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A fundamental principle in distributional semantic models is to use similarity in linguistic en-

vironment as a proxy for similarity in meaning. Known as the distributional hypothesis, the

principle has been successfully applied to many areas in natural language processing. As a

proxy, however, it also suffers from critical limitations and exceptions, many of which are the

result of the overly simplistic definitions of the linguistic environment. In this thesis, I hy-

pothesize that the quality of distributional models can be improved by carefully incorporating

linguistic knowledge into the definition of linguistic environment.

The hypothesis is validated in the context of three closely related semantic relations, namely

near-synonymy, lexical similarity, and polysemy. On the lexical level, the definition of linguis-

tic environment is examined under three different distributional frameworks including lexi-

cal co-occurrence, syntactic and lexicographic dependency, and taxonomic structures. Firstly,

combining kernel methods and lexical level co-occurrence with matrix factorization is shown

to be highly effective in capturing the fine-grained nuances among near-synonyms. Secondly,

syntactic and lexicographic information is shown to result in notable improvement in lexical

embedding learning when evaluated in lexical similarity benchmarks. Thirdly, for taxonomy-

based measures of lexical similarity, the intuitions for using structural features such as depth

and density are examined and challenged, and the refined definitions are shown to improve

correlation between the features and human judgements of similarity as well as performances

of similarity measures using these features.

ii



On the compositional level, distributional models of multi-word contexts are also shown to

benefit from incorporating syntactic and lexicographic knowledge. Analytically, the use of syn-

tactic teacher-forcing is motivated by derivations of full gradients in long short-term memory

units in recurrent neural networks. Empirically, syntactic knowledge helps achieve statistically

significant improvement in language modelling and state-of-the-art accuracy in near-synonym

lexical choice. Finally, a compositional similarity function is developed to measure the similar-

ity between two sets of random events. Application in polysemy with lexicographic knowledge

produces state-of-the-art performance in unsupervised word sense disambiguation.

iii



In loving memory of Jingli Wang.

iv



Acknowledgements

It’s been a long journey, but nevertheless a fun ride. I thank my supervisor Professor

Graeme Hirst for giving me the opportunity, the guidance, as well as the ultimate academic

freedom to pursue my various research interests. I thank all the members of my supervisory

committee, Professor Gerald Penn, Professor Ruslan Salakhutdinov, and Professor Suzanne

Stevenson, for their help, support, and encouragement all along. I thank my external exam-

iners Professor Ted Pedersen, Professor Frank Rudzicz, and Professor Sanja Fidler for their

valuable time and for the insightful comments and discussions.

I’d also like to express my gratitude to Doctor Xiaodan Zhu and Doctor Afsaneh Fazly

for reaching out and helping me at the most challenging times in my program, to Doctor Ju-

lian Brooke, Doctor Abdel-rahman Mohamed, and Nona Naderi for the collaborations and the

thought-provoking discussions, and to all the fellow graduate students in the Computational

Linguistics group for this memorable experience.

Finally, I’d like to thank my grandmother Fanglan Wu for inspiring me to persist when I

was tempted to give up. I also thank my wife Yi Zhang for her unconditional support through

the many stressful spans over the years. Without either of you, I could not have completed the

degree. Thank you.

v



Contents

1 Introduction 1

1.1 Motivations and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Scope of Semantic Relations . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Synonymy and its Variants . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Polysemy and Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Distributional Semantic Models . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Computational Challenges . . . . . . . . . . . . . . . . . . . . . . . . 9

I Lexical Representations 13

2 Improving Representation Efficiency in Lexical Distributional Models 14

2.1 Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Latent Semantic Analysis . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Lexical Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Random Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Semantic Space Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Near-Synonym Lexical Choice in Latent Semantic Space 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



3.2 Near-synonym Lexical Choice Evaluation . . . . . . . . . . . . . . . . . . . . 26

3.3 Context Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Latent Semantic Space Representation for Context . . . . . . . . . . . 28

3.4 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Unsupervised Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Supervised Learning on the Latent Semantic Space Features . . . . . . 30

3.5 Formalizing Subtlety in the Latent Space . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Characterizing Subtlety with Collocating Differentiator of Subtlety . . . 32

3.5.2 Subtlety and Latent Space Dimensionality . . . . . . . . . . . . . . . . 33

3.5.3 Subtlety and the Level of Context . . . . . . . . . . . . . . . . . . . . 35

4 Dependency-based Embedding Models and its Application in Lexical Similarity 36

4.1 Using Syntactic and Semantic Knowledge in Embedding Learning . . . . . . . 36

4.1.1 Relation-dependent Models . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 Relation-independent Models . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Lexical Semantic Similarity . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.4 Relation-dependent Models . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.5 Relation-independent Models . . . . . . . . . . . . . . . . . . . . . . 49

4.3.6 Using Dictionary Definitions . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Input-output Embedding Co-training . . . . . . . . . . . . . . . . . . . . . . . 51

5 Refining the Notions of Depth and Density in Taxonomy-based Semantic Similar-

ity Measures 54

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



5.1.1 Taxonomy-based Similarity Measures . . . . . . . . . . . . . . . . . . 55

5.1.2 Semantic Similarity Measures Using Depth and Density . . . . . . . . 56

5.2 Limitations of the Current Definitions . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Refining the Definitions of Depth and Density . . . . . . . . . . . . . . . . . . 63

5.4 Applying the New Definitions to Semantic Similarity . . . . . . . . . . . . . . 65

6 Conclusions for Part I 68

II Semantic Composition 71

7 Learning and Visualizing Composition Models for Phrases 74

7.1 Related Work in Semantic Composition . . . . . . . . . . . . . . . . . . . . . 74

7.2 Phrasal Embedding Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 Phrase Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.4 Composition Function Visualization . . . . . . . . . . . . . . . . . . . . . . . 81

8 Composition in Language Modelling and Near-synonymy Lexical Choice Using

Recurrent Neural Networks 84

8.1 Gradient Analysis in LSTM Optimization . . . . . . . . . . . . . . . . . . . . 85

8.1.1 Gradients of Traditional RNNs . . . . . . . . . . . . . . . . . . . . . . 85

8.1.2 Gradients of LSTM Units . . . . . . . . . . . . . . . . . . . . . . . . 86

8.1.3 Gradient Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.1.4 Regulating LSTM Gating Behaviour with Syntactic Constituents . . . . 91

8.2 Language Modelling Using Syntax-Augmented LSTM . . . . . . . . . . . . . 93

8.2.1 Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3 Near-synonymy Context Composition Using LSTM . . . . . . . . . . . . . . . 95

8.3.1 Task Description and Model Configuration . . . . . . . . . . . . . . . 96

viii



8.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9 Unsupervised Word Sense Disambiguation Using Compositional Similarity 101

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.3 Model and Task Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.3.1 The Naive Bayes Model . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.3.2 Model Application in WSD . . . . . . . . . . . . . . . . . . . . . . . 106

9.3.3 Incorporating Additional Lexical Knowledge . . . . . . . . . . . . . . 106

9.3.4 Probability Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.4.1 Data, Scoring, and Pre-processing . . . . . . . . . . . . . . . . . . . . 109

9.4.2 Comparing Lexical Knowledge Sources . . . . . . . . . . . . . . . . . 110

9.4.3 The Effect of Probability Estimation . . . . . . . . . . . . . . . . . . . 111

10 Conclusions for Part II 113

III Summary 115

11 Summary 116

11.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.2.1 Near-synonymy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.2.2 Lexical Representation Learning . . . . . . . . . . . . . . . . . . . . . 122

11.2.3 Semantic Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 123

ix



List of Tables

3.1 LSA-SVM performance on the FITB task. . . . . . . . . . . . . . . . . . . . . 31

4.1 Hyperparameters for the proposed embedding models. . . . . . . . . . . . . . 43

4.2 Degree of freedom, critical t-values (after rank permutation), and critical values

of Spearman’s ρ for various similarity datasets. . . . . . . . . . . . . . . . . . 44

4.3 The relations used for relation-dependent models in the lexical similarity task. . 45

4.4 Correlation between human judgement and cosine similarity of embeddings on

six similarity datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Examples of noun target words from the MC dataset appearing as verb gover-

nors in the nsubj relation and their corresponding noun dependents. . . . . . . 47

4.6 Lexical similarity performance of relation-independent models combining top

two best-performing relations for each POS. . . . . . . . . . . . . . . . . . . . 49

4.7 Lexical similarity performance of models using dictionary definitions com-

pared to window-based embedding models. . . . . . . . . . . . . . . . . . . . 51

4.8 Comparison of lexical similarity performance before and after embedding co-

training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Correlation between depth, density, and similarity on individual datasets. . . . . 62

5.2 Correlation with human judgement of similarity under the new definitions of

depth and density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

x



5.3 Correlation between human judgement and similarity score by Wu and Palmer

(1994) using two versions of depth. . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Correlation between human judgement and similarity score by Jiang and Con-

rath (1997) using different definitions of depth and density. . . . . . . . . . . . 67

7.1 Positive and negative examples of phrases extracted from the Annotated Giga-

word Corpus using POS bigram heuristics. . . . . . . . . . . . . . . . . . . . . 80

8.1 Incorporating POS information into LSTM input helps reduce language mod-

elling perplexity on the Penn Tree Bank 2 dataset. . . . . . . . . . . . . . . . . 95

8.2 Fixing the positions of the blanks achieves better accuracy than random posi-

tions in the FITB task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3 FITB performance comparison for different window frame sizes. . . . . . . . . 99

8.4 Model comparison in the FITB task. . . . . . . . . . . . . . . . . . . . . . . . 100

9.1 Lexical knowledge for the word plant under its two meanings factory and life

form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.2 Lexical knowledge sources and WSD performance on the Senseval-2 and the

SemEval-2007 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xi



List of Figures

3.1 Performance of different LoA’s on FITB along the latent semantic space di-

mensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Supervised method gaining further improvement over unsupervised method in

higher dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 LoC (level of context) in correlation with latent space dimensionality for opti-

mal model performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Network structure and training objectives for the relation-dependent and the

relation-independent models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Co-training embeddings between the input and the output space. . . . . . . . . 51

5.1 Correlation between depth and similarity. . . . . . . . . . . . . . . . . . . . . 58

5.2 Histogram of depth in WordNet. . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Correlation between density and similarity. . . . . . . . . . . . . . . . . . . . 61

5.4 Histogram of density in WordNet. . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 Visualization of the weight matrices in phrasal composition functions. . . . . . 83

8.1 Visual verification of full gradients in LSTM. . . . . . . . . . . . . . . . . . . 91

9.1 Model response to probability estimates of different quality on the SemEval-

2007 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xii



Chapter 1

Introduction

1.1 Motivations and Outline

Representing and modelling meaning in text is a difficult task but nonetheless a central goal in

Natural Language Processing (NLP). A major part of the difficulty lies in the fact that the con-

cept of meaning is highly abstract and complex, which is particularly challenging to represent

or reason about computationally. Among the many existing attempts at semantic modelling, a

particular class of models is based on the distributional hypothesis (DH, Harris, 1954), which

states that meaning is at least in correlation with — if not completely defined by — the lin-

guistic environment. Essentially, this hypothesis associates the abstract concept of meaning

with the concrete and readily quantifiable distribution properties of linguistic elements — an

association that constitutes the computational significance of the hypothesis.

The notion of linguistic environment is an integral part in the application of the DH, yet its

effectiveness is often grossly undermined when a large number of distributional models rely

heavily on raw linguistic contexts. For example, lexical-level contexts are often defined as

unstructured windows of surrounding string tokens, and various forms of “centroids” derived

from simple vector operations are still popular choices for composition functions. Despite their

computational efficiency and ease of implementation, these models ignore even the most basic

1



CHAPTER 1. INTRODUCTION 2

types of linguistic knowledge and thus bear little resemblance to human behaviour in natural

language understanding.

Motivated by this observation, a central hypothesis in this thesis is that application of the

DH can benefit both conceptually and empirically from incorporating linguistic knowledge into

the definition of linguistic environment. Corresponding to the two major parts of the thesis, the

hypothesis is applied and studied on both the lexical and the compositional level in the context

of three closely-related lexical semantic relations that are central to lexical semantic research.

The following contributions have arisen in the process of validating the hypothesis. Firstly,

novel approaches in semantic representation and modelling are proposed in a wide range of

lexical and compositional semantic models. Secondly, a variety of linguistic knowledge in the

distributional environment is explored and used by the proposed models including syntax, lex-

ical taxonomy, and lexicography. Thirdly, notable empirical improvements are observed with

regard to statistical and/or computational efficiency in the proposed models, as demonstrated

by the improvements in model performance in several widely adopted NLP benchmarks.

More specifically, the thesis is structured as follows. For the remainder of this chapter, I

will first define and motivate the scope of semantic relations that are central to the proposed

research. The individual relations of choice will each be reviewed and collectively, their inter-

relations established and discussed. Secondly, I will define the scope of distributional semantic

models used in the thesis and present computational challenges in both general distributional

models and in the particular realm of semantic similarity, synonymy, and polysemy studies.

Specific models and evaluations are formulated on both the lexical (Part I) and the com-

positional (Part II) level. On the lexical level, I will first review the problem of dimension re-

duction in Chapter 2 and investigate lexical representation learning using matrix factorization

techniques. In Chapter 3, I will show that when carefully combined, traditional methods such

as latent semantic analysis (Landauer and Dumais, 1997) and support vector machines (Cortes

and Vapnik, 1995) can achieve highly competitive performance in near-synonym lexical choice

(Wang and Hirst, 2010). I will then focus on the problem of improving lexical representation
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learning with linguistic knowledge from dependency parsers and dictionaries (Chapter 4). Em-

pirically, the linguistic information is shown to greatly reduce computational complexity and

at the same time produce lexical embeddings with state-of-the-art performances in lexical sim-

ilarity evaluations (Wang et al., 2015).

Apart from vector space models, lexical taxonomy is another important knowledge source

in semantic similarity studies. For certain structural features in semantic taxonomies, I will

show that there are crucial discrepancies between their empirical distribution and the intuitions

that motivate the use of these features in existing WordNet-based similarity measures. Conse-

quently, new definitions of depth and density are proposed in Chapter 5 to address these issues

(Wang and Hirst, 2011). Empirically, the modifications are shown to significantly improve the

correlation between these features and the human judgements of similarity as well as the per-

formance of WordNet similarity models using these features (Wu and Palmer, 1994; Jiang and

Conrath, 1997).

Beyond the lexical level, Part II focuses on developing and improving composition models

by incorporating linguistic knowledge. Specifically, a simple phrasal composition model is

shown in Chapter 7 to converge to an additive model when trained on an artificially created

phrasal composition dataset. Despite the empirical motivations of the additive model, how-

ever, its limitations in the overly simplistic representations of the context are addressed by

taking into account syntactic information such as word order and syntactic categories of the

context words. In Chapter 8, a recurrent neural network model with long short-term memory

(LSTM) units is employed to implement word order capacities with state recurrence. Gradient

analysis across multiple time steps provides theoretical motivations for using syntactic infor-

mation to improve the gating behaviour of LSTM units. Empirically, syntactic knowledge is

shown to help the model achieve significant improvements in language modelling and state-of-

the-art results in near-synonym lexical choice. Finally in Chapter 9, a compositional similarity

measure is developed to measure the similarity between two sets of random events without ex-

plicitly relying on vector-space representations. With the help of lexicographic knowledge, the
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model is applied to the task of unsupervised word sense disambiguation (WSD) and achieves

state-of-the-art performance in several WSD benchmarks (Wang and Hirst, 2014).

Part III concludes the thesis and proposes future directions for the major topics covered in

the thesis, including embedding learning and semantic composition.

1.2 The Scope of Semantic Relations

The distributional models proposed in the thesis are built around three closely-related lexical

semantic relations, namely synonymy, polysemy, and similarity. The motivations for the focus

on these particular relations are as follows. Firstly, due to its relation to semantic identity,

synonymy plays a central role in several fundamental aspects in semantics such as the definition

of entities (Quine, 1969). It is also a highly nuanced relation that is, unlike many other tasks

in NLP, challenging even for native speakers of a language. Polysemy, on the other hand, is a

dual problem to synonymy in that it aims at distinguishing different senses of the same word

form. In a broader sense, both relations border on semantic similarity and together, the three

relations are of great importance to lexical and compositional semantics.

1.2.1 Synonymy and its Variants

By definition, synonymy is the semantic relation between words of the same meaning. It is

commonly believed that absolute synonymy does not exist in a language, and even it does,

the absolute sameness in meaning would make the relation intellectually and computationally

uninteresting since it would entail only the trivial task of string substitution. Nonetheless, there

exist several variants of synonymy that do allow semantic variation while maintaining a high

degree of semantic similarity. The semantic variation — particularly under the assumption of

correlation with variation in their linguistic contexts — makes it possible to build distributional

models to study different aspects of the relation, while the high degree of similarity makes the

problem computationally challenging.
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The discussions in this section focus on two widely studied variants, namely cognitive syn-

onymy and near-synonymy. In a simplified definition, cognitive synonymy is a relation between

words of the same denotational meaning (Cruse, 1986). That is, substitution among cognitive

synonyms does not alter the truth condition of an utterance. Consequently, unlike absolute

synonymy, cognitive synonymy allows semantic variation along several semantic dimensions

including selectional or collocational constraints, dialectal differences, registers, etc.

In practice, however, the requirement of denotational equivalence can still be quite re-

strictive. Near-synonymy is the result of relaxing this requirement. A good starting point to

define and understand the concept of near-synonymy is an acceptability test proposed by Cruse

(1986), which is based on the observation that the phrase more exactly usually collocates with

pairs of words whose meanings differ by relatively minor semantic traits. For example, con-

sider the acceptability of the following sentences:

(1) ? John passed away — or more exactly, he died.

(2) It was a fog — or more exactly, a mist.

(3) ? I have an apple — or more exactly, an orange.

Acceptability is high only for near-synonyms (i.e., Sentence (2)) but not for cognitive syn-

onyms or non-synonyms. This is because the phrase more exactly is often used to cancel a

minor semantic trait by means of correction, which fits the characteristics of near-synonymy

but not the other types of semantic relations. Unfortunately, (as is commonly agreed upon)

not much progress can be made towards a more precise definition of near-synonymy. Even the

above acceptability test is a necessary but insufficient condition for identifying near-synonymy,

since the phrase more exactly can also indicate the augmentation of minor semantic traits as

a way of further specification. This allows other semantic relations such as hypernymy and

hyponymy to pass the acceptability test as well:

(4) Research is, by its nature, cyclical or, more exactly, helical.



CHAPTER 1. INTRODUCTION 6

Despite the above concerns for the scope of its definition, near-synonymy is nonetheless a

challenging and interesting topic in lexical semantics research. The acceptability test is a prime

example of how near-synonyms exhibit interesting differences while at the same time without

being too different, which is in accordance with some existing definitions such as “almost syn-

onyms, but not quite” (Hirst, 1995). This delicate balance can be regarded as a “sweet-spot”

on the scale of similarity since semantic distinctions are maximally highlighted between major

and minor semantic traits. In addition, contrasting other types of synonymy, near-synonymy

not only acknowledges difference among synonyms, but also expands the types of minor se-

mantic traits to an open class, which can be formulated and studied as first-order objects (Di-

Marco et al., 1993; Hirst, 1995). Computationally, due to the relaxation on truth condition

preservation, near-synonyms exhibit larger semantic distance than cognitive synonyms, which

can be directly translated into higher accuracy in distributional models.

1.2.2 Polysemy and Similarity

Polysemy is the semantic relation between multiple senses that share the same word form

(spelling). It has been an important research topic with sustained popularity in the NLP com-

munity (Hirst, 1987; Lesk, 1986; Pedersen and Bruce, 1998; Yarowsky, 1995; Navigli, 2009).

Its relevance to synonymy and similarity studies is manifested in several important aspects in

meaning. For example, Word Sense Disambiguation (WSD) is the problem of sense classifica-

tion given the same word form, whereas near-synonym lexical choice (NSLC) is the problem

of word form classification given the same (or highly similar) sense and hence the dual prob-

lem of WSD. In addition, synonymy itself is a concept defined on the sense level rather than

in the form of string tokens. This fact has been largely ignored in near-synonym lexical choice

evaluations, making the data collected for NSLC less representative of the actual meaning of

the target near-synonyms. There also exist several NLP tasks that are essentially WSD under

different names and formulations. Examples include that of Mitchell and Lapata (2008) (a

similarity rating task) and McCarthy and Navigli (2009) (a lexical substitution task), which
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can be considered WSD tasks since they all involve identifying semantically related words cor-

responding to different senses of polysemous target words. A detailed review of polysemy and

WSD is given in Section 9.2.

Similarity is a more generic notion encompassing several types of semantic relations. The

relation between synonymy and similarity largely depends on the definitions of the terms. In

fact, some early studies in lexical semantics do not make distinctions between the two (e.g., that

of Rubenstein and Goodenough, 1965). Intuitively, the difference between the two relations

lies in the difference between sameness and closeness in meaning, i.e., a matter of degree in

semantic overlap. There are many examples of words that can be considered semantically

similar without being synonymous (e.g., mist–fog, money–cash, etc.). Particularly with the

rising popularity of distributional approaches to semantics, the definition of similarity is more

driven by contextual similarity rather than closeness in denotational meaning.

Lexical similarity has been employed in many research topics and applications including

information retrieval (Mandala et al., 1999; Turney, 2001), cognitive science (Gershman and

Tenenbaum, 2015), and various lexical semantics studies (Patwardhan et al., 2003; Hill et al.,

2014). It is also the building block for many phrase- and sentence-level semantic models

(Mitchell and Lapata, 2010; Gershman and Tenenbaum, 2015). Especially with recent devel-

opments in distributed lexical representations (Mikolov et al., 2013; Pennington et al., 2014),

lexical similarity has become an important benchmark to evaluate the quality of lexical repre-

sentations. In the neural-network-based NLP literature, the relation has also been successfully

applied in sentence similarity (Kalchbrenner et al., 2014; Le and Mikolov, 2014), language

modelling (Bengio et al., 2003), and machine translation (Hill et al., 2014).

Contextual similarity has been established as a necessary condition for semantic similarity

by several existing studies (Harris, 1954; Rubenstein and Goodenough, 1965). However, it does

not entail semantic similarity. For example, antonyms, among many other semantically related

words, can share highly similar linguistic environments. With similar contextual distributions,

these words are often referred to as being semantically related. Traditionally, relatedness is
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defined among words whose meanings follow one of a prescribed set of semantic relations

(e.g., hypernymy, meronymy, etc.). More recently, its definition has been shifting towards

distributional similarity and extending to word pairs such as stock–market, computer–software

(Finkelstein et al., 2001), etc.

It is rather difficult to distinguish between similarity and relatedness with distributional ap-

proaches. Many distributional similarity models assign a high degree similarity to antonyms

and semantically related words (Pereira et al., 1993; Lin, 1998). Existing studies have been

trying to address these issues. For example, Lin et al. (2003) used a rule-based method to iden-

tify and exclude semantically incompatible words as well as bilingual dictionaries to identify

synonyms. Levy and Goldberg (2014) and Wang et al. (2015) used syntactic knowledge to

improve semantic similarity metrics over relatedness in lexical embedding learning. Hill et al.

(2015b) provided a lexical similarity dataset that makes explicit distinctions between semantic

similarity and relatedness. Nonetheless, distinguishing the two types of relations remains a

challenging task in the application of the distributional hypothesis.

1.3 Distributional Semantic Models

1.3.1 Definition

In the context of this thesis, the term distributional is adopted as a narrow reference to the class

of semantic models that uses the distributional hypothesis (DH) as the underlying assumption

for modelling lexical and compositional meaning. The scope of this definition intends to set

the proposed models apart from other contrasting approaches of semantic representation and

models such as the following:

Lexicographic representations Meaning is represented by the hand-crafted dictionary defi-

nitions built upon a lexicographer’s studies and expertise. The representation is often in

the form of natural language texts, and it can be either declarative as in a monolingual
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dictionary (Webster, 1971), comparative as in a bilingual dictionary, or contrastive as in

a synonym dictionary (Hayakawa, 1994).

Graphic representations Meaning is represented by a node in a semantic graph and in par-

ticular expressed by its structural relations to other nodes in the network. A variety of

network structures are allowed including hierarchical structures such as WordNet (Fell-

baum, 1998) and categorical structures such as a thesaurus (Roget, 1911).

Semantic specification Meaning is represented by semantic specification of membership to a

set of prescribed semantic dimensions, such as the result of content analysis (Stone et al.,

1966) or semantic decomposition (Gao, 2001).

Note that many of the approaches mentioned above are implicitly related to each other

and thus by no means mutually exclusive. For example, definition texts from a monolingual

dictionary can be used collectively to derive distributional contexts for lexical representations

(Section 4.3.6). Taxonomy-based similarity measures are also shown to benefit from refining

the definition of structural features motivated by their natural distributions (Chapter 5).

1.3.2 Computational Challenges

Distributional Representations and Modelling

Computational models are usually designed to capture patterns in the functional mapping be-

tween the input space (e.g., texts) and the output space (e.g., textual meaning). In a supervised

setting for example, the modelling process is implemented by exposing the model to a collec-

tion of examples consisting of input-output pairs. The goal is to train the model to be able to

accurately predict an output given an input that the model has not been previously exposed to.

Many distributional semantic models follow this general framework of learning. For in-

stance, lexical similarity (Rubenstein and Goodenough, 1965; Miller and Charles, 1991) is

often formulated as a regression task to model the mapping V2 7→ R, where V is the lexical
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space (i.e., vocabulary), and R is the 1-dimension real space.1 In other words, the input con-

sists of pairs of word tokens, and the model tries to assign a real-valued scalar indicating the

semantic similarity between a given input word pair. WSD on the other hand is usually a classi-

fication problem V∗ 7→ S that classifies the sense of a polysemous word to one of several senses

in a predefined sense repository S given a context of variable length. NSLC has a similar setup,

with the output space being a set of near-synonym candidates instead of a sense repository.

The first challenge in the modelling process is to construct numerical representations for

lexical items that are computationally and statistically efficient, so that (1) the resulting model

is computationally tractable, and (2) the complexity of the data does not surpass the capacity of

the model. To achieve either type of efficiency involves careful choice of the model architec-

ture, novel ways of leveraging external knowledge to facilitate learning, and quite often, close

examination of the nature of the data. Many examples are provided in later sections to show

how these practices influence model quality.

Once a set of efficient lexical representations is obtained (with efficiency being scientifi-

cally assessable), another challenge is composition, i.e., how to use the lexical representations

in V to construct representations in Vn (which is the actual input space in all three tasks men-

tioned above).2 Many efforts have been made towards semantic composition, but simple base-

lines (e.g., that of Mitchell and Lapata, 2010) are surprisingly difficult to outperform. With

the recent popularity of artificial neural network models (in particular, recurrent neural net-

work (RNN) models) in compositionality research (Tai et al., 2015; İrsoy and Cardie, 2014;

Zhu et al., 2015), it is unclear how these models compare in the context of synonymy and

similarity.

Finally, in one way or another, virtually all NLP models leverage external linguistic knowl-

edge, and the way that this knowledge is used is itself a crucial part of the challenge in distribu-

1The exponential on V is a short-hand for a successive application of the Cartesian product between the lexical
space and itself.

2This is under the assumption that it is not possible to model the Vn space without going through the V
(lexical) space. Some recent studies attempt to model Vn-space representations jointly with lexical representations
(Le and Mikolov, 2014; Kiros et al., 2015). Although the Vn-space representations are updated separately in
training, the learning signal nonetheless comes from some form of composition of the lexical representations.



CHAPTER 1. INTRODUCTION 11

tional models. This topic is of particular relevance in synonymy and similarity since, given the

level of semantic granularity involved, it can potentially benefit the most from incorporating

external knowledge sources into the modelling process.

Challenges in Lexical Similarity

Distinguishing near-synonyms — or similar words in general — is challenging even for native

speakers of a language (DiMarco et al., 1993; Hirst, 1995). Empirical evidence suggests that,

compared to many lexical semantic tasks, human agreement in a Cloze-style (Taylor, 1953)

NSLC task3 is rather low (78.5%, Inkpen, 2007). Naturally, these difficulties are embodied as

computational difficulties in distributional models since semantic sameness or closeness im-

plies a high degree of homogeneity in the output semantic space (e.g., certain aspects of mean-

ing are hardly distinguishable). For example, the current state-of-the-art NSLC performance is

about 76.7% (Section 8.3).

Even assuming the availability of an efficient lexical representation and a reliable compo-

sition model, evaluation is another fundamental challenge, particularly in synonymy studies.

For example, an algorithm is often evaluated by a single number from a NSLC test (Edmonds,

1997), which reports the accuracy of recovering the near-synonym that was originally used in

the given context. Although NSLC is an important task by itself, it does not necessarily assess a

model’s capability in capturing the semantic nuances of near-synonyms and their distinctions.

This is because many factors other than semantic considerations (e.g., syntactic, idiomatic,

collocational, etc.) influence near-synonym lexical choice. As shown in later chapters, higher

NSLC accuracy might result from modelling some of these non-semantic characteristics in

synonymy and similarity data. Without a more carefully constructed evaluation scheme, it is

not easy to measure what exactly a distributional model is learning in synonymy and similarity

studies.

This issue is especially confounded by the less-than-careful way NSLC data is usually

3See Section 3.2 for a detailed description of the task.
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collected, which can potentially compromise several integral aspects in the definition of syn-

onymy. For example, consider the following NSLC example between the synonyms difficult

and hard:

(5) She was lying on a hard surface.

(6) ? She was lying on a difficult surface.

The reason that Sentence (6) has low acceptability upon lexical substitution is that the sense

of hard in this context is not synonymous with the sense exhibited by the synonym set {hard,

difficult}. In lexical semantics, synonym differences in contextual functions are assumed not to

be interfered with by irrelevant senses of polysemous word forms (Cruse, 1986). Nonetheless,

without sense annotation, Sentence (5) qualifies as a sample in NSLC data collection despite

the fact that the word form hard appears in a sense irrelevant to the one considered in the near-

synonym set. Consequently, even if a lexical choice system is able to make a correct prediction

(which is probable given the prevalent collocation of surface with hard than with difficult), it

does not necessarily follow that any synonymy-related semantic knowledge has been acquired.

For the evaluation of lexical similarity, correlation with human judgement is the most com-

monly adopted benchmark. However, in many of the most popular datasets (Rubenstein and

Goodenough, 1965; Finkelstein et al., 2001), no distinction is made between similarity and re-

latedness. There is also a pronounced lack of variety with regard to the syntactic categories of

the target words used in these datasets. More recently, Hill et al. (2015b) proposed a dataset that

directly addresses both issues (Section 4.3.2). Nonetheless, systematic comparisons between

the datasets in the context of similarity versus relatedness are rare at best in the literature. Novel

approaches in incorporating extrinsic knowledge into the modelling process are also needed in

order to take advantage of the syntactic variety available in the new dataset and explore the syn-

tactic dimension in the lexical similarity tasks. Consequently, distinctions are to be explicitly

made between similarity and relatedness in the studies presented in this thesis so as to highlight

the semantic emphasis in the proposed models.
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Lexical Representations
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Chapter 2

Improving Representation Efficiency in

Lexical Distributional Models

The distributional hypothesis (DH) states that words that occur in the same contexts tend to

have similar meanings (Harris, 1954). The significance of this observation is that contextual

similarity can be used as a proxy for semantic similarity. Consequently, the hypothesis is

instrumental in distributional semantics due to the implied computational convenience that

under this assumption, it is possible to model lexical meaning using the co-occurrence patterns

present in the vast amount of textual data.

Despite the conceptual intuitiveness, however, several critical issues remain to be addressed

for successful applications of the DH. For example, contextual similarity is a necessary but in-

sufficient condition for semantic similarity. Semantic relatedness (among many other semantic

relations) also entails contextual similarity, and distinguishing between similarity and related-

ness remains an unresolved challenge for existing distributional models. Another open question

of fundamental significance is the definition of context (also known as the semantic space). In

practice, if the DH is to be taken literally, for example, the resulting semantic space would

coincide with the lexical space (consisting of the co-occurring words), the size of which can

often range from tens of thousands to millions. Sparsity quickly arises as a prominent issue

14
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due to the high dimensionality, which in turn causes much inaccuracy in probability estimation

especially for rare events. Consequently, a careful design of the semantic space is a crucial step

in building distributional models.

In this chapter I will review several semantic space designs including lexical space trunca-

tion, dimension reduction, and concept-level semantic spaces. These techniques are frequently

used in NLP applications to improve computational and statistical efficiencies of distributional

models, including the near-synonym lexical choice models (Chapter 3) and lexical embedding

models (Chapter 4) proposed in later chapters.

2.1 Truncation

One simple method to alleviate sparsity is to truncate the lexical space by excluding less sig-

nificant contexts with regard to co-occurrence. Given a target word w ∈ V (the lexical space),

co-occurrence significance can be measured by a scoring function s :V 7→R such that the scalar

s(w′) correlates with the semantic relatedness between w and its co-occurring word w′. After

choosing a threshold t, words with scores lower than t are simply removed from V to form

the truncated semantic space. The scoring function takes many forms (often as preprocessing

steps) in various NLP tasks. For example, frequency counts are used under the assumption

that probability estimates for low-frequency words are often inaccurate and thus should not be

included to affect the co-occurrence distribution. In addition, due to the Zipfian distribution

of word frequencies in texts (Li, 1992), removing low-frequency words also has the advantage

of significantly reducing the semantic space dimensionality and thus improves computational

efficiency of the resulting model.

In the context of near-synonymy and semantic similarity, a common practice is to use sta-

tistical and information-theoretic metrics in constructing the scoring function as a measure of

relatedness. Edmonds (1997), for example, used both t-score and mutual information to deter-

mine if a co-occurrence relation is to be included when constructing a lexical co-occurrence
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network for near-synonym lexical choice. The choice for threshold t, on the other hand, is

largely determined by data size and the nature of the problem in question. In near-synonymy

studies, since data size is usually small (on average a few thousand training instances for each

near-synonym set), probability estimations are accurate only for the most frequently observed

contexts and thus truncation can often be rather aggressive. For example, Inkpen (2007) limited

the semantic space to the 500 most frequent co-occurring words in the development set (1989

Wall Street Journal). However, truncation like this introduces very strong limitations into the

model since at test time, a sentence must have at least one of the 500 words in order to have a

non-zero representation.

It is also possible to have dynamic thresholds conditioned on the distribution of the target

or the context words. In a lexical similarity model, Islam and Inkpen (2006) used pointwise

mutual information (PMI) as the scoring function. For a target word, context is defined by

co-occurring words with top-β highest PMI scores. For a word pair, the scores of words in

the intersection of their contexts were summed and used as semantic similarity for the pair.

The threshold β was conditioned on the frequency of the target words as well as the size of the

corpus with which the PMI scores were calculated. The authors claimed that β values correlate

with the generality of the context and have a significant impact on the evaluation performance

on lexical similarity.

2.2 Dimension Reduction

Many challenges in NLP can be attributed to the difficulty in accurately estimating the proba-

bility of rare events. Truncation essentially avoids the estimation rather than improving it, and

the semantic information conveyed by rare events are lost in the truncated semantic space. In

contrast, instead of discarding rare events altogether, dimension reduction techniques use these

events as “bridges” to capture higher-order co-occurrence statistics, and the goal is to reduce

the lexical space dimension while maintaining important distributional properties of the lexical
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representations in the resulting semantic space.

2.2.1 Latent Semantic Analysis

One of the most popular dimension reduction techniques is latent semantic analysis (LSA, Lan-

dauer and Dumais, 1997). Latency reflects the fact that unlike the lexical space, the resulting

semantic space dimensions no longer explicitly correspond to lexical dimensions. In infor-

mation retrieval, LSA has been used almost exclusively to represent words and documents in

low-dimensional space. Specifically, given a co-occurrence matrix Mn×m between n word types

and m documents, LSA uses singular value decomposition (SVD) to factorize M as follows:

M =Un×kΣk×kV T
m×k,

where k is equal to the rank of M and the subscripts indicate the dimensions of the matrices. In

practice, k is often further truncated to the order of 1e2 to 1e3, which is significantly smaller

than n and m.1. The matrix Σ consists of eigenvalues of M sorted in descending order along the

diagonal (and zeros elsewhere). Words and documents can be represented in a k-dimensional

space (details in Section 3.3.1), and the assumption is that local co-occurrence data encoded

in matrix M is transformed through SVD to implicitly induce global knowledge (Landauer

and Dumais, 1997). Cohen et al. (2010) empirically demonstrated the knowledge induction by

evaluating indirect inference through the similarity between a given cue word and its “nearest-

indirect neighbours” (i.e., words that do not directly co-occur with the cue word). Their study

showed that, compared to other dimension reduction techniques such as random indexing (Sec-

tion 2.2.3), similarity between the LSA vectors of the indirect neighbours correlates noticeably

better with human intuition.

Landauer and Dumais (1997) performed LSA on word-document co-occurrence in ency-

clopaedic articles. For evaluation, the resulting word vectors were used to solve TOEFL syn-

1The optimal value of k is often task-specific and thus determined empirically. As reported by Brooke et al.
(2010), for example, the order of the value of k can be as low as 1e1.
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onym questions, achieving an accuracy of 64.38%. Rapp (2008) showed that LSA is more

effective when performed on a word-word co-occurrence matrix, achieving an accuracy of

92.50% on the same task. Note, however, that there are compounding factors that might lead to

the difference in performance, such as different co-occurrence weighting and different corpora

(Rapp used the British National Corpus for the co-occurrence model). Nonetheless, evaluation

performed on near-synonym lexical choice seems to confirm the fact that lexical semantic mod-

els can benefit more from the more fine-grained level of association on lexical co-occurrence

than from word-document co-occurrence (details to follow in Chapter 3).

Computational complexity and memory footprints are the two major disadvantages of

LSA. Calculating all three component matrices involves a complexity of n2m + m3 (Golub

and Van Loan, 2012), and it is necessary to read the entire co-occurrence matrix and store it

in memory. These are strong limitations with regard to both model efficiency and scalability,

especially when the dimensionality of the lexical and the document space are often quite large

in modern corpora (between 105 and 107).

2.2.2 Lexical Embeddings

Lexical embeddings are real-valued vector representations of words, which are often referred

to as distributed representations in existing studies. Note that there are distinct differences be-

tween the use of the term “distributed” in the literature of distributional semantic models versus

that of neural language models. In the former, the term refers to the belief that meaning is dis-

tributed by nature in that meaning is defined as the global distributional history rather than a

specific set of semantic features or components (Lenci, 2008). In the latter context, distributed-

ness specifically refers the real-valued, vector space representation of linguistic elements over

a set of (usually latent) dimensions, as opposed to the local, sparse representation for indices

or co-occurrence (such as the 1-hot vector or a co-occurrence matrix). The distributed repre-

sentation is highly compact and thus computationally more efficient. More importantly, as a

continuous function in the semantic space, distributed representation is capable of capturing
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the latent interrelations between linguist elements, which essentially serves as the foundation

for the principle of non-local generalization (Bengio, 2009).

In practice, embedding learning is often formulated as an optimization problem, where

the objective function is designed to take word embeddings as input and the amplitude of the

output is in positive correlation with the semantic relatedness of the input words. As a result,

after sufficient training, the distances among the resulting vectors correlate positively with the

semantic distances of the corresponding words. Embedding learning can be considered as

a dimension reduction technique in lexical semantic models since the dimensionality of the

resulting embeddings is usually in the order of 102 – 103, which is much lower than that of the

lexical space.

A popular implementation of embedding learning is to factorize the lexical co-occurrence

matrix as the product between a target embedding matrix M and a context embedding matrix

M′. Cells in both matrices are initialized with random values. During training, given a target

word and a definition of context, the model measures the similarity between the target word

embedding (one row from matrix M) and the embeddings of the context words (multiple rows

from matrix M′). The resulting vector similarity is correlated with the frequency of their co-

occurrence observed in the training corpus, which in effect realizes the correlation between

semantic similarity and vector similarity. Upon convergence, matrix M is used to obtain the

lexical representations while M′ is usually discarded.

Traditionally, lexical embeddings have been used in neural language modelling as dis-

tributed lexical representations (Bengio et al., 2003; Mnih and Hinton, 2009; Mnih and Teh,

2012). More recently, embedding models have been shown to help improve model perfor-

mance in many traditional NLP tasks. Turian et al. (2010), for example, used embeddings

from existing neural language models as lexical features to improve named entity recognition

and chunking. Mikolov et al. (2013) developed the word2vec model and used negative sam-

pling (similar to that of Collobert and Weston, 2008) and hierarchical softmax (similar to that

of Mnih and Hinton, 2007) to approximate the computationally costly softmax function in the
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objective function, which greatly improved model efficiency and scalability.

Compared to LSA, however, embedding models with only lexical co-occurrence informa-

tion exhibit the limitation that only highly local contexts are taken into account when calcu-

lating parameter updates. Several studies addressed this limitation by incorporating global

co-occurrence information. For example, Huang et al. (2012) extended the local n-gram score

proposed by Collobert and Weston (2008) by adding a global context score, which is derived

from a “document vector” (centroid of the composing word vectors weighted by idf ) that is

concatenated to word vectors as model input. Pennington et al. (2014) proposed to explicitly

factorize the global co-occurrence matrix between words, and the resulting log bilinear model

achieved state-of-the-art performance in lexical similarity, analogy, and named entity recog-

nition. Note that it is necessary to sample the entire co-occurrence matrix in order to derive

global co-occurrence knowledge. As a result, many of these models suffer from larger-than-

usual memory footprint.

As mentioned earlier, the definition of context is a crucial component in distributional se-

mantic models. Most existing embedding models adopted the simplistic, position-based defi-

nition of context using window frames around target words. These approaches are particularly

limited by their inability to capture long-distance dependencies. In addition, when a window

frame spans across adjacent constituents, the model suffers from higher false-positive rates

with regard to semantic relatedness. Some recent studies addressed these limitations by ex-

tending the word2vec model to predict words that are syntactically related to target words. For

example, given a target word w in a sentence S, Levy and Goldberg (2014) used words that are

syntactically related to w in S as contexts. Bansal et al. (2014) used a manually constructed

sequence of dependency relations as a template to match sequences of word tokens that follow

this pattern in a training corpus. Compared to that of Levy and Goldberg (2014), this approach

is more selective in the types of syntactic relations that are considered as context. Besides first-

order dependency pairs, Zhao et al. (2014) is an example of exploiting higher-order syntactic

relations by using ancestors, siblings, and descendants of w in the parse tree of S as contexts.
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Semantic information has also been explored as a source of relatedness in existing studies.

Bollegala et al. (2015), for example, trained lexical embeddings with three types of relational

graphs (corresponding to lexical, POS, and dependency patterns) that were constructed from

the sentences containing frequently co-occurring word pairs. Each relation was represented

by a pattern representation matrix, which was combined and updated together with the word

representation matrix in a bilinear objective function. The word representation matrix is used

as the final embedding matrix. Faruqui et al. (2015) proposed to retrofit existing embeddings

(i.e., published, pre-trained embeddings including those by Mikolov et al. (2013); Huang et al.

(2012); Mnih and Teh (2012)) to semantic lexicons. For target word w, the goal is to train

its embedding e so that it is not only similar to the pre-trained embedding vector for w, but

also those for the ontological neighbours of w specified by a semantic lexicon. The objective

function interpolates two parts that clearly correspond to these two constraints. When evaluated

on six tasks using six semantic lexicons (variants and combinations of WordNet (Fellbaum,

1998), FrameNet (Baker et al., 1998), and the Paraphrasing Database (Ganitkevitch et al.,

2013)), the resulting model compared favourably to embeddings derived using window-based

contexts.

2.2.3 Random Indexing

Another highly efficient embedding algorithm is random indexing (RI, Sahlgren, 2005). It is an

incremental model with linear complexity O(max(n,m)), where n and m are the dimensions of

the co-occurrence matrix. Each lexical representation is initialized with a k-dimensional vector

v consisting of randomly generated values from {−1,1}. During training, the algorithm simply

adds the co-occurring words’ vectors to each other, resulting in lexical representations that are

“effectively the sum of the words’ contexts” (Sahlgren, 2005).

Theoretically, RI is supported by the Johnson-Lindenstrauss Lemma (Johnson and Linden-

strauss, 1984), which states that distances among the rows in a matrix can be approximately

preserved during a random, linear transformation to a lower dimensionality. As a result, lexical
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representations are guaranteed to be near-orthogonal with the random initialization in RI, and

dependency is introduced only by the vector summations during training.

Meanwhile, RI can also be interpreted as an embedding model with a simple objective

function:

f (e(w),e(c)) = ∑
ci

e(w) · e(ci),

where w is the target word, c = {ci|i = 1, · · · ,n} is the collection of its contexts, and e(∗)

is the corresponding embeddings of the words. Compared to Equation (4.1), the incremental

summation of context vectors is equivalent to optimizing f with stochastic gradient descent

(SGD) since during each model update, the target embedding e(w) is updated by adding the

context vectors ∑e(ci), which happen to be the gradient ∂ f
∂e(w) of the objective function w.r.t.

the context vector. Compared to an objective function with contrastive divergence (e.g., the

word2vec model with negative sampling), a major difference is that the optimization does

not penalize non-co-occurring words by increasing the distance between their corresponding

vectors and e(w).

RI has been applied in several NLP tasks including text categorization (Sahlgren and Cöster,

2004), bilingual lexicon extraction (Sahlgren and Karlgren, 2005), and — in the context of

synonymy and lexical similarity — solving TOEFL synonym questions (Kanerva et al., 2000;

Karlgren and Sahlgren, 2001). Performance of the model is mostly on par with traditional di-

mension reduction techniques such as LSA, while gaining significant improvement in complex-

ity and scalability. Notably, the largest performance improvement is achieved on the TOEFL

synonym task by performing RI on a word-word co-occurrence matrix (Karlgren and Sahlgren,

2001), confirming the observations made in other studies (Rapp, 2008; Wang and Hirst, 2010).

2.3 Semantic Space Clustering

Another popular dimension reduction technique is to cluster lexical items that are semantically

or conceptually similar. The intuition is to estimate the probability of rare events with the help
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of more frequent events that are conceptually similar. To cluster two words w1 and w2 together,

the distance function used in the clustering algorithm should be chosen to correlate with lexical

semantic distance, and the resulting clusters are often referred to as concepts. As a result, the

sparse, lexical level co-occurrence is transformed into a denser, concept-level co-occurrence,

from which more-reliable probability estimations can be derived.

Since the distance function is essentially a semantic similarity measure, it can be con-

structed by using either corpus statistics or hand-crafted linguistic resources such as a thesaurus

or semantic taxonomy. Applying the DH on concept clusters often involves making assump-

tions about contextual similarity given semantic similarity among lexical items. Specifically,

suppose two words w1 and w2 (e.g., orange and apple) are known a priori to be semantically

similar. If a third word w3 (e.g., peeler) is observed to frequently co-occur with w1, then it

is also reasonable to assume that w3 is a valid context of w2 — even if they have not been

observed to significantly co-occur.

Examples include that of Dagan et al. (1999), where a class-based language model was

formulated to calculate the conditional probability of word w2 in the context of word w1 as:

p(w2|w1) = ∑
wi∈S(w1)

sim(w1,wi)p(w2|wi).

Here, S(w1) is the concept cluster of w1. Essentially, the model is a linear interpolation of

the conditional probabilities p[w2|wi ∈ S(w1)] weighted by the similarity between w1 and wi

(i.e., the concept cluster of w2). Several similarity metrics were experimented with as weight

functions, and the proposed model resulted in notable performance improvement on a disam-

biguation task and modest but statistically significant improvement on a language modelling

task.

Another example is that of Mohammad and Hirst (2006), where words were collated into

coarse-grained categories defined in the Macquarie Thesaurus (Bernard, 1986). The categories

are assumed to correspond to concepts or word senses. A word-category co-occurrence matrix
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was constructed to capture the denser, category-level co-occurrence, which outperformed lex-

ical level co-occurrence in a lexical similarity task (Rubenstein and Goodenough, 1965) and a

real-word error correction task (Hirst and Budanitsky, 2005).



Chapter 3

Near-Synonym Lexical Choice in Latent

Semantic Space1

3.1 Introduction

Lexical choice is the process of selecting content words in language generation. Consciously

or not, people encounter the task of lexical choice on a daily basis — when speaking, writing,

and perhaps in inner monologues. Its application also extends to various domains of natural

language processing including natural language generation (NLG, Inkpen and Hirst, 2006),

writing assistance systems (Inkpen, 2007), and teaching and learning English as a second lan-

guage (Ouyang et al., 2009).

In the context of near-synonymy, the process of lexical choice becomes significantly more

complicated. As discussed in Chapter 1, this is partly because of the subtle nuances among

near-synonyms, which can arguably differ along an infinite number of dimensions. Each di-

mension of variation yields differences in style, connotation, or sometimes truth conditions on

an utterance being generated (Cruse, 1986), making the seemingly intuitive problem of “choos-

ing the right word for the right context” non-trivial even for native speakers of a language.

1This study was first published as a conference paper in COLING 2010 (Wang and Hirst, 2010).
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When the goal is to make plausible or even elegant lexical choices that best fit the con-

text, the representation of context becomes a key issue. The proposed approach addresses this

problem in latent semantic space, where transformed local co-occurrence data is capable of

implicitly inducing global knowledge (Landauer and Dumais, 1997). A latent semantic space

is constructed by reducing the dimensionality of the co-occurrence matrix between words and

documents. This is referred to as document level of association (LoA). Document LoA can

potentially benefit topical level classification tasks (e.g., as in document retrieval, Deerwester

et al., 1990), but as discussed in Section 2.2, it is not necessarily suitable for lexical level tasks

that require more fine-grained co-occurrence information. Empirically, significant improve-

ment is observed from models with lexical LoA. The intuition is that lexical level co-occurrence

may help recover subtle high-dimensional nuances between near-synonyms.

This claim, however, is as imprecise as it is intuitive. The notion of subtlety has mostly been

used qualitatively in the literature to describe the level of difficulty involved in near-synonym

lexical choice. Consequently, the current study also attempts to formalize and quantify the

concept of subtlety based on our observations of the relationship between “subtle” concepts

and their lexical co-occurrence patterns.

3.2 Near-synonym Lexical Choice Evaluation

In the context of near-synonymy and near-synonym lexical choice, since there does not exist

much variation in the type of composition models used to represent contexts, the major distinc-

tion among the existing models is the lexical representations. Due to the symbolic nature of

earlier studies, near-synonym lexical choice remained largely qualitative until the introduction

of the “fill-in-the-blank” (FITB) task (Edmonds, 1997). In this task, sentences containing any

member of a given set of near-synonyms were collected from the 1987 Wall Street Journal

(WSJ). Each occurrence of any of the near-synonyms was replaced with a blank word space,

and the objective was to recover the near-synonyms originally used in the sentence. Assum-
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ing the correctness of lexical choice by the original authors, the FITB test for near-synonym

lexical choice provides an objective benchmark for empirical evaluation. Meanwhile, since no

further annotation is required for harvesting FITB data, large volumes of gold-standard data

are available at minimal cost.

Several studies adopted the FITB task for evaluating the quality of their near-synonym lexi-

cal choice models. Edmonds (1997) constructed a second-order lexical co-occurrence network

on 1989 WSJ. Word-word distance was measured using t-score inversely weighted by their dis-

tance in position and the order of co-occurrence. The candidate which minimizes the sum of

its distance from all words in the sentence (word-context distance) was considered the correct

answer. The model achieved an average accuracy of 55.7% on a FITB task of seven near-

synonym sets. Inkpen (2007) modelled word-word distance using pointwise mutual informa-

tion (PMI) calculated from word counts by querying the Waterloo Multitext System; the PMI

scores between the candidate near-synonym and context words within a window-size of ±5

were summed together as word-context distance. An unsupervised model using word-context

distance achieved an average accuracy of 66.0% while a supervised method with lexical fea-

tures added to the word-context distance further improved the accuracy to 69.2%. Islam and

Inkpen (2010) approached the task with a 5-gram language model, in which the candidate with

the highest probability given the (four-word) context was proposed as the correct answer. N-

gram counts were collected from the Google Web1T Corpus smoothed with missing counts,

yielding an average accuracy of 69.9%.

3.3 Context Representation

Notations

Formally, the FITB task consists of the following components. Given a sentence t consisting

of words {w1, . . . ,wi = s j, . . . ,wm}, there is a near-synonym s j belonging to a set of synonyms

S = {s1, . . . ,sn},1≤ j ≤ n. A FITB test case is created by removing si from t, and the context
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(incomplete sentence) c = t−{si} is presented to subjects whose task is to identify the missing

word from S.

3.3.1 Latent Semantic Space Representation for Context

As we saw in Section 2.2, the first step in LSA is to build a co-occurrence matrix M between

words and documents, which is then decomposed by singular value decomposition (SVD) as

follows:

Mv×d =Uv×kΣk×kV T
k×d.

Here, subscripts indicate dimensions of matrices; U , Σ, and V are the decompositions of M

(output of SVD), v and d are the vocabulary size and the number of documents, respectively,

and k is the dimension for the latent semantic space. A context c is represented by a vector

of length v with ones and zeros, each marking the presence or absence of a word from the

vocabulary in the context. This lexical space vector cv×1 is then used as a pseudo-document

and transformed into a latent semantic space vector by the following equation:

ĉ = Σ
−1UT c. (3.1)

A context is called a pseudo-document because elements in a context vector c are marked

in the same way a document is marked in matrix M, which makes c essentially a new column

in M; if we did SVD with c in M, it would become a new column in V in the latent space:

〈Mv×d,cv×1〉=Uv×kΣk×k〈Vk×d, ĉv×1〉T ,

or equivalently:

cv×1 =Uv×kΣk×kĉT
v×1, (3.2)
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where 〈·, ·〉 stands for matrix concatenation. In our experiments, the inversion of Σ is observed

to be empirically harmful, causing about a 30% decrease in the performance of the unsuper-

vised model. Consequently, Σ is used instead of Σ−1 in later experiments. Explanations of the

difference between the two are given in Section 3.5.2.

3.4 Model Description

3.4.1 Unsupervised Model

If cosine similarity is used for measuring vector distance, the context representation introduced

in Section 3.3.1 is equivalent to a weighted centroid of the context word vectors, and the lexical

choice among the near-synonym candidates becomes a k-nearest neighbour search in the latent

space (with k = 1 to choose the best near-synonym for the context). This is a result of the

binary representation of the pseudo-document vector c. When transforming c into the latent

space representation ĉ, vector c is multiplied by Σ−1 ·UT (Equation 3.2), and the product is

essentially the sum of the rows in U corresponding to the context words (and thus a centroid

for the context) weighted by Σ−1. This also explains the worse performance of using Σ−1

instead of Σ (Section 3.3.1), because the diagonal elements in Σ are the singular values of the

co-occurrence matrix along its diagonal, and the amplitude of a singular value (intuitively)

corresponds to the significance of a dimension in the latent space. When the inverse of the

matrix is used to weight the centroid, it is in effect assigning more weight to less-significantly

co-occurring dimensions and thus worsens the performance.

The latent space dimensionality k is an important parameter in LSA models. Due to the

lack of any principled guideline for parameter selection, a grid search is conducted for the best

k value for each LoA according to the performance of the unsupervised model. In Figure 3.1,

performance on FITB using the unsupervised model is plotted against k for different LoA’s.

Since there are only 500 documents in the Brown Corpus, higher dimensional information is

simply unavailable for document LoA. Lexical LoA by contrast increases quickly around k =
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Figure 3.1: Performance of different LoA’s on FITB along the latent semantic space dimen-
sions.

550 and peaks around k = 700. Nonetheless, the performances differs by about one percentage

point for the two LoAs under the unsupervised setting. This modest improvement suggests that,

in contrast to the supervised method (Section 3.5.2), the unsupervised model is not capable of

taking advantage of the high-dimensional information made available by lexical LoA.

3.4.2 Supervised Learning on the Latent Semantic Space Features

In traditional latent space models, the latent space vectors are almost always used in unsuper-

vised vector space models (Landauer and Dumais, 1997). Although the number of dimensions

has been reduced in the latent semantic space, the inter-relations between the high-dimension

data points may still be complex and non-linear, and such problems lend themselves naturally

to supervised models with non-linear mappings between the input and the output. Conse-

quently, the near-synonym lexical choice problem is formulated as a supervised classification

problem with latent semantic space features. For a test sentence in the FITB task, for example,

we first get vector representations for the context in the semantic space as discussed in Section

3.3.1. The latent space representation is then paired with the correct answer (the near-synonym

removed from the sentence) to form one training instance.



CHAPTER 3. NEAR-SYNONYM LEXICAL CHOICE IN LATENT SEMANTIC SPACE 31

Near-synonyms Edmonds (1997) Inkpen (2007) Islam and Inkpen (2010) Supervised (SVM)
difficult, hard, tough 41.7 57.3 63.2 61.7
error, mistake, over-
sight

30.9 70.8 78.7 82.5

job, task, duty 70.2 86.7 78.2 82.4
responsibility,
burden, obligation,
commitment

38.0 66.7 72.2 63.5

material, stuff, sub-
stance

59.5 71.0 70.4 78.5

give, provide, offer 36.7 56.1 55.8 75.4
settle, resolve 37.0 75.8 70.8 77.9
AVERAGE 44.9 69.2 69.9 74.5

Table 3.1: LSA-SVM performance on the FITB task (% accuracy). The most-frequent baseline
is 55.8%.

The support vector machine (SVM) is chosen as the learning algorithm for its proven ad-

vantage in classification accuracy2 as well as its non-linear kernels capabilities. The model is

trained on the 1989 WSJ and tested on 1987 WSJ to ensure maximal comparability with other

results3. The optimal k value for the latent space is 415 (determined by grid search on the

training data).

Table 3.1 lists the supervised model performance on the FITB task together with results

reported by previous studies. Different context window size around the gap in the FITB test

sentences is also observed to affect the model performance. In addition to using the words

in the original sentence, we also enlarge the context window to neighbouring sentences and

shrunk to a window frame of n words on each side of the gap. It is interesting to observe that,

when making the lexical choice, the model tends to favour more local information — the best

accuracy is achieved on a window frame of ±2. This is in accordance with observations made

by previous studies (Inkpen, 2007).

2We experimented with several models and SVM gives noticeably better performance on the task.
3In Section 3.5.2 when we have to compare the supervised and unsupervised models before being able to

generate the results in Table 3.1, we used The Brown Corpus for training and 1988 and 1989 WSJ for testing in
order to keep the test data unseen.
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3.5 Formalizing Subtlety in the Latent Space

So far in the discussion, subtlety, dimensionality, and the problem of lexical choice have been

referred to in very loose terms, and the notion that near-synonym lexical choice involves dif-

ferentiating subtleties remains intuitive and imprecise. These concepts and their inter-relations

will be formalized in this section. Based on a unique co-occurrence property of subtlety, we

empirically prove the existence of differences of subtlety in lexical choice by comparing the

two learning models discussed in previous sections.

3.5.1 Characterizing Subtlety with Collocating Differentiator of Subtlety

In language generation, subtlety can be viewed as a subordinate semantic trait in a linguistic

implementation of an intention. A key observation on subtlety is that it is difficult to charac-

terize subtle differences between two linguistic units using their collocating linguistic units.

More interestingly, the difficulty in such characterization can be approximated by the difficulty

in finding a third linguistic unit satisfying both of the following constraints:

1. The unit must frequently collocate with at least one of the two linguistic units to be

differentiated.

2. The unit must be characteristic of the major difference(s) between the pair.

The approximation is meaningful in that it transforms the abstractness of characterization into

the concrete task of finding a third, co-occurring linguistic unit. Consider, for example the

differences between the two words pen and pencil. According to the above hypothesis, the

level of subtlety is in correlation with the level of difficulty in finding a third word or phrase

satisfying the two constraints. If it is relatively easy to conclude that the word sharpener

satisfies both constraints, i.e., that it frequently co-occurs with the word pencil, and that it is

characteristic of the difference between pen and pencil, then the conclusion is the difference

between the two words are not subtle. The same rule applies to word pairs such as weather and

climate with forecast, glass and mug with wine, etc.
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Notably, there are important differences between the collocational differentiating term

(CDT) and the conventional sense of collocation. On the lexical level, CDTs are not only

words that collocate more with one word than with the other in a pair, but also they have to

be characteristic of the differences between the pair. One can easily find a collocating word

exclusively for forest but not for woods — as in the example of national forest but *national

woods; however, unlike CDTs in the previous examples, the word national does not character-

ize any of the major differences between forest and woods in size, primitiveness, proximity to

civilization, and wildness (Edmonds and Hirst, 2002) — none of these properties are necessary

for something to be national. The word gorilla, on the other hand, might be more characteristic

but collocating far infrequently (and thus failing the first constraint). Consequently, the lack

of CDTs — or at least the relative difficulty for finding one — makes the differences between

forest and woods more subtle than the previous examples. Similar observations can be made

with word pairs such as enemy–foe, presume–assume, etc.

3.5.2 Subtlety and Latent Space Dimensionality

The concept of CDT makes it possible to relate subtlety to dimensionality in the latent se-

mantic space. As mentioned in Section 3.4.1, dimensions in the latent semantic space are

arranged in descending order with regard to co-occurrence significance since, by the nature

of SVD, the information within the first dimensions in the latent space are formulated from

more significantly collocating linguistic units. Relating this to the discussion above, it follows

that it should be relatively easy to find CDTs for target words that can be well distinguished

in a lower-dimensional sub-space of the latent semantic space. Under the hypothesis regarding

CDT in the previous section, the differences should therefore be less subtle for these target

words. Consequently, co-occurrence-based information capable of characterizing more subtle

differences must then reside in higher dimensions in the latent space vectors.

Empirically, the supervised FITB task performance is observed to correlate positively with

the number of dimensions in the latent semantic space (Figure 3.2). This suggests that the
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Figure 3.2: Supervised method gaining further improvement over unsupervised method in
higher dimensions.

lexical choice process is indeed capturing the implicit information on subtlety in the higher

dimensions of the latent vectors. A comparison between the supervised and unsupervised

methods further confirmed our intuition about the complexity of subtlety. As shown in Figure

3.2, performance of the supervised method keeps increasing towards the higher end of dimen-

sionality, while that of the unsupervised mostly remains flat. Assuming one of the differences

between the supervised and unsupervised methods used here is that the former is better at un-

ravelling the non-linear relations in training data (with the non-linear kernel), this comparison

then suggests that the subtlety-related information in the higher dimensions exhibits complex

mapping functions between the input (contexts) and output (near-synonyms) that are beyond

the capability of the k-nearest-neighbour model.

The fact that the unsupervised performance remains flat is not surprising considering, again,

the construction of the latent space representation of the near-synonyms and context (Section

3.3.1). Elements in higher dimensions of these vectors are significantly weighted down by Σ,

whose diagonal elements are in descending order in value. Consequently, higher dimensions

in the representation would have very little influence over the cosine distance function in the

unsupervised model. In other words, the information about subtlety in higher dimensions does

not have enough influence over whatever decision is made in the lower dimensions based on

explicit co-occurrence data, and performance is almost invariant with respect to latent space

dimensionality. It will eventually decrease significantly when sparsity becomes an issue.
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Figure 3.3: LoC (level of context) in correlation with latent space dimensionality for optimal
model performance.

3.5.3 Subtlety and the Level of Context

The lexical LoA associates words within the same sentence. Lexical LoA also allows us to

relate words that co-occurs in different levels of context (LoC) such as paragraph or even the

entire document. This gives us an approximate measurement on how much context a lexical

LoA model uses for word-word co-occurrence. Intuitively, if two words are distinguishable

only through larger LoC, their differences also tend to be more subtle.

To test this hypothesis, we compared the performance of models built on different LoC’s.

Figure 3.3 plots the unsupervised performance for models with sentence and paragraph LoC.

There is a significant difference in the optimal k value for the performance of the models.

Sentence LoC performance peaks around k = 700 — much lower than that of paragraph LoC

which is around k = 1,100. Under the previous hypothesis between latent space dimensionality

and the level of subtlety, this difference in k value suggests that each model may have its own

“sweet spot” for the degree of subtlety it aims at distinguishing; models on larger LoC are

better at differentiating between more subtle nuances, which is in accordance with intuition.



Chapter 4

Dependency-based Embedding Models

and its Application in Lexical Similarity1

4.1 Using Syntactic and Semantic Knowledge in Embedding

Learning

The discussions in Section 2.2.2 suggests that compared to LSA, distributed representations

not only better capture semantic relations among words but also are computationally less ex-

pensive to obtain. Several existing embedding models attempted to address the position-based

definition of context using window frames. However, all of these models have their respective

limitations in context representation. Syntactically, dependency information is often used in

an overly simplistic manner, in which, for instance, many different types of syntactic relations

of heterogeneous natures are conflated in the same contextual space without distinction. On

the other hand, semantic knowledge used in existing models either is derived from automatic

but complex procedures that are difficult to reproduce, or relies heavily on expensive linguistic

resources (such as semantic ontologies or manually annotated corpora), while ignoring simple,

effective, and widely available knowledge sources. Consequently, one of the major objectives

1This study was first published as a conference paper in ACL 2015 (Wang et al., 2015).
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of this study is to address these limitations in existing embedding models.

4.1.1 Relation-dependent Models

As shown in Section 1.1, the definition of context is an integral part in the application of the

distributional hypothesis (DH). Consequently, we first formulate definition of lexical associ-

ation (between a target and its context) as a unified framework to incorporate different types

of linguistic environments into embedding learning. Formally, a certain definition of associ-

ation (denoted R̃k) defines not only a particular pair of input/output vocabulary space (V (k)
I

and V (k)
O ), but also a probability distribution of all possible combinations of input-output pairs

being associated under R̃k. Position-based co-occurrence, for example, can be regarded as an

instance of association, and the probability of words being associated under this relation (e.g.,

co-occurring within a window frame) defines either a bigram language model or a bag-of-words

model depending on whether the input-output lexical spaces are ordered.

The abstraction is important in that it facilitates the incorporation of syntactic and seman-

tic information into language modelling — and by extension, into embedding learning. For

example, association can be defined as the dependency relation “adjective modifier”. Given a

target word apple, the resulting model is able to assign higher probability to red or green than

to black or blue. Similarly, other aspects of the meaning of an input word can be learned by

having different definitions of association using other syntactic relations. From the perspective

of the DH, the knowledge about the target word’s distribution in its linguistic environment is at

least in correlation with its meaning. Consequently, although far from truly understanding the

global meaning of a target, a model with this type of distribution knowledge can still be con-

sidered semantically informed about certain attributes of the target (e.g., more probable taste

or colours of the target), which can be used to improve the performance of many downstream

NLP applications. Compared to existing embedding models, information thus obtained about

a target word’s meaning is more accurate and more fine-grained than both the window-based

co-occurrence and the non-discriminative definition of syntactic relatedness.
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Note that the definition of association is not limited to syntactic dependencies. For exam-

ple, the defining relation from a monolingual dictionary has been demonstrated to be highly

informative of semantic associations (Alshawi, 1987; Wang and Hirst, 2012). Specifically, def-

inition texts can be used to establish association between apple and the words it defines such as

pippin and cider, etc., or its defining words such as fruit and rosaceous, etc. The advantage of

using these lexicographic relations is two-fold. Firstly, although the defining terms are highly

related in meaning to the target words, the degree of relatedness can be severely undermined

in a distributional model since the co-occurrence statistics among these words might be in-

significant, especially given the low frequency of either the target or the defining words (e.g.,

pippin). Secondly — and perhaps less conspicuously, the most fundamental or representative

properties of an entity are quite possibly missing from its distributional contexts. For example,

we might not expect the phrase rosaceous apple to occur with significant frequency — if at all.

Consequently, the lexicographic relation can effectively supplement the distributional contexts

by including these important descriptive terms.

4.1.2 Relation-independent Models

Each of the resulting models makes use of only one of the syntactic or semantic relations

between words and thus, they are named relation-dependent models. However, the major-

ity of NLP tasks take words as inputs in the form of string tokens without syntactic or se-

mantic context. As a result, an embedding model should ideally also be able to produce

relation-independent embeddings for words. Consequently, I also propose a post-hoc, relation-

independent model to achieve this goal by combining the relation-dependent embeddings.

The basic idea for the relation-independent model is to add an extra layer to the network to

reconstruct the original input word given the relation-dependent representations. The intuition

is that, the relation-dependent embedding models learn the meaning of a word by predicting its

syntactically- or semantically-related words, while the relation-independent model essentially

performs a post-hoc, “riddle-solving” procedure that predicts the original word given its related
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(a)

(b)

Figure 4.1: (a) Training relation-dependent models with dependency-based contexts. (b) Train-
ing a relation-independent model by predicting the target word given its relation-dependent
embeddings.

words. For example, as shown in Figure 4.1-(a), for an input noun apple, the relation-dependent

model is trained to answer questions such as what can it do (e.g., grows, rots, falls, or its other

noun-subject governors), what can be done to it (e.g., buy, eat, pick, or its other direct-object

governors), what attributes it possesses (e.g., sweet, big, red, or its other adjective-modifier

dependents), etc. Conversely, if the algorithm knows that something can be sweet, big, or red,

one can pick it, buy it, eat it, etc., then the post-hoc, relation-independent phase is to train

a model that “solves the riddle” and predicts that this “something” is an apple (Figure 4.1-

(b)). The two-tier structure in the proposed model essentially makes use of the individual

syntactic and semantic relations to guide the intermediate lexical representation learning in the

relation-dependent phase, which is superior than existing models that directly learn relation-

independent representations.
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4.2 Optimization

The relation-dependent model is trained with an objective function similar to that of Mikolov

et al. (2013):

logσ(eT
g e′d)+

k

∑
i=1

Ed̂i
[logσ(−eT

g e′d̂i
)], (4.1)

where e∗ and e′∗ are the target and the output (context) embeddings for the corresponding

words, respectively, and σ is the sigmoid function. The subscripts g and d indicate whether

an embedding corresponds to the governor or the dependent of a dependency pair. When

deriving relation-independent embeddings, target words are always assumed to be governors in

relevant relations (and contexts to be dependents). Inversion is performed whenever necessary

in order to satisfy this assumption. Finally, d̂∗ correspond to random samples of dependents

drawn with unigram frequency from the dependent vocabulary, and Ed̂i
stands for expectation

over these samples. These words are assumed to be semantically unrelated to the target word.

Lexicographic knowledge is represented by adopting the same terminology used in syntactic

dependencies: definienda as governors and definientia as dependents. For example, apple is

related to fruit and rosaceous as a governor under def, or to cider and pippin as a dependent

under def−1.

In contrast, relation-independent embeddings are derived by applying a linear transforma-

tion M on the concatenation of the relation-dependent embeddings ẽg of target words, and the

objective function is defined as:

logσ(e′Tg Mẽg)+
k

∑
i=1

Ed̂i
[logσ(−e′Td̂i

Mẽg)].

Notations follow those used in the relation-dependent case, (e.g., e∗ and e′∗ are the target and

the context embeddings for the corresponding words, respectively). There are two notable

differences from the relation-dependent model. Firstly, d̂i’s are negative samples generated
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according to the unigram frequency of the entire training corpus (instead of only the dependent

vocabulary of a certain dependent relation), and they are used to generate contrast against the

target words. Secondly, parameter updates for M are defined as:

∂

∂M
= [1−σ(e′Tg Mẽg)]e′gẽT

g −
k

∑
i=1

[σ(−e′Td̂i
Mẽg)]e′d̂i

ẽT
g .

Since ẽg is a real-valued vector (instead of a 1-hot vector as in the relation-dependent models),

M can not be updated one column at a time (as with the target and the output embedding

matrices in the relation-dependent case). Instead, as indicated by the outer product between e′g

and ẽT
g (and between e′

d̂i
and ẽT

g ), each update is a dense matrix of the same size as M (d×n ·d,

with d being the dimensionality of the relation-dependent embeddings and n being the number

of relations to be composed by the relation-independent model). In practice, however, training

is nonetheless quite efficient, since the dimensionality of M is considerably lower than that

of the relation-independent embedding matrices, and convergence is achieved after very few

epochs.2

4.3 Evaluation

4.3.1 Data Preparation

The relation-dependent models are trained on the 4-billion-word Annotated English Gigaword

Corpus (Napoles et al., 2012, dubbed 4B). A 17-million-word subset of the corpus (dubbed

17M) is also used to study the effect of data size. Dependency information is obtained from the

dependency parses that comes with the distribution of the corpus. All dependency relations are

used except the following four types: det (determiner, as in man–det–the), expl (existential

there, as in is–expl–there), dep (indeterminable relations or parser error), and root (the head

verb of a sentence). The first two are excluded due to the low degree of semantic association

2We also experimented with updating the relation-dependent embeddings together with M, but this worsened
evaluation performance.
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between governors and dependents, and the last one due to the fact that root is a unary relation.

On the lexical level, words with either SYM (symbols), LS (list item marker), or non-

alphabetical part-of-speech (usually punctuations) are excluded. Numbers and proper nouns

(identified by their POS tags) are conflated into special tokens (_CD_ and _NP_, respectively).

This pre-processing step implicitly excludes many dependency relations such as num (numeric

modifier), punct (punctuation), etc., which are clearly insignificant as far as relatedness be-

tween the governors and the dependents is concerned. A frequency threshold of 30 is applied

on the lexical level, and dependency pairs containing infrequent words (either as the governor

or the dependent) are excluded from the training data. This significantly reduces the vocabu-

lary size and improves efficiency with regard to both runtime and storage space. However, no

frequency threshold is applied for the 17M corpus.

Semantic relations are derived from the Online Plain Text English Dictionary3 (version

0.0.3, dubbed OPTED). There are approximately 806,000 definition pairs in total, with 33,000

distinct definienda and 24,000 distinct defining words. The entire corpus has 1.25 million

words contained in a 7.1MB compressed file. No additional processing is performed on this

data.

Both the syntactic and semantic relations are represented as matrices with governors as

rows, dependents as columns, and their co-occurrence counts as cell values. Data points are

presented to the models in the form of dependency pairs by random sampling. Before sampling,

however, each pair is presented once to the models to ensure that the models are exposed

to all pairs including the rare ones. Subsequent data points (governor-dependent pairs) are

then sampled according to their frequency. Since the vocabulary size is usually much smaller

(approximately 5%) compared to the number of data points, the first pass through the entire

vocabulary does not significantly affect the sample frequencies.

Hyperparameters used to obtain the reported results are listed in Table 4.1.

3http://www.mso.anu.edu.au/~ralph/OPTED/

http://www.mso.anu.edu.au/~ralph/OPTED/
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Corpus Dimension Learning Rate Neg. Sample Size Epoch
Relation-Dependent Models

17M 50 .025 15 30
4B 50 .025 5 1

OPTED 50 .025 15 30
OPTED−1 50 .025 15 60

Relation-Independent Models

– 50 .025 15 60

Table 4.1: Hyperparameters for the proposed embedding models.

4.3.2 Lexical Semantic Similarity

The resulting word embeddings are evaluated on the lexical semantic similarity task, where

datasets consist of a number of word pairs, each rated by human judges with regard to their

semantic similarity. A vector space model (such as an embedding model) can then be applied

to produce a vector for each of the words, and the cosine similarity between the vectors for

a pair is used as the system score for the pair in question. Spearman’s ρ is used to measure

the correlation between the system scores and the human ratings, and the degree of correlation

indicates how well the model under evaluation captures the semantics of the target words.

Six datasets are used in the experiments. RG (Rubenstein and Goodenough, 1965) is the

earliest of the sets and consists of 65 noun pairs. MC (Miller and Charles, 1991) is a 30-pair

subset of the RG dataset. FG (Finkelstein et al., 2001) consists of 353 noun pairs, which is

superset of the MC dataset. SimLex (Hill et al., 2015b) contains 999 pairs of mixed POSs. In

our experiments, this dataset is split by POS into SLn of 666 noun pairs, SLv of 222 verb pairs,

and SLa of 111 adjective pairs. Semantically, FG does not make explicit distinctions between

similarity and relatedness, whereas the other three datasets are more similarity oriented, partic-

ularly the SimLex data. For example, the pair clothes–closet is rated 8.00/10 in FG but 1.29/10

in SLn). As shown in later sections, the definition of contexts may determine whether a distri-

bution model is able to distinguish true similarity from relatedness. As a result, this difference

among the datasets can serve as a suitable benchmark for evaluating this particular aspect of
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Dataset MC RG FG SLn SLv SLa
d.f. 30 65 353 666 222 111

t-value 1.70 1.67 1.65 1.65 1.65 1.66
ρ 0.31 0.21 0.09 0.06 0.11 0.16

Table 4.2: Degree of freedom, critical t-values (after rank permutation), and critical values of
Spearman’s ρ (i.e., the minimal values of ρ for the results to be statistically significant in each
dataset).

an embedding model. More detailed discussions on the distinction between relatedness and

similarity can be found in Section 1.2.2.

Statistical significance of the correlation is tested by performing a permutation test on the

Spearman’s ρ , the result of which conforms to Student’s t distribution Rosenhead (1963). For

a confidence interval of 0.05, the critical values for the datasets are shown in Table 4.2, which

suggest that the all results reported below exhibit statistical significance in correlation with the

human judgements of similarity.

However, there exists much controversy in parametric significance tests on the difference

between multiple Spearman’s ρ’s. For example, some existing studies treated the Spearman’s

ρ as the Pearson correlation significance test (Gabrilovich and Markovitch, 2009), since the

latter has a more established parametric method for significance testing. However, due to the

difference in the nature of the two correlation metrics, the practice actually received much

criticism for the conversion. This is because a lack of significant difference in two similarity

metrics measuring the linear correlation (i.e., Pearson correlation) does not necessarily imply

the lack of significant difference in the rank-based correlation (i.e., Spearman’s ρ) on the same

observations. Without a more scientific way of comparing the correlations, we opt for com-

paring the correlations without significance testing — which is the de facto practice in exiting

studies involving lexical similarity tasks.
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Relation Description Example Governor Dependent
amod Adjective modifier a red apple apple red

nn Noun modifier apple farm farm apple
nsubj Noun subject the apple falls falls apple
dobj Direct object eat an apple eat apple

Table 4.3: The relations used for relation-dependent models in the lexical similarity task.

Model MC RG FG SLn SLv SLa
amod .766 .798 .572 .566 .154 .466

amod−1 .272 .296 .220 .218 .248 .602
nsubj .442 .350 .376 .388 .392 .464

nn .596 .620 .514 .486 .130 .068
Baselines

DEP .640 .670 .510 .400 .240 .350
w2v .656 .618 .600 .382 .237 .560

GloVe .609 .629 .546 .346 .142 .517

Table 4.4: Correlation between human judgement and cosine similarity of embeddings (trained
on the Gigaword corpus) on six similarity datasets.

4.3.3 Baseline Models

Three existing embedding models are used for comparison with the proposed models. To

demonstrate the advantage of using syntactic and lexicographic knowledge in embedding learn-

ing, we choose w2v (Mikolov et al., 2013) and GloVe (Pennington et al., 2014), both of which

use window-based co-occurrence to define lexical association. Both models are widely adopted

for their efficiency and scalability. However both require very large amounts of training data to

achieve optimal results, which is also an important aspect for comparison particularly with our

proposed dictionary-based model. Another baseline model is a dependency-based model (Levy

and Goldberg, 2014) that does not distinguish among different types of dependency relations.

The model is included in order to show the effect of making such distinctions particularly in

the aspect of forcing the model input to be syntactically and semantically more focused.
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4.3.4 Relation-dependent Models

Considering the fact that the majority of the target words in the similarity datasets are nouns,

four noun-related syntactic relations are chosen for the relation-dependent model experiments

including amod, nn, nsubj, and dobj4. Details of these relations are given in Table 4.3. Eval-

uation performance of the relation-dependent models are listed in Table 4.4.

Parser Errors and Exceptions

Given a dataset, relations with better performance should be the ones whose governors are of

the dominant POS of that dataset (e.g., noun for MC, verb for SLv, etc.). Empirically, amod, and

dobj−1 indeed perform significantly better than their inverse relations on the noun-dominant

datasets, whereas nn and nn−1 are approximately on the same level. However, the assumption

fails on the subject-verb relation on the noun-dominant dataset since performance of nsubj is

actually higher than nsubj−1.5 Error analysis reveals that a large number of the target words

have appeared as governors in nsubj — which are expected to be verbs. For the MC dataset,

for example, after excluding the nouns that are frequently used as verbs (implement, shore,

smile, and string), there are 8,043 occurrences of the remaining nouns as governors in dobj,

while the count is 170,921 for nsubj. In other words, when normalized by the respective data

size for the two relations, the proportion of noun governors in the nsubj is about 12.4 times

the proportion in dobj. Further investigation reveals that this abnormally large discrepancy

is caused by an intended feature in the Stanford parser. When the head verb of a sentence is

copula or periphrastic, the corresponding nominal or and adjectival predications are used as

governors of nsubj instead of the verb itself. In future work, distinctions need to be made for

these scenarios to model the noun-verb relation more accurately.

Parser error is another source of inaccuracy in the data for the relation-dependent model.

For four example target nouns from MC, Table 4.5 lists some randomly selected examples

4Indirect object is not included due to its overly small data size (less than 5% of that of dobj).
5Correlations for the nsubj−1 model are not statistically significant when the model is trained on the 17M

corpus and hence there results are omitted in Table 4.4.
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Governors dependents
car explosion runner-up color coupe industry

automobile cause interests hybrid mainland system
boy underling company problem fighter prodigy
lad boy dad kid man son

Table 4.5: Examples of noun target words from the MC dataset appearing as verb governors in
the nsubj relation and their corresponding noun dependents.

of their occurrences as verb governors of the nsubj relations caused by parser error. Manual

inspection suggests that this type of errors will not significantly affect model performance since

most of these examples nonetheless exhibit semantic relatedness to the target words.

Comparing Adjectival and Nominal Modifiers

For target words of the same POS, there exists a large performance gap among different re-

lations. For example, the relation amod is noticeably more effective for nouns than other re-

lations. Curiously, although both are noun-modifying relations, nn (or its inverse) does not

perform nearly as well as amod. Data inspection reveals that compared to amod, the nn re-

lation has a much higher proportion of proper nouns as modifiers. An interesting difference

between the two relations can be inferred from this observation: for a nominal concept, amod

often describes its attributes (e.g., uncharted shore, scenic coast), whereas nn phrases are of-

ten instantiations (e.g., Mediterranean shore, California coast). Semantically, the former is

apparently more informative about the nominal governors than the latter, which, empirically,

is in accordance with the better performance in the similarity tasks. We experimented further

by training the same models after excluding pairs with proper noun modifiers from the train-

ing data. Performance of nn−1 is improved over all noun-dominant datasets, while the same

procedure does not have noticeable effect on the performance of amod.
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The Effect of Training Data Size

Training data size appears to play a more complex role than simply “the more the better”.

Among the three relations amod, nn, and nsubj, for example, performance is in fact negatively

correlated with the amount of data available for each relation. As is seen from the previous

comparisons, the quality of the data — and most importantly, the nature of the syntactic rela-

tion in relation to the meanings of the target words — plays a more important role than data

size. Furthermore, for MC and RG, the best-performing relation-dependent model (amod) is on

par with the baseline models when trained on the smaller 17M corpus. With the full Gigaword

corpus, the model outperforms both word2vec and GloVe by large margins. We offer two pos-

sible explanations for the data-size-induced difference in performance. Firstly, co-occurrence

data become sparser when factorized into multiple syntactic relations, and thus each individ-

ual relation requires more data to achieve sufficient co-occurrence statistics for the resulting

embeddings to capture lexical semantic relatedness. Secondly, with sufficient data, individ-

ual syntactic dependencies are able to provide more “focused” (Levy and Goldberg, 2014)

co-occurrence statistics and thus achieve better performance than distributional contexts. This

result empirically confirms the fundamental hypothesis of this study.

Comparison Between Similarity and Relatedness

On the FG dataset, the best-performing relation-dependent model (amod) performs better than

GloVe but not as well as word2vec (which also outperforms the non-factorized dependency-

based embedding model DEP). A possible explanation is that MC and RG are more oriented

towards semantic relatedness, while words in FG are often related through distributional simi-

larity (e.g., bread–butter, movie–popcorn, etc.). The difference in performance might suggest

that the proposed syntax-based models are better at capturing semantic similarity rather than

distributional relatedness. Remember that Hill et al. (2015b) made clear distinctions between

similarity and relatedness: related words with high (relatedness) scores in FG are rated much

lower in the SL datasets (Section 4.3.2). Not coincidentally, the relation-dependent models
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Model MC RG FG SLn SLv SLa
amod .512 .486 .380 .354

dobj−1 .390 .380 .360 .304
Combined .570 .550 .392 .360

nsubj .222
dobj .206

Combined .238
amod−1 .394
dobj−1 .236

Combined .338
Baselines

DEP .568 .548 .498 .352 .108 .436
w2v .563 .491 .562 .287 .065 .379

GloVe .306 .368 .308 .132 −.007 .254

Table 4.6: Lexical similarity performance of relation-independent models (trained on the 17M
corpus) combining top two best-performing relations for each POS.

outperform the baselines with much larger margins on these datasets, further confirming the

hypothesis that the proposed models are better at capturing true similarity than relatedness.

4.3.5 Relation-independent Models

As mentioned in Section 2.2.2, one of the advantages of the proposed models over existing

dependency-based embedding models is that the interaction between the individual relations

can be investigated by factorizing different syntactic and semantic relations. Using the relation-

independent model proposed in Section 4.2, different combinations of relation-dependent mod-

els are implemented and evaluated in this section.

Performance of relation-independent models is summarized in Table 4.6. Since the ma-

jor motivation for the relation-independent model is to alleviate sparsity caused by factoriz-

ing co-occurrence information into individual dependency relations, we only report the results

obtained on the smaller 17M corpus. Given the large number of relations available, it is im-

practical to experiment with all possible combinations in an exhaustive manner. Instead, for

each POS, only two relation-dependent models with the best performance are chosen according

to the experiments in Section 4.3.4. Improvements are observed consistently for all datasets

except for SLa. The reason for the lower performance on this dataset is that the second-best
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performing relation for adjectives (dobj−1) does not yield statistically significant correlation

with human judgements. In other words, the relation-independent model is essentially adding

noise to the best performing relation for adjectives and hence the decrease in performance.

In contrast, combining syntactic relations does more harm than help on the larger, 4B corpus

(not listed in Table 4.6). Since the relation-dependent embeddings are of the same dimension

on the 17M and 4B corpora (both 50), the only difference with regard to model training is the

vocabulary size. Note that the input vocabulary of a relation-independent model is the inter-

section of the vocabularies of its upstream, relation-dependent models. The intersection does

not significant change the input vocabulary for the 4B corpus due to the large vocabulary size

for the individual relations. On 17M, however, it is observed that combining multiple relations

sometimes increases the size of the out-of-vocabulary (OOV) set. Since the OOV words are

always infrequent words, which are usually more difficult to model due to their inaccurate co-

occurrence profiles, the shrinkage during vocabulary intersection might have given the 17M

model an implicit advantage over the 4B model, and hence performance improvement is wit-

nessed on the former but not the latter.6 It is also possible that the relation-independent model

requires different hyper-parameters such as negative sample size or number of epochs to offset

the difference in vocabulary size. In either case, further investigations are needed to offer more

insightful explanations for the performance discrepancy on the two corpora.

4.3.6 Using Dictionary Definitions

Both relation-dependent and relation-independent models are evaluated with dictionary def-

inition texts as training data, and results are listed in Table 4.7. Both the defining relation

(def) and its inverse (def−1) perform surprisingly well with the relation-dependent model,

especially considering the highly compact size of the training data. The proposed models are

trained on 1.2 million tokens of hand-crafted data. When compared to three existing models

6It is possible to mimic the advantage on the 4B data by proper choices of frequency thresholds for the
relation-dependent models to be combined, which is beyond the scope of discussions in this study.
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Model MC RG FG SLn SLv SLa
def .640 .626 .378 .332 .320 .306

def−1 .740 .626 .436 .366 .332 .376
Combined .754 .722 .530 .410 .356 .412

DEP .530 .558 .506 .346 .138 .412
w2v .563 .491 .562 .287 .065 .379

GloVe .306 .368 .308 .132 −.007 .254

Table 4.7: Lexical similarity performance of models using dictionary definitions compared to
word2vec trained on the Gigaword corpus.

Figure 4.2: Co-training embeddings between the input and the output space.

trained on the 4-billion-word Gigaword Corpus, the relation-dependent models (the first two

rows in Table 4.7) perform better on almost all of the semantically oriented similarity tasks.

The relation-independent model brings consistent improvement by combining the two indi-

vidual relations, and the results compare favourably to other models on all five semantically

oriented dataset. The results also suggest that, similar to dependency relations, lexicographic

relations are a reliable knowledge source for capturing similarity than relatedness.

4.4 Input-output Embedding Co-training

As mentioned earlier in Section 4.2, the embedding space of target words {e} is independent

from that of the contexts {e′}. Algebraically, the independence is a result of formulating the

embedding learning problem as a matrix factorization problem, where some form of the lexi-

cal co-occurrence matrix is factorized into two matrices corresponding to the two embedding
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Model MC RG FG SLn SLv SLa
amod .512 .486 .380 .354
amodct .578 .544 .432 .384
nsubj .222
nsubjct .250
amod−1 .394
amodct .428

Table 4.8: Comparison of lexical similarity performance before and after embedding co-
training by inverting dependency relations and input-output embedding matrices.

spaces. Practically, the difference entails that the output embedding matrix only plays an aux-

iliary role to support better embedding learning in the input matrix. For example, in negative

sampling, the contrastive learning signal is generated by the difference between the target word

and the negative samples. According to Equation (4.1), these signals only go to the input em-

bedding matrix. In other words, the principle of contrastive divergence is applicable to the

input embedding matrix only, and hence the input embeddings are updated with more informa-

tion than the output embeddings. This difference is consistent with the empirical observations

that the input embeddings result in better evaluation performance than the output embeddings.

However, we hypothesize that given the directed nature of the relation-dependent models

(i.e., with the input and the output corresponding to the governors and dependents of a depen-

dency relation, respectively), the output embeddings must encode semantic information about

the dependents. By modifying the dependency-based embedding models (Section 4.1), we

propose a co-training mechanism that can make use of the output embeddings to improve the

quality of the input embeddings. For example, suppose the goal is to train an amod model with

noun governors as inputs and adjective dependents as outputs (the left diagram in Figure 4.2).

According to the previous discussions, the adjective (output) embeddings might not be opti-

mized to capture the meaning of adjectives due to the lack of the contrastive learning signals.

The basic idea of co-training is to switch the input and the output embedding matrices and

inverse the governor-dependent relation in the original training data. Specifically, we use the

current cell values of the output (adjectival) matrix as an initial state to train an amod−1 model,
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and use a modified version of the amod data by swapping the governors and dependents. Dur-

ing training, the adjectival embeddings should benefit from from the contrastive signals from

the nominal negative samples (right diagram in Figure 4.2). The resulting adjectival embed-

dings are expected to be better at capturing the meanings of the adjectives and in turn serve as

a better initial state for the next phase of training an amod model when the switching procedure

is repeated. Essentially, the idea is to recycle the states of both input and output embedding

matrices on the same training data, and is of particular value when training data size is limited.

Empirically, one iteration of co-training brings performance improvement in all six datasets on

the small 17M corpus (Table 4.8).



Chapter 5

Refining the Notions of Depth and Density

in Taxonomy-based Semantic Similarity

Measures1

5.1 Introduction

Semantic similarity measures are widely used in natural language processing for measuring

distance between meanings of words. The vector-space models seen in Chapters 3 and 4 often

employ large amounts of text as the basis for reliable lexical co-occurrence information. In

contrast, another popular approach makes use of hand-crafted information such as dictionaries

(Chodorow et al., 1985; Kozima and Ito, 1997) or thesauri (Jarmasz and Szpakowicz, 2003),

and often lexical taxonomies such as WordNet (Fellbaum, 1998). Despite their high cost of

compilation and limited availability, semantic taxonomies have been widely used in similarity

measures under the hypothesis that the complex notion of lexical semantic similarity can be

intuitively approximated by the distance between words (represented as nodes) in their hier-

archical structures. Even simple methods such as “hop counts” between nodes (e.g., that of

1This study was first published as a conference paper in EMNLP 2011 (Wang and Hirst, 2011).

54
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Rada et al., 1989 on the English WordNet) can be highly effective. Meanwhile, taxonomy-

based methods have been constantly refined by incorporating various structural features such

as depth (Sussna, 1993; Wu and Palmer, 1994), density (Sussna, 1993), the types of connec-

tion (Hirst and St-Onge, 1998; Sussna, 1993), word class (sense) frequency estimates (Resnik,

1999), and a combination of these features (Jiang and Conrath, 1997). The major difference

among these models is how the features are weighted, however the rationales for adopting

these features in the first place remain largely intuitive without much scientific validation. To

the best of our knowledge, there is no empirical study directly investigating the effectiveness

of adopting structural features such as depth and density. This serves as the major motivation

for this study.

5.1.1 Taxonomy-based Similarity Measures

Formally, given a node/concept c in WordNet, depth refers to the number of nodes between

c and the root of WordNet, (i.e., the root has depth zero, its direct hyponyms depth one, and

so on). There are more variations in the definition of density, but it is usually defined as the

number of edges leaving c (i.e., its number of child nodes) or leaving its parent node(s) (i.e.,

its number of sibling nodes). We choose to use the latter since it is the more widely adopted

version in the existing literature.

The basic assumption for using the notions of depth and density in WordNet-based semantic

similarity measures is that everything else being equal, two nodes are semantically closer if

they reside in a region that is (a) deeper in a taxonomy, or (b) more densely connected. This

is the working assumption for virtually all WordNet-based semantic similarity studies using

depth and/or density. For depth, the intuition is that adjacent nodes deeper in the hierarchy

are likely to be conceptually close, since the differentiation is based on more fine-grained

nuances (Jiang and Conrath, 1997). Sussna (1993) termed the use of depth as depth-relative

scaling, claiming that “only-siblings deep in a tree are more closely related than only-siblings

higher in the tree”. Richardson and Smeaton (1994) gave an hypothetical example illustrating
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this “only-siblings” situation, where plant–animal are the only two nodes under living things,

and wolfhound–foxhound under hound. They claimed the reason that the former pair can be

regarded as conceptually farther apart compared to the latter is related to the difference in

depth.

As for the relation between density and similarity, the intuition is that if the overall semantic

mass for a given node is constant (Jiang and Conrath, 1997), then the more neighbouring nodes

there are in a locally connected sub-network, the closer its members are to each other. For

example, animal, person, and plant are more strongly connected with life form than aerobe and

plankton because the first three words all have high density in their local network structures

(Richardson and Smeaton, 1994). Note that the notion of density here is not to be confused with

the conceptual density used by Agirre and Rigau (1996), which itself is essentially a semantic

similarity measure.

In general, both observations on depth and density conform to intuition and are supported

qualitatively by several existing studies. The main objective of this study is to empirically

examine the validity of this assumption.

5.1.2 Semantic Similarity Measures Using Depth and Density

One of the first examples of using depth and density in WordNet-based similarity measures is

that of Sussna (1993). The weight w on an edge between two nodes c1 and c2 with relation r

(denoted→r) in WordNet is given as:

w(c1,c2) =
w(c1→r c2)+w(c2→r c1)

2d
,

where d is the depth of the deeper of the two nodes. As depth increases, weight decreases and

similarity in turn increases, conforming to the basic hypothesis. The edge weight was further

defined as:

w(c1→r c2) = maxr−
maxr−minr

nr(c1)
,
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where nr(X) is “the number of relations of type r leaving node X”, which is essentially an im-

plicit form of density. Here, maxr and minr are the maximum and minimum of nr in WordNet,

respectively. Note that this formulation of density actually contradicts the basic hypothesis

since it is proportional to edge weight (left-hand-side) and thus negatively correlated with sim-

ilarity.

Wu and Palmer (1994) proposed a concept similarity measure between two concepts c1 and

c2 as:

sim(c1,c2) =
2 ·dep(c)

len(c1,c)+ len(c2,c)+2 ·dep(c)
, (5.1)

where c is the lowest common subsumer (LCS) of c1 and c2, and len(·, ·) is the number of

edges between two nodes. The basic idea is to adjust “hop count” (the first two terms in

the denominator) with the depth of LCS: similarity between nodes with same-level LCS is in

negative correlation with hop counts, while given the same hop count, a “deeper” LCS pulls

the similarity score closer to 1.

Jiang and Conrath (1997) proposed a hybrid method incorporating depth and density infor-

mation into an information-content-based model (Resnik, 1999):

w(c, p) =
[

dep(p)+1
dep(p)

]α

×
[

β +(1−β )
Ē

den(p)

]
× [IC(c)− IC(p)]T (c, p). (5.2)

Here, p and c are parent and child nodes in WordNet, dep(·) and den(·) denote the depth and

density of a node, respectively, Ē is the average density over the entire network of WordNet,

and α and β are two parameters controlling the contribution of depth and density values to the

similarity score. IC(·) is the information content of a node based on probability estimates of

word classes from a small sense-tagged corpus (Resnik, 1999), and T (c, p) is a link-type factor

differentiating different types of relations between c and p.
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Figure 5.1: Correlation between depth and similarity.

5.2 Limitations of the Current Definitions

The objective of this section is to investigate the actual contributions of depth and density

actually in establishing an accurate semantic similarity measure. A direct assessment of the

effectiveness of using depth and density is to examine their correlation with similarity. Empir-

ical results in this section are obtained using the following definitions. Depth is defined as the

number of edges between the lowest common subsumer (LCS) of two nodes under compari-

son, and density as the number of siblings of the LCS.2 Similarity benchmark is measured by

human judgement on similarity between word pairs. We combine the RG and FG datasets from

Section 4.3.2 in order to maximize data size. Human ratings r on individual sets are normalized

to rn on 0 to 1 scale by the following formula:

rn =
r− rmin

rmax− rmin

where rmin and rmax are the minimum and maximum of the original ratings, respectively. Cor-

relation is evaluated using Spearman’s ρ .

2We also tried several other variants of this definition, e.g., using the maximum or minimum depth of the two
nodes instead of the LCS. With respect to statistical significance tests, these variants all gave the same results as
our primary definition.
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Depth

The distribution of similarity over depth on the combined dataset is plotted in Figure 5.1.

For depth values under 5, similarity scores are fairly evenly distributed over depth, showing

no statistical significance in correlation. For depth 5 and above, the distribution exhibits an

upper-triangular shape, suggesting that (1) correlation with similarity becomes stronger in this

value range of depth, and (2) data points with higher depth values tend to have higher similarity

scores, but the reverse of the claim is not necessarily true, i.e., word pairs with “shallower” LCS

can also be judged quite similar by humans. This phenomenon can arise in two scenarios. On

the one hand, there are similar word pairs that reside shallow in the taxonomy corresponding

to the dots in the upper-left corner in Figure 5.1. On the other hand, for word pairs that are

highly dissimilar, their LCS is naturally higher up in the taxonomy, resulting in the dots in the

lower-left corner. In either case, the observations point to the fact that, contrary to the intuitions

behind using the depth of LCS in the existing similarity measures, depth of lower values is not

indicative of similarity.

Note that there are much more data points with lower depth values than with higher depth

values in the combined dataset. In order to have a fair comparison of statistical significance

tests on the two value ranges for depth, we randomly sample an equal number (100) of data

points from each value range, and the correlation coefficient between depth and similarity is

averaged over 100 of such samplings. Correlation coefficients for depth value under 5 versus

5 and above are ρ = 0.0881, p ≈ 0.1 and ρ = 0.3779, p < 0.0001, respectively, showing an

apparent difference in degree of correlation.

Two interesting observations can be made from these results. Firstly, the notion of depth

is relative to the distribution of number of nodes over depth value. For example, depth 20

by itself is meaningless since it can be quite large if the majority of nodes in WordNet are

of depth 10 or less, or quite small if the majority depth value are 50 or more. According to

the histogram of depth values in WordNet (Figure 5.2), the distribution of number of nodes

over depth value approximately conforms to a normal distribution N (8,2). Clearly, the actual



CHAPTER 5. DEPTH AND DENSITY IN TAXONOMY-BASED SIMILARITY 60

Figure 5.2: Histogram of depth in WordNet.

quantity denoting how deep a node resides in WordNet is conflated at depth values below 5 or

above 14. In other words, the distribution makes it rather inaccurate to say, for instance, that

a node of depth 4 is twice as deep as a node of depth 2. This might explain the low degree of

correlation between similarity and depth under 5 in Figure 5.1 (manifested by the long, vertical

stripes spanning across the entire range of similarity scores between 0 and 1), and also how the

correlation increases with depth value. Unfortunately, we do not have enough data for depth

above 14 to make conclusive remarks on the higher end of the depth spectrum.

Secondly, even on the range of depth values with higher correlation with similarity, there

is no definitive sufficient and necessary relation between depth and similarity. The triangular

shape of the scatter plot suggests that semantically more similar words are not necessarily

deeper in the WordNet hierarchy. Data analysis reveals that the LCS of highly similar words

can be quite close to the hierarchical root. Examples include coast–shore, which is judged to

be very similar by humans (9 on a scale of 0–10 in both datasets). The latter is a hypernym of

the former and thus the LCS of the pair, yet it is only four levels below the root node entity (via

geological formation, object, and physical entity). Another scenario arises due to the fact that

no distinction is made between relatedness and similarity in the datasets, and WordNet fails to
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Figure 5.3: Correlation between density and similarity.

capture the relatedness with its hierarchical structure of lexical semantics: the pair software–

computer can only be related by the root node entity as their LCS, although the pair is judged

quite “similar” by humans (8.5 on 0 to 10 scale).

The only conclusive claim that can be made about depth and similarity is that word pairs

with deeper LCS’s tend to be more similar. One exception is the pair stock–jaguar in the

FG set: stock is used in the sense of livestock, stock, farm animal: any animals kept for use

or profit, which is closely connected to jaguar through a depth-10 LCS placental, placental

mammal, eutherian, eutherian mammal. However, human judges gave very low similarity

ratings (0.92 on 0–10) due to the relatively lower frequency of this sense of stock (especially

given the multiple occurrences of the same word under its financial sense in the dataset, e.g.,

stock–market, company–stock).

Density

Comparing to depth, density exhibits much lower correlation with similarity. We conducted

correlation experiments between density and similarity with the same setting as for depth and

similarity above. Data points with extremely high density values (up to over 400) are mostly
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MC RG FG
dep 0.7056*** 0.6909*** 0.3701***

den 0.2268 0.2660* 0.1023

Table 5.1: Correlation between depth, density, and similarity on individual datasets. Number
of asterisks indicates different confidence intervals (“*” for p < 0.05, “***” for p < 0.0001).

idiosyncratic to the densely connected regions in WordNet (Figure 5.3-a). Consequently, nodes

with density values above 100 are excluded in the experiment (Figure 5.3-b).

Empirically, no correlation is observed between density and similarity on the combined

dataset. To confirm the result, we also conduct the experiments on the three individual datasets,

and the results are listed in Table 5.1. The correlation coefficient between density and similarity

ranges from 0.10 to 0.27. Correlation is statistically significant only on the RG dataset (p =

0.0366).

Data analysis reveals that density values are often biased by the high degree of connect-

edness in local regions in WordNet. Qualitatively, Richardson and Smeaton (1994) previously

observed that “the irregular densities of links between concepts result in unexpected conceptual

distance measures”. Empirically, more than 90% of WordNet nodes have density values less

than or equal to 3. This means that for 90% of the LCS’s, there are only three integer values for

density to distinguish the varying degrees of similarity. In other words, such a range might be

too narrow to have any real distinguishing power over similarity. In addition, there are outliers

with extreme density values particular to the perhaps overly fine-grained sub-categorization of

some WordNet concepts, and these nodes can be LCS’s of word pairs of drastically different

level of similarity. The node {person, individual}, for example, can be the LCS of similar pairs

such as man–woman, as well as quite dissimilar ones such as boy–sage, where the large density

value does not necessarily indicate high degree of similarity.

Another limitation of the definition of density is the information loss on specificity. If

density is adopted to capture the degree of specificity of a concept (i.e., nodes in densely

connected regions in WordNet are more specific and thus semantically closer to each other),

then this information of a given node should be inherited by its taxonomic descendants, since
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MC RG FG
depu 0.7201*** 0.6798*** 0.3751***

denu 0.2268 0.2660* 0.1019
deni 0.7338*** 0.6751*** 0.3445***

Table 5.2: Correlation with human judgement of similarity under the new definitions of depth
and density.

specificity should monotonically increase as one descends in the hierarchy. For example, the

node piano has a density value of 15 under the node percussion instrument. However, the

density value of its hyponyms grand piano, upright piano, and mechanical piano, is only 3.

Due to the particular structure of this sub-graph in WordNet, the grand–upright pair might be

incorrectly regarded as less specific (and thus less similar) than, say, between piano and gong

— both as percussion instruments.

5.3 Refining the Definitions of Depth and Density

In this section, we formalize new definitions of depth and density to address their current

limitations discussed in Section 5.2.

Depth

The major problem with the current definition of depth is its failure to take into account the

uneven distribution of number of nodes over the depth values. As seen in previous examples,

the distribution is rather “flat” on both ends of depth value, which does not preserve the linearity

of using the ordinal values of depth and thus introduces much inaccuracy.

To avoid this problem, we “re-curve” depth value to the cumulative distribution. Specifi-

cally, if we take the histogram distribution of depth value in Figure 5.2 as a probability density

function, our approach is to project cardinal depth values onto its cumulative distribution func-
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Figure 5.4: Histogram of density in WordNet.

tion. The new depth is denoted depu and is defined as:

depu(c) =
∑c′∈WN |{c′ : dep(c′)≤ dep(c)}|

|WN|

Here, dep(·) is the original depth value, WN is the set of all nodes in WordNet, and |WN| is

its size. The resulting depth values not only reflect the flat ends, but also preserve linearity for

the depth value range in the middle. In comparison with Table 5.1, correlation between depu

and similarity increases marginally over the original depth values on two of the three datasets

(first row in Table 5.2). Later in Section 5.4, we show that these marginal improvements can

translate into significant improvements in semantic similarity measures.

Density

In theory, a procedure analogous to the above cumulative definition can also be applied to den-

sity, i.e., by projecting the original values onto the cumulative distribution function. However,

due to the Zipfian nature of density’s histogram distribution (Figure 5.4, in contrast to Gaus-

sian for depth in Figure 5.2), this is essentially to collapse most density values into a very small
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number of discrete values (which correspond to the original density of 1 to 3). Experiments

show that it does not help in improving correlation with similarity scores (second row in Table

5.2 for denu): correlation remains the same on MC and RG, and decreases slightly on FG.

We therefore resort to addressing the issue of information loss on specificity by inheritance.

Intuitively, the idea is to ensure that a node be assigned no less density mass than its parent

node(s). In the “piano” example (Section 5.2), the concept piano is highly specific due to

its large number of siblings under the parent node percussion instruments. Consequently, the

density of its child nodes upright piano and grand piano should inherit its specificity on top of

their own.

Formally, we propose a recursive definition of density as follows:

deni(r) = 0,

deni(c) =
∑h∈hyper(c) deni(h)
|hyper(c)|

+den(c),

where r is the root of the WordNet hierarchy (with no hypernym), and hyper(·) is the set

of hypernyms of a given concept. The first term is the recursive part normalized over all

hypernyms of c in case of multiple inheritance, and the second term is the original value of

density.

The resulting density values correlate significantly better with similarity. As shown in

row 3 in Table 5.2, the correlation coefficients are about tripled on all three datasets with the

new density definition deni, and the significance of correlation is greatly improved from non-

correlating or marginally correlating to strongly significantly correlating on all three datasets.

5.4 Applying the New Definitions to Semantic Similarity

In this section, we test the effectiveness of the new definitions of depth and density by using

them in WordNet-based semantic similarity measures. The two similarity measures we exper-
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iment with are that of Wu and Palmer (1994) and Jiang and Conrath (1997). The first one

used depth only, and the second one used both depth and density. Note that there are other

WordNet-based similarity measures using depth and/or density that we opt to omit for various

reasons. Some of them were not designed for the particular task at hand (e.g., that of Sussna,

1993, which gives very poor correlation in similarity task), while others used depth of the en-

tire WordNet hierarchy instead of individual nodes as a scaling factor (e.g., that of Leacock

and Chodorow, 1998), which is unsuitable for illustrating the improvement resulting from our

new definitions of depth and density.

The task is to correlate the similarity measures with human judgement on similarity be-

tween word pairs. We use the same three datasets as in Section 5.2. Correlation coefficient is

calculated using Spearman’s ρ . Some earlier studies used parametric tests such as the Pearson

correlation coefficient. Nonetheless, we believe that the similarity scores of the word pairs in

these datasets do not necessarily conform to normal distributions. Rather, we are interested

in testing whether the algorithms would give higher scores to pairs that are regarded closer in

meaning by human judges. Consequently, a rank-based test like the Spearman’s ρ suits better

for this scenario.

Parameterization of the weighting of depth and density is a common practice to control their

individual contribution to the final similarity score (e.g., α and β in Equation (5.2)). Jiang and

Conrath already had separate weights in their original study. In order to parameterize depth

used by Wu and Palmer in their similarity measure, we also modify Equation (5.1) as follows:

sim(c1,c2) =
2 ·depα(c)

len(c1,c)+ len(c2,c)+2 ·depα(c)
,

where depth is raised to the power of α to vary its contribution to the similarity score.

For a number of combinations of the weighting parameters, we report both the best perfor-

mance and the averaged performance over all the parameter combinations. The latter number

is meaningful in that it is a good indication of numerical stability of the parameterization. In
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Best Average
MC RB FG MC RB FG

dep 0.7671 0.7824 0.3773 0.7612 0.7686 0.3660
depu 0.7824 0.7912 0.3946 0.7798 0.7810 0.3787

Table 5.3: Correlation between human judgement and similarity score by Wu and Palmer
(1994) using two versions of depth.

Best Average
MC RB FG MC RB FG

dep,den 0.7875 0.8111 0.3720 0.7689 0.7990 0.3583
depu, den 0.8009 0.8181 0.3804 0.7885 0.8032 0.3669
dep,deni 0.7882 0.8199 0.3803 0.7863 0.8102 0.3689

depu,deni 0.8189 0.8202 0.3818 0.8065 0.8194 0.3715

Table 5.4: Correlation between human judgement and similarity score by Jiang and Conrath
(1997) using different definitions of depth and density.

addition, parameterization is able to generate multiple correlation coefficients, on which statis-

tical tests can be run in order to show the significance of improvement. We use the range from

0 to 5 with step 1 for α and from 0 to 1 with step 0.1 for β .

Table 5.3 and 5.4 list the experiment results. In both models, the cumulative definition

of depth depu consistently improve the performance of the similarity measures. In the Jiang

and Conrath (1997) model, where density is applicable, the inheritance-based definition of

density deni also results in better correlation with human judgements. The optimal result is

achieved when combining the new definitions of depth and density (row 4 in Table 5.4). For

average performance, the improvement of all the new definitions over the original definitions

is statistically significant on all three data sets using paired t-test.



Chapter 6

Conclusions for Part I

When the distributional hypothesis is applied in lexical distributional models, sparsity often

poses significant challenges to obtaining efficient lexical representations. In this part of the

thesis, some popular techniques for alleviating the issue of sparsity were reviewed, and two

dimension reduction techniques and one taxonomy-based approach were proposed and applied

to near-synonym lexical choice and lexical similarity.

The latent semantic space representation of near-synonyms and their context allows investi-

gation of several important aspects of the near-synonym lexical choice problem. By employing

supervised learning on the latent space features, the representation outperforms all previously

proposed models on the “fill-in-the-blank” task (Edmonds, 1997). In addition, the notion of

subtlety was formalized through the dimensionality of the latent semantic space. Empirical

analysis suggests that subtle differences among near-synonyms reside in higher dimensions in

the latent semantic space representing non-salient co-occurrence patterns, and that the amount

of context needed for proper lexical choice is in positively correlation with the degree of sub-

tlety. These observations are consistent with intuition and are supported by empirical evalua-

tions.

A more fundamental problem underlying the lexical choice task is to derive better vector

space representations for words. To this end, we proposed several lexical embedding models
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that are capable of incorporating syntactic and lexicographic knowledge. The basic premise is

that in contrast to the window-based definitions, a syntactically or semantically motivated def-

inition of context (and by extension, relatedness) is able to capture semantic information more

accurately due to the lower false-positive and false-negative rates in lexical association. Com-

pared to existing syntax-based embedding models, the proposed embedding models benefit

from factorizing syntactic information by individual dependency relations. Empirically, syn-

tactic information from individual dependency types results in notable improvement in model

performance at a much faster rate of convergence. Lexicographic knowledge from monolin-

gual dictionaries also helps improve lexical embedding learning, since the defining relation

in dictionaries offers accurate lexical association between the definienda and the definientia.

Embeddings trained on a highly compact, hand-crafted resource rival state-of-the-art models

trained on free texts thousands of times larger in size.

Two additional models were proposed to address the issue of sparsity especially with

smaller datasets. Firstly, a relation-independent model was proposed to combine multiple

types of syntactic or lexicographic knowledge from individual relations. By training the model

to predict the original target word, the model is able to improve the lexical representation by

combining information from multiple heterogeneous knowledge sources. A co-training model

was also proposed to make use of the semantic information of the dependents in the output

embedding matrix, which is usually discarded in existing studies. By repeatedly swapping the

input and the output embedding matrices and inverting the governors and dependents in the

training data, both matrices showed improvement in capturing lexical semantic information.

Empirically, both methods yielded performance improvement in the lexical similarity tasks

with training data of smaller sizes.

In addition to vector space models, lexical taxonomies such as WordNet are also frequently

used in measuring lexical similarity. We investigated the application of taxonomic features in

existing similarity measures of this category and focused on two particular types of features,

depth and density, by examining their correlation with human judgements on lexical similarity.
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Empirical evidence suggests that depth correlates with similarity only on certain value ranges,

while there is no correlation between density and human ratings of similarity.

Further investigation revealed that the problem for the use of depth lies in its simplistic

representation as ordinal integer values. The linearity in this representation fails to take into

account the conflated quantity of depth in the two extreme ends of its value spectrum. A

prominent issue with density, on the other hand, is the information loss on specificity of Word-

Net concepts, which results in an inaccurate representation of the quantity that is biased by the

idiosyncratic structures in densely connected regions in WordNet.

We then proposed new definitions of depth and density to address these issues. For depth,

linearity in different value ranges was better modelled by projecting the depth value to its

cumulative distribution function. For density, the loss of specificity information was corrected

by allowing concepts to inherit specificity information from their taxonomic ancestors. The

new definitions resulted in significant improvement in correlation with human judgements of

semantic similarity. In addition, when used in existing WordNet-based similarity measures,

they consistently improved performance as well as numerical stability of the parameterization

of the two features.



Part II

Semantic Composition
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Introduction

Techniques developed in Part I can be used to construct computationally and statistically ef-

ficient vector space representations on the lexical level. In many NLP studies and applica-

tions, it is often desirable to compose the lexical representations into representations of longer

sequences consisting of multiple words. To date, many popular approaches in composition

models often resort to simple vector arithmetic such as the additive model or the multiplicative

model (Mitchell and Lapata, 2010). These models are widely used in the NLP literature due

to good performance in many tasks especially given their simplicity. Empirically, as will be

shown in Section 7.4, a randomly initialized neural composition model actually converges to

an additive model when trained to learn distributed representations for phrases. As for natural

language understanding, these models ignore even the most basic linguistic features, so that

there is hardly any resemblance to human behaviour in natural language understanding. For

example, multi-word contexts are often regarded as bags of words without taking into account

word-order or other linguistic information.

Consequently, the main objective of the second part of the thesis is to address these limita-

tions by (1) developing novel alternatives using neural networks and Bayesian statistics and (2)

exploring the use of syntactic and lexicographic knowledge to improve performance in NLP

tasks. Specifically, Chapter 7 reviews some popular composition models. Through model vi-

sualization, a simple neural composition model for learning phrase representations is shown

to converge to a model that closely resembles an additive model. To compose longer texts

as sequential input, we adopt a recurrent neural network (RNN) model with long short-term
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memory (LSTM) units in Chapter 8 and analyse the correlation between its gating behaviour

and the lexical distribution at each time step in the input sequence. Confirming our hypothe-

sis, syntactic features including word-order and part-of-speech (POS) information are shown to

improve model performance when evaluated on language modelling and the near-synonym lex-

ical choice task. Finally in Chapter 9, a Bayesian compositional similarity model is proposed

to measure the similarity between two bags of words without explicitly relying on traditional

lexical composition (Wang and Hirst, 2014). Among the proposed models, the near-synonym

lexical choice model (Section 8.3) and the unsupervised word sense disambiguation system

(Chapter 9) both yield state-of-the-art results in their respective tasks. The syntax-augmented

language model (Section 8.2) also outperforms existing models of equivalent complexity with

statistical significance.



Chapter 7

Learning and Visualizing Composition

Models for Phrases

7.1 Related Work in Semantic Composition

The goal of semantic composition is to compose representations of shorter linguistic elements

(e.g., words) into representations of longer sequences (e.g., phrases, sentences, and docu-

ments). Although it has often been argued that the meaning of the whole is more than the

meaning of the parts (Lakoff, 1977), composition is nonetheless of great computational ad-

vantage (compared to assigning separate representations for the whole), since composition not

only avoids the combinatorial complexity of the whole, but also bears closer resemblance to

human behaviour in language understanding.

In a highly general form, Mitchell and Lapata (2010) proposed a framework that formalizes

composition as a function acting on the component representations u and v conditioned on their

syntactic relation R and additional knowledge K:

p = f (u,v,R,K),

where p is the resulting representation of the larger constituent subsuming u and v. In practice,
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it is rather challenging to model R and K in composition models while maintaining model

performance and scalability. As a result, the most widely-adopted implementations of f are

unfortunately often based on simple vector operations on u and v. For example, an additive

model uses vector summation to calculate p as a centroid of the components. A multiplicative

model, on the other hand, uses element-wise multiplication of the component vectors u and

v, which intuitively resembles an AND gate that yields an intersection of the properties in each

dimension of the semantic space of the components.

Notably, the input and the output share the same semantic space in both additive and mul-

tiplicative models. This is a highly desirable property for improving the scalability of vector

space representations since it allows the model to be recursively applied to build representa-

tions of longer constituents. For example, to compose vector representations for adjective-noun

phrases, Baroni and Zamparelli (2010) proposed to represent adjective modifiers with matrices

as a form of transformation applied to their corresponding head nouns represented as vec-

tors. Phrasal composition is formulated as matrix-vector multiplication. Clearly, the resulting

phrasal representations are vectors, and it is straightforward to recursively compose represen-

tations of longer phrases consisting of one head noun with multiple adjective modifiers. In

contrast, partly due to their disadvantages with regard to recursion, many other implementa-

tions of f including, e.g., tensor products and circular convolution between the component

vectors (Mitchell and Lapata, 2010) haven’t gained as much traction as additive and multi-

plicative models.

An implicit assumption in composition models using simple matrix or vector operations is

that all information needed by the composition is encoded in the component vectors, which

introduces two major limitations. Linguistically, composition is believed to depend “on the se-

mantic relation being instantiated in a syntactic structure” (Guevara, 2010). According to this

view, it follows that the implementation of composition functions should be abstracted from

the lexical level representations. Computationally, conflating the composition function with

the lexical representations can greatly increase computational cost especially when the lexical
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space is constructed in the form of matrices or tensors instead of vectors. For example, one

strong limitation of the matrix-vector model by Baroni and Zamparelli (2010) is that each ad-

jective is associated with a different matrix, which is computationally rather costly especially

when the vocabulary size is large. If the composition function is abstracted from the compo-

nent representations, it is then possible to adopt representations of lower complexity on the

components level.

Many extensions of the simple additive and multiplicative models are developed in the ex-

isting literature to address these limitations. For example, Mitchell and Lapata (2008) proposed

a more general form of additive models as follows:

p = Au+Bv.

In contrast to the basic additive model, by introducing the parameters A and B, composition

is regarded as a function that exists independently from the representations of the composing

constituents. More importantly, the parameterization makes it possible to encode syntactic

information into the composition function. For example, syntax-level composition is implicitly

realized by simply conditioning the parameters on the syntactic relation of the components.

Examples of the general additive model include that of Mitchell and Lapata (2008), where

a weighted sum αu+ βv was used as the composition function. The model is essentially a

special case of the general additive model since it is equivalent to constructing A and B as αI

and β I with I being the identity matrix. The model was evaluated and compared with sev-

eral other variants including circular convolution and a hybrid model combining and additive

model and a multiplicative model. Examples of abstracting composition function from com-

ponent representations include that of Guevara (2010), where partial least square regression

(a supervised regression model) was used to learn phrasal composition functions by minimiz-

ing the distance between the composed vectors and the vectors of the observed phrases. Since

only adjective-noun phrases were considered in the learning process, the resulting composition
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function is thus dependent on (and specific to) the syntactic relation in adjective-noun phrases.

In comparison, recent studies explicitly used syntactic structures to condition the composition

parameters (Socher et al., 2012; Kalchbrenner et al., 2014). These models achieved state-of-

the-art performance in some tasks such as sentiment analysis (Tai et al., 2015; Zhu et al., 2015)

but are outperformed by simple additive and multiplicative models when evaluated on other

tasks such as phrasal similarity and paraphrase classification (Blacoe and Lapata, 2012).

As mentioned earlier, much creativity and engineering is needed to devise computational

representations and models of syntactic relations R and additional knowledge K in semantic

composition, and many existing studies have taken on the challenge. Erk and Padó (2008),

for example, proposed a vector space composition method that adjusts the “expectations” of

the model with knowledge on selectional restrictions and selectional preferences derived from

dependency parses. Specifically, when two co-occurring words wa and wb are semantically

related through syntactic dependency relation r, the in-context representations a′ and b′ are

formulated as follows:

a′ = (va�R−1
b ,Ra−{r},R−1

a ),

b′ = (vb�Ra,Rb,R−1
b −{r}),

where v∗ is context-less representation of a word, � is a vector combination function such as

the additive or the multiplicative model, and R∗ is the set of syntactic relations in which a word

participates in the given context. Essentially, composition is implemented by consolidating the

actual and the expected distributional profiles of the target words: the actual distributions are

encoded in the traditional vector representations v∗, and the expectations are expressed through

the selectional restrictions or preferences through the dependency relations such as R−1
b and Ra.

The model was evaluated on a lexical similarity rating task (Mitchell and Lapata, 2008) and a

lexical substitution task (McCarthy and Navigli, 2009) and was shown to outperform simple

composition functions such as that of Mitchell and Lapata (2008) with statistical significance.
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More recently, many composition models have been developed using artificial neural net-

works. For example, Kalchbrenner et al. (2014) used a Convolutional Neural Network (CNN)

to model sentences, which was applied to sentiment analysis and question type classification.

Hermann and Blunsom (2013) proposed to use Recursive Autoencoders (RAEs) to model lin-

guistic knowledge represented by Combinatory Categorical Grammar (CCG). Several variants

were proposed that differed mainly by the parameterization of the RAEs, for example, by shar-

ing the trainable weights globally or by conditioning the weights on different aspects of the

CCG representation such as the rules, the syntactic categories of the generated constituents,

and the syntactic categories or the component constituents in each application of the rules.

Evaluation was performed on both sentiment analysis and phrasal similarity tasks. The variant

with shared parameters are consistently outperformed by the more complex variants, although

among the latter, there does seem to exist a clear distinction in model performance. As men-

tioned in Section 1.3, recurrent neural networks (RNNs) have also been a popular choice for

semantic composition (Socher et al., 2012; Tai et al., 2015; Zhu et al., 2015). Many of these

existing studies rely on the hierarchical structures of parse trees for incorporating linguistic

information, and the fundamentally difference of the RNN models proposed later in this thesis

is that our proposed models use simple syntactic knowledge such as syntactic categories in text

sequences without making structural assumptions about the input.

7.2 Phrasal Embedding Learning

In this study, we propose a composition model to learn distributed representations (embed-

dings) for phrases with a prescribed set of syntactic structures. The model is developed under

the following assumptions. Firstly, there exist annotations that identify target phrases in the

training corpus. For a sentence s consisting of n words w1, . . . ,wn, a phrase p of length m < n

within the sentence is marked by aliasing the composing words wi, . . . ,wi+m−1 as p1, . . . , pm,

respectively, where i ∈ {1, . . . ,n−m+ 1} is the left boundary of p within s. Secondly, the
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model is assumed to have access to the syntactic structure of p. For example, the syntactic

structure for the phrase book store is marked as noun compound, and that for intriguing plot

as modifier-noun, etc. All such syntactic structures constitute a finite set S . Finally, lexical

embeddings are assumed to be available for both the composing words wi, . . . ,wi+m−1 of p and

the context words s\ p in sentence s. Suppose the dimensionality of the lexical embeddings is

d, then a composition function f : S ×Rd×m 7→Rd takes the syntactic structure of a phrase and

the lexical embeddings of its composing words and composes them into a phrasal embedding

that is of the same dimensionality d as the lexical embeddings.

Due to our particular interests in examining what exactly is being learned by a distributional

composition model, f is implemented with a simple neural network to facilitate visualization.

On the lexical level, each word wi is assigned a distributed representation ei. When m words

w1, . . . ,wm form a phrase with syntactic structure syn, the composition function is defined as

follows:

f (syn,e1, . . . ,em) = σ(Wsyn · 〈eT
1 , . . . ,e

T
m〉T )+bsyn, (7.1)

where σ is the sigmoid function, Wsyn is a d by d×m weight matrix, 〈·〉 stands for matrix

concatenation, and bsyn ∈ Rd is the bias term.

During training, when the model encounters a phrase p, it retrieves the appropriate weight

matrix and bias term according to the syntactic structure of p, as well as the lexical embed-

dings of the composing words. With this information, the model then calculates the phrasal

embedding ep using Equation (7.1). Similar to word2vec, parameter updates are calculated

with a contrastive divergence objective given the lexical embeddings of the context words:

logσ((ep)T e′c)+
k

∑
i=1

Eĉi[logσ(−(ep)T e′ĉi
)], (7.2)

where e′∗ is the output embedding of context word wc, and the subscripts ĉi refer to the embed-

dings of negative samples (drawn according to unigram frequencies). The remaining notations
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Types verb-noun noun-noun adjective-noun
lose interest food shortage last season

Positive build engine labor group nuclear test
defeat indiffer-
ence

finance minister political system

existing machine (of) course life slow turning (pitch)
Negative hitting streak morning radio

(show)
global ad (agency)

governing coali-
tion

repeated trip red university
(jacket)

Table 7.1: Positive and negative examples of phrases extracted from the Annotated Gigaword
Corpus using POS bigram heuristics.

bear the same meaning as in Equation (4.1).

7.3 Phrase Generation

The Annotated English Gigaword Corpus (Napoles et al., 2012) is used for generating the

phrasal data. Using the annotations provided by the corpus, POS bigrams are identified to

compose the three types of phrases used by Mitchell and Lapata (2010). For example, if the

POS tags of two adjacent words are adjective and noun (in this particular order), then the words

are proposed as an adjective-noun-type phrase. The same rule applies to verb-noun and noun-

noun bigrams. Manual data inspection of a random, small sample of the extracted phrases

reveals that the majority of them are grammatically valid and semantically meaningful, and

that exceptions mainly come from either complex syntactic structures or POS tagging errors

(Table 7.1). For example, most of the verb-noun errors are caused by the POS tagger’s tendency

to tag the adjectival participles as verbs. The compound nouns and adjective-noun phrases, on

the other hand, often suffer from incorrectly extracted phrases out of larger constituents.
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7.4 Composition Function Visualization

To investigate what type of knowledge the composition models have acquired, the weight ma-

trices of the models are plotted with heat maps in Figure 7.1. The x-axis corresponds to the

input dimensions, i.e., the dimensions of the concatenated lexical embeddings of the compos-

ing words of a phrase (Equation (7.2)), and the y-axis corresponds to the dimensions of the

phrasal embeddings (i.e., the output of the composition function). The colour temperature in-

dicates the amplitude of the cell values in the matrices. Sub-figure (a) shows that cell values

for the verb-noun composition function are centred around zero upon random initialization.1

After training, the composition functions corresponding to all three relations exhibit similar

patterns as shown in Sub-figure (b) to (d). Note that for two-word phrases, m = 2 and thus a

weight matrix W∗ ∈Rd×2d is a horizontal concatenation of two square matrices. Cell values are

notably larger on the diagonals of both square matrices, as indicated by the bright lines across

these diagonals against the colder-coloured background. Numerically, the resulting composi-

tion functions essentially converge to a state resembling a weighted additive model. In other

words, the distributed representation of a phrase as a whole is empirically best approximated

by the sum of the lexical embeddings of its composing words, suggesting a high degree of

semantic compositionality for the phrases annotated in the training data.

The lack of uniformity of the cell values distinguishes the resulting composition functions

from an additive model, which concatenates two identity matrices instead of near-diagonal ma-

trices. The variance in cell values differs across different syntactic relations of the phrases. For

example, the first word in a verb-noun phrase is the head verb, and the first word in a noun-noun

phrase is the nominal dependent. During composition, the concatenation in Equation (7.1) dic-

tates that the embedding of the first word is transformed by the left-most square matrix in W∗.

By comparing the colour temperature of the diagonals on the left, it appears that the average

value of the weights for the head verbs in Sub-figure (b) is noticeably smaller (i.e., in darker

1This is the case for all three syntactic relations of the phrases considered and thus the figures for the other
two relations are omitted.
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colours) than that for the nominal dependents in Sub-figure (c). The difference indicates that

when minimizing the difference between the phrasal embeddings and those of the surround-

ing contexts, the nominal dependents in noun-noun phrases are considered semantically more

salient than the head verbs in verb-noun phrases. From the limited examples in Table 7.1, the

difference conforms to linguistic intuition, e.g., the verbs lose, build, and defeat do not carry as

much semantic content as the noun modifiers food, labor, and finance with regard to topicality

and semantic cohesion.
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(a) (b)

(c) (d)

Figure 7.1: Visualization of the weight matrices in phrasal composition functions. (a) Ran-
domly initialized weights for verb-noun phrases (similar for the other two syntactic relations).
(b–d) Model weights approximating an additive model after contrastive divergence training
for: (b) verb-noun construct, (c) noun-noun construct, and (d) adjective-noun construct.



Chapter 8

Composition in Language Modelling and

Near-synonymy Lexical Choice Using

Recurrent Neural Networks

One of the major limitations of additive models is the simplistic treatment of the input data

ignoring even the basic linguistic properties such as word-order. In recurrent neural networks

(RNNs), on the other hand, word-order information is preserved by using texts as sequential

input, which makes RNNs a natural choice to address the limitations.

Much success has been achieved with RNNs in many areas in NLP including machine

translation (Sutskever et al., 2014), language modelling (Zaremba et al., 2014), sentiment anal-

ysis (Tai et al., 2015; Zhu et al., 2015), etc. In this study, RNNs are used as a composition

model for multi-word contexts. A particular variant of RNNs with long short-term memory

(LSTM) is used to avoid the problem of exploding or vanishing gradients — a phenomenon

where gradients either diminish to zero or diverge to infinity during long time spans. The main

hypothesis is that effectiveness of gradient propagation in LSTM can be improved by aug-

menting the input sequence with syntactic knowledge. We show that the gating behaviour of

LSTM units can be affected by the distribution of syntactic functions over each time step in the

84
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textual sequences. Empirical evaluation confirms the hypothesis with performance improve-

ment in both language modelling and near-synonym lexical choice tasks when adding syntactic

knowledge to the LSTM models.

8.1 Gradient Analysis in LSTM Optimization

8.1.1 Gradients of Traditional RNNs

The defining feature of an RNN model is that the model’s historical output (or hidden states) y

from the previous time step t−1 is fed back to the model input at time t:

y(t) = f (Ax(t)+By(t−1)+b), (8.1)

where A and B are matrices of appropriate dimensions to perform linear transformation on the

inputs, b is the bias term, and f is a non-linear activation function. The feedback loop from

y(t−1) to y(t) resembles that in dynamic systems (Luenberger, 1979). As with any deep neural

network architecture, the problem of vanishing or exploding gradients occurs when a large

number of time steps are involved (Hochreiter, 1998). Specifically, suppose the loss function

E is the mean square error (MSE):

E(y(t)) =
1
2
(y(t)− ŷ(t))2,

where ŷ(t) is the desired output at time t. The gradient (w.r.t. parameters, collectively denoted

as θ ) at time t is calculated by the following equation:

∂E
∂θ

=
∂E

∂y(t)
∂y(t)

∂θ
= (y(t)− ŷ(t))

∂y(t)

∂y(t−1)
. . .

∂y(2)

∂y(1)
∂y(1)

∂θ
.
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Each of the recursive terms can be evaluated as:

∂y(τ)

∂y(τ−1)
= f ′(·)B,∀τ = 2, . . . , t.

When the activation function f is omitted for simplicity, the gradient becomes:

∂E
∂θ

= (y(t)− ŷ(t))Bt−1 ∂

∂θ
(Ax(1)+By(0)+b) =


(y(t)− ŷ(t))Bt−1x(1),when θ = A

(y(t)− ŷ(t))Bt−1y(0),when θ = B
(8.2)

When ‖B‖ 6= 0, as t increases, the exponential term Bt−1 makes the gradient either diminish to

zero (and thus the parameters are no longer updated) or diverge to infinity (causing numerical

instability in training).

8.1.2 Gradients of LSTM Units

One way to resolve the problem of vanishing or exploding gradients is to augment a traditional

RNN model with LSTM units (Gers et al., 2000) to control the information flow in the model

using three gates: an input gate to control the data influx into the model from the previous

states, a forget gate to decide whether to accumulate or reset the LSTM memory cells, and an

output gate to control what to emit as output. Formally, the gates are implemented as follows:

Gi = σ(wixx+wiyy(t−1)+bi) (8.3)

G f = σ(w f xx+w f yy(t−1)+b f ) (8.4)

Go = σ(woxx+woyy(t−1)+bo) (8.5)

c̃ = tanh(wcxx+wcyy(t−1)+bc) (8.6)

c(t) = Gi� c̃+G f � c(t−1) (8.7)

y(t) = Go� c(t) (8.8)
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where σ is the sigmoid function, tanh is the hyperbolic tangent function, and� is the Hadamard

(element-wise) product between vectors.1 Equations (8.3) to (8.5) define the input gate Gi, the

forget gate G f , and the output gate Go, respectively. The activation of each gate is determined

jointly by the current input x and the recurrent state from the previous time step y(t−1). Equa-

tion (8.6) defines the cell state, which is used to derive the memory cell c in Equation (8.7).

Recurrence also exists in the definition of the memory cell, which is a linear combination of

its historical value from the previous time step and the weighted input. The forget gate and

the input gate are used as weights in the combination. The current memory c(t), gated by the

output gate Go, is used to calculate the final output (or state) of the model in Equation (8.8).

In the original study by Gers et al. (2000), where the forget gate was first introduced, the

gradient was truncated as soon as it leaves the memory cell. In other words, it is only in the

memory cells that error messages are back-propagated through multiple time steps. Graves

and Schmidhuber (2005) argued that the truncation not only hurts model performance but also

makes it difficult to perform numerical verification of the derivatives. To address these issues,

an alternative approach was proposed in the latter study to calculate the gradients across mul-

tiple time steps, which was empirically shown to improve model performance in a phoneme

classification task.

The motivation for a full gradient over multiple time steps is rooted in the very motivation

for RNN models: if a historical value of a particular parameter is believed to affect inference at

a future time step, then the model parameter at that historical time step should also be updated

by the relevant learning signal generated at that future time step. Take the language modelling

task for example. Given an input sequence between time steps τ0 and τ1, the weight matrix wix

in the input gate at time τ0 will affect the prediction of the word at τ1. Consequently, when

a learning signal is generated at τ1, it should be back-propagated through multiple time steps

back to τ0 for updating wix in hope for a more accurate influence in similar situations in future

training.

1For simplicity, temporal superscripts are omitted whenever obvious (e.g., on x and the gates G∗).
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Nonetheless, we suspect that the multi-time-step propagation formulated by Graves and

Schmidhuber (2005) might be erroneous. This is because in their work, the parameter updates

for the weight matrix wi j between time steps τ0 and τ1 proposed is calculated as follows:

∇i j(S) =
τ1

∑
τ=τ0+1

∂E
∂xi(τ)

∂xi(τ)

∂wi j
=

τ1

∑
τ=τ0+1

δi(τ)y j(τ−1).

Since the first terms in the summations were previously defined as being equal:

∂E
∂xi(τ)

= δi(τ),

it follows that the following equality is implied for the second terms, i.e.:

∂xi(τ)

∂wi j
= y j(τ−1). (8.9)

Equation (8.9) appears to be correct especially given the following definition of xi(τ):

xi(τ) = ∑
j∈N

wi jy j(τ−1)+ ∑
c∈C

wicsc(τ−1).

However, since N includes cell outputs, y j(τ − 1) is in fact dependent on wi j through recur-

rence, resulting in a non-linear relation between xi and wi j and thus compromising the validity

of Equation (8.9).

This type of dependency turns out to be rather ubiquitous in deriving the full gradients for

LSTM. For example, given a loss function E, the gradient with respect to the the weight matrix

wox in the output gate Go can be defined as:

∂E
∂wox

=
∂E

∂y(t)
∂y(t)

∂wox
. (8.10)

The second term ∂y(t)
∂wox

on the RHS cannot be easily calculated because both Go and c(t) depend

on wox (Equation (8.8)). To resolve this issue, we propose to perform a full expansion of the
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gradients as follows. Take the weight matrices wαx for example, which is the weight matrix

applied to the input x(t) for gate α ∈ {i, f ,o,c}. According to Equation (8.8), both terms in the

model output y(t) depend on wαx, the derivative of the model output w.r.t. this matrix is defined

as:
∂y(t)

∂wαx
= Go

∂c(t)

∂wαx
+ c(t)

∂Go

∂wαx
. (8.11)

According to Equation (8.7), the first derivative term is expanded as:

∂c(t)

∂wαx
= Gi

∂ c̃(t)

∂wαx
+ c̃(t)

∂Gi

∂wαx
+G f

∂c(t−1)

∂wαx
+ c(t−1) ∂G f

∂wαx
. (8.12)

Note that the third derivative term is an inductive term of the LHS of the equation. For

the other derivatives, the dependent variables all have analogous non-linear relations with the

independent variable wαx by recurrence through ∂y(t), which can be used as inductive terms

of Equation (8.11) to ground the gradients. For notational convenience, denote Gc = c̃(t) (i.e.,

referring to the cell-state input as a gate), then for each gate Gβ ,∀β ∈ {i, f ,o,c}, the gradients

w.r.t. wαx can be defined as:

∂Gβ

∂wαx
= G′

β
(
∂wβxx
∂wαx

+wβy
∂y(t−1)

∂wαx
) =


G′

β
(x+wβy

∂y(t−1)

∂wαx
),when α == β

G′
β

wβy
∂y(t−1)

∂wαx
,otherwise

G′
β
=


1−G2

β
,when β == c

Gβ (1−Gβ ),otherwise

(8.13)

By substituting corresponding terms in Equation (8.10) with Equation (8.11) to (8.13), the

final result is essentially a dovetailing recursion between ∂y(t)
∂wαx

and ∂c(t)
∂wαx

. The base cases for the

induction are ∂y(0)
∂wαx

and ∂c(0)
∂wαx

, respectively, both of which are zero since the initial LSTM state

and cell state are independent of the parameter wαx.
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8.1.3 Gradient Verification

We adopt two independent approaches to verify the correctness of the above derivation: by

manually performing gradient checking and by automatic gradient calculation using a symbolic

algebraic system.

Gradient checking is essentially a numerical approximation of differentiation. Given an

objective function J(x), after adding a small perturbation ε to the input x, the derivative dJ
dx can

then be approximated by the perturbation in the output:

dJ
dx
≈ J(x+ ε)

2ε
.

By definition of derivatives, precision of the approximation increases as ε approaches zero. To

apply gradient checking to our problem at hand, i.e., to calculate the gradient of an objective

function w.r.t. a certain weight matrix, we simply add the perturbation to each cell in the weight

matrix and observe the response in the objective function output.

The second approach is implemented using the Symbolic Differentiation module in Theano

(Bergstra et al., 2010), a software library capable of evaluating mathematical expressions in-

volving mult-dimensional arrays. The module makes it possible to compute partial derivatives

between any dependent-independent variable pair in a given graphical model (in our case, be-

tween the objective function and the weight matrices in the LSTM model).

We use manual gradient checking and the symbolic gradients from Theano as independent

ground truth to evaluate the correctness of the gradient derivation of Graves and Schmidhuber

(2005) and derivation presented in Section 8.1.2. The experiments are done on a network of 10

hidden units and 10 input dimensions, and the results are plotted in Figure 8.1. Our derivation

is clearly more consistent with both ground truth methods than that of Graves and Schmidhuber

(2005). The visual verification also shows that the amplitude of the gradients by Graves and

Schmidhuber (2005) is in general lower than the correct values, which may be explained by

the missing channels from back-propagation such as the recurrent channels that we suspect are
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(a) (b)

(c) (d)

Figure 8.1: Visual verification of full gradients in an LSTM model with input and output di-
mension of 10. (a) Symbolic gradients calculated using Theano. (b) Numerical approximations
using input-output perturbations. (c) Gradients derived by Graves and Schmidhuber (2005). (d)
Gradients derived in Section 8.1.3.

erroneous.2

8.1.4 Regulating LSTM Gating Behaviour with Syntactic Constituents

The LSTM architecture dictates that the efficiency of parameter updates are affected by the

gating behaviour of all three gates defined in the model. In sequential text data, since time

steps correspond to word positions, a beneficial but implicit objective of LSTM is then to learn

to segment a lengthy sequence (i.e., with a large number of time steps) into sub-sequences that

2The source code is available at https://github.com/wangtong106/scribbles/blob/master/lstm.
py.

https://github.com/wangtong106/scribbles/blob/master/lstm.py
https://github.com/wangtong106/scribbles/blob/master/lstm.py
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satisfy all three conditions. The intuition is that natural language sentences can often be “chun-

ked” into multiple independent sub-sequences (e.g., corresponding to phrases or linguistically

meaningful constituents). Although all chunks contribute to the overall meaning of the sen-

tence, individual constituents can still be semantically self-contained and thus exhibit relative

independence from each other. Ideally, an LSTM model is able to (1) identify the constituent

boundaries, (2) “trap” the gradients within these constituents, and (3) release and reset the

memory content when crossing the constituents boundaries. In other words, a properly trained

LSTM must be able to identify the constituents by learning to open and close the gates at ap-

propriate times — somewhat resembling how humans read with ad-hoc chunking and parsing.

The discussion above motivates two major hypotheses of this study. Firstly, it is desirable

for the constituents identified by LSTM to coincide with a constituent that is semantically and

syntactically meaningful (in contrast to, say, a sub-sequence that spans across two adjacent

but different constituents). The reason for this desideratum is that gradient information (and

hence the learning signal) is then able to be propagated through the entire constituent and only

within the same constituent. With this condition satisfied, the sequence-final output of the

model (which is often used as the compositional representation of the entire sequence) will be

derived from the recurrence of one or more intermediate states corresponding to meaningful

constituents rather than random sub-sequences.

Secondly, we hypothesize that adding syntactic knowledge to LSTM units can help the

model to identify meaningful constituents. Intuitively, this hypothesis is supported by the fact

that at any given time step (word position), the distribution of the syntactic information of

words is usually of much lower entropy than the lexical distribution. For example, it is rela-

tively easier to predict the POS of the word immediately preceding a noun than to predict the

actual word. Similarly, if the model has access to some form of syntactic knowledge about

the lexical input, it would be easier for the model to identify the boundaries of constituents

than with the lexical information only. Empirical evidence will be presented in later sections

through performance improvement in language modelling and near-synonym lexical choice.
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8.2 Language Modelling Using Syntax-Augmented LSTM

8.2.1 Model Implementation

An LSTM-based language model is used in this section to test the hypothesis on the benefits of

incorporating syntactic information. According to Equation (8.3) to (8.5), the gate activations

are jointly determined by the historical states and the input at each time step. The cumulative

nature of the states introduces much recurrent latency and hence difficulty to control, but it is

relatively easy to incorporate syntactic knowledge into the input of the model.

Specifically, the embedding matrix in LSTM consists of columns of distributed lexical

representations, each corresponding to a lexical input x. To add POS as syntactic information,

a second embedding matrix P is added to the model consisting of POS representations. For

each occurrence of x in Equations (8.3) to (8.6), the POS embedding corresponding to the POS

of x is retrieved and added to the model with a linear transformation. The new definition of the

input gate is as follows:

Gi = σ(Uix+Wi ·px +Viy(t−1)+bi),

where px ∈ P is the embedding of the POS of x, and Wi is the additional parameter to model

the POS information in the input gate. The linear functions W∗ differ for each gate as well as

the weighted input. However, due to the small number of POS types, it is sufficient to have a

very low dimensionality for the POS embeddings and thus the size of W∗ is small and does not

impose much burden with regard to model complexity or computational cost.

Note that the model requires access to POS information at both training and test time.

On the one hand, it can be argued that the resulting model is using more information on the

input in order to achieve performance improvement. On the other hand, however, a particular

strength of the proposed model is its ability to consolidate and take advantage of the additional
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linguistic information. The same observation can be made in many existing language modelling

studies that either explicitly affix additional features to the model input (Ghosh et al., 2016)

or implicitly incorporate external information such as similarity between input words (Dagan

et al., 1999). In addition, POS information can be easily obtained with simple tools or even

heuristics with fairly high accuracy, which does not impose much dependency on external

linguistic resources on the proposed model.

8.2.2 Evaluation

In this section, we evaluate the effect of adding POS information to LSTM with a language

modelling task. Following the conventional setup in language modelling experiments, the Penn

Tree Bank (PTB) 2 dataset (Marcus et al., 1993) is used, with Sections 00–20 (912.8k words)

for training, Sections 21–22 (95.3k words) for model validation, and Sections 23–24 (99.3k

words) for testing. The texts are tagged with a stochastic POS tagger (Church, 1988) and the

POS information is included in the tagged version of the PTB2 release.

Two network structures are used to compare with the results reported by Zaremba et al.

(2014): a small, non-regularized model consisting of 200 hidden units trained for 13 epochs,

and a large, regularized model with 1500 hidden units trained for 55 epochs. Two LSTM

layers are used in the larger network, with the output of the lower layer connected to the input

of the upper layer at each time step. Regularization is implemented with a dropout rate of

0.65 (Srivastava et al., 2014), which is applied only between the time steps within the same

layer but not in between the LSTM layers. In both models, the dimensionality of the POS

embeddings is chosen to be 10% of the number of hidden units, and the lexical embedding

dimensions are reduced accordingly to preserve the total number of hidden units and maintain

model complexity for fair comparison. For example, in the small network, the 200 dimensions

for the hidden units consist of 180 dimensions for the lexical embeddings and 20 dimensions

for the POS embeddings.

Experiment results are listed in Table 8.1. LEX represents models with lexical features
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Network size 200 1500
Dataset Val Test Val Test

LEX 120.7 114.5 82.2 78.4
SYN 110.8 105.7 77.5 75.2

Table 8.1: Incorporating POS information into LSTM input helps reduce language modelling
perplexity on the Penn Tree Bank 2 dataset. Perplexity scores are averaged across 12 runs of
the corresponding models using different seeds for randomization. The differences between the
baseline and the proposed models are statistically highly significant (p < 0.0001) according to
t test between the means.

only (Zaremba et al., 2014) and SYN corresponds to models with syntactic (POS) information

incorporated into the LSTM inputs. On both the small and the large models, POS information

helps achieve notably better results on the PTB2 data. On both the validation and the test data,

larger improvement is observed for the smaller model than the larger one. One explanation is

that the larger model might be better at implicitly inferring the syntactic information from the

lexical input than the smaller model — either due to the higher capacity of the model or the

dropout regularization.

8.3 Near-synonymy Context Composition Using LSTM

The motivation for applying RNN-LSTM to near-synonym lexical choice (NSLC) is two-fold.

Firstly, as mentioned in Section 3.2, existing lexical choice models almost always employ the

additive model to represent multi-word contexts of near-synonyms. Discussions in Section 3.3

and 3.4 also reveal that LSA is essentially an additive model weighted by the eigenvalues of

the co-occurrence matrix. The prevalence of additive models in the existing literature calls

for explorations of alternative composition models in near-synonymy study. Secondly, a com-

monality among many of LSTM’s successful applications reported so far is that humans are

able to excel with relative ease in these tasks (e.g., sentiment analysis (Zhu et al., 2015), text

classification (Zhou et al., 2015), named entity recognition (Chiu and Nichols, 2015), etc.). In

contrast, semantic distinctions in near-synonymy are highly fine-grained and difficult to dif-
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ferentiate even for native speakers of a language, which makes NSLC a unique challenge for

the neural-network-based models. A successful application of the model in NSLC would be a

meaningful addition to the model’s success in NLP.

8.3.1 Task Description and Model Configuration

NSLC is formulated as a classification problem. The objective is to recover the word (a member

of a group of near-synonyms) originally used at the position of a blank in a sentential context.

On the lexical level, distributed representations (Section 2.2) are assigned to all words in a

given context. Context words are used as sequential input to the model, with each word corre-

sponding to a time step in the model. Model output is calculated using Equations (8.3) to (8.8)

given both the input and the recurrent states from the previous time step. The sequence-final

output (i.e., output emitted by LSTM at the end of the context sequence) is used for classifi-

cation. The classifier consists of a single-layer neural network, and the class-based negative

log-likelihood is used as the loss function for optimization. The class with the highest probabil-

ity is proposed as the correct answer, which is compared against the gold label (i.e., the original

word used at the position of the blank in the context). During training, the difference is used

as the learning signal and back-propagated using stochastic gradient descent (SGD) to update

the model parameters. For testing, the difference is used to calculate accuracy for evaluating

model performance.

We use 300 dimensions for lexical embeddings, partly for the convenience of using pub-

lished pre-trained embeddings such as word2vec (Mikolov et al., 2013). On the other hand,

the dimensionality of LSTM hidden states is observed to have a positive influence on model

performance, but the difference minimal and without statistical significance. We use 200 as the

dimensionality for obtaining results presented below.

Weight parameters are initialized with normally distributed random values (mean 0.0, stan-

dard deviation 0.01). Regularization is performed by gradient-clipping with range±5.0 and by

applying dropout (0.5) between time steps. Mini-batch (100) is used for SGD, and momentum
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(Sutskever et al., 2013) is implemented with ε = 0.33. Learning rate starts from 0.75 and is

linearly decreased to 7.5e−4 at the end of training (100 epochs).

8.3.2 Evaluation

Experiments in this section are conducted using the Wall Street Journal (WSJ) data for fair

comparison with existing NSLC systems. The 1989 WSJ is used for training and 1987 WSJ

for testing. Due to the small size of the corpus, no frequency threshold is imposed. More

importantly, we believe rare words can carry important information on the nuanced distinctions

among the target near-synonyms. Note that this is in contrast to most of the existing studies

where frequency thresholds are used to reduce the vocabulary space.

Stop words are removed for two reasons. Firstly, the omission of function words should not

incur a significantly change of the overall meaning of a sentence. Secondly, if a model performs

better with the function words removed than when they are present, it can be argued that the

model relies more on the semantic information of the input rather than the syntactic aspects

(e.g., grammatical, collocational, etc.). Empirically, no statistical significance is observed in

the difference between the performance of the two variations.

Temporal Distribution

The first experiment is to study the temporal distribution in the model input and its effect on

the composition performance. To define temporal distribution, consider the following lexical

choice example from the WSJ dataset on the near-synonym set {job, duty, task}:

(7) Mr. Hamilton faces a daunting BLANK in reviving Ogilvy’s

stagnant New York office.

Here, BLANK indicates where the original near-synonym was used in the sentence. Temporal

distribution refer to the distribution of the syntactic functions of the context words given their

positions relative to the blank. Note that temporal distributions are non-uniform. For example,
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difficult error job responsibility material give settle Avg.
wf_c 68.8 74.8 86.2 72.4 75.2 81.7 77.7 76.7
wf_s 65.6 73.6 85.3 69.9 72.7 78.1 77.1 74.6

Table 8.2: Fixing the positions of the blanks achieves better accuracy (%) than random posi-
tions in the FITB task.

given the correct answer task, it is not surprising that the adjective daunting is the word at posi-

tion−1 (i.e., the position immediately to the left of the blank), nor that the article a is the word

at position −2, etc. The lack of surprise indicates the non-uniformity of the distributions and

thus the relative position is informative of the syntactic function of the word at that position.

On the other hand, however, when using the context as a sequential input, LSTM is oblivious

to the relative position but instead only depends on the in-sequence position (e.g., 5 for a, 4

for made, etc.) at each time step in Equations (8.3) to (8.8). The hypothesis is that by aligning

the relative position with the in-sequence position, at any given time step, the LSTM model

is exposed to a set of temporal distributions with relatively lower entropy around the target

near-synonym, which offers advantages to gaining statistical efficiency during training.

To test this hypothesis, two methods are compared for constructing window frames. The

first one, dubbed wf_c uses the conventional definition of a window frame, where the blank

is placed at the centre of a frame with exactly n words on each side. The second method

(wf_s) relaxes the centring constraint by randomly shifting the position of the blank off-centre

while maintaining the frame size at 2n+1. Clearly, only wf_c aligns the in-sequence position

with the relative position, which, given the validity of the hypothesis, should lead to better

model performance due to the relatively invariant distribution of the input at each time step.

Empirical results confirm our hypothesis. As shown in Table 8.2, higher accuracy are achieved

for all seven data sets when the blank position is centred.

Window Size

The choice to represent contexts as window frames of ±n words around the blank is motivated

by several reasons. Firstly, window frames yield contextual sequences of identical lengths
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difficult error job responsibility material give settle Avg.
wf_1 68.0 69.0 86.0 69.9 70.0 75.8 68.1 72.4
wf_2 70.3 70.4 86.4 70.8 69.4 79.5 75.9 74.6
wf_3 68.8 74.8 86.2 72.4 75.2 81.7 77.7 76.7
wf_4 63.0 57.8 84.2 67.0 69.5 78.0 78.6 71.1
wf_5 61.4 50.7 81.8 62.7 70.1 76.6 75.2 68.3

Table 8.3: FITB performance comparison for different window frame sizes. The optimal win-
dow size is larger than usual for the proposed model, while smaller sizes are still favoured over
larger ones.

(2n+ 1), which facilitates the implementation of mini-batches in SGD for better efficiency

and performance in optimization. More importantly, window frame size enables us to study

the effect of co-occurrence locality. In the existing literature, NSLC models always favour

highly local contexts (e.g., that of Inkpen, 2007). A relatively small window frame size (e.g.,

±2) surrounding a target near-synonym usually expresses more collocational preferences than

the semantics of the context (Inkpen and Hirst, 2002). Consequently, comparing the effect of

window frame size with existing studies is helpful in understanding the type of information

a model is learning from the contexts. Results in Table 8.3 shows that the proposed model

performs best with window size 3 (which is used for the w fc model in the first row), indicating

that the model actually favours a larger than usual window size. The observation also holds for

the majority of the individual near-synonym sets. Nonetheless, increasing window size to 4 or

5 quickly worsens the model performance. Although not optimal, smaller window sizes of 1

or 2 still outperform larger window sizes.

Lexical Embedding Pretraining

Note that the results above are obtained by initializing the lexical embeddings with pre-trained

embeddings (Mikolov et al., 2013). Convergence is much slower with random initialization.

The final accuracy without pre-trained embeddings is also much lower than the reported results

(by close to 5 percentage points). A major difference between the two variants is that in the

former, the lexical embedding layer of the network is essentially pre-trained using a much
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difficult error job responsibility material give settle Average
Data size 6630 1052 5506 3115 1715 11504 1594 Macro Micro

Inkpen (2007) 57.3 70.8 86.7 66.7 71.0 56.1 75.8 69.2 65.2
Wang and Hirst (2010) 61.7 82.5 82.4 63.5 78.5 75.4 77.9 74.6 73.1

RNN-LSTM 68.8 74.8 86.2 72.4 75.2 81.7 77.7 76.7 78.0
Most freq. baseline 42.2 44.6 71.0 33.4 60.2 57.2 59.3 52.6 53.9

Table 8.4: Model comparison in the FITB task.

larger dataset. Another possible reason for the performance difference is that the WSJ dataset

is simply too small for training reliable lexical embeddings.

Table 8.4 shows the comparison between the existing NSLC models, the most-frequent

baseline, and the proposed model (LSTM). On the individual synonym sets, absolute accuracies

significantly correlate with the most-frequent baselines (ρ = 0.82). Relative performance3

exhibits some correlation with data size (ρ = 0.61), although the correlation is not statistically

significant. The correlation indicates that the proposed model appears to be data-hungry and

performs well when training data is abundant, which is consistent with observation made with

other neural-network based models. The conjecture is better demonstrated by the fact that the

micro-averaged accuracy is significantly higher than the macro average.

Compared to the previous state-of-the-art lexical choice model, the proposed model per-

forms 2.1 percentage points higher in macro average (p = 0.0027) and 5.1 percentage points

higher in micro average (p� 0.001).

3Calculated as the difference in accuracy between LSTM and the best accuracy in the existing models.



Chapter 9

Unsupervised Word Sense Disambiguation

Using Compositional Similarity1

9.1 Introduction

As mentioned in Section 1.2.2, the objective of word sense disambiguation (WSD) is to model

the functional mapping between a polysemous word form and its multiple senses. In practice,

however, the occurrences of a polysemous word form are computationally indistinguishable,

and thus the problem is circumvented by mapping the contexts associated with each occurrence

of the word form to the appropriate sense in the word’s sense inventory. Since contexts are

usually multi-word units, the problem of WSD would often rely on composition models for

deriving context representations.

To disambiguate homonyms in a given context, Lesk (1986) proposed a method that mea-

sured the degree of overlap between the glosses of the target homonym. Known as the Lesk

algorithm, this simple and intuitive method has since been extensively cited and extended in the

word sense disambiguation (WSD) community. Despite the intuitiveness of the Lesk algorithm

(Lesk, 1986), however, its performance in several WSD benchmarks is less than satisfactory

1This study was first published as a conference paper in ACL 2014 (Wang and Hirst, 2014).
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(Kilgarriff and Rosenzweig, 2000; Vasilescu et al., 2004). One of the popular explanations is

related to a key limitation of the algorithm, that “Lesk’s approach is very sensitive to the ex-

act wording of definitions, so the absence of a certain word can radically change the results.”

(Navigli, 2009).

Compounding this problem is the fact that many Lesk variants limited the concept of over-

lap to the literal interpretation of string matching (with their own variants such as length-

sensitive matching (Banerjee and Pedersen, 2002), etc.), and it was not until recently that over-

lap started to take on other forms such as tree-matching (Chen et al., 2009) and vector space

models (Abdalgader and Skabar, 2012; Raviv et al., 2012; Patwardhan and Pedersen, 2006).

To further address this limitation, a Naive Bayes model (NBM) is proposed in this study as a

novel, probabilistic measurement of overlap in gloss-based WSD.

9.2 Related Work

In the extraordinarily rich literature on WSD, we focus our review on those closest to the topic

of the Lesk algorithm and Naive Bayes models (NBMs) since these are most relevant to the

model proposed in this study. Note that there are two major variants of the Lesk algorithm. The

original algorithm measures the gloss-gloss overlap, i.e., by calculating the overlap between

the gloss of the target polysemous word and the glosses of all its context words. A “simplified

Lesk” (Kilgarriff and Rosenzweig, 2000) has also been developed, where inventory senses are

assessed by gloss-context overlap that measures the overlap between the target’s gloss and the

actual context words. This variant prevents proliferation of gloss comparison especially on

larger contexts (Mihalcea et al., 2004) and is shown (Vasilescu et al., 2004) to outperform the

original Lesk algorithm. Nonetheless, the two algorithms are referred to interchangeably in the

reviews below.

To the best of our knowledge, NBMs have been employed exclusively as classifiers in

WSD — that is, in contrast to their use as a similarity measure in this study. Gale et al. (1992)
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used an NB classifier resembling an information retrieval system, where a WSD instance is

regarded as a document d, and candidate senses are scored in terms of “relevance” to d. When

evaluated on a WSD benchmark (Vasilescu et al., 2004), the algorithm compared favourably to

Lesk variants (as expected for a supervised method). Pedersen (2000) proposed an ensemble

model with multiple NB classifiers differing by context window size. Hristea (2009) trained an

unsupervised NB classifier using the EM algorithm and empirically demonstrated the benefits

of WordNet-assisted (Fellbaum, 1998) feature selection over local syntactic features.

Among the many Lesk variants, Banerjee and Pedersen (2002) extended the gloss of both

inventory senses and the context words to include words in their related synsets in Word-

Net. Senses were scored by the sum of overlaps across all relation pairs, and the effect of

individual relation pairs was evaluated in a later work (Banerjee and Pedersen, 2003). Overlap

was assessed by string matching, with the number of matching words squared so as to assign

higher scores to multi-word overlaps.

Instead of string matching, Wilks et al. (1990) measured overlap as similarity between

gloss- and context-vectors, which were aggregated word vectors encoding second order co-

occurrence information in glosses. An extension by Patwardhan and Pedersen (2006) differ-

entiated context word senses and extended shorter glosses with related glosses in WordNet.

Patwardhan et al. (2003) measured overlap by concept similarity (Budanitsky and Hirst, 2006)

between each inventory sense and the context words. Contrary to intuition, however, simple

gloss overlap proposed in their earlier work actually out-performed all five similarity-based

methods.

More recently, Chen et al. (2009) proposed a tree-matching algorithm that measured gloss-

context overlap as the weighted sum of dependency-induced lexical distance. Abdalgader and

Skabar (2012) constructed a sentential similarity measure (Li et al., 2006) consisting of lexical

similarity measures (Budanitsky and Hirst, 2006), and overlap was measured by the cosine of

their respective sentential vectors. A related approach (Raviv et al., 2012) also used Wikipedia-

induced concepts to encoded sentential vectors. These systems compared favourably to exist-
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ing methods in WSD performance, although by using sense frequency information, they are

essentially supervised methods.

Distributional methods have been used in many WSD systems in quite different flavours

than the current study. Kilgarriff and Rosenzweig (2000) proposed a Lesk variant where each

gloss word is weighted by its idf score in relation to all glosses, and gloss-context association

was incremented by these weights rather than binary, overlap counts. Miller et al. (2012) used

distributional thesauri as a knowledge base to increase overlaps, which were, again, assessed

by string matching.

In conclusion, the majority of Lesk variants focused on extending the gloss to increase the

chance of overlapping, while the proposed NBM is designed to make better use of the limited

lexical knowledge by delegating the measure of similarity to the vast amount of text corpora.

The main hypothesis here is that distributional methods can offer a better measurement of

the gloss-context overlap. Intuitively, the probabilistic nature of the proposed model offers a

“softer” measurement of gloss-context association compared to string matching. Empirically,

the resulting model achieves state-of-the-art performance when evaluated on two benchmarks

of unsupervised WSD (Section 9.4).

9.3 Model and Task Descriptions

9.3.1 The Naive Bayes Model

Formally, given two sets e = {ei} and f = { f j} each consisting of multiple samples of some

random event, the proposed model measures the probabilistic association p(f|e) between e and

f. Under the assumption of conditional independence among the events in each set, a Naive

Bayes measurement can be formulated as:

p(f|e) = ∏
j

p( f j|{ei}) = ∏
j

p({ei}| f j)p( f j)

p({ei})
=

∏ j[p( f j)∏i p(ei| f j)]

∏ j ∏i p(ei)
. (9.1)
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When applied to language, the frequency of the events can be quite large, and hence loga-

rithm is applied to improve numerical stability:

log p(f|e) = ∑
i

log p(ei)+∑
i

∑
j

log p( f j|ei)−|e|∑
j

log p( f j),

In addition, the above quantity can be estimated with maximum likelihood using marginal and

joint frequencies of the samples:

log p(f|e)≈∑
i

log
c(ei)

c(·)
+∑

i
∑

j
log

c( f j,ei)

c(ei)
−|{ei}|∑

j
log

c( f j)

c(·)

=∑
i

logc(ei)−∑
i

logc(·)+∑
i

∑
j

logc( f j,ei)

−∑
i

∑
j

logc(ei)−|{ei}|∑
j

logc( f j)+ |{ei}|∑
j

logc(·)

=(1−|{ f j}|)∑
i

logc(ei)−|{ei}|∑
j

logc( f j)

+∑
i

∑
j

logc( f j,ei)+ |{ei}|(|{ f j}|−1) logc(·).

(9.2)

To regularize for the sizes of e and f, one can also adjust the probability by the following

normalization terms to ensure that the resulting probability p̃(e|f) is a proper distribution:

p̃(e|f) = p(e|f)/(|e|+ |f|)
∑(ê,f̂)∈E×F

1
|ê|+|f̂|

,

For a given data set and a lexical knowledge base, the denominator is a constant and thus can

be omitted.

In step two in Equation (9.1), Bayes’s rule is applied not only to take advantage of the con-

ditional independence among ei’s, but also to facilitate probability estimation, since p({ei}| f j)

is easier to estimate in the context of WSD, where sample spaces of e and f become asymmetric

(details to follow in Section 9.3.2).



CHAPTER 9. UNSUPERVISED WSD WITH COMPOSITIONAL SIMILARITY 106

9.3.2 Model Application in WSD

In the context of WSD, e can be regarded as an observed context of a polysemous word w,

while f represents certain lexical knowledge about the sense s of w manifested in e.2 Note that

in this formulation, f is in effect a function of s. WSD can then be formulated as identifying

the sense s∗ in the sense inventory S of w s.t.:

s∗ = argmax
s∈S

p(f(s)|e) (9.3)

In one of their simplest forms, ei’s correspond to co-occurring words in the instance of w,

and f j’s consist of the gloss words of sense s. Consequently, p(f(s)|e) is essentially measuring

the association between the context words of w and the definition texts of s, i.e., the gloss-

context association in the simplified Lesk algorithm (Kilgarriff and Rosenzweig, 2000). A

major difference, however, is that instead of using hard, overlap counts between the two sets

of words from the gloss and the context, the proposed probabilistic measure of association can

implicitly model the distributional similarity among the elements ei and f j (and consequently

between the sets e and f(s)) over a wider range of contexts. The result is a “softer” proxy for

association than the binary view of overlaps in existing Lesk variants.

The discussions above offer a second motivation for applying Bayes’s rule on the second

expression in Equation (9.1): it is easier to estimate p(ei| f j) than p( f j|ei), since the vocabulary

for the lexical knowledge features ( f j) is usually smaller compared to that of the contexts (ei).

As a result, estimation of the former suffices on a smaller amount of data than that for the latter.

9.3.3 Incorporating Additional Lexical Knowledge

The input of the proposed NBM is bags of words, and thus it is straightforward to incorporate

different forms of lexical knowledge (LK) for word senses, for example, by concatenating a

tokenized knowledge source to the existing knowledge representation f, while the similarity

2Think of the notations e and f mnemonically as exemplars and features, respectively.
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Senses Hypernyms Hyponyms Synonyms
factory building

complex,
complex

brewery,
factory,
mill, ...

works,
industrial
plant

life form organism,
being

perennial,
crop...

flora,
plant life

Table 9.1: Lexical knowledge for the word plant under its two meanings factory and life form.

measure remains unchanged.

The availability of LK largely depends on the sense inventory used in a WSD task. Word-

Net senses are often used in Senseval and SemEval tasks, and hence senses (or synsets, and

possibly their corresponding word forms) that are semantically related to the inventory senses

under WordNet relations are easily obtainable and have been used by many existing studies.

As pointed out by Patwardhan et al. (2003), however, “not all of these relations are equally

helpful.” Relation pairs involving hyponyms were shown to result in better F-measure when

used in gloss overlaps (Banerjee and Pedersen, 2003). The authors attributed the phenomenon

to the multitude of hyponyms compared to other relations. We further hypothesize that, in

addition to larger quantity, synonyms and hyponyms offer stronger semantic specification that

helps distinguish the senses of a given ambiguous word, and thus are more effective knowledge

sources for WSD.

Take the word plant for example. Selected hypernyms, hyponyms, and synonyms pertain-

ing to its two senses factory and life form are listed in Table 9.1. Hypernyms can be overly

general terms (e.g., being). Although conceptually helpful for humans in coarse-grained WSD,

generality entails high frequency, which is likely to cause inaccuracy in the hypernyms’ prob-

ability estimation. Hyponyms, on the other hand, help specify their corresponding senses with

information that is possibly missing from the often overly brief glosses. For example, many of

the technical terms as hyponyms in Table 9.1 — though rare — are likely to occur in the (pos-

sibly domain-specific) contexts that are highly typical of the corresponding senses. Particularly

for the NBM, the co-occurrence is likely to result in stronger gloss-definition associations when

similar contexts appear in a WSD instance.
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We also observe that some semantically related words appear under rare senses (e.g., still

as an alcohol-manufacturing plant, and annual as a one-year-life-cycle plant, both omitted

from Table 9.1). This is a general phenomenon in gloss-based WSD and is beyond the scope

of the current discussion.3 Overall, all three sources of LK may complement each other in

WSD tasks, with hyponyms particularly promising in both quantity and quality compared to

hypernyms and synonyms.4

9.3.4 Probability Estimation

A most open-ended question is how to estimate the probabilities in Equation (9.1). In WSD

in particular, the estimation involves the marginal and conditional probabilities of and between

word tokens. Many options are available to this end in machine learning (MLE, MAP, etc.), in-

formation theory (Church and Hanks, 1990; Turney, 2001), as well as the rich body of research

in lexical semantic similarity (Resnik, 1995; Jiang and Conrath, 1997; Budanitsky and Hirst,

2006). In this study, we choose maximum likelihood — not only for its simplicity, but also to

demonstrate model strength with a relatively crude probability estimation. To avoid underflow,

log probability is estimated according to Equation (9.2).

In addition, we investigate how model performance responds to estimation quality by vary-

ing the training data size. Specifically in WSD, a source corpus is defined as the source of the

majority of the WSD instances in a given dataset, and a baseline corpus of a smaller size and

less resemblance to the instances is used for all datasets. Clearly, a source corpus offers better

estimates for the model than the baseline corpus, and the assumption is that using probability

estimation of different quality should result in differences in model performance.

3We do, however, refer curious readers to the work of Raviv et al. (2012) for a novel treatment of a similar
problem.

4Note that LK expansion is a feature of our model rather than a requirement. What type of knowledge to
include is eventually a decision made by the user based on the application and LK availability.
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9.4 Evaluation

9.4.1 Data, Scoring, and Pre-processing

Various aspects of the model discussed in Section 9.3 are evaluated in the English lexical

sample tasks from Senseval-2 (Edmonds and Cotton, 2001) and SemEval-2007 (Pradhan et al.,

2007). Training sections are used as development data and test sections are used for final

testing. Model performance is evaluated in terms of WSD accuracy using Equation (9.3) as

the scoring function. Accuracy is defined as the number of correct responses over the number

of instances. Since the output of the NBM are real numbers, it is highly unlikely to have ties

among the candidates,5. As a result, the model is designed to always proposes a unique answer,

and accuracy is thus equivalent to F-score commonly used in existing reports.

Multiword expressions (MWEs) in the Senseval-2 sense inventory are not explicitly marked

in the contexts. Several of the top-ranking systems implemented their own MWE detection

algorithms (Kilgarriff and Rosenzweig, 2000; Litkowski, 2002). Without digressing to the

details of MWE detection — and meanwhile, to ensure fair comparison with existing systems

— we implement two variants of the prediction module, one completely ignorant of MWE and

defaulting to INCORRECT for all MWE-related answers, while the other assuming perfect MWE

detection and performing regular disambiguation algorithm on the MWE-related senses (n.b.,

not defaulting to CORRECT). All results reported for Senseval-2 below are harmonic means of

the two outcomes.

Each inventory sense is represented by a set of LK tokens (e.g., definition texts, synonyms,

etc.) from their corresponding WordNet synset (or in the coarse-grained case, a concatenation

of tokens from all synsets in a sense group). The MIT-JWI library (Finlayson, 2014) is used

for accessing WordNet. Usage examples in glosses (included by the library by default) are

removed in our experiments.6

5This has never occurred in the hundreds of thousands of runs in our development process.
6We also compared the two Lesk baselines (with and without usage examples) on the development data

but did not observe significant differences, which is consistent with the observations reported by Kilgarriff and
Rosenzweig (2000).
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Dataset glo syn hpr hpo all 1st 2nd Lesk
Senseval-2 Coarse .475 .478 .494 .518 .523 .469 .367 .262

Senseval-2 Fine .362 .371 .326 .379 .388 .412 .293 .163
SemEval-2007 .494 .511 .507 .550 .573 .538 .521 –

Table 9.2: Lexical knowledge sources and WSD performance (F-measure) on the Senseval-2
(fine- and coarse-grained) and the SemEval-2007 dataset.

Basic pre-processing is performed on the contexts and the glosses, including lower-casing,

stopword removal, lemmatization on both datasets, and tokenization on the Senseval-2 in-

stances.7 Stanford CoreNLP8 is used for lemmatization and tokenization. Identical procedures

are applied to both the source and the baseline corpus used for probability estimation.

The binomial test is used for testing statistical significance, all improvements presented are

statistically highly significant (p < 0.001) with one exception explicitly noted in Section 9.4.3

as statistically significant (p < 0.01).

9.4.2 Comparing Lexical Knowledge Sources

To study the effect of different types of LK in WSD (Section 9.3.3), for each inventory sense,

we choose synonyms (syn), hypernyms (hpr), and hyponyms (hpo) as extended LK in addi-

tion to its gloss. The WSD model is evaluated with gloss-only (glo), individual extended LK

sources, and the combination of all four sources (all). The results are listed in Table 9.2 to-

gether with existing results (1st and 2nd correspond to the results of the top two unsupervised

methods in each dataset).9

By using only glosses, the proposed model already shows drastic improvements over the

basic Lesk algorithm (92.4% and 140.5% relative improvement in Senseval-2 coarse- and fine-

grained tracks, respectively).10 Moreover, comparison between coarse- and fine-grained tracks

7The SemEval-2007 instances are already tokenized.
8http://nlp.stanford.edu/software/corenlp.shtml.
9We excluded the results of UNED (Fernández-Amorós et al., 2001) in Senseval-2 because, by using sense

frequency information that is only obtainable from sense-annotated corpora, it is essentially a supervised system.
10Comparisons are made against the simplified Lesk algorithm (Kilgarriff and Rosenzweig, 2000) without

usage examples. The comparison is unavailable in SemEval2007 since we have not found existing experiments
with this exact configuration.

http://nlp.stanford.edu/software/corenlp.shtml
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reveals interesting properties of different LK sources. Previous hypotheses (Section 9.3.3) are

empirically confirmed that WSD performance benefits most from hyponyms and least from

hypernyms. Specifically, highly similar, fine-grained sense candidates apparently share more

hypernyms in the fine-grained case than in the coarse-grained case; adding to the generality of

hypernyms, we postulate that their probability in the NBM is uniformly inflated among many

sense candidates, and hence the decrease in distinguishability. Synonyms might help with

regard to semantic specification, though their limited quantity also limits their benefits. These

patterns on the LK types are consistently observed in all three tracks of the benchmarks.

When including all four LK sources, our model outperforms the state-of-the-art systems

with statistical significance in both coarse-grained tasks. For the fine-grained track, it ranks

second after that of Tugwell and Kilgarriff (2001), which used a decision list (Yarowsky, 1995)

on manually selected features for each inventory sense, and thus is not subject to loss of distin-

guishability in the glosses as with the fully automated Lesk variants.

9.4.3 The Effect of Probability Estimation

In this section we evaluate how different probability estimations derived from different training

corpora can affect performance of the proposed model. For each dataset, we use two corpora to

perform probability estimation. The first corpus (referred to as the source corpus) is one from

which the majority of the instances in a dataset are collected. The source corpus can be iden-

tified by the distribution of the doc-source attribute associated with each instance in a dataset.

For example, 94% of the Senseval-2 instances come from the British National Corpus (BNC),

and 86% of SemEval-2007 instances come from the Wall Street Journal. For comparison,

we use a third corpus (the Brown Corpus) as the baseline corpus. Clearly, for a given WSD

dataset, the source corpus is more representative of the lexical distributions of the contexts, and

hence, probability estimation done on the source corpus is presumably more accurate than on

the baseline corpus.

Figure 9.1 shows the comparison on the SemEval-2007 dataset. Across all experiments,
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Figure 9.1: Model response to probability estimates of different quality on the SemEval-2007
dataset. Error bars indicate confidence intervals (p < .001), and the dashed line corresponds to
the best reported result.

higher WSD accuracy is consistently witnessed using the source corpus; differences are statis-

tically highly significant except for hpo (which is significant with p < 0.01).



Chapter 10

Conclusions for Part II

In this part of the thesis we focused on developing and evaluating distributional composi-

tion models that compose the lexical representations from Part I into representations of longer

textual sequences such as phrases and sentences. We started with the classic additive model

(Mitchell and Lapata, 2010) and showed that in addition to their appeal with regard to intuition

and simplicity, additive models are in fact the empirical result of distributed representation

learning for phrases.

Nevertheless, to address the limitations of additive models with regard to ignoring word-

order and other linguistic information, we further investigated the effectiveness of some state-

of-the-art composition models using recurrent neural networks (RNNs) and hypothesized that

performance can be improved by modelling syntactic knowledge of the input. More specifi-

cally, we investigated a variant of RNN with long short-term memory that is proven by existing

studies to be effective in learning representations of text sequences. Theoretically, the mem-

ory cell and the gating mechanism in LSTM are able to “trap” gradients within sub-sequences

of sequential input (Gers et al., 2000). By analysing its full gradients, we hypothesized that

the gating behaviour can be further improved by “teacher-forcing”, i.e., explicitly marking the

input with syntactic knowledge and thus providing the model with temporal cues to guide its

gate activations. Empirical experiments confirmed our hypothesis with improved performance

113
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in both language modelling and near-synonym lexical choice.

In addition, we developed a compositional similarity measure that assesses the association

between two multi-word units which, in contrast to traditional composition models, does not

explicitly rely on vector-space representations. When applied to polysemy, the model was em-

ployed to replace string matching in the Lesk algorithm for word sense disambiguation with a

probabilistic measure of gloss-context overlap. The base model on average more than doubled

the accuracy of Lesk in Senseval-2 on both fine- and coarse-grained tracks. With additional

lexical knowledge, the model also outperformed state-of-the-art results with statistical signifi-

cance on two coarse-grained WSD tasks.
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Summary
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Chapter 11

Summary

11.1 Conclusions

Building effective and efficient representations of linguistic units (words, phrases, sentences,

etc.) is a fundamental problem in computational linguistics. In this thesis, several aspects of

this problem were explored in the context of near-synonymy, semantic similarity, and poly-

semy. The main objective was to improve computational and statistical efficiency of both lex-

ical and compositional distributional models. I hypothesized that syntactic and lexicographic

knowledge can help reduce both computational and statistical complexity in the data to achieve

this goal.

Major contributions of the thesis are as follows. On the lexical level, due to the Zipfian

nature of lexical distribution in language, sparsity is one of the most prominent issues in lex-

ical semantics studies (Chapter 2). To address this issue, I proposed two dimension reduction

models using matrix factorization techniques and applied them to building reliable lexical rep-

resentations. Firstly, I used lexical level co-occurrence as the basis for dimension reduction

with singular value decomposition (Chapter 3). The resulting lexical representations were used

as features in kernel methods. Using the correlation between co-occurrence significance and

the order of the eigenvalues, the concept of subtlety was quantified with the dimensionality of
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the resulting latent space, which was in turn used as empirical evidence of the non-linearity of

near-synonym nuances. The resulting model, despite its simplicity, outperforms all previous

near-synonym lexical choice models.

Secondly, motivated by the high false positive and false negative rates of semantic associ-

ation in window-based definition of co-occurrence, I incorporated syntactic and lexicographic

knowledge into the definition and applied it to a contrastive-divergence-based lexical embed-

ding model (Chapter 4). Using the information about a target word’s dependency was proven

not only effective in semantic modelling, but also efficient in computation since the dependent

space is much more compact than the lexical space of its positional neighbours. Even more

compact is the defining relation established using a dictionary. I proposed a model that exploits

the hand-crafted lexicographic knowledge in dictionary definitions. Model performance in lex-

ical similarity evaluations rivals the window-based methods trained on traditional text corpora

that are thousands of times larger in size.

On the other hand, the compact nature of the dependency-based co-occurrence also brings

limitations to the model because the co-occurrence information is sparser than in window-

based models. To address this problem, a novel co-training mechanism was proposed that

improves embedding quality by making use of the information about the dependency contexts

in the output embedding matrix, which is usually discarded in existing embedding models. The

proposal was empirically shown to be effective especially when the size of the training data is

small.

In the context of measuring lexical semantic similarity, many existing studies make use

of the structures in semantic taxonomies. However, certain widely adopted structural features

such as depth and density have peculiar distributions over the concepts in hand-crafted taxo-

nomic knowledge graphs such as WordNet. I provided empirical evidence to demonstrate that,

contrary to the intuitions that have motivated the use of these structural features in similarity

metrics, depth and density in fact rarely correlate with human judgements of lexical similar-

ity. This issue was subsequently addressed by refining the definition of depth and density
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in order to more accurately model their distribution over lexical concepts (corresponding to

nodes in a semantic taxonomy). Specifically, the ordinal representation of depth was replaced

by a cumulative definition, and information on semantic specificity was made inheritable in

local sub-graphs in WordNet. The resulting definitions not only resulted in much improved

alignment between the feature values and human judgements of similarity, but also improved

evaluation results in lexical similarity with statistical significance by incorporating the new

definitions into existing similarity measures that use the metrics of depth and density.

Meanwhile, many NLP applications require representation of longer sequences of text.

Simple composition models such as the additive model are often quite effective and can yield

highly competitive results. However, these models ignore even the most basic linguistic in-

formation such as word-order and thus bear little resemblance to human behaviour in natural

language understanding. Consequently, it is of both theoretical and practical merit to explore

more complex alternatives that are capable of modelling linguistic knowledge in the data. To

this end, I first employed a recurrent neural network model with long short-term memory units

for semantic composition. Analytically, I reasoned that the gating behaviour of the LSTM

units can potentially benefit from incorporating syntactic knowledge of the input sequence.

Empirically, when the proposed model was applied to the tasks of language modelling and

near-synonym lexical choice, the additional information on syntax was shown to help achieve

notably better performance in both tasks.

Lastly, a compositional similarity measure was proposed to assess the similarity between

two sets of random events. The model is a general framework under which lexical similar-

ity can be estimated with either vector space similarity using distributed representations or

simple co-occurrence statistics of the individual events. Empirically, the similarity metrics

work very well even with very crude probability estimations such as the Maximum Likelihood

Estimation. With the help of lexicographic knowledge, including a monolingual dictionary

and a lexical taxonomy, the proposed model was successfully applied to unsupervised word

sense disambiguation (WSD) and achieved state-of-the-art results in two widely-adopted WSD



CHAPTER 11. SUMMARY 119

benchmarks.

11.2 Future Work

11.2.1 Near-synonymy

Decoupling Polysemy from Near-synonymy

The key motivation for placing the lexical and compositional semantic models in the context of

near-synonymy is the high degree of granularity of the near-synonym distinctions. In the ex-

isting literature, however, lexical choice data has been extracted from text corpora with simple

string matching without much consideration of the semantic properties of the target words. For

example, the target near-synonyms can often be polysemous. A few existing studies briefly

mentioned the effect of polysemy on near-synonym lexical choice and fill-in-the-blank data

collection. Edmonds (1997) claimed that the seven near-synonym sets used in his study (and

repeatedly in later studies) were chosen because of their low degree of polysemy. Inkpen

(2007) stated that the presence of polysemy might result in a higher baseline in lexical choice

data. In either case, the claims are largely based on intuition without empirical support.

To address this issue, a starting point would be to perform word sense disambiguation on

the lexical choice data. An immediate challenge is that despite the large amount of research

effort spent on WSD, performance of available WSD systems is quite limited (Navigli, 2009).

Adding to the challenge is the fact that many of the near-synonyms do not bear their dominant

meanings in the synonym groups they belong to (e.g., history in its synonym set with annals

and chronicle, Hayakawa, 1994). In other words, it is highly likely that the lexical choice data

that is currently used is rather noisy and inaccurate in representing the semantic distinctions

among near-synonyms. A systematic investigation is much needed to resolve this issue.
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Exploiting Lexicographic Resources on Near-synonymy

Another promising direction is to devise novel ways of using lexicographic resources on near-

synonymy and near-synonym distinctions, such as synonym dictionaries. Note that a synonym

dictionary is different from a thesaurus, which focuses on the sameness of meaning and groups

synonyms together to offer diversity in lexical choice. On the other hand, a synonym dictio-

nary consists of detailed, hand-crafted lexicographic knowledge that aims at articulating the

fine-grained differences among near-synonyms in the form of natural language. Synonym dic-

tionaries are useful for humans to understand near-synonym distinctions. However, they are

not extensively explored as a knowledge source for computational models in the existing litera-

ture. The few existing examples (e.g., that of Inkpen and Hirst 2006; Edmonds and Hirst 2002)

rely heavily on manually created hierarchies and rules for assigning lexicographic properties

to near-synonyms and their contexts.

As seen in Chapter 4 and Chapter 9, the general idea in using lexicographic knowledge

is to establish an association between the distributional contexts of a target word and its lex-

icographic properties such as definition texts. In near-synonymy, however, several key as-

sumptions are no longer valid in this framework. For example, near-synonym lexical choice

focuses more on the contrastive meaning between a group of near-synonyms rather than the

lexicographic meaning of any individual member in the group, for which definition texts in

monolingual dictionaries used thus far in the thesis can be inadequate. Consider the dictionary

definitions the word error and mistake from the Merriam-Webster Dictionary:

(8) error: an act or condition of ignorant or imprudent deviation

from a code of behavior.

(9) mistake: a wrong judgment.

The definition texts are highly abstract and it is difficult even for a human reader to readily

interpret the semantic difference between the two near-synonyms from them. In contrast, se-

mantic differences are much more explicitly expressed in synonym dictionaries such as that of
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Hayakawa (1994):

(10) error, mistake: ... error often implies deviation from a stan-

dard or model, whereas mistake is preferred in the common

situations of everyday life. ... Error is also used in a theo-

logical sense to mean sin, since sin is perceived as deviation

from the moral standards or theological truths established by

religion.

In the above example, one (human reader, and hopefully also a computational model) can

easily identify the differences between error and mistake with regard to specificity and topical

applicability. When matching against distributional contexts of the respective near-synonyms,

these description are computationally much more informative than the gloss texts found in

monolingual dictionaries.

Many interesting distributional methods can be employed to achieve this goal. For example,

a sequence-to-sequence model (Sutskever et al., 2014) can be used to generate distributional

contexts from the encoding of the synonym dictionary glosses conditioned on a particular mem-

ber of a near-synonym group. Since these models have previously been successfully applied to

machine translation, the intuition here resembles the process of “translating” the abstract, lex-

icographic descriptions of near-synonym differences into concrete contexts of the correspond-

ing near-synonyms. The generative nature of the decoder end in this proposal makes it easy

to apply the model to solve NSLC problems. In addition, if the encoder and the decoder are

reversed (e.g., generating descriptions for near-synonym differences given their distributional

contexts), a model can be potentially trained to generate natural-language texts describing near-

synonym differences from text corpora. Alternatively, an embedding model (e.g., similar to that

of Hill et al., 2015a) can also be employed to embed the synonym dictionary glosses (and by

extension, near-synonym differences) to predict the pair of near-synonyms being compared.

The encoded lexicographic knowledge can then be applied in any near-synonymy-related ap-

plication such as the lexical choice problem.
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11.2.2 Lexical Representation Learning

The study introduced in Chapter 4 laid out a general framework for defining target-context as-

sociation, and many extensions can be applied to the implementation adopted in this thesis. For

example, when combining the heterogeneous knowledge sources in the relation-independent

model (Section 4.1.2), the current implementation takes the top-n relations and combines them

with equal weights. If these weights are parameterized, it is possible not only to gain further

improvement in performance, but also to quantify the contribution of the individual relations

with regard to targets of different syntactic functions.

In addition, more evaluation tasks are needed to fully assess the strengths and weaknesses

of the resulting embeddings. Currently, four lexical datasets and one phrasal similarity dataset

are used in the evaluation. One of the criticisms of these datasets is that meanings of the target

words are assessed out of context. Similar to the near-synonym lexical choice data, this can be

a prominent issue especially when a target word has a high degree of polysemy. For similarity

evaluation, there exist datasets that address this issue by providing a sentential context for each

target word (Huang et al., 2012). Beyond lexical similarity, many other tasks can also be used

for evaluation simply by using the embeddings as lexical representations (Pennington et al.,

2014; Yogatama et al., 2014).

11.2.3 Semantic Composition

With the proposed LSTM-RNN model, the motivation for including linguistic knowledge is to

improve gating behaviour and help the model identify syntactically plausible sub-sequences.

In addition to syntactic information, there are many other types of linguistic knowledge that

can be applied by “teacher-forcing” the model to achieve the same objective, including se-

mantic clustering and labelling of the context words, and constituent markers from chunking.

More recently, Ghosh et al. (2016) demonstrated that LSTM performance can be improved by

topical information from the global-level contexts. In addition, with access to this linguistic

knowledge, the model might be simplified by introducing dependency among the gates, much
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like the gated recurrent unit (GRU) proposed by Chung et al. (2015).

Recent studies also suggest that it is possible to make explicit the memory recurrence in

RNN models. Cheng et al. (2016), for example, replaced the recurrent state at each time-

step with a weighted sum of the entire history of the states and showed that the modification

improved model performance in both sentiment classification and natural language inference

tasks. However, computational efficiency is significantly compromised due to the weight cal-

culations, which can be a major limitation of the model especially for data with larger sequence

lengths. Nonetheless, many possible improvements can be made to address the issue including

simplification of the weight calculation, for example, by making linguistically motivated as-

sumptions of independence between model parameters and the state activations of the model,

which may yield significant reduction in computational complexity.
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