Either approach negatively affects the computational properties of an

incremental discourse parser.

The paradigm that I propose in this thesis is to determine first all possible rhetorical
relations that hold among the units of a text, and determine only afterwards the discourse
structure of that text. For example, for text (3.113), we will first determine that the
relations given in (3.114) hold among the elementary units of the text, and then apply any
of the algorithms discussed in this chapter to derive the valid discourse structure shown in
figure 3.16.

rhet_rel(EVIDENCE, 1,4)
(3.114) rhet_rel(CIRCUMSTANCE, 2, 3)
rhet_rel(EXAMPLE, 3, 1)

The non-incremental paradigm that I presented in this chapter is efficient but admit-
tedly, it is not psycholinguistically plausible — after all, humans do process text in an
incremental fashion. Given the psychological constraints and the limited resources that hu-
mans have, it is conceivable that incremental processing is impossible without backtracking
— this would be consistent with the mistakes and re-interpretations that are observed in
naturally occurring conversations [Hirst et al., 1993, McRoy, 1993].5

Studying the ways in which the algorithms presented in this chapter can be modified

in order to derive valid text structures incrementally is, however, outside the scope of this

thesis.

5] thank Graeme Hirst for bringing up this hypothesis.
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3.7 Summary

In this chapter, I have investigated both theoretically and empirically the computational
properties of four paradigms that can be used to derive valid text structures. I showed how
the problem of text structure derivation 2.2 can be mapped into a constraint-satisfaction
problem and I showed that the direct formulation of the strong compositionality criterion
has a negative effect on the performance of the CSP-based approach.

I then showed how the problem of text structure derivation can be mapped into a
propositional logic encoding in conjunctive normal form that is polynomial in size with
respect to the number of units in the input text. Surprisingly, the empirical experiments
that attempted to determine satisfying truth assignments for propositional encodings of
eight discourse problems showed that the Davis-Putnam exhaustive procedure [1960] out-
performed the stochastic procedures GSAT and WALKSAT [Selman et al., 1992, Selman et
al., 1994].

I presented a set of axioms and inference rules that can be used to derive valid text
structures through proof-theoretic techniques. The implementation of this approach signif-
icantly outperformed the approaches that attempted to derive valid structure on the basis
of model-theoretic techniques.

I also gave an algorithm that compiles in polynomial time the problem of text structure
derivation into a grammar in Chomsky normal form whose size is polynomial in the number
of elementary units of the input text. Using this approach proved to be the most efficient

method for deriving the valid structures of texts.
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Chapter 4

A corpus analysis of cue phrases

4.1 Towards determining the discourse structure of unre-

stricted texts

Given the formalization of text structures and the algorithms that derive them that we
have seen in chapters 2 and 3, in order to automatically build the valid text structures
of an arbitrary text, we need only to determine the elementary units of that text and the
rhetorical relations that hold among the units. An accurate determination of the elementary
units of a text and of the relations that hold among them is beyond the current state of
the art in natural language processing. However, empirical and computational research
suggests that we can find and exploit approximate solutions to both of these problems by

capitalizing on the occurrence of certain lexicogrammatical constructs.

In this chapter, I first discuss the lexicogrammatical constructs that can be used to
determine the elementary units of a text and to hypothesize rhetorical relations among them.
These constructs include grammatical morphemes, tense and aspect, certain lexical and
syntactic structures, certain patterns of pronominalization and anaphoric usages, cohesive
devices, and cue phrases. In section 4.3, I argue that a shallow analysis of text that relies
primarily on knowledge about the way cue phrases like because, however, and in addition
are used can indicate the underlying structure of text. The rest of the chapter discusses
an exploratory corpus study of cue phrases. The study is meant to provide empirical
grounding for a set of algorithms that bridge the gap between the problem of deriving
valid text structures for unrestricted texts and the theoretical problem of text structure

derivation that was discussed in chapter 3.
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4.2 From linguistic constructs to discourse structures

Grammatical morphemes

The role of grammatical morphemes in structuring discourse relies on extending the role that
they have in signalling the syntactic structures that are licensed by a generative approach
to grammar [Chomsky, 1965]. As argued, for example, by Talmy [1983] and Morrow [1986],
grammatical morphemes often express notions that are more schematic than those expressed
by content words. For instance, a combination of a shift from past to present tense and
from third to first person correlates both with a shift from impersonal narration to direct
report or monologue and a shift in participant’s perspective [Morrow, 1986, p. 434]. And
psycholinguistic research shows that readers are more likely to consider a collection of
sentences as being related if they contain the definite article “the”, instead of the indefinite
article “a” [de Villiers, 1974, Gernsbacher, 1997].

Tense and aspect

Decker [1985], Morrow [1986], Moens and Steedman [1988], Webber [1988b], Lascarides
and Asher [1993], Barker and Szpakowicz [1995], and Hitzeman [1995] show that the tense
and aspect of verbs provide clues to the discourse structure of a text. These clues may be
genre dependent and may be applied in isolation or in conjunction with other features. For
example, in narratives, the use of present tense tends to express situations occurring at the
time of narration [Kamp, 1979]. In the context of news reports, the use of simple past verbs
in simple sentences usually corresponds to foreground material (see the use of verb meet in
example (4.1)); but the use of simple past verbs in relative clauses usually corresponds to

background material (see the use of verb engineer in example (4.2)) [Decker, 1985].

(4.1)  After weeks of maneuvering and frustration, presidential envoy Richard B. Stone
met face-to-face yesterday for the first time with a key leader of the Salvadoran

guerilla movement. [Decker, 1985, p. 317]

(4.2)  “The ice has been broken,” proclaimed President Belisario Betancur of Colombia,

who engineered the meeting. [Decker, 1985, p. 317]

The semantics of certain verbs also conveys information about discourse relations in the
cases in which some tense constraints are enforced. For example, in Lascarides and Asher’s
formalization of discourse relations [1993], the event of pushing associated with the sec-

ond sentence in example (4.3) is normally assumed to have produced the event of falling
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associated with the first sentence, if the pushing event occurred before the falling event.

(4.3)  Max fell. John pushed him. [Lascarides and Asher, 1993]

Hence, a causal relation is normally assumed to hold between the sentences in (4.3).

Syntactic constructs

Traditionally, cleft constructions have been considered to enable a reader select which ele-
ment of a sentence is in focus. According to Quirk et.al. [1985, p. 89], a cleft sentence is
divided into two parts: an initial focal element, and a “background” structure which follows
the initial element and which resembles a relative clause. For example, “Julie” is the focal
element and “who buys her vegetables in the market” is the background structure in the

cleft sentence shown in (4.4), below.

(4.4) It is Julie who buys her vegetables in the market.

Prince [1978] and Delin and Oberlander [1992] have observed that cleft constructions
could also serve a subordinating function in discourse. The information conveyed by a cleft
sentence concerns some background material against which the related sentences have to
be interpreted; a cause whose effect is given in the related sentences; or some background
material that not only is subordinated to the related sentences but that also mentions events
that occurred prior to those described in the related sentences. For example, the cleft
sentence shown in italics in text (4.5) provides background information for the preceding
text and must be interpreted as describing events that occurred prior to the events described
in the preceding text [Delin and Oberlander, 1992, p. 282].

(4.5)  Mr. Butler, the Home Secretary, decided to meet the challenge of the ‘Ban-the-
Bomb’ demonstrators head-on. Police leave was cancelled and secret plans were
prepared. It was Mr. Butler who authorized action which ended in 32 members of
the Committee of 100 being imprisoned. The Committee’s president and his wife

were each jailed for a week.

Pronominalization and anaphoric usages

Sidner [1981], Grosz and Sidner [1986], Sumita [1992], and Grosz, Joshi, and Weinstein [1995]
have speculated that certain patterns of pronominalization and anaphoric usages corre-
late with the structure of discourse. Vonk’s experimental work [1992] has confirmed that
anaphoric expressions that are more specific than necessary for their identification function

not only establish coreference links but also contribute to the signalling of thematic shifts.
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For example, in the sequence of sentences given in (4.6), which is taken from [Vonk et al.,
1992, p. 303], the use of She in sentence 5 poses no referential problem. However, the use of

Sally, which is more specific than necessary, would sound better because it suggests a topic

shift.

(4.6) Sally Jones got up early this morning.
She wanted to clean the house.

Her parents were coming to visit her.
She was looking forward to seeing them.

She/Sally weighs 80 kilograms.

She had to lose weight on her doctor’s advice.

A

So she planned to cook a nice but sober meal.

In fact, Vonk’s experiments not only show that readers are typically led to infer a theme shift
when encountering an overspecification, but also that overspecifications cause a decrease in
the availability of words from the preceding text [Vonk et al., 1992, p. 326].

More recent empirical evidence collected by Passonneau [1997a, 1997b] also suggests
that overly informative discourse anaphoric expressions occur at shifts in global discourse
focus. More specifically, Passonneau’s experiments suggest that there exists a correlation
between the usage of overly informative anaphoric expressions and the intention-based,
discourse segments that pertain to Grosz and Sidner’s discourse theory [1986]. A parallel
line of research is explored by Walker [1997], who proposes that the relationship between
anaphoric usages and discourse structure can be best explained with a model of attention
that distinguishes between the long-term and the short-term (working) memory [Walker,

1996]. The same concept is explored by Givén [1995], in a psycholinguistic setting.

Cohesive devices

The automatic detection of overspecified anaphoric expressions is still a computational
challenge. However, Hearst [1994, 1997] has shown that even simple forms of lexical cohesion
that are computationally tractable, such as word co-occurrences, can be used to detect topic
shifts in expository texts. Much more sophisticated studies of the correlation between lexical
cohesion and discourse structure are given by Morris and Hirst [Morris, 1988, Morris and
Hirst, 1991], Hoey [1991], and Langleben [1983]. For example, Morris and Hirst showed
that there exists a correlation between lexical chains, i.e., sequences of words related via
lexical cohesion that span topical units of texts, and the structure of discourse. The lexical
chains can be derived using knowledge from thesauri, such as Roget’s Thesaurus, as used

by Morris [1988] and Morris and Hirst [1991], or from lexical knowledge bases, such as
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Wordnet, as used by St-Onge [1995] and Hirst and St-Onge [1997].

Cue phrases or connectives

According to Crystal, the term “connective” is used “to characterize words or morphemes
whose function is primarily to link linguistic units at any level” [Crystal, 1991, p. 74].
In other words, the primary function of connectives is to structure the discourse. Be-
sides their structural role, connectives have been shown to have highly elaborate prag-
matic functions, such as signalling shifts in the subjective perspective [Segal et al., 1991,
Segal and Duchan, 1997], presupposing various states of beliefs [Wing and Scholnick, 1981],
and licensing inferences through mechanisms that are similar to those of scalar impli-
catures [Grice, 1975, Fillenbaum, 1977, Anscombre and Ducrot, 1983, Hirschberg, 1991,
Oberlander and Knott, 1996]. For example, in the text shown in (4.7), which was produced
by a five-year-old boy, the connectives are used to explain the thinking process of a little

lion, the main character of the story.

(4.7)  Once upon a time there was a little lion and he lived alone because his mother
and father was dead. And one day he went hunting. And he saw two lions. And
they were his mother and father. So he took his blanket to their den. Because it
was bigger. [Segal and Duchan, 1997, p. 98]

More precisely, the So and the second because are used to build a complex subjective argu-
ment that explains why the lion moved in with his parents (because their space was bigger
than his) and what the move entailed (taking his blanket to their den).

Psycholinguistic research also suggests that some connectives not only enable readers
to process text faster, but also to recall better the related information [Deaton and Gerns-
bacher, 1997, Gernsbacher, 1997]. In three experiments, Deaton and Gernsbacher have
shown that two-clause sentences that describe moderately causal events were read faster
when the clauses were conjoined by because (Susan called the doctor for help because the
baby cried in his playpen) than when they were conjoined by and, then, or after. In addi-
tion, when the clauses were conjoined by because, subjects recalled the second clauses more
frequently when prompted with the first clause.

The facet of connectives that I explore in this thesis is consistent with the position
of Caron, who advocates that “rather than conveying information about states of things,
connectives can be conceived as procedural instructions for constructing a semantic rep-
resentation” [Caron, 1997, p. 70]. Among the three procedural functions of segmentation,
integration, and inference that are used by Noordman and Vonk [1997] in order to study the
role of connectives, I will concentrate primarily on the first two. That is, I will investigate

how one can use connectives to determine the elementary units of texts (the segmentation
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part) and to determine the rhetorical relations among them (the integration part). The
derivation of a valid discourse structure can be interpreted as pertaining to an inferential

process that is structural in nature.

4.3 Arguments for a shallow approach to discourse process-
ing

As 1 argued in the previous section, the problem of determining with high accuracy the
elementary textual units and the rhetorical relations that hold among elementary and non-
elementary units is not yet solvable. However, we saw that a significant set of lexicogram-
matical constructs can be used to provide approximate solutions for it. In the rest of this
thesis, I investigate how far we can get in building valid structures for unrestricted texts by
focusing our attention only on discourse connectives and lexicogrammatical constructs that
can be detected by means of a shallow analysis of natural language texts. The intuition

behind this choice relies on the following facts.

e Psycholinguistic and other empirical research has shown that discourse markers are
consistently used by human subjects both as cohesive ties between adjacent clauses
and as “macroconnectors” between larger textual units. For example, in Halliday and
Hasan’s view [1976], connectives are linguistic devices that provide textual cohesion
over successive sentences. Thus, their view is more local than global. The local
function of connectives has been also proved to be essential for understanding the
intentions of the participants in dialogues [Schiffrin, 1987]; increasing a reader’s recall
of information pertaining to related clauses and sentences; and contributing to the

information represented in the text [Segal et al., 1991].

Empirical studies of narratives, stories, and naturally occurring conversations have
shown that connectives have a global role as well. For example, in stories, connectives
such as so, but, and and mark boundaries between story parts [Kintsch, 1977]. In
naturally occurring conversations, so marks the terminal point of a main discourse unit
and a potential transition in a participant’s turn, whereas and coordinates idea units
and continues a speaker’s action [Schiffrin, 1987]. In narratives, connectives signal
structural relations between elements and are crucial for the understanding of the
stories [Segal and Duchan, 1997]. In general, cue phrases are used consistently by both
speakers and writers to highlight the most important shifts in their narratives, mark
intermediate breaks, and signal areas of topical continuity [Bestgen and Costermans,
1997, Schneuwly, 1997].

e The number of discourse markers in a typical text — approximately one marker for

every two clauses [Redeker, 1990] — is sufficiently large to enable the derivation of rich
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rhetorical structures for texts.! More importantly, the absence of markers correlates
with a preference of readers to interpret the unmarked textual units as continuations

of the topics of the units that precede them [Segal et al., 1991].

e Discourse markers are used in a manner that is consistent with the semantics and
pragmatics of the discourse segments that they relate. In other words, I assume
that the texts that we process are well-formed from a discourse perspective, much
as researchers in sentence parsing assume that they are well-formed from a syntactic
perspective. As a consequence, | assume that one can bootstrap the full syntactic,
semantic, and pragmatic analysis of the clauses that make up a text and still end
up with a reliable discourse structure for that text. In fact, in many cases, a deep
semantic analysis will not help, because rhetorical relations cannot be inferred only
on the basis of the semantics and pragmatics of the considered textual units; rather,
a connective is required in order to trigger that inference [Segal and Duchan, 1997].
Consider, for example, the following two utterances, which are taken from [Paley,
1981, p. 4]:

(4.8) There was a little boy with no mother and no father. But he had seven

brothers and seven sisters.

As Segal and Duchan aptly point out [1997, p. 117], had there been an And in place
of the But, one would interpret the second sentence as an assertion of this family
situation. It is the occurrence of But that instructs the reader to contrast the situation

of being an orphan with that of having many siblings.

Given the above discussion, the immediate objection that one can raise is that discourse
markers are three-ways ambiguous. In some cases, their use is only sentential, i.e., they
make a semantic contribution to the interpretation of a clause. And even in the cases where
markers have a discourse usage, they are ambiguous with respect to the rhetorical relations
that they mark and the sizes of the textual spans that they connect. I address now each of

these objections in turn.

Sentential and discourse usages of cue phrases

Empirical studies on the disambiguation of cue phrases [Hirschberg and Litman, 1993]
have shown that just by considering the orthographic environment in which they occur,

one can distinguish between sentential and discourse usages in about 80% of cases and

YA corpus of instructional texts that was studied by Moser and Moore [1997] and Di Eugenio, Moore,
and Paolucci [1997] reflected approximately the same distribution of cue phrases: 181 of the 406 discourse
relations that they analyzed were cued relations.
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that these results can be improved if one uses machine learning techniques [Litman, 1994,
Litman, 1996] or genetic algorithms [Siegel and McKeown, 1994]. 1 have taken Hirschberg
and Litman’s research one step further and designed a comprehensive corpus analysis of
cue phrases that enabled me to design algorithms that improved their results and coverage.
The method, procedure, and results of the corpus analysis are discussed in this chapter.
The algorithm that determines elementary unit boundaries and identifies discourse usages

of cue phrases will be discussed in chapter 5.

Discourse markers are ambiguous with respect to the rhetorical relations that

they mark and the sizes of the units that they connect

When I began this research, no empirical data supported the extent to which this ambiguity
characterizes natural language texts. To better understand this problem, the corpus analysis
that is to be described in this chapter was designed so as to also provide information
about the types of rhetorical relations, rhetorical statuses (nucleus or satellite), and sizes of
textual spans that each marker can indicate. I expected from the beginning that it would
be impossible to predict exactly the types of relations and the sizes of the spans that a
given cue marks. However, given that the structure that we are trying to build is highly
constrained, such a prediction proved to be unnecessary; the overall constraints on the
structure of discourse that I enumerated in chapter 2 cancel out most of the configurations
of elementary constraints that do not yield valid discourse trees.

Consider, for example, the following text:

(4.9)  [Although discourse markers are ambiguous,'] [one can use them to build discourse
trees for unrestricted texts:?] [this will lead to many new applications in natural

language processing.’]

For the sake of argument, assume that we are able to break text (4.9) into textual units as
labelled above and that we are interested now in finding rhetorical relations between these
units. Assume now that we can infer that Although marks a CONCESSIVE relation between
satellite 1 and nucleus 2, and the colon, an ELABORATION between satellite 3 and nucleus
either 1 or 2. A representation of text (4.9) is then the set of relations given in (4.10), where

& denotes exclusive disjunction:

(4.10) rhet_rel(CONCESSION, 1, 2)
' rhet_rel(ELABORATION, 3, 1) & rhet_rel(ELABORATION, 3, 2)

Despite the ambiguity of the relations, the overall rhetorical structure constraints will as-
sociate only one discourse tree with text (4.9), namely the tree given in figure 4.1. Any

discourse tree configuration that uses relation rhet_rel(ELABORATION,3,1) will be ruled
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ELABORATION

CONCESSION

Figure 4.1: The discourse tree of text (1).

out because unit 1 is not an important unit for span [1,2] and, as discussed in chapter 2,
a rhetorical relation that holds between two spans of a valid text structure must also hold
between their most important units: the important unit of span [1,2] is unit 2, i.e., the

nucleus of the relation rhet_rel(CONCESSION, 1, 2).

4.4 A corpus analysis of cue phrases

4.4.1 Motivation

The discussion in section 4.3 suggests that in spite of their ambiguity, cue phrases may
be used as a sufficiently accurate indicator of the boundaries between elementary textual
units and of the rhetorical relations that hold between them. Unfortunately, although
cue phrases have been studied extensively in the linguistic and computational linguistic
literature, previous empirical studies did not provide enough data concerning the way cue
phrases can be used to determine the elementary textual units that are found in their
vicinity and to hypothesize rhetorical relations that hold among them. To overcome this
lack of data, I designed an exploratory, empirical study of my own. In the rest of this

chapter, I describe it in detail and provide some general results.

4.4.2 Materials

Many researchers have published lists of potential markers and cue phrases [Halliday and
Hasan, 1976, Grosz and Sidner, 1986, Martin, 1992, Hirschberg and Litman, 1993, Knott,
1995, Fraser, 1990, Fraser, 1996]. I took the union of their lists and created a set of more than
450 cue phrases. For each cue phrase, I then used an automatic procedure that extracted
from the Brown corpus a random set of text fragments that each contained that cue. My
initial goal was to select 10 text fragments for each occurrence of a cue phrase that was found
at the beginning of a paragraph or sentence, and 20 fragments for the occurrences found in
the middle and at the end of sentences. The rationale for this choice was the observation
that the cue phrases located at the beginning of sentences and paragraphs seemed to exhibit
more regular patterns of usage than those found in the middle or at the end of sentences.

On average, | selected approximately 17 text fragments per cue phrase, having few texts
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for the cue phrases that do not occur very often in the corpus and up to 60 for cue phrases
such as and, which I considered to be highly ambiguous. Overall, I randomly selected more
than 7600 texts. Appendix B provides a complete list of the cue phrases that were used
to extract text fragments from the Brown corpus, the number of occurrences of each cue
phrase in the corpus, and the number of text fragments that were randomly extracted for

each cue phrase.

The reader is warned that the given number of occurrences of each cue phrase in the
Brown Corpus is only a rough estimate. For example, according to the table shown in
appendix B, there are 950 occurrences of the cue phrase even in the Brown corpus: 150 of
them at the beginning of a sentence and 800 in the middle or at the end. However, this
number includes also occurrences of even after, even before, even if, even so, even then, even
though, and even when, which are assigned separate entries in the table. Hence, because the
program that randomly extracted text samples was not written so as to avoid extracting
text fragments that contained the cue phrase even though, for example, when looking for
the phrase even, the list in appendix B exhibits a certain degree of redundancy. To avoid
analyzing the same text fragment more than once, the fragments that were automatically
assigned to a simple cue phrase, such as even, but were actually characterized by a complex
cue phrase, such as even after, that had been assigned a separate entry in the initial list,

were ignored during the analysis.

Each text fragment that was extracted from the corpus contained a “window” of ap-
proximately 300 words and an occurrence of the cue phrase that was explicitly marked with
the IATEX macro for emphasizing text, {\em }. The cue phrase occurrence was located ap-
proximately 200 words from the beginning of the text fragment. Text (4.11) is an example

fragment with the cue phrase accordingly.

(4.11)  One of the early strikes called by the AWOC was at the DiGiorgio pear orchards
in Yuba County. We found that a labor dispute existed, and that the workers had
left their jobs, which were then vacant because of the dispute. Accordingly, under
clause (1) of the Secretary’s Regulation, we suspended referrals to the employer.
(Incidentally, no Mexican nationals were involved.) The employer, seeking to con-
tinue his harvest, challenged our right to cease referrals to him, and sought relief
in the Superior Court of Yuba County. The court issued a temporary restraining
order, directing us to resume referrals. We, of course, obeyed the court order.
However, the Attorney General of California, at the request of the Secretary
of Labor, sought to have the jurisdiction over the issue removed to the Fed-

eral District Court, on grounds that it was predominantly a Federal issue since the
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validity of the Secretary’s Regulation was being challenged. However, the Federal
Court held that since the State had accepted the provisions of the Wagner-Peyser
Act into its own Code, and presumably therefore also the regulations, it was now
a State matter. It {\em accordingly} refused to assume jurisdiction, whereupon
the California Superior Court made the restraining order permanent. Under that
order, we have continued referring workers to the ranch. A similar case arose at
the Bowers ranch in Butte County, and the Superior Court of that county issued
similar restraining orders.

The growers have strenuously argued that I should have accepted the Superior
Court decisions as conclusive and issued statewide instructions to our staff to

ignore this provision in the Secretary’s Regulation.

And text (4.12) is an example fragment with the cue phrase Although.

(4.12)

The president expects faculty members to remember, in exercising their autonomy,
that they share no collective responsibility for the university’s income nor are they
personally accountable for top-level decisions. He may welcome their appropriate
participation in the determination of high policy, but he has a right to expect, in
return, that they will leave administrative matters to the administration.

How well do faculty members govern themselves? There is little evidence that
they are giving any systematic thought to a general theory of the optimum scope
and nature of their part in government. They sometimes pay more attention to
their rights than to their own internal problems of government. They, too, need
to learn to delegate. Letting the administration take details off their hands would
give them more time to inform themselves about education as a whole, an area
that would benefit by more faculty attention.

{\em Although} faculties insist on governing themselves, they grant little
prestige to a member who actively participates in college or university government.
There are, nevertheless, several things that the president can do to stimulate
participation and to enhance the prestige of those who are willing to exercise
their privilege. He can, for example, present significant university-wide issues
to the senate. He can encourage quality in faculty committee work in various
ways: by seeing to it that the membership of each committee represents the
thoughtful as well as the action-oriented faculty; by making certain that no faculty
member has too many committee assignments; by assuring good liaison between

the committees and the administration; by minimizing the number of committees.

The text fragments that were extracted from the corpus were exported into a relational
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database. In addition to the text fragments, which were stored in a field having the name
“Example”, the database also contained a number of fields that codified two types of infor-

mation:

Discourse-related information. This information concerned the cue phrase under
scrutiny; the rhetorical relations that were marked by the cue phrase; the statuses
of the related spans (nucleus or satellite); the textual types of the related spans
(from clause-like units to multiple paragraphs); the distance in clause-like units and
sentences between the related spans, etc. Section 4.4.3 will describe in detail the se-
mantics of each of the fields in this category: “Marker”, “Usage”, “Position”, “Right
boundary”, “Where to link”, “Rhetorical relation”, “Statuses”, “Types of textual

units”, “Clause distance”, “Sentence distance”, and “Distance to salient unit”.

Usually, a discourse marker signals one rhetorical relation. However, in some cases,
the occurrence of a simple or multiple marker, such as and although, which is obtained
by concatenating a set of simple markers, can signal more than one rhetorical relation.
The set of rhetorical relations that are signalled by such markers may relate different
textual units, have different rhetorical statuses, etc. In order to account for these cases,
the fields “Where to link;”, “Rhetorical relation;”, “Statuses;”, “Types of textual
unitsg;”, “Clause distance;”, “Sentence distance;”, and “Distance to salient unit;” were
indexed. Because the largest number of relations that were explicitly signalled in our

corpus was four, we used field names in which 1 <i <4.

In the cases in which a cue phrase signalled a rhetorical relation that held between
the textual unit that contained the cue phrase and a textual unit that came after, I
considered it useful to also encode explicitly information pertaining to the rhetorical
relation that holds between the textual unit that contains the cue phrase and the
text that precedes it. The purpose of this enterprise was to investigate whether
there exists a correlation between the markers that “link forward” and the preceding
text. For example, in text (4.12), the marker Although signals a rhetorical relation
of cONCESSION that holds between the clauses “Although faculties insist on governing
themselves,” and “they grant little prestige to a member who actively participates in
college or university government”. Obviously, the marker does not signal explicitly
any relation between the sentence that contains it and the previous text. Nevertheless,
in addition to fully describing the CONCESSION relation, I also described the relation
between the sentence that contained the marker Although, and the text that precedes
it. In the case of text (4.12), this relation is one of ELABORATION on the rhetorical

question “How well do faculty members govern themselves?”.

Algorithmic information. In contrast to the discourse related information, which has a

general linguistic interpretation, the algorithmic information was specifically tailored
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‘ Algorithm ‘ Field names
The clause-boundary and “Marker”, “Usage”, “Position”,
discourse-marker identification “Right boundary”, “Break action”
algorithm (section 5.3.3)
The discourse-marker-based “Marker”, “Usage”, “Where to link”,
algorithm for hypothesizing “Rhetorical relation”, “Statuses”,

rhetorical relations (section 5.4.2) | “Types of textual units”, “Clause distance”,
“Sentence distance”, “Distance to salient unit”

The bottom-up, text planning “Usage”, “Where to link”, “Rhetorical relation”,
algorithms (section 7.4.3) “Statuses”, “Types of textual units”,

“Clause distance”, “Sentence distance”,
“Distance to salient unit”

Table 4.1: The fields from the corpus that were used in developing the algorithms discussed
in the rest of the thesis.

to the surface analysis that aimed at determining the elementary textual units of a

text. This information involved only one field, called “Break action”.

Hence, the initial database contained more than 7600 records, each corresponding to a text
fragment. The field “Example” was the only field that was automatically generated. All
the other fields were initially empty.

Discussion

The information in the fields associated with each text fragment and cue phrase constitutes
the empirical foundation of five algorithms: an algorithm that identifies elementary unit
boundaries and discourse usages of cue phrases; an algorithm that hypothesizes rhetorical
relations that hold among textual units; and three algorithms that construct text plans in a
bottom-up fashion. Table 4.1 enumerates explicitly the fields that were used in developing

each of these algorithms.

4.4.3 Requirements for the corpus analysis

Once the database was created, each field of each record in the database was updated
according to the requirements described below.

Example

The field “Example” contains one text fragment that was randomly extracted from the
Brown corpus for a given cue phrase. The cue phrase under consideration is explicitly
marked using the IWTEX macro for emphasizing text, {\em }, as shown, for example, in
text (4.11).
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In the cases in which the cue phrase under scrutiny has a discourse function, the elemen-
tary textual units that are found in the neighborhood of the cue phrase are enclosed within
square brackets. The number of textual units that are enclosed within square brackets
depends on the kind of relation that the cue phrase marks. If it marks a relation between
two clauses of the same sentence, only those clauses will be enclosed within square brackets.
However, if it marks a relation between two elementary textual units that are a couple of
sentences apart, then all the elementary units in between are each enclosed within square
brackets. And if it marks a relation between two textual spans that are not elementary,
then all the elementary units that are contained in the non-elementary units are each en-
closed within square brackets as well. For example, the field “Example” that corresponds
to text (4.11) will contain the information shown in (4.13), because the cue phrase under
scrutiny, accordingly, marks a VOLITIONAL-CAUSE relation between the units “[However,
the Federal Court held that] [it was now a State matter.]” and “[It accordingly refused to

assume jurisdiction]”.

(4.13)  One of the early strikes called by the AWOC was at the DiGiorgio pear orchards
in Yuba County. We found that a labor dispute existed, and that the workers
had left their jobs, which were then vacant because of the dispute. Accordingly,
under clause (1) of the Secretary’s Regulation, we suspended referrals to the
employer. (Incidentally, no Mexican nationals were involved.) The employer,
seeking to continue his harvest, challenged our right to cease referrals to him, and
sought relief in the Superior Court of Yuba County. The court issued a temporary
restraining order, directing us to resume referrals. We, of course, obeyed the court
order. However, the Attorney General of California, at the request of the Secretary
of Labor, sought to have the jurisdiction over the issue removed to the Federal
District Court, on grounds that it was predominantly a Federal issue since the
validity of the Secretary’s Regulation was being challenged. [However, the Federal
Court held that] [since the State had accepted the provisions of the Wagner-Peyser
Act into its own Code,] [and presumably therefore also the regulations,] [it was now
a State matter.] [It {\em accordingly} refused to assume jurisdiction,] [whereupon
the California Superior Court made the restraining order permanent.] Under that
order, we have continued referring workers to the ranch. A similar case arose at
the Bowers ranch in Butte County, and the Superior Court of that county issued
similar restraining orders.

The growers have strenuously argued that I should have accepted the Superior
Court decisions as conclusive and issued statewide instructions to our staff to

ignore this provision in the Secretary’s Regulation.

The field “Example” that corresponds to text (4.12) is shown in (4.14) below. (The sentence
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containing the cue phrase Although is an ELABORATION on the question “[How well do

faculty members govern themselves?]”; hence, all the textual units in between are enclosed

within square brackets.)

(4.14)

The president expects faculty members to remember, in exercising their auton-
omy, that they share no collective responsibility for the university’s income nor
are they personally accountable for top-level decisions. He may welcome their
appropriate participation in the determination of high policy, but he has a right
to expect, in return, that they will leave administrative matters to the adminis-
tration.

[How well do faculty members govern themselves?] [There is little evidence
that they are giving any systematic thought to a general theory of the optimum
scope and nature of their part in government.] [They sometimes pay more atten-
tion to their rights] [than to their own internal problems of government.] [They,
too, need to learn to delegate.] [Letting the administration take details off their
hands would give them more time to inform themselves about education as a
whole,] [an area that would benefit by more faculty attention.]

[{\em Although} faculties insist on governing themselves,| [they grant little
prestige to a member who actively participates in college or university govern-
ment.] There are, nevertheless, several things that the president can do to stimu-
late participation and to enhance the prestige of those who are willing to exercise
their privilege. He can, for example, present significant university-wide issues to
the senate. He can encourage quality in faculty committee work in various ways:
by seeing to it that the membership of each committee represents the thoughtful
as well as the action-oriented faculty; by making certain that no faculty mem-
ber has too many committee assignments; by assuring good liaison between the

committees and the administration; by minimizing the number of committees.

The elementary textual units enclosed within square brackets are not necessarily clauses

in the traditional, grammatical sense. Rather, they are contiguous spans of text that can

be smaller than a clause and that can provide grounds for deriving rhetorical inferences.

For example, although “They sometimes pay more attention to their rights than to their

own internal problems of government.” is a simple clause, I decided to break it into two

elementary textual units because the cue phrase “than” can provide grounds for inferring

that a COMPARISON is made between the attention that faculties pay to their rights and the

attention that they pay to their own internal problems of government.

In the texts that I analyzed, I did not use an objective definition of elementary unit.

Rather, I relied on a more intuitive one: whenever I found that a cue phrase signalled a

rhetorical relation between two spans of text of significant sizes, I assigned those spans an
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elementary unit status, although in some cases they were not fully fleshed clauses. In the

rest of the thesis I use the term clause-like unit in order to refer to such elementary units.

Marker

The field “Marker” encodes the orthographic environment of the cue phrase. That is, it con-
tains the marker under consideration and all the punctuation marks that precede or follow
it. If more than one cue phrase is used, the “Marker” field contains the adjacent markers
as well. For example, for text (4.11), the “Marker” environment will contain the string
“Uaccordinglyll” because no punctuation marks or cue phrases surround the cue phrase un-
der scrutiny.? However, if the cue under scrutiny had been the phrase “However”, from the
sentence that precedes the one that contains the string “accordingly”, the “Marker” field
would have been “.LUHowever,lI”, because the phrase is preceded by a period and followed
by a comma. The beginning of a paragraph is conventionally labelled with a # character.

Hence, the “Marker” field associated with text fragment (4.14) is “#UAlthoughU”.

Usage

The field “Usage” encodes the functional role of the cue phrase. The role can be one or

more of the followings:

e SENTENTIAL (S), when the cue phrase has no function in structuring the discourse.
For example, in text 4.15, above all is used purely sententially: above is a preposition

and all is a quantifier.

(4.15) And finally, the best part of all, simply sit at the plank table in the
kitchen with a bottle of wine and the newspapers, reading the ads as
well as the news, registering nothing on her mind but letting her soul

suspend itself above all wishing and desire.

e DISCOURSE (D), when the cue phrase signals a discourse relation between two textual
units. For example, in text 4.16, Although signals a concession relation between two

clauses of the same sentence; the clauses are enclosed within square brackets.

(4.16) [Although Brooklyn College does not yet have a junior-year-abroad pro-

gram,| [a good number of students spend summers in Europe.]

e PRAGMATIC (P), when the cue phrase signals a relationship between some linguistic

or nonlinguistic construct that pertains to the unit in which the cue phrase occurs and

2The symbol U denotes a blank character.
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the beliefs, plans, intentions, and/or communicative goals of the speaker, hearer, or
some character depicted in the text. In this case, the beliefs, plans, etc., might not be
explicitly stated in discourse; rather, it is the role of the cue phrase to help the reader

infer them.?

For example, in text (4.17), again presupposes that James was caught
by the police before, but that event is not explicitly mentioned in the discourse. In
this sense, one can say that there exists a relationship between sentence (4.17) and
the speaker’s knowledge and that again provides the means through which the hearer

can infer that knowledge.

(4.17) James was caught by the police again.

In text (4.18), already is used to express an element of unexpectedness with respect to
the events that are described. Because of this, we say that already plays a pragmatic

role as well.

(4.18) When May came the Caravan had already crossed the Equator.

Right boundary

The field “Right boundary” contains a period, question mark, or exclamation mark if the cue
phrase under scrutiny occurs in the last elementary unit of a sentence. If it does not occur
in the last elementary unit, it contains the cue phrase and orthographic marker found at the
beginning of the elementary unit that follows it. If there is no cue phrase or orthographic
marker found at the boundary between the two units, the “Right boundary” field contains
the first word of the unit that follows the one that contains the marker. For example, the
content of the field “Right boundary” for text (4.13) is “,Uwhereuponl)” because “” and
whereupon are the lexemes found at the boundary between the unit that contains the marker
under scrutiny and the next unit in the text. The content of the field “Right boundary”
associated with texts (4.14) and (4.16) and cue phrase Although is “,” because the first

lexeme in the second elementary unit of each text is not a cue phrase.

Where to link;

The field “Where to link;” describes whether the textual unit that contains the discourse
marker under scrutiny is related to a textual unit found BEFORE (B) or AFTER (A) it. For

example, the textual unit that contains the marker accordingly in text (4.13) is rhetorically

*The definition of pragmatic connective that I use here is that proposed by Fraser [1996]. It should not
be confused with the definition proposed by van Dijk [1979], who calls a connective “pragmatic” if it relates
two speech acts and not two semantic units.
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related to a textual unit that goes before it (B). In contrast, the clause that contains the
discourse marker Although in text (4.16) is rhetorically related to the clause that comes

immediately after it (a).

Types of textual units;

The field “Types of textual units;” describes the types of textual units that are connected
through a rhetorical relation that is signalled by the marker under scrutiny. The types
of the textual units range over the set {CLAUSE-LIKE UNIT (C), MULTICLAUSE-LIKE UNIT
(MC), SENTENCE (S), MULTISENTENCE (MS), PARAGRAPH (P), MULTIPARAGRAPH (MP)}.
The field contains two types that are separated by a semicolon: the first type corresponds
to the first textual unit, and the second type corresponds to the second textual unit. For
example, the “Types of textual units;” field that corresponds to the marker accordingly in
text (4.13) is MC;C because it relates the multiclause-like unit “[However the Federal Court
held that] [it was now a State matter]” with the clause “[It accordingly refused to assume
jurisdiction]”. The “Types of textual units,” field that corresponds to the marker Although
in text (4.16) is c;C because it relates two clauses: “[Although Brooklyn College does not
yet have a junior-year-abroad program,]” and “[a good number of students spend summers

in Europe.]”.

Clause distance;

The field “Clause distance;” contains a count of the clause-like units that separate the units
that are related by the discourse marker. The count is 0 when the related units are adjacent.
For example, the fields “Clause distance;” for both examples (4.13) and (4.16) have value
0.

Sentence distance;

The field “Sentence distance;” contains a count of the sentences that are found between the
units that are related by the discourse markers. The count is —1, when the related units
belong to the same sentence. For example, the field “Sentence distance;” for example (4.13)

has value 0. However, the field for example (4.16) has value —1.

Distance to salient unit;

The field “Distance to salient unit;” contains a count of the clause-like units that separate
the textual unit that contains the marker under scrutiny and the textual unit that is the
most salient unit of the span that is rhetorically related to a unit that is before or after that
under scrutiny. In most cases, this distance is —1, i.e., the unit that contains a marker is

directly related to a unit that went before or to a unit that comes after. However, in some
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EXAMPLE

BACKGROUND

Figure 4.2: The discourse tree of text (4.19).

cases, this is not so. Consider, for example, the text given in (4.19) below, with respect to

the cue phrase for example.

(4.19) [There are many things I do not like about fast food.!] [Let’s assume, for ezample,
that you want to go out with someone?.] [There is no way you can take them to

a fast food restaurant!?]

A rhetorical analysis of text (4.19) is shown in figure 4.2. It is easy to see that although
Jor example signals a rhetorical relation of EXAMPLE, the relation does not hold between
units 2 and 1, but rather, between span 2-3 and unit 1. More precisely, the relation holds
between unit 3, which is the most salient unit of span 2-3, and unit 1. The field “Distance
to salient unit;” reflects this state of affairs. For text (4.19) and marker for ezample, its

value is 0.

Position;

The field “Position;” specifies the position of the discourse marker under scrutiny in the
textual unit to which it belongs. The possible values taken by this field are: BEGINNING
(B), when the cue phrase occurs at the beginning of the textual unit to which it belongs;
MIDDLE (M), when it is in the middle of the unit; and END (E), when it is at the end. For
example, the content of the field “Position;” for example (4.13) is M. However, the content

of the field “Position;” for example (4.16) is B.

Statuses;

The field “Statuses;” specifies the rhetorical statuses of the textual units that are related
through a rhetorical relation that is signalled by the cue phrase under scrutiny. The status
of a textual unit can be NUCLEUS (N) or SATELLITE (S). The field contains two rhetorical
statuses that are separated by a semicolon: the first status corresponds to the first textual
unit, and the second to the second. For example, the “Statuses;” field for the marker ac-
cordingly in text (4.13) is s;N because the multiclause-like units “[However the Federal Court
held that] [it was now a State matter]” are the SATELLITE and the clause “[It accordingly re-

fused to assume jurisdiction]” is the NUCLEUS of a rhetorical relation of VOLITIONAL-CAUSE.
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The “Statuses;” field for the marker Although in text (4.16) is S;N because it relates two
clauses: “[Although Brooklyn College does not yet have a junior-year-abroad program,]” is
the SATELLITE and “[a good number of students spend summers in Europe]” is the NUCLEUS

of a rhetorical relation of CONCESSION.

Rhetorical relation;

The field “Rhetorical relation;” specifies one or more rhetorical relations that are signalled
by the cue phrase under scrutiny. The list of relations that is used was derived from the list
of relations initially proposed by Mann and Thompson [1988]. A new relation was added
to Mann and Thompson’s list whenever 1 came across an example for which none of the
relations held. Appendix C contains the list of rhetorical relations that were used in the
corpus analysis. In the case in which more than one rhetorical relation definition seemed to
adequately characterize the example under consideration, the field “Rhetorical relations;”
enumerated all these relations. For example, the contents of the “Rhetorical relation;” field

for examples (4.13) and (4.16) are VOLITIONAL-CAUSE and CONCESSION, respectively.

Break action

The field “Break action” contains one member of a set of instructions for a shallow analyzer
that determines the elementary units of a text. The shallow analyzer assumes that text
is processed in a left-to-right fashion and that a set of flags monitors the segmentation
process. Whenever a cue phrase is encountered, the shallow analyzer executes an action
from the set {NOTHING, NORMAL, COMMA, NORMAL_THEN_COMMA, END, MATCH_PAREN,
COMMA _PAREN, MATCH_DASH, SET_AND, SET_OR, DUAL}. The effect of these actions can

be one of the following:

e Create an elementary textual unit boundary in the input text stream. Such a bound-
ary corresponds to the square brackets used in the examples that were discussed so

far.

e Set a flag. Later, if certain conditions are satisfied, this may lead to the creation of a

textual unit boundary.

Since a discussion of the semantics of the actions is meaningless in isolation, I will provide
it below in section 5.3.3, in conjunction with the clause-like unit boundary and marker-

identification algorithm.

4.4.4 Method and results

Once the database had been created, I analyzed each record in it and updated its fields

according to the requirements described in section 4.4.3. Tables 4.2 and 4.3 show the
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‘ Field ‘ Content
Example (4.13)
Marker Uaccordinglyll
Usage D
Right boundary ,UwhereuponL|
Where to link; B
Types of textual units; | MC;C
Clause distance; 0
Sentence distance; 0
Distance to salient unity | —1
Position; M
Statusesy S;N
Rhetorical relationy VOLITIONAL-CAUSE
Break action NOTHING

Table 4.2: A corpus analysis of the segmentation and integration function of the cue phrase
accordingly from text (4.13).

information that I associated with the fields when 1 analyzed the text fragments shown
in (4.13) and (4.14) respectively.

Overall, I have manually analyzed 2100 of the text fragments in the corpus. Of the
2100 instances of cue phrases that I considered, 1197 had a discourse function, 773 were
sentential, and 244 were pragmatic.?

The taxonomy of relations that I used to label the 1197 discourse usages in the corpus
contained 54 relations. The table shown in appendix C lists their names and the number
of instances in which each rhetorical relation was used. As one can note, the number
of relations is much larger than 24, which is the size of the taxonomy proposed initially
by Mann and Thompson [1988]. The reason for this is that, during the corpus analysis,
it often happened that none of the relations proposed by Mann and Thompson seemed to
capture well enough the semantics of the relationship between the units under consideration.
Because the study described here is exploratory, 1 considered it appropriate to introduce
relations that would better capture the meaning of these relationships. The rhetorical
relation names listed in appendix C were chosen so as to reflect the intended semantics of
the relations.

In addition to the information above, 1 have extracted from the corpus for each cue

phrase information that enables

e its recognition in text;

“The three numbers add up to more than 2100 because some cue phrases had multiple roles in some text
fragments.
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‘ Field ‘ Content ‘

Example (4.14)
Marker #UAlthoughu
Usage D

Right boundary ,

Where to link; A

Types of textual unitsy C;C

Clause distance; 0

Sentence distance; -1

Distance to salient unit; | —1
Position; B

Statusesy S;N
Rhetorical relationy CONCESSION
Where to links B

Types of textual unitsy | s;S

Clause distance, 6

Sentence distance, 4

Distance to salient unity | —1
Positiony B

Statusess N;S
Rhetorical relations ELABORATION
Break action COMMA

Table 4.3: A corpus analysis of the segmentation and integration function of the cue phrase
Although from text (4.14).

e the determination of the boundaries of the elementary textual units found in its vicin-

ity;

e the hypothesizing of rhetorical relations that hold among textual units found in its

vicinity.

These results are discussed in chapter 5, where I establish the connection between the corpus
analysis and the algorithms that derive text structures for unrestricted texts.

In the context of natural language generation (chapter 7), I show how the corpus can
be used to compute the strengths of the preferences of rhetorical relations to realize their
satellites and nuclei in a certain order and to cluster their satellites and nuclei into larger
textual spans.

Because the corpus analysis has not been fully completed, it would be premature to
draw any conclusions with respect to the taxonomy of rhetorical relations. In fact, this
problem is beyond the scope of this thesis. For the moment, I prefer to make no claims

with respect to the size and nature of an appropriate taxonomy of rhetorical relations.
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4.4.5 Discussion

The main advantage of the empirical work described here consists in the empirical grounding
that it provides for a set of algorithms that derive text structures of unrestricted texts in the
context of discourse analysis and build valid text plans in the context of natural language
generation. These algorithms are grounded partially in the empirical data derived from the
corpus and partially in the intuitions that I developed during the discourse analysis of the
2100 fragments of text. In chapters 5 and 7, I discuss in detail the relationship between the
corpus analysis and these algorithms.

The most important consequence of the fact that I was the only analyst of 2100 of the
7600 of the text fragments in the corpus concerns the evaluation procedures that I chose to
use. In order to avoid evaluating the algorithms that I developed against my own subjective
standard, I used the corpus analysis only for algorithm development. The testing of the
algorithms was done against data that did not occur in the corpus and that was analyzed
independently by a relatively large number of judges.

As I have already mentioned, I am aware of no previous empirical study that has in-
vestigated the relationship between cue phrases, rhetorical relations, and discourse units to
the extent that was aimed at here. Because of this, I assumed from the beginning that my
corpus analysis would have, primarily, an exploratory nature.

Ideally, the corpus analysis would be performed by more than one analyst. Unfortu-
nately, time and cost constraints are factors that cannot be neglected when such a corpus
study is designed. The magnitude of a corpus study that can provide data that is both re-
liable and statistically significant is beyond the scope of a PhD thesis. However, the size of
the corpus is not the only problem that an analyst has to face. During my corpus analysis,
I noticed a set of other problems that I consider worthy of being brought to the reader’s
attention. These problems stem from the lack of objective definitions for the notions of
elementary textual unit, nuclearity, and rhetorical relation. Below, I discuss each of these

problems in turn.

Problems with identifying the elementary units of text

My initial intent was to take clauses as the elementary units of discourse. Consider, however,

the text shown in (4.20), below.

(4.20) [Because of light leakage from one ultraviolet source to another,][ the lights are
switched by a commutator-like assembly rotated by a synchronous motor.]

If I had taken my initial intent literally, | would have not broken sentence (4.20) into two
units, because “light leakage from one ultraviolet source to another” does not contain a

verb, and therefore, is not a clause. However, the marker Because of clearly signals a causal
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relation between the textual spans “light leakage from one ultraviolet source to another,”
and “the lights are switched by a commutator-like assembly rotated by a synchronous mo-
tor”. Uncovering this relation can be only beneficial from a text understanding perspective.
However, how far should one go in this attempt of using phrases rather than clauses as the
elementary units of discourse?

As I have already discussed in section 4.4.3, in the texts that I analyzed, I did not use
an objective definition of elementary textual unit. Rather, I relied on a more intuitive one:
whenever | found that a cue phrase signalled a rhetorical relation between two spans of
text of significant sizes, I assigned those spans an elementary unit status, although, in some

cases, they were not fully fleshed clauses.

Problems with identifying the rhetorical status of the textual units involved in

a discourse relation

As we have seen, nuclearity plays a major role in the formalization of text structures that I
proposed in chapter 2. One of the main assumptions that this formalization relies upon is
that the rhetorical statuses of the units involved in a rhetorical relation can be determined
unambiguously. However, in few cases in the corpus, although the rhetorical relation that
held between two units was easy to label, it was ambiguous as to which unit was the nucleus

and which was the satellite. Consider the following example:

(4.21) [It is not enough for man to be an ontological esse.] [He needs existential comple-
tion,] [he needs, that is, to move in the direction of completion.] [And the direction
of that movement is determined by his perception of the truth about himself.] [He
must, consequently, exist as a self-perceived substantive, developing agent,] [or he
does not exist as man.] [Thus, it is no mystical intuition,] [but an analyzable
conception to say that man and his tradition can “fall out of existence”.] [This
happens at the moment man loses the perception of moral substance in himself|]
[of a nature that, in Maritain’s words, is perceived as a “locus of intelligible ne-
cessities”.] [An existentialist is a man who perceives himself only as “esse”,] [as

existence without substance.]

The cue phrase consequently clearly marks a causal relation between units “And the direction
of that movement is determined by his perception of the truth about himself” and “He must,
consequently, exist as a self-perceived substantive, developing agent”. It is, however, not
obvious which unit should be assigned the status of nucleus and which that of satellite. In
fact, in general, causal relations are difficult to assign a nuclear status: in some cases, the
context provides enough evidence with respect to whether the writer intended to assign a

more important role to the cause or to the result. In some cases, however, it seems that the
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nuclearity assignment can go either way.

More precisely, it is not that the taxonomy of relations does not distinguish between
causal relations in which the cause is the nucleus and causal relations in which the result is
the nucleus, but rather that we lack an objective definition that would allow us to determine

which of these relations to use.

Problems with identifying the rhetorical relations that holds between two tex-

tual units

During the corpus analysis, it was sometimes difficult to determine one rhetorical relation
that would most adequately characterize the relation between two units. Consider, as an

example the text shown in (4.22) below.

(4.22) [Certain badly disillusioned market critics are often apt to feel that there is some-
thing somehow unfair, dirty, or even thoroughly criminal about this interplay
of competitive forces.] [But after all, can anyone imagine a market wherein the
reverse of these things were true?] [Try to imagine a market in which only a
minority of traders would lose,] [and the majority would make consistent profits.]
[How much and how many profits could a majority take out of the losses of a

few?]

What is the rhetorical relation that best describes the relationship between the first two
sentences? To a certain degree is a CONTRAST between the features of a real market and
the features of an imaginary one. But at the same time, an INTERPRETATION relation can
be considered to hold between the two sentences as well. Which one should we choose?
And if we choose both, how do we objectively assign a strength or preference to one of the
relations? In my analysis, I chose to label a relation between two textual spans with all the

names of the rhetorical relations whose definitions seemed to apply.

4.5 Related work

As 1 discussed at the beginning of this chapter, in order to automatically determine the
valid text structures of an arbitrary text, we need only to determine the elementary units
of that text and the rhetorical relations that hold among them. The corpus analysis that I
have presented in the previous section, which aims at providing solutions for both of these
problems, owes much to inspiration from recent developments in empirical discourse analy-
sis. Particularly relevant is the work that pertains to segmenting discourse, distinguishing
between discourse and sentential usages of cue phrases, and determining the correlation

between cue phrases and discourse structure.
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Empirical research on discourse segmentation

Empirical studies on discourse segmentation can be divided into two categories. In the
first category, I include the studies that investigate the ability of human judges to agree
on discourse segment boundaries. In the second, I include the studies aimed at deriving

algorithms that would identify these boundaries.

Research on discourse segmentation has relied on various definitions of discourse seg-
ments. Discourse segments were defined in terms of Grosz and Sidner’s discourse the-
ory [1986]; in terms of an informal notion of topic [Hearst, 1997]; in terms of transac-
tions [Carletta et al., 1997], i.e., subdialogues that accomplish one major step in the par-
ticipants’ plan for achieving a task; and in terms of intentional- and informational-based
accounts that reflect the functional role of segments in text [Moser and Moore, 1997]. Stud-
ies performed on both text and speech [Grosz and Hirschberg, 1992, Nakatani et al., 1995,
Hirschberg and Nakatani, 1996, Passonneau and Litman, 1993, Passonneau and Litman,
1997b, Passonneau and Litman, 1997a] have shown that humans agree consistently and
reliably on segment boundaries when they use the intention-based definition proposed by
Grosz and Sidner. Consistent and reliable agreement figures are obtained when the notions
of transaction [Carletta et al., 1997] and topic [Hearst, 1997], and when the Relational
Discourse Analysis methodology [Moser and Moore, 1997] are applied as well.

The studies aimed at deriving algorithms for the automatic identification of segment
boundaries [Grosz and Hirschberg, 1992, Hirschberg and Litman, 1993, Passonneau and
Litman, 1997a, Moser and Moore, 1997, Di Eugenio et al., 1997] used sets of manually en-
coded linguistic and nonlinguistic features that pertained to prosody, cue phrases, referential
links, intentional and informational structure of segments, types of relations, level of embed-
ding, etc. The best algorithm that determines intention-based discourse segments recalled
53% of the discourse segments identified by humans, with a precision of 95% [Passonneau
and Litman, 1997a]. The algorithm was derived automatically using machine learning tech-
niques. When instead of “intention” Hearst [1997] used “topic” as the main criterion for
assigning discourse segment boundaries, she showed that by exploiting word repetitions one
can automatically find boundaries identified by humans with a recall of 59% and a preci-
sion of 71%. In a more recent proposal, Yaari [1997] suggested that by using hierarchical
agglomerative clustering algorithms one can identify topical segments in expository texts.

Yaari’s algorithm looks promising, but has not yet been evaluated extensively.

The corpus study discussed in this chapter was designed so as to enable the development
of an algorithmic approach to identifying the elementary units of discourse. Because the
notions of intention and topic yield discourse segments that are too coarse for our purpose,

we could not use the algorithms described in this section.

136



Empirical research on cue phrase disambiguation

Hirschberg and Litman [1993] showed that just by using the orthographic environment in
which cue phrases occur, one can distinguish between sentential and discourse usages in
about 80% of the cases and they suggested that co-occurrence data may provide useful
information for cue phrase disambiguation. They also showed that part-of-speech tags can
improve only slightly the disambiguation figures. In addition, Siegel and McKeown [1994]
and Litman [1996] proved that Hirschberg and Litman’s results [1993] can be improved up
to figures in the range of 83% when genetic algorithms and machine learning techniques are
used.

The corpus analysis presented in this chapter has benefited extensively from the lessons
learnt from Hirschberg and Litman’s study. As will become apparent in section 5.3.3, the
orthographic environment and the neighboring cues play an important role in determining
whether a given cue phrase has a discourse function in a text. The corpus analysis discussed
in this chapter is also meant to fill a coverage gap in Hirschberg, Litman, Siegel, and
McKeown’s work: the corpus that they relied upon had only 953 occurrences of 34 cue
phrases, which were uttered by one speaker during a speech of 75 minutes that contained

approximately 12,500 words.

Empirical research on the discourse function of cue phrases

Most empirical research on cue phrases has focused on very specific facets. For example, Di
Eugenio [1992, 1993] and Delin et al. [1994] studied the role of by and to in purpose clauses;
Grote et al. [1995] studied the role of but and although in concessive relations; Anscombre
and Ducrot [1983], Cohen [1983], and Elhadad and McKeown [1990] studied the role of
since and because in argumentation; Hirschberg and Litman [1987] studied the relationship
between the discourse usage of now and intonation; and Moens and Steedman [1988] studied
the role of before, after, and when in temporal discourse. In an exploratory study of the
relationship between discourse markers, pragmatics, and discourse, Schiffrin [1987] provided
a careful sociolinguistic analysis of dialogue usages of and, then, so, because, and but. A
broad empirical investigation of cue phrases was also carried out by Knott [1995], Knott and
Dale [1996], and Knott and Mellish [1996] in order to motivate on psycholinguistic bases a
taxonomy of coherence relations.

The corpus analysis that comes closest to ours is that of Moser and Moore [1995, 1997].
They collected a set of 17 student-tutor interactions encompassing 144 question-answer ex-
changes that had 854 clauses. For each interaction in the corpus, the analysts determined the
elementary and non-elementary discourse constituents and the discourse relations that hold
between them. The analysts also labelled the functional status of the segments, i.e., they

distinguished between segments that expressed what was essential to the writer’s purpose —
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these were called core segments — and the segments that served the purpose manifested by
the core — these were called contributors. They also labelled the syntactic relation between
segments (independent sentences, coordinated clauses, subordinated clauses), the relative
order of the core and contributors, the cue phrases associated with various segments, etc.
The most important finding of Moser and Moore was that the placement of cue phrases
correlates with both the functional status of the segment to which they belong and the
linear order of the core and contributor segments.

As an extention to Moser and Moore’s analysis, Di Eugenio, Moore and Paolucci [1997]
have investigated the possibility of using the same corpus data for deriving algorithms that
would enable a natural language generation system to determine when and how to use cue
phrases in explanatory texts. Decision trees that were derived using traditional machine
learning techniques showed that the ordering of the core and contributor was crucial for
determining whether a cue phrase needed to be used.

Although Moser and Moore’s corpus analysis implemented many of the features that
are present in my corpus, it had a very narrow coverage. Because the motivation for their
corpus analysis was given primarily by unsolved problems in the field of natural language
generation, it did not encode information that would enable the development of algorithms

for determining the discourse segments of a text.

4.6 Summary

In this chapter, I have presented a variety of linguistic constructs that can be used to detect
the elementary textual units in a text and the rhetorical relations that hold among them. I
then discussed the assumptions that constitute the foundations of a surface-based approach
to text structure derivation, one that relies primarily on cue phrases and lexicogrammatical
constructs that can be detected without a deep syntactic and semantic analysis.

The most important part of the chapter is dedicated to the presentation of an exploratory
corpus study of the discourse function of cue phrases. Besides the materials and methods
that I used in the corpus analysis of 450 cue phrases, I also provided some general results and
discussed the need to use objective definitions of elementary textual unit, nuclear status,
and rhetorical relation. At the end of the chapter, I compared the empirical work described
here with previous empirical work in discourse segmentation, cue phrase disambiguation,

and the discourse function of cue phrases.
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Chapter 5

The rhetorical parsing of

unrestricted natural language texts

5.1 Preamble

5.1.1 Pros and cons for an underspecified hierarchical representation of
text

In devising a rhetorical parsing algorithm, i.e., an algorithm that finds the valid discourse
structures of an unrestricted text, we have two choices: we can assume a text to be a
“flat” sequence of elementary textual units (which, for simplicity, can be assimilated with
the sequence of clauses that corresponds to that text); or we can assume a text to have
a predefined, underspecified hierarchical structure whose elements are clauses, sentences,
paragraphs, information blocks, sections, chapters, etc. More precisely, we can assume that
the paragraphs and sections of a text are meaningful from a discourse processing perspective
as much as clauses and sentences are, i.e., the paragraph and section breaks correlate with
the structure of discourse. Each approach has advantages and disadvantages.

From a linguistic perspective, the advantage of taking a text to be a flat sequence of
textual units is that it puts no constraints on the places where the boundaries between large
textual spans can occur. If we are able to determine the rhetorical relations between textual
units accurately, then the text structures that we will eventually build will be accurate as
well. The disadvantage of such an approach is primarily computational. A real text may
have hundreds or even thousands of elementary units. If we build a tree over such a large
number of units, it is very likely that the time required by the tree-derivation process will
be significant. Because my intent is to devise an algorithm that can be used in practice, on
real texts, and because the rhetorical indicators that I rely upon are not very accurate, 1
assume that texts have a predefined, underspecified, hierarchical structure.

Consider, for example, a text that has three paragraphs with a total of 11 sentences.
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The text is represented schematically in (5.1): each of the first two paragraphs has four

sentences, while the third paragraph has three sentences.

If we assume that text (5.1) is a flat sequence of elementary units, in this case a sequence
of sentences, the rhetorical parsing of text (5.1) consists in building a discourse tree over a
sequence of 11 textual units. However, if we assume that paragraphs are legitimate high-
level units that correlate with the structure of discourse, the rhetorical parsing of text (5.1)

can be divided into three stages:
1. Find the discourse trees of each of the three paragraphs.

2. Find the discourse trees of a sequence that has only three units, corresponding to the

three paragraphs of text (5.1).

3. Replace the leaves of the discourse structure that was built in step 2 with the trees

that were built for each paragraph, thus obtaining a discourse tree for the whole text.

Hence, from a computational perspective, instead of deriving the discourse structure of a
sequence of 11 units, we derive the discourse structure of two sequences of four units and
two sequences of three units, which is a much faster process.

Although such an approach is computationally attractive, it may pose some problems in
those cases in which the paragraph breaks do not match closely the thematic and intentional
breaks. For example, text (5.1) may be very well characterized by a topic that ranges across
sentences 1 to 5 and a topic that ranges across sentences 6 to 11. If the two topics are in
contrast, an adequate discourse tree will have two major subspans: one across units 1 to
5, and another one across units 6 to 11. Obviously, an algorithm that assumes that the
structure of paragraphs correlates with the structure of discourse will inappropriately build
a discourse tree that has a span between units 1 and 4, a span between units 5 and 8, and
a span between units 9 and 11.

Deciding whether paragraph breaks correlate well enough with the structure of discourse
is not straightforward; in fact, psycholinguistic and empirical research provide contradictory
evidence. For example, the psychological experiments of Bruder and Wiebe [1990] and
Wiebe [1994] show that paragraph breaks help readers to interpret private-state sentences

in narratives, i.e., sentences about psychological states such as wanting and perceptual states
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such as seeing. Hence, paragraph breaks play an important role in story comprehension.
And my own empirical investigation of the relationship between text structures and text
summaries (see chapter 6) suggests that paragraph breaks can help readers determine what

textual units are most important in a text.

In contrast, the psycholinguistic and empirical research of Heurley [1997] and
Hearst [1997] indicates that paragraph breaks do not always occur at the same locations as
the thematic boundaries. One of the explanations of this finding is that the criteria that
are used by readers in segmenting text do not fit exactly those that have been used by au-
thors when writing them. An extreme position is taken by Longacre [1979], who mentions
that paragraph breaks are often introduced only for esthetic reasons. And an experiment
described by Stark [1988] seems to confirm this; reinstating paragraph breaks by students
led to poor results: only nine of the paragraph breaks used by the author of a text with 17
paragraph breaks were identified as such by more that 50% of the subjects.

One way to circumvent this problem is by considering, still, that texts have a hierarchical,
underspecified structure and that the larger textual units are given not by paragraphs but
by “information blocks” [Heurley, 1997]. An information block is a set of sentences and
paragraphs that are semantically related and that are built around a unique topic; the
boundaries of an information block are independent of any orthographic marking in the
surface structure of the text. Research in computational linguistics and information retrieval
has shown that information blocks can be determined through a semantically-based process,
which assumes that such blocks “talk about” the same thing. Word co-occurrences [Hearst,
1994, Hearst, 1997, Salton and Allan, 1995, Salton et al., 1995, Richmond et al., 1997, Yaari,
1997] and simple or complex chains of semantic relations, such as synonymy, hyponymy,
meronymy, etc. [Morris, 1988, Morris and Hirst, 1991, Hoey, 1991, Hirst and St-Onge, 1997,

Green, 1997], provide the means for determining the boundaries of these blocks.

Although appealing, the use of information blocks as legitimate, high-level textual units
is hampered by the fact that word co-occurrences and even elaborate forms of semantic
relatedness do not provide strong-enough means for correctly determining textual bound-
aries that correlate well enough with the structure of discourse [Hearst, 1994, Hearst, 1997,
Morris, 1988, Morris and Hirst, 1991]. In addition, the relationship between the semantically
based, cohesive devices and the rhetorical relations that they license is still insufficiently
known to be applicable in determining the rhetorical relations that hold between informa-
tion blocks. Even if we can determine that two information blocks are semantically related,
it is still difficult to infer the nature of the rhetorical relation that would appropriately
characterize this relationship [Green, 1997].
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Input: A text 7.
Output: The valid text structures of T'.
1. L. Determine the set D of all cue phrases (potential discourse markers) in 7.
2. 1I. Use information derived from the corpus analysis in order to determine
3. recursively all the sections, paragraphs, sentences, and clause-like units of the
4. text and the set Dy € D of cue phrases that have a discourse function.
5. 1II. For each of the three highest levels of granularity (sentences, paragraphs,
6. and sections)
7. III.1 Use information derived from the corpus analysis about the
8. discourse markers Dy in order to hypothesize rhetorical relations
9. among the elementary units that correspond to that level.
10. II1.2 Use cohesion in order to hypothesize rhetorical relations among
11. the units for which no hypotheses were made in step III.1.
12. II1.3 Apply one of the algorithms discussed in section 5.5 in order to
13. determine all the valid text trees that correspond to that level.
14. II1.4 Assign a weight to each of the text trees and determine the tree
15. with maximal weight.
16. 1V. Merge the best trees that correspond to each level into a discourse tree that
17. spans the whole text and that has clause-like units as its elementary units.
Figure 5.1: Outline of the rhetorical parsing algorithm
5.1.2 The rhetorical parsing algorithm — a bird’s-eye view

In this chapter, I present a rhetorical parsing algorithm that derives the valid discourse
structures of unrestricted texts. The algorithm is outlined in figure 5.1. It assumes that texts
have a predetermined, underspecified hierarchical structure with the following main levels:
clause-like units, sentences, paragraphs, and sections. The rhetorical parser first determines
the set of all cue phrases that occur in the text; this set includes punctuation marks such as
commas, periods, and semicolons. In the second step (lines 2-4 in figure 5.1), the rhetorical
parser uses information derived from the corpus analysis in chapter 4 for determining the
elementary textual units of the text and the cue phrases that have a discourse function in
structuring the text. In the third step, the rhetorical parser builds the valid text structures
for each of the three highest levels of granularity, which are the sentence, paragraph, and
section levels (see lines 5-15 in figure 5.1). The tree construction is carried out in four

substeps.

III.1 First, the rhetorical parser uses the cue phrases that were assigned a discourse func-
tion in step II in order to hypothesize rhetorical relations between clause-like units,
sentences, and paragraphs (see lines 7-9). Most of the discourse markers yield dis-

junctive hypotheses.
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II1.2 When the textual units under consideration are characterized by no discourse markers,
rhetorical relations are hypothesized using a simple cohesive device, which is similar
to that used by Hearst [1997] (see lines 10-11).

II1.3 Once the set of textual units and the set of rhetorical relations that hold among the
units have been determined, the algorithm derives discourse trees at each of the three
levels that are assumed to be in correlation with the discourse structure: sentence,

paragraph, and section levels (see lines 12-13).

II1.4 Since the rhetorical parsing process is ambiguous, more than one discourse tree is
usually obtained at each of these levels. To deal with this ambiguity, a “best” tree is

selected according to a metric to be discussed in section 5.6 (see lines 14-15).

In the final step, the algorithm assembles the trees built at each level of granularity, thus

obtaining a discourse tree that spans over the whole text (lines 16-17 in figure 5.1).

In the rest of the chapter, I discuss in detail the steps that the rhetorical parser follows
when it derives the valid structures of a text and the algorithms that implement them.
In the cases in which the algorithms rely on data derived from the corpus analysis in
chapter 4, I also discuss the relationship between the predominantly linguistic information
that characterizes the corpus and the procedural information that can be exploited at the
algorithmic level. Throughout the discussion, I will use as an example text (1.1), which was

taken from Scientific American, November 1996 and which is reproduced for convenience
n (5.2) below.

(5.2)  With its distant orbit — 50 percent farther from the sun than Earth — and slim
atmospheric blanket, Mars experiences frigid weather conditions. Surface tem-
peratures typically average about —60 degrees Celsius (—76 degrees Fahrenheit)
at the equator and can dip to —123 degrees C near the poles. Only the midday
sun at tropical latitudes is warm enough to thaw ice on occasion, but any liquid
water formed in this way would evaporate almost instantly because of the low
atmospheric pressure.

Although the atmosphere holds a small amount of water, and water-ice
clouds sometimes develop, most Martian weather involves blowing dust or carbon
dioxide. Each winter, for example, a blizzard of frozen carbon dioxide rages over
one pole, and a few meters of this dry-ice snow accumulate as previously frozen
carbon dioxide evaporates from the opposite polar cap. Yet even on the summer
pole, where the sun remains in the sky all day long, temperatures never warm

enough to melt frozen water.
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5.2 Determining the potential discourse markers of a text

5.2.1 From the corpus analysis to the potential discourse markers of a
text

The corpus analysis discussed in chapter 4 provides information about the orthographic
environment of cue phrases and the function that they have in the text (sentential, discourse,
or pragmatic). Different orthographic environments often correlate with different discourse
functions. For example, if the cue phrase Besides occurs at the beginning of a sentence and
is not followed by a comma, as in text (5.3), it usually signals a rhetorical relation that holds
between the clause-like unit that contains it and the clause that comes after. However, if
the same cue phrase occurs at the beginning of a sentence and is immediately followed by
a comma, as in text (5.4), it usually signals a rhetorical relation that holds between the

sentence to which Besides belongs and a textual units that precedes it.

(5.3)  DBesides the lack of an adequate ethical dimension to the Governor’s case, one
can ask seriously whether our lead over the Russians in quality and quantity of

nuclear weapons is so slight as to make the tests absolutely necessary.

(5.4)  For pride’s sake, | will not say that the coy and leering vade mecum of those verses
insinuated itself into my soul. Besides, that particular message does no more than

weakly echo the roar in all fresh blood.

I have taken each of the cue phrases in the corpus and evaluated its potential contribution
in determining the elementary textual units and in hypothesizing the rhetorical relations
that hold among the units for each orthographic environment that characterized its usage.

As a result of this evaluation, I partitioned cue phrase occurrences into three classes:

1. In the first class are the cue phrases that played a discourse role in most of the text
fragments in the corpus. For example, whenever the cue phrase Although was used, it
marked a CONCESSION relation between two clauses of the same sentence. In addition,
in most cases, the right boundary of the clause to which Although belonged was given

by the occurrence of the first comma in that sentence.

2. In the second class are the cue phrases that played a discourse role in most of the
text fragments in which they were adjacent to other cue phrases. For example, the
cue phrase and had a discourse role whenever it occurred before another cue phrase,
although it had both a sentential and discourse role when it occurred in isolation.
In addition, when it occurred before another cue phrase, the left boundary of the

clause-like unit to which and belonged was located just before its occurrence.
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Marker

Regular expression

Although [LA\t\n]Although(U | \t | \n)

because [][U\t\n]+because(Ul | \t | \n)

but [LAt\n]+but(U |\t | \n)

for example [LI[U\t\n]+for[L\t \n]4+example(Ls |, | \t | \n)
where JUNt\n]+where(L | \t | \n)

With [LAt\n]With(U | \t | \n)

Yet [LAt\n]Yet(U | \t | \n)

COMMA J(U T\t ] \n)

OPEN_PAREN LU\ t\n]+(

CLOSE_PAREN J(U ]\t | \n)

DASTI Ol (O W)

END SENTENCE | (=) (T C (7 [(T)
BEGIN_PARAGRAPH | Ux((\n\t[U\t]x)|(\n[L\t\n]{2,}))

Table 5.1: A list of regular expressions that correspond to occurrences of some of the
potential discourse markers and punctuation marks.

3. In the third class are the cue phrases that played a sentential role in a majority of the
text fragments and the cue phrases for which I was not able to infer straightforward
rules that would allow a shallow algorithm to discriminate between their discourse and
sentential usages. For example, after was a cue phrase for which I found it impossible
to predict whether it had a discourse or sentential function by analyzing only the

orthographic environment and the markers found in its neighborhood.

I used the cue phrases and the orthographic environments that characterized the cue
phrases of the first two classes in order to manually develop a set of regular expressions
that can be used to recognize potential discourse markers in naturally occurring texts. If a
cue phrase had different discourse functions in different orthographic environments, as was
the case with Besides, I created one regular expression for each function. I ignored the cue
phrases in the third class because they were not appropriate for the surface-based approach
that I investigated. Table 5.1 shows a set of regular expressions that correspond to some
of the cue phrases in the corpus. Because orthographic markers, such as commas, peri-
ods, dashes, paragraph breaks, etc., play an important role in our surface-based approach
to discourse processing, | included them in the list of potential discourse markers as well.
In fact, such a position is consistent with recent developments in the linguistics of punc-
tuation [Nunberg, 1990, Briscoe, 1996, Pascual and Virbel, 1996, Say and Akman, 1996,
Shiuan and Ann, 1996], which emphasize the importance of punctuation marks in a variety
of natural language processing tasks that range from parsing to information packaging.

The regular expressions shown in table 5.1 obey the conventions used by the Unix tool

lex. Table 5.2 describes the semantics of the symbols used in 5.1. For example, the regular

145



Symbol ‘ Semantics

U blank character

\t tab character

\n newline character

[e] optional occurrence of expression e

0 grouping

alb alternative (a or b)

e+ one or more occurrences of expression e
ex zero or more occurrences of expression e
e{n,} | at least n occurrences of expression e
“r enclose special symbols

Table 5.2: The semantics of the symbols used in table 5.1.

expressions associated with Although, With and Yet match occurrences that are enclosed
by space, tab, or newline characters. The regular expression associated with for example
matches occurrences that are optionally preceded and optionally followed by a comma. The
end of a sentence matches the occurrence of a dot, question mark, or exclamation mark; or
any of these followed by quotation marks. The beginning of a paragraph is associated with

zero or more spaces which are followed by one of the following:

e a newline and a tab character, followed by zero or more occurrences of spaces and

tabs;

e a newline followed by at least two occurrences of space, tab, or newline characters.

5.2.2 An algorithm for determining the potential discourse markers of a
text

Once the regular expressions that match potential discourse markers were derived, it was
trivial to implement the first step of the rhetorical parser (line 1 in figure 5.1). A program
that uses the Unix tool lex traverses the text given as input and determines the locations
at which potential discourse markers occur. For example, when the regular expressions are
matched against text (5.2), the algorithm recognizes all punctuation marks and the cue

phrases shown in italics in text (5.5) below.

(5.5)  With its distant orbit — 50 percent farther from the sun than Earth — and slim
atmospheric blanket, Mars experiences frigid weather conditions. Surface tem-
peratures typically average about —60 degrees Celsius (—76 degrees Fahrenheit)
at the equator and can dip to —123 degrees C near the poles. Only the midday

sun at tropical latitudes is warm enough to thaw ice on occasion, but any liquid
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5.3

5.3.1

water formed in this way would evaporate almost instantly because of the low
atmospheric pressure.

Although the atmosphere holds a small amount of water, and water-ice
clouds sometimes develop, most Martian weather involves blowing dust or carbon
dioxide. Fach winter, for example, a blizzard of frozen carbon dioxide rages over
one pole, and a few meters of this dry-ice snow accumulate as previously frozen
carbon dioxide evaporates from the opposite polar cap. Yet even on the summer
pole, where the sun remains in the sky all day long, temperatures never warm

enough to melt frozen water.

Determining the elementary units of a text

From the corpus analysis to the elementary textual units of a text

As I discussed in chapter 4, the corpus study encoded not only linguistic information but

also algorithmic information, in the field “Break action”. During the corpus analysis, |

generated a set of eight actions that constitutes the foundation of an algorithm to determine

automatically the elementary units of a text. The algorithm processes a text given as input

in a left-to-right fashion and “executes” the actions that are associated with each potential

discourse marker and each punctuation mark that occurs in the text. Because the algorithm

does not use any traditional parsing and tagging techniques, I call it a “shallow analyzer”.

The names and the intended semantics of the actions used by the shallow analyzer are:

Action NOTHING instructs the shallow analyzer to treat the cue phrase under consid-
eration as a simple word. That is, no textual unit boundary is normally set when
a cue phrase associated with such an action is processed. For example, the action

associated with the cue phrase accordingly is NOTHING.

Action NORMAL instructs the analyzer to insert a textual boundary immediately before
the occurrence of the marker. Textual boundaries correspond to elementary unit

breaks.

Action COMMA instructs the analyzer to insert a textual boundary immediately after
the occurrence of the first comma in the input stream. If the first comma is followed by
an and or an or, the textual boundary is set after the occurrence of the next comma.
If no comma is found before the end of the sentence, a textual boundary is created at

the end of the sentence.

Action NORMAL_THEN_COMMA instructs the analyzer to insert a textual boundary

immediately before the occurrence of the marker and to another textual boundary
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immediately after the occurrence of the first comma in the input stream. As in the
case of the action COMMA, if the first comma is followed by an and or an or, the textual
boundary is set after the occurrence of the next comma. If no comma is found before

the end of the sentence, a textual boundary is created at the end of the sentence.

Action END instructs the analyzer to insert a textual boundary immediately after the

cue phrase.

Action MATCH_PAREN instructs the analyzer to insert textual boundaries both before
the occurrence of the open parenthesis that is normally characterized by such an

action, and after the closed parenthesis that follows it.

Action COMMA _PAREN instructs the analyzer to insert textual boundaries both before

the cue phrase and after the occurrence of the next comma in the input stream.

Action MATCH_DASH instructs the analyzer to insert a textual boundary before the
occurrence of the cue phrase. The cue phrase is usually a dash. The action also
instructs the analyzer to insert a textual boundary after the next dash in the text. If

such a dash does not exist, the textual boundary is inserted at the end of the sentence.

The preceding three actions, MATCH_PAREN, COMMA_PAREN, and MATCH_DASH, are

usually used for determining the boundaries of parenthetical units. These units, such as
those shown in italics in (5.6), (5.7), (5.8), and (5.9) below, are related only to the larger
units that they belong to or to the units that immediately precede them.

(5.6)

With his anvillike upper body, McRae might have been tapped for the National
Football League instead of the U.S. national weight-lifting team if he had not
stopped growing at 160 centimeters (five feet three inches).

With its distant orbit — 50 percent farther from the sun than the Farth — and

slim atmospheric blanket, Mars experiences frigid weather conditions.

Yet, even on the summer pole, where the sun remains in the sky all day long,

temperatures never warm enough to melt frozen water.

They serve cracked wheat, oats or cornmeal. Occasionally, the children find

steamed, whole-wheat grains for cereal, which they call “buckshot”.

Because the deletion of parenthetical units does not affect the readibility of a text, in the

algorithms that we present here we do not assign them an elementary unit status. Such

an assignment would only create problems at the formal level, because then discourse trees
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could no longer be represented as binary trees. Instead, we will only determine the bound-
aries of parenthetical units and record, for each elementary unit, the set of parenthetical

units that belong to it.

e Action SET_AND instructs the analyzer to store the information that the input stream

contains the lexeme and.

e Action SET_OR instructs the analyzer to store the information that the input stream

contains the lexeme or.

e Action DUAL instructs the analyzer to insert a textual boundary immediately before
the cue phrase under consideration if there is no other cue phrase that immediately
precedes it. If there exists such a cue phrase, the analyzer will behave as in the case
of the action cOMMA. The action DUAL is usually associated with cue phrases that
can introduce some expectations about the discourse [Cristea and Webber, 1997].
For example, the cue phrase although in text (5.10) signals a rhetorical relation of
CONCESSION between the clause to which it belongs and the previous clause. However,
in text (5.11), where although is preceded by an and, it signals a rhetorical relation of

CONCESSION between the clause to which it belongs and the next clause in the text.

(5.10) [l went to the theatre] [although I had a terrible headache.]

(5.11) [The trip was fun,] [and although we were badly bitten by blackflies,] [I
do not regret it.]

In addition to the algorithmic information that is explicitly encoded in the field “Break
action”, the shallow analyzer also uses information about the position of cue phrases in
the elementary textual units to which they belong. The position information is extracted
directly from the corpus, from the field “Position”. Hence, each regular expression in the

corpus that could play a discourse function, is assigned a structure with two features:

e the action that the shallow analyzer should perform in order to determine the bound-

aries of the textual units found in its vicinity;

e the relative position of the marker in the textual unit to which it belongs (Beginning,

middle, or End).

Table 5.3 lists the actions and the positions in the elementary units of the cue phrases

and orthographic markers shown in table 5.1.
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Marker Position ‘ Action

Although B COMMA
because B DUAL

but B NORMAL

for example M NOTHING
where B COMMA _PAREN
With B COMMA

Yet B NOTHING
COMMA E NOTHING
OPEN_PAREN B MATCH_PAREN
CLOSE_PAREN E NOTHING
DASH B MATCH_DASH
END_SENTENCE E NOTHING
BEGIN_PARAGRAPH B NOTHING

Table 5.3: The list of actions that correspond to the potential discourse markers and punc-
tuation marks shown in table 5.1.

5.3.2 The section, paragraph, and sentence identification algorithm

As 1 discussed in section 5.1.2, the rhetorical parser assumes that texts have a predeter-
mined, underspecified hierarchical structure with an optional title and four levels: sections,
paragraphs, sentences, and clause-like units. Each section is assumed to be characterized
by a title and by a collection of paragraphs — in fact, this is the format of most articles
found in magazines and newspapers.

The algorithm that determines the section, paragraph and sentence boundaries is a very
simple one. It uses the set of regular expressions that identify paragraph and sentence
boundaries (see table 5.1) and a list of abbreviations, such as Mr., Mrs., and Inc., that
prevent the setting of sentence and paragraph boundaries at places that are inappropriate.
For the purpose of the research described here, this algorithm was enough: it located cor-
rectly all of the paragraph boundaries and all but one of the sentence boundaries found
in the texts that I used to evaluate the clause-like unit and discourse-marker identification
algorithm that I will present in section 5.3.3. However, I expect that future implementa-
tions of the rhetorical parser will take advantage of recent research in sentence boundary
identification [Palmer and Hearst, 1997]. This research shows that on the basis of the ortho-
graphic environment and the part-of-speech tags of the words found in the neighborhood of

a period, one can correctly determine sentence boundaries in 98 to 99 percent of the cases.

5.3.3 The clause-like unit and discourse-marker identification algorithm

On the basis of the information derived from the corpus (see table 5.3), I have designed an

algorithm that identifies textual unit boundaries in a sentence and cue phrases that have a
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Input: A sentence S.
The array of n potential discourse markers markers[n] that occur in S.
Output: The clause-like units, parenthetical units, and discourse markers of S.
1. status := NiL; clauses := NIL; parentheticals := NIL;
2. currClauseStart := 1; currParentStart := —1;
3. for ¢ from 1to n
4. if MATCH_PAREN € status
5. if markerTextEqual(7,“)”)
6. parentheticals := parentheticals U textFromTo(currParentStart,offset(¢));
7. status := status \ {MATCH_PAREN}; currParentStart := —1;
8. continue;
9. if MATCH_DASH € status
10. if markerTextEqual(7,“—")
11. parentheticals := parentheticals U textFromTo(currParentStart,offset(¢));
12. status := status \ {MATCH_DASH}; currParentStart := —1;
13. continue;
14.  if COMMA_PAREN € status
15. if markerTextEqual(7,“,”) A
16. NextAdjacentMarkerlsNotAnd() A NextAdjacentMarkerIsNotOr()
17. parentheticals := parentheticals U textFromTo(currParentStart,offset(¢));
18. status := status \ {COMMA_PARENY}; currParentStart := —1;
19. continue;
20. if comMmma € status A markerTextEqual(é,“,”) A
21. NextAdjacentMarkerIsNotAnd() A NextAdjacentMarkerlsNotOr()
22. clauses := clauses U textFromTo(currClauseStart,offset(¢),parentheticals);
23. currClauseStart := ¢; status := status \ {coMMA};
24. parentheticals := NIL; currParentStart := —1;
25. continue;
26.  if SET_AND € status
27. if markerAdjacent(i — 1,i) A currClauseStart < ¢ — 1
28. clauses := clauses U textFromTo(currClauseStart,offset(z — 1),parentheticals);
29. currClauseStart := ¢ — 1;
30. setDiscourse(i — 1,yes); setDiscourse(z,yes);
31. parentheticals := NIL;
32. status := status \ {SET_AND};
33.  if SET_OR € status
34. if markerAdjacent(i — 1,i) A currClauseStart < ¢ — 1
35. clauses := clauses U textFromTo(currClauseStart,offset(z — 1),parentheticals);
36. currClauseStart := ¢ — 1;
37. setDiscourse(i — 1,yes); setDiscourse(z,yes);
38. parentheticals := NIL;
39. status := status \ {SET_OR};

Figure 5.2: The clause-like unit and discourse-marker identification algorithm — see con-
tinuation in figure 5.3, on the next page.
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3. for ¢ from 1to n

40. switch(getActionType(7)){

41. case DUAL:

42. if markerAdjacent(i — 1,)

43. status := status U {cOMMA};

44, setDiscourse(i — 1,yes); setDiscourse(,yes);

45. else

46. clauses := clauses U textFromTo(currClauseStart,offset(z),
47 parentheticals);
48. currClauseStart := offset(¢); parentheticals := NIL;
49. setDiscourse(7,yes);

50. case NORMAL:

51. clauses := clauses U textFromTo(currClauseStart,offset(z),
52. parentheticals);

53. currClauseStart := offset(¢); parentheticals := NIL;
54. setDiscourse(7,yes);

55. case COMMA:

56. if markerAdjacent(i — 1,)

57. setDiscourse(i — 1,yes);

58. setDiscourse(7,yes);

59. status := status U {COMMA};

60. case NORMAL_THEN_COMMA:

61. clauses := clauses U textFromTo(currClauseStart,offset(z),
62. parentheticals);

63. currClauseStart := offset(¢); parentheticals := NIL;
64. setDiscourse(7,yes);

65. status := status U {COMMA};

66. case NOTHING:

67. if signalsRhetoricalRelations(z7)

68. setDiscourse(7,yes);

69. case MATCH_PAREN, COMMA_PAREN, MATCH_DASH:

70. status := status U {getActionType(7)};

71. currParentStart = offset(z);

72. case SET_AND, SET_OR:

73. if status is neither MATCH_PAREN nor MATCH_DASH
74. status := status U {getActionType(7)};

75. )

76. % end for

77.  finishUpParentheticalsAndClauses();

Figure 5.3: The clause-like unit and discourse-marker identification algorithm — continua-
tion from the previous page (figure 5.2).
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discourse function. Figures 5.2 and 5.3 show its main steps. The algorithm takes as input a

sentence S and the array markers[n] of cue phrases (potential discourse markers) that occur

in that sentence; the array is produced by the algorithm described in section 5.2.2. Each

element in markers[n] is characterized by a feature structure with the following entries:

the action associated with the cue phrase (see table 5.3);
the position in the elementary unit of the cue phrase (see table 5.3);

a flag has_discourse_function that is initially set to “no”.

The clause-like unit and discourse-marker identification algorithm traverses the array of

cue phrases left-to-right (see the loop between lines 3 and 71) and identifies the elementary

textual units in the sentence on the basis of the types of the markers that it processes. The

algorithm makes use of the following variables and functions:

Variable “status” records the set of markers that have been processed earlier that may
still influence the identification of clause and parenthetical unit boundaries. At the

beginning, its value is set to NIL.

Variable “parenthetical” records the set of parenthetical units that pertain to a given

clause. At the beginning, its value is set to NIL.

Variable “clauses” records all the elementary units that pertain to a given sentence

and are not parenthetical. At the beginning, its value is NIL.

Variable “currParentStart” records the offset in the sentence where the parenthetical
unit under consideration begins. At the beginning, its value is set to —1, which means

that no parenthetical unit is yet under consideration.

Variable “currClauseStart” records the offset in the sentence where the elementary
unit under consideration begins. At the beginning, its value is 1 — the first elementary

unit of the sentence starts always at offset 1.

Function markerTextEqual(i,s) returns true if the i-th cue phrase in the array

markers[n] is equal with the string s. Otherwise, the function returns false.

Function offset(7) returns the position relative to the beginning of the sentence where
the i-th cue phrase of the array markers[n] occurs. The offset depends on the feature
“Position” that characterizes the cue phrase. If its value is B, the function returns
the position where the cue phrase starts. If its value is E, the function returns the

position where the cue phrase ends.

Function textFromTo(7, j) returns the textual unit between offsets ¢ and j in sentence

S.
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e Function textFromTo(¢, j,parentheticals) returns the textual unit between offsets ¢ and
J in sentence S. The textual unit is characterized by the parenthetical units stored in

the variable “parentheticals”.

e Function setDiscourse(i,yes) sets the feature has_discourse_function of the i-th cue

phrase to “yes”.

e Function getActionType(¢) returns the action that characterizes the i-th cue phrase

in the sentence S.

e Function signalsRhetoricalRelations(z) returns true if the ¢-th cue phrase can play a

discourse role in the sentence (see section 5.4.2 for details).

e Function finishUpParentheticalsAndClauses() accounts for the text that might remain
unassigned to a clause-like unit after processing the potential discourse markers of a

sentence.

The clause-like unit identification algorithm has two main parts: lines 40-71 concern
actions that are executed when the “status” variable is NIL.. These actions can insert textual
unit boundaries or modify the value of the variable “status”, thus influencing the processing
of further markers. Lines 4-39 concern actions that are executed when the “status” variable
is not NIL. We discuss now in turn each of these actions.

Lines 4-19 of the algorithm treat parenthetical information. Once an open parenthesis,
a dash, or a discourse marker whose associated action is COMMA_PAREN has been identified,
the algorithm ignores all other potential discourse markers until the element that closes the
parenthetical unit is processed. Hence, the algorithm searches for the first closed parenthe-
sis, dash, or comma, ignoring all other markers on the way. Obviously, this implementation
does not assign a discourse usage to discourse markers that are used within a span that is
parenthetic. However, this choice is consistent with the decision discussed in section 5.3.1,
to assign parenthetical information no elementary textual unit status. Because of this, the
text shown in italics in text (5.12), for example, is treated as a single parenthetical unit,
which is subordinated to “Yet, even on the summer pole, temperatures never warm enough
to melt frozen water”. The extra conditions in line 16 of the algorithm avoid seting paren-
thetical unit boundaries in cases in which the first comma that comes after a COMMA_PAREN
marker is immediately followed by an or or and. As example (5.12) shows, taking the first

comma as boundary of the parenthetical unit would be inappropriate.

(5.12)  Yet, even on the summer pole, where the sun remains in the sky all day long,
and where winds are not as strong as at the Fquator, temperatures never warm

enough to melt frozen water.
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Obviously, one can easily find counterexamples to this rule (and to other rules that are
employed by the algorithm). For example, the clause-like unit and discourse-marker iden-
tification algorithm will produce erroneous results when it processes the sentence shown
in (5.13) below.

(5.13) I gave John a boat, which he liked, and a duck, which he didn’t.

Nevertheless, the evaluation results discussed in section 5.3.4 show that the algorithm pro-
duces correct results in the majority of the cases.

If the “status” variable contains the action COMMA, the occurrence of the first comma
that is not adjacent to an and or or marker determines the identification of a new elementary
unit (see lines 20-25 in figure 5.2). The boundaries of the new unit are given by the offset
recorded in the variable “currClauseStart” and by the offset of the ¢-th marker. The third
argument of the function “textFromTo” in line 22 shows that the parentheticals that have
been created up to that point are considered subordinated to the elementary unit that
is created. The creation of a clause-like unit also implies the reseting of the variables
“currClauseStart”, “status”, “parentheticals”, and “currParentStart”.

Usually, the discourse role of the cue phrases and and or is ignored because the surface-
form algorithm that we propose is unable to distinguish accurately enough between their
discourse and sentential usages. However, lines 26-32 and 33-39 of the algorithm concern
cases in which their discourse function can be unambiguously determined. For example, in
our corpus, whenever and and or immediately preceded the occurrence of other discourse
markers, they had a discourse function. For example, in sentence (5.14), and acts as an

indicator of a JOINT relation between the first two clauses of the text.

(5.14)  [Although the weather on Mars is cold] [and although it is very unlikely that water
exists,] [scientists have not dismissed yet the possibility of life on the Red Planet.]

If a discourse marker is found that immediately follows the occurrence of an and (or an or)
and if the left boundary of the elementary unit under consideration is found to the left of the
and (or the or), a new elementary unit is identified whose right boundary is just before the
and (or the or). In such a case the and (or the or) is considered to have a discourse function
as well, so the flag has_discourse_function is set to “yes” (lines 30 and 37 in figure 5.2).
Lines 40-71 of the algorithm concern the cases in which the “status” variable is NIL.
If the type of the marker is DUAL (see lines 41-49), the determination of the textual unit
boundaries depends on the marker under scrutiny being adjacent to the marker that precedes
it. If it is, the “status” variable is set such that the algorithm will act as in the case of a
marker of type coMmMmA. If the marker under scrutiny is not adjacent to the marker that

immediately preceded it, a textual unit boundary is identified. This implementation will
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modify, for example, the variable “status” to COMMA when processing the marker although
in example (5.15), but identify a textual unit boundary when processing the same marker
in example (5.16). The final textual unit boundaries that are assigned by the algorithm are

shown using square brackets.

(5.15)  [John is a nice guy,] [but although his colleagues do not pick on him,] [they do not

invite him to go camping with them.]

(5.16) [John is a nice guy,] [although he made a couple of nasty remarks last night.]

Lines 50-54 of the algorithm concern the most frequent marker type. The type NORMAL
determines the identification of a new clause-like unit whose boundaries are given by the
variable “currClauseStart” and by the offset of the marker under scrutiny. Lines 55-59
concern the case in which the type of the marker is comMMA. If the marker under scrutiny
is adjacent to the previous one, the previous marker is considered to have a discourse
function as well. Either case, the “status” variable is updated such that a textual unit
boundary will be identified at the first occurrence of a comma. When a marker of type
NORMAL_THEN_COMMA is processed, the algorithm identifies a new clause-like unit as in
the case of a marker of type NORMAL, and then updates the variable “status” such that a
textual unit boundary will be identified at the first occurrence of a comma. In the case a
marker of type NOTHING is processed, the only action that is taken consists in assigning the
marker a discourse usage. Lines 69-71 of the algorithm concern the treatment of markers
that introduce expectations with respect to the occurrence of parenthetical units: the effect
of processing such a marker consists of updating the “status” variable. The same updating

effect is observed in the cases in which the marker under scrutiny is an and or an or.

After processing all the markers, it is possible that some text will remain unaccounted
for: this text usually occurs between the last marker and the end of the sentence. The
procedure “finishUpParentheticalsAndClauses()” in line 77 of figure 5.3 flushes this text

into the last clause-like unit that is under consideration.

The clause-like unit boundary and discourse marker identification algorithm has been
fully implemented in C++. When it processes text (5.5), it determines that the text has ten
elementary units and that seven cue phrases have a discourse function. Text (5.17) shows
the elementary units within square brackets. The instances of parenthetical information are

shown within curly brakets. The cue phrases that are assigned by the algorithm as having
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a discourse function are shown in italics.

(5.17)  [With its distant orbit {— 50 percent farther from the sun than Earth —} and
slim atmospheric blanket,!] [Mars experiences frigid weather conditions.?] [Surface
temperatures typically average about —60 degrees Celsius (—76 degrees Fahren-
heit) at the equator and can dip to —123 degrees C near the poles.’] [Only the
midday sun at tropical latitudes is warm enough to thaw ice on occasion,*] [but
any liquid water formed in this way would evaporate almost instantly®] [because
of the low atmospheric pressure.®]

[Although the atmosphere holds a small amount of water, and water-ice
clouds sometimes develop,”] [most Martian weather involves blowing dust or car-
bon dioxide.®] [Each winter, for example, a blizzard of frozen carbon dioxide rages
over one pole, and a few meters of this dry-ice snow accumulate as previously
frozen carbon dioxide evaporates from the opposite polar cap.”] [ Yet even on the
summer pole, {where the sun remains in the sky all day long,} temperatures never

warm enough to melt frozen water.1V]

5.3.4 Evaluation of the clause-like unit and discourse-marker identifica-

tion algorithm

The algorithm shown in figures 5.2 and 5.3 determines clause-like unit boundaries and iden-
tifies discourse usages of cue phrases using methods based on surface form. The algorithm
relies heavily on the corpus analysis discussed in chapter 4.

The most important criterion for using a cue phrase in the clause-like unit and discourse-
marker identification algorithm is that the cue phrase (together with its orthographic neigh-
borhood) is used as a discourse marker in at least 90% of the examples that were extracted
from the corpus. The enforcement of this criterion reduces on one hand the recall of the
discourse markers that can be detected, but on the other hand, significantly increases the
precision. I chose this deliberately because, during the corpus analysis, I noticed that most
of the markers that connect large textual units can be identified by a shallow analyzer. In
fact, the discourse marker that is responsible for most of the algorithm recall failures is and.
Since a shallow analyzer cannot identify with sufficient precision whether an occurrence of
and has a discourse or a sentential usage, most of its occurrences are therefore ignored. It is
true that, in this way, the discourse structures that the rhetorical parser eventually builds
lose some potential finer granularity, but fortunately, from a rhetorical analysis perspective,
the loss has insignificant global repercussions: the vast majority of the relations that the
algorithm misses due to recall failures of and are JOINT and SEQUENCE relations that hold
between adjacent clause-like units.

To evaluate the clause-like unit and discourse-marker identification algorithm, I ran-
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Text No. of No. of No. of Recall | Precision
discourse | discourse | discourse
markers markers markers
identified | identified | identified
manually by the correctly
algorithm by the
algorithm
1. 174 169 150 86.2% 88.8%
2. 63 55 49 77.8% 89.1%
3. 38 24 23 63.2% 95.6%
Total 275 248 222 80.8% 89.5%

Table 5.4: Evaluation of the marker identification procedure.

domly selected three texts, each belonging to a different genre:
1. an expository text of 5036 words from Scientific American;
2. a magazine article of 1588 words from Time;
3. a narration of 583 words from the Brown Corpus (segment P25:1250-1710).

No fragment of any of the three texts was used during the corpus analysis. Three indepen-
dent judges, graduate students in computational linguistics, broke the texts into elementary
units. The judges were given no instructions about the criteria that they were to apply in
order to determine the clause-like unit boundaries; rather, they were supposed to rely on
their intuition and preferred definition of clause. The locations in texts that were labelled
as clause-like unit boundaries by at least two of the three judges were considered to be
“valid elementary unit boundaries”. I used the valid elementary unit boundaries assigned
by judges as indicators of discourse usages of cue phrases and I determined manually the cue
phrases that signalled a discourse relation. For example, if an and was used in a sentence
and if the judges agreed that a textual unit boundary existed just before the and, 1 assigned
that and a discourse usage. Otherwise, | assigned it a sentential usage. Hence, I manu-
ally determined all discourse usages of cue phrases and all discourse boundaries between
elementary units.

I then applied the clause-like unit and discourse-marker identification algorithm on the
same texts. The algorithm found 80.8% of the discourse markers with a precision of 89.5%
(see table 5.4), a result that outperforms Hirschberg and Litman’s [1993]. In fact, Hirschberg
and Litman’s algorithm and all its extensions that use machine learning techniques [Litman,
1994, Litman, 1996] or genetic algorithms [Siegel and McKeown, 1994] rely on manually
encoded features. In contrast, the algorithm described here is fully automated: it takes as

input unrestricted text, it uses the regular expressions described in section 5.2 in order to
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Text No. of No. of No. of No. of Recall | Precision
sentence clause-like | clause-like | clause-like
boundaries unit unit unit
boundaries | boundaries | boundaries
identified identified identified
manually by the correctly
algorithm by the
algorithm
1. 242 428 416 371 86.7% 89.2%
2. 80 151 123 113 74.8% 91.8%
3. 19 61 37 36 59.0% 97.3%
Total 341 640 576 520 81.3% 90.3%

Table 5.5: Evaluation of the clause-like unit boundary identification procedure.

determine the potential discourse markers in the text, and then it determines those that
have a discourse function. The large difference in recall between the first and the third
texts is due to the different text genres. In the third text, which is a narration, there is a
large number of occurrences of the discourse marker and. And as we discussed above, the
clause-like unit and discourse-marker identification algorithm labels correctly only a small

percent of these occurrences.

The algorithm correctly identified 81.3% of the clause-like unit boundaries, with a pre-
cision of 90.3% (see table 5.5). I am not aware of any surface-form algorithms that achieve
similar results. Still, the clause-like unit and discourse-marker identification algorithm has
its limitations. These are primarily due to the fact that the algorithm relies entirely on cue
phrases and orthographic features that can be detected by shallow methods. For example,
such methods are unable to classify correctly the sentential usage of but in example (5.18);

as a consequence, the algorithm incorrectly inserts a textual unit boundary before it.

(5.18) [The U.S. has] [but a slight chance to win a medal in Atlanta,] [because the cham-

pionship eastern European weight-lifting programs have endured in the newly

independent countries that survived the fracturing of the Soviet bloc.]

It is the purpose of future research to improve the algorithm described here and to investi-

gate the benefits of using more sophisticated methods.
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5.4 Hypothesizing rhetorical relations between textual units

of various granularities

5.4.1 From discourse markers to rhetorical relations

In sections 5.2 and 5.3, we have seen how the data in the corpus enabled the development
of algorithms that determine the elementary units of a text and the cue phrases that have
discourse functions. I now explain how the data in the corpus enables the development of
algorithms that hypothesize rhetorical relations that hold among textual units.

In order to hypothesize rhetorical relations, I manually associated with each of the
regular expressions that can be used to recognize potential discourse markers in naturally
occurring texts (see section 5.2.1) a set of features for each of the discourse functions that

a regular expression can signal. Each set had six distinct features:

e The feature “Statuses” specifies the rhetorical status of the units that are linked by
the discourse marker. Its value is given by the content of the database field Statuses.
Hence, the accepted values are SATELLITE_NUCLEUS, NUCLEUS_SATELLITE and NU-

CLEUS_NUCLEUS.

e The feature “Where to link” specifies whether the rhetorical relations signalled by the
discourse marker concern a textual unit that goes BEFORE or AFTER the unit that
contains the marker. Its value is given by the content of the database field Where
to link.

e The feature “Types of textual units” specifies the nature of the textual units that are
involved in the rhetorical relations. Its value is given by the content of the database
field Types of textual units. The accepted values are CLAUSE, SENTENCE, and

PARAGRAPH.

e The feature “Rhetorical relation” specifies the names of rhetorical relations that may
be signalled by the cue phrase under consideration. Its value is given by the names

listed in the database field Rhetorical relation.

e The feature “Maximal distance” specifies the maximal number of units of the same
kind found between the textual units that are involved in the rhetorical relation. Its
value is given by the maximal value of the database field Clause distance when the
related units are clause-like units and by the maximal value of the field Sentence
distance when the related units are sentences. The value is 0 when the related units

were adjacent in all the instances in the corpus.

e The feature “Distance to salient unit” is given by the maximum of the values of the

database field Distance to salient unit.
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Marker Stat- | Where | Types of Rhetorical Max. | Dist.

uses | to link | textual relations dist. | sal.
units

Although S_N A C CONCESSION 1 -1
N_S B SV P ELABORATION 5 0

because S_N A c CAUSE 1 0

EVIDENCE
N_S B C CAUSE 1 0
EVIDENCE

but N_N B c CONTRAST 1

for example N_S B SV P EXAMPLE 2 1

where NULL | NULL NULL NULL

With N_S B SV P ELABORATION 5 -1
S_N A C BACKGROUND 0 1

JUSTIFICATION

Yet SN B SV P ANTITHESIS 4 1

COMMA NULL | NULL NULL NULL

OPEN_PAREN NULL | NULL NULL NULL

CLOSE_PAREN NULL | NULL NULL NULL

DASH NULL | NULL NULL NULL

END_SENTENCE NULL | NULL NULL NULL

BEGIN_PARAGRAPH | NULL | NULL NULL NULL

Table 5.6: The list of features sets that are used to hypothesize rhetorical relations for the
discourse markers and punctuation marks shown in table 5.1.

Table 5.6 lists the feature sets associated with the cue phrases that were initially listed
in table 5.1. Table 5.6 uses the following abbreviations: Max. dist. stands for “Maximal
distance”; Dist. sal. for “Distance to salient unit”; N_s for NUCLEUS_SATELLITE; N_N for
NUCLEUS_NUCLEUS; S_N for SATELLITE_NUCLEUS; B for BEFORE; A for AFTER; C for CLAUSE-

LIKE UNIT; s for SENTENCE; and P for PARAGRAPH.

For example, the cue phrase Although has two sets of features. The first set,
{SATELLITE_NUCLEUS, AFTER, CLAUSE, CONCESSION, 1, —1}, specifies that the marker
signals a rhetorical relation of CONCESSION that holds between two clause-like units. The
first unit has the status SATELLITE and the second has the status NUCLEUS. The clause-like
unit to which the textual unit that contains the cue phrase is to be linked comes AFTER the
one that contains the marker. The maximum number of clause-like units that separated two
clauses related by Although in the corpus was one. And there were no cases in the corpus in
which Although signalled a CONCESSION relation between a clause that preceded it and one
that came after (Distance to salient unit = —1). The second set, {NUCLEUS_SATELLITE, BE-
FORE, SENTENCE V PARAGRAPH, ELABORATION, 5, 0} specifies that the marker also signals

an ELABORATION relation that holds between two sentences or two paragraphs. The first
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sentence or paragraph has the status NUCLEUS, and the second sentence or paragraph has
the status SATELLITE. The sentence or paragraph to which the textual unit that contains
the marker is to be linked comes BEFORE the one that contains it. The maximum number
of sentences that separated two units related by Although in the corpus was 5. And in at
least one example in the corpus, Although marked an ELABORATION relation between some
unit that preceded it and a sentence that came immediately after the one that contained

the marker (Distance to salient unit = 0).

5.4.2 A discourse-marker-based algorithm for hypothesizing rhetorical

relations

At the end of step Il of the rhetorical parsing algorithm (see figure 5.1), the text given as
input has been broken into sections, paragraphs, sentences, and clause-like units; and the
cue phrases that have a discourse function have been explicitly marked. In step I11.1, a set of
rhetorical relations that hold between the clause-like units of each sentence, the sentences
of each paragraph, and the paragraphs of each section are hypothesized, on the basis of
information extracted from the corpus. The algorithm that generates these hypotheses is
shown in figure 5.4.

At each level of granularity (sentence, paragraph, and section), the discourse-marker-
based hypothesizing algorithm 5.4 iterates over all textual units of that level and over all
discourse markers that are relevant to them (see lines 2-4 in figure 5.4). For each discourse
marker, the algorithm constructs a disjunctive hypothesis concerning the rhetorical relation
that the marker under scrutiny may signal. Assume, for example, that the algorithm
is processing the ¢-th unit of the sequence of n units and assume that unit ¢ contains
a discourse marker that signals a rhetorical relation that links the unit under scrutiny
with one that went before, and whose satellite goes after the nucleus. Given the data
derived from the corpus analysis shown in table 5.6, an appropriate disjunctive hypothesis
is that shown in (5.19) below, where NAME is the name of the rhetorical relation that can
be signalled by the marker, Maximal distance(m) is the maximum number of units that
separated the satellite and the nucleus of such a relation in all the examples found in the
corpus, and Distance_to_salient_unit(m) is the maximum distance to the salient unit found

in the rightmost position.

(5.19) rhet_rel(NAME, t,t — 1) & ... @ rhet_rel(NAME, ¢, — Maxz(m)) &
rhet_rel(NAME, i+ 1,i— 1) & ... @ rhet_rel(NAME, i + 1,i — Maz(m)) &

rhet_rel(NAME, 1 + Dist_sal(m)+1,i—1) & ... %
rhet_rel(NAME, 1+ Dist_sal(m) 4+ 1,1 — Maxz(m))
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Input: A sequence U[n] of textual units.

The set D, of discourse markers that occur in U.

Output: A list RR,; of disjunctive hypotheses of relations that hold among

0 =1 O T = W N =

QW WM NNINNDNDDNNINDINRFE P = = 2 2 = == =o
N = O O 0 IO ULk WN — O WO =IO ULike WO IN = O

the units in U.

RR; := NULL;
for ¢ from 1to n
for each marker m € Dy that belongs to UJi] and that
relates units having the same type as those in U
if Where_to_link(m) = BEFORE

Fr = NULL;

[:=1—1;

while (I > 0 A ¢ — [ < Maximal_distance(m))
ri=1

while (r < n Ar —i < Distance_tosalient_unit(m) + 1)
if (Statuses(m) = SATELLITE_NUCLEUS)
rr:=rr & rhet_rhel(name(d),l,r);

else
rr = rr & rhet_rhel(name(d), r,1);
ri=r-4+1;
[:=1-1;
else
rr = NULL;
ri=1+4+1;
while (r < n Ar — i < Maximal_distance(m))
[:=1;
while (I > 0 A7 —[ < Distance_tosalient_unit(m) + 1)
if (Statuses(m) = SATELLITE_NUCLEUS)
rr:=rr & rhet_rhel(name(d),l,r);
else
rr = rr & rhet_rhel(name(d), r,1);
[:=1-1;
ri=r+1;
endif
RR;:= RRyU{rr};
endfor
endfor

Figure 5.4: The discourse-marker-based hypothesizing algorithm
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i - Maximum_distance(m) i-1 i i + Distance_to_salient_unit(m) + 1

Figure 5.5: A graphical representation of the disjunctive hypothesis that is generated by
the discourse-marker-based hypothesizing algorithm for a discourse marker m that belongs
to unit ¢ and that signals a rhetorical relation whose nucleus comes before the satellite.

Essentially, the disjunctive hypothesis enumerates relations of type NAME over members of
the Cartesian product {i,¢ 4+ 1,...,7 + Distance_to_salient_unit(m) + 1} x {i —
Maximum_distance(m), i — Maximum _distance(m) + 1,...,¢— 1}, i.e., all the pairs of units
that are separated by an imaginary line drawn between units 7 — 1 and ¢ (see figure 5.5).
The disjunctive hypotheses that are generated by the algorithm are exclusive (&), because
a rhetorical relation that is signalled by a discourse marker cannot be used more than once
in building a valid text structure for a text.

The discourse-marker-based hypothesizing algorithm shown in figure 5.4 automatically
builds disjunctive hypotheses of the kind shown in (5.19) by iterating over all pairs of the
Cartesian product. Lines 6-16 concern the case in which the marker m of unit ¢ signals a
rhetorical relation that holds between a span that contains unit ¢ and a unit that precedes
it. Figure 5.5 illustrates the relations that are generated by these lines in the subcase that
is dealt with in line 14 of the algorithm, in which the satellite of the relation comes after the
nucleus. In contrast, lines 18-28 concern the case in which the marker m of unit ¢ signals
a rhetorical relation that holds between a spans that contains unit ¢ and a unit that comes

after it.

5.4.3 A word co-occurrence-based algorithm for hypothezing rhetorical

relations

The rhetorical relations hypothesized by the discourse-marker-based algorithm rely entirely
on occurrences of discourse markers. In the building of the valid text structures of sen-
tences, the set of rhetorical relations that are hypothesized on the basis of discourse marker
occurrences provides sufficient information. After all, the clause-like units of a sentence are
determined on the basis of discourse marker occurrences as well; so every unit of a sentence
is related to at least one other unit of the same sentence. Unfortunately, this might not

be the case when we consider the paragraph and section levels, because discourse markers
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might not provide sufficient information for hypothesizing rhetorical relations among all
sentences of a paragraph and among all paragraphs of a text. In fact, it is even possible
that there are full paragraphs that use no discourse marker at all; or that use only markers

that link clause-like units within sentences.

Given our commitment to surface-form methods, there are two ways we can deal with
this problem. One is to construct text trees using only the information provided by the
discourse markers. If we adopt this strategy, given a text, we can obtain a sequence of
unconnected valid text structures that span across all the units of that text. Once this
sequence of unconnected trees is obtained, we can then use various methods for joining
the members of the sequence into a connected structure that spans across all the units of
the text. The second way is to hypothesize additional rhetorical relations by using other
indicators that can be exploited by surface-form methods, such as word co-occurrences or
lexical chains [Morris and Hirst, 1991].

In step 1I1.2, the rhetorical parser employs the second choice: it relies on a facet of
cohesion [Halliday and Hasan, 1976] that has been shown to be adequate for determining
topic shifts [Hearst, 1997] and clusters of sentences and paragraphs that have a unique
theme [Hoey, 1991, Salton et al., 1995, Salton and Allan, 1995]. The algorithm that hy-
pothesizes new, additional rhetorical relations assumes that if two sentences or paragraphs
“talk about” the same thing, it is likely that the sentence or paragraph that comes later
elaborates on the topic of the sentence or paragraph that went before. If two sentences or
paragraphs talk about different things, it is likely that a topic shift occurs at the boundary
between the two units. The decision as to whether two sentences or paragraphs talk about
the same thing is taken by counting the number of words that co-occur in both textual
units. If the number of word co-occurrences is above a certain threshold, the textual units
are considered to be related. Otherwise, a topic shift is assumed to occur at the boundary

between the two.

The steps taken by the word co-occurrence-based hypothesizing algorithm are shown
in figure 5.6. The algorithm generates a disjunctive hypothesis for every pair of adjacent
textual units that were not already hypothesized to be related by the discourse-marker-
based hypothesizing algorithm. Asin the case of the discourse-marker-based algorithm, each
hypothesis is a disjunction over the members of the Cartesian product {¢ — LD, ... i} X
{i+1,...,7+ RD}, which contains the units found to the left and to the right of the
boundary between units ¢ and ¢4 1. Variables LD and RD represent arbitrarily set sizes of
the spans that are considered to be relevant from a cohesion-based perspective. The current

implementation of the rhetorical parser sets LD to 3 and RD to 2.

In order to assess the similarity between two units [ € {i — LD,... i} and r € {i 4+
1,...,14+ RD}, stop words such as the, a, and and are initially eliminated from the texts

that correpond to these units. The suffixes of the remaining words are removed as well (see
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Input: A sequence U[n] of textual units.
The set RREy of all rhetorical relations that have been hypothesized to hold

among the units is U by the discourse-marker-based algorithm.

Output: The complete set RR of disjunctive rhetorical relations that hold among the
units in U.

1. RR.:=NULL;

2. for every pair of adjacent units (¢,7+ 1)

3. if there is no relation in RRy; that is hypothesized

4. to hold between units 7 and 7 4+ 1

5. rr = NULL;

6. =1

7. while ({ > 0A: -1 < LD)

8. ri=1+4+1;

9. while(r <nAr—i¢ < RD)

10. if (numberWordCoOccurrences(cleanedUp(!/),cleanedUp(r)) >

11. UnitThreshHold)

12. rr:=rr & rhet_rel(ELABORATION, r, [);

13. else

14. rr:=rr & rhet_rel(JOINT, [, r);

15. r=r+1;

16. I=1-1;

17. endif

18. RR.= RR.U{rr};

19. endfor

20. RR:= RR4qURR.;

Figure 5.6: The word co-occurrence-based hypothesizing algorithm.

function “cleanedUp” on line 9 in figure 5.6), so that words that have the same root could
be considered to co-occur even in the cases in which they are used in different cases, moods,
tenses, etc. If the number of co-occurrences of root words is greater than a certain threshold,
an ELABORATION relation is hypothesized to hold between units [ and h. Otherwise, a JOINT
relation is hypothesized to hold between the two units (see lines 12, 14 of the algorithm).
The value of the threshold depends on the type of the textual units that are under scrutiny
and the number of units in the sequence. 1 have experimented with a range of different
values and noticed that when the number of sentences or the number of paragraphs in a
section is small, it is likely that the rhetorical relation that holds between two adjacent
units is ELABORATION (this corresponds to a threshold of value —1). For longer paragraphs
and sections, I consider two sentences to be related if the number of co-occurrences is larger

than 1; and two paragraphs to be related if the number of co-occurrences is larger than 6.
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5.4.4 Hypothesizing rhetorical relations — an example

Let us consider, again, text (5.2). Given the textual units and the discourse markers
that were identified by the clause-like unit and discourse-marker identification algorithm
(see text (5.17)), we now examine the relations that are hypothesized by the discourse-
marker- and word co-occurrence-based hypothesizing algorithms at the sentence, paragraph,
and section levels. Text (5.17) has three sentences that have more than one elementary
unit. For the sentence shown in (5.20), the discourse-marker-based algorithm hypothesizes
the disjunction shown in (5.21). This hypothesis is consistent with the information given
in table 5.6, which shows that, in the corpus, the marker “With” consistently signalled
BACKGROUND and JUSTIFICATION relations between a satellite, the unit that contained the

marker, and a nucleus, the unit that followed it.

(5.20) [With its distant orbit {— 50 percent farther from the sun than Earth —} and

slim atmospheric blanket,!] [Mars experiences frigid weather conditions.?]

(5.21) rhet_rel(BACKGROUND, 1, 2) & rhet_rel (JUSTIFICATION, 1, 2)

For the sentence shown in (5.22), the discourse-marker-based algorithm hypothesizes

the two disjunctions shown in (5.23).

(5.22) [Only the midday sun at tropical latitudes is warm enough to thaw ice on
occasion,?] [but any liquid water formed in this way would evaporate almost

instantly®] [because of the low atmospheric pressure.]

rhet_rel(CONTRAST, 4, 5) & rhet_rel(CONTRAST, 4, 6)
(5.23) rhet_rel(CAUSE, 6,4) @ rhet_rel(EVIDENCE, 6,4) &
rhet_rel(CAUSE, 6,5) @ rhet_rel(EVIDENCE, 6, 5)

This hypothesis is consistent with the information given in table 5.6 as well: but signals
a CONTRAST between the clause-like unit that contains the marker and a unit that went
before; however, it is also possible that this relation affects the clause-like unit that comes
after the one that contains the marker but (the Distance to salient unit feature has value
0), so rhet_rel(CONTRAST, 4, 6) is hypothesized as well. The second disjunct concerns the

marker because, which can signal either a CAUSE or an EVIDENCE relation.

For sentence (5.24), there is only one rhetorical relation that is hypothesized, that shown
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in (5.25).

(5.24) [Although the atmosphere holds a small amount of water, and water-ice clouds

sometimes develop,”] [most Martian weather involves blowing dust or carbon

dioxide.®]

(5.25) rhet_rel(CONCESSION, 7, 8)

Text (5.17) has two paragraphs, each of three sentences. The first paragraph contains
no discourse markers that could signal relations between sentences. Hence, the discourse-
marker-based algorithm does not make any hypotheses of rhetorical relations that hold
among the sentences of the first paragraph. The word co-occurrence-based algorithm deletes
first the stop words from the three sentences of the paragraph and removes the suffixes of
the remaining words, thus obtaining a list of the root words. When the boundary between
the first two sentences is examined by the word co-occurrence-based algorithm, no stemmed
words are found to co-occur in the first two sentences, but the stem sun is found to co-occur
in the first and third sentences. Therefore, the algorithm hypothesizes the first disjunct
in (5.26). When the boundary between the last two sentences is examined, a disjunct
having the same form is hypothesized. To distinguish between the two different sources
that generated the disjuncts, I assign different subscripts to the rhetorical relations shown
in (5.26).

(5.26) rhet_rel(J0INTy, [1,2],3) & rhet_rel(ELABORATIONY, [4, 6], 3)
' rhet_rel(ELABORATIONg, [4, 6],3) & rhet_rel(JOINTg, [1, 2], 3)

If we apply the heuristic that assumes that the relations between textual units are of type
ELABORATION in the cases in which the number of units is small, the rhetorical relations

that are hypothesized by the word co-occurrence-based algorithm are those shown in (5.27).

(5.27) rhet_rel(ELABORATION, 3, [1, 2])
' rhet_rel(ELABORATION, [4, 6], 3)

In contrast with the situation discussed with respect to the first paragraph of text (5.17),
the second paragraph uses markers that provide enough information for linking the sentences
that belong to it. When the discourse-marker-based algorithm examines the markers of the
second paragraph, it hypothesizes that a rhetorical relation of type EXAMPLE holds either
between sentences 9 and [7,8] or between sentences 10 and [7, 8], because the discourse
marker for example is used in sentence 9. This is consistent with the information presented in

table 5.6, which specifies that a rhetorical relation of EXAMPLE holds between a satellite, the
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sentence that contains the marker, and a nucleus, the sentence that went before. However,
the satellite of the relation can be the sentence that follows the sentence that contains the
discourse marker as well (the value of the Distance to salient unit feature is 0). Given the
marker Yet, the discourse-marker-based algorithm hypothesizes that an ANTITHESIS relation
holds between a sentence that preceded the one that contains the marker, and the sentence
that contains it. The set of disjuncts shown in (5.28) represents all the hypotheses that
are made by the algorithm. Because at least one rhetorical relation has been hypothesized
for each pair of adjacent sentences in the second paragraph, the word co-occurrence-based

algorithm makes no further predictions.

(5.25) rhet_rel(EXAMPLE, 9, [7,8]) & rhet_rel(EXAMPLE, 10, [7, 8])
' rhet_rel(ANTITHESIS, 9, 10) & rhet_rel (ANTITHESIS, [7, 8], 10)

During the corpus analysis, I was not able to draw a line between the discourse markers
that could signal rhetorical relations that hold between sentences and relations that hold
between sequences of sentences, paragraphs, and multiparagraphs. However, I have noticed
that a discourse marker signals a rhetorical relation that holds between two paragraphs
when the marker under scrutiny is located either at the beginning of the second paragraph,
or at the end of the first paragraph. The rhetorical parser implements this observation by
assuming that rhetorical relations between paragraphs can be signalled only by markers that
occur in the first sentence of the paragraph, when the marker signals a relation whose other
unit precedes the marker, or in the last sentence of the paragraph, when the marker signals a
relation whose other unit comes after the marker. According to the results derived from the
corpus analysis, the use of the discourse marker Although at the beginning of a sentence or
paragraph correlates with the existence of a rhetorical relation of ELABORATION that holds
between a satellite, the sentence or paragraph that contains the marker, and a nucleus, the
sentence or paragraph that precedes it. The discourse-marker-based algorithm hypothesizes
only one rhetorical relation that holds between the two paragraphs of text (5.17), that shown
in (5.29), below.

(5.29) rhet_rel(ELABORATION, [7, 10],[1, 6])

The current implementation of the rhetorical parser does not hypothesize any relations

among the sections of a text.
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5.5 Building valid text structures with disjunctive rhetorical

relations

5.5.1 Preamble

The paradigms and algorithms that were developed in chapter 3 assumed that the input
to the problem of text structure derivation was a sequence of elementary textual units
and the set of simple and extended rhetorical relations that held among these units (see
definition 2.2). However, as we discussed in the beginning of this chapter, the surface-
form methods that the rhetorical parser employs cannot determine exactly the rhetorical
relations that hold among textual units. Rather, these methods make exclusively disjunctive
hypotheses. From this perspective, the problem of text structure derivation can be then

reformulated as follows:

Definition 5.1. An extended formulation of the problem of text structure deriva-
tion — the disjunctive case: Given a sequence of textual units U = uy, ug, ..., t, and a
set RR of simple, extended, and disjunctive rhetorical relations that hold among these units

and among textual spans that are defined over U, find all valid text structures of U.

Disjunctive hypotheses can be immediately integrated into the algorithms that derive
valid text structures by means of model-theoretic techniques because they are nothing but a
set, of logical constraints. However, the experiments described in chapter 3 suggest that the
most efficient algorithms are those that employ proof-theoretic techniques and that compile
the problem of text structure derivation into a grammar in Chomsky normal form. When the
input to the problem of text structure derivation contains exclusively disjunctive hypotheses,
the efficient algorithms described in chapter 3 cannot be applied directly. We discuss now
how these algorithms can be modified so that they can derive valid text structures in the

presence of disjunctive rhetorical relations.

5.5.2 A proof-theoretic approach to deriving valid text structures — the

disjunctive case

The proof-theoretic approach that I discussed in section 3.4 needs only a few cosmetic
changes in order to support disjunctive hypotheses. These changes concern the treatment
of the set rr of rhetorical relations that is available to extend a given tree. Let us focus
on one of the axioms that were given in section 3.4, for example, axiom (3.99), which is

reproduced here for convenience, in (5.30), below.
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(5.30)  [S(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel(name,ni,ng) € rry Nrrg A ny € p1 Ang € pa A paratactic(name)] —
S(l, h,tree(NUCLEUS, name, p1 U pa, treey(...), trees(...)),

rry O rrg \ {rhet_rel(name, ny, ny)})

Axiom (5.30) specifies that if there exists a span from unit / to unit b that is characterized
by valid text structure ¢reei(...) and rhetorical relations rr; and another span from unit
b+1 to unit h that is characterized by valid text structure trees(...) and rhetorical relations
rry; if rhetorical relation rhet_rel(name,ny, ny) holds between a unit n; that is among the
promotion units of span [/,b] and a unit ny that is among the promotion units of span
[b+ 1, hl; if rhet_rel(name, ny, ny) can still be used to extend both spans [/, b] and [b+ 1, ]
(rhet_rel(name,ny,nz) € rry Nrry); and if that the relation is paratactic, then one can
combine spans [[,b] and [b+ 1, k] into a larger span [/, k] that has a structure whose status
is NUCLEUS, type name, promotion set p; U py, and whose substructures are given by the
structures of the immediate subspans. The set of rhetorical relations that can be used to
further extend this structure is given by rry Nrry \ {rhet_rel(name, ny, ny)}.

In order for an axiom like (5.30) to be applicable in the case in which the set of rhetorical
relations rr contains disjunctive hypotheses, we need to understand how the €,N, and \ set
operations are affected by the disjunctions. Let us assume, for example, that we want to
derive the valid structures of a text that has three units, which are labelled from 1 to 3,

and that the rhetorical relations shown in (5.31) below hold among the units in the text.

rhet_rel(CONTRAST, 1,2) & rhet_rel(CONTRAST, 1, 3)

(5.31) RR= {
rhet_rel(ELABORATION, 3, 1)

Assume that we have already derived valid text structures for the elementary units 1 and 2
and that we want to use an axiom similar to (5.30) in order to derive a text structure for span
[1,2]. Assume that we use rhet_rel(CONTRAST, 1, 2) to create a span over units 1 and 2, and
that we do not delete from the list of rhetorical relations that are still available to extend the
span [1, 2] the disjunction rhet_rel(CONTRAST, 1,2) & rhet_rel(CONTRAST, 1, 3), but merely
the relation that has been used. In such a case, we could still use rhet_rel(CONTRAST, 1, 3)
later, in order to join span [1,2] with unit 3, thus obtaining the tree in figure 5.7, which is
obviously incorrect because it uses the same relation twice.

In order to apply the proof-theoretic-based approach described in section 3.4 to sets of
rhetorical relations that contain disjunctive hypotheses, we need only to redefine the simple

set operations € and \ so that they can handle exclusive disjunctions. The new operations
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Status = {NUCLEUS}
Type = {CONTRAST}
Promotion = {1,2}

Status = {NUCLEUS,SATELLITE}
Type = {CONTRAST}
Promotion = {1,2,3}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {3}

Status = {NUCLEUS} Status = {NUCLEUS}
Type = {LEAF} Type = {LEAF}
Promotion = {1} Promotion = {2}

Figure 5.7: Example of invalid text structure.

are labelled by the symbols €4 and \g. In explaining their semantics, we use the sets of

rhetorical relations shown in (5.32) and (5.33) below.

(5.32) { rhet_rel(CONTRAST, 1,2) & rhet_rel(CONTRAST, 1, 3)
. rry =

rhet_rel(ELABORATION, 3, 1)

rhet_rel(CONTRAST, 1, 2)
(5.33) rry =< rhet_rel(ELABORATION, 3, 1)

rhet_rel(CONCESSION, 2, 3)

Definition 5.2. The expression rhet_rel(name,s,n) €g rr holds if and only if
rhet_rel(name,s,n) occurs in set rr either as a simple or extended relation, or as one

of the disjuncts of an exclusive disjunction of rhetorical relations.

For example, the following relations hold.

rhet_rel(CONTRAST, 1,2) €g rry

rhet_rel(CONTRAST, 1,2) €4 rro

Definition 5.3. The elements that remain in a set of rhetorical relations after the opera-
tion \g that takes {rhet_rel(name,s,n)} as second argument are the simple, extended, and
disjunctive rhetorical relations that are not equal to rhet_rel(name,s,n) and that do not
have a disjunct equal to rhet_rel(name, s, n). In the case in which one of the disjuncts is

rhet_rel(name, s,n), the whole collection of related disjuncts is eliminated from the set.

For example, the following relations hold.

rri \g {rhet_rel(contrast,1,2)} = {rhet_rel(ELABORATION, 3, 1)}
rry \g {rhet_rel(contrast,1,2)} = {rhet_rel(ELABORATION, 3, 1),

rhet_rel(CONCESSION, 2, 3) }
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Using the new set operators €g, and \g, we can modify axiom (5.30) as shown in (5.34)

below.

(5.34) [9(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel(name, ny,ny) €g rri Arhet_rel(name, ny,ny) €g rra A
n1 € p1 A ng € pay A paratactic(name)] —
S(l, h,tree(NUCLEUS, name, p1 U pa,treei(...), trees(...)),

rre N rrg \g {rhet_rel(name, ny, n2)})

Axiom (5.34) treats each exclusive disjunction as a whole, thus ensuring that no rhetorical

relations occur more than once in a discourse structure.

In order to apply the proof-theoretic approach described in section 3.4 to the sets of
rhetorical relations that are hypothesized by the discourse-marker- and word co-occurrence-
based algorithms, we need only to rewrite all the axioms (3.91)—(3.102) in the same way that
we rewrote axiom (3.99). Below, I show the complete set of axioms that handle disjunctive

hypotheses.

As in section 3.4, we take instantiations of axioms (5.35), (5.36), (5.37), and (5.38) as
the only atomic axioms of a system that corresponds to a sequence of N textual units and

a set RR of rhetorical relations that hold among these units.

(5.35) hypotactic(relation_name)
(5.36) paratactic(relation_name)
(5.37) hold(RR)

(5.38) unit (1)

The complete set of axioms is given below.

(5.39) [unit(i) A hold(RR)] — S(i,t,tree(NUCLEUS, LEAF, {i{}, NULL, NULL), RR)

(5.40) [unit(i) A hold(RR)] — S(7,1,tree(SATELLITE, LEAF, {1}, NULL, NULL), RR)
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(5.41) [S(l,b,tree;(SATELLITE, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel(name, s, n) €g rri A rhet_rel(name, s, n) €g rra A
s € p1 An € py A hypotactic(name)] —
S(l, h,tree(NUCLEUS, name, pg,treey(...), trees(...)),

rry N rry \g {rhet_rel(name, s, n)})

(5.42) [S(l,b,tree;(SATELLITE, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel(name, s, n) €g rri A rhet_rel(name, s, n) €g rrag A
s € p1 An € pa A hypotactic(name)] —
S(l, h,tree(SATELLITE, name, py, treey(...), trees(...)),

rri N rrg \g {rhet_rel(name,s,n)})

(5.43) [9(l,b,tree;(SATELLITE, typey, p1, lefty, righty), rr1) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel_ext(name,l,b,b+ 1,h) €g rri A
rhet_rel_ext(name,l,b,b+ 1, h) €4 rry A hypotactic(name)] —
S(l, h,tree(NUCLEUS, name, pg,treey(...), trees(...)),

rri N rry\g {rhet_rel(name,l,b,b+ 1,h)})

(5.44) [9(l,b,tree;(SATELLITE, typey, p1, lefty, righty), rr1) A
S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel_ext(name,l,b,b+ 1,h) €g rri A
rhet_rel_ext(name,l,b,b+ 1, h) €4 rry A hypotactic(name)] —
S(l, h,tree(SATELLITE, name, py, treey(...), trees(...)),

rri N rry\g {rhet_rel(name,l,b,b+ 1,h)})
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(5.45) [9(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(SATELLITE, types, pa, lefty, rights), rra) A
rhet_rel(name, s, n) €g rri A rhet_rel(name,s,n) €g rrg A
s € p2 An € p1 A hypotactic(name)] —
S(l, h,tree(NUCLEUS, name, p1,tree;(...), trees(...)),

rre N rry\g {rhet_rel(name, s, n)})

(5.46) [9(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(SATELLITE, types, pa, lefty, rights), rra) A
rhet_rel(name, s, n) €g rry A rhet_rel(name, s, n) €g rrg A
s € p2 An € p1 A hypotactic(name)] —
S(l, h,tree(SATELLITE, name, p1,treey(...), trees(...)),

rri N rrg \g {rhet_rel(name,s,n)})

(5.47) [9(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(SATELLITE, types, pa, lefty, rights), rra) A
rhet_rel_ext(name,b+ 1,h,1,b) €g rri A
rhet_rel_ext(name,b+ 1, h,1,b) €4 rra A hypotactic(name)] —
S(l, h,tree(NUCLEUS, name, p1,tree;(...), trees(...)),

rri N rry\g {rhet_rel(name, b+ 1,h,1,b)})

(5.48) [9(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A
S(b+ 1, h,trees(SATELLITE, types, pa, lefty, rights), rra) A
rhet_rel_ext(name,b+ 1,h,1,b) €g rri A
rhet_rel_ext(name,b+ 1, h,1,b) €4 rra A hypotactic(name)] —
S(l, h,tree(SATELLITE, name, p1,treey(...), trees(...)),

rri N rry\g {rhet_rel(name, b+ 1,h,1,b)})
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(5.49) [9(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A

S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel(name, ny,ny) €g rri A rhet_rel(name, ny,ny) €g rra A
n1 € p1 A ng € pay A paratactic(name)] —

S(l, h,tree(NUCLEUS, name, p1 U pa,treei(...), trees(...)),

rre N rrg \g {rhet_rel(name, ny, n2)})

(5.50) [9(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A

S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel(name, ny, ng) €g rri Arhet_rel(name, ny, ny) €g rrag A
n1 € p1 A ng € py A paratactic(name)] —

S(l, h,tree(SATELLITE, name, p1 U pg, trees (... ), treez(...)),

rri N rry\g {rhet_rel(name,ny,na)})

(5.51) [S(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A

S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A

rhet_rel_ext(name,l,b,b+ 1,h) €g rri A

rhet_rel_ext(name,l;b,b+ 1,h) €g rry A paratactic(name)] —
S(l, h,tree(NUCLEUS, name, py U pa, treey(...), trees(...)),

rry N rry\g {rhet_rel(name,l,b,b+ 1,h)})

(5.52) [9(l,b,tree;(NUCLEUS, typey, p1, lefty, righty), rri) A

S(b+ 1, h,trees(NUCLEUS, types, pa, lefty, rights), rra) A
rhet_rel_ext(name,l,b,b+ 1,h) €g rri A
rhet_rel_ext(name,l;b,b+ 1,h) €g rry A paratactic(name)] —
S(l, h,tree(SATELLITE, name, p1 U pg, trees (... ), treez(...)),
rri N rry\g {rhet_rel(name,l,b,b+ 1,h)})

Axioms (5.35)-(5.52) provide a disjunctive proof-theoretic account of the disjunctive case of
the problem of text structure derivation.
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Theorem 5.1 is the sibling of theorem 3.1, which was given in section 3.4. Its proof

mirrors the proof of theorem 3.1.

Theorem 5.1. Given a text T that is characterized by a set of rhetorical relations RR that
may be exclusively disjunctive, the application of the disjunctive proof-theoretic account is
both sound and complete with respect to the axiomatization of valid text structures. That
is, all theorems that are derived using the disjunctive proof-theoretic account correspond
to valid text structures; and any valid text structure can be derived through the successive

application of Modus Ponens and the axioms of the disjunctive proof-theoretic account.

Implementing the disjunctive proof-theoretic account

There are many ways in which one can implement the set of rewriting rules described in
this section. My rhetorical parser implements the disjunctive proof-theoretic account as
a chart-parsing algorithm. The main idea of chart parsing is to store in a data structure
the partial results of the parsing process in such a way that no operations are performed
more than once. The chart-parsing algorithm takes as input a sequence of units, which
are labelled from 1 to N, and a set of simple, extended, and disjunctive rhetorical relations
that hold among these units. Parsing the sequence of N units consists in building a chart
with N + 1 vertices and adding edges to it, one at a time, in an attempt to create an
edge that spans all the units of the input. FEach edge of the chart parser has the form
[start, end, grammar rule, valid_node, rhet_rels] where start and end represent the first
and last node of the span that is covered by the edge, grammar _rule represents the grammar
rule that accounts for the parse, valid_node is a data structure that describes the status,
type, and promotion units of a valid tree structure that spans over the units of the interval
[start,end], and rhet_rels is the set of rhetorical relations that can be used to extend the
given edge. The rhetorical parser uses only two types of grammar rules, which are shown
in (5.53), below.

(5.53) S =1 For each elementary unit i in the text
S—5 5

The grammar rules that are associated with the chart might be only partially com-
pleted. We use the traditional bullet symbol e in order to separate the units that have been
processed from the units that are still to be processed. For example, an edge of the form
[0,3,5 — S e S,vny,r] describes the situation that corresponds to a valid text structure
vny that spans over units 1 to 3; if we could build a valid text structure that spans the
remaining symbols of the input, then we would have a complete parse of the text. This

would correspond to an edge of the form [0,N, S — S S e, vng, r3].
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Traditionally, the chart-parsing method provides four different ways for adding an edge
to a chart: INITIATE, ScaN, PrepIcT, and COMPLETE (see [Russell and Norvig, 1995,
Maxwell and Kaplan, 1993] for a discussion of the general method). Because the grammar
that we use is very simple, we can compile into the chart-parsing algorithm the choices that
pertain to each of the four possible ways of adding an edge to the chart. To do this, we
consider the following labels, which describe all the possible levels of completion that could

characterize the partial and complete parses of each grammar rule:

Grammar rule Label

S — e3 STARTUNIT
S— e EnpUNIT
S— 55 STARTCOMPOUND
S— Sef MippLECOMPOUND
S— S5Se EnxpComMpPOUND

The chart-parsing algorithm that implements the disjunctive proof-theoretic account for
deriving text structures in given in figure 5.8. Initially, the chart is set to n#l. The INITIAL-
IZER adds an edge to the chart that indicates that the parser is attempting to derive a valid
tree starting at position 0 using any of the rhetorical relations in the initial set. The only
grammar rule that can be used to do this corresponds to the type STARTCoMPOUND.! The
PREDICTOR takes an incomplete edge (grammarorule, € {STARTCOMPOUND,
MipDLECOMPOUND}) and adds new edges that, if completed, would account for the first
nonterminal that follows the bullet. There are only two possible types of edges that can
be predicted: they correspond to the types STARTUNIT and STARTCOMPOUND. The CoMm-
PLETER is looking for an incomplete edge that ends at vertex j (STARTCOMPOUND or
MippLECOMPOUND) and that is looking for a new nonterminal of type S that starts at
vertex j and has S as its left side. In other words, the COMPLETER is trying to join an
existing valid text structure, which spans over units ¢ + 1 to j, with another text structure
that spans over units j+ 1 to k. The function “canPutTogether” checks to see whether the
valid structures and the sets of rhetorical relations that can be used to extend them match
one of the axioms given in (5.39)—(5.52). If the two structures can be used to create a valid
structure that has relation r in its top node and that spans over units ¢+ 1 to k, a new edge
is added to the chart. The text structure new_valid_node that characterizes the new edge
enforces the constraints specified in one of the axioms (5.39)—(5.52). The SCANNER is like
the COMPLETER, except that it uses the input units rather than completed edges in order
to generate new edges. In the final text structure, the valid nodes that correspond to these

edges will have the type LEAF.

'The rhetorical parser assumes that the input has at least two units.
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1
2
3.
4.
5
6

o =

9.

10.
11.
12.
13.

14.
15.

16.
17.
18.

19.
20.
21.

22.
23.
24.
25.
26.
27.
28.

Input: A sequence U = 1,2,...,N of elementary textual units.

A set RR of rhetorical relations that hold among these units.

Output: A chart that subsumes all valid text structures of U.

function CHART-PARSER(N, RR)
chart := nil;
INITIALIZER(RR);
for ¢ from 1to N
SCANNER(?);
return chart;

procedure ADD-EDGE(edge)
if edge ¢ chart[EndOf(edge)]
push edge in chart[EndOf(edge)];
if GrammarRuleOf(edge) € {ENDUNIT,ENDCOMPOUND})
COMPLETER (edge);
else
PREDICTOR(edge);

procedure INITIALIZER(RR)
ADD_EDGE([0, 0, STARTCOMPOUND, NULL, RR]);

procedure SCANNER(j)
for each [i,j, STARTUNIT, valid_node., rr.] in chart[j] do
ADD-EDGE([¢, 7 + 1, ENDUNIT, new_valid_node, RR));

procedure PREDICTOR([¢, j, grammar rule,, valid_node,, rry))
ADD-EDGE([], j, STARTCOMPOUND, NULL, RR]);
ADD-EDGE([], 7, STARTUNIT, NULL, RR]);

procedure COMPLETER([j, k, grammar rule., valid_node., rr.])
for each [i,j, STARTCOMPOUND, valid_node, rr] in chart[j] do
if (r=canPutTogether(valid_node.,validnode,rr.,rr)) # nil
ADD-EDGE([¢, k, MIDDLECOMPOUND, new_valid_node, rr N rr. \g {r}]);
for each [i,j, MIDDLECOMPOUND, valid_node, rr] in chart[j] do
if (r=canPutTogether(valid_node.,validnode,rr.,rr)) # nil
ADD-EDGE([¢, k, ENDCOMPOUND, new_valid_node, rr N rr. \g {r}]);

Figure 5.8: A chart-parsing algorithm that implements the disjunctive proof-theoretic
count of building valid text structures.

ac-

179



The chart-parsing algorithm produces a chart that subsumes all valid text structures
of the text given as input. A simple traversal of the chart can recover any of the valid

structures in polynomial time.

5.5.3 Deriving valid text structures through compilation of grammars in

Chomsky normal form — the disjunctive case

We have seen that, when the rhetorical relations that hold among textual units are precisely
known, the valid structures of a text can be derived in polynomial time by compiling
the problem of text structure derivation into a grammar in Chomsky normal form (see
theorem 3.2). Unfortunately, the compiling algorithm shown in figure 3.11 is not applicable
in the case the rhetorical relations that hold among textual units are exclusive disjunctions.
In proving that the compiling algorithm generates a grammar that can be used to derive all
and only the valid text structures of a text, we have shown that the rules of the grammar
never generate text trees that use the same rhetorical relation twice. If the set RR of
rhetorical relations that hold among the units in the text contains disjunctive hypotheses,
this property no longer holds. Reconsider, for example, a text with three elementary units,

and assume that the rhetorical relations in (5.54) hold among the units of the text.

(5.54) rhet_rel(CONTRAST, 1,2) & rhet_rel(CONTRAST, 1, 3)
' rhet_rel(ELABORATION, 3, 1)

If we use the compiling algorithm, we obtain a grammar that contains among its rules,

those shown in (5.55).

S(1,1,NUCLEUS, LEAF,{1}) — 1
S(2,2,NUCLEUS, LEAF, {2}) — 2
S5¢
S(1,2,NUCLEUS, CONTRAST, {1}) — S(1, 1, NUCLEUS, LEAF, {1})
S5¢
(
(

S(1,3,NUCLEUS, CONTRAST, {1}) = S
S(3,3,NUCLEUS, LEAF, {3})

3,3, NUCLEUS, LEAF,{3}) — 3

(5.55)
2,2,NUCLEUS, LEAF, {2})

1,2,NUCLEUS, CONTRAST, {1})

S — S(1,2,NUCLEUS, CONTRAST, {1}) S(3,3,NUCLEUS, LEAF, {3})

If we apply the rules in (5.55) on the input 1, 2,3, we obtain a parse tree that corresponds
to the invalid text structure in figure 5.7, which uses the rhetorical relation CONTRAST
twice. This happens because the disjunctive relation in (5.54) is relevant in the sense of
definition (2.8) both to spans [1,2] and [1,3]. In contrast, in the case of non-disjunctive
relations, when a rhetorical relation r was used to join two textual spans in a larger span

[[,h], it was guaranteed that relation r could not be used to join span [[, h] with other
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adjacent spans.

It follows that if we are to use a grammar-based approach to deriving text structures, we
need to provide mechanisms to prevent the use of a rhetorical relation more than once in a
derivation. We do this by assigning to each nonterminal symbol of the grammar an extra in-
dex. Hence, instead of nonterminals of the form S{xz,y, status, type, promotion_set), we are
going to use nonterminals of the form S(z,y, status, type, promotion_set, used_relations),
where used_relations is the set of rhetorical relations that are used in a parse that has
S(z,y, status, type, promotion_set, used_relations) as its root. The new algorithm that de-
rives text structures by means of a grammar in Chomsky normal form relies on the same
facts as the one in section 3.5. That is, it still uses the fact that valid text structures can
be recovered from an “almost-valid” text structure, i.e., a structure that associates only
one unit with each promotion set. And it still takes advantage of the fact that the number
of nonterminal symbols of type S(z, y, status, type, promotion_set, used_relations) is finite.
Since the status of a valid span ranges over a set of cardinality 2, {NUCLEUS, SATELLITE},

the type over a set of ki, 1 < |RR| relations that are relevant to span [z,y], the promo-

tion_set over the elements of the set {{z},{x + 1},...,{y}}, and the used_relations over
('f_]z,') possible combinations of rhetorical relations that are members of the initial set RR

|RR
Yy—x
symbols for each span [z, y] that plays an active role in the structure of a text.

of cardinality |RE|, it follows that there are at most 2k, ,1(y — = + 1)( ) nonterminal

Theorem 5.2. Consider a sequence of textual units 1,2,... N and a set RR that encodes
all the relations that hold among these units. The relations can be simple, extended, and
disjunctive. The disjunctive compiling algorithm in figure 5.9 generates a Chomsky normal-
form grammar that can be used to derive all and only the parse trees that are isomorphic

with the valid text structures of text 1,2,...,N.

Sketch of the proof. The proof of theorem 5.2 is similar to that of theorem 3.2. We sketch
here only its main steps.

The disjunctive compiling algorithm in figure 5.9 derives all the grammar rules that
correspond to building spans of size 1, 2, 3, and so on, up to N. It does so by considering
for each span [/, k], all the possible ways in which the span can be broken into two adjacent
subspans and all the possible relations from the initial set RE that hold across the two
subspans. For each relation r that holds across the adjacent subspans [/, 6] and [b+ 1, h], if
the relation has not been used in the derivation of the nonterminals that characterize spans
[[,b] and [b+ 1,h], the algorithm generates all the grammar rules that enforce the strong
compositionality criterion: that is, the algorithm considers all pairs of nonterminals that
characterize spans [[,b] and [b+ 1, k] and generates rules for each such pair.

A simple inspection of the rules generated by the disjunctive compiling algorithm shows

that they enforce the compositionality criterion with respect to the statuses, types, and
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Input: A sequence 1,2,...,N of elementary textual units.

A set RR of rhetorical relations that hold among these units.
Output: A grammar in Chomsky normal form that can be used to derive all and only

the parse trees that correspond to the valid text structures of U.

1. for i from 1 to N
2. add rule S — ¢
3. add rules S{i, i, NUCLEUS, LEAF, {i}, ) — ¢ and S(i,4, SATELLITE, LEAF, {i},0) — ¢
4. endfor
5. for size_of_span from 1 to N —1
6. for [/ froml to n — size_of_span
7. h:=1l+ size_of_span;
8. for b from [ to h—1
9. for zfrom [to b
10. for y from b4+ 1 to A
11. for each name; for which a rule has S{l, b, SATELLITE, namey, {x}, r1) as head
12. for each names for which a rule has S{b + 1, A, NUCLEUS, names, {y}, 72) as head
13. for each hypotactic relation name such that
14. (r = rhet_rel(name, z,y) €5 RRV
15. r = rhet_rel(name,l,b,b+ 1, h) €5 RRV
16. r = rhet_rel(name, z,y) & ... P rhet_rel(namey, xy, yi) €E¢ RR) AT &g rri Urrg
17. add rule S — S{l,b, SATELLITE, namey, {x},r1), S(b 4+ 1, h, NUCLEUS, names, {y}, r2)
18. add rule S{l, h, SATELLITE, name, {y},ry Ura U {r}) —
19. S{l, b, SATELLITE, namey, {x},r1), S(b 4+ 1, h, NUCLEUS, names, {y}, r2)
20. add rule S{!, h, NUCLEUS, name, {y},r1 Ura U {r}) =
21. S{l, b, SATELLITE, namey, {x},r1), S(b 4+ 1, h, NUCLEUS, names, {y}, r2)
22. endfor
23. endfor
24. endfor
25.  for each name; for which a rule has S{/, b, NUCLEUS, namey, {2}, 1) as head
26. for each namesy for which a rule has S{b + 1, h, SATELLITE, names, {y}, r2) as head
27. foreach hypotactic relation name such that
28. (r = rhet_rel(name,y, x) €5 RRV
29. r = rhet_rel(name, b+ 1,h,1,b) E¢ RRV
30. r = rhet_rel(name,y,x) ® ... P rhet_rel(nameg, yi, 2;) Eg RR) A1 &g rry Urrg
31. add rule S — S{l, b, NUCLEUS, namey, {x},71), S{b + 1, h, SATELLITE, names, {y}, r2)
32. add rule S{l, h, SATELLITE, name,{x}, 1 Uras U {r}) —
33. S{l,b,NUCLEUS, namey, {x},71), S{b + 1, h, SATELLITE, names, {y}, r2)
34. add rule S{!, h,NUCLEUS, name,{z},ry Urs U{r}) —
35. S{l,b,NUCLEUS, namey, {x},71), S{b + 1, h, SATELLITE, names, {y}, r2)
36. endfor
37. endfor
38. endfor

Figure 5.9: A disjunctive compiling algorithm that converts the disjunctive case of the prob-
lem of text structure derivation into a Chomsky normal-form grammar (see continuation in
figure 5.10).
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10. for y from 6+ 1 to A

39. for each name;,r; for which a rule has S{/, b, NUCLEUS, namey, {x}, 1) as head

40. for each names, ra for which a rule has S(b + 1, h, NUCLEUS, names, {y}, r2) as head
41. for each paratactic relation name such that

42. (r = rhet_rel(name,z,y) €5 RRV

43. r = rhet_rel(name,l,b;b+ 1,h) €5 RRV

44. r = rhet_rel(name, x,y) ® ... P rhet_rel(namey, 2, yi) €o RR) A1 &g rry Urrg
45. add rule S — S{l, b, NUCLEUS, namey,{z}, ), S{(b+ 1, h, NUCLEUS, namea, {y}, r2)
46. add rule S{l, h, SATELLITE, name, {z},r Ur: U{r}) —

47. S{l,b,NUCLEUS, namey, {2}, 1), S{(b+ 1, h, NUCLEUS, nameaz, {y}, r2)
48. add rule S{, h, SATELLITE, name, {y},rn Urs U {r}) =

49. S{l,b,NUCLEUS, namey, {2}, 1), S{(b+ 1, h, NUCLEUS, nameaz, {y}, r2)
50. add rule S{!, h,NUCLEUS, name, {z},ryUrs U{r}) —

51. S{l,b,NUCLEUS, namey, {2}, 1), S{(b+ 1, h, NUCLEUS, nameaz, {y}, r2)
52. add rule S{, h, NUCLEUS, name, {y},r1 Urs U{r}) —

53. S{l,b,NUCLEUS, namey, {2}, 1), S{(b+ 1, h, NUCLEUS, nameaz, {y}, r2)

54. end all for loops

Figure 5.10: A disjunctive compiling algorithm that converts the disjunctive case of the
problem of text structure derivation into a Chomsky normal-form grammar (continuation
from figure 5.9).

promotion sets of the subspans. Because, at each step, the algorithm generates only gram-
mar rules that introduce rhetorical relations that have not been used before, no derivation
will use a rhetorical relation more than once.

The algorithm generates rules that correspond to all possible ways in which two textual
spans can be put together into a valid text structure. Each of these rules is valid, so by
induction, it immediately follows that the parse trees on a given input correspond to valid
text structures: hence, the disjunctive compiling algorithm is sound. Because the grammar
enumerates rules that correspond to all the possible ways in which text spans can be joined

into larger text structures, it follows that the algorithm is also complete. O

Example

Given a sequence of three textual units 1,2, 3 among which the rhetorical relations shown
in (5.54) hold, the disjunctive compiling algorithm generates a grammar having the rules
shown in figure 5.11. These rules can be used to parse the input 1, 2, 3 and obtain derivations
such as that shown in figure 5.12. The labels in the nodes of the parse tree in figure 5.12
correspond to the disjunctive rhetorical relation shown in (5.56) and to the complete set of

relations that hold among the units of the text, which was given in (5.54).

(5.56) rhet_rel(CONTRAST, 1,2) & rhet_rel(CONTRAST, 1, 3)
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S —1; S{,1,NUCLEUS, LEAF,{1},0) = 1;  S(1,1,SATELLITE, LEAF, {1}, () — 1
S —2;  S(2,2,NUCLEUS, LEAF, {2},0) — 2;  S(2,2,SATELLITE, LEAF, {2}, ) — 2
S —3;  S(3,3,NUCLEUS, LEAF, {3},0) — 3;  5(3,3,SATELLITE, LEAF, {3}, 0) — 3
S — S(1,1,NUCLEUS, LEAF, {1}, ) S(2,2 NUCLEUS, LEAF, {2}, )
S(1,2,NUCLEUS, CONTRAST, {1}, {rhet_rel(CONTRAST, 1,2) & rhet_rel(CONTRAST, 1,3)})
— S{1,1,NUcLEUS, LEAF, {1}, 0) S(2,2 NUCLEUS, LEAF, {2}, ()
S(1,2,SATELLITE, CONTRAST, {1}, {rhet rel(CONTRAST, 1, 2) ¢ rhet_rel(CONTRAST, 1, 3)})
— S{1,1,NUcLEUS, LEAF, {1}, 0) S(2,2 NUCLEUS, LEAF, {2}, ()
S(1,2,NUCLEUS, CONTRAST, {2}, {rhet_rel(CONTRAST, 1,2) & rhet_rel(CONTRAST, 1,3)})
— S{1,1,NUcLEUS, LEAF, {1}, 0) S(2,2 NUCLEUS, LEAF, {2}, ()
S(1,2,SATELLITE, CONTRAST, {2}, {rhet rel(CONTRAST, 1, 2) ¢ rhet_rel(CONTRAST, 1, 3) })
— S{1,1,NUcLEUS, LEAF, {1}, 0) S(2,2 NUCLEUS, LEAF, {2}, ()
S — S(1,2,NUCLEUS, CONTRAST, {1}, {rhet_rel(CONTRAST, 1, 2)&
rhet_rel(CONTRAST, 1,3)})
S(3,3,SATELLITE, LEAF, {3}, 0)
S(1,3,NUCLEUS, ELABORATION, {1}, {rhet_rel(CONTRAST, 1, 2)&
rhet_rel(CONTRAST, 1, 3),
rhet_rel(ELABORATION, 3,1)})
— S(1,2,NUCLEUS, CONTRAST, {1}, {rhet_rel(CONTRAST, 1, 2)$
rhet_rel(CONTRAST, 1,3)})
S(3,3,SATELLITE, LEAF, {3}, 0)
S(1,3, SATELLITE, ELABORATION, {1}, {rhet rel(CONTRAST, 1, 2)&
rhet_rel(CONTRAST, 1, 3),
rhet_rel(ELABORATION, 3,1)})
— S(1,2,NUCLEUS, CONTRAST, {1}, {rhet_rel(CONTRAST, 1, 2)$
rhet_rel(CONTRAST, 1,3)})
S(3,3,SATELLITE, LEAF, {3}, 0)

Figure 5.11: The Chomsky normal-form grammar that is derived by algorithm 5.9 for a
text with three units that is characterized by rhetorical relations (5.54).

The derivation shown in figure 5.12 corresponds to the valid text structure shown in fig-
ure 5.13.

An estimation of the size of the grammar

Assume that we are given a text with N elementary units and that k relations hold on
average between any two elementary units. An upper bound of the number of rules that are
generated by the disjunctive compiling algorithm corresponds to the case in which all rela-
tions are paratactic (lines 39-53 in figure 5.10). Given a span [a, b] and a unit v € {{a},{a+
1},...,{b}}, there are at most k relations that could promote unit u as a salient unit and,

|R]Z|) nonterminal symbols of the form S(a, b, NUCLEUS, type,{u}, r), where

hence, at most k(b_
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S(1,3,NUCLEUS, ELABORATION, {1}, {(5.54)})

—
—
\\\\\
—

S(1,2,NUCLEUS, CONTRAST, {1}, {(5.56)}) S(3,3, SATELLITE, LEAF, {3}, 0)

S{(1,1,NUCLEUS, LEAF, {1},0)  S(2,2,NUCLEUS, LEAF, {2}, ()

Figure 5.12: A Chomsky normal-form derivation of a valid tree structure that corresponds
to relations (5.54).

Status = {NUCLEUS}
Type = {ELABORATION}
Promotion = {1,2}

Status = {NUCLEUS}
Type = {CONTRAST}
Promotion = {1,2}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {3}

Status = {NUCLEUS} Status = {NUCLEUS}

Type = {LEAF} Type = {LEAF}
Promotion = {1} Promotion = {2}

Figure 5.13: The valid text structure that corresponds to the derivation shown in figure 5.12.

| RR| represents the cardinality of the initial set of rhetorical relations. It follows that lines
45-53 are executed at most |RR|k2(|f_Rl|) times. Hence, the disjunctive compiling algorithm

generates a grammar G with at most |G| rules, where |G| is given by the expression below.

(5.57) Gl=38+ > > > > > 5k2|RR|(llR_Rl|)

1<s<N 1<I<N=5 [<b<l4s [<z<b b+1<y<Li+s

If we take as upper bound for |RR| the value 3N, this gives an exponential number of
grammar rules (O(2°V)). Hence, in the worst case, the disjunctive compiling algorithm
generates an exponential number of grammar rules. This result suggests that if the rhetorical
relations that hold among the elementary units of a text are disjunctive, determining all

the valid structures of a text might require exponential time.

5.5.4 Deriving valid text structures — an example

The rhetorical parsing algorithm shown in figure 5.1 employs in step I11.3 the chart-parsing
algorithm that implements the disjunctive proof-theoretic account, which was shown in
figure 5.8. When the chart-parsing algorithm uses as input the rhetorical relations that
were hypothesized by the discourse-marker- and word co-occurrence-based algorithms at
the sentence, paragraph, and section levels of text 5.17, it derives the valid text structures
shown in figures 5.14-5.19.
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Status = {NUCLEUS, SATELLITE} Status = {NUCLEUS,SATELLITE}
Type = {BACKGROUND} Type = {JUSTIFICATION}

Promotion = {2} Promotion = {2}
Status = {SATTELITE} Status = {NUCLEUS} Status = {SATTELITE} Status = {NUCLEUS}
Type = {LEAF} Type = {LEAF} Type = {LEAF} Type = {LEAF}
Promotion = {1} Promotion = {2} Promotion = {1} Promotion = {2}
a) b)

Figure 5.14: The valid text structures of sentence (5.20).

5.6 The ambiguity of discourse

5.6.1 A weight function for text structures

Discourse is ambiguous the same way sentences are: usually, more than one discourse
structure is produced for any given text. For example, we have seen that the rhetorical
parser finds four different valid text structures for sentence (5.22) (see figure 5.15). In
my experiments, | noticed, at least for English, that the “best” discourse trees are usually
those that are skewed to the right. 1 believe that the explanation of this observation is
that text processing is, essentially, a left-to-right process. Usually, people write texts so
that the most important ideas go first, both at the paragraph and at the text level. In fact,
journalists are trained to consciously employ this “pyramid” approach to writing [Cumming
and McKercher, 1994]. The more text writers add, the more they elaborate on the text that
went before: as a consequence, incremental discourse building consists mostly of expansion
of the right branches. A preference for trees that are skewed to the right is also consistent
with research in psycholinguistics that shows that readers have a preference to interpret
unmarked textual units as continuations of the topics of the units that precede them [Segal
et al., 1991]. At the structural level, this corresponds to textual units that elaborate on the
information that has been presented before.

In order to disambiguate the discourse, the rhetorical parser computes a weight for each
valid discourse tree and retains only the trees that are maximal. The weight function w,
which is shown in (5.58), is computed recursively by summing up the weights of the left
and right branches of a text structure and the difference between the depth of the right and
left branches of the structure. Hence, the more skewed to the right a tree is, the greater its

weight w is.

0 if isLeaf(tree),
(5.58) w(tree) = ¢ w(leftOftree)) + w(rightOf(tree))+ otherwise.
depth(rightOf(tree)) — depth(leftOf(tree))

For example, when applied to the valid text structures of sentence (5.22), the weight function
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Status = {NUCLEUS, SATELLITE}
Type = {EVIDENCE}
Promotion = {4,5}

Status = {NUCLEUS,SATELLITE}
Type = {CAUSE}
Promotion = {4,5}

Status = {NUCLEUS}
Type = {CONTRAST}
Promotion = {4,5}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {6}

Status = {NUCLEUS}
Type = {CONTRAST}
Promotion = {4,5}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {6}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {5}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {4}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {5}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {4}

Status = {NUCLEUS,SATELLITE}
Type = {CONTRAST}
Promotion = {4,5}

Status = {NUCLEUS,SATELLITE}
Type = {CONTRAST}
Promotion = {4,5}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {4}

Status = {NUCLEUS}
Type = {EVIDENCE}
Promotion = {5}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {4}

Status = {NUCLEUS}
Type = {CAUSE}
Promotion = {5}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {6}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {5}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {6}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {5}

c) d)

Figure 5.15: The valid text structures of sentence (5.22).

Status = {NUCLEUS,SATELLITE}
Type = {CONCESSION}

Promotion = {8}
Status = {SATTELITE} Status = {NUCLEUS}
Type = {LEAF} Type = {LEAF}
Promotion = {7} Promotion = {8}

Figure 5.16: The valid text structure of sentence (5.24).

Status = {NUCLEUS,SATELLITE}
Type = {ELABORATION}
Promotion = {[1-2]}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {[1-2]}

Status = {SATELLITE}
Type = {ELABORATION}
Promotion = {3}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {3}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {[4-6]}

Figure 5.17: The valid text structure of the first paragraph of text (5.17) (see rela-
tions (5.27)).

187



Status = {NUCLEUS,SATELLITE}
Type = {EXAMPLE}
Promotion = {[7-8]}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {[7-8]}

Status = {SATELLITE}
Type = {ANTITHESIS}
Promotion = {10}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {9}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {10}

Figure 5.18: The valid text structure of the second paragraph of text (5.17) (see rela-
tions (5.28)).

Status = {NUCLEUS,SATELLITE}
Type = {ELABORATION}

Promotion = {[1-6]}
Status = {NUCLEUS} Status = {SATELLITE}
Type = {LEAF} Type = {LEAF}
Promotion = {[1-6]} Promotion = {[7-10]}

Figure 5.19: The valid text structure of text (5.17) (see relation (5.29)).

will assign the value —1 to the trees shown in figures 5.15.a and 5.15.b, and the value 41
to the trees shown in figures 5.15.c and 5.15.d.

5.6.2 The ambiguity of discourse — an implementation perspective

There are two ways one can disambiguate discourse. One way is to consider, during the
parsing process, all of the valid text structures of a text. When the parsing is complete, the
structures of maximal weight can be then assigned to the text given as input. The other
way is to consider, during the parsing process, only the partial structures that could lead
to a structure of maximal weight. For example, if algorithm 5.8 is used, we can keep in the
chart only the partial structures that could lead to a final structure of maximal weight.

In step I11.4, the rhetorical parser shown in figure 5.1 implements the second approach.
Hence, instead of keeping in the chart all the partial structures that characterize sen-
tence (5.22), it will keep only the partial structures of maximal weight, i.e., the structures
shown in figures 5.15.c and 5.15.d. In this way, the overall efficiency of the system is in-
creased. In order to keep in the chart only the partial structures that could lead to valid
structures of maximal weight, we need to modify only the procedure ADDEDGE in figure 5.8
so that it pushes an edge into the chart only if the edge corresponds to a partial structure
that has a greater weight than any other partial structure that promotes the same units

with respect to the span under consideration. In this case, pushing an edge into the chart
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is also accompanied by the deletion of the edges that span the same units, have the same
promotion units, and have lower weights.

When more than one valid text structure has the same maximal weight, the rhetorical
parser chooses randomly one of the structures of maximal weight at each of the three levels:
sentence, paragraph, and section. For example, when the rhetorical parser selects the trees
of maximal weight for text (5.17) at each of the three levels of abstraction, it selects the
trees shown in figures 5.14.a, 5.15.¢c, 5.16, 5.17, 5.18, and 5.19. If no weight function were
used, the rhetorical parser would generate eight distinct valid text structures for the whole

text.

5.7 Deriving the final text structure

In the last step (lines 16-17 in figure 5.1), after the trees of maximal weight have been
obtained at the sentence, paragraph, and section levels, the rhetorical parser merges the
valid structures into a structure that spans the whole text of a section. The merging process
is a trivial procedure that assembles the trees obtained at each level of granularity. That
is, the trees that correspond to the sentence level are substituted for the leaves of the
structures built at the paragraph level, and the trees that correpond to the paragraph levels
are substituted for the leaves of the structures built at the section level. In this way, the
rhetorical parser builds one tree for each of the sections of a given document. The rhetorical
parser has a back-end process that uses “dot”, a preprocessor for drawing oriented graphs, in
order to automatically generate PostScript representations of the text structures of maximal
weight.

When applied to text (5.2), the rhetorical parser builds the text structure shown in
figure 5.20. The convention that I use is that nuclei are surrounded by solid boxes and
satellites by dotted boxes; the links between a node and the subordinate nucleus or nuclei
are represented by solid arrows, and the links between a node and the subordinate satellites
by dotted lines. The occurrences of parenthetical information are enclosed in the text by
curly brackets. The leaves of the discourse structure are numbered from 1 to N, where N
represents the number of elementary units in the whole text. The numbers associated with
each node denote the units that are members of its promotion set.

All the algorithms described in this chapter have been implemented in C++.

5.8 Discussion and evaluation

I believe that there are two ways to evaluate the correctness of the discourse trees that
an automatic process builds. One is to compare the automatically derived trees with trees

that have been built manually. The other is to evaluate the impact that they have on the
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accuracy of other natural language processing tasks, such as anaphora resolution, intention
recognition, or text summarization. In this thesis, I describe evaluations that follow both
these avenues.

Unfortunately, the linguistic community has not yet built a corpus of discourse trees
against which rhetorical parsers can be evaluated with the effectiveness that traditional
parsers are. To circumvent this problem, I asked two analysts to manually build the dis-
course trees for five texts that ranged from 161 to 725 words (for details, see chapter 6).
Although there were some differences with respect to the names of the relations that the
analysts used, the agreement with respect to the status assigned to various units (nuclei
and satellites) and the overall shapes of the trees was statistically significant.

In order to measure this agreement I associated an importance score to each textual unit
in a tree and computed the Spearman correlation coeflicients between the importance scores
derived from the discourse trees built by each analyst.? The correlation was very high: 0.798,
p < 0.0001. Differences between the two analysts came mainly from their interpretations
of two of the texts: the discourse trees of one analyst mirrored the paragraph structure of
the texts, while the discourse trees of the other mirrored a logical organization of the text,
which that analyst believed to be important.

The Spearman correlation coeflicients with respect to the importance of textual units
between the discourse trees built by the rhetorical parser and those built by each analyst
were 0.480, p < 0.0001, and 0.449, p < 0.0001. These lower correlation values were due
to the differences in the overall shape of the trees and to the fact that the granularity of
the discourse trees built by the program was not as fine as that of the trees built by the
analysts.

Besides directly comparing the trees built by the program with those built by analysts,
I also evaluated the impact that the trees could have on the task of summarizing text. A
summarization program that uses the rhetorical parsing algorithm 5.1 recalled 66% of the
sentences considered important by 13 judges in the same five texts, with a precision of
68%. In contrast, a random procedure recalled, on average, only 38.4% of the sentences
considered important by the judges, with a precision of 38.4%. And the Microsoft Office 97
summarizer recalled 41% of the important sentences with a precision of 39%. In chapter 6,
I discuss at length the experiments from which the data presented above was derived.

The rhetorical parser presented here uses only the structural constraints that were enu-

merated in chapter 2. Co-relational constraints (such as those described by Sumita et

2The Spearman rank correlation coefficient is an alternative to the usual correlation coefficient. It is
based on the ranks of the data, and not on the data itself, and so is resistant to outliers. The null hypothesis
tested by Spearman is that two variables are independent of each other, against the alternative hypothesis
that the rank of a variable is correlated with the rank of another variable. The value of the statistic ranges
from —1, indicating that high ranks of one variable occur with low ranks of the other variable, through 0,
indicating no correlation between the variables, to +1, indicating that high ranks of one variable occur with
high ranks of the other variable.
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al. [1992]), focus, theme, anaphoric links, and other syntactic, semantic, and pragmatic
factors do not yet play a role in the rhetorical parsing algorithm, but I nevertheless expect
them to reduce the number of valid discourse trees that can be associated with a text. 1
also expect that other robust methods for determining coherence relations between textual
units, such as those described by Harabagiu and Moldovan [1995, 1996, will improve the
accuracy of the routines that hypothesize the rhetorical relations that hold between adjacent

units.

5.9 Related work

I am not aware of the existence of any other rhetorical parser for English. I believe that the
research that comes closest to that described in this chapter is that of Sumita et al. [1992]
and Kurohashi and Nagao [1994].

Sumita et al. [1992] report on a discourse analyzer for Japanese. Even if one ignores
some computational “bonuses” that can be easily exploited by a Japanese discourse analyzer
(such as co-reference and topic identification), there are still some key differences between
Sumita’s work and the one presented here. Particularly important is the fact that the the-
oretical foundations of Sumita et al.’s analyzer do not seem to be able to accommodate the
ambiguity of discourse markers; in their system, discourse markers are considered unam-
biguous with respect to the relations that they signal. In contrast, my rhetorical parser uses
a mathematical model in which this ambiguity is acknowledged and appropriately treated.
Also, the discourse trees that the rhetorical parser builds are very constrained structures
(see chapter 2): as a consequence, the rhetorical parser does not overgenerate invalid trees
as Sumita et al.’s does. Furthermore, my rhetorical parser uses only surface-form methods
for determining the markers and textual units and uses clause-like units as the minimal
units of the discourse trees. In contrast, Sumita et al. use deep syntactic and semantic
processing techniques for determining the markers and the textual units and use sentences
as minimal units in the discourse structures that they build.

Kurohashi and Nagao [1994] describe a discourse structure generator that builds dis-
course trees in an incremental fashion. The algorithm proposed by Kurohashi and Nagao
starts with an empty discourse tree and then incrementally attaches sentences to its right
frontier [Polanyi, 1988]. The node of attachment is determined on the basis of a rank-
ing score that is computed using three different sources: cue phrases, chains of identical
and similar words, and similarities in the syntactic structure of sentences. As in the case
of Sumita’s system, Kurohashi and Nagao’s also takes as input a sequence of parse trees;
hence, in order to work, it must be preceded by a full syntactic analysis of the text. The
elementary units of the discourse trees built by Kurohashi and Nagao are sentences.

A parallel line of research has been recently investigated by Hahn and Strube [1997].
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They have extended the centering model proposed by Grosz, Joshi, and Weinstein [1995]
by devising algorithms that build hierarchies of referential discourse segments. These hier-
archies induce a discourse structure on text, which constrains the reachability of potential
anaphoric antecedents. The referential segments are constructed through an incremental
process that compares the centers of each sentence with those of the structure that has been
built up to that point.

The referential structures that are built by Hahn and Strube exploit a language facet
differrent from that exploited by the rhetorical parser: their algorithms rely primarily on
cohesion and not on coherence. Because of this, the referential structures are not as con-
strained as the discourse structures that the rhetorical parser builds. In fact, the discourse
relations between the referential segments are not even labelled. Still, I believe that study-
ing the commonalities and differences between the referential and rhetorical segments could

provide new insights into the nature of discourse.

5.10 Summary

The rhetorical parser that I have presented in this chapter takes as input unrestricted
English text and generates the valid text structures of that text. The rhetorical parser

relies on the following algorithms:

o A surface-form algorithm that determines the elementary units of the text and the

cue phrases that have a discourse structuring function.

e An algorithm that uses information that was derived from the corpus analysis dis-
cussed in chapter 4 in order to hypothesize exclusively disjunctive rhetorical relations

that hold between the textual units of a text.

e An algorithm that uses word co-occurrences in order to hypothesize exclusively dis-

junctive rhetorical relations that hold between the textual units of a text.

o A chart-parsing algorithm that uses sets of exclusively disjunctive rhetorical relations

in order to derive the valid discourse structures of a text.

I have also presented mechanisms that deal with the ambiguity of discourse and discussed

two different ways in which discourse trees can be evaluated.
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Chapter 6

The summarization of natural

language texts

6.1 Preamble

The rhetorical parser presented in chapter 5 not only constructs discourse structures that
make explicit the rhetorical relations between different spans of text but also assigns to
each node in a discourse tree the elementary units of its promotion set. These units are
also shown in the PostScript representations of the discourse trees that are generated by
the rhetorical parser. In this chapter I show how one can use the text structures and
the promotion units associated with them in order to determine the most important parts
of a text. In section 6.2, I show how, starting from its text structure, one can induce
a partial ordering on the importance of the units in a text and I propose a discourse-
based summarization algorithm. I then discuss general issues concerning the evaluation of
automatically generated summaries and propose that we should evaluate not only the results
of the programs that we build, but also the assumptions that constitute their foundations.
Hence, I design an experiment to test whether the assumption that text structures can be
used effectively for text summarization is valid (section 6.4). The experiment confirms that
there exists a correlation between the nuclei of a text structure and what readers perceive

as being important in the corresponding text.

In section 6.5, I evaluate an implementation of the discourse-based summarization algo-
rithm and discuss its strengths and weaknesses. 1 end the chapter with a review of related

work.
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6.2 From discourse structures to text summaries

6.2.1 From discourse structures to importance scores

From a salience perspective, the elementary units in the promotion set of a node of a tree
structure denote the most important units of the textual span that is dominated by that
node. A simple inspection of the structure in figure 6.1, for example, allows us to determine
that, according to the formalization in chapter 2, unit 2 is the most important textual unit
in text (6.1) because it is the only promotion unit associated with the root node. Similarly,
we can determine that unit 3 is the most important unit of span [3,6] and that units 4 and
5 are the most important units of span [4,6]. (The tree in figure 6.1 is the same as the tree
in figure 5.20; and text (6.1) is the same as text (5.17).) They have been replicated here

only for convenience.)

(6.1)  [With its distant orbit {— 50 percent farther from the sun than Earth —F1} and
slim atmospheric blanket,!] [Mars experiences frigid weather conditions.?] [Surface
temperatures typically average about —60 degrees Celsius (—76 degrees Fahren-
heit) at the equator and can dip to —123 degrees C near the poles.?] [Only the
midday sun at tropical latitudes is warm enough to thaw ice on occasion,*] [but
any liquid water formed in this way would evaporate almost instantly®] [because
of the low atmospheric pressure.?]

[Although the atmosphere holds a small amount of water, and water-ice
clouds sometimes develop,”] [most Martian weather involves blowing dust or car-
bon dioxide.®] [Each winter, for example, a blizzard of frozen carbon dioxide rages
over one pole, and a few meters of this dry-ice snow accumulate as previously
frozen carbon dioxide evaporates from the opposite polar cap.”] [ Yet even on the
summer pole, {where the sun remains in the sky all day long,”'°} temperatures

never warm enough to melt frozen water.!?]

A more general way of exploiting the promotion units that are associated with a discourse
tree is from the perspective of text summarization. If we repeatedly apply the concept of
salience to each of the nodes of a discourse structure, we can induce a partial ordering on
the importance of all the units of a text. The intuition behind this approach is that the
textual units that are in the promotion sets of the top nodes of a discourse tree are more
important than the units that are salient in the nodes found at the bottom. A very simple
way to induce such an ordering is by computing a score for each elementary unit of a text

on the basis of the depth in the tree structure of the node where the unit occurs first as a

'The only difference between texts (6.1) and (5.17) concerns the labelling of the parenthetical units. In
text (6.1), they are labelled with strings having the form Pn, where n denotes the elementary unit to which
the parenthetical unit is related. In text (5.17), the parenthetical units were not labelled.
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Unit ||1|P1|2|3|4|5|6|7|8]9]10]| P10
Score ||3] 2 |64 313111353 4| 2

Table 6.1: The importance scores of the textual units in text (6.1).

promotion unit. The larger the score of a unit, the more important that unit is considered
to be in a text. Formula (6.2), which is given below, provides a recursive definition for

computing the importance score of a unit u in a discourse structure D that has depth d.

0 if D is NIL,
d if u € promotion(D),
(6.2)  score(u,D,d)=¢d—1 if u € parentheticals(D),

maz(score(u, leftChild(D),d — 1), otherwise.
score(u, right Child(D),d — 1)).

The formula assumes that the discourse structure is a binary tree and that the functions
promotion(D), parentheticals(D), leftChild(D), and rightChild(D) return the promotion
set, parenthetical units, and the left and right subtrees of each node respectively. If a unit
is among the promotion set of a node, its score is given by the current value of d. If a unit is
among the parenthetical units of a node, which can happen only in the case of a leaf node,
the score assigned to that unit is d — 1 because the parenthetical unit can be represented
as a direct child of the elementary unit to which it is related. For example, when we apply
formula (6.2) to the tree in figure 6.1, which has depth 6, we obtain the scores in table 6.1
for each of the elementary and parenthetical units of text (6.1). Because unit 2 is among
the promotion units of the root, it gets a score of 6. Unit 3 is among the promotion units
of a node found two levels below the root, so it gets a score of 4. Unit 6 is among the
promotion units of a leaf found 5 levels below the root, so it gets a score of 1. Unit P1 is a
parenthetical unit of elementary unit 1, so its score is score(1, D,6) —1 =3 —1 = 2 because

the elementary unit to which it belongs is found 3 levels below the root.

If we consider now the importance scores that are induced on the textual units by the
discourse structure and formula (6.2), we can see that they correspond to a partial ordering
on the importance of these units in a text. This ordering enables the construction of text
summaries with various degrees of granularity. Consider, for example, the partial ordering
shown in (6.3), which was induced on the textual units of text (6.1) by the discourse

structure in figure 6.1 and formula (6.2).

(6.3) 2>8>3,10>1,4,5,7,9> P1, P10 > 6
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Input: A text T’
A number p, such that 1 < p < 100.
Output: The most important p% of the elementary units of 7T'.

I.  Determine the discourse structure DS of T' by means of the rhetorical
parsing algorithm in figure 5.1.

II. Determine a partial ordering on the elementary and parenthetical
units of DS by means of formula (6.2).

HI. Select the first p% units of the ordering.

QU = W N —

Figure 6.2: The discourse-based summarization algorithm

If we are interested in generating a very short summary of text (6.1), we can create a text
with only one unit, which is unit 2. A longer summary can contain units 2 and 8. A longer
one, units 2, 8, 3, and 10. And so on.

The idea of using discourse structures for constructing text summaries is not new. Re-
searchers in computational linguistics have been long speculated that the nuclei of a rhetor-
ical structure tree constitute an adequate summarization of the text for which that tree
was built [Mann and Thompson, 1988, Matthiessen and Thompson, 1988, Hobbs, 1993,
Polanyi, 1993, Sparck Jones, 1993a, Sparck Jones, 1993b]. Using the partial orderings in-
duced by formula (6.2) on the text structures derived by the rhetorical parser is only a

precise expression of the original intuition.

6.2.2 A discourse-based summarizer

Given that we can use the rhetorical parser described in chapter 5 to build the discourse
structure of any text and that we can use formula (6.2) to determine the partial ordering
that is consistent with the idea that the nuclei of a discourse structure constitute a good
summary of a text, it is trivial now to implement a summarization program.

The summarization algorithm that I implemented takes two arguments: a text and a
number p between 1 and 100 (see figure 6.2). It first uses the rhetorical parsing algorithm
in order to determine the discourse structure of the text given as input. It then applies
formula (6.2) and determines a partial ordering on the elementary and parenthetical units
of the text. It then uses the partial ordering in order to select the p% most important

textual units of the text.

6.3 The evaluation of text summaries — general remarks

The evaluation of automatic summarizers has always been a thorny problem: most papers

on summarization describe the approach that they use and give some “convincing” samples
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of the output. In only a very few cases, the direct output of a summarization program is com-
pared with a human-made summary or evaluated with the help of human subjects; usually,
the results are modest. Unfortunately, evaluating the results of a particular implementation
does not enable one to determine what part of the failure is due to the implementation itself
and what part to its underlying assumptions.

The position that I take in this thesis is that, in order to build high-quality summariza-
tion programs, we need to evaluate not only a representative set of automatically generated
outputs (a highly difficult problem by itself), but also the adequacy of the assumptions that
these programs use. That way, we are able to distinguish the problems that pertain to a
particular implementation from those that pertain to the underlying theoretical framework
and explore new ways to improve each.

With few exceptions, automatic approaches to summarization have primarily addressed
possible ways to determine the most important parts of a text — much less has been done
in finding ways for transforming the selected parts into coherent text (see Paice [1990] for
an excellent overview). Determining the salient parts is considered to be achievable because

one or more of the following assumptions hold:

e important sentences in a text contain words that are used frequently [Luhn, 1958,
Edmundson, 1968];

e important sentences contain words that are used in the title and section headings [Ed-
mundson, 1968];

e important sentences are located at the beginning or end of paragraphs [Baxendale,
1958];

e important sentences are located at positions in a text that are genre dependent —
these positions can be determined automatically, through training techniques [Kupiec
et al., 1995, Lin and Hovy, 1997, Teufel and Moens, 1997];

e important sentences use bonus words such as “greatest” and “significant” or indicator
phrases such as “the main aim of this paper” and “the purpose of this article”, while
non-important sentences use stigma words such as “hardly” and “impossible” [Ed-
mundson, 1968, Rush et al., 1971, Kupiec et al., 1995, Teufel and Moens, 1997];

e important sentences and concepts are the highest connected entities in elaborate se-
mantic structures [Skorochodko, 1971, Hoey, 1991, Lin, 1995, Barzilay and Elhadad,
1997];

e important and non-important sentences are derivable from a discourse representation
of the text [Sparck Jones, 1993b, Ono et al., 1994].
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In determining the words that occur most frequently in a text or the sentences that use
words that occur in the headings of sections, computers are accurate tools. However, in
determining the concepts that are semantically related or the discourse structure of a text,
computers are no longer so accurate; rather, they are highly dependent on the coverage of the
linguistic resources that they use and the quality of the algorithms that they implement.
Although it is plausible that elaborate cohesion- and coherence-based structures can be
used effectively in summarization, I believe that when building summarization programs,
we should also determine the extent to which these assumptions hold.

As I have mentioned already, researchers in computational linguistics have long specu-
lated that the nuclei of a rhetorical structure tree constitute an adequate summarization of
the text for which that tree was built [Mann and Thompson, 1988, Matthiessen and Thomp-
son, 1988, Sparck Jones, 1993b]. However, to my knowledge, there has been no experiment
to confirm how valid this speculation really is. In what follows, I describe an experiment
that shows that there exists a strong correlation between the nuclei of the RS-tree of a
text and what readers perceive to be the most important units in a text. The experiment
shows that the concepts of discourse structure and nuclearity can be used effectively for

determining the most important units in a text.

6.4 From discourse structure to text summaries — an em-

pirical view
6.4.1 Materials and methods of the experiment

We know from the results reported in the psychological literature on summarization [John-
son, 1970, Chou Hare and Borchardt, 1984, Sherrard, 1989] that there exists a certain degree
of disagreement between readers with respect to the importance that they assign to various
textual units and that the disagreement is dependent on the quality of the text and the
comprehension and summarization skills of the readers [Winograd, 1984]. In an attempt
to produce an adequate reference set of data, I selected for my experiment five short texts
from Secientific American that I considered to be well-written. The texts, which are shown
in appendix D, ranged in size from 161 to 725 words. The shortest text was the text on
Mars that I have used as an example throughout the thesis.

Because my intention was to evaluate the adequacy for summarizing text not only of
the program that I implemented but also of the theory that I developed, I first determined
manually the minimal textual units of each text. Overall, I broke the five texts into 160
textual units with the shortest text being broken into 18 textual units, and the longest into
70. Each textual unit was enclosed within square brackets and labelled in increasing order

with a natural number from 1 to N, where N was the number of units in each text. For
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example, when the text on Mars was manually broken into elementary units, I obtained
not 10 units, as in the case when the discourse-marker and clause-like unit identification
algorithm was applied (see text (6.1)), but 18. The text whose minimal units were obtained

manually is given in (6.4), below.

(6.4)  [With its distant orbit!] [— 50 percent farther from the sun than Earth —2] [and
slim atmospheric blanket,?] [Mars experiences frigid weather conditions.*] [Surface
temperatures typically average about —60 degrees Celsius (—76 degrees Fahren-
heit) at the equator®] [and can dip to —123 degrees C near the poles.?] [Only the
midday sun at tropical latitudes is warm enough to thaw ice on occasion,”] [but
any liquid water formed in this way would evaporate almost instantly®] [because
of the low atmospheric pressure.?]

[Although the atmosphere holds a small amount of water,'’] [and water-ice
clouds sometimes develop,!!] [most Martian weather involves blowing dust or car-
bon dioxide.!?] [Each winter, for example, a blizzard of frozen carbon dioxide
rages over one pole,'®] [and a few meters of this dry-ice snow accumulate!?] [as
previously frozen carbon dioxide evaporates from the opposite polar cap.!®] [Yet
even on the summer pole,'®] [where the sun remains in the sky all day long,'"]
[temperatures never warm enough to melt frozen water.!¥]

I followed Johnson’s [1970] and Garner’s [1982] strategy and asked 13 independent judges
to rate each textual unit according to its importance to a potential summary. The judges
used a three-point scale and assigned a score of 2 to the units that they believed to be very
important and should appear in a concise summary, 1 to those they considered moderately
important, which should appear in a long summary, and 0 to those they considered unim-
portant, which should not appear in any summary. The judges were instructed that there
were no right or wrong answers and no upper or lower bounds with respect to the number
of textual units that they should select as being important or moderately important. The
judges were all graduate students in computer science; I assumed that they had developed
adequate comprehension and summarization skills on their own, so no training session was
carried out. Table 6.2 presents the scores that were assigned by each judge to the units in
text (6.4).

The same texts were also given to two computational linguistics analysts with solid
knowledge of Rhetorical Structure Theory. The analysts were asked to build one RS-tree
for each text. I took then the RS-trees built by the analysts and used the formalization
in chapter 2 to associate with each node in a tree its salient units. The salient units were
computed recursively, associating with each leaf in an RS-tree the leaf itself, and to each
internal node the salient units of the nucleus or nuclei of the rhetorical relation corresponding

to that node. 1 then computed for each textual unit a score, by applying formula (6.2).
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Unit Judges Analysts || Program
12 3 4 5 6 7 8 9 10 11 12 13 |1
1 0o 2 2 2 0 0 00 0 0 0 0 013 3 3
2 6o 0 0 o0 0 000 0 0 0 1|1 0 2
3 o2 0 2 0 0 000 0 0 0 1793 2 3
4 2 1 2 2 2 2 2 2 2 2 2 2 2|6 5 6
5 $1 10 1 1 1 0 1 2 1 0 2 2|4 3 4
6 610 111 011 1 0 2 2|4 3 4
7 021 00 01 1 1 0 0 0 01]¢4 3 3
8 o1 0 0 0 0 00 0 0 0 0 014 3 3
9 00 2 00 0 000 0 1 0 1|1 0 1
10 0o 2 2 2 0 0 2 0 0 0 0 0 013 4 3
11 oo 0 2 0001 0 0 0 0 1743 4 3
12 2 2 2 2 2 2 2 2 2 0 1 2 265 4 5
13 110 0 0 1 0 1 0 O 0 2 0]3 3 3
14 100 0 0 1 1 0 0 0 0 2 0]3 3 3
15 0o 0 001 000 0 0 1 0]2 3 3
16 o1 1 01 0 0 0 2 0 0 1 0]¢4 3 4
17 o1 0 0 0 0 0O 1T 0 0 1 0]2 1 2
18 21 1 0 1 0 1 0 2 0 1 1 2|4 3 4

Table 6.2: The scores assigned by the judges, analysts, and the discourse-based summarizer
to the textual units in text (6.4).

Table 6.2 also presents the scores that were derived from the RS-trees that were built by
each analyst for text (6.4) and the scores that were derived from the discourse tree that was
built by the discourse-based summarizer.

Usually, the granularity of the trees that are built by the rhetorical parser is coarser
than the granularity of those that are built manually. The last column in table 6.2 reflects
this: all the units that were determined manually and that overlapped an elementary unit
determined by the rhetorical parser were assigned the same score. For example, units 1
and 3 in text (6.4) correspond to unit 1 in text (6.1). Because the score of unit 1 in the
discourse structure that is built by the rhetorical parser is 3, both units 1 and 3 in text (6.4)

are assigned the score 3.

6.4.2 Agreement among judges
Overall agreement among judges

I measured the agreement of the judges with one another, using the notion of percent
agreement that was defined by Gale [1992] and used extensively in discourse segmentation
studies [Passonneau and Litman, 1993, Hearst, 1994]. Percent agreement reflects the ratio
of observed to possible agreements with the majority opinion. The percent agreements
computed for each of the five texts and each level of importance are given in table 6.3.

The agreements among judges for my experiment seem to follow the same pattern as those
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‘ Text H D.1 D.2 D.3 D4 D.5 H Overall ‘

All units 72.64 73.23 69.23 69.89 70.08 | 70.67

Very important units || 88.46 63.07 64.83 63.73 67.30 65.66
Less important units || 51.28 73.07 53.84 46.15 - 58.04
Unimportant units 75.14 8251 73.07 7V2.85 T1.25 73.86

Table 6.3: Percent agreement with the majority opinion.

described by other researchers in summarization [Johnson, 1970]. That is, the judges are
quite consistent with respect to what they perceive as being very important and unimpor-
tant, but less consistent with respect to what they perceive as being less important. In
contrast with the agreement observed among judges, the percentage agreements computed
for 1000 importance assignments that were randomly generated for the same texts followed
a normal distribution with g = 47.31,0 = 0.04. These results suggest that the agreement

among judges is significant.

Agreement among judges with respect to the importance of each textual unit

I considered a textual unit to be labelled consistently if a simple majority of the judges
(> 7) assigned the same score to that unit. Overall, the judges labelled consistently 140
of the 160 textual units (87%). In contrast, a set of 1000 randomly generated importance
scores showed agreement, on average, for only 50 of the 160 textual units (31%), ¢ = 0.05.

The judges consistently labelled 36 of the units as very important, 8 as less important,
and 96 as unimportant. They were inconsistent with respect to 20 textual units. For
example, for text (6.4), the judges consistently labelled units 4 and 12 as very important,
units 5 and 6 as less important, units 1,2,3,7,8,9,10,11, 13,14, 15,17 as unimportant, and
were inconsistent in labelling unit 18. If we compute percent agreement figures only for
the textual units for which at least 7 judges agreed, we get 69% for the units considered
very important, 63% for those considered less important, and 77% for those considered

unimportant. The overall percent agreement in this case is 75%.

Statistical significance

It has often been emphasized that agreement figures of the kinds computed above could
be misleading [Krippendorff, 1980, Passonneau and Litman, 1993]. Since the “true” set
of important textual units cannot be independently known, we cannot compute how valid
the importance assignments of the judges were. Moreover, although the agreement figures
that would occur by chance offer a strong indication that our data are reliable, they do not
provide a precise measurement of reliability.

To compute a reliability figure, I followed the same methodology as Passonneau and Lit-
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man [1993] and Hearst [1994] and applied Cochran’s Q summary statistics to the data [Cochran,
1950]. Cochran’s test assumes that a set of judges make binary decisions with respect to
a dataset. The null hypothesis is that the number of judges that take the same decision is
randomly distributed. Since Cochran’s test is appropriate only for binary judgments and
since my main goal was to determine a reliability figure for the agreement among judges
with respect to what they believe to be important, I evaluated two versions of the data that
reflected only one importance level. In the first version I considered as being important the
judgments with a score of 2 and unimportant the judgments with a score of 0 and 1. In the
second version, I considered as being important the judgments with a score of 2 and 1 and
unimportant the judgments with a score of 0. Essentially, I mapped the judgment matrices
of each of the five texts into matrices whose elements ranged over only two values: 0 and 1.
After these modifications were made, I computed for each version and each text the Cochran
Q statistics, which approximates the y? distribution with N —1 degrees of freedom, where N
is the number of elements in the dataset. In all cases I obtained probabilities that were very
low: p < 1079, This means that the agreement among judges was extremely significant.

Although the probability was very low for both versions, it was lower for the first version
of the modified data than for the second. Because of this, I considered as important only
the units that were assigned a score of 2 by a majority of the judges.

As I have already mentioned, my ultimate goal was to determine whether there exists
a correlation between the units that judges find important and the units that have nuclear
status in the rhetorical structure trees of the same texts. Since the percentage agreement for
the units that were considered very important was higher than the percentage agreement
for the units that were considered less important, and since the Cochran’s significance
computed for the first version of the modified data was higher that the one computed for
the second, I decided to consider the set of 36 textual units labelled by a majority of judges
with 2 as a reliable reference set of importance units for the five texts. For example, units

4 and 12 from text (6.4) belong to this reference set.

6.4.3 Agreement between analysts

Once I determined the set of textual units that the judges believed to be important, I needed
to determine the agreement between the analysts who built the discourse trees for the five
texts. Because I did not know the distribution of the importance scores derived from the
discourse trees, I computed the correlation between the analysts by applying Spearman’s
correlation coefficient on the scores associated to each textual unit. 1 interpreted these
scores as ranks on a scale that measures the importance of the units in a text.

The Spearman rank correlation coefficient is an alternative to the usual correlation
coefficient. It is based on the ranks of the data, and not on the data itself, and so is

resistant to outliers. The null hypothesis tested by the Spearman coefficient is that two
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‘ Text D.1  Text D.2 Text D.3 Text D.4 Text D.5 H Overall ‘
| 0.645 0.676 0.960 0.772 0772 || 0.798 |

Table 6.4: The Spearman correlation coefficients between the ranks assigned to each textual
unit on the basis of the RS-trees built by the two analysts.

variables are independent of each other, against the alternative hypothesis that the rank
of a variable is correlated with the rank of another variable. The value of the statistics
ranges from —1, indicating that high ranks of one variable occur with low ranks of the other
variable, through 0, indicating no correlation between the variables, to +1, indicating that
high ranks of one variable occur with high ranks of the other variable.

The Spearman correlation coefficient between the ranks assigned for each textual unit
on the bases of the RS-trees built by the two analysts was high for each of the five texts. It
ranged from 0.645, for text D.1, to 0.960, for text D.3 at the p < 0.0001 level of significance.
The Spearman correlation coefficient between the ranks assigned to the textual units of all

five texts was 0.798, at the p < 0.0001 level of significance.

6.4.4 Agreement between the analysts and the judges with respect to the

most important textual units

In order to determine whether there exists any correspondence between what readers believe
to be important and the nuclei of the RS-trees, I selected, from each of the five texts, the
set of textual units that were labelled as “very important” by a majority of the judges. For
example, for text (6.4), I selected units 4 and 12, i.e., 11% of the units. Overall, the judges
selected 36 units as being very important, which is approximately 22% of the units in all
the texts. The percentages of important units for the five texts were 11, 36, 35, 17, and 22
respectively.

I took the maximal scores computed for each textual unit from the RS-trees built by
each analyst and selected a percentage of units that matched the percentage of important
units selected by the judges. In the cases in which there were ties, I selected a percentage
of units that was closest to the one computed for the judges. For example, I selected units
4 and 12, which represented the most important 11% of the units that were induced by
formula (6.2) on the RS-tree built by the first analyst. However, I selected only unit 4,
which represented 6% of the most important units that were induced on the RS-tree built
by the second analyst, because units 10,11, and 12 have the same score (see table 6.2). If |
had selected units 10,11 and 12 as well, I would have ended up selecting 22% of the units
in text (6.4), which is farther from 11 than 6. Hence, I determined for each text the set of
important units as labelled by judges and as derived from the RS-trees of those texts.

I calculated for each text the recall and precision of the important units derived from the
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Text No. of First Analyst
units No. of units that No. of units that Recall | Precision
that were were labelled as were correctly
considered important on the labelled as
important || basis of the RS-tree | important on the
by judges || built by the analyst | basis of the RS-tree
built by the analyst
D.1 2 2 2 100.00 100.00
D.2 9 6 5 55.55 83.33
D.3 7 5 4 57.14 80.00
D.4 12 10 6 50.00 60.00
D.5 6 7 3 50.00 42.85
All 36 30 20 55.55 66.66

Table 6.5: Summarization results obtained by using the text structures built by the first
analyst — the clause-like unit case.

RS-trees, with respect to the units labelled important by the judges. The overall recall and
precision was the same for both analysts: 55.55% recall and 66.66% precision. In contrast,
the average recall and precision for the same percentages of units selected randomly 1000
times from the same five texts were both 25.7%, ¢ = 0.059. Tables 6.5 and 6.6 show the
recall and precision figures for each analyst and each of the five texts.

In summarizing text, it is often useful to consider not only clause-like units, but full
sentences. To account for this, I considered as important all the textual units that pertained
to a sentence that was characterized by at least one important textual unit. For example, I
labelled as important textual units 1 to 4 in text (6.4), because they make up a full sentence
and because unit 4 was labelled as important. For the adjusted data, I determined again the
percentages of important units for the five texts and I recalculated the recall and precision
for both analysts: the recall was 68.96% and 65.51% and the precision 81.63% and 74.50%
respectively. Tables 6.7 and 6.8 show the sentence-related recall and precision figures for
each analyst and each of the five texts.

In contrast with the results in tables 6.7 and 6.8, the average recall and precision for
the same percentages of units selected randomly 1000 times from the same five texts were
38.4%, 0 = 0.048. These results confirm that there exists a strong correlation between the
nuclei of the RS-trees that pertain to a text and what readers perceive as being important
in that text. Given the values of recall and precision that I obtained, it is plausible that
an adequate computational treatment of discourse theories would provide most of what is
needed for selecting accurately the important units in a text. However, the results also
suggest that the discourse theory developed in this thesis is not enough by itself if one
wants to strive for perfection.

The above results not only provide strong evidence that discourse theories can be used
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Text No. of Second Analyst
units No. of units that No. of units that Recall | Precision
that were were labelled as were correctly
considered important on the labelled as
important || basis of the RS-tree | important on the
by judges || built by the analyst | basis of the RS-tree
built by the analyst
D.1 2 1 1 50.00 50.00
D.2 9 8 6 66.66 75.00
D.3 7 5 4 57.14 80.00
D.4 12 7 5 41.66 71.42
D.5 6 9 4 66.66 44.44
All 36 30 20 55.55 66.66

Table 6.6: Summarization results obtained by using the text structures built by the second

analyst — the clause-like unit case.

Text No. of First Analyst
units No. of units that No. of units that Recall | Precision
that were were labelled as were correctly
considered important on the labelled as
important || basis of the RS-tree | important on the
by judges || built by the analyst | basis of the RS-tree
built by the analyst
D.1 7 7 7 100.00 100.00
D.2 12 12 12 100.00 100.00
D.3 10 9 8 80.00 88.88
D.4 18 11 8 44.44 72.72
D.5 11 10 5 45.45 50.00
All 58 49 40 68.96 81.63

Table 6.7: Summarization results obtained by using the text structures built by the first

analyst — the sentence case.
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Text No. of Second Analyst
units No. of units that No. of units that Recall | Precision
that were were labelled as were correctly
considered important on the labelled as
important || basis of the RS-tree | important on the
by judges || built by the analyst | basis of the RS-tree
built by the analyst
D.1 7 7 7 100.00 100.00
D.2 12 11 9 75.00 81.81
D.3 10 9 8 80.00 88.88
D.4 18 11 6 33.33 54.54
D.5 11 13 8 72.72 61.53
All 58 51 38 65.51 74.50

Table 6.8: Summarization results obtained by using the text structures built by the second
analyst — the sentence case.

effectively for text summarization, but also suggest strategies that an automatic summarizer
might follow. For example, the Spearman correlation coefficient between the judges and
the first analyst, the one who did not follow the paragraph structure, was lower than that
between the judges and the second analyst. This might suggest that human judges are
inclined to use the paragraph breaks as valuable sources of information when they interpret
discourse. If the aim of a summarization program is to mimic human behavior, it would
then seem adequate for the program to take advantage of the paragraph structure of the

texts that it analyzes.

6.5 An evaluation of the discourse-based summarization pro-

gram

6.5.1 Agreement between the results of the summarization program and

the judges with respect to the most important textual units

To evaluate the summarization program, I followed the same method as in section 6.4.4.
That is, | used the importance scores assigned by formula (6.2) to the units of the discourse
trees built by the rhetorical parser in order to compute statistics similar to those discussed
in conjunction with the manual analyses. Tables 6.9 and 6.10 summarize the results.
When the program selected only the textual units with the highest scores, in percentages
that were equal to those of the judges, the recall was 52.77% and the precision was 50%.
When the program selected the full sentences that were associated with the most important
units, in percentages that were equal to those of the judges, the recall was 65.51% and the

precision 67.85%. Tables 6.9 and 6.10 show recall and precision results for each of the five
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Text No. of Discourse-based Summarizer
units No. of units that | No. of units that | Recall | Precision
that were were labelled as were correctly
considered | important on the labelled as
important || basis of the tree | important on the
by judges built by the basis of the tree
rhetorical parser built by the
rhetorical parser
D.1 2 2 2 100.00 100.00
D.2 9 8 5 55.55 62.50
D.3 7 8 3 42.85 37.50
D.4 12 14 6 50.00 42.85
D.5 6 6 3 50.00 50.00
All 36 38 19 52.77 50.00

Table 6.9: Summarization results obtained by using the text structures built by the rhetor-

ical parser — the clause-like unit case.

Text No. of Discourse-based Summarizer
units No. of units that | No. of units that | Recall | Precision
that were were labelled as were correctly
considered | important on the labelled as
important || basis of the tree | important on the
by judges built by the basis of the tree
rhetorical parser built by the
rhetorical parser
D.1 7 7 7 100.00 100.00
D.2 12 14 12 100.00 85.71
D.3 10 9 6 60.00 66.66
D.4 18 20 10 55.55 50.00
D.5 11 6 5 45.45 83.33
All 58 56 38 65.51 67.85

Table 6.10: Summarization results obtained by using the text structures built by the rhetor-

ical parser — the sentence case.
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texts that were summarized. The lower recall and precision scores associated with clause-
like units seem to be caused primarily by the difference in granularity with respect to the
way the texts were broken into subunits: the program does not recover all minimal textual
units, and as a consequence, its assignment of importance scores is coarser. When full
sentences are considered, the judges and the program work at the same level of granularity,

and as a consequence, the summarization results improve significantly.

6.5.2 Comparison of the discourse-based summarizer with the Microsoft

Office97 summarization program and a baseline algorithm

I was able to obtain only one other program that summarizes English text — the one
included in the Microsoft Office97 package. 1 ran the Microsoft summarization program
on the five texts from Scientific American and selected the same percentages of textual
units as those considered important by the judges. When I selected percentages of text
that corresponded only to the clause-like units considered important by the judges, the
Microsoft program recalled 27.77% of the units, with a precision of 25.64%. When I selected
percentages of text that corresponded to sentences considered important by the judges, the
Microsoft program recalled 41.37% of the units, with a precision of 38.70%. Tables 6.11
and 6.12 show the recall and precision figures for each of the five texts.

In order to provide a better understanding of the results in this section, I also considered
a baseline algorithm that randomly selects from a text a number of units that matches
the number of units that were considered important in that text by the human judges.
Tables 6.13 and 6.14 show recall and precision results for the baseline, Microsoft Office97,
and discourse-based summarizers, as well as the results that would have been obtained if
we had applied the score function (6.2) on the discourse trees that were built manually. In
tables 6.13 and 6.14, I use the term “Analyst-based Summarizer” as a name for a summarizer
that identifies important units on the basis of discourse trees that are manually built. The
recall and precision figures associated with the baseline algorithm that selects textual units
randomly represent averages of 1000 runs. The recall and precision results associated with
the “Analyst-based Summarizer” in tables 6.13 and 6.14 are averages of the results shown

in tables 6.5 and 6.6, and 6.7 and 6.8 respectively.

6.5.3 Discussion
Selecting the most important units in a text

The results presented in this section confirm the suitability of using discourse structures
for text summarization. The results also indicate that our discourse-based summarizer
significantly outperforms the Microsoft Office97 summarizer, which, like the vast majority

of summarizers on the market, relies primarily on the assumption that important sentences
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Text No. of Microsoft Office97 Summarizer

units No. of No. of Recall | Precision
considered units units
important || identified | identified
by judges correctly
D.1 2 3 1 50.00 33.33
D.2 9 10 5 55.55 50.00
D.3 7 9 3 42.85 33.33
D4 12 11 1 8.33 9.09
D.5 6 6 0 0.00 0.00
All 36 39 10 27.77 25.64

Table 6.11: Recall and precision figures obtained with the Microsoft Office97 summarizer
— the clause-like unit case.

Text No. of Microsoft Office97 Summarizer
units No. of No. of Recall | Precision

considered units units

important || identified | identified

by judges correctly
D.1 7 8 3 42.85 37.50
D.2 12 12 5 41.66 41.66
D.3 10 11 8 80.00 72.72
D4 18 20 3 16.66 15.00
D.5 11 11 5 45.45 45.45
All 58 62 24 41.37 38.70

Table 6.12: Recall and precision figures obtained with the Microsoft Office97 summarizer
— the sentence case.

Text Baseline Microsoft Discourse-based || Analyst-based
Summarizer Summarizer Summarizer Summarizer
Recall & Recall | Prec. || Recall Prec. || Recall | Prec.
Prec.

D.1 12.05 50.00 | 33.33 || 100.00 | 100.00 75.00 | 75.00
D.2 38.01 55.55 | 50.00 55.55 62.50 61.11 | 78.57
D.3 36.20 42.85 | 33.33 42.85 37.50 57.14 | 57.14
D.4 18.32 8.33 9.09 50.00 42.85 45.83 | 64.70
D.5 23.06 0.00 0.00 50.00 50.00 58.33 | 43.75
All 25.7 27.77 | 25.64 52.77 50.00 55.55 | 66.66

Table 6.13: Recall and precision figures obtained with the baseline, Microsoft Office97,
discourse-based, and analyst-based summarizers — the clause-like unit case.
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Text Baseline Microsoft Discourse-based Analyst-based
Summarizer Summarizer Summarizer Summarizer
Recall & Recall | Prec. || Recall Prec. || Recall Prec.
Prec.

D.1 40.12 42.85 | 37.50 || 100.00 | 100.00 || 100.00 | 100.00
D.2 50.02 41.66 | 41.66 || 100.00 85.71 87.50 91.30
D.3 52.12 80.00 | 72.72 60.00 66.66 80.00 88.88
D.4 26.91 16.66 | 15.00 55.55 50.00 38.88 63.63
D5 42.31 45.45 | 45.45 45.45 83.83 59.09 56.52
All 38.40 41.37 | 38.70 65.51 67.85 67.24 | 78.00

Table 6.14: Recall and precision figures obtained with the baseline, Microsoft Office97,
discourse-based, and analyst-based summarizers — the sentence case.

contain the words that are used most frequently in a given text.

In spite of the good results, in some cases, the recall and precision figures obtained with
the discourse-based summarizer are still far from 100%. I believe that there are two possible
explanations for this: either the rhetorical parser does not construct adequate discourse
trees; or the mapping from discourse structures to importance scores is too simplistic. 1

examine now, in turn, each of these explanations.

A comparison of the discourse-trees built by the analysts and the rhetorical parser
reveals some differences. Some of them are caused by the fact that the rhetorical parser
makes disjunctive hypotheses about the rhetorical relations that hold between textual units,
and sometimes these hypotheses are incorrect. Also, although in some cases the rhetorical
parser builds trees that perfectly match the manually built trees, because of its preference
for trees that are skewed to the right, it does not select the appropriate ones. This suggests
that better heuristics for discourse disambiguation can improve the results. Also, the trees
that are built by the rhetorical parser are not as finely grained as those built manually.
For example, the rhetorical parser breaks text (6.1) into 10 elementary units; in contrast,
the analysts found 18 units for the same text. All these observations suggest that a better
rhetorical parser can improve the results of the summarization program.

I turn now to the other possible explanation, the one that concerns the mapping from
discourse structures to importance scores. If we examine the results in tables 6.13 and 6.14,
we can see that the difference in recall and precision between the discourse-based and
analyst-based summarizers is lower than the difference between the analyst-based summa-
rizer and the 100% upper bound. This suggests that a better mapping between discourse
structures and importance scores may have a more significant impact on the quality of a
discourse-based summarization program than a better rhetorical parser. In order to under-
stand this claim, we should examine the cases in which recall and precision figures were
low even for the discourse trees that were built by the analysts, which were supposed to be

“perfect”.
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Let us examine closely the correlation between the discourse structure built by the first
analyst for text D.5 and the units that the judges considered important in the same text.
The discourse structure built by the first analyst for text D.5 yielded the lowest recall and
precision figures (see table 6.5). Text (6.5), which is given below, replicates text D.5: the
elementary units are numbered from 1 to 27 and the units that a majority of the judges

agreed to be important are shown in bold.

(6.5) [Smart cards are becoming more attractive!] [as the price of microcomput-
ing power and storage continues to drop.?] [They have two main advantages
over magnetic-stripe cards.?] [First, they can carry 10 or even 100 times
as much information?] [— and hold it much more robustly.’] [Second, they
can execute complex tasks in conjunction with a terminal.®] [For exam-
ple, a smart card can engage in a sequence of questions and answers that verifies
the validity of information stored on the card and the identity of the card-reading
terminal.”] [A card using such an algorithm might be able to convince a local
terminal that its owner had enough money to pay for a transaction®] [without
revealing the actual balance or the account number.?] [Depending on the impor-
tance of the information involved,!°] [security might rely on a personal identifica-
tion number!!] [such as those used with automated teller machines,'?] [a midrange
encipherment system,'?] [such as the Data Encryption Standard (DES),'4] [or a
highly secure public-key scheme.!®]

[Smart cards are not a new phenomenon.'] [They have been in develop-
ment since the late 1970s'7] [and have found major applications in Europe,'®]
[with more than a quarter of a billion cards made so far.!?] [The vast majority of
chips have gone into prepaid, disposable telephone cards,?°] [but even so the ex-
perience gained has reduced manufacturing costs,?!] [improved reliability??] [and
proved the viability of smart cards.?] [International and national standards
for smart cards are well under development??] [to ensure that cards, read-
ers and the software for the many different applications that may reside on them
can work together seamlessly and securely.??] [Standards set by the International
Organization for Standardization (ISO), for example, govern the placement of
contacts on the face of a smart card?6] [so that any card and reader will be able

to connect.?]

Figure 6.3 shows the discourse structure built by the first analyst. Each elementary unit
in the structure is labelled with a number from 1 to 27 as well. The numbers shown in
bold that are associated with the non-elementary spans represent promotion units. The
numbers shown in italics bold that are associated with the leaves represent the importance

scores that are assigned by formula 6.2 to each elementary unit in the text. For example,
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the promotion units of span [1,27] are units 3 and 16, while the promotion units of span
[10,15] are units 11, 13, and 15.

As I discussed before, when I evaluated the analyst-based summarizer, I selected from a
partial ordering a number of units that reflected the number of units considered important
in a text by the judges. In text (6.5), six units were considered important: those labelled
1, 3, 4, 6, 17, 24. The partial ordering induced by formula (6.2) on the discourse structure
of figure 6.3 is that shown in (6.6) below.

(6.6) 3,16 >1,21,22,23,24 > 2,4,5,6,17,18 > 26 > 19,25,27 > 8 >
11,13,15> 9,10 > 12, 14

Selecting the first seven units in the partial ordering comes closest to the number of units
that were considered important by the judges. As shown in table 6.5, only three of the
seven units that are selected by the analyst-based summarizer were considered important
by a majority of the judges; these were units 1, 3, and 24.

If we examine the discourse structure of text (6.5) and the units that judges perceived
as being important, we notice a couple of very interesting facts. For example, a majority
of the judges labelled units 3, 4, and 6 as important. The discourse structure built by the
analyst shows that an ELABORATION relation holds between units 4 and 3 and between units
6 and 3. Because units 4 and 6 are the satellites of the ELABORATION relation, they are
assigned a lower score than unit 3. However, if we examine the text closely, we also find it
natural to include in the summary not only the information that smart cards have two main
advantages over magnetic-stripe cards (unit 3), but also the advantages per se, which are
given in units 4 and 6. Hence, for certain kinds of ELABORATION relations, it seems adequate
to assign a larger score to their satellites than formula (6.2) currently does. By examining
the same discourse structure and the importance scores assigned by judges, we can see that
none of the units in the span [7-15] were considered important. This observation seems to
correlate with the fact that the whole span [7-15] is an exemplification of the information
given in unit 6. If the observation that satellites of EXAMPLE relations are not important
generalizes, then it would be appropriate to account for this in the formula that computes
the importance scores.

Also interesting is the fact that judges considered unit 24 important, which seems to
correlate with a topic shift. Again, if this observation generalizes, it will have to be properly
accounted for by the formula that computes importance scores. To make things even more
difficult, consider the following two cases, in which the judges considered important only the
first nucleus of a multinuclear relation. For example, although a rhetorical relation of JOINT
holds between units 4 and 5 and a rhetorical relation of SEQUENCE holds between units 17
and 18, judges considered only units 4 and 17 important. According to formula (6.2), both

pairs of units are assigned the same score. Obviously, mechanisms that are not inherent to
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the rhetorical structure of text are needed in order to explain why only one nucleus of a
multinuclear relation is considered important by humans.

The discussion above suggests that there is definitely much more to assigning impor-
tance scores to textual units on the basis of a discourse structure than first meets the eye.
Although formula (6.2) enables a discourse-based summarizer to derive summaries of good
quality, there is definitely room for improvement. The experiments described in this chapter
suggest that there exists a correlation also between the types of relations that are used to
connect various textual units and the importance of those units in a text. However, more
elaborate experiments are needed in order to provide clear-cut evidence on the nature of

this correlation.

Other issues

Throughout this chapter, we concentrated our attention only on the problem of selecting
the most important units in a text. However, this solves only part of the problem, because a
complete summarization system will also have to use the selected units in order to produce
coherent text. We found that the summaries that are produced by our discourse-based
summarizer read well — after all, the summarizer selects nuclei, which represent what is
most essential for the writer’s purpose and which can be understood independent of their
satellites. Yet, we have not carried out any readability evaluation. One of the problems
that our discourse-based summarizer still has is that of dangling references: in some cases,
the selected units use anaphoric expressions to referents that were not selected. Dealing

with these issues is, however, beyond the scope of this thesis.

6.6 Related work

6.6.1 Natural language summarization — a psycholinguistic perspective

The empirical experiment described in this chapter confirms the hypothesis that the units
that are promoted as important by our text theory correlate with the units considered
important by human judges. Given this, it would be interesting to examine how our findings
relate to other work in the psycholinguistics of text summarization.

Arguably, the psycholinguistic model of text summarization that has received most at-
tention is that of Kintsch and van Dijk [van Dijk and Kintsch, 1977, Kintsch and van Dijk,
1978, van Dijk, 1980]. This model stipulates that the information to be included in a sum-
mary is determined by macrorules (processes of deletion, generalization, and integration)
that operate on the propositions of the input text and that incrementally build a macrostruc-
ture of that text. Further refinements of Kintsch and van Dijk’s model [Garner, 1982,
Brown and Day, 1983, Brown et al., 1983] yielded a taxonomy of seven rules that are

used consistently by summarizers. Two of the seven rules involve deletion of unnecessary

217



material: material that is trivial and material that is redundant. Two rules concern the
substitution of a superordinate term, event, or action for a list of terms or actions. One rule
concerns the selection of topic sentences and one rule the invention of topic sentences in the
cases in which such sentences are not explicit in the text. The last rule, which has been
shown to be used primarily by mature summarizers, concerns the combination of informa-
tion that was given across paragraphs and the expression of large bodies of texts in a few
words. Although Kintsch and van Dijk’s model has been criticized as being insufficiently
precise in detailing how the macrostructure of text is actually built by readers [Sanford
and Garrod, 1981] and as being too specific to narratives [Kintsch, 1982], a number of
controlled experiments [Chou Hare and Borchardt, 1984, Sjéstrom and Chou Hare, 1984,
Cook and Mayer, 1988] have shown that the teaching of these rules improves the summa-

rization skills of humans.

The fact that the rules proposed by Kintsch, van Dijk, Brown, Day, and others improve
the performance of human summarizers suggest that they can be also used in automatic
summarization, provided that they can be implemented (see Endres-Niggemeyer [1997] for
such a proposal). However, from the perspective of the work described in this chapter, which
emphasizes the importance of structure in summarizing text, a different line of research

seems to be more relevant.

A set of psycholinguistic experiments have repeatedly confirmed that the structure of
text is essential in summarizing text. For example, Cook and Mayer [1988] have shown that
teaching students how to discriminate and use the structure of text helped them improve
the recall of high-level information and answer application questions. Donlan [1980] has
shown that the idea of subordination and text structure is important when teaching how to
locate main ideas in history textbooks. An experiment described by Palmere et al. [1983]
has demonstrated that a major idea that is supported by several subordinate propositions is
better recalled than if it is supported by fewer propositions. And an experiment described
by Lorch and Lorch [1985] has shown that readers use a representation of topic that help
them recall the main ideas in a text. When the topic is explicitly represented and is found
at the beginning of texts, the recall is better than when the topic is represented implicitly

or when it is found at the end of a text.

Psychological experiments have confirmed not only the role of structure in summariza-
tion, but also the role of signalling. An experiment of Loman and Mayer [1983] has shown
that signalling in text increases the recall of conceptual information and helps humans
generate high-quality problem solutions. The signalling techniques studied by Loman and
Mayer include (i) the specification of the structure of relations by means of cue phrases and
discourse markers; (ii) the premature presentation of forthcoming material; (iii) the use of
summary statements; and (iv) the use of pointer or bonus words, such as “more impor-

tantly”, “unfortunately”, etc. In fact, Glover et al. [1988] have shown that signalling even
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across chapters through “preview” and “recall” sentences has a strong effect on readers’
recall of prose.

The structure and the explicit signals that pertain to a text can be used to derive general
summarization techniques; in fact, our approach relies heavily on that. In some cases, it
is, however, useful to exploit the structure of the domain as well. Rumelhart [1972, 1977],
for example, has developed a comprehension model of text that is based on readers’ appli-
cation of generic schemata. Rumelhart hypothesized that these schemata help humans not
only understand the stories that they read, but also summarize them. An experiment that
confirms the role of schemata on text summarization has been carried out by Brooks and
Dansereau [1983], who have shown that the teaching of the structural schema of scientific
articles improved the recall of important information. A more recent experiment of Dil-
lon [1991], which was carried out in the context of hypertext understanding, has shown that
journal readers possess a generic representation of scientific articles that helps them orga-
nize isolated pieces of text into a meaningful whole. In fact, it seems that even the abstracts
themselves possess an internal structure that can be exploited by means of a schema-based
approach [Liddy, 1991].

As we have already seen, the psycholinguistic experiments discussed in this section not
only suggest that exploiting the structure of text for the task of automatic summarization
bears some cognitive plausibility, but also give hints to further developments that could
improve the results that we have obtained so far. Implementing the summarization rules
described by Kintsch and van Dijk and using text schemata in specific domains might not

be trivial, but might nevertheless lead to better summarization results.

6.6.2 Natural language summarization — a computational perspective

It is very unlikely that in the close future we will be able to support, at a large scale, the
development of approaches to natural language summarization that rely heavily on large
knowledge resources [Rau et al., 1989, Hahn, 1990]. As a consequence, in this section, I
discuss primarily the assumptions and the systems that pertain to the field of domain-

independent summarization.

Word-frequency-based systems

The idea that there exists a correlation between, on one hand, the frequency of words and
their distribution, and, on the other hand, the significance in texts of the sentences that
contain them goes back as far as Luhn [1957, 1958]. In his experiments, Luhn observed
that this correlation follows a Bell curve whose minima correspond to words that occur
very seldom and very often and whose maximum corresponds to words that occur relatively
frequently. The validity of using word-frequency as an indicator of significance has been

tested by Edmundson [1968], who showed that it is one of the weakest indicators among a
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set that also contained title-, position-, and keyword-based indicators: it accounted for only
about 36% of the important sentences in a corpus of texts. (A baseline, random indicator
recalled 25% of the important sentences in the same collection of documents.) Nevertheless,
the word-frequency-based indicator continues to be used even in recent systems [Rau and
Brandow, 1993, Manesh, 1997, Leong et al., 1997], most often in connection with other

indicators.

Title-based systems

Another assumption that is used frequently in implemented summarization systems is that
the words of the title and headings correlate with what is important in texts. Edmund-
son [1968] showed that the hypothesis that words of the title and heading are positively
relevant is statistically valid at the 99 percent level of significance. However, it is able to
recall only about 41% of the important sentences in a collection of documents. As in the
case of the word-frequency-based method, the title-based method continues to be used in
recent systems, such as those described by Preston and Williams [1994], Manesh [1997], and
Ochitani et al. [1997].

Position-based systems

An initial experiment of Baxendale [1958] showed that in 85% of 200 individual paragraphs
the topic sentence occurred in initial position and in 7% in final position. Although this
observation suggests that position may correlate to a high degree with sentence significance,
it does not specify how the position indicator scales up to large texts. Edmundson [1968]
has shown that the position-based indicator could account for up to 53% of the important
sentences in a text. A much more careful study by Lin and Hovy [1997] showed that position
of important sentences in a text is genre dependent and that one can derive a partial ordering
with respect to their importance by means of training. For newspaper articles announcing
computer products, Lin and Hovy have shown that the title of an article is most likely
to contain significant topics, followed by the first sentence of the second paragraph, the
first sentence of the third paragraph, etc. In contrast, for the Wall Street Journal, the
order is: the title, the first sentence in the first paragraph, the second sentence in the
first paragraph, etc. The position indicator is applied in connection with other indicators
in other systems as well, such as those described by Kupiec et al. [1995], Manesh [1997],
Teufel and Moens [1997], and Jang and Myaeng [1997].

Keyword-based systems

We have already mentioned that keyword-based systems rely on the assumption that impor-

tant sentences in a text contain “bonus” words and phrases, such as significant, important,
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in conclusion and In this paper we show, while unimportant sentences contain “stigma”
words, such as hardly and impossible. Experiments carried out by Edmundson [1968], Rush
et al. [1971], Paice [1981], Kupiec et al. [1995], and Teufel and Moens [1997] have repeatedly
confirmed that keywords constitute a good indicator of importance, the recall of important
sentences being in the range of 40 to 50%. In fact, the keyword method is also used in com-
bination with other methods in systems such as those described by Manesh [1997], Aone et
al. [1997], Lehmam [1997], and Jang and Myaeng [1997]. The main characteristic of these
systems is that they all use predefined sets of cue phrases.

A similar, but somewhat different line of research is explored by Schwarz [1990], Bogu-
raev and Kennedy [1997], and Szpakowicz et al. [1997], who assume that important sentences
are those that contain keyphrases, i.e, noun phrases that are usually generated by term-
index identification algorithms. Term identification algorithms, such as that described by
Justeson and Katz [1995], usually produce an unordered set of terms. Important sentences
are considered to be those that contain these terms [Szpakowicz et al., 1997]. In a more
sophisticated approach, Boguraev and Kennedy [1997] use a set of rules that pertain to the
linguistic context in which the terms occur in order to assign an importance score to each
of them: those with maximal score are considered to be the most salient ones in a text. If
desired, one can then build a summary from the sentences that contain the most salient

phrases.

Information-extraction-based systems

Information-extraction-based summarization systems [DeJong, 1982, Paice and Jones, 1993,
Riloff, 1993, Liddy, 1993, McKeown and Radev, 1995, Gaizauskas and Robertson, 1997] are
usually used to generate abstracts that concern very specific aspects, such as the when, who,
what, why, etc., of some events. The assumption that they rely upon is that the extraction
systems that they use as front-ends are robust and that they select adequately the required
information. SUMMONS [McKeown and Radev, 1995], the most sophisticated system in
this category, is, in fact, the only system that thoroughly addresses the issue of generating
summaries that are not only informative but also coherent and cohesive. A collection of plan
operators and templates, which informs much work in natural language generation, is used
to combine frames of information that are extracted from a set of documents. The frames are
eventually mapped into English using FUF [Elhadad, 1991], a functional linguistic surface

generator.

Cohesion-based systems

Another assumption on which summarization systems rely upon is that important words,
sentences, and paragraphs are the highest connected entities in elaborate graph-like repre-

sentations of text. The earliest account of an approach that uses the idea of cohesion is
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that of Skorochodko [1971]. Given a text, Skorochodko shows how one can associate with
it a weighted graph whose nodes are given by individual sentences; weighted links between
nodes reflect the semantic overlap between the words of the corresponding sentences. On
the basis of the graph, Skorochodko shows how an importance score can be associated with
each sentence, a score that depends on the number of arcs that are incident to the node of
the sentence under consideration, the total number of nodes in the graph, and the number
of sentences in the longest connected fragment of text formed after the removal of the given
sentence. Skorochodko’s idea was also investigated by Hoey [1991] and implemented by
Preston and Williams [1994].

A simple form of cohesion, i.e., term repetition, was exploited by Salton et al. [1995],
Salton and Allan [1995], and Salton and Singhal [1996], who applied traditional information
retrieval techniques in order to associate with a text a weighted graph whose nodes are given
by paragraphs and whose weighted arcs are given by a cosine measure of similarity between
the corresponding paragraphs. Subsequent experiments [Mitra et al., 1997] have shown
that the degree of overlap between the paragraphs considered important by Salton et al.’s
algorithms and the paragraphs considered important by humans is significantly higher than
the overlap between the paragraphs considered important by Salton et al.’s algorithms
and a set of randomly extracted paragraphs. However, the overlap between the paragraphs
considered important by Salton et al.’s algorithms and the paragraphs considered important
by humans was lower than the overlap between the paragraphs considered important by

Salton et al.’s algorithms and the lead paragraphs.

Another cohesion-based approach to text summarization is that proposed by Barzilay
and Elhadad [1997], who explore the use of lexical chains. Lexical chains, as defined by
Morris and Hirst [1988, 1991], are sequences of semantically related words, that can be
automatically derived using a thesaurus [Morris, 1988] or WordNet [St-Onge, 1995, Hirst
and St-Onge, 1997]. Barzilay and Elhadad assign a strength to each chain on the basis of
its length and number of elements. They use then various heuristics in order to derive from

the chain scores an importance assignment to each sentence in a text.

The relationship between words constitutes the foundation of Mani and Bloedorn [1997a,
1997b] approach as well. The algorithm that they propose first builds a graph for each text,
whose nodes are given by words, phrases, and proper names, and whose arcs are both
semantic in nature, i.e., they denote relations of synonymy, coreference, etc., and location-
based, i.e., they denote adjacency. Using the cohesion graph, a vector of word weights is
associated with each document, in the style used by information retrieval systems. Mani
and Bloedorn’s system also takes as input a topic that is used by a spreading-activation
algorithm in order to re-weight the vectors of each document such that words that are
“close” to the topic receive higher values. A set of backend algorithms then determine

segment boundaries and select the important sentences in a text. An evaluation procedure
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has shown that the summaries generated in this way can reduce by 20% the time spent by
users on a retrieval task.

All the cohesion-based approaches described so far take sentences, paragraphs, and
text segments as elementary units. In contrast, the approach described by Lin [1995] and
Hovy and Lin [1997] takes concepts as being elementary units and explore the possibility of
determining automatically the concepts that subsume those determined important in a text.
Determining the subsumers will let one replace, for example, the list wheel, chain, pedal,
saddle, light, frame, and handlebars with bicycle, by exploiting a set of part-whole relations
defined in WordNet. A similar notion of condensation is explored at the formal level by
Reimer and Hahn [1997] in the context of textual information represented in terminological
knowledge bases. To a certain extent, even Boguraev and Kennedy’s [1997] algorithm for
determining the most salient keyphrases in a text can be interpreted as a syntax-based

condensation method.

Discourse-based systems

The assumption made by discourse-based summarization systems is that the high-level
structure of discourse can be used to determine the most important entities and sentences
of a text. Two theories have been used so far as basis for research in summarization: those of
Sidner [1983] and Mann and Thompson [1988]. In an exploratory study, Gladwin, Pulman
and Sparck Jones [1991] have applied manually Sidner’s focusing algorithm [1983] in order
to determine the entities that are salient in discourse. Their hypothesis was that the entities
that a text “is about” would be given by the entities that are in focus the largest number
of times. Their initial, informal evaluation suggested that there may exist a correlation
between the entities in focus and the entities that are salient in a text, but this line of
research has not been investigated further.

In contrast, the adequacy of using Mann and Thompson’s theory in text summarization
has been investigated more thoroughly. The idea that the nuclei of a discourse tree correlate
with what readers label as important has been long hypothesized [Mann and Thompson,
1988, Matthiessen and Thompson, 1988, Sparck Jones, 1993b]. And more recently, Rino
and Scott [1996] have discussed the role that not only nuclearity but also intentions and
coherence can have in going from discourse structures to text summaries. The first discourse-
based summarizer was built for Japanese by Ono et al. [1994], using the discourse parser
of Sumita et al. [1992]. Since the discourse trees built by Sumita et al. [1992] do not have
salient units associated with the nodes, an importance score is assigned to each sentence
in a tree on the basis of the depth where it occurs. An evaluation performed on editorial
and technical articles showed coverage figures of key sentences and most important key
sentences in the range of 41% and 60% for the editorial articles and 51% and 74% for
the technical papers, respectively. In a follow-up experiment, Miike et al. [1994] showed
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that when the abstracts generated by Ono et al. were presented to users in a standard,
information retrieval selection task, the time required was about 80% of the time required
to perform the same task using the original documents, with recall and precision remaining

approximately the same.

Other issues

In presenting the relevant work in the field, I have chosen a strategy similar to that of
Paice [1990], i.e., I reviewed the literature from the perspective of the assumptions that
various approaches rely upon. However, as I specified repeatedly, most summarization sys-
tems use a combination of methods for determining the most important units in a text.
Some of these systems combine the importance scores predicted by various methods using
manually crafted heuristics [Edmundson, 1968, Lehmam, 1997], while others rely on various
training techniques in order to determine the best way in which the various predictions can
be combined [Kupiec et al., 1995, Teufel and Moens, 1997, Jang and Myaeng, 1997]. An
approach that takes to an extreme the idea that adequate summarization can be achieved
only when a variety of features that range from surface-based to pragmatic-based are ac-
counted for is proposed by Aretoulaki [1996, 1997]. Aretoulaki envisions that one can go
from natural language text to fully coherent summaries (this accounts for the process of
rewriting the selected important textual units as well) by using both symbolic and con-
nectionist techniques. A collection of morphological, syntactic, semantic, and pragmatic
analyzers are supposed to map the input text into surface and rhetorical features. A cas-
cade of neural networks is then supposed to map these features into pragmatic features,
which pertain to the goals and plans of the writer and the rhetorical means by which these
plans and goals are achieved. One of Aretoulaki’s main contributions comes from the ex-
perimental side of her work, which suggests that the use of pragmatic features instead of
surface features improves the recall and precision of the process that identifies the sentences

that are important in a text.

6.7 Summary

In this chapter, I first discussed the importance of evaluating not only the outputs of the
summarization programs that we build, but also the adequacy of the assumptions that
these programs rely upon; and I claimed that this enables us to distinguish the problems
that pertain to a particular implementation from those that pertain to the underlying
theoretical framework. To support this claim, I designed an experiment that showed that the
theoretical concept of discourse structure can be used effectively for summarizing text. The
experiment suggested that discourse-based methods and a simple mapping from discourse

trees to importance scores can account for determining the most important units in a text
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with a recall and precision as high as 70%.

I also showed how the concepts of rhetorical analysis and nuclearity can be treated
algorithmically and I compared recall and precision figures of a summarization program
that implements these concepts with recall and precision figures that pertain to a baseline
algorithm and to a commercial system, the Microsoft Office97 summarizer. The discourse-
based summarization program that I propose significantly outperforms both the baseline
and the commercial summarizer.

By comparing the recall and precision figures that characterized the important sentences
derived from the discourse structures that were built by human analysts and the discourse-
based summarizer, I identified and discussed two possible sources of improvement. The first
concerns the quality of the discourse structures that are derived by the rhetorical parsing
algorithm. The second concerns the mapping between these structures and the importance

scores that are assigned to textual units.
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Chapter 7

From local to global coherence: A
bottom-up approach to text

planning

7.1 Motivation

Traditionally, the generation of natural language texts has been modeled as a pipeline of
independent processes that assumes a generic architecture similar to that shown in figure 7.1.
From this perspective, a natural language generation (NLG) system is supposed to support

the following processes, or modules:

Content determination delineates from a given knowledge base the information that is

relevant to a certain query or topic;

Content organization determines the way in which this relevant information is struc-

tured. The structuring can be done at different levels of refinement:

Text planning pertains to partitioning relevant information into units that consist

of similar concepts clustered around an organization focus;

Paragraph planning aims at structuring and ordering text units into clause-like

segments so that the outcome is coherent;

Sentence planning aspires at rendering the information encoded in text plans into a lin-
guistically motivated representation; this includes mapping text plans into grammat-
ical relations, generating referring expressions for individual entities, and employing

ordering constraints with respect to clauses and sentences;

Realization and Lexical Choice map sentence plans into text and choose the lexical

items that are appropriate for conveying the message that is encoded by the sentence
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Paragraph Planning
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Figure 7.1: Traditional pipeline architecture of an NLG system. Boxes with heavy lines
represent processes; boxes with light lines and rounded corners represent intermediate rep-
resentations that refine a formal representation into a natural text.

plans.

All current flexible approaches to text and paragraph planning that assume that the ab-
stract structure of text is a tree-like structure are, essentially, top-down approaches. Some
of them define plan operators and exploit hierarchical planning techniques [Hovy, 1993,
Moore and Paris, 1993, Moore and Swartout, 1991, Cawsey, 1991, Maybury, 1992] and
partial-order planning techniques [Young and Moore, 1994]. Others assume that plans
are hierarchically organized sets of frames that can be derived through a top-down ex-
pansion process [Nirenburg et al., 1989, Meteer, 1992]. And the recursive application of
schemata [McKeown, 1985] can be thought of as a top-down expansion process as well.!

One of the major strengths of all these approaches is that, given a high-level commu-
nicative goal, they can interleave the task of content organization and content selection, and
produce different texts for different knowledge bases and users [McKeown, 1985, Paris, 1991,
MecCoy and Cheng, 1991, Moore and Swartout, 1991]. Unfortunately, this strength is also
a major weakness, because top-down and schema-based approaches are inadequate when
the high-level communicative goal boils down to “tell everything that is in this knowledge
base” or “tell everything that is in this chosen subset”. The reason for this inadequacy
is that these approaches cannot ensure that all the knowledge that makes up a knowledge
pool will be eventually mapped into the leaves of the resulting text plan; after building a
partial text plan, which encodes a certain amount of the information found in the initial
knowledge pool, it is highly likely that the information that is still unrealized will satisfy
none of the active communicative goals. In fact, because the plan construction is plan-
operator- or schema-step-driven, top-down approaches cannot even predict what amount of
the initial knowledge pool will be mapped into text when a certain communicative goal is
chosen. The only way to find a text plan that is maximal with respect to the amount of
knowledge that is mapped into text is to enumerate all possible high-level communicative

goals and all plans that can be built starting from them, but this is unreasonable.

'Section 7.8 discusses in more details the specifics of these approaches.
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Given that most NLG systems employ a pipeline architecture in which content determi-
nation and content organization are treated as separate processes [Reiter, 1994], I believe
that it is critical to provide a flexible solution to the problem of mapping a full knowl-
edge base (or any of its chosen subsets) into text. Previous research in text planning® has
addressed this issue only for text genres in which the ordering of sentences is very rigid (geo-
graphical descriptions [Carbonell and Collins, 1973], stories [Schank and Abelson, 1977], and
fables [Meehan, 1977]), has assumed that text plans can be assimilated with linear sequences
of textual units [Mann and Moore, 1981, Zukerman and McConachy, 1993], or has employed
very restricted sets of rhetorical relations [Zukerman and McConachy, 1993). Unfortunately,
the linear structure of text plans is not sophisticated enough for managing satisfactorily a
whole collection of linguistic phenomena such as focus, reference, and intentions, which
are characterized adequately by tree-like text plans [Hovy, 1993, Moore and Paris, 1993,
Moore and Swartout, 1991, Cawsey, 1991, Paris, 1991, McCoy and Cheng, 1991].

In this chapter, I provide a bottom-up, data-driven solution for the text planning problem
that relies on the mathematical model of text structures that was proposed in chapter 2.
The algorithms that I propose here not only map a knowledge pool into text plans whose
leaves subsume all the information given in the knowledge pool, but can also ensure that

the resulting plans satisfy multiple high-level communicative goals.

7.2 Foundations of the bottom-up approach to text planning

7.2.1 Introduction

Let us assume that we are given the task of constructing a text plan whose leaves subsume
all the information given in a knowledge base (KB). For simplicity, | assume that the KB is
represented as a set of semantic units U = {uy, ug,...,u,}. 1 also assume that rhetorical
relations of the kind used throughout this thesis might hold between pairs of semantic units
in U. These rhetorical relations can be derived from the KB structure, from the definitions in
a library of plan operators, or can be given as input by the creator of the KB. For example, if
the semantic units are stored in a description-logic-based KB such as LooM [MacGregor and
Bates, 1987] or CLAssIc [Patel-Schneider et al., 1991, Brachman, 1992], one can derive some
rhetorical relations by inspecting the types of links and paths between every pair of semantic
units. When the KB consists of a set of frames with clearly defined semantics, such as those
produced by systems developed for information extraction tasks [McKeown and Radev,
1995], one can use the underlying semantics of frames to derive rhetorical relations between
the information encoded in different slots. For less-structured KBs, one can use the libraries

of plan operators that were developed by researchers in hierarchical planning [Hovy, 1993,

2In the rest of this thesis, I will adopt the traditional jargon and refer to the task of content organization
as “text planning”.
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Moore and Paris, 1993, Meteer, 1992, Moore, 1995] and derive the set of rhetorical relations
that hold between every pair of semantic units. For very rich KBs, such as that used in
the HealthDoc Project [Wanner and Hovy, 1996, Hovy and Wanner, 1996, DiMarco and
Foster, 1997, DiMarco et al., 1997, Hirst et al., 1997], one can simply extract these relations

directly, because they are explicitly represented.

Each of the alternatives described above has been already discussed in the literature to
a greater or lesser extent. Therefore, for the purpose of this thesis, I will simply assume
that the input for a text planner is a set U of semantic units and the set Ry of rhetorical
relations that hold between every pair of units in U. Note that there are no constraints on
the number of rhetorical relations that may hold between two semantic units: on one hand,
when two units are not related, no rhetorical relation holds between them at all; on the
other hand, depending on the communicative goal that one wants to emphasize, more than
one relation may hold between two units [Mann and Thompson, 1988, Moore and Pollack,

1992]. In the latter case, I assume that Ry lists all possible relations.

For example, the KB in (7.1) contains four semantic units among which five rhetorical
relations hold (7.2).

Ay = “Insulin-dependent diabetes is the less common type of diabetes.”

By = “The pancreas, a gland found behind the stomach, normally
makes insulin.”

(7.1) U= e . .

¢1 = “With insulin-dependent diabetes, your body makes little or no

insulin.”

Dy = “The condition that you have is insulin-dependent diabetes.”

rhet_rel(ELABORATION, Ay, D1)

rhet_rel(ANTITHESIS, A1, D1)

rhet_rel(JUSTIFICATION, C1, D1)

(
(

(7.2) Ry, = { rhet_rel(ELABORATION, Cq, D)
(

rhet_rel(ELABORATION, By, C1)

The KB in (7.3) contains three semantic units among which five rhetorical relations hold (7.4).

Ag = “We can go to the bookstore.”
(7.3) Uy =

|

@
[}

Il

“We can go to Sam’s bookstore.”

C9 = “You come home early.”
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>(asc / ascription
:tense present
:domain (cond / abstraction
:lex condition
:determiner the
:process (have / ownership
:lex have-possession
:tense present
:domain (hearer / person)
:range cond))
:range (diab / abstraction
:lex diabetes
:determiner zero
:property-ascription (ins / quality
:lex insulin-dependent)))

Figure 7.2: A Sentence Plan Language (SPL) representation of textual unit by in (7.1),
“The condition that you have is insulin-dependent diabetes”.

rhet_rel(ELABORATION, By, Az)

rhet_rel(CONDITION, Cz, A3)

rhet_rel(MOTIVATION, Az, C3)

(
(
(7.4) Ry, = { rhet_rel(CONDITION, Cg, By)
(
(

rhet_rel(MOTIVATION, B, Cz)

To increase readability, the semantic units are given in textual form, but one should under-
stand that a chosen formal language is actually used. For example, in HealthDoc, units are
represented using the language of sentence plans (SPL), which was developed within the
Penman group [Penman Project, 1989, Kasper, 1989] (see figure 7.2). As in the rest of the
thesis, the rhetorical relations are represented as first-order predicates whose first argument
denotes the name of the rhetorical relation, and whose second and third arguments denote
the satellite and the nucleus that pertain to that relation.

In this chapter, I show how one can derive text plans from inputs of the kind shown

in (7.1)-(7.2) and (7.3)—(7.4).

7.2.2 Key concepts

The foundations of the bottom-up approach to text planning that I will describe rely on
an under-exploited part of Mann and Thompson’s Rhetorical Structure Theory [1988] and
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Satellite before Nucleus
Antithesis Conditional
Background Justify
Concessive  Solutionhood
Nucleus before Satellite
Elaboration Purpose
Enablement Restatement
Evidence

Figure 7.3: Canonical orders of text spans for rhetorical relations [Mann and Thompson,
1988, p. 256]

on the formalization of text structures discussed in chapter 2. During the development
of RST, Mann and Thompson noticed that rhetorical relations exhibit strong patterns of
ordering of their nuclei and satellites, which they called canonical orderings (see figure 7.3).
The key idea of the bottom-up approach to text planning is to formalize both the strong
tendency of semantic units to obey a given ordering and the inclination of semantically and
rhetorically related information to cluster into larger textual spans [Mooney et al., 1990,
MecCoy and Cheng, 1991]. In other words, the bottom-up approach to text planning assumes
that global coherence can be achieved by satisfying the local constraints on ordering and

clustering and by ensuring that the discourse tree that is eventually built is well-formed.

7.3 The strengths of the local constraints that characterize

coherent texts

The canonical orderings listed by Mann and Thompson (see figure 7.3) do not cover all
rhetorical relations and do not provide clear-cut evidence about how “strong” the ordering
preferences are. Fortunately, the corpus study discussed in chapter 4 provides empirical
data for determining both the ordering preferences of the nucleus and satellite of a much
larger set of rhetorical relations and the “strength” of these preferences. The corpus analysis
also provides data for determining the strength of the tendency of rhetorically related units
to cluster (in some cases, the nucleus and the satellite need not be adjacent).

Using the relational database that encodes the results of the corpus analysis, I com-
puted, for each rhetorical relation, four data, which is explained below: the strength of the
preference for the nucleus to precede the satellite, s,; the normalized average number of sen-
tences that separate the nucleus and satellite, avgs; the average number of clause-like units
that separate the nucleus and satellite, avg,.; the strength of the clustering preference, s.,
which reflects the inclination of rhetorically related units to be realized as adjacent clauses.
Table 7.1 presents part of the statistical data that I derived for the rhetorical relations that

I use in the examples given in this chapter. Appendix E presents the statistical data for
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each rhetorical relation that was used in the corpus.

The strength of the ordering of a relation R, s,(R), is a number between 0 and 1 that
reflects the percentage of cases in which the nucleus of a relation was realized before the
satellite in the examples found in the corpus. For example, the strengths of the ordering
preferences in table 7.1 show that 97% of the ELABORATIONS and 36% of the CONCESSIONS
in the corpus realize the nucleus before the satellite. The closer the value is to 1, the more
likely it is that rhetorical relation R realizes its nucleus before the satellite. The closer the
value is to 0, the more likely it is that rhetorical relation R realizes its nucleus after the
satellite.

The second column in table 7.1 represents the normalized average number of sentences
that separate the nucleus and satellite of each rhetorical relation in the corpus. The nor-

malized average avgs(R) is computed using formula (7.5), which is given below.

Z Sentence_distancer, + 1

(7'5) avgs(R) - count(R)

re Corpus

In formula (7.5), Sentence_distancey reflects the content of the field of the same name in the
database and count(R) represents the number of examples in the corpus that were labelled
with relation R. Since Sentence_distanceg takes values that are greater than or equal to
—1, we add 1 to each value in order to obtain a normalized average that is greater than or
equal to 0. The closer the average is to 0, the more likely it is that rhetorical relation r
realizes its nucleus and satellite as adjacent clauses within the same sentence. The larger
the average is, the more likely it is that rhetorical relation R realizes its nucleus and satellite
as sentences that are not even adjacent.

The third column in table 7.1 represents the average number of clause-like units that
separate the nucleus and satellite of each rhetorical relation in the corpus. The average

avg.(R) is computed using formula (7.6) below.

(7.6) avg.(R) =

Z Clause_distanceg, + Distance_to_salient_unity + 1
count(R)

re Corpus
In formula (7.6), Clause_distancey and Distance_to_salient_unit, reflect the content of the
fields of the same names in the database. Since Distance_to_salient_unit, takes values that
are greater than or equal to —1, we add 1 to each value in order to obtain a figure that is
greater than or equal to 0. The closer the average is to 0, the more likely it is that rhetorical
relation R realizes its nucleus and satellite as adjacent clauses.
Since the textual units of interest are clause-like units, the strength of the clustering
preference of a relation R, s.(R), is computed on the basis of the average clause distance
between the nucleus and satellite of a rhetorical relation by taking the complement with

respect to 1 of the average clause distance. In the cases in which the complement yields a
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Rhetorical relation | Strength | Average | Average | Strength
of the sentence | clause of the
ordering | distance | distance | clustering
preference | between | between | preference
(nucleus | nucleus | nucleus
first) and and
satellite | satellite
SO a//Ug:S a//UgC SC
ELABORATION 0.97 1.08 0.90 0.10
CONCESSION 0.36 0.11 0.08 0.92
JUSTIFICATION 0.15 0.82 0.53 0.47
CONDITION 0.41 0.07 0.02 0.98
MOTIVATION 0.73 0.64 0.36 0.64

Table 7.1: Ordering and adjacency preferences for a set of rhetorical relations.

negative value, which happens for a few outliers, we assign to the clustering preference the
value 0.05 (see formula (7.7)).

1 —avg.(rR) if 1 —avg.(R) > 0,

0.05 otherwise.

Values of s.(R) that are close to 0 reflect no preference for clustering. Values close to 1
reflect a preference for clustering into units that are adjacent. For example, the strengths
of the clustering preferences that pertain to CONCESSION and CONDITION reflect a strong
tendency of textual units that are related through these relations to be realized as adjacent
units. In contrast, the clustering preference associated with the relation of ELABORATION
shows a weaker tendency of textual units that are related though this relation to be realized

as adjacent units.

The results of the corpus analysis provide strong indications about ways to achieve local
coherence. Using the data in table 7.1, one can determine, for example, that if an NLG
system is to produce a text that consists of two semantic units for which a CONCESSION
relation holds, then it would be appropriate to aggregate the two units into only one sentence
and to realize the satellite first. In the case that an ELABORATION relation holds between
the two semantic units, it is appropriate to realize the units as two different sentences, with

the nucleus being presented first.
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Status = {NUCLEUS,SATELLITE}
Type = {ELABORATION}
Promotion = {A2}

A2-C2

Status = {SATELLITE}
Type = {CONDITION}
Promotion = {B2}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {A2}

A2

Status = {SATELLITE}
Type = {LEAF}
Promotion = {C2}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {B2}

Figure 7.4: Example of a text plan in which units A5, By are tree-adjacent but not linear-
adjacent.

7.4 From local to global coherence

7.4.1 Preamble

One way to formalize these local coherence preferences is as weighted constraints on order-
ing and adjacency. If one uses this approach, then coherent texts will be those that are
characterized by valid text plans that satisfy “most” of the ordering and adjacency con-
straints. Before fleshing out the mathematics of “most”, I believe that it is worthwhile to
draw the reader’s attention to the fact that a proper treatment of adjacency constraints
is not straightforward because the corpus analysis provides data that pertains to a linear
structure (the sequence of textual units), whereas text plans are tree-like structures. The
position taken here is that a proper treatment of adjacency constraints is one that takes
seriously the nuclearity properties that characterize valid discourse trees. When nuclearity
is accounted for, two semantic units are considered tree-adjacent if they are arguments of
a rhetorical relation that connects two subtrees and if the arguments are salient units in
those trees. For example, if a certain claim is followed by two evidence units that are con-
nected through a JOINT relation, it is appropriate to assume that both evidence units are
tree-adjacent to the claim. Two semantic units are considered linear-adjacent if they are
adjacent in the text that results from an in-order traversal of the discourse tree. In the text
plan shown in figure 7.4, which is a valid text plan for problem (7.3)-(7.4), units Ay, By are
tree-adjacent but not linear-adjacent.

In order to provide a mathematical grounding for “most”, I associate to each valid
discourse tree T', a weight function w(7'). The weight of a tree is defined as the sum of the

intrinsic weight, w;(T) and the extrinsic weight, w.(T).
(7.8) w(T) = wi(T) + we(T)
The intrinsic weight is given by a linear combination of the weights of the ordering con-
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straints (worder (R, 1)), tree-adjacency constraints (weree_qq;(R,7")), and linear-adjacency
constraints (wi,_qq; (R, 1)) that are satisfied by each rhetorical relation R in the discourse
structure 7' that is built (7.9).

(79) w; (T) = Z (worder(R7 T) + 0-5wtr66_adj (R7 T) + 05wlzn_ad] (R7 T))
ReT

The coefficients in (7.9) reflect the intuition that ordering and clustering are equally im-
portant for achieving coherence; nevertheless, extensive experiments could yield different

coefficient values. To date, I have not carried out such experiments.

For every relation R € 1" the weights worger (R, 1), Wiree adj (R, 1), and wiiy,_qq;(R,T') are
defined as shown in (7.10), (7.11), and (7.12) respectively.

So(R) if the nucleus of R goes before the satellite,
(7.10) Worder (R, T') =
1 —5,(R) otherwise.

(711) Weree_ady (R7 T) = SC(R)

s¢(R) if the nucleus of the satellite of R are adjacent
(7.12) Wiin_adj (R, 1) = in an in-order traversal of the leaves of T,

0 otherwise.

If the nucleus of a relation goes before the satellite, then the value of the ordering weight is
given by the strength s,(R) derived from the corpus. If the nucleus goes after the satellite,
the value of the ordering weight is given by the complement of s,(R). Since the rhetorical
relation R is used in the tree, it follows that its arguments are tree adjacent. Hence, the
value of the tree adjacency weight is given by the strength of the clustering tendency that
was derived from the corpus. In the case where the arguments of a rhetorical relation are
linear adjacent, the value of the linear adjacency weight is given by the strength of the

clustering tendency. If the units are not adjacent, the value is 0.

Since the input to the text-planning problem contains all possible relations between the
semantic units given as input, it is likely that the final discourse tree will not use all these
relations. However, despite the fact that some relations do not have a direct contribution
to the tree that is built, some of their ordering and adjacency constraints may nevertheless
be satisfied. I assume that discourse plans that satisfy ordering and adjacency constraints
that are not explicitly used in the plans are “better” than those that do not, because the

former may enable the reader to derive more inferences.

For a better understanding of this concept, assume, for example, that we are supposed
to build a text plan for two units, A and B, between which two rhetorical relations hold:

rhet_rel(R1,A,B) and rhet_rel(R2,A,B). Assume that R1 and R2 have the same clustering
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rhet_rel(R1,A,B)
rhet_rel(R2,A,B)

Status = {NUCLEUS,SATELLITE}
Type = {R1}
Promotion = {B}

Status = {NUCLEUS,SATELLITE}
Type = {R1}
Promotion = {B}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {A}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {B}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {A}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {B}

a) b)

Figure 7.5: Extrinsic and intrinsic weights: an example.

preference and that the ordering preference of R1 is 0.5, while the order preference of R2
is 0.8. That is, relation R1 has no preference for realizing the nucleus or satellite first, but

relation R2 has a strong preference for realizing the nucleus first.

Assume now that we use relation R1 to construct a text plan. If we consider only
the intrinsic weight of text plans, we have no way to choose between the two solutions
of this problem, which correspond to the two different orderings of the units. The text
plans associated with these orderings are shown in figure 7.5. Both trees in figure 7.5
have the same weight, because the ordering preference for R1 is 0.5. However, the R2
relation that holds between the same two units has a preference for realizing the nucleus
B first. If our purpose is to enable the reader to derive as many inferences as possible,
it would be then desirable to choose the text plan in which the ordering preference of
the R2 relation is also satisfied. In this case, the text plan shown in figure 7.5.b will be
the preferred plan. This position fully embraces Moore and Pollack’s [1992] observation
that both intentional and informational coherence should be accommodated by a theory of
discourse. The mathematical model of text structures that was proposed in chapter 2 does
not provide the means to explicitly represent multiple relations in the final discourse plans,
but nevertheless, the extrinsic weight favors the plans that enable the reader to recover

multiple discourse interpretations.

The extrinsic weight is given by a linear combination of the weights of the ordering and
linear-adjacency constraints that are satisfied by each relation R that does not occur in the

final text plan:

(7.13) we(T) = (0.25Worder(R, T) + 0.25Wiin_ag (R, T))
RgT

The coefficients that we use in (7.13) reflect the intuition that the extrinsic weight of a text

237



Status = { NUCLEUS,SATELLITE}
Type={ELABORATION}
Promotion = {A2}

Status = { NUCLEUS}
Type={CONDITION} g,
Promotion = {A2} —

Status = { SATELLITE}
Type={LEAF}
Promotion = {B2}

Status={SATELLITE}
Type={LEAF}
Promotion = {C2}

Status={NUCLEUS}
Type={LEAF}

c2 Promotion = { A2}

A2

Figure 7.6: Example of a valid text plan for the problem in (7.3)—(7.4).

Relation Intrinsic weight w; (R, T)

worder(RaT) 0~5wtree_adj (R,T) 0~5wlin_adj (R,T)
rhet_rel(ELABORATION, By, A>) 0.97 0.05 0.05
rhet_rel(CONDITION, Ca, As) 0.59 0.49 0.49
rhet_rel(CONDITION, Ca, Ba)
(
(

rhet_rel(MOTIVATION, Ag, C2)
rhet_rel(MOTIVATION, Bz, Cz)
w,(T) : 2.64 1.56 0.54 0.54

Table 7.2: The intrinsic weights associated with the discourse tree in figure 7.6. Empty
cells have weight zero.

plan is less important than the intrinsic weight (7.9). In the current implementation, the
extrinsic weight formula uses coefficients that are half of the values of the coeflicients that
are used to evaluate the intrinsic weight of a text plan.

A complete example of the extrinsic and intrinsic weights associated with a planning
problem and a text plan is given in tables 7.2 and 7.3, which present the weights that
pertain to the text plan in figure 7.6.

7.4.2 A precise formulation of the bottom-up approach to text planning

As 1 specified in section 7.2.2, the key idea of the bottom-up approach to text planning
is to formalize both the strong tendency of semantic units to obey a given ordering and
the inclination of semantically and rhetorically related information to cluster into larger
textual spans. The intrinsic and extrinsic weights that I introduced here provide an objec-
tive measure of the ordering and clustering tendencies. Given the discussion above, finding
a solution to the text-planning problem corresponds then to finding a discourse tree that
is valid, i.e., satisfies the constraints described in chapter 2, and whose weight is maxi-
mal. Since the total number of trees that can be built with a set of n units is very large
(ntd"=1/\/m(n = 1)3)(1 + O(%))) [Sedgewick and Flajolet, 1996], it is obvious that we can-

not merely enumerate all the trees and select then those that are valid and whose weights
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Relation Extrinsic weight w.(r,T")
0~25worder(R, T) 0.25wlm_adj (R, T)

rhet_rel(ELABORATION, By, Az)

rhet_rel(CONDITION, C2, A2)

rhet_rel(CONDITION, Cy, B>) 0.147

rhet_rel(MOTIVATION, A, C3) 0.182 0.160

rhet_rel(MOTIVATION, By, C2) 0.182

we(T) : 0.671 0.511 0.160

Table 7.3: The extrinsic weights associated with the discourse tree in figure 7.6. Empty
cells have weight zero.

are maximal.

7.4.3 Bottom-up algorithms for text planning
A Cocke-Kasami-Younger-like algorithm for text planning

The simplest way to solve the text-planning problem is to generate all the valid trees that
can be built given the units in U/ and return those whose weights are maximal. This can be
done by a variation of the Cocke-Kasami-Younger parsing algorithm [Younger, 1967] along
the lines described by Brew [1992] (see figure 7.7). The algorithm starts with the initial set
of n singleton trees that can be built with the units in U. It then constructs, at each step,
all the valid trees that are made of ¢ semantic units, where ¢+ = 2...n. Thus, for each ¢, the
algorithm searches for all pairs of trees that have j and ¢ — 7 semantic units and builds a new
tree with ¢ semantic units if possible. The function CanPutTogether(Ty,T%, Ry) returns all
relations rhet_rel(R,s,n) € Ry that have not been used in the construction of any of the
two trees T7 and Ty and whose arguments s and n belong to the set of salient units of the
two trees. Each such relation R is used to enhance the set of valid trees that are associated
with the entry Chart[i]. The trees that are added to the chart (see line 9 in figure 7.7)

comprise both possible orderings in which two subtrees can be assembled.

Theorem 7.1. Algorithm 7.7 is both sound and complete, i.e., it derives only valid trees

and it always derives the valid trees of mazximal weight.

Sketch of the proof. The soundness of the CKY-like algorithm follows immediately from
the observation that the trees that are appended to the Chart at each step ¢ > 1 enforce
the compositionality criterion and all other characteristics of valid text structures. The
completeness of the algorithm follows by induction on the number of units given in the
input. If the input contains only one unit, the corresponding tree is derived in line 1 of the
algorithm. The CKY-like algorithm considers at each step all possible ways in which two
valid trees can be put together to create a larger tree, which has the initial trees as subtrees

of the root. Hence, the algorithm derives all the valid trees that can be built with the units
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Input: A set U = {uy,...,u,} of n semantic units;
A set Ry of rhetorical relations that hold among the units in U.
Output: The text plans of maximal weight that can be built with the units in U.

1. Chart[l] :={T(u1),...,T(us)};

2 for 1 :=2to n

3 for j:=1to ¢

4. for each 1) € Chart[j]

5. for each T, € Chart[i — j]

6 rels := CanPutTogether(Ty, T3, Ry);

7 if rels # NULL

8 for each r € rels

9. Chart[i] :== Chart[t] U newTree(r, T, T3) U newTree(r, Ty, T1);
10.  Select from Chart[n] the tree of maximal weight.

Figure 7.7: A Cocke-Kasami-Younger-like (CKY-like) algorithm for text planning.

in U and the relations Ryp. Because it derives all the trees, it follows that it derives the

trees of maximal weight as well. O

Although the CKY-like algorithm is both sound and complete, in the worst case it can

generate an exponential number of trees.

A greedy Cocke-Kasami-Younger-like algorithm for text planning

If one gives up on completeness, the CKY-like algorithm can be modified so that not all valid
discourse trees are generated, but only those that look more promising at every intermediate
step. The CKY-like algorithm can be thus modified into a greedy one, which is more efficient
because it generates for every pair of trees j and ¢ — j only one tree, that of local maximal

weight.

A constraint-satisfaction-based (CS-based) algorithm for text planning

Another way to improve the effliciency of the CKY-like algorithm is by using constraint
satisfaction techniques. In this subsection, I describe a CS-based algorithm that first ap-
proximates the rich tree-like structure of text plans by a linear sequence. That is, the
algorithm determines the sequence of semantic units that is most likely to be coherent, i.e.,
satisfies most of the linear ordering and adjacency constraints. For some applications, this
sequence is sufficient. For other applications, full text plans might be needed. In the latter
case, the compilation algorithm described in chapter 3 can be used in order to build a full

tree-plan on top of the sequence.
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Input: A set U = {uy,...,u,} of n semantic units;
A set Ry of rhetorical relations that hold among the units in U.
Output: An ordering over U that is most likely to correspond to a coherent text.

Create a CSP problem with n variables, each ranging over the set {1,2,... ,n}.
for each rhet_rel(NAME, u;,u;) € Ry
Assert weighted ordering and adjacency constraints for the units u;, u;.
foreach pair of units u;, u; that are not arguments of the same set of relations
Assert one unicity constraint.
Find an ordering of the elements in U for which the overall weight of the
constraints that are satisfied is maximal.

O T W N

7.7 Use the compilation algorithm in figure 3.11 to build a valid tree structure on top
of the sequence obtained at step 6.

Figure 7.8: A CS-based algorithm for text planning.

The CS-based algorithm (see figure 7.8) associates initially to each semantic unit in the
input an integer variable whose domain ranges from 1 to n, where n is the cardinality of
U. For example, algorithm 7.8 associates to input (7.3) — (7.4) three constraint variables,
Uny, Un, s Vo, , €ach ranging from 1 to 3.

For each rhetorical relation, the algorithm associates one weighted ordering and one
weighted adjacency constraint along the lines described in section 7.4. For example, for the
rhetorical relation rhet_rel(CONDITION, Cq, Bg), the ordering constraint is ve, > vg, and has
a weight of 0.41, and the adjacency constraint is (ve, = vg, + 1) V (v, = vg, — 1) and has
a weight of 0.98. Hence, the adjacency constraints are formalized by stipulating that the
difference between the values of the variables that are associated with the corresponding

nucleus and satellite of a rhetorical relation be 1.

Since the CS-based algorithm uses only a linear representation of text plans, it is ob-
vious that the modeling of the adjacency constraints is only an approximation of the way
adjacency constraints are accounted for by the CKY-like algorithm. For example, the
text plan in figure 7.9 has a greater weight than the weight that results from summing
all the weights of the constraints that are satisfied by the linear sequence Cg, A, By. The
reason is that, in the linear sequence, the adjacency constraint that pertains to relation
rhet_rel(MOTIVATION, Bz, C2) is not satisfied because units By, C3 are not adjacent in the
linear sequence; however, they are adjacent in the resulting tree, due to the nuclearity

constraints.

Since in the CS-based approach the initial target is linear, with every pair of variables
the algorithm asserts also a unicity constraint; this constraint prevents two semantic units

being mapped into the same value. However, if two semantic units occur as arguments
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Status = {NUCLEUS,SATTELITE}
Type = {MOTIVATION}
Promotion = {C2}

Status = {NUCLEUS}
Type = {MOTIVATION} B2
Promotion = {C2} —

Status = {SATELLITE}
Type = {LEAF}
Promotion = {B2}

Status = {NUCLEUS}
Type = {LEAF}
Promotion = {C2}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {A2}

C2 A2

Figure 7.9: Example of a text plan whose weight is different from the weight of the corre-
sponding linear plan.

of the same relations in a set Ry, it is impossible to distinguish between their rhetorical
contributions to the text. In these cases, the unicity constraint is not asserted.

Once a constraint satisfaction problem has been derived from the input, any classical CS
algorithm can be employed to find out the linear sequence whose overall weight is maximal.
The compilation algorithm in figure 3.11 can then be applied to this sequence and full text
plans can be obtained. In figure 7.8, the last step of the CS-based algorithm is labelled with
a * symbol, in order to denote this optionality.

The CS-based implementation finds an ordering of the elements in {/ that maximizes the
number of ordering and adjacency constraints that are satisfied. As I have discussed above,
the treatment of adjacency constraints is just an approximation of the correct treatment that
pertains to the CKY-like algorithm. In addition, in the case of the CS-based algorithm,
the contribution of each of the rhetorical relations in the input is not affected by that
relation being used or not in the final tree structure of the text. This contrasts again with
the treatment in the CKY-like algorithm, where the rhetorical relations that participated
directly in the discourse representation contributed more to the final weight of the tree
than the relations that were not used in the final discourse structure. Because of these
approximations, it is possible that the CS-based algorithm would generate sequences that

are different from those derived by the CKY-like algorithm.

7.5 Implementation and experimentation

I implemented in Common Lisp both the Cocke-Kasami-Younger-like and the CS-based
algorithms. The constraint-satisfaction based algorithm was also integrated in the Sentence
Planner architecture of the HealthDoc Project [Wanner and Hovy, 1996, Hovy and Wanner,
1996, DiMarco and Foster, 1997, DiMarco et al., 1997, Hirst et al., 1997], whose goal is
to produce medical brochures that are tailored to specific patients. In fact, the semantic

units in (7.1) are members of a large KB that encodes information to be given to diabetic
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patients.

A knowledge base in HealthDoc, which is called a Master Document, encodes all the
material that is needed in order to generate customized documents for different types of
patients. The semantic units of a Master Document are represented using a variant of the
Sentence Plan Language [Penman Project, 1989, Kasper, 1989] and are annotated with
information that concerns the suitability of the units for being conveyed to a particular
patient, with the rhetorical relations that hold among units, with coreference links, etc.
When the system is given as input a set of features that characterize a patient’s age, medical
history, cultural background, etc., it selects the set of semantic units that are relevant for
that patient. After the units have been selected, the CS-based algorithm runs and returns
an ordering of the semantic units that is most likely to be coherent. When given, for
example, the semantic units in (7.1) among which the rhetorical relations in (7.2) hold, the
HealthDoc discourse module that implements algorithm 7.8 proposes that in order to be
coherent, the semantic units should be realized in the order D1, Ay, C1, By, which corresponds

roughly to this text:

(7.14)  The condition that you have is insulin-dependent diabetes. Insulin-dependent
diabetes is the less common type of diabetes. With insulin-dependent diabetes,
your body makes little or no insulin. The pancreas, a gland found just behind the

stomach, normally makes insulin.

Once the discourse structure for the text has been fixed, other modules operate on
the semantic units in the structure. Up to this point, the following modules have been

implemented (see [Hovy et al., 1998] for a detailed discussion):

Aggregation — to remove redundancies across neighboring expressions;
Ordering — to place clause constituents in specific positions in the emerging sentence;
Reference — to plan pronominal and other reference.

Each of the modules operates on the sequence of SPL structures that was planned by the
discourse module and modifies it in order to increase the quality of the text. After the other
modules operate on the structure that was derived by the discourse module, the resulting

text is this:

(7.15)  The condition that you have is insulin-dependent diabetes, which is the less com-
mon type of diabetes. With this condition, your body makes little or no insulin.
Insulin is normally made in a gland called the pancreas found just behind the

stomach.
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Status = {NUCLEUS,SATELLITE}
Type = {ELABORATION}
Promotion = {A2}

A2-C2

Status = {NUCLEUS}
Type = {LEAF} C2-B2
Promotion = {A2} E—

Status = {SATELLITE}
Type = {CONDITION}
Promotion = {B2}

A2

Status = {SATELLITE}
Type = {LEAF} B2
Promotion = {C2} —

Status = {NUCLEUS}
Type = {LEAF}

c2 Promotion = {B2}

Figure 7.10: The text plan of maximal weight that corresponds to problem (7.3)-(7.4).

Other issues

Although the CKY-like and the CS-based algorithms do not enumerate all the trees that can
be built with the units given as input, they are still highly expensive in both space and time.
In practice, I have noticed that my current implementations cannot be applied to problems
that have more than 20 units in their inputs. Because in the HealthDoc system the text
planning algorithms are applied within each section separately, the exponential nature of
the problem does not seem to hamper the overall performance of the system. Nevertheless,
if these algorithms are to be applied to larger problems, better heuristics would need to be

developed in order to enable a faster convergence towards a solution.

The corpus analysis in chapter 4 provides information not only on the ordering and
clustering preferences of various relations, but also on the markers that can be used to
signal various rhetorical relations. If one simply embeds these markers into the final texts,
one can realize, for example, the text plan in figure 7.6 as “If you come home early, we
can go to the bookstore. We can go to Sam’s bookstore”. Although implementing such an
algorithm is trivial, it seems that a proper account of the discourse markers should take
into consideration the local lexicogrammatical constraints as well. For example, in some
cases, it would be inappropriate to use a discourse marker twice. In other cases, the use
of some discourse markers simply does not sound right. The investigation of the ways in
which the modules of the system could interact in order to integrate the markers suggested

by the discourse module is beyond the scope of this thesis.?
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7.6 Generating discourse plans that satisfy multiple commu-

nicative goals

By default, the algorithms introduced in this chapter find plans that satisfy the goal “tell
everything that is in the KB”. For example, when only the default goal is used, algorithm 1
generates for the problem (7.3)—(7.4) one valid tree of maximal weight 3.507 (see figure 7.10)

— a possible realization of the text plan in 7.10 is shown in (7.16) below.

(7.16) We can go to the bookstore. If you come home early, we can go to Sam’s book-

store.

However, when generating text, it is often useful to specify more than one communicative
goal. In some cases, besides informing, we may also want to motivate, persuade, or deceive
the reader.

Traditionally, top-down planning algorithms are given as input only one high-level com-
municative goal. Although we can modify the goal expansion process that characterizes
top-down text planners so that the branches that use goals specified in the input are pre-
ferred over branches that do not use such goals, we still run into the same problem that we
discussed in the beginning of the chapter: there is no way to ensure that all the information
that we want to communicate will be eventually included in the final text plan. In addition,
the procedure described above assumes that the system can determine the communicative
goal that it needs to satisfy first: after all, the system has to start the expansion process
from somewhere. In the general case, such an assumption is unreasonable; and enumerating
all the possible combinations is too expensive.

In contrast with top-down planning algorithms, the bottom-up text-planning algorithms
can be easily adapted to generate plans that satisfy multiple communicative goals. For ex-
ample, one can specify that besides conveying the information in the KB, another high-level
communicative goal is to motivate the reader to come home early (MOTIVATE(hearer, Cz)).
Such a communicative goal can be mapped into an extra constraint that the final discourse
plan has to satisfy: in this case, the extra constraint will require that the final discourse
plan uses at least one rhetorical relation of MOTIVATION that takes 5 as nucleus. When
such a constraint is specified, there is one tree of maximal weight 3.227 that is returned by
the CKY-like algorithm, that shown in figure 7.11. A possible realization of the text plan
in figure 7.11 is shown in (7.17) below.

(7.17)  Come home early! That way, we can go to the bookstore. We can go to Sam’s

bookstore.

#See [Moser and Moore, 1997, Di Eugenio et al., 1997] for a more sophisticated analysis of the relationship
between discourse structure and cue phrases.
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Along the lines described here, one can also specify conjunctions and disjunctions of com-
municative goals and pragmatic constraints that characterize ordering preferences on the
linear realization of semantic units. As an example, consider the generation problem given
below, i.e, the set of semantic units shown in (7.18) and the corresponding set of rhetorical

relations shown in (7.19).

Az = “About 30% of the teenagers will become experimental smokers.”

B3 = “We know that 3,000 teens start smoking each day.”
c3 = “About 90% of teenagers once thought that smoking was
something that they’d never do.”

D3 = “Of the teenagers who will start smoking, about 90% will end up

(7.18) Us = with a pack and a lighter for the rest of their lives.”
Esz = “Teenagers want to stay non-smokers.”
F3 = “The pressure to smoke in junior high is greater than it will

be any other time of one’s life.”

Gz = “About 75% of the young adults will pick up a cigarette and let

curiosity take over.”

rhet_rel
rhet_rel
rhet_rel

EVIDENCE, A3, F3)
)
)

EVIDENCE, G3, F3)

EVIDENCE, B3, F3
EVIDENCE, D3, F3
rhet_rel
rhet_rel
rhet_rel
rhet_rel
rhet_rel
rhet_rel

(7.19) Ry, = CONCESSION, Ag, C3)
CONCESSION, B3, C3
CONCESSION, D3, C3)
CONCESSION, Gg, C3)
JUSTIFICATION, E3, F3)

rhet_rel

e e e e, e e e —

RESTATEMENT, C3, E3)

Given the generation problem in (7.18)—(7.19), the CS-based algorithm will create a con-
straint satisfaction problem with seven variables, v,,, vg,, - .., Up,, €ach ranging from 1 to 7.
It will associate with these variables the corresponding ordering and adjacency contraints.
However, given the set of rhetorical relations (7.19), one can see that the algorithm cannot
distinguish between units As, Bs, D3, and Gz because rhetorical relations of EVIDENCE and
CONCESSION hold between each of these units and units F3 and C3 respectively. Conse-
quently, no unicity constraints are associated with any pairs of variables v,,, Vs, Up,, Vaa;

however, unicity constraints are asserted for all the other pairs.

For problem (7.18)-(7.19), algorithm 7.8 generates the partial ordering
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Status = {NUCLEUS,SATELLITE}
Type = {MOTIVATION}
Promotion = {C2}

Status = {SATELLITE}
Type = {LEAF}
Promotion = {B2}

Status = {NUCLEUS}
Type = {MOTIVATION} B2
Promotion = {C2} T

Status = {SATELLITE}
Type = {LEAF}
Promotion = {A2}

Status = {NUCLEUS}
Type = {LEAF} A2
Promotion = {C2} —

Figure 7.11: A text plan that corresponds to problem (7.3) — (7.4). The text plan satisfies
multiple communicative goals.

E3 < F3 < As, D3, B3, G3 < C3. This partial ordering yields 4! = 24 total orderings that cor-
respond to 24 different ways in which the units can be realized as coherent text. Texts (7.20)

and (7.21) exemplify two of these possible realizations.

(7.20) [No matter how much one wants to stay a non-smoker,*] [the truth is that the
pressure to smoke in junior high is greater than it will be any other time of one’s
life:*¢] [30% of the teenagers will become experimental smokers.*?] [Of those who
will start smoking, about 90% will end up with a pack and a lighter for the rest
of their lives.”?] [We know that 3,000 teens start smoking each day®] [and that
75% of the young adults will pick up a cigarette and let curiosity take over,%?]
[although it is a fact that 90% of them once thought that smoking was something
that they’d never do.“]

(7.21) [No matter how much one wants to stay a non-smoker,®] [the truth is that the
pressure to smoke in junior high is greater than it will be any other time of one’s
life:"2] [75% of the young adults will pick up a cigarette and let curiosity take
over,“] [About 30% of them will become experimental smokers.*?] [Of those who
will start smoking, about 90% will end up with a pack and a lighter for the rest of
their lives.”?] [We know that 3,000 teens start smoking each day,*®] [although it
is a fact that 90% of them once thought that smoking was something that they’d

never do.“?]

From the perspective of coherence, there is no difference between texts (7.20) and (7.21).
However, from a pragmatic perspective there is a large difference. Empirical research in
communication studies, psychology, and social studies of persuasion [McGuire, 1968, Stiff,

1994] have shown that the likelihood of achieving persuasion grows when arguments are
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presented in increasing order of their gravity.* For example, the units that can play the role
of EVIDENCE for the information given in F3 can be ordered from a pragmatic perspective
according to a scale of gravity. On such a scale, G5 seems to be less serious than As,
which in turn is less serious than D3, which is less serious than Bs. If this knowledge is
recorded in the initial set of constraints (7.19), Gs < A3z < D3z < Ba, it can be used as a
direct constraint by the CS-based or the CKY-like algorithm. When this extra constraint
is considered, the CS-based algorithm, for example, yields only one ordering of maximal
weight, Es < F3 < Gz < Az < D3 < Bz < Cs. Text (7.21), which corresponds to this
ordering, is not only coherent, but is also more likely to convince a teenage reader not to

smoke.

7.7 Shortcomings of the bottom-up approach to text plan-

ning

The bottom-up approach to text planning that I proposed in this chapter assumes that text
coherence can be achieved by satisfying as many of the ordering and clustering constraints

as possible. A couple of concerns can be raised in connection with this approach.

e First of all, there are no psycholinguistic experiments to support the assumption. The
corpus data provides information only with respect to individual rhetorical relations

and it says nothing about their composition.

e Moreover, given the nature of the Brown corpus, which is a collection of texts of various
genres, the strengths of the ordering and clustering constraints are not tailored to any
specific domain. Being averages over all existing text genres, these scores might not

be adequate for a legal or technical domain, for example.

e And most importantly, the ordering of the textual units in a text plan might be
influenced by factors that are not captured by our corpus analysis, such as focus, the
distribution of given and new information in discourse, and high-level pragmatic and

intentional constraints.

*Marcu [1996, 1997] reviews empirical research on persuasion in communication studies, psychology, and
social studies and discusses its impact on the task of natural language generation from the perspective of
content selection, content organization, realization, and lexical choice.
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For example, let us take the textual units in text A.4 and the corresponding rhetorical

relations, which we reproduce for convenience below.

(7.22) [Farmington police had to help control traffic recently!] [when hundreds of people
lined up to be among the first applying for jobs at the yet-to-open Marriott
Hotel.?] [The hotel’s help-wanted announcement — for 300 openings — was a
rare opportunity for many unemployed.?] [The people waiting in line carried a
message, a refutation, of claims that the jobless could be employed if only they
showed enough moxie.] [Every rule has exceptions,®] [but the tragic and too-
common tableaux of hundreds or even thousands of people snake-lining up for

any task with a paycheck illustrates a lack of jobs,®] [not laziness.]

rhet_rel(VOLITIONAL_RESULT, 1, 2)
rhet_rel(CIRCUMSTANCE, 3, 2)

(7.23)

rhet_rel(EVIDENCE, 6, 4)

rhet_rel(CONCESSION, 5, 6)

(

(
rhet_rel(BACKGROUND, 2, 4)

(

(

(

rhet_rel(ANTITHESIS, 7, 6)

When we give the rhetorical relations in (7.23) as input to the CKY-like algorithm, the
text plan of maximal score that is produced as output corresponds to the ordering shown

in (7.24), below.

(7.24) 3<2<1<4<T7<5<6

A possible paraphrase of text plan (7.24) is shown in (7.25).

(7.25) [The Marriot Hotel’s help-wanted announcement — for 300 openings — was a
rare opportunity for many unemployed.?] [When hundreds of people lined up
to be among the first applying for jobs at the yet-to-open hotel,?] [Farmington
police had to help control traffic.!] [The people waiting in line carried a message, a
refutation, of claims that the jobless could be employed if only they showed enough
moxie.] [The tragic and too-common tableaux of hundreds or even thousands of
people snake-lining up for any task with a paycheck does not illustrate laziness.”]
[Every ru